Science.gov

Sample records for drugs mutually inhibit

  1. sigma opiates and certain antipsychotic drugs mutually inhibit (+)-(/sup 3/H)SKF 10,047 and (/sup 3/H)haloperidol binding in guinea pig brain membranes

    SciTech Connect

    Tam, S.W.; Cook, L.

    1984-09-01

    The relationship between binding of antipsychotic drugs and sigma psychotomimetic opiates to binding sites for the sigma agonist (+)-(/sup 3/H)SKF 10,047 (N-allylnormetazocine) and to dopamine D/sub 2/ sites was investigated. In guinea pig brain membranes, (+)-(/sup 3/H)SKF 10,047 bound to single class of sites with a K/sub d/ of 4 x 10/sup -8/ M and a B/sub max/ of 333 fmol/mg of protein. This binding was different from ..mu.., kappa, or delta opiate receptor binding. It was inhibited by opiates that produce psychotomimetic activities but not by opiates that lack such activities. Some antipsychotic drugs inhibited (+)-(/sup 3/H)SKF 10,047 binding with high to moderate affinities in the following order of potency: haloperidol > perphenazine > fluphenazine > acetophenazine > trifluoperazine > molindone greater than or equal to pimozide greater than or equal to thioridazine greater than or equal to chlorpromazine greater than or equal to triflupromazine. However, there were other antipsychotic drugs such as spiperone and clozapine that showed low affinity for the (+)-(/sup 3/H)SKF 10,047 binding sites. Affinities of antipsychotic drugs for (+)-(/sup 3/H)SKF 10,047 binding sites did not correlate with those for (/sup 3/H)spiperone (dopamine D/sub 2/) sites. (/sup 3/H)-Haloperidol binding in whole brain membranes was also inhibited by the sigma opiates pentazocine, cyclazocine, and (+)-(/sup 3/H)SKF 10,047. In the striatum, about half of the saturable (/sup 3/H)haloperidol binding was to (/sup 3/H)spiperone (D/sub 2/) sites and the other half was to sites similar to (+)-(/sup 3/H)SKF 10,047 binding sites. 15 references, 4 figures, 1 table.

  2. Reward value comparison via mutual inhibition in ventromedial prefrontal cortex

    PubMed Central

    Strait, Caleb E.; Blanchard, Tommy C.; Hayden, Benjamin Y.

    2014-01-01

    Recent theories suggest that reward-based choice reflects competition between value signals in the ventromedial prefrontal cortex (vmPFC). We tested this idea by recording vmPFC neurons while macaques performed a gambling task with asynchronous offer presentation. We found that neuronal activity shows four patterns consistent with selection via mutual inhibition. (1) Correlated tuning for probability and reward size, suggesting that vmPFC carries an integrated value signal, (2) anti-correlated tuning curves for the two options, suggesting mutual inhibition, (3) neurons rapidly come to signal the value of the chosen offer, suggesting the circuit serves to produce a choice, (4) after regressing out the effects of option values, firing rates still could predict choice – a choice probability signal. In addition, neurons signaled gamble outcomes, suggesting that vmPFC contributes to both monitoring and choice processes. These data suggest a possible mechanism for reward-based choice and endorse the centrality of vmPFC in that process. PMID:24881835

  3. Mutual inhibition of RecQ molecules in DNA unwinding.

    PubMed

    Pan, Bing-Yi; Dou, Shuo-Xing; Yang, Ye; Xu, Ya-Nan; Bugnard, Elisabeth; Ding, Xiu-Yan; Zhang, Lingyun; Wang, Peng-Ye; Li, Ming; Xi, Xu Guang

    2010-05-21

    Helicases make conformational changes and mechanical movements through hydrolysis of NTP to unwind duplex DNA (or RNA). Most helicases require a single-stranded overhang for loading onto the duplex DNA substrates. Some helicases have been observed to exhibit an enhanced unwinding efficiency with increasing length of the single-stranded DNA tail both by preventing reannealing of the unwound DNA and by compensating for premature dissociation of the leading monomers. Here we report a previously unknown mutual inhibition of neighboring monomers in DNA unwinding by the monomeric Escherichia coli RecQ helicase. With single molecule fluorescence resonance energy transfer microscopy, we observed that the unwinding initiation of RecQ at saturating concentrations was more delayed for a long rather than a short tailed DNA. In stopped-flow kinetic studies under both single and multiple turnover conditions, the unwinding efficiency decreased with increasing enzyme concentration for long tailed substrates. In addition, preincubation of RecQ and DNA in the presence of 5'-adenylyl-beta,gamma-imidodiphosphate was observed to alleviate the inhibition. We propose that the mutual inhibition effect results from a forced closure of cleft between the two RecA-like domains of a leading monomer by a trailing one, hence the forward movements of both monomers are stalled by prohibition of ATP binding to the leading one. This effect represents direct evidence for the relative movements of the two RecA-like domains of RecQ in DNA unwinding. It may occur for all superfamily I and II helicases possessing two RecA-like domains.

  4. Ungulate saliva inhibits a grass-endophyte mutualism.

    PubMed

    Tanentzap, Andrew J; Vicari, Mark; Bazely, Dawn R

    2014-07-01

    Fungal endophytes modify plant-herbivore interactions by producing toxic alkaloids that deter herbivory. However, studies have neglected the direct effects herbivores may have on endophytes. Antifungal properties and signalling effectors in herbivore saliva suggest that evolutionary pressures may select for animals that mitigate the effects of endophyte-produced alkaloids. Here, we tested whether saliva of moose (Alces alces) and European reindeer (Rangifer tarandus) reduced hyphal elongation and production of ergot alkaloids by the foliar endophyte Epichloë festucae associated with the globally distributed red fescue Festuca rubra. Both moose and reindeer saliva reduced the growth of isolated endophyte hyphae when compared with a treatment of distilled water. Induction of the highly toxic alkaloid ergovaline was also inhibited in plants from the core of F. rubra's distribution when treated with moose saliva following simulated grazing. In genotypes from the southern limit of the species' distribution, ergovaline was constitutively expressed, as predicted where growth is environmentally limited. Our results now present the first evidence, to our knowledge, that ungulate saliva can combat plant defences produced by a grass-endophyte mutualism.

  5. Irreversible enzyme inhibition kinetics and drug-drug interactions.

    PubMed

    Mohutsky, Michael; Hall, Stephen D

    2014-01-01

    This chapter describes the types of irreversible inhibition of drug-metabolizing enzymes and the methods commonly employed to quantify the irreversible inhibition and subsequently predict the extent and time course of clinically important drug-drug interactions.

  6. Mutual Regioselective Inhibition of Human UGT1A1-Mediated Glucuronidation of Four Flavonoids

    PubMed Central

    Ma, Guo; Wu, Baojian; Gao, Song; Yang, Zhen; Ma, Yong; Hu, Ming

    2013-01-01

    UDP-glucuronosyltransferase (UGT) 1A1-catalyzed glucuronidation is an important elimination pathway of flavonoids, and mutually inhibitory interactions may occur when two or more flavonoids are co-administered. Our recent research suggested that glucuronidation of flavonoids displayed distinct positional preferences, but whether this will lead to the mutually regioselective inhibition of UGT1A1-mediated glucuronidation of flavonoids is unknown. Therefore, we chose three monohydroxyflavone isomers 3-hydroxyflavone (3HF), 7-hydroxyflavone (7HF), 4′-hydroxyflavone (4′HF) and one trihydroxyflavone 3,7,4′-trihydroxyflavone (3,7,4′THF) as the model compounds to characterize the possible mutually regioselective inhibition of glucuronidation using expressed human UGT1A1. Apparent kinetic parameters [e.g., reaction velocity (V), Michaelis-Menten constant (Km), maximum rate of metabolism (Vmax), concentration at which inhibitor achieve 50% inhibition or IC50] and the Lineweaver-Burk plots were used to evaluate the apparent kinetic mechanisms of inhibition of glucuronidation. The results showed that UGT1A1-mediated glucuronidation of three monohydroxyflavones (i.e., 3HF, 7HF and 4′HF) and 3,7,4′THF was mutually inhibitory, and the mechanisms of inhibition appeared to be the mixed-typed inhibition. Specifically, the inhibitory effects displayed certain positional preference. Glucuronidation of 3HF was more easily inhibited by 3,7,4′THF than that of 7HF or 4′HF. Compared to 7-O-glucuronidation of 3,7,4′THF, 3-O-glucuronidation of 3,7,4′THF was more inhibited by 3HF and 4′HF, whereas glucuronidation at both 3-OH and 7-OH positions of 3,7,4′THF was more easily inhibited by 7HF than by 3HF and 4′HF. In conclusion, 3HF, 7HF, 4′HF and 3,7,4′THF were both substrates and inhibitors of UGT1A1, and they exhibited mutually regioselective inhibition of UGT1A1-mediated glucuronidation via a mixed-type inhibitory mechanism. PMID:23786524

  7. Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart

    PubMed Central

    Xing, Yuan; Sun, Wanqing; Wang, Yishi; Gao, Feng; Ma, Heng

    2016-01-01

    Insulin protects cardiomyocytes from myocardial ischemia/reperfusion (MI/R) injury through activating Akt. However, phosphatase PHLPP-1 (PH domain leucine-rich repeat protein phosphatase-1) dephosphorylates and inactivates Akt. The balanced competitive interaction of insulin and PHLPP-1 has not been directly examined. In this study, we have identified the effect of mutual inhibition of insulin signaling and PHLPP-1 on the cardioprotective efficiency of Akt in aged heart. Young (3 mon) and aged (20 mon) Sprague Dawley (SD) rats were subjected to MI/R in vivo. The PHLPP-1 level was higher in aged vs. young hearts at base. But, insulin treatment failed to decrease PHLPP-1 level during reperfusion in the aged hearts. Consequently, the cardioprotection of insulin-induced Akt activation was impaired in aged hearts, resulting in more susceptible to MI/R injury. In cultured rat ventricular myocytes, PHLPP-1 knockdown significantly enhanced insulin-induced Akt phosphorylation and reduced simulated hypoxia/reoxygenation-induced apoptosis. Contrary, PHLPP-1 overexpression terminated Akt phosphorylation and deteriorated myocytes apoptosis. Using in vivo aged animal models, we confirmed that cardiac PHLPP-1 knockdown or enhanced insulin sensitivity by exercise training dramatically increased insulin-induced Akt phosphorylation. Specifically, MI/R-induced cardiomyocyte apoptosis and infarct size were decreased and cardiac function was increased. More importantly, we found that insulin regulated the degradation of PHLPP-1 and insulin treatment could enhance the binding between PHLPP-1 and β-transducin repeat-containing protein (β-TrCP) to target for ubiquitin-dependent degradation. Altogether, we have identified a new mechanism by which insulin suppresses PHLPP-1 to enhance Akt activation. But, aged heart possesses lower insulin effectiveness and fails to decrease PHLPP-1 during MI/R, which subsequently limited Akt activity and cardioprotection. PHLPP-1 could be a promising

  8. Flurbiprofen–antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, pharmacological investigation, and computational molecular modeling

    PubMed Central

    Ashraf, Zaman; Alamgeer; Kanwal, Munazza; Hassan, Mubashir; Abdullah, Sahar; Waheed, Mamuna; Ahsan, Haseeb; Kim, Song Ja

    2016-01-01

    Flurbiprofen–antioxidant mutual prodrugs were synthesized to reduce the gastrointestinal (GI) effects associated with flurbiprofen. For reducing the GI toxicity, the free carboxylic group (–COOH) was temporarily masked by esterification with phenolic –OH of natural antioxidants vanillin, thymol, umbelliferone, and sesamol. The in vitro hydrolysis of synthesized prodrugs showed that they were stable in buffer solution at pH 1.2, indicating their stability in the stomach. The synthesized prodrugs undergo significant hydrolysis in 80% human plasma and thus release free flurbiprofen. The minimum reversion was observed at pH 1.2, suggesting that prodrugs are less irritating to the stomach than flurbiprofen. The anti-inflammatory, analgesic, antipyretic, and ulcerogenic activities of prodrugs were evaluated. All the synthesized prodrugs significantly (P<0.001) reduced the inflammation against carrageenan and egg albumin-induced paw edema at 4 hours of study. The reduction in the size of the inflamed paw showed that most of the compounds inhibited the later phase of inflammation. The prodrug 2-oxo-2H-chromen-7-yl-2-(2-fluorobiphenyl-4-yl)propanoate (4b) showed significant reduction in paw licking with percentage inhibition of 58%. It also exhibited higher analgesic activity, reducing the number of writhes with a percentage of 75%, whereas flurbiprofen showed 69% inhibition. Antipyretic activity was investigated using brewer’s yeast-induced pyrexia model, and significant (P<0.001) reduction in rectal temperature was shown by all prodrugs at all times of assessment. The results of ulcerogenic activity showed that all prodrugs produced less GI irritation than flurbiprofen. Molecular docking and simulation studies were carried out with cyclooxygenase (COX-1 and COX-2) proteins, and it was observed that our prodrugs have more potential to selectively bind to COX-2 than to COX-1. It is concluded that the synthesized prodrugs have promising pharmacological activities

  9. Mathematical models for sleep-wake dynamics: comparison of the two-process model and a mutual inhibition neuronal model.

    PubMed

    Skeldon, Anne C; Dijk, Derk-Jan; Derks, Gianne

    2014-01-01

    Sleep is essential for the maintenance of the brain and the body, yet many features of sleep are poorly understood and mathematical models are an important tool for probing proposed biological mechanisms. The most well-known mathematical model of sleep regulation, the two-process model, models the sleep-wake cycle by two oscillators: a circadian oscillator and a homeostatic oscillator. An alternative, more recent, model considers the mutual inhibition of sleep promoting neurons and the ascending arousal system regulated by homeostatic and circadian processes. Here we show there are fundamental similarities between these two models. The implications are illustrated with two important sleep-wake phenomena. Firstly, we show that in the two-process model, transitions between different numbers of daily sleep episodes can be classified as grazing bifurcations. This provides the theoretical underpinning for numerical results showing that the sleep patterns of many mammals can be explained by the mutual inhibition model. Secondly, we show that when sleep deprivation disrupts the sleep-wake cycle, ostensibly different measures of sleepiness in the two models are closely related. The demonstration of the mathematical similarities of the two models is valuable because not only does it allow some features of the two-process model to be interpreted physiologically but it also means that knowledge gained from study of the two-process model can be used to inform understanding of the behaviour of the mutual inhibition model. This is important because the mutual inhibition model and its extensions are increasingly being used as a tool to understand a diverse range of sleep-wake phenomena such as the design of optimal shift-patterns, yet the values it uses for parameters associated with the circadian and homeostatic processes are very different from those that have been experimentally measured in the context of the two-process model.

  10. Reliable Attention Network Scores and Mutually Inhibited Inter-network Relationships Revealed by Mixed Design and Non-orthogonal Method.

    PubMed

    Wang, Yi-Feng; Jing, Xiu-Juan; Liu, Feng; Li, Mei-Ling; Long, Zhi-Liang; Yan, Jin H; Chen, Hua-Fu

    2015-05-21

    The attention system can be divided into alerting, orienting, and executive control networks. The efficiency and independence of attention networks have been widely tested with the attention network test (ANT) and its revised versions. However, many studies have failed to find effects of attention network scores (ANSs) and inter-network relationships (INRs). Moreover, the low reliability of ANSs can not meet the demands of theoretical and empirical investigations. Two methodological factors (the inter-trial influence in the event-related design and the inter-network interference in orthogonal contrast) may be responsible for the unreliability of ANT. In this study, we combined the mixed design and non-orthogonal method to explore ANSs and directional INRs. With a small number of trials, we obtained reliable and independent ANSs (split-half reliability of alerting: 0.684; orienting: 0.588; and executive control: 0.616), suggesting an individual and specific attention system. Furthermore, mutual inhibition was observed when two networks were operated simultaneously, indicating a differentiated but integrated attention system. Overall, the reliable and individual specific ANSs and mutually inhibited INRs provide novel insight into the understanding of the developmental, physiological and pathological mechanisms of attention networks, and can benefit future experimental and clinical investigations of attention using ANT.

  11. Rational drug design applied to myeloperoxidase inhibition.

    PubMed

    Van Antwerpen, P; Zouaoui Boudjeltia, K

    2015-06-01

    Rational drug design is a general approach using protein-structure technique in which the discovery of a ligand can be driven either by chance, screening, or rational theory. Myeloperoxidase (MPO) was rapidly identified as a therapeutical target because of its involvement in chronic inflammatory syndromes. In this context, the research of MPO inhibitors was intensified and development of new chemical entities was rationally driven by the research of ligands that enter into the MPO catalytic pocket. Actually, as soon as crystallography data of MPO have become available and its structure was virtually designed, the rational drug design has been applied to this peroxidase. Pharmaceutical industries and academic laboratories apply rational drug design on MPO by either optimizing known inhibitors or searching new molecules by high-throughput virtual screening. By these ways, they were able to find efficient MPO inhibitors and understand their interactions with the enzyme. During this quest of MPO inhibition, it appears that Glu268 is a crucial residue in order to optimize ligand-target interaction. This amino acid should be carefully considered by medicinal chemist when they design inhibitors interfering with MPO activity.

  12. Evaluation of Mutual Drug-Drug Interaction within Geneva Cocktail for Cytochrome P450 Phenotyping using Innovative Dried Blood Sampling Method.

    PubMed

    Bosilkovska, Marija; Samer, Caroline; Déglon, Julien; Thomas, Aurélien; Walder, Bernhard; Desmeules, Jules; Daali, Youssef

    2016-09-01

    Cytochrome P450 (CYP) activity can be assessed using a 'cocktail' phenotyping approach. Recently, we have developed a cocktail (Geneva cocktail) which combines the use of low-dose probes with a low-invasiveness dried blood spots (DBS) sampling technique and a single analytical method for the phenotyping of six major CYP isoforms. We have previously demonstrated that modulation of CYP activity after pre-treatment with CYP inhibitors/inducer could be reliably predicted using Geneva cocktail. To further validate this cocktail, in this study, we have verified whether probe drugs contained in the latter cause mutual drug-drug interactions. In a randomized, four-way, Latin-square crossover study, 30 healthy volunteers received low-dose caffeine, flurbiprofen, omeprazole, dextromethorphan and midazolam (a previously validated combination with no mutual drug-drug interactions); fexofenadine alone; bupropion alone; or all seven drugs simultaneously (Geneva cocktail). Pharmacokinetic profiles of the probe drugs and their metabolites were determined in DBS samples using both conventional micropipette sampling and new microfluidic device allowing for self-sampling. The 90% confidence intervals for the geometric mean ratios of AUC metabolite/AUC probe for CYP probes administered alone or within Geneva cocktail fell within the 0.8-1.25 bioequivalence range indicating the absence of pharmacokinetic interaction. The same result was observed for the chosen phenotyping indices, that is metabolic ratios at 2 hr (CYP1A2, CYP3A) or 3 hr (CYP2B6, CYP2C9, CYP2C19, CYP2D6) post-cocktail administration. DBS sampling could successfully be performed using a new microfluidic device. In conclusion, Geneva cocktail combined with an innovative DBS sampling device can be used routinely as a test for simultaneous CYP phenotyping.

  13. Computational analysis of an autophagy/translation switch based on mutual inhibition of MTORC1 and ULK1

    DOE PAGES

    Szymańska, Paulina; Martin, Katie R.; MacKeigan, Jeffrey P.; ...

    2015-03-11

    We constructed a mechanistic, computational model for regulation of (macro)autophagy and protein synthesis (at the level of translation). The model was formulated to study the system-level consequences of interactions among the following proteins: two key components of MTOR complex 1 (MTORC1), namely the protein kinase MTOR (mechanistic target of rapamycin) and the scaffold protein RPTOR; the autophagy-initiating protein kinase ULK1; and the multimeric energy-sensing AMP-activated protein kinase (AMPK). Inputs of the model include intrinsic AMPK kinase activity, which is taken as an adjustable surrogate parameter for cellular energy level or AMP:ATP ratio, and rapamycin dose, which controls MTORC1 activity. Outputsmore » of the model include the phosphorylation level of the translational repressor EIF4EBP1, a substrate of MTORC1, and the phosphorylation level of AMBRA1 (activating molecule in BECN1-regulated autophagy), a substrate of ULK1 critical for autophagosome formation. The model incorporates reciprocal regulation of mTORC1 and ULK1 by AMPK, mutual inhibition of MTORC1 and ULK1, and ULK1-mediated negative feedback regulation of AMPK. Through analysis of the model, we find that these processes may be responsible, depending on conditions, for graded responses to stress inputs, for bistable switching between autophagy and protein synthesis, or relaxation oscillations, comprising alternating periods of autophagy and protein synthesis. A sensitivity analysis indicates that the prediction of oscillatory behavior is robust to changes of the parameter values of the model. The model provides testable predictions about the behavior of the AMPK-MTORC1-ULK1 network, which plays a central role in maintaining cellular energy and nutrient homeostasis.« less

  14. Computational analysis of an autophagy/translation switch based on mutual inhibition of MTORC1 and ULK1

    SciTech Connect

    Szymańska, Paulina; Martin, Katie R.; MacKeigan, Jeffrey P.; Hlavacek, William S.; Lipniacki, Tomasz

    2015-03-11

    We constructed a mechanistic, computational model for regulation of (macro)autophagy and protein synthesis (at the level of translation). The model was formulated to study the system-level consequences of interactions among the following proteins: two key components of MTOR complex 1 (MTORC1), namely the protein kinase MTOR (mechanistic target of rapamycin) and the scaffold protein RPTOR; the autophagy-initiating protein kinase ULK1; and the multimeric energy-sensing AMP-activated protein kinase (AMPK). Inputs of the model include intrinsic AMPK kinase activity, which is taken as an adjustable surrogate parameter for cellular energy level or AMP:ATP ratio, and rapamycin dose, which controls MTORC1 activity. Outputs of the model include the phosphorylation level of the translational repressor EIF4EBP1, a substrate of MTORC1, and the phosphorylation level of AMBRA1 (activating molecule in BECN1-regulated autophagy), a substrate of ULK1 critical for autophagosome formation. The model incorporates reciprocal regulation of mTORC1 and ULK1 by AMPK, mutual inhibition of MTORC1 and ULK1, and ULK1-mediated negative feedback regulation of AMPK. Through analysis of the model, we find that these processes may be responsible, depending on conditions, for graded responses to stress inputs, for bistable switching between autophagy and protein synthesis, or relaxation oscillations, comprising alternating periods of autophagy and protein synthesis. A sensitivity analysis indicates that the prediction of oscillatory behavior is robust to changes of the parameter values of the model. The model provides testable predictions about the behavior of the AMPK-MTORC1-ULK1 network, which plays a central role in maintaining cellular energy and nutrient homeostasis.

  15. San-Huang-Xie-Xin-Tang Constituents Exert Drug-Drug Interaction of Mutual Reinforcement at Both Pharmacodynamics and Pharmacokinetic Level: A Review.

    PubMed

    Wu, Jiasi; Hu, Yingfan; Xiang, Li; Li, Sheng; Yuan, Yi; Chen, Xiaomei; Zhang, Yan; Huang, Wenge; Meng, Xianli; Wang, Ping

    2016-01-01

    Inflammatory disorders underlie varieties of human diseases. San-Huang-Xie-xin-Tang (SHXXT), composed with Rhizoma Rhei (Rheum palmatum L.), Rhizoma Coptidis (Coptis chinensis Franch), and Radix Scutellaria (Scutellaria baicalensis Georgi), is a famous formula which has been widely used in the fight against inflammatory abnormalities. Mutual reinforcement is one of the basic theories of traditional Chinese medicine. Here this article reviewed and analyzed the recent research on (1) How the main constituents of SHXXT impact on inflammation-associated signaling pathway molecules. (2) The interaction between the main constituents and efflux pumps or intestinal transporters. The goal of this work was to, (1) Provide evidence to support the theory of mutual reinforcement. (2) Clarify the key targets of SHXXT and suggest which targets need further investigation. (3) Give advice for the clinical use of SHXXT to elevated the absorption of main constituents and eventually promote oral bioavailability. We search literatures in scientific databases with key words of "each main SHXXT constituent," in combination with "each main inflammatory pathway target molecule" or each main intestinal transporter, respectively. We report the effect of five main constituents on target molecules which lies in three main inflammatory signaling pathways, we as well investigate the interaction between constituents and intestinal transporter. We conclude, (1) The synergistic effect of constituents at both levels confirm the mutual reinforcement theory of TCM as it is proven in this work. (2) The effect of main constituents on downstream targets in nuclear need more further investigation. (3) Drug elevating the absorption of rhein, berberine and baicalein can be employed to promote oral bioavailability of SHXXT.

  16. San-Huang-Xie-Xin-Tang Constituents Exert Drug-Drug Interaction of Mutual Reinforcement at Both Pharmacodynamics and Pharmacokinetic Level: A Review

    PubMed Central

    Wu, Jiasi; Hu, Yingfan; Xiang, Li; Li, Sheng; Yuan, Yi; Chen, Xiaomei; Zhang, Yan; Huang, Wenge; Meng, Xianli; Wang, Ping

    2016-01-01

    Inflammatory disorders underlie varieties of human diseases. San-Huang-Xie-xin-Tang (SHXXT), composed with Rhizoma Rhei (Rheum palmatum L.), Rhizoma Coptidis (Coptis chinensis Franch), and Radix Scutellaria (Scutellaria baicalensis Georgi), is a famous formula which has been widely used in the fight against inflammatory abnormalities. Mutual reinforcement is one of the basic theories of traditional Chinese medicine. Here this article reviewed and analyzed the recent research on (1) How the main constituents of SHXXT impact on inflammation-associated signaling pathway molecules. (2) The interaction between the main constituents and efflux pumps or intestinal transporters. The goal of this work was to, (1) Provide evidence to support the theory of mutual reinforcement. (2) Clarify the key targets of SHXXT and suggest which targets need further investigation. (3) Give advice for the clinical use of SHXXT to elevated the absorption of main constituents and eventually promote oral bioavailability. We search literatures in scientific databases with key words of “each main SHXXT constituent,” in combination with “each main inflammatory pathway target molecule” or each main intestinal transporter, respectively. We report the effect of five main constituents on target molecules which lies in three main inflammatory signaling pathways, we as well investigate the interaction between constituents and intestinal transporter. We conclude, (1) The synergistic effect of constituents at both levels confirm the mutual reinforcement theory of TCM as it is proven in this work. (2) The effect of main constituents on downstream targets in nuclear need more further investigation. (3) Drug elevating the absorption of rhein, berberine and baicalein can be employed to promote oral bioavailability of SHXXT. PMID:27965575

  17. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed

    Hong, Y L; Hossler, P A; Calhoun, D H; Meshnick, S R

    1995-08-01

    Forty-four sulfa drugs were screened against crude preparations of recombinant Pneumocystis carinii dihydropteroate synthetase. The apparent Michaelis-Menten constants (Km) for p-aminobenzoic acid and 7,8-dihydro-6-hydroxymethylpterin pyrophosphate were 0.34 +/- 0.02 and 2.50 +/- 0.71 microM, respectively. Several sulfa drugs, including sulfathiazole, sulfachlorpyridazine, sulfamethoxypyridazine, and sulfathiourea, inhibited dihydropteroate synthetase approximately as well as sulfamethoxazole, as determined by the concentrations which cause 50% inhibition and/or by Ki. For all sulfones and sulfonamides tested, unsubstituted p-amino groups were necessary for activity, and sulfonamides containing an N1-heterocyclic substituent were found to be the most effective inhibitors. Folate biosynthesis in isolated intact P. carinii was approximately equally sensitive to inhibition by sulfamethoxazole, sulfachlorpyridazine, sulfamethoxypyridazine, sulfisoxazole, and sulfathiazole. Two of these drugs, sulfamethoxypyridazine and sulfisoxazole, are known to be less toxic than sulfamethoxazole and should be further evaluated for the treatment of P. carinii pneumonia.

  18. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication

    PubMed Central

    Sacramento, Carolina Q.; de Melo, Gabrielle R.; de Freitas, Caroline S.; Rocha, Natasha; Hoelz, Lucas Villas Bôas; Miranda, Milene; Fintelman-Rodrigues, Natalia; Marttorelli, Andressa; Ferreira, André C.; Barbosa-Lima, Giselle; Abrantes, Juliana L.; Vieira, Yasmine Rangel; Bastos, Mônica M.; de Mello Volotão, Eduardo; Nunes, Estevão Portela; Tschoeke, Diogo A.; Leomil, Luciana; Loiola, Erick Correia; Trindade, Pablo; Rehen, Stevens K.; Bozza, Fernando A.; Bozza, Patrícia T.; Boechat, Nubia; Thompson, Fabiano L.; de Filippis, Ana M. B.; Brüning, Karin; Souza, Thiago Moreno L.

    2017-01-01

    Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV. PMID:28098253

  19. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication.

    PubMed

    Sacramento, Carolina Q; de Melo, Gabrielle R; de Freitas, Caroline S; Rocha, Natasha; Hoelz, Lucas Villas Bôas; Miranda, Milene; Fintelman-Rodrigues, Natalia; Marttorelli, Andressa; Ferreira, André C; Barbosa-Lima, Giselle; Abrantes, Juliana L; Vieira, Yasmine Rangel; Bastos, Mônica M; de Mello Volotão, Eduardo; Nunes, Estevão Portela; Tschoeke, Diogo A; Leomil, Luciana; Loiola, Erick Correia; Trindade, Pablo; Rehen, Stevens K; Bozza, Fernando A; Bozza, Patrícia T; Boechat, Nubia; Thompson, Fabiano L; de Filippis, Ana M B; Brüning, Karin; Souza, Thiago Moreno L

    2017-01-18

    Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV.

  20. Microglia-inhibiting activity of Parkinson's disease drug amantadine.

    PubMed

    Kim, Jong-Heon; Lee, Ho-Won; Hwang, Jaegyu; Kim, Jaehong; Lee, Min-Jeong; Han, Hyung-Soo; Lee, Won-Ha; Suk, Kyoungho

    2012-09-01

    Amantadine is currently used as an antiviral and an antiparkinsonian drug. Although the drug is known to bind a viral proton channel protein, the mechanism of action in Parkinson's disease (PD) remains to be determined. This study investigated whether the drug has an inhibitory effect on microglial activation and neuroinflammation, which have been implicated in the progression of neurodegenerative processes. Using cultured microglial cells, it was demonstrated that the drug inhibited inflammatory activation of microglia and a signaling pathway that governs the microglial activation. The drug reduced the expression and production of proinflammatory mediators in bacterial lipopolysaccharide-stimulated microglia cells. The microglia-inhibiting activity of amantadine was also demonstrated in a microglia/neuron coculture and animal models of neuroinflammation and Parkinson's disease. Collectively, our results suggest that amantadine may act on microglia in the central nervous system to inhibit their inflammatory activation, thereby attenuating neuroinflammation. These results provide a molecular basis of the glia-targeted mechanism of action for amantadine.

  1. Drug-eluting fibers for HIV-1 inhibition and contraception.

    PubMed

    Ball, Cameron; Krogstad, Emily; Chaowanachan, Thanyanan; Woodrow, Kim A

    2012-01-01

    Multipurpose prevention technologies (MPTs) that simultaneously prevent sexually transmitted infections (STIs) and unintended pregnancy are a global health priority. Combining chemical and physical barriers offers the greatest potential to design effective MPTs, but integrating both functional modalities into a single device has been challenging. Here we show that drug-eluting fiber meshes designed for topical drug delivery can function as a combination chemical and physical barrier MPT. Using FDA-approved polymers, we fabricated nanofiber meshes with tunable fiber size and controlled degradation kinetics that facilitate simultaneous release of multiple agents against HIV-1, HSV-2, and sperm. We observed that drug-loaded meshes inhibited HIV-1 infection in vitro and physically obstructed sperm penetration. Furthermore, we report on a previously unknown activity of glycerol monolaurate (GML) to potently inhibit sperm motility and viability. The application of drug-eluting nanofibers for HIV-1 prevention and sperm inhibition may serve as an innovative platform technology for drug delivery to the lower female reproductive tract.

  2. Drug-Eluting Fibers for HIV-1 Inhibition and Contraception

    PubMed Central

    Ball, Cameron; Krogstad, Emily; Chaowanachan, Thanyanan; Woodrow, Kim A.

    2012-01-01

    Multipurpose prevention technologies (MPTs) that simultaneously prevent sexually transmitted infections (STIs) and unintended pregnancy are a global health priority. Combining chemical and physical barriers offers the greatest potential to design effective MPTs, but integrating both functional modalities into a single device has been challenging. Here we show that drug-eluting fiber meshes designed for topical drug delivery can function as a combination chemical and physical barrier MPT. Using FDA-approved polymers, we fabricated nanofiber meshes with tunable fiber size and controlled degradation kinetics that facilitate simultaneous release of multiple agents against HIV-1, HSV-2, and sperm. We observed that drug-loaded meshes inhibited HIV-1 infection in vitro and physically obstructed sperm penetration. Furthermore, we report on a previously unknown activity of glycerol monolaurate (GML) to potently inhibit sperm motility and viability. The application of drug-eluting nanofibers for HIV-1 prevention and sperm inhibition may serve as an innovative platform technology for drug delivery to the lower female reproductive tract. PMID:23209601

  3. Flagging Drugs That Inhibit the Bile Salt Export Pump.

    PubMed

    Montanari, Floriane; Pinto, Marta; Khunweeraphong, Narakorn; Wlcek, Katrin; Sohail, M Imran; Noeske, Tobias; Boyer, Scott; Chiba, Peter; Stieger, Bruno; Kuchler, Karl; Ecker, Gerhard F

    2016-01-04

    The bile salt export pump (BSEP) is an ABC-transporter expressed at the canalicular membrane of hepatocytes. Its physiological role is to expel bile salts into the canaliculi from where they drain into the bile duct. Inhibition of this transporter may lead to intrahepatic cholestasis. Predictive computational models of BSEP inhibition may allow for fast identification of potentially harmful compounds in large databases. This article presents a predictive in silico model based on physicochemical descriptors that is able to flag compounds as potential BSEP inhibitors. This model was built using a training set of 670 compounds with available BSEP inhibition potencies. It successfully predicted BSEP inhibition for two independent test sets and was in a further step used for a virtual screening experiment. After in vitro testing of selected candidates, a marketed drug, bromocriptin, was identified for the first time as BSEP inhibitor. This demonstrates the usefulness of the model to identify new BSEP inhibitors and therefore potential cholestasis perpetrators.

  4. Prediction and evaluation of protein farnesyltransferase inhibition by commercial drugs

    PubMed Central

    DeGraw, Amanda J.; Keiser, Michael J.; Ochocki, Joshua D.; Shoichet, Brian K.; Distefano, Mark D.

    2010-01-01

    The Similarity Ensemble Approach (SEAa) relates proteins based on the set-wise chemical similarity among their ligands. It can be used to rapidly search large compound databases and to build cross-target similarity maps. The emerging maps relate targets in ways that reveal relationships one might not recognize based on sequence or structural similarities alone. SEA has previously revealed cross talk between drugs acting primarily on G-protein coupled receptors (GPCRs). Here we used SEA to look for potential off-target inhibition of the enzyme protein farnesyltransferase (PFTase) by commercially available drugs. The inhibition of PFTase has profound consequences for oncogenesis, as well as a number of other diseases. In the present study, two commercial drugs, Loratadine and Miconazole, were identified as potential ligands for PFTase and subsequently confirmed as such experimentally. These results point towards the applicability of SEA for the prediction of not only GPCR-GPCR drug cross talk, but also GPCR-enzyme and enzyme-enzyme drug cross talk. PMID:20180535

  5. GABAergic drugs inhibit amphetamine-induced distractibility in the rat.

    PubMed

    Agmo, A; Medrano, A; Garrido, N; Alonso, P

    1997-09-01

    Drugs facilitating GABAergic neurotransmission have been reported to block some behavioral actions of dopaminergic stimulation but not others. The present experiments were performed with the purpose to extend the range of behaviors in which the interaction between GABA and dopamine have been studied. The ability of the GABAB agonist baclofen and the GABA transaminase inhibitor sodium valproate to block the enhanced distractibility produced by amphetamine was evaluated in a procedure especially designed for analyzing drugs' effects on distractibility. Briefly, rats were trained to traverse a straight runway with a sucrose solution as reinforcement. Once the response had been acquired, an additional runway ending in an empty box was connected. The time spent investigating this additional runway is the measure of distractibility. Male rats treated with amphetamine, 1 mg/kg, displayed an increase of the time spent in the additional runway. Baclofen, 2.5 and 5 mg/kg, and sodium valproate, 100 and 200 mg/kg, had no effect on distraction behavior when administered alone. However, when these drugs were administered together with amphetamine, 1 mg/kg, they completely inhibited the effects of the stimulant on distractibility. These data show that distractibility is similar to discrimination learning with regard to the capacity of GABAergic drugs to block the effects of dopaminergic stimulation. It is different from locomotor activity, however, where GABAergic drugs are ineffective in this respect.

  6. Histamine N-methyl transferase: inhibition by drugs.

    PubMed Central

    Pacifici, G M; Donatelli, P; Giuliani, L

    1992-01-01

    1. Histamine N-methyl transferase activity was measured in samples of human liver, brain, kidney, lung and intestinal mucosa. The mean (+/- s.d.) rate (nmol min-1 mg-1 protein) of histamine N-methylation was 1.78 +/- 0.59 (liver, n = 60), 1.15 +/- 0.38 (renal cortex, n = 8), 0.79 +/- 0.14 (renal medulla, n = 8), 0.35 +/- 0.08 (lung, n = 20), 0.47 +/- 0.18 (human intestine, n = 30) and 0.29 +/- 0.14 (brain, n = 13). 2. Inhibition of histamine N-methyl transferase by 15 drugs was investigated in human liver. The IC50 for the various drugs ranged over three orders of magnitude; chloroquine was the most potent inhibitor. 3. The average IC50 values for chloroquine were 12.6, 22.0, 19.0, 21.6 microM in liver, renal cortex, brain and colon, respectively. These values are lower than the Michaelis-Menten constant for histamine N-methyltransferase in liver (43.8 microM) and kidney (45.5 microM). Chloroquine carried a mixed non-competitive inhibition of hepatic histamine N-methyl transferase. Some side-effects of chloroquine may be explained by inhibition of histamine N-methyl transferase. PMID:1457266

  7. Drug-Drug Interaction Potentials of Tyrosine Kinase Inhibitors via Inhibition of UDP-Glucuronosyltransferases

    PubMed Central

    Zhang, Nan; Liu, Yong; Jeong, Hyunyoung

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are anticancer drugs that may be co-administered with other drugs. The aims of this study are to investigate the inhibitory effects of TKIs on UDP-glucuronosyltransferase (UGT) activities, and to quantitatively evaluate their potential to cause drug-drug interactions (DDIs). Inhibition kinetic profiles of a panel of UGT enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17) by four TKIs (axitinib, imatinib, lapatinib and vandetanib) were characterized by using hepatic microsomes and recombinant proteins. Lapatinib exhibited potent competitive inhibition against UGT1A1 activity with a Ki of 0.5 μM. Imatinib was found to exhibit broad inhibition on several UGTs, particularly potent competitive inhibition against UGT2B17 with a Ki of 0.4 μM. The TKIs also exerted intermediate inhibition against several UGTs (i.e., UGT1A7 by lapatinib; UGT1A1 by imatinib; UGT1A4, 1A7 and 1A9 by axitinib; and UGT1A9 by vandetanib). Results from modeling for the quantitative prediction of DDI risk indicated that the coadministration of lapatinib or imatinib at clinical doses could result in a significant increase in AUC of drugs primarily cleared by UGT1A1 or 2B17. Lapatinib and imatinib may cause clinically significant DDIs when co-administered UGT1A1 or 2B17 substrates. PMID:26642944

  8. Pharmacological diversity among drugs that inhibit bone resorption.

    PubMed

    Russell, R Graham G

    2015-06-01

    Drugs that inhibit bone resorption ('anti-resorptives') continue to dominate the therapy of bone diseases characterized by enhanced bone destruction, including Paget's disease, osteoporosis and cancers. The historic use of oestrogens for osteoporosis led on to SERMs (Selective Estrogen Receptor Modulators, e.g. raloxifene and bazedoxifene). Currently the mainstay of treatment worldwide is still with bisphosphonates, as used clinically for over 40 years. The more recently introduced anti-RANK-ligand antibody, denosumab, is also very effective in reducing vertebral, non-vertebral and hip fractures. Odanacatib is the only cathepsin K inhibitor likely to be registered for clinical use. The pharmacological basis for the action of each of these drug classes is different, enabling choices to be made to ensure their optimal use in clinical practice.

  9. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme

    SciTech Connect

    Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.; Scott, John E.; Orans, Jillian; Koo, Ja Seol; Venkatesh, Madhukumar; Jobin, Christian; Yeh, Li-An; Mani, Sridhar; Redinbo, Matthew R.

    2011-08-12

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial {beta}-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial {beta}-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial {beta}-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.

  10. The Synthetic Antiviral Drug Arbidol Inhibits Globally Prevalent Pathogenic Viruses

    PubMed Central

    Pécheur, Eve-Isabelle; Borisevich, Viktoriya; Halfmann, Peter; Morrey, John D.; Smee, Donald F.; Prichard, Mark; Mire, Chad E.; Kawaoka, Yoshihiro; Geisbert, Thomas W.

    2016-01-01

    ABSTRACT Arbidol (ARB) is a synthetic antiviral originally developed to combat influenza viruses. ARB is currently used clinically in several countries but not in North America. We have previously shown that ARB inhibits in vitro hepatitis C virus (HCV) by blocking HCV entry and replication. In this report, we expand the list of viruses that are inhibited by ARB and demonstrate that ARB suppresses in vitro infection of mammalian cells with Ebola virus (EBOV), Tacaribe arenavirus, and human herpesvirus 8 (HHV-8). We also confirm suppression of hepatitis B virus and poliovirus by ARB. ARB inhibited EBOV Zaire Kikwit infection when added before or at the same time as virus infection and was less effective when added 24 h after EBOV infection. Experiments with recombinant vesicular stomatitis virus (VSV) expressing the EBOV Zaire glycoprotein showed that infection was inhibited by ARB at early stages, most likely at the level of viral entry into host cells. ARB inhibited HHV-8 replication to a similar degree as cidofovir. Our data broaden the spectrum of antiviral efficacy of ARB to include globally prevalent viruses that cause significant morbidity and mortality. IMPORTANCE There are many globally prevalent viruses for which there are no licensed vaccines or antiviral medicines. Some of these viruses, such as Ebola virus or members of the arenavirus family, rapidly cause severe hemorrhagic diseases that can be fatal. Other viruses, such as hepatitis B virus or human herpesvirus 8 (HHV-8), establish persistent infections that cause chronic illnesses, including cancer. Thus, finding an affordable, effective, and safe drug that blocks many viruses remains an unmet medical need. The antiviral drug arbidol (ARB), already in clinical use in several countries as an anti-influenza treatment, has been previously shown to suppress the growth of many viruses. In this report, we expand the list of viruses that are blocked by ARB in a laboratory setting to include Ebola virus

  11. Inhibition of human liver aldehyde oxidase: implications for potential drug-drug interactions.

    PubMed

    Barr, John T; Jones, Jeffrey P

    2011-12-01

    During the course of our research efforts to understand the kinetics of human aldehyde oxidase as a xenobiotic-clearing enzyme, we investigated the effect of eight different inhibitors on the oxidation of the probe substrate phthalazine. Saturation kinetic parameters for phthalazine oxidation in human liver cytosol were found to be the following: K(m) = 8.0 ± 0.4 μM and V(max) = 4.3 ± 0.1 nmol · min(-1) · mg protein(-1). Inhibitory potency of the inhibitors tested ranged from 0.1 to 5 μM. Of the eight different inhibitor compounds tested, seven were observed to inhibit through a mixed mode and one through a strictly competitive mode. A ratio of the K(ii) and K(is) values was used to assess the relative competitiveness of each inhibitor. For the mixed inhibitors, the mode of inhibition varied from mostly uncompetitive to predominantly competitive (K(ii)/K(is) values ranging from 0.1 to 15). The implications for potential drug-drug interactions and inhibition mechanism are discussed. We found two inhibitors, clozapine and chlorpromazine, that have a moderate predicted risk of drug-drug interactions based on the K(i) value relative to the inhibitor concentration in human plasma, having a calculated [I]/K(i) value of 0.4 and 0.8, respectively.

  12. Synthesis of biocompatible nanoparticle drug complexes for inhibition of mycobacteria

    NASA Astrophysics Data System (ADS)

    Bhave, Tejashree; Ghoderao, Prachi; Sanghavi, Sonali; Babrekar, Harshada; Bhoraskar, S. V.; Ganesan, V.; Kulkarni, Anjali

    2013-12-01

    Tuberculosis (TB) is one of the most critical infectious diseases affecting the world today. Current TB treatment involves six months long daily administration of four oral doses of antibiotics. Due to severe side effects and the long treatment, a patient's adherence is low and this results in relapse of symptoms causing an alarming increase in the prevalence of multi-drug resistant (MDR) TB. Hence, it is imperative to develop a new drug delivery technology wherein these effects can be reduced. Rifampicin (RIF) is one of the widely used anti-tubercular drugs (ATD). The present study discusses the development of biocompatible nanoparticle-RIF complexes with superior inhibitory activity against both Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis). Iron oxide nanoparticles (NPs) synthesized by gas phase condensation and NP-RIF complexes were tested against M. smegmatis SN2 strain as well as M. tuberculosis H37Rv laboratory strain. These complexes showed significantly better inhibition of M. smegmatis SN2 strain at a much lower effective concentration (27.5 μg ml-1) as compared to neat RIF (125 μg ml-1). Similarly M. tuberculosis H37Rv laboratory strain was susceptible to both nanoparticle-RIF complex and neat RIF at a minimum inhibitory concentration of 0.22 and 1 μg ml-1, respectively. Further studies are underway to determine the efficacy of NPs-RIF complexes in clinical isolates of M. tuberculosis as well as MDR isolates.

  13. Characterizing Septum Inhibition in Mycobacterium tuberculosis for Novel Drug Discovery

    SciTech Connect

    Respicio,L.; Nair, P.; Huang, Q.; Anil, B.; Tracz, S.; Truglio, J.; Kisker, C.; Raleigh, D.; Ojima, I.; et al

    2008-01-01

    A temperature sensitive mutation in the cell division protein FtsZ was used in combination with transcriptional analysis to identify biomarkers for inhibition of septum formation. Crystallography and modeling revealed that the glycine for aspartate substitution at amino acid 210 was located in helix 8 of the protein, adjacent to the T7 synergy loop. To verify the molecular behavior of FtsZD210G, the in vitro activity and structural stability were evaluated as a function of temperature. These analyses confirmed that the FtsZD210G mutant had reduced GTPase and polymerization activity compared to wild-type FtsZ, and CD spectroscopy demonstrated that both FtsZD210G and wild-type FtsZ had similar structure and stability. Significantly, the FtsZD210G merodiploid strain of M. tuberculosis had compromised growth at 37 C, substantiating the suitability of FtsZD210G as a molecular tool for global analysis in response to improper FtsZ polymerization and septum inhibition. Advanced model-based bioinformatics and transcriptional mapping were used to identify high-content multiple features that provide biomarkers for the development of a rational drug screening platform for discovering novel chemotherapeutics that target cell division.

  14. Mutual inhibition between YAP and SRSF1 maintains long non-coding RNA, Malat1-induced tumourigenesis in liver cancer.

    PubMed

    Wang, Jiayi; Wang, Hongmei; Zhang, Yue; Zhen, Ni; Zhang, Li; Qiao, Yongxia; Weng, Wenhao; Liu, Xiangfan; Ma, Lifang; Xiao, Weifan; Yu, Wenjun; Chu, Qinghua; Pan, Qiuhui; Sun, Fenyong

    2014-05-01

    Emerging studies have revealed that Malat1 is overexpressed in many malignant diseases, including liver cancer, and contributes to enhancing cell migration or facilitating proliferation. However, the mechanism underlying its regulation has largely remained elusive. Here, we characterised the oncoprotein Yes-associated protein (YAP), which up-regulated metastasis-associated lung adenocarcinoma transcript 1 (Malat1) expression at both transcriptional and post-transcriptional levels, whereas serine/arginine-rich splicing factor 1 (SRSF1) played an opposing role. SRSF1 inhibited YAP activity by preventing its co-occupation with TCF/β-catenin on the Malat1 promoter. In contrast, overexpression of YAP impaired the nuclear retention of both SRSF1 and itself via an interaction with Angiomotin (AMOT). This effect removed the inhibitory role of SRSF1 on Malat1 in the nucleus. Furthermore, higher expression of YAP was consistent with a lower SRSF1 nuclear accumulation in human liver cancer tissues. We also revealed that overexpression of YAP combined with a knockdown of SRSF1 resulted in conspicuously enhanced transwell cell mobility, accelerated tumour growth rate, and loss of body weight in a tail vein-injected mouse models. Taken together, these data provided a novel mechanism underlying the balance between SRSF1, YAP and Malat1 and uncovered a new role of YAP in regulating long non-coding RNA (lncRNA). Thus, disrupting the interaction between YAP and SRSF1 may serve as a crucial therapeutic method in liver cancer.

  15. A mutual inhibition between APC/C and its substrate Mes1 required for meiotic progression in fission yeast.

    PubMed

    Kimata, Yuu; Trickey, Michelle; Izawa, Daisuke; Gannon, Julian; Yamamoto, Masayuki; Yamano, Hiroyuki

    2008-03-01

    The anaphase-promoting complex/cyclosome (APC/C) is a cell-cycle-regulated essential E3 ubiquitin ligase; however, very little is known about its meiotic regulation. Here we show that fission yeast Mes1 is a substrate of the APC/C as well as an inhibitor, allowing autoregulation of the APC/C in meiosis. Both traits require a functional destruction box (D box) and KEN box. We show that Mes1 directly binds the WD40 domain of the Fizzy family of APC/C activators. Intriguingly, expression of nonubiquitylatable Mes1 blocks cells in metaphase I with high levels of APC/C substrates, suggesting that ubiquitylation of Mes1 is required for partial degradation of cyclin B in meiosis I by alleviating Mes1 inhibitory function. Consistently, a ternary complex, APC/C-Fizzy/Cdc20-Mes1, is stabilized by inhibiting Mes1 ubiquitylation. These results demonstrate that the fine-tuning of the APC/C activity, by a substrate that is also an inhibitor, is required for the precise coordination and transition through meiosis.

  16. Plaque inhibition assay for drug susceptibility testing of influenza viruses.

    PubMed Central

    Hayden, F G; Cote, K M; Douglas, R G

    1980-01-01

    The relative antiviral activities of four drugs against contemporary strains of influenza A and B viruses were determined in Madin-Darby canine kidney cell monolayers with a plaque inhibition assay. This assay proved to be a reliable, rapid method of determining 50% inhibitory concentrations that correlated well with clinically achievable drug levels and the results of clinical trials. Contemporary strains of influenza A viruses (subtypes H1N1, H3N2, HSW1N1) required amantadine hydrochloride and rimantadine hydrochloride 50% inhibitory concentrations in the range of 0.2 to 0.4 microgram/ml, whereas 50% inhibitory concentrations ranged from approximately 50 to 100 micrograms/ml against influenza B viruses. Ribavirin was approximately 10-fold less active than amantadine hydrochloride against influenza A viruses, and the ribavirin 50% inhibitory concentrations against both influenza A and B viruses ranged from 2.6 to 6.8 micrograms/ml. Inosiplex had no antiviral activity in this test system. PMID:7396473

  17. The "Flavor" of the Social Ecology Paradigm in Use: Building on Mutual Social Support in Preventing Drug Abuse.

    ERIC Educational Resources Information Center

    Thorsheim, Howard I.; Roberts, Bruce B.

    The "Bottled Pain" project, a drug abuse prevention program in 24 Lutheran congregations in southern Minnesota, is based on a social ecology paradigm designed to prevent drug abuse through the development of socially supportive relationshps and through using the environment as a natural strength within the community. According to the…

  18. DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents?

    SciTech Connect

    Asmis, Lars; Tanner, Felix C.; Sudano, Isabella; Luescher, Thomas F.; Camici, Giovanni G.

    2010-01-22

    Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysis showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 {+-} 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% {+-} 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 {+-} 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.

  19. Statin Drugs Markedly Inhibit Testosterone Production by Rat Leydig Cells In Vitro: Implications for Men

    EPA Science Inventory

    Statin drugs lower blood cholesterol by inhibiting hepatic 3-hydroxy-3-methylglutaryl-Coenzyme-A reductase. During drug development it was shown that statins inhibit production of cholesterol in the testis. We evaluated testosterone production in vitro, using highly purified rat ...

  20. Hsf-1 and POB1 induce drug sensitivity and apoptosis by inhibiting Ralbp1.

    PubMed

    Singhal, Sharad S; Yadav, Sushma; Drake, Kenneth; Singhal, Jyotsana; Awasthi, Sanjay

    2008-07-11

    Hsf-1 (heat shock factor-1) is a transcription factor that is known to regulate cellular heat shock response through its binding with the multispecific transporter protein, Ralbp1. Results of present studies demonstrate that Hsf-1 causes specific and saturable inhibition of the transport activity of Ralbp1 and that the combination of Hsf-1 and POB1 causes nearly complete inhibition through specific bindings with Ralbp1. Augmentation of cellular levels of Hsf-1 and POB1 caused dramatic apoptosis in non-small cell lung cancer cell line H358 through Ralbp1 inhibition. These findings indicate a novel model for mutual regulation of Hsf-1 and Ralbp1 through Ralbp1-mediated sequestration of Hsf-1 in the cellular cytoskeleton and Hsf-1-mediated inhibition of the transport activity of membrane-bound Ralbp1.

  1. Drug-induced Inhibition and Trafficking Disruption of ion Channels: Pathogenesis of QT Abnormalities and Drug-induced Fatal Arrhythmias.

    PubMed

    Cubeddu, Luigi X

    2016-01-01

    Risk of severe and fatal ventricular arrhythmias, presenting as Torsade de Pointes (TdP), is increased in congenital and acquired forms of long QT syndromes (LQTS). Drug-induced inhibition of K+ currents, IKs, IKr, IK1, and/or Ito, delay repolarization, prolong QT, and increase the risk of TdP. Drug-induced interference with IKr is the most common cause of acquired LQTS/TdP. Multiple drugs bind to KNCH2-hERG-K+ channels affecting IKr, including antiarrythmics, antibiotics, antivirals, azole-antifungals, antimalarials, anticancer, antiemetics, prokinetics, antipsychotics, and antidepressants. Azithromycin has been recently added to this list. In addition to direct channel inhibition, some drugs interfere with the traffic of channels from the endoplasmic reticulum to the cell membrane, decreasing mature channel membrane density; e.g., pentamidine, geldalamicin, arsenic trioxide, digoxin, and probucol. Other drugs, such as ketoconazole, fluoxetine, norfluoxetine, citalopram, escitalopram, donepezil, tamoxifen, endoxifen, atazanavir, and roxitromycin, induce both direct channel inhibition and impaired channel trafficking. Although many drugs prolong the QT interval, TdP is a rare event. The following conditions increase the risk of drug-induced TdP: a) Disease states/electrolyte levels (heart failure, structural cardiac disease, bradycardia, hypokalemia); b) Pharmacogenomic variables (presence of congenital LQTS, subclinical ion-channel mutations, history of or having a relative with history of drug-induced long QT/TdP); c) Pharmacodynamic and kinetic factors (high doses, women, elderly, metabolism inhibitors, combining two or more QT prolonging drugs, drugs that prolong the QT and increase QT dispersion, and drugs with multiple actions on ion channels). Because most of these conditions are preventable, careful evaluation of risk factors and increased knowledge of drug use associated with repolarization abnormalities are strongly recommended.

  2. Conjugation to polymeric chains of influenza drugs targeting M2 ion channels partially restores inhibition of drug-resistant mutants

    PubMed Central

    Larson, Alyssa M.; Chen, Jianzhu; Klibanov, Alexander M.

    2013-01-01

    By attaching multiple copies of the influenza M2 ion channel inhibitors amantadine (1) and rimantadine (2) to polymeric chains we endeavored to recover their potency in inhibiting drug-resistant influenza viruses. Depending on loading densities, as well as the nature of the drug, the polymer, and the spacer arm, polymer-conjugated drugs were up to 30-fold more potent inhibitors of drug-resistant strains than their monomeric parents. In particular, a 20% loading density and a short linker group on the negatively charged poly-L-glutamate resulted in some of the most potent inhibitors for 2′s conjugates against drug-resistant influenza strains. Although full recovery of the inhibitory action against drug-resistant strains was not achieved, this study may be a step toward salvaging anti-influenza drugs that are no longer effective. PMID:23832466

  3. Comparison of the Drug-Drug Interactions Potential of Erlotinib and Gefitinib via Inhibition of UDP-Glucuronosyltransferases

    PubMed Central

    Liu, Yong; Ramírez, Jacqueline; House, Larry

    2010-01-01

    We aimed to investigate and compare the effects of erlotinib and gefitinib on UDP-glucuronosyltransferase (UGT) activities and to quantitatively evaluate their drug-drug interaction (DDI) potential due to UGT inhibition. The inhibitory effects of erlotinib and gefitinib on UGTs were determined using high-performance liquid chromatography by measuring the formation rates for 4-methylumbelliferone (4-MU) glucuronide, imipramine N-glucuronide, and bilirubin glucuronides using recombinant human UGT isoforms and human liver microsomes (HLMs) in the absence or presence of erlotinib and gefitinib. Inhibition kinetic studies were conducted. Area under the curve (AUC) ratios were used to predict the risk of potential DDI in vivo. Erlotinib exhibited selective potent competitive inhibition against 4-MU glucuronidation by UGT1A1, and gefitinib demonstrated a wide range of inhibition against UGT-mediated 4-MU glucuronidation, particularly against UGT1A1, UGT1A7, UGT1A9, and UGT2B7. Erlotinib also exerted potent mixed inhibition against bilirubin glucuronidation in HLMs. We estimated that coadministration of erlotinib at 100 mg/day or higher doses may result in at least a 30% increase in the AUC of drugs predominantly cleared by UGT1A1. Thus, the coadministration of erlotinib with drugs primarily cleared by UGT1A1 may result in potential DDI. In contrast, gefitinib is unlikely to cause a clinically significant DDI through inhibition of glucuronidation. PMID:19850672

  4. Assessment of cytochrome p450 enzyme inhibition and inactivation in drug discovery and development.

    PubMed

    Nettleton, David O; Einolf, Heidi J

    2011-01-01

    Evaluation of the potential of a drug candidate to inhibit or inactivate cytochrome P450 (CYP) enzymes remains an important part of pharmaceutical drug Discovery and Development programs. CYP enzymes are considered to be one of the most important enzyme families involved in the metabolic clearance of the vast majority of prescribed drugs. Clinical drug-drug interactions (DDI) involving inhibition or time-dependent inactivation of these enzymes can result in dangerous side effects resulting from reduced clearance/increased exposure of the drug being affected (the 'victim' drug). In this regard, pharmaceutical companies have become quite vigilant in mitigating CYP inhibition/inactivation liabilities of drug candidates early in Discovery including continued risk assessment throughout Development. In this review, common strategies and decision making processes for the assessment of DDI risk in the different stages of pharmaceutical development are discussed. In addition, in vitro study designs, analysis, and interpretation of CYP inhibition and inactivation data are described in stage appropriate context. The in vitro tools and knowledge available now enable the Discovery Chemist to place the potential CYP DDI liability of a drug candidate into perspective and to aid in the optimization of chemical drug design to further mitigate this risk.

  5. P-glycoprotein Inhibition for Optimal Drug Delivery

    PubMed Central

    Amin, Md. Lutful

    2013-01-01

    P-glycoprotein (P-gp), an efflux membrane transporter, is widely distributed throughout the body and is responsible for limiting cellular uptake and the distribution of xenobiotics and toxic substances. Hundreds of structurally diverse therapeutic agents are substrates to it and it impedes the absorption, permeability, and retention of the drugs, extruding them out of the cells. It is overexpressed in cancer cells and accountable for obstructing cell internalization of chemotherapeutic agents and for developing transporter mediated resistance by cancer cells during anti-tumor treatments. As it jeopardizes the success of drug delivery and cancer targeting, strategies are being developed to overcome P-gp mediated drug transport. This concise review represents a brief discussion on P-gp mediated drug transport and how it hinders the success of various therapies. Its main focus is on various strategies used to tackle this curb in the field of drug delivery and targeting. PMID:24023511

  6. P-glycoprotein Inhibition for Optimal Drug Delivery.

    PubMed

    Amin, Md Lutful

    2013-08-19

    P-glycoprotein (P-gp), an efflux membrane transporter, is widely distributed throughout the body and is responsible for limiting cellular uptake and the distribution of xenobiotics and toxic substances. Hundreds of structurally diverse therapeutic agents are substrates to it and it impedes the absorption, permeability, and retention of the drugs, extruding them out of the cells. It is overexpressed in cancer cells and accountable for obstructing cell internalization of chemotherapeutic agents and for developing transporter mediated resistance by cancer cells during anti-tumor treatments. As it jeopardizes the success of drug delivery and cancer targeting, strategies are being developed to overcome P-gp mediated drug transport. This concise review represents a brief discussion on P-gp mediated drug transport and how it hinders the success of various therapies. Its main focus is on various strategies used to tackle this curb in the field of drug delivery and targeting.

  7. Contribution of metabolites to P450 inhibition-based drug-drug interactions: scholarship from the drug metabolism leadership group of the innovation and quality consortium metabolite group.

    PubMed

    Yu, Hongbin; Balani, Suresh K; Chen, Weichao; Cui, Donghui; He, Ling; Humphreys, W Griffith; Mao, Jialin; Lai, W George; Lee, Anthony J; Lim, Heng-Keang; MacLauchlin, Christopher; Prakash, Chandra; Surapaneni, Sekhar; Tse, Susanna; Upthagrove, Alana; Walsky, Robert L; Wen, Bo; Zeng, Zhaopie

    2015-04-01

    Recent European Medicines Agency (final) and US Food and Drug Administration (draft) drug interaction guidances proposed that human circulating metabolites should be investigated in vitro for their drug-drug interaction (DDI) potential if present at ≥ 25% of the parent area under the time-concentration curve (AUC) (US Food and Drug Administration) or ≥ 25% of the parent and ≥ 10% of the total drug-related AUC (European Medicines Agency). To examine the application of these regulatory recommendations, a group of scientists, representing 18 pharmaceutical companies of the Drug Metabolism Leadership Group of the Innovation and Quality Consortium, conducted a scholarship to assess the risk of contributions by metabolites to cytochrome P450 (P450) inhibition-based DDIs. The group assessed the risk of having a metabolite as the sole contributor to DDI based on literature data and analysis of the 137 most frequently prescribed drugs, defined structural alerts associated with P450 inhibition/inactivation by metabolites, and analyzed current approaches to trigger in vitro DDI studies for metabolites. The group concluded that the risk of P450 inhibition caused by a metabolite alone is low. Only metabolites from 5 of 137 drugs were likely the sole contributor to the in vivo P450 inhibition-based DDIs. Two recommendations were provided when assessing the need to conduct in vitro P450 inhibition studies for metabolites: 1) consider structural alerts that suggest P450 inhibition potential, and 2) use multiple approaches (e.g., a metabolite cut-off value of 100% of the parent AUC and the R(met) strategy) to predict P450 inhibition-based DDIs caused by metabolites in the clinic.

  8. The non-steroidal anti-inflammatory drug niflumic acid inhibits Candida albicans growth.

    PubMed

    Baker, Andrew; Northrop, Frederick D; Miedema, Hendrik; Devine, Gary R; Davies, Julia M

    2002-01-01

    The non-steroidal anti-inflammatory drug niflumic acid was found to inhibit growth of the yeast form of Candida albicans. Niflumic acid inhibited respiratory oxygen uptake and it is hypothesised that this was achieved by cytosolic acidification and block of glycolysis. Inhibitory concentrations are compatible with current practice of topical application.

  9. Organ Impairment—Drug–Drug Interaction Database: A Tool for Evaluating the Impact of Renal or Hepatic Impairment and Pharmacologic Inhibition on the Systemic Exposure of Drugs

    PubMed Central

    Yeung, CK; Yoshida, K; Kusama, M; Zhang, H; Ragueneau-Majlessi, I; Argon, S; Li, L; Chang, P; Le, CD; Zhao, P; Zhang, L; Sugiyama, Y; Huang, S-M

    2015-01-01

    The organ impairment and drug–drug interaction (OI-DDI) database is the first rigorously assembled database of pharmacokinetic drug exposure data from publicly available renal and hepatic impairment studies presented together with the maximum change in drug exposure from drug interaction inhibition studies. The database was used to conduct a systematic comparison of the effect of renal/hepatic impairment and pharmacologic inhibition on drug exposure. Additional applications are feasible with the public availability of this database. PMID:26380158

  10. Target mRNA inhibition by oligonucleotide drugs in man

    PubMed Central

    Lightfoot, Helen L.; Hall, Jonathan

    2012-01-01

    Oligonucleotide delivery in vivo is commonly seen as the principal hurdle to the successful development of oligonucleotide drugs. In an analysis of 26 oligonucleotide drugs recently evaluated in late-stage clinical trials we found that to date at least half have demonstrated suppression of the target mRNA and/or protein levels in the relevant cell types in man, including those present in liver, muscle, bone marrow, lung, blood and solid tumors. Overall, this strongly implies that the drugs are being delivered to the appropriate disease tissues. Strikingly we also found that the majority of the drug targets of the oligonucleotides lie outside of the drugable genome and represent new mechanisms of action not previously investigated in a clinical setting. Despite the high risk of failure of novel mechanisms of action in the clinic, a subset of the targets has been validated by the drugs. While not wishing to downplay the technical challenges of oligonucleotide delivery in vivo, here we demonstrate that target selection and validation are of equal importance for the success of this field. PMID:22989709

  11. The anti-hypertensive drug prazosin inhibits glioblastoma growth via the PKCδ-dependent inhibition of the AKT pathway.

    PubMed

    Assad Kahn, Suzana; Costa, Silvia Lima; Gholamin, Sharareh; Nitta, Ryan T; Dubois, Luiz Gustavo; Fève, Marie; Zeniou, Maria; Coelho, Paulo Lucas Cerqueira; El-Habr, Elias; Cadusseau, Josette; Varlet, Pascale; Mitra, Siddhartha S; Devaux, Bertrand; Kilhoffer, Marie-Claude; Cheshier, Samuel H; Moura-Neto, Vivaldo; Haiech, Jacques; Junier, Marie-Pierre; Chneiweiss, Hervé

    2016-05-01

    A variety of drugs targeting monoamine receptors are routinely used in human pharmacology. We assessed the effect of these drugs on the viability of tumor-initiating cells isolated from patients with glioblastoma. Among the drugs targeting monoamine receptors, we identified prazosin, an α1- and α2B-adrenergic receptor antagonist, as the most potent inducer of patient-derived glioblastoma-initiating cell death. Prazosin triggered apoptosis of glioblastoma-initiating cells and of their differentiated progeny, inhibited glioblastoma growth in orthotopic xenografts of patient-derived glioblastoma-initiating cells, and increased survival of glioblastoma-bearing mice. We found that prazosin acted in glioblastoma-initiating cells independently from adrenergic receptors. Its off-target activity occurred via a PKCδ-dependent inhibition of the AKT pathway, which resulted in caspase-3 activation. Blockade of PKCδ activation prevented all molecular changes observed in prazosin-treated glioblastoma-initiating cells, as well as prazosin-induced apoptosis. Based on these data, we conclude that prazosin, an FDA-approved drug for the control of hypertension, inhibits glioblastoma growth through a PKCδ-dependent mechanism. These findings open up promising prospects for the use of prazosin as an adjuvant therapy for glioblastoma patients.

  12. Inhibition of STAT3 by Anticancer Drug Bendamustine

    PubMed Central

    Iwamoto, Kazunori; Uehara, Yutaka; Inoue, Yukie; Taguchi, Kyoko; Muraoka, Daisuke; Ogo, Naohisa; Matsuno, Kenji; Asai, Akira

    2017-01-01

    Bendamustine (BENDA), which bears the bis(2-chloroethyl)amino moiety, is an alkylating agent that stops the growth of cancer cells by binding to DNA and interfering with its replication. However, the mechanism of action underlying its excellent clinical efficacy remains unclear. In this work, we report that BENDA inhibits signal transducer and activator of transcription 3 (STAT3). In an AlphaScreen-based biochemical assay using recombinant human STAT3, binding of STAT3–Src homology 2 (SH2) to the phosphotyrosine (pTyr, pY) peptide was inhibited by BENDA but not by the inactive metabolite dihydroxy bendamustine (HP2). When a single point mutation of C550A or C712A was introduced into recombinant human STAT3, its sensitivity to BENDA was substantially reduced, suggesting that these cysteine residues are important for BENDA to inhibit STAT3. Furthermore, BENDA suppressed the function of cellular STAT3 as a transcriptional activator in a human breast cancer cell line, MDA-MB-468, with constitutively activated STAT3. A competitive pull-down assay using biotinylated BENDA (Bio-BENDA) revealed that BENDA bound tightly to cellular STAT3, presumably through covalent bonds. Therefore, our results suggest that the anticancer effects of BENDA may be associated, at least in part, with its inhibitory effect on the SH2 domain of STAT3. PMID:28125678

  13. In silico evaluation of TERT inhibition by anticancer drugs.

    PubMed

    Mahendar, Porika; Sirisha, Kalam; Kulandaivelu, Umasankar; Shankar, Prakhya Laxmi Jaya; Radhika, Tippani; Sadanandam, Abbagani

    2012-10-01

    The activation of telomerase represents an early step in carcinogenesis. Increased telomerase expression in malignant tumors suggests that telomerase inactivation may represent a potential chemotherapeutic target. In this work, existing anticancer drugs were docked against telomerase reverse transcriptase (TERT) using a Lamarckian genetic algorithm (LGA). Autodock's scoring function was applied to each of the molecules in order to identify the inhibitor with the strongest pharmacological action. The structural insights provided by this study regarding binding poses and possible interactions, free energies of binding, and drug scores aided in the identification of potential inhibitory compounds. The ranks of the various ligands investigated were based on the final docked energy values. Among nine selected compounds, vindesine, temsirolimus, and cyclosporine were found to be more potent TERT inhibitors than the standard inhibitor, curcumin.

  14. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers

    SciTech Connect

    Volkow, N.D.; Fowler, J.; Wang, G.J.; Telang, F.; Logan, J.; Jayne, M.; Ma, Y.; Pradhan, K.; Wong, C.T.; Swanson, J.M.

    2010-01-01

    Loss of control over drug taking is considered a hallmark of addiction and is critical in relapse. Dysfunction of frontal brain regions involved with inhibitory control may underlie this behavior. We evaluated whether addicted subjects when instructed to purposefully control their craving responses to drug-conditioned stimuli can inhibit limbic brain regions implicated in drug craving. We used PET and 2-deoxy-2[18F]fluoro-D-glucose to measure brain glucose metabolism (marker of brain function) in 24 cocaine abusers who watched a cocaine-cue video and compared brain activation with and without instructions to cognitively inhibit craving. A third scan was obtained at baseline (without video). Statistical parametric mapping was used for analysis and corroborated with regions of interest. The cocaine-cue video increased craving during the no-inhibition condition (pre 3 {+-} 3, post 6 {+-} 3; p < 0.001) but not when subjects were instructed to inhibit craving (pre 3 {+-} 2, post 3 {+-} 3). Comparisons with baseline showed visual activation for both cocaine-cue conditions and limbic inhibition (accumbens, orbitofrontal, insula, cingulate) when subjects purposefully inhibited craving (p < 0.001). Comparison between cocaine-cue conditions showed lower metabolism with cognitive inhibition in right orbitofrontal cortex and right accumbens (p < 0.005), which was associated with right inferior frontal activation (r = -0.62, p < 0.005). Decreases in metabolism in brain regions that process the predictive (nucleus accumbens) and motivational value (orbitofrontal cortex) of drug-conditioned stimuli were elicited by instruction to inhibit cue-induced craving. This suggests that cocaine abusers may retain some ability to inhibit craving and that strengthening fronto-accumbal regulation may be therapeutically beneficial in addiction.

  15. Tyrosine Kinase Inhibition: An Approach to Drug Development

    NASA Astrophysics Data System (ADS)

    Levitzki, Alexander; Gazit, Aviv

    1995-03-01

    Protein tyrosine kinases (PTKs) regulate cell proliferation, cell differentiation, and signaling processes in the cells of the immune system. Uncontrolled signaling from receptor tyrosine kinases and intracellular tyrosine kinases can lead to inflammatory responses and to diseases such as cancer, atherosclerosis, and psoriasis. Thus, inhibitors that block the activity of tyrosine kinases and the signaling pathways they activate may provide a useful basis for drug development. This article summarizes recent progress in the development of PTK inhibitors and demonstrates their potential use in the treatment of disease.

  16. Microencapsulated drug delivery: a new approach to pro-inflammatory cytokine inhibition

    PubMed Central

    Oettinger, Carl W.; D'Souza, Martin J.

    2012-01-01

    Context: This article reviews the use of albumin microcapsules 3–4 mm in size containing cytokine inhibiting drugs which include neutralizing antibodies to TNF and IL1, CNI-1493, antisense oligonucleotides to TNF and NF-kappaB, and the antioxidant catalase. Objective: Describe the effects, cellular uptake and distribution of microencapsulated drugs and the effect in both a peritonitis model of infection and a model of adjuvant-induced arthritis. Methods: The studies performed by our group are reviewed, the only such studies available. Results: Microencapsulation of these compounds produced high intracellular drug concentrations due to rapid uptake by phagocytic cells, including endothelial cells, without toxicity. All compounds produced excellent inhibition of TNF and IL1 resulting in improved animal survival in a peritonitis model of septic shock and inflammation in an arthritis model. Conclusion: Albumin microencapsulated pro-inflammatory cytokine inhibiting compounds are superior to equivalent concentration of these compounds administered in solution form. PMID:22348221

  17. In vivo evaluation of drug-drug interaction via mechanism-based inhibition by macrolide antibiotics in cynomolgus monkeys.

    PubMed

    Ogasawara, Akihito; Negishi, Isao; Kozakai, Kazumasa; Kume, Toshiyuki

    2009-11-01

    Irreversible inhibition, characterized as mechanism-based inhibition (MBI), of cytochrome P450 in drugs has to be avoided for their safe use. A comprehensive assessment of drug-drug interaction (DDI) potential is important during the drug discovery process. In the present study, we evaluated the effects of macrolide antibiotics, erythromycin (ERM), clarithromycin (CAM), and azithromycin (AZM), which are mechanism-based inhibitors of CYP3A, on biotransformation of midazolam (MDZ) in monkeys. These macrolides inhibited the formation of 1'-hydroxymidazolam in monkey microsomes as functions of incubation time and macrolide concentration. Furthermore, the inactivation potentials of macrolides (k(inact)/K(I): CAM congruent with ERM > AZM) were as effective as that observed in human samples. In in vivo studies, MDZ was administered orally (1 mg/kg) without or with multiple oral dosing of macrolides (15 mg/kg, twice a day on days 1-3). On day 3, the area under the plasma concentration-time curve (AUC) of MDZ increased 7.0-, 9.9-, and 2.0-fold with ERM, CAM, and AZM, respectively, compared with MDZ alone. Furthermore, the effects of ERM and CAM on the pharmacokinetics of MDZ were also observed on the day (day 4) after completion of macrolide treatments (AUC changes: 7.3- and 7.3-fold, respectively). Because the plasma concentrations of macrolides immediately before MDZ administration on day 4 were much lower than the IC(50) values for reversible CYP3A inhibition, the persistent effects may be predominantly caused by CYP3A inactivation. These results suggest that the monkey might be a suitable animal model to predict DDIs caused by MBI of CYP3A.

  18. Inhibition of the enzymatic activity of heme oxygenases by azole-based antifungal drugs.

    PubMed

    Kinobe, Robert T; Dercho, Ryan A; Vlahakis, Jason Z; Brien, James F; Szarek, Walter A; Nakatsu, Kanji

    2006-10-01

    Ketoconazole (KTZ) and other azole antifungal agents are known to have a variety of actions beyond the inhibition of sterol synthesis in fungi. These drugs share structural features with a series of novel heme oxygenase (HO) inhibitors designed in our laboratory. Accordingly, we hypothesized that therapeutically used azole-based antifungal drugs are effective HO inhibitors. Using gas chromatography to quantify carbon monoxide formation in vitro and in vivo, we have shown that azole-containing antifungal drugs are potent HO inhibitors. Terconazole, sulconazole, and KTZ were the most potent drugs with IC(50) values of 0.41 +/- 0.01, 1.1 +/- 0.4, and 0.3 +/- 0.1 microM for rat spleen microsomal HO activity, respectively. Kinetic characterization revealed that KTZ was a noncompetitive HO inhibitor. In the presence of KTZ (2.5 and 10 microM), K(m) values for both rat spleen and brain microsomal HO were not altered; however, a significant decrease in the catalytic capacity (V(max)) was observed (P < 0.005). KTZ was also found to weakly inhibit nitric-oxide synthase with an IC(50) of 177 +/- 2 microM but had no effect on the enzymatic activity of NADPH cytochrome P450 reductase. Because these drugs were effective within the concentration range observed in humans, it is possible that inhibition of HO may play a role in some of the pharmacological actions of these antimycotic drugs.

  19. The inhibition of human multidrug and toxin extrusion 1 is involved in the drug-drug interaction caused by cimetidine.

    PubMed

    Matsushima, Soichiro; Maeda, Kazuya; Inoue, Katsuhisa; Ohta, Kin-ya; Yuasa, Hiroaki; Kondo, Tsunenori; Nakayama, Hideki; Horita, Shigeru; Kusuhara, Hiroyuki; Sugiyama, Yuichi

    2009-03-01

    Cimetidine is known to cause drug-drug interactions (DDIs) with organic cations in the kidney, and a previous clinical study showed that coadministration of cimetidine or probenecid with fexofenadine (FEX) decreased its renal clearance. FEX was taken up into human kidney by human organic anion transporter (hOAT) 3 (SLC22A8), but the mechanism of its luminal efflux has not been clarified. The present study examined the molecular mechanism of these DDIs. Saturable uptake of FEX was observed in human kidney slices, with K(m) and V(max) values of 157+/-7 microM and 418+/-16 nmol/15 min/g kidney, respectively. Cimetidine only slightly inhibited its uptake even at 100 microM, far greater than its clinically relevant concentration, whereas 10 microM probenecid markedly inhibited its uptake. As candidate transporters for the luminal efflux of FEX, we focused on human multidrug and toxin extrusions MATE1 (SLC47A1) and MATE2-K (SLC47A2). Saturable uptake of FEX could be observed in human embryonic kidney 293 cells expressing human MATE1 (hMATE1), whereas hMATE2-K-specific uptake of FEX was too small to conduct its further kinetic analysis. The hMATE1-mediated uptake clearance of FEX was inhibited by cimetidine in a concentration-dependent manner, and it was decreased to 60% of the control value in the presence of 3 microM cimetidine. Taken together, our results suggest that the DDI of FEX with probenecid can be explained by the inhibition of renal uptake mediated by hOAT3, whereas the DDI with cimetidine is mainly caused by the inhibition of hMATE1-mediated efflux of FEX rather than the inhibition of its renal uptake process.

  20. Inhibition of Aβ42 oligomerization in yeast by a PICALM ortholog and certain FDA approved drugs

    PubMed Central

    Park, Sei-Kyoung; Ratia, Kiira; Ba, Mariam; Valencik, Maria; Liebman, Susan W.

    2016-01-01

    The formation of small Aβ42 oligomers has been implicated as a toxic species in Alzheimer disease (AD). In strong support of this hypothesis we found that overexpression of Yap1802, the yeast ortholog of the human AD risk factor, phosphatidylinositol binding clathrin assembly protein (PICALM), reduced oligomerization of Aβ42 fused to a reporter in yeast. Thus we used the Aβ42-reporter system to identify drugs that could be developed into therapies that prevent or arrest AD. From a screen of 1,200 FDA approved drugs and drug-like small compounds we identified 7 drugs that reduce Aβ42 oligomerization in yeast: 3 antipsychotics (bromperidol, haloperidol and azaperone), 2 anesthetics (pramoxine HCl and dyclonine HCl), tamoxifen citrate, and minocycline HCl. Also, all 7 drugs caused Aβ42 to be less toxic to PC12 cells and to relieve toxicity of another yeast AD model in which Aβ42 aggregates targeted to the secretory pathway are toxic. Our results identify drugs that inhibit Aβ42 oligomers from forming in yeast. It remains to be determined if these drugs inhibit Aβ42 oligomerization in mammals and could be developed as a therapeutic treatment for AD. PMID:28357335

  1. Enhancing chemotherapeutic drug inhibition on tumor growth by ultrasound: an in vivo experiment.

    PubMed

    Zhao, Ying-Zheng; Lu, Cui-Tao; Zhou, Zhi-Cai; Jin, Zhuo; Zhang, Lu; Sun, Chang-Zheng; Xu, Yan-Yan; Gao, Hui-Sheng; Tian, Ji-Lai; Gao, Feng-Hou; Tang, Qin-Qin; Li, Wei; Xiang, Qi; Li, Xiao-Kun; Li, Wen-Feng

    2011-02-01

    An in vivo study on enhancing epirubicin hydrochloride (EPI) inhibition on tumor growth by ultrasound (US) was reported. Five-week-old male nude mice were used and HL-60 cells were s.c. (subcutaneous injection) inoculated in axilla of these mice. Six groups were designed and five consecutive treatments were applied to investigate the inhibition on tumor growth and body weight growth. US applied locally to the tumor resulted in a substantially increased drug uptake in tumor cells. The inhibition on tumor growth depended on the position of drug injection and phospholipid-based microbubble (PMB) application. Tumor growth rate under group 1 (PMB+US) was similar to that of blank control. The order of the inhibition on tumor volume growth was: group 4 (s.c. EPI+PMB+US) > group 5 intraperitoneal (i.p. EPI+PMB+US) > group 2 (i.p. EPI) > group 3 (s.c. EPI+US) > group 1 (PMB+US). Similar conclusion was obtained from experimental measurements of tumor weight change. The order of animal survival status for EPI administration groups was: group 4 > group 5 > group 2 > group 3. Chemotherapeutic drug inhibition on tumor growth could be enhanced by local US combined with PMB, which might provide a potential application for US-mediated chemotherapy.

  2. Inhibition of Human Drug Transporter Activities by the Pyrethroid Pesticides Allethrin and Tetramethrin

    PubMed Central

    Chedik, Lisa; Bruyere, Arnaud; Le Vee, Marc; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Potin, Sophie; Fardel, Olivier

    2017-01-01

    Pyrethroids are widely-used chemical insecticides, to which humans are commonly exposed, and known to alter functional expression of drug metabolizing enzymes. Limited data have additionally suggested that drug transporters, that constitute key-actors of the drug detoxification system, may also be targeted by pyrethroids. The present study was therefore designed to analyze the potential regulatory effects of these pesticides towards activities of main ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, using transporter-overexpressing cells. The pyrethroids allethrin and tetramethrin were found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein (MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2, with IC50 values however ranging from 2.6 μM (OCT1 inhibition by allethrin) to 77.6 μM (OAT3 inhibition by tetramethrin) and thus much higher than pyrethroid concentrations (in the nM range) reached in environmentally pyrethroid-exposed humans. By contrast, allethrin and tetramethrin cis-stimulated OATP2B1 activity and failed to alter activities of OATP1B3, OAT1 and MATE2-K, whereas P-glycoprotein activity was additionally moderately inhibited. Twelve other pyrethoids used at 100 μM did not block activities of the various investigated transporters, or only moderately inhibited some of them (inhibition by less than 50%). In silico analysis of structure-activity relationships next revealed that molecular parameters, including molecular weight and lipophilicity, are associated with transporter inhibition by allethrin/tetramethrin and successfully predicted transporter inhibition by the pyrethroids imiprothrin and prallethrin. Taken together, these data fully demonstrated that two pyrethoids, i.e., allethrin and tetramethrin, can

  3. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation

    PubMed Central

    Senarathna, S M D K Ganga; Page-Sharp, Madhu; Crowe, Andrew

    2016-01-01

    The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10−6 cm/sec, followed by amodiaquine around 20 x 10−6 cm/sec; both mefloquine and artesunate were around 10 x 10−6 cm/sec. Methylene blue was between 2 and 6 x 10−6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine. PMID:27045516

  4. Role of Molecular Interactions for Synergistic Precipitation Inhibition of Poorly Soluble Drug in Supersaturated Drug-Polymer-Polymer Ternary Solution.

    PubMed

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2016-03-07

    We are reporting a synergistic effect of combined Eudragit E100 and PVP K90 in precipitation inhibition of indomethacin (IND) in solutions at low polymer concentration, a phenomenon that has significant implications on the usefulness of developing novel ternary solid dispersion of poorly soluble drugs. The IND supersaturation was created by cosolvent technique, and the precipitation studies were performed in the absence and the presence of individual and combined PVP K90 and Eudragit E100. The studies were also done with PEG 8000 as a noninteracting control polymer. A continuous UV recording of the IND absorption was used to observe changes in the drug concentration over time. The polymorphic form and morphology of precipitated IND were characterized by Raman spectroscopy and scanning electron microscopy. The change in the chemical shift in solution (1)H NMR was used as novel approach to probe IND-polymer interactions. Molecular modeling was used for calculating binding energy between IND-polymer as another indication of IND-polymer interaction. Spontaneous IND precipitation was observed in the absence of polymers. Eudragit E100 showed significant inhibitory effect on nuclei formation due to stronger interaction as reflected in higher binding energy and greater change in chemical shift by NMR. PVP K90 led to significant crystal growth inhibition due to adsorption on growing IND crystals as confirmed by modified crystal habit of precipitate in the presence of PVP K90. Combination of polymers resulted in a synergistic precipitation inhibition and extended supersaturation. The NMR confirmed interaction between IND-Eudragit E100 and IND-PVP K90 in solution. The combination of polymers showed similar peak shift albeit using lower polymer concentration indicating stronger interactions. The results established the significant synergistic precipitation inhibition effect upon combining Eudragit E100 and PVP K90 due to drug-polymer interaction.

  5. Biomarker- versus drug-driven tumor growth inhibition models: an equivalence analysis.

    PubMed

    Sardu, Maria Luisa; Poggesi, Italo; De Nicolao, Giuseppe

    2015-12-01

    The mathematical modeling of tumor xenograft experiments following the dosing of antitumor drugs has received much attention in the last decade. Biomarker data can further provide useful insights on the pathological processes and be used for translational purposes in the early clinical development. Therefore, it is of particular interest the development of integrated pharmacokinetic-pharmacodynamic (PK-PD) models encompassing drug, biomarker and tumor-size data. This paper investigates the reciprocal consistency of three types of models: drug-to-tumor, such as established drug-driven tumor growth inhibition (TGI) models, drug-to-biomarker, e.g. indirect response models, and biomarker-to-tumor, e.g. the more recent biomarker-driven TGI models. In particular, this paper derives a mathematical relationship that guarantees the steady-state equivalence of the cascade of drug-to-biomarker and biomarker-to-tumor models with a drug-to-tumor TGI model. Using the Simeoni TGI model as a reference, conditions for steady-state equivalence are worked out and used to derive a new biomarker-driven model. Simulated and real data are used to show that in realistic cases the steady-state equivalence extends also to transient responses. The possibility of predicting the drug-to-tumor potency of a new candidate drug based only on biomarker response is discussed.

  6. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter.

    PubMed

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid reabsorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, and a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested, and their K(i) values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or nonpotent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors.

  7. Computational Models for Drug Inhibition of the Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E.

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid re-absorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, as well as a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested and their Ki values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or non-potent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors. PMID:19673539

  8. Sulfa drugs inhibit sepiapterin reduction and chemical redox cycling by sepiapterin reductase.

    PubMed

    Yang, Shaojun; Jan, Yi-Hua; Mishin, Vladimir; Richardson, Jason R; Hossain, Muhammad M; Heindel, Ned D; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-03-01

    Sepiapterin reductase (SPR) catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4), a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism. SPR also mediates chemical redox cycling, catalyzing one-electron reduction of redox-active chemicals, including quinones and bipyridinium herbicides (e.g., menadione, 9,10-phenanthrenequinone, and diquat); rapid reaction of the reduced radicals with molecular oxygen generates reactive oxygen species (ROS). Using recombinant human SPR, sulfonamide- and sulfonylurea-based sulfa drugs were found to be potent noncompetitive inhibitors of both sepiapterin reduction and redox cycling. The most potent inhibitors of sepiapterin reduction (IC50s = 31-180 nM) were sulfasalazine, sulfathiazole, sulfapyridine, sulfamethoxazole, and chlorpropamide. Higher concentrations of the sulfa drugs (IC50s = 0.37-19.4 μM) were required to inhibit redox cycling, presumably because of distinct mechanisms of sepiapterin reduction and redox cycling. In PC12 cells, which generate catecholamine and monoamine neurotransmitters via BH4-dependent amino acid hydroxylases, sulfa drugs inhibited both BH2/BH4 biosynthesis and redox cycling mediated by SPR. Inhibition of BH2/BH4 resulted in decreased production of dopamine and dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 5-hydroxytryptamine. Sulfathiazole (200 μM) markedly suppressed neurotransmitter production, an effect reversed by BH4. These data suggest that SPR and BH4-dependent enzymes, are "off-targets" of sulfa drugs, which may underlie their untoward effects. The ability of the sulfa drugs to inhibit redox cycling may ameliorate ROS-mediated toxicity generated by redox active drugs and chemicals, contributing to their anti-inflammatory activity.

  9. Drug-mediated inhibition of Fli-1 for the treatment of leukemia.

    PubMed

    Li, Y-J; Zhao, X; Vecchiarelli-Federico, L M; Li, Y; Datti, A; Cheng, Y; Ben-David, Y

    2012-01-01

    The Ets transcription factor, Fli-1 is activated in murine erythroleukemia and overexpressed in various human malignancies including Ewing's sarcoma, induced by the oncogenic fusion protein EWS/Fli-1. Recent studies by our group and others have demonstrated that Fli-1 plays a key role in tumorigenesis, and disrupting its oncogenic function may serve as a potential treatment option for malignancies associated with its overexpression. Herein, we describe the discovery of 30 anti-Fli-1 compounds, characterized into six functional groups. Treatment of murine and human leukemic cell lines with select compounds inhibits Fli-1 protein or mRNA expression, resulting in proliferation arrest and apoptosis. This anti-cancer effect was mediated, at least in part through direct inhibition of Fli-1 function, as anti-Fli-1 drug treatment inhibited Fli-1 DNA binding to target genes, such as SHIP-1 and gata-1, governing hematopoietic differentiation and proliferation. Furthermore, treatment with select Fli-1 inhibitors revealed a positive relationship between the loss of DNA-binding activity and Fli-1 phosphorylation. Accordingly, anti-Fli-1 drug treatment significantly inhibited leukemogenesis in a murine erythroleukemia model overexpressing Fli-1. This study demonstrates the ability of this drug-screening strategy to isolate effective anti-Fli-1 inhibitors and highlights their potential use for the treatment of malignancies overexpressing this oncogene.

  10. Mechanisms of cell death pathway activation following drug-induced inhibition of mitochondrial complex I

    PubMed Central

    Imaizumi, Naoki; Kwang Lee, Kang; Zhang, Carmen; Boelsterli, Urs A.

    2015-01-01

    Respiratory complex I inhibition by drugs and other chemicals has been implicated as a frequent mode of mitochondria-mediated cell injury. However, the exact mechanisms leading to the activation of cell death pathways are incompletely understood. This study was designed to explore the relative contributions to cell injury of three distinct consequences of complex I inhibition, i.e., impairment of ATP biosynthesis, increased formation of superoxide and, hence, peroxynitrite, and inhibition of the mitochondrial protein deacetylase, Sirt3, due to imbalance of the NADH/NAD+ ratio. We used the antiviral drug efavirenz (EFV) to model drug-induced complex I inhibition. Exposure of cultured mouse hepatocytes to EFV resulted in a rapid onset of cell injury, featuring a no-effect level at 30 µM EFV and submaximal effects at 50 µM EFV. EFV caused a concentration-dependent decrease in cellular ATP levels. Furthermore, EFV resulted in increased formation of peroxynitrite and oxidation of mitochondrial protein thiols, including cyclophilin D (CypD). This was prevented by the superoxide scavenger, Fe-TCP, or the peroxynitrite decomposition catalyst, Fe-TMPyP. Both ferroporphyrins completely protected from EFV-induced cell injury, suggesting that peroxynitrite contributed to the cell injury. Finally, EFV increased the NADH/NAD+ ratio, inhibited Sirt3 activity, and led to hyperacetylated lysine residues, including those in CypD. However, hepatocytes isolated from Sirt3-null mice were protected against 40 µM EFV as compared to their wild-type controls. In conclusion, these data are compatible with the concept that chemical inhibition of complex I activates multiple pathways leading to cell injury; among these, peroxynitrite formation may be the most critical. PMID:25625582

  11. Mechanisms Underlying Food-Drug Interactions: Inhibition of Intestinal Metabolism and Transport

    PubMed Central

    Won, Christina S.; Oberlies, Nicholas H.; Paine, Mary F.

    2012-01-01

    Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively. PMID:22884524

  12. Mechanisms underlying food-drug interactions: inhibition of intestinal metabolism and transport.

    PubMed

    Won, Christina S; Oberlies, Nicholas H; Paine, Mary F

    2012-11-01

    Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively.

  13. Development of a New Class of Drugs to Inhibit All Forms of Androgen Receptor in Castration-Resistant Prostate Cancers

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBERS: W81XWH-14-1-0519 TITLE: Development of a New Class of Drugs to Inhibit All Forms of Androgen Receptor in Castration-Resistant...of Drugs to Inhibit All Forms of Androgen Receptor in Castration-Resistant Prostate Cancers 5b. GRANT NUMBER W81XWH-14- 1-0519 5c. PROGRAM...castration. However, despite a growing armamentarium of drugs targeting the androgen/AR signaling axis, progression of castration-resistant prostate

  14. Development of a New Class of Drugs to Inhibit All Forms of Androgen Receptor in Castration-Resistant Prostate Cancers

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBERS: W81XWH-14-1-0518 TITLE: Development of a New Class of Drugs to Inhibit All Forms of Androgen Receptor in Castration-Resistant...COVERED 30 Sep 2014 - 29 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Development of a New Class of Drugs to Inhibit All Forms of Androgen...designed to block AR activity that re- emerges during castration. However, despite a growing armamentarium of drugs targeting the androgen/AR signaling

  15. Development of a New Class of Drugs to Inhibit All Forms of Androgen Receptor in Castration Resistant Prostate Cancers

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBERS: W81XWH-14-1-0520 TITLE: Development of a New Class of Drugs to Inhibit All Forms of Androgen Receptor in Castration-Resistant...COVERED 30 Sep 2014 - 29 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-14-1-0520 Development of a New Class of Drugs to Inhibit All Forms...re- emerges during castration. However, despite a growing armamentarium of drugs targeting the androgen/AR signaling axis, progression of castration

  16. Inhibition of cytochrome P450 3A: relevant drug interactions in gastroenterology.

    PubMed

    Sagir, A; Schmitt, M; Dilger, K; Häussinger, D

    2003-01-01

    Cytochrome P450 3A (CYP3A) is involved in biotransformation of more than half of all drugs currently available. Drug interactions by inhibition of CYP3A are of major interest in patients receiving combinations of drugs. Some interactions with CYP3A inhibitors also involve inhibition of the multidrug export pump, P-glycoprotein. An increasing number of adverse drug reactions might be avoided on the basis of knowledge about CYP3A substrates and inhibitors. This article summarizes some examples of such interactions relevant to gastroenterologists. Serious cases by coadministration of CYP3A inhibitors resulting in acute hepatitis, hypotension, rhabdomyolyis, torsade de pointes, sedation, or ergotism are presented: interactions with azole antifungals (ketoconazole, itraconazole, fluconazole), HIV protease inhibitors (ritonavir, indinavir, saquinavir, nelfinavir), macrolide antibiotics (clarithromycin, erythromycin), and grapefruit juice. In addition, 1 case is reported who presented the highest trough levels of the CYP3A substrate budesonide in serum ever measured. Practitioners have to be aware of the high potential of metabolic drug interactions when they prescribe a CYP3A inhibitor. It is wise to check carefully comedication in patients complaining of side effects with substrates of CYP3A.

  17. Inhibition of MDR3 Activity in Human Hepatocytes by Drugs Associated with Liver Injury.

    PubMed

    He, Kan; Cai, Lining; Shi, Qin; Liu, Hao; Woolf, Thomas F

    2015-10-19

    MDR3 dysfunction is associated with liver diseases. We report here a novel MDR3 activity assay involving in situ biosynthesis in primary hepatocytes of deuterium (d9)-labeled PC and LC-MS/MS determination of transported extracellular PC-d9. Several drugs associated with DILI such as chlorpromazine, imipramine, itraconazole, haloperidol, ketoconazole, sequinavir, clotrimazole, ritonavir, and troglitazone inhibit MDR3 activity. MDR3 inhibition may play an important role in drug-induced cholestasis and vanishing bile duct syndrome. Several lines of evidence demonstrate that the reported assay is physiologically relevant and can be used to assess the potential of chemical entities and their metabolites to modulate MDR3 activity and/or PC biosynthesis in hepatocytes.

  18. Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine

    PubMed Central

    Olafson, Katy N.; Ketchum, Megan A.; Rimer, Jeffrey D.; Vekilov, Peter G.

    2015-01-01

    Hematin crystallization is the primary mechanism of heme detoxification in malaria parasites and the target of the quinoline class of antimalarials. Despite numerous studies of malaria pathophysiology, fundamental questions regarding hematin growth and inhibition remain. Among them are the identity of the crystallization medium in vivo, aqueous or organic; the mechanism of crystallization, classical or nonclassical; and whether quinoline antimalarials inhibit crystallization by sequestering hematin in the solution, or by blocking surface sites crucial for growth. Here we use time-resolved in situ atomic force microscopy (AFM) and show that the lipid subphase in the parasite may be a preferred growth medium. We provide, to our knowledge, the first evidence of the molecular mechanisms of hematin crystallization and inhibition by chloroquine, a common quinoline antimalarial drug. AFM observations demonstrate that crystallization strictly follows a classical mechanism wherein new crystal layers are generated by 2D nucleation and grow by the attachment of solute molecules. We identify four classes of surface sites available for binding of potential drugs and propose respective mechanisms of drug action. Further studies reveal that chloroquine inhibits hematin crystallization by binding to molecularly flat {100} surfaces. A 2-μM concentration of chloroquine fully arrests layer generation and step advancement, which is ∼104× less than hematin’s physiological concentration. Our results suggest that adsorption at specific growth sites may be a general mode of hemozoin growth inhibition for the quinoline antimalarials. Because the atomic structures of the identified sites are known, this insight could advance the future design and/or optimization of new antimalarials. PMID:25831526

  19. Structure and Inhibition of Microbiome β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity

    SciTech Connect

    Wallace, Bret D.; Roberts, Adam B.; Pollet, Rebecca M.; Ingle, James D.; Biernat, Kristen A.; Pellock, Samuel J.; Venkatesh, Madhu Kumar; Guthrie, Leah; O’Neal, Sara K.; Robinson, Sara J.; Dollinger, Makani; Figueroa, Esteban; McShane, Sarah R.; Cohen, Rachel D.; Jin, Jian; Frye, Stephen V.; Zamboni, William C.; Pepe-Ranney, Charles; Mani, Sridhar; Kelly, Libusha; Redinbo, Matthew R.

    2015-09-01

    The selective inhibition of bacterial β-glucuronidases was recently shown to alleviate drug-induced gastrointestinal toxicity in mice, including the damage caused by the widely used anticancer drug irinotecan. Here, we report crystal structures of representative β-glucuronidases from the Firmicutes Streptococcus agalactiae and Clostridium perfringens and the Proteobacterium Escherichia coli, and the characterization of a β-glucuronidase from the Bacteroidetes Bacteroides fragilis. While largely similar in structure, these enzymes exhibit marked differences in catalytic properties and propensities for inhibition, indicating that the microbiome maintains functional diversity in orthologous enzymes. Small changes in the structure of designed inhibitors can induce significant conformational changes in the β-glucuronidase active site. Finally, we establish that β-glucuronidase inhibition does not alter the serum pharmacokinetics of irinotecan or its metabolites in mice. Together, the data presented advance our in vitro and in vivo understanding of the microbial β-glucuronidases, a promising new set of targets for controlling drug-induced gastrointestinal toxicity.

  20. Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition.

    PubMed

    Starosta, Agata L; Karpenko, Viktoriya V; Shishkina, Anna V; Mikolajka, Aleksandra; Sumbatyan, Natalia V; Schluenzen, Frank; Korshunova, Galina A; Bogdanov, Alexey A; Wilson, Daniel N

    2010-05-28

    Accumulating evidence suggests that, during translation, nascent chains can form specific interactions with ribosomal exit tunnel to regulate translation and promote initial folding events. The clinically important macrolide antibiotics bind within the exit tunnel and inhibit translation by preventing progression of the nascent chain and inducing peptidyl-tRNA drop-off. Here, we have synthesized amino acid- and peptide-containing macrolides, which are used to demonstrate that distinct amino acids and peptides can establish interaction with components of the ribosomal tunnel and enhance the ribosome-binding and inhibitory properties of the macrolide drugs, consistent with the concept that the exit tunnel is not simply a Teflon-like channel. Surprisingly, we find that macrolide antibiotics do not inhibit translation of all nascent chains similarly, but rather exhibit polypeptide-specific inhibitory effects, providing a change to our general mechanistic understanding of macrolide inhibition.

  1. Mutually Exclusive Uncertainty Relations

    NASA Astrophysics Data System (ADS)

    Xiao, Yunlong; Jing, Naihuan

    2016-11-01

    The uncertainty principle is one of the characteristic properties of quantum theory based on incompatibility. Apart from the incompatible relation of quantum states, mutually exclusiveness is another remarkable phenomenon in the information- theoretic foundation of quantum theory. We investigate the role of mutual exclusive physical states in the recent work of stronger uncertainty relations for all incompatible observables by Mccone and Pati and generalize the weighted uncertainty relation to the product form as well as their multi-observable analogues. The new bounds capture both incompatibility and mutually exclusiveness, and are tighter compared with the existing bounds.

  2. Mutually Exclusive Uncertainty Relations.

    PubMed

    Xiao, Yunlong; Jing, Naihuan

    2016-11-08

    The uncertainty principle is one of the characteristic properties of quantum theory based on incompatibility. Apart from the incompatible relation of quantum states, mutually exclusiveness is another remarkable phenomenon in the information- theoretic foundation of quantum theory. We investigate the role of mutual exclusive physical states in the recent work of stronger uncertainty relations for all incompatible observables by Mccone and Pati and generalize the weighted uncertainty relation to the product form as well as their multi-observable analogues. The new bounds capture both incompatibility and mutually exclusiveness, and are tighter compared with the existing bounds.

  3. Mutually Exclusive Uncertainty Relations

    PubMed Central

    Xiao, Yunlong; Jing, Naihuan

    2016-01-01

    The uncertainty principle is one of the characteristic properties of quantum theory based on incompatibility. Apart from the incompatible relation of quantum states, mutually exclusiveness is another remarkable phenomenon in the information- theoretic foundation of quantum theory. We investigate the role of mutual exclusive physical states in the recent work of stronger uncertainty relations for all incompatible observables by Mccone and Pati and generalize the weighted uncertainty relation to the product form as well as their multi-observable analogues. The new bounds capture both incompatibility and mutually exclusiveness, and are tighter compared with the existing bounds. PMID:27824161

  4. Cardiotoxicity of copper-based antineoplastic drugs casiopeinas is related to inhibition of energy metabolism

    SciTech Connect

    Hernandez-Esquivel, Luz; Marin-Hernandez, Alvaro; Pavon, Natalia; Carvajal, Karla; Moreno-Sanchez, Rafael . E-mail: rafael.moreno@cardiologia.org.mx

    2006-04-01

    Isolated rat hearts were perfused with glucose, octanoate or glucose + octanoate and different concentrations of the copper-based antineoplastic drugs casiopeina II-gly (CSII) or casiopeina III-i-a (CSIII). In isolated perfused hearts with glucose + octanoate, both casiopeinas induced diminution in cardiac work and O{sub 2} consumption with half-maximal inhibitory concentrations (IC{sub 5}) of 4 (CSII) and 4.6 (CSIII) {mu}M, after 1 h of perfusion. Strong inhibition of the pyruvate and 2-oxoglutarate dehydrogenases as well as total creatine kinase by casiopeinas suggested that ATP generation by oxidative phosphorylation and its transfer towards myofibrils were targets for these drugs. In consequence, the cellular contents of ATP and phosphocreatine were also lowered by casiopeinas. Remarkably, casiopeinas were less toxic than adriamycin (IC{sub 5} = 2.6 {mu}M), a well-known potent cardiotoxic and antineoplastic drug, which has a wide clinical use. In an open-chest animal, which is a more physiological model than the isolated heart, femoral administration of 1 {mu}M drug revealed that CSII was innocuous very likely due to strong binding to serum albumin, whereas adriamycin induced again a potent cardiotoxic effect (diminution in heart rate and severe depression of systolic blood pressure). Thus, it seems that casiopeinas are a group of new antineoplastic drugs with milder secondary toxic effects than proven drugs such as adriamycin.

  5. Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy

    PubMed Central

    Smith, Michael P.; Brunton, Holly; Rowling, Emily J.; Ferguson, Jennifer; Arozarena, Imanol; Miskolczi, Zsofia; Lee, Jessica L.; Girotti, Maria R.; Marais, Richard; Levesque, Mitchell P.; Dummer, Reinhard; Frederick, Dennie T.; Flaherty, Keith T.; Cooper, Zachary A.; Wargo, Jennifer A.; Wellbrock, Claudia

    2016-01-01

    Summary Once melanomas have progressed with acquired resistance to mitogen-activated protein kinase (MAPK)-targeted therapy, mutational heterogeneity presents a major challenge. We therefore examined the therapy phase before acquired resistance had developed and discovered the melanoma survival oncogene MITF as a driver of an early non-mutational and reversible drug-tolerance state, which is induced by PAX3-mediated upregulation of MITF. A drug-repositioning screen identified the HIV1-protease inhibitor nelfinavir as potent suppressor of PAX3 and MITF expression. Nelfinavir profoundly sensitizes BRAF and NRAS mutant melanoma cells to MAPK-pathway inhibitors. Moreover, nelfinavir is effective in BRAF and NRAS mutant melanoma cells isolated from patients progressed on MAPK inhibitor (MAPKi) therapy and in BRAF/NRAS/PTEN mutant tumors. We demonstrate that inhibiting a driver of MAPKi-induced drug tolerance could improve current approaches of targeted melanoma therapy. PMID:26977879

  6. Time-dependent inhibition of human drug metabolizing cytochromes P450 by tricyclic antidepressants

    PubMed Central

    Polasek, Thomas M; Miners, John O

    2008-01-01

    AIMS To investigate time-dependent inhibition (TDI) of human drug metabolizing CYP enzymes by tricyclic antidepressants (TCAs). METHODS CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A/CYP3A4 activities were investigated following co- and preincubation with TCAs using human liver microsomes (HLM) and human recombinant CYP proteins (expressed in Escherichia coli) as the enzyme sources. A two-step incubation method was employed to examine the in vitro mechanism-based inactivation (MBI) criteria. Potential metabolite–intermediate complex (MIC) formation was studied by spectral analysis. RESULTS TCAs generally exhibited significant TDI of recombinant CYP1A2, CYP2C19 and CYP2D6 (>10% positive inhibition differences between co- and preincubation conditions). TDI of recombinant CYP2C9 was minor (<10%), and was minor or absent in experiments utilizing recombinant CYP3A4 or HLM as the enzyme sources. Where observed, TDI of recombinant CYP occurred via alkylamine MIC formation, but evidence to support similar behaviour in HLM was limited. Indeed, only secondary amine TCAs reduced the apparent P450 content of HLM (3–6%) consistent with complexation. As a representative TCA, nortriptyline fulfilled the in vitro MBI criteria using recombinant CYP2C19 and CYP3A4 (KI and kinact values of 4 µm and 0.19 min−1, and 70 µm and 0.06 min−1), but not with the human liver microsomal enzymes. CONCLUSIONS TCAs appear to have minimal potential for MBI of human liver microsomal CYP enzymes involved in drug metabolism. HLM and recombinant CYP (expressed in E. coli) are not equivalent enzyme sources for evaluating the TDI associated with some drugs. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Much of the literature evidence for mechanism-based inactivation (MBI) of CYP by tricyclic antidepressants is limited to studies in rat liver microsomes. One report from this laboratory characterized MBI of human recombinant CYP2C8 by nortriptyline. WHAT THIS STUDY ADDS Tricyclic antidepressants form

  7. Evolution of mutualism between species

    SciTech Connect

    Post, W.M.; Travis, C.C.; DeAngelis, D.L.

    1980-01-01

    Recent theoretical work on mutualism, the interaction between species populations that is mutually beneficial, is reviewed. Several ecological facts that should be addressed in the construction of dynamic models for mutualism are examined. Basic terminology is clarified. (PSB)

  8. Endotoxin administration to humans inhibits hepatic cytochrome P450-mediated drug metabolism.

    PubMed Central

    Shedlofsky, S I; Israel, B C; McClain, C J; Hill, D B; Blouin, R A

    1994-01-01

    In experimental animals, injection of gram-negative endotoxin (LPS) decreases hepatic cytochrome P450-mediated drug metabolism. To evaluate this phenomenon in a human model of gram-negative sepsis, LPS was administered on two consecutive days to healthy male volunteers during which time a cocktail of antipyrine (AP-250 mg), hexobarbital (HB-500 mg), and theophylline (TH-150 mg) was ingested and the apparent oral clearance of each drug determined. Each subject had a control drug clearance study with saline injections. In the first experiment, six subjects received the drug cocktail 0.5 h after the first dose of LPS. In the second experiment, another six subjects received the drug cocktail 0.5 h after the second dose of LPS. In both experiments, LPS caused the expected physiologic responses of inflammation including fever with increases in serum concentrations of TNF alpha, IL-1 beta, IL-6, and acute phase reactants. In the first experiment, only minor decreases in clearances of the probe drugs were observed (7-12%). However in the second experiment, marked decreases in the clearances of AP (35, 95% CI 18-48%), HB (27, 95% CI 14-34%), and TH (22, 95% CI 12-32%) were seen. The decreases in AP clearance correlated with initial peak values of TNF alpha (r = 0.82) and IL-6 (r = 0.86). These data show that in humans the inflammatory response to even a very low dose of LPS significantly decreases hepatic cytochrome P450-mediated drug metabolism and this effect evolves over a 24-h period. It is likely that septic patients with much higher exposures to LPS have more profound inhibition of drug metabolism. PMID:7989576

  9. Establishment of in vitro P-glycoprotein inhibition assay and its exclusion criteria to assess the risk of drug-drug interaction at the drug discovery stage.

    PubMed

    Sugimoto, Hiroshi; Matsumoto, Shin-ichi; Tachibana, Miho; Niwa, Shin-ichi; Hirabayashi, Hideki; Amano, Nobuyuki; Moriwaki, Toshiya

    2011-09-01

    The decision tree to determine whether the P-glycoprotein (P-gp)/multidrug resistance protein 1 (MDR1)-mediated drug-drug interaction (DDI) study is recommended has been proposed by the International Transporter Consortium. We, therefore, designed an in vitro P-gp inhibition assay and determined the appropriate risk criteria for P-gp-mediated DDI at the drug discovery stage. Effects of P-gp inhibitors on digoxin transport across a monolayer of MDR1-expressing cells were examined. The IC(50) (half-maximal inhibitory concentration) values generated from the efflux ratio (ER) were smaller than those generated from basolateral-to-apical directional apparent permeability. The difference in IC(50) values was kinetically described in a compartment model analysis. This analysis indicated that ER is a highly sensitive parameter that can be used for the degree of P-gp inhibition. Considering IC(50) values and the increase in digoxin exposure in clinical DDI studies, the risk criteria of [I(2)]/IC(50) = 30 ([I(2)], theoretically maximal gastrointestinal concentration) was the optimal cutoff value to predict a clinically relevant DDI. We also investigated whether the IC(50) value itself is applicable to assess the DDI risk. In conclusion, compounds with IC(50) values less than 2 μM exhibit high risk for P-gp-mediated DDIs. However, compounds with IC(50) values greater than or equal to 2 μM are inconclusive because clinical doses should be considered for the precise DDI risk assessment.

  10. New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate

    PubMed Central

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T.; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-01

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells (HMLER-shEcad cells, representing BCSCs) and control immortalized non-tumorigenic human mammary cells (HMLE cells, representing normal stem cells). 19 compounds were identified from screening. The chemically related molecules benztropine mesylate and deptropine citrate were selected for further validation and both potently inhibited sphere formation and self-renewal of BCSCs in vitro. Benztropine mesylate treatment decreased cell subpopulations with high ALDH activity and with a CD44+/CD24− phenotype. In vivo, benztropine mesylate inhibited tumor-initiating potential in a 4T1 mouse model. Functional studies indicated that benztropine mesylate inhibits functions of CSCs via the acetylcholine receptors, dopamine transporters/receptors, and/or histamine receptors. In summary, our findings identify benztropine mesylate as an inhibitor of BCSCs in vitro and in vivo. This study also provides a screening platform for identification of additional anti-CSC agents. PMID:27894093

  11. Old drug, new target: ellipticines selectively inhibit RNA polymerase I transcription.

    PubMed

    Andrews, William J; Panova, Tatiana; Normand, Christophe; Gadal, Olivier; Tikhonova, Irina G; Panov, Konstantin I

    2013-02-15

    Transcription by RNA polymerase I (Pol-I) is the main driving force behind ribosome biogenesis, a fundamental cellular process that requires the coordinated transcription of all three nuclear polymerases. Increased Pol-I transcription and the concurrent increase in ribosome biogenesis has been linked to the high rates of proliferation in cancers. The ellipticine family contains a number of potent anticancer therapeutic agents, some having progressed to stage I and II clinical trials; however, the mechanism by which many of the compounds work remains unclear. It has long been thought that inhibition of Top2 is the main reason behind the drugs antiproliferative effects. Here we report that a number of the ellipticines, including 9-hydroxyellipticine, are potent and specific inhibitors of Pol-I transcription, with IC(50) in vitro and in cells in the nanomolar range. Essentially, the drugs did not affect Pol-II and Pol-III transcription, demonstrating a high selectivity. We have shown that Pol-I inhibition occurs by a p53-, ATM/ATR-, and Top2-independent mechanism. We discovered that the drug influences the assembly and stability of preinitiation complexes by targeting the interaction between promoter recognition factor SL1 and the rRNA promoter. Our findings will have an impact on the design and development of novel therapeutic agents specifically targeting ribosome biogenesis.

  12. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles

    PubMed Central

    Zhu, Xu; Guo, Jun; He, Cancan; Geng, Huaxiao; Yu, Gengsheng; Li, Jinqing; Zheng, Hairong; Ji, Xiaojuan; Yan, Fei

    2016-01-01

    Paclitaxel (PTX) has been recognized as a promising drug for intervention of vascular reconstructions. However, it is still difficult to achieve local drug delivery in a spatio-temporally controllable manner under real-time image guidance. Here, we introduce an ultrasound (US) triggered image-guided drug delivery approach to inhibit vascular reconstruction via paclitaxel (PTX)-loaded microbubbles (PLM) in a rabbit iliac balloon injury model. PLM was prepared through encapsulating PTX in the shell of lipid microbubbles via film hydration and mechanical vibration technique. Our results showed PLM could effectively deliver PTX when exposed to US irradiation and result in significantly lower viability of vascular smooth muscle cells. Ultrasonographic examinations revealed the US signals from PLM in the iliac artery were greatly increased after intravenous administration of PLM, making it possible to identify the restenosis regions of iliac artery. The in vivo anti-restenosis experiments with PLM and US greatly inhibited neointimal hyperplasia at the injured site, showing an increased lumen area and reduced the ratio of intima area and the media area (I/M ratio). No obvious functional damages to liver and kidney were observed for those animals. Our study provided a promising approach to realize US triggered image-guided PTX delivery for therapeutic applications against iliac restenosis. PMID:26899550

  13. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles.

    PubMed

    Zhu, Xu; Guo, Jun; He, Cancan; Geng, Huaxiao; Yu, Gengsheng; Li, Jinqing; Zheng, Hairong; Ji, Xiaojuan; Yan, Fei

    2016-02-22

    Paclitaxel (PTX) has been recognized as a promising drug for intervention of vascular reconstructions. However, it is still difficult to achieve local drug delivery in a spatio-temporally controllable manner under real-time image guidance. Here, we introduce an ultrasound (US) triggered image-guided drug delivery approach to inhibit vascular reconstruction via paclitaxel (PTX)-loaded microbubbles (PLM) in a rabbit iliac balloon injury model. PLM was prepared through encapsulating PTX in the shell of lipid microbubbles via film hydration and mechanical vibration technique. Our results showed PLM could effectively deliver PTX when exposed to US irradiation and result in significantly lower viability of vascular smooth muscle cells. Ultrasonographic examinations revealed the US signals from PLM in the iliac artery were greatly increased after intravenous administration of PLM, making it possible to identify the restenosis regions of iliac artery. The in vivo anti-restenosis experiments with PLM and US greatly inhibited neointimal hyperplasia at the injured site, showing an increased lumen area and reduced the ratio of intima area and the media area (I/M ratio). No obvious functional damages to liver and kidney were observed for those animals. Our study provided a promising approach to realize US triggered image-guided PTX delivery for therapeutic applications against iliac restenosis.

  14. Using in situ Raman spectroscopy to study the drug precipitation inhibition and supersaturation mechanism of Vitamin E TPGS from self-emulsifying drug delivery systems (SEDDS).

    PubMed

    Raut, Shilpa; Karzuon, Basel; Atef, Eman

    2015-05-10

    We are reporting a new methodology of using Raman spectroscopy for studying the drug surfactant interactions in self-emulsifying drug delivery systems (SEDDS). The physicochemical properties of surfactants could affect the performance of drugs from lipid delivery systems. Thus the purpose of our research was to study the drug surfactant interactions on a molecular level to understand the mechanism of supersaturation and precipitation inhibition. Two surfactants, Labrasol® and Vitamin E TPGS, were used to formulate several SEDDS. The optimized SEDDS were further evaluated by a kinetic solubility study and in situ Raman spectroscopy for two model drugs. It was found that both drugs precipitated from Labrasol® SEDDS whereas TPGS was able to inhibit precipitation and achieve high drug supersaturation levels. In situ Raman spectroscopy indicated that hydrogen bonding with TPGS was the main factor responsible for inhibiting precipitation. This study was able to correlate the structure and physicochemical properties of the drugs and surfactants to their ability to prevent drug precipitation. Our study brings up a possible new systematic approach by using Raman spectroscopy in the development and optimization of lipid based delivery systems.

  15. Belinostat and vincristine demonstrate mutually synergistic cytotoxicity associated with mitotic arrest and inhibition of polyploidy in a preclinical model of aggressive diffuse large B cell lymphoma.

    PubMed

    Havas, Aaron P; Rodrigues, Kameron B; Bhakta, Anvi; Demirjian, Joseph A; Hahn, Seongmin; Tran, Jack; Scavello, Margarethakay; Tula-Sanchez, Ana A; Zeng, Yi; Schmelz, Monika; Smith, Catharine L

    2016-12-01

    Diffuse Large B-cell lymphoma (DLBCL) is an aggressive malignancy that has a 60 percent 5-year survival rate, highlighting a need for new therapeutic approaches. Histone deacetylase inhibitors (HDACi) are novel therapeutics being clinically-evaluated in combination with a variety of other drugs. However, rational selection of companion therapeutics for HDACi is difficult due to their poorly-understood, cell-type specific mechanisms of action. To address this, we developed a pre-clinical model system of sensitivity and resistance to the HDACi belinostat using DLBCL cell lines. In the current study, we demonstrate that cell lines sensitive to the cytotoxic effects of HDACi undergo early mitotic arrest prior to apoptosis. In contrast, HDACi-resistant cell lines complete mitosis after a short delay and arrest in G1. To force mitotic arrest in HDACi-resistant cell lines, we used low dose vincristine or paclitaxel in combination with belinostat and observed synergistic cytotoxicity. Belinostat curtails vincristine-induced mitotic arrest and triggers a strong apoptotic response associated with downregulated MCL-1 expression and upregulated BIM expression. Resistance to microtubule targeting agents (MTAs) has been associated with their propensity to induce polyploidy and thereby increase the probability of genomic instability that enables cancer progression. Co-treatment with belinostat effectively eliminated a vincristine-induced, actively cycling polyploid cell population. Our study demonstrates that vincristine sensitizes DLBCL cells to the cytotoxic effects of belinostat and that belinostat prevents polyploidy that could cause vincristine resistance. Our findings provide a rationale for using low dose MTAs in conjunction with HDACi as a potential therapeutic strategy for treatment of aggressive DLBCL.

  16. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    SciTech Connect

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan; Xu, Chuan; Wang, Mei; Wang, Qinrui; Zhou, Zhansong; Xiang, Zhonghuai; Cui, Hongjuan

    2014-03-28

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.

  17. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells.

    PubMed

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan; Xu, Chuan; Wang, Mei; Wang, Qinrui; Zhou, Zhansong; Xiang, Zhonghuai; Cui, Hongjuan

    2014-03-28

    Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.

  18. Antipsychotic drugs inhibit prolactin release from rat anterior pituitary cells in culture by a mechanism not involving the dopamine receptor.

    PubMed

    West, B; Dannies, P S

    1979-04-01

    Bromocriptine, a dopamine agonist, inhibited secretion of PRL and did not affect GH release from rat anterior pituitary cells in culture. The reversal of this inhibition of PRL release by butaclamol, a dopamine antagonist, was stereospecific; 10 nM d-butaclamol completely reversed the inhibition caused by 10 nM bromocriptine, while l-butaclamol had no effect at concentrations up to 10 microM. However, both enantiomers at 10 microM inhibited PRL release to 30% and GH release to 91% of control values. Two other dopamine antagonists also inhibited hormone release. Haloperidol (10 microM) inhibited PRL release to 23% of control values and did not affect GH release; 3.3 microM pimozide inhibited PRL and GH release to 18% and 38% of control values, respectively. These data indicate that, the inhibition of PRL by antipsychotic drugs is not mediated through the dopamine receptor.

  19. Sodium channel-inhibiting drugs and survival of breast, colon and prostate cancer: a population-based study

    PubMed Central

    Fairhurst, Caroline; Watt, Ian; Martin, Fabiola; Bland, Martin; Brackenbury, William J.

    2015-01-01

    Metastasis is the leading cause of cancer-related deaths. Voltage-gated sodium channels (VGSCs) regulate invasion and metastasis. Several VGSC-inhibiting drugs reduce metastasis in murine cancer models. We aimed to test the hypothesis that patients taking VGSC-inhibiting drugs who developed cancer live longer than those not taking these drugs. A cohort study was performed on primary care data from the QResearch database, including patients with breast, bowel or prostate cancer. Cox proportional hazards regression was used to compare the survival from cancer diagnosis of patients taking VGSC-inhibiting drugs with those not exposed to these drugs. Median time to death was 9.7 years in the exposed group and 18.4 years in the unexposed group, and exposure to these medications significantly increased mortality. Thus, exposure to VGSC-inhibiting drugs associates with reduced survival in breast, bowel and prostate cancer patients. This finding is not consistent with the preclinical data. Despite the strengths of this study including the large sample size, the study is limited by missing information on potentially important confounders such as cancer stage, co-morbidities and cause of death. Further research, which is able to account for these confounding issues, is needed to investigate the relationship between VGSC-inhibiting drugs and cancer survival. PMID:26577038

  20. Sodium channel-inhibiting drugs and survival of breast, colon and prostate cancer: a population-based study.

    PubMed

    Fairhurst, Caroline; Watt, Ian; Martin, Fabiola; Bland, Martin; Brackenbury, William J

    2015-11-18

    Metastasis is the leading cause of cancer-related deaths. Voltage-gated sodium channels (VGSCs) regulate invasion and metastasis. Several VGSC-inhibiting drugs reduce metastasis in murine cancer models. We aimed to test the hypothesis that patients taking VGSC-inhibiting drugs who developed cancer live longer than those not taking these drugs. A cohort study was performed on primary care data from the QResearch database, including patients with breast, bowel or prostate cancer. Cox proportional hazards regression was used to compare the survival from cancer diagnosis of patients taking VGSC-inhibiting drugs with those not exposed to these drugs. Median time to death was 9.7 years in the exposed group and 18.4 years in the unexposed group, and exposure to these medications significantly increased mortality. Thus, exposure to VGSC-inhibiting drugs associates with reduced survival in breast, bowel and prostate cancer patients. This finding is not consistent with the preclinical data. Despite the strengths of this study including the large sample size, the study is limited by missing information on potentially important confounders such as cancer stage, co-morbidities and cause of death. Further research, which is able to account for these confounding issues, is needed to investigate the relationship between VGSC-inhibiting drugs and cancer survival.

  1. Drug CRL 40 028-induced inhibition of pancreatic secretion in rats.

    PubMed

    Rozé, C; Chariot, J; Vaille, C

    1983-09-01

    The drug CRL 40 028 increases spontaneous motility through an action on central adrenergic receptors. The effects of this drug have been tested in rats on the external pancreatic secretion induced by secretin, CCK, acetylcholine, vagal electrical stimulation or 2 deoxy-D-glucose. CRL 40 028 had no effect on basal secretion nor on secretion stimulated by agents acting directly on pancreatic secretory cells (secretin, CCK, acetylcholine), but decreased significantly secretion induced by central or peripheral stimulation of the vagus nerves. CRL 40 028-induced inhibition of 2 DG effect was reduced by yohimbine, suggesting a participation of alpha 2-adrenergic receptors in the action of CRL 40 028 on the exocrine pancreas secretion of rats.

  2. Structural basis for non-competitive product inhibition in human thymidine phosphorylase: implications for drug design.

    PubMed

    El Omari, Kamel; Bronckaers, Annelies; Liekens, Sandra; Pérez-Pérez, Maria-Jésus; Balzarini, Jan; Stammers, David K

    2006-10-15

    HTP (human thymidine phosphorylase), also known as PD-ECGF (platelet-derived endothelial cell growth factor) or gliostatin, has an important role in nucleoside metabolism. HTP is implicated in angiogenesis and apoptosis and therefore is a prime target for drug design, including antitumour therapies. An HTP structure in a closed conformation complexed with an inhibitor has previously been solved. Earlier kinetic studies revealed an ordered release of thymine followed by ribose phosphate and product inhibition by both ligands. We have determined the structure of HTP from crystals grown in the presence of thymidine, which, surprisingly, resulted in bound thymine with HTP in a closed dead-end complex. Thus thymine appears to be able to reassociate with HTP after its initial ordered release before ribose phosphate and induces the closed conformation, hence explaining the mechanism of non-competitive product inhibition. In the active site in one of the four HTP molecules within the crystal asymmetric unit, additional electron density is present. This density has not been previously seen in any pyrimidine nucleoside phosphorylase and it defines a subsite that may be exploitable in drug design. Finally, because our crystals did not require proteolysed HTP to grow, the structure reveals a loop (residues 406-415), disordered in the previous HTP structure. This loop extends across the active-site cleft and appears to stabilize the dimer interface and the closed conformation by hydrogen-bonding. The present study will assist in the design of HTP inhibitors that could lead to drugs for anti-angiogenesis as well as for the potentiation of other nucleoside drugs.

  3. Structural Basis for Inhibition of Histamine N-Methyltransferase by Diverse Drugs

    SciTech Connect

    Horton,J.; Sawada, K.; Nishibori, M.; Cheng, X.

    2005-01-01

    In mammals, histamine action is terminated through metabolic inactivation by histamine N-methyltransferase (HNMT) and diamine oxidase. In addition to three well-studied pharmacological functions, smooth muscle contraction, increased vascular permeability, and stimulation of gastric acid secretion, histamine plays important roles in neurotransmission, immunomodulation, and regulation of cell proliferation. The histamine receptor H1 antagonist diphenhydramine, the antimalarial drug amodiaquine, the antifolate drug metoprine, and the anticholinesterase drug tacrine (an early drug for Alzheimer's disease) are surprisingly all potent HNMT inhibitors, having inhibition constants in the range of 10-100 nM. We have determined the structural mode of interaction of these four inhibitors with HNMT. Despite their structural diversity, they all occupy the histamine-binding site, thus blocking access to the enzyme's active site. Near the N terminus of HNMT, several aromatic residues (Phe9, Tyr15, and Phe19) adopt different rotamer conformations or become disordered in the enzyme-inhibitor complexes, accommodating the diverse, rigid hydrophobic groups of the inhibitors. The maximized shape complementarity between the protein aromatic side-chains and aromatic ring(s) of the inhibitors are responsible for the tight binding of these varied inhibitors.

  4. Growth inhibition, drug load, and degradation studies of gelatin/methotrexate conjugates.

    PubMed

    Ofner, Clyde M; Pica, Karen; Bowman, Bill J; Chen, Chao-Sheng

    2006-02-03

    Macromolecular gelatin-methotrexate conjugates have potential therapeutic advantages over the free drug. Conjugates with MTX:gelatin molar ratios (MR) ranging from 1:1 to 27:1 were examined for cell growth inhibition, stability, degradation, and methotrexate (MTX) release. Conjugate growth inhibition was less than that of free MTX whose IC(50) value of 1.3 x 10(-8) M was about 10-fold less. Cell uptake of fluorescein labeled gelatin (145 kD) was observed by 24-30 h. Higher MR conjugates produced less growth inhibition, measurably greater stability at pH 7.4 based on MTX release, and had less gelatin degradation in the conjugate by the lysosomal enzyme Cathepsin B (Cat B) compared to low MR conjugates. Cat B conjugate degradation was greater at the in vitro lysosomal pH of 4.8 than the intra-tumor pH of 6.5. The presence of Cat B did not meaningfully affect MTX release, but less MTX was released at pH 4.8 than pH 6.5. The maximum MTX release was a relatively low 7% after 72 h at pH 6.5 for the low MR conjugate. Low molecular weight conjugate fragments were also produced and were also influenced by pH and MR. Reduced growth inhibition by high MR conjugates may be due to a hindered enzymatic degradation in the lysosomes. A strong peptide conjugate bond at lysosomal pH and a 24-30 h delayed gelatin uptake may contribute to reduced growth inhibition of the conjugate compared to free MTX. MTX release under these in vitro conditions occurs by aqueous hydrolysis, not by Cat B cleavage of the conjugate bond.

  5. Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells.

    PubMed

    Zou, Zhengzhi; Yuan, Zhongyu; Zhang, Qiongxia; Long, Zijie; Chen, Jinna; Tang, Zhiping; Zhu, Yuliang; Chen, Shupeng; Xu, Jie; Yan, Min; Wang, Jing; Liu, Quentin

    2012-12-01

    We have previously shown that elevated expression of mitotic kinase aurora kinase A (AURKA) in cancer cells promotes the development of metastatic phenotypes and is associated clinically with adverse prognosis. Here, we first revealed a clinically positive correlation between AURKA and autophagy-associated protein SQSTM1 in breast cancer and further demonstrated that AURKA regulated SQSTM1 through autophagy. Indeed, depletion by siRNA or chemical inhibition of AURKA by the small molecule VX-680 increased both the level of microtubule-associated protein 1 light chain 3-II (LC3-II) and the number of autophagosomes, along with decreased SQSTM1. Conversely, overexpression of AURKA inhibited autophagy, as assessed by decreased LC3-II and increased SQSTM1 either upon nutrient deprivation or normal conditions. In addition, phosphorylated forms of both RPS6KB1 and mechanistic target of rapamycin (MTOR) were elevated by overexpression of AURKA whereas they were suppressed by depletion or inhibition of AURKA. Moreover, inhibition of MTOR by PP242, an inhibitor of MTOR complex1/2, abrogated the changes in both LC3-II and SQSTM1 in AURKA-overexpressing BT-549 cells, suggesting that AURKA-suppressed autophagy might be associated with MTOR activation. Lastly, repression of autophagy by depletion of either LC3 or ATG5, sensitized breast cancer cells to VX-680-induced apoptosis. Similar findings were observed in cells treated with the autophagy inhibitors chloroquine (CQ) and bafilomycin A 1 (BAF). Our data thus revealed a novel role of AURKA as a negative regulator of autophagy, showing that AURKA inhibition induced autophagy, which may represent a novel mechanism of drug resistance in apoptosis-aimed therapy for breast cancer.

  6. Drug Repurposing Screening Identifies Novel Compounds That Effectively Inhibit Toxoplasma gondii Growth

    PubMed Central

    Dittmar, Ashley J.; Drozda, Allison A.

    2016-01-01

    ABSTRACT The urgent need to develop new antimicrobial therapies has spawned the development of repurposing screens in which well-studied drugs and other types of compounds are tested for potential off-label uses. As a proof-of-principle screen to identify compounds effective against Toxoplasma gondii, we screened a collection of 1,120 compounds for the ability to significantly reduce Toxoplasma replication. A total of 94 compounds blocked parasite replication with 50% inhibitory concentrations of <5 µM. A significant number of these compounds are established inhibitors of dopamine or estrogen signaling. Follow-up experiments with the dopamine receptor inhibitor pimozide revealed that the drug impacted both parasite invasion and replication but did so independently of inhibition of dopamine or other neurotransmitter receptor signaling. Tamoxifen, which is an established inhibitor of the estrogen receptor, also reduced parasite invasion and replication. Even though Toxoplasma can activate the estrogen receptor, tamoxifen inhibits parasite growth independently of this transcription factor. Tamoxifen is also a potent inducer of autophagy, and we find that the drug stimulates recruitment of the autophagy marker light chain 3-green fluorescent protein onto the membrane of the vacuolar compartment in which the parasite resides and replicates. In contrast to other antiparasitic drugs, including pimozide, tamoxifen treatment of infected cells leads to a time-dependent elimination of intracellular parasites. Taken together, these data suggest that tamoxifen restricts Toxoplasma growth by inducing xenophagy or autophagic destruction of this obligate intracellular parasite. IMPORTANCE There is an urgent need to develop new therapies to treat microbial infections, and the repurposing of well-characterized compounds is emerging as one approach to achieving this goal. Using the protozoan parasite Toxoplasma gondii, we screened a library of 1,120 compounds and identified several

  7. Quinidine-induced neutropenia: report of a case with drug-dependent inhibition of granulocyte colony generation.

    PubMed

    Ascensao, J L; Flynn, P J; Slungaard, A; Wachsman, W; Zanjani, E D; Jacob, H S

    1984-01-01

    We describe a case of quinidine-induced agranulocytosis in which in vitro marrow culture studies suggested immune inhibition of committed human granulocyte-macrophage progenitors (CFU-GM). Autologous, but not allogeneic, inhibition of CFU-GM was seen with 'acute' serum from the patient in the presence of quinidine but not other drugs. Cytotoxic antibodies to mature granulocytes were not found. These studies provide a novel mechanism for drug-induced neutropenia and suggest that a battery of in vitro assays of progenitor and of mature granulocyte cytotoxicity might identify offending agents in suspected drug-induced neutropenias.

  8. Polymer-drug conjugates for intracellar molecule-targeted photoinduced inactivation of protein and growth inhibition of cancer cells

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Yuan, Huanxiang; Zhu, Chunlei; Yang, Qiong; Lv, Fengting; Liu, Libing; Wang, Shu

    2012-10-01

    For most molecule-targeted anticancer systems, intracellular protein targets are very difficult to be accessed by antibodies, and also most efforts are made to inhibit protein activity temporarily rather than inactivate them permanently. In this work we firstly designed and synthesized multifunctional polymer-drug conjugates (polythiophene-tamoxifen) for intracellular molecule-targeted binding and inactivation of protein (estrogen receptor α, ERα) for growth inhibition of MCF-7 cancer cells. Small molecule drug was conjugated to polymer side chain for intracellular signal protein targeting, and simultaneously the fluorescent characteristic of polymer for tracing the cellular uptake and localization of polythiophene-drug conjugates by cell imaging. Under light irradiation, the conjugated polymer can sensitize oxygen to produce reactive oxygen species (ROS) that specifically inactivate the targeted protein, and thus inhibit the growth of tumor cells. The conjugates showed selective growth inhibition of ERα positive cancer cells, which exhibits low side effect for our intracellular molecule-targeted therapy system.

  9. Selective inhibition of anthrax edema factor by adefovir, a drug for chronic hepatitis B virus infection.

    PubMed

    Shen, Yuequan; Zhukovskaya, Natalia L; Zimmer, Michael I; Soelaiman, Sandriyana; Bergson, Pamela; Wang, Chyung-Ru; Gibbs, Craig S; Tang, Wei-Jen

    2004-03-02

    Edema factor (EF), a key virulence factor in anthrax pathogenesis, has calmodulin (CaM)-activated adenylyl cyclase activity. We have found that adefovir dipivoxil, a drug approved to treat chronic infection of hepatitis B virus, effectively inhibits EF-induced cAMP accumulation and changes in cytokine production in mouse primary macrophages. Adefovir diphosphate (PMEApp), the active cellular metabolite of adefovir dipivoxil, inhibits the adenylyl cyclase activity of EF in vitro with high affinity (K(i) = 27 nM). A crystal structure of EF-CaM-PMEApp reveals that the catalytic site of EF forms better van der Waals contacts and more hydrogen bonds with PMEApp than with its endogenous substrate, ATP, providing an explanation for the approximately 10,000-fold higher affinity EF-CaM has for PMEApp versus ATP. Adefovir dipivoxil is a clinically approved drug that can block the action of an anthrax toxin. It can be used to address the role of EF in anthrax pathogenesis.

  10. Autophagy inhibits cell death induced by the anti-cancer drug morusin

    PubMed Central

    Cho, Sang Woo; Na, Wooju; Choi, Minji; Kang, Shin Jung; Lee, Seok-Geun; Choi, Cheol Yong

    2017-01-01

    Autophagy is a cellular process by which damaged organelles and dysfunctional proteins are degraded. Morusin is an anti-cancer drug isolated from the root bark of Morus alba. Morusin induces apoptosis in human prostate cancer cells by reducing STAT3 activity. In this study, we examined whether morusin induces autophagy and also examined the effects of autophagy on the morusin-induced apoptosis. Morusin induces LC3-II accumulation and ULK1 activation in HeLa cells. In addition, we found that induction of ULK1 Ser317 phosphorylation and reduction of ULK1 Ser757 phosphorylation occurred simultaneously during morusin-induced autophagy. Consistently, morusin induces autophagy by activation of AMPK and inhibition of mTOR activity. Next, we investigated the role of autophagy in morusin-induced apoptosis. Inhibition of autophagy by treating cells with the 3-methyladenine (3-MA) autophagic inhibitor induces high levels of morusin-mediated apoptosis, while treatment of cells with morusin alone induces moderate levels of apoptosis. Cell survival was greatly reduced when cells were treated with morusin and 3-MA. Taken together, morusin induces autophagy, which is an impediment for morusin-induced apoptosis, suggesting combined treatment of morusin with an autophagic inhibitor would increase the efficacy of morusin as an anti-cancer drug.

  11. Molecular Basis for Cyclooxygenase Inhibition by the Non-steroidal Anti-inflammatory Drug Naproxen

    SciTech Connect

    Duggan, Kelsey C.; Walters, Matthew J.; Musee, Joel; Harp, Joel M.; Kiefer, James R.; Oates, John A.; Marnett, Lawrence J.

    2010-11-15

    Naproxen ((S)-6-methoxy-{alpha}-methyl-2-naphthaleneacetic acid) is a powerful non-selective non-steroidal anti-inflammatory drug that is extensively used as a prescription and over-the-counter medication. Naproxen exhibits gastrointestinal toxicity, but its cardiovascular toxicity may be reduced compared with other drugs in its class. Despite the fact that naproxen has been marketed for many years, the molecular basis of its interaction with cyclooxygenase (COX) enzymes is unknown. We performed a detailed study of naproxen-COX-2 interactions using site-directed mutagenesis, structure-activity analysis, and x-ray crystallography. The results indicate that each of the pendant groups of the naphthyl scaffold are essential for COX inhibition, and only minimal substitutions are tolerated. Mutation of Trp-387 to Phe significantly reduced inhibition by naproxen, a result that appears unique to this inhibitor. Substitution of S or CH2 for the O atom of the p-methoxy group yielded analogs that were not affected by the W387F substitution and that exhibited increased COX-2 selectivity relative to naproxen. Crystallization and x-ray analysis yielded structures of COX-2 complexed to naproxen and its methylthio analog at 1.7 and 2.3 {angstrom} resolution, respectively. The combination of mutagenesis, structure analysis, and x-ray crystallography provided comprehensive information on the unique interactions responsible for naproxen binding to COX-2.

  12. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells

    PubMed Central

    Kim, Ki Jung; Jeun, Seung Hyun

    2017-01-01

    Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine (5-HT)3 receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine (1~300 µM) resulted in a concentration-dependent reduction in peak amplitude of currents induced by 3 µM of 5-HT for an IC50 value of 28.2±3.6 µM with a Hill coefficient of 1.2±0.1. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, 5-HT3-mediated currents evoked by 1 mM dopamine, a partial 5-HT3 receptor agonist, were inhibited by lamotrigine co-application. The EC50 of 5-HT for 5-HT3 receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate 5-HT3 receptor desensitization, inhibited 5-HT3 receptor currents in a concentration-dependent manner. The deactivation of 5-HT3 receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of 5-HT3 receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the 5-HT3 receptor currents. These results indicate that lamotrigine inhibits 5-HT3-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization. PMID:28280410

  13. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells.

    PubMed

    Kim, Ki Jung; Jeun, Seung Hyun; Sung, Ki-Wug

    2017-03-01

    Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine (5-HT)3 receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine (1~300 µM) resulted in a concentration-dependent reduction in peak amplitude of currents induced by 3 µM of 5-HT for an IC50 value of 28.2±3.6 µM with a Hill coefficient of 1.2±0.1. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, 5-HT3-mediated currents evoked by 1 mM dopamine, a partial 5-HT3 receptor agonist, were inhibited by lamotrigine co-application. The EC50 of 5-HT for 5-HT3 receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate 5-HT3 receptor desensitization, inhibited 5-HT3 receptor currents in a concentration-dependent manner. The deactivation of 5-HT3 receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of 5-HT3 receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the 5-HT3 receptor currents. These results indicate that lamotrigine inhibits 5-HT3-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization.

  14. Mutually Exclusive, Complementary, or . . .

    ERIC Educational Resources Information Center

    Schloemer, Cathy G.

    2016-01-01

    Whether students are beginning their study of probability or are well into it, distinctions between complementary sets and mutually exclusive sets can be confusing. Cathy Schloemer writes in this article that for years she used typical classroom examples but was not happy with the student engagement or the level of understanding they produced.…

  15. Mutual Adaptaion in Action

    ERIC Educational Resources Information Center

    Siskin, Leslie Santee

    2016-01-01

    Building on an expanded concept of mutual adaptation, this chapter explores a distinctive and successful aspect of International Baccalaureate's effort to scale up, as they moved to expand their programs and support services in Title I schools. Based on a three-year, mixed-methods study, it offers a case where we see not only local adaptations…

  16. Inhibition mechanism exploration of investigational drug TAK-441 as inhibitor against Vismodegib-resistant Smoothened mutant.

    PubMed

    Ishii, Tsuyoshi; Shimizu, Yuji; Nakashima, Kosuke; Kondo, Shigeru; Ogawa, Kazumasa; Sasaki, Satoshi; Matsui, Hideki

    2014-01-15

    Hedgehog signaling is a driving force in medulloblastoma and basal cell carcinoma (BCC), making it an attractive therapeutic target. Vismodegib recently received FDA approval for the treatment of inoperable BCC, but a drug-resistant Smoothened (Smo) mutant (D473H) was identified in a clinical study. TAK-441 is a pyrrolo[3,2-c]pyridine-4-one derivative that potently inhibits Hh signal transduction and is currently under investigation in clinical trials. We demonstrated that TAK-441 inhibits reporter activity in D473H-transfected cells with an IC50 of 79nM, while Vismodegib showed an IC50=7100nM. In order to investigate the mode of inhibition, we evaluated the Smo inhibitors with three different binding assays, such as [(3)H]-TAK-441 membrane binding assay, affinity selection-MS detection assay, and bodipy-cylopamine whole cell assay. In three different assays, Vismodegib and cyclopamine showed lower affinity for the D473H mutant in comparison with wild-type Smo. On the other hand, TAK-441 showed almost equal binding affinity for the D473H mutant compared with wild-type Smo in the binding assays, although TAK-441 binds to the same binding site as two other well-known inhibitors. These in vitro findings suggest that TAK-441 has the potential for clinical use in cancers that are dependent on Hedgehog signaling, including wild-type tumors and Vismodegib-resistant D473H mutants.

  17. Sodium channel-inhibiting drugs and cancer survival: protocol for a cohort study using the CPRD primary care database

    PubMed Central

    Fairhurst, Caroline; Martin, Fabiola; Watt, Ian; Doran, Tim; Bland, Martin

    2016-01-01

    Introduction Voltage-gated sodium channel (VGSC)-inhibiting drugs are commonly used to treat epilepsy and cardiac arrhythmia. VGSCs are also widely expressed in various cancers, including those of the breast, bowel and prostate. A number of VGSC-inhibiting drugs have been shown to inhibit cancer cell proliferation, invasion, tumour growth and metastasis in preclinical models, suggesting that VGSCs may be novel molecular targets for cancer treatment. Surprisingly, we previously found that prior exposure to VGSC-inhibiting drugs may be associated with reduced overall survival in patients with cancer, but we were unable to control for the cause of death or indication for prescription. The purpose of the present study is to interrogate a different database to further investigate the relationship between VGSC-inhibiting drugs and cancer-specific survival. Methods and analysis A cohort study using primary care data from the Clinical Practice Research Datalink database will include patients with diagnosis of breast, bowel and prostate cancer (13 000). The primary outcome will be cancer-specific survival from the date of cancer diagnosis. Cox proportional hazards regression will be used to compare survival of patients taking VGSC-inhibiting drugs (including antiepileptic drugs and class I antiarrhythmic agents) with patients with cancer not taking these drugs, adjusting for cancer type, age and sex. Drug exposure will be treated as a time-varying covariate to account for potential immortal time bias. Various sensitivity and secondary analyses will be performed. Ethics and dissemination The project has been reviewed and approved by the University of York Ethical Review Process. Results will be presented at an international conference and published in open access peer-reviewed journals according to the STROBE and RECORD guidelines. PMID:27601493

  18. Identification of synthetic lethality of PLK1 inhibition and microtubule-destabilizing drugs.

    PubMed

    Hugle, M; Belz, K; Fulda, S

    2015-12-01

    Polo-like kinase 1 (PLK1) is frequently overexpressed in cancer, which correlates with poor prognosis. Therefore, we investigated PLK1 as therapeutic target using rhabdomyosarcoma (RMS) as a model. Here, we identify a novel synthetic lethal interaction of PLK1 inhibitors and microtubule-destabilizing drugs in preclinical RMS models and elucidate the underlying molecular mechanisms of this synergism. PLK1 inhibitors (i.e., BI 2536 and BI 6727) synergistically induce apoptosis together with microtubule-destabilizing drugs (i.e., vincristine (VCR), vinblastine (VBL) and vinorelbine (VNR)) in several RMS cell lines (combination index <0.9) including a patient-derived primary RMS culture. Importantly, PLK1 inhibitors and VCR cooperate to significantly suppress RMS growth in two in vivo models, including a mouse xenograft model, without causing additive toxicity. In addition, no toxicity was observed in non-malignant fibroblast or myoblast cultures. Mechanistically, BI 2536/VCR co-treatment triggers mitotic arrest, which initiates mitochondrial apoptosis by inactivation of antiapoptotic BCL-2 family proteins, followed by BAX/BAK activation, production of reactive oxygen species (ROS) and activation of caspase-dependent or caspase-independent effector pathways. This conclusion is supported by data showing that BI 2536/VCR-induced apoptosis is significantly inhibited by preventing cells to enter mitosis, by overexpression of BCL-2 or a non-degradable MCL-1 mutant, by BAK knockdown, ROS scavengers, caspase inhibition or endonuclease G silencing. This identification of a novel synthetic lethality of PLK1 inhibitors and microtubule-destabilizing drugs has important implications for developing PLK1 inhibitor-based combination treatments.

  19. Inhibition of the enzyme, GABA-aminotransferase in human platelets by vigabatrin, a potential antiepileptic drug.

    PubMed Central

    Rimmer, E; Kongola, G; Richens, A

    1988-01-01

    1. The effect of the new antiepileptic drug, vigabatrin (gamma-vinyl GABA), on the platelet enzyme, GABA-aminotransferase (GABA-T) was investigated in volunteers and patients. Platelets GABA-T activity was assayed using a radioenzymic method. 2. Three single oral doses of vigabatrin (1 g, 2 g and 4 g) were given to six healthy male volunteers in an open randomised cross over study and compared with a baseline period preceding the three treatments. 3. Significant inhibition of the platelet GABA-T was produced by treatment with all three doses and a dose-response relationship was demonstrated. The minimum enzyme activities after 1 g, 2 g and 4 g doses were 43%, 30% and 21% respectively compared with the control values. 4. A significant depression of enzyme activity occurred at 30 min after drug administration and the values remained below control values for 72 h post-dose, outlasting the presence of the drug itself in the plasma. 5. Eight patients with chronic refractory epilepsy were treated with vigabatrin for 6 weeks. After taking the 2 g daily dose for 1 week there was a marked reduction in platelet enzyme activity in all subjects but the enzyme inhibition produced by the 3 g dose was not significantly different from that produced by the 2 g dose, even after 4 weeks treatment with the larger dose. The mean enzyme activity was approximately 30% throughout the active treatment period. One week after stopping vigabatrin, the enzyme levels were not significantly different from the baseline values.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3358887

  20. Identification of approved and investigational drugs that inhibit hypoxia-inducible factor-1 signaling

    PubMed Central

    Hsu, Chia-Wen; Huang, Ruili; Khuc, Thai; Shou, David; Bullock, Joshua; Grooby, Suzanne; Griffin, Sue; Zou, Chaozhong; Little, Annette; Astley, Holly; Xia, Menghang

    2016-01-01

    One of the requirements for tumor development is blood supply, most often driven by hypoxia-induced angiogenesis. Hypoxia induces the stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), which induces expression of an angiogenic factor, vascular endothelial growth factor (VEGF). The purpose of this study is to validate a new screening platform combined with orthogonal assays to rapidly identify HIF-1 inhibitors and to evaluate the effectiveness of approved drugs on modulating HIF-1 signaling. We generated an endogenous HIF-1α–NanoLuc luciferase reporter allele in the human HCT116 colon cancer cell line using genome editing and screened a panel of small interfering RNAs (siRNAs) to 960 druggable targets and approximately 2,500 drugs on a quantitative high-throughput screening (qHTS) platform. Selected compounds were further investigated with secondary assays to confirm their anti-HIF activity and to study their mode of action. The qHTS assay identified over 300 drugs that inhibited HIF-1α-NanoLuc expression. The siRNA screening results supported the effectiveness of several target-specific inhibitors. Moreover, the identified HIF-1 inhibitors, such as mycophenolate mofetil, niclosamide, and trametinib, were able to suppress cancer cell proliferation and angiogenesis. Our study indicates that blocking the mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K) pathways effectively inhibits hypoxia-induced HIF-1α accumulation and HIF-1α transactivation and that proteasome inhibitors induce accumulation and decrease transcriptional activity of HIF-1α. These findings underline the importance of developing a battery of robust assay platforms and confirmation studies that focus on endogenous protein targets so that only relevant and reliable data will be taken into pre-clinical and clinical studies. PMID:26882567

  1. Identification of synthetic lethality of PLK1 inhibition and microtubule-destabilizing drugs

    PubMed Central

    Hugle, M; Belz, K; Fulda, S

    2015-01-01

    Polo-like kinase 1 (PLK1) is frequently overexpressed in cancer, which correlates with poor prognosis. Therefore, we investigated PLK1 as therapeutic target using rhabdomyosarcoma (RMS) as a model. Here, we identify a novel synthetic lethal interaction of PLK1 inhibitors and microtubule-destabilizing drugs in preclinical RMS models and elucidate the underlying molecular mechanisms of this synergism. PLK1 inhibitors (i.e., BI 2536 and BI 6727) synergistically induce apoptosis together with microtubule-destabilizing drugs (i.e., vincristine (VCR), vinblastine (VBL) and vinorelbine (VNR)) in several RMS cell lines (combination index <0.9) including a patient-derived primary RMS culture. Importantly, PLK1 inhibitors and VCR cooperate to significantly suppress RMS growth in two in vivo models, including a mouse xenograft model, without causing additive toxicity. In addition, no toxicity was observed in non-malignant fibroblast or myoblast cultures. Mechanistically, BI 2536/VCR co-treatment triggers mitotic arrest, which initiates mitochondrial apoptosis by inactivation of antiapoptotic BCL-2 family proteins, followed by BAX/BAK activation, production of reactive oxygen species (ROS) and activation of caspase-dependent or caspase-independent effector pathways. This conclusion is supported by data showing that BI 2536/VCR-induced apoptosis is significantly inhibited by preventing cells to enter mitosis, by overexpression of BCL-2 or a non-degradable MCL-1 mutant, by BAK knockdown, ROS scavengers, caspase inhibition or endonuclease G silencing. This identification of a novel synthetic lethality of PLK1 inhibitors and microtubule-destabilizing drugs has important implications for developing PLK1 inhibitor-based combination treatments. PMID:26024389

  2. Structural Insights into Drug Processing by Human Carboxylesterase 1: Tamoxifen, Mevastatin, and Inhibition by Benzil

    SciTech Connect

    Fleming, Christopher D.; Bencharit, Sompop; Edwards, Carol C.; Hyatt, Janice L.; Tsurkan, Lyudmila; Bai, Feng; Fraga, Charles; Morton, Christopher L.; Howard-Williams, Escher L.; Potter, Philip M.; Redinbo, Matthew R.

    2010-07-19

    Human carboxylesterase 1 (hCE1) exhibits broad substrate specificity and is involved in xenobiotic processing and endobiotic metabolism. We present and analyze crystal structures of hCE1 in complexes with the cholesterol-lowering drug mevastatin, the breast cancer drug tamoxifen, the fatty acyl ethyl ester (FAEE) analogue ethyl acetate, and the novel hCE1 inhibitor benzil. We find that mevastatin does not appear to be a substrate for hCE1, and instead acts as a partially non-competitive inhibitor of the enzyme. Similarly, we show that tamoxifen is a low micromolar, partially non-competitive inhibitor of hCE1. Further, we describe the structural basis for the inhibition of hCE1 by the nanomolar-affinity dione benzil, which acts by forming both covalent and non-covalent complexes with the enzyme. Our results provide detailed insights into the catalytic and non-catalytic processing of small molecules by hCE1, and suggest that the efficacy of clinical drugs may be modulated by targeted hCE1 inhibitors.

  3. 26 CFR 1.831-3 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... mutual), mutual marine insurance companies, mutual fire insurance companies issuing perpetual policies... Companies § 1.831-3 Tax on insurance companies (other than life or mutual), mutual marine insurance... insurance business within the United States, and all mutual marine insurance companies and mutual fire...

  4. A combined model for predicting CYP3A4 clinical net drug-drug interaction based on CYP3A4 inhibition, inactivation, and induction determined in vitro.

    PubMed

    Fahmi, Odette A; Maurer, Tristan S; Kish, Mary; Cardenas, Edwin; Boldt, Sherri; Nettleton, David

    2008-08-01

    Although approaches to the prediction of drug-drug interactions (DDIs) arising via time-dependent inactivation have recently been developed, such approaches do not account for simple competitive inhibition or induction. Accordingly, these approaches do not provide accurate predictions of DDIs arising from simple competitive inhibition (e.g., ketoconazole) or induction of cytochromes P450 (e.g., phenytoin). In addition, methods that focus upon a single interaction mechanism are likely to yield misleading predictions in the face of mixed mechanisms (e.g., ritonavir). As such, we have developed a more comprehensive mathematical model that accounts for the simultaneous influences of competitive inhibition, time-dependent inactivation, and induction of CYP3A in both the liver and intestine to provide a net drug-drug interaction prediction in terms of area under the concentration-time curve ratio. This model provides a framework by which readily obtained in vitro values for competitive inhibition, time-dependent inactivation and induction for the precipitant compound as well as literature values for f(m) and F(G) for the object drug can be used to provide quantitative predictions of DDIs. Using this model, DDIs arising via inactivation (e.g., erythromycin) continue to be well predicted, whereas those arising via competitive inhibition (e.g., ketoconazole), induction (e.g., phenytoin), and mixed mechanisms (e.g., ritonavir) are also predicted within the ranges reported in the clinic. This comprehensive model quantitatively predicts clinical observations with reasonable accuracy and can be a valuable tool to evaluate candidate drugs and rationalize clinical DDIs.

  5. IFN-λ Inhibits Drug-Resistant HIV Infection of Macrophages

    PubMed Central

    Wang, Xu; Wang, He; Liu, Man-Qing; Li, Jie-Liang; Zhou, Run-Hong; Zhou, Yu; Wang, Yi-Zhong; Zhou, Wang; Ho, Wen-Zhe

    2017-01-01

    Type III interferons (IFN-λs) have been demonstrated to inhibit a number of viruses, including HIV. Here, we further examined the anti-HIV effect of IFN-λs in macrophages. We found that IFN-λs synergistically enhanced anti-HIV activity of antiretrovirals [azidothymidine (AZT), efavirenz, indinavir, and enfuvirtide] in infected macrophages. Importantly, IFN-λs could suppress HIV infection of macrophages with the drug-resistant strains, including AZT-resistant virus (A012) and reverse transcriptase inhibitor-resistant virus (TC49). Mechanistically, IFN-λs were able to induce the expression of several important anti-HIV cellular factors, including myxovirus resistance 2 (Mx2), a newly identified HIV post-entry inhibitor and tetherin, a restriction factor that blocks HIV release from infected cells. These observations provide additional evidence to support the potential use of IFN-λs as therapeutics agents for the treatment of HIV infection. PMID:28321215

  6. Common drugs inhibit human organic cation transporter 1 (OCT1)-mediated neurotransmitter uptake.

    PubMed

    Boxberger, Kelli H; Hagenbuch, Bruno; Lampe, Jed N

    2014-06-01

    The human organic cation transporter 1 (OCT1) is a polyspecific transporter involved in the uptake of positively charged and neutral small molecules in the liver. To date, few endogenous compounds have been identified as OCT1 substrates; more importantly, the effect of drugs on endogenous substrate transport has not been examined. In this study, we established monoamine neurotransmitters as substrates for OCT1, specifically characterizing serotonin transport in human embryonic kidney 293 cells. Kinetic analysis yielded a Km of 197 micomolar and a Vmax of 561 pmol/mg protein/minute for serotonin. Furthermore, we demonstrated that serotonin uptake was inhibited by diphenhydramine, fluoxetine, imatinib, and verapamil, with IC50 values in the low micromolar range. These results were recapitulated in primary human hepatocytes, suggesting that OCT1 plays a significant role in hepatic elimination of serotonin and that xenobiotics may alter the elimination of endogenous compounds as a result of interactions at the transporter level.

  7. Inhibition of human LDL oxidation by the neuroprotective drug l-deprenyl.

    PubMed

    Thomas, Tom; Bhavnani, Bhagu R; Thomas, Prem

    2002-03-01

    L-deprenyl (Selegiline) used in the treatment of Parkinson's and Alzheimer's disease also enhances longevity. Oxidized low density lipoprotein promotes atherosclerosis and is toxic to both vascular and neural tissue. The reported association between vascular dysfunction and neurodegenerative diseases prompted us to investigate the effect of l-deprenyl, a MAO-B inhibitor, on low density lipoprotein (LDL) oxidation. LDL was isolated from freshly collected blood and the kinetics of copper induced oxidation of LDL was monitored continuously by spectrophotometry. Oral administration (10 mg) or in vitro (2.8 to 84 microM) addition of l-deprenyl inhibited oxidation of LDL isolated from healthy men and post-menopausal women. This is the first report demonstrating that the antioxidant action of l-deprenyl may be antiatherogenic and cardioprotective. Such an action could contribute to reported extension of life span associated with long-term administration of the drug. In conjunction with inhibition of LDL oxidation, l-deprenyl is unique in that it demonstrates protective effects on both vascular and neuronal tissue. Prophylactic use of low doses of l-deprenyl may accord protection against vascular and neurodegenerative diseases associated with aging.

  8. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol

    SciTech Connect

    Kadam, Rameshwar U.; Wilson, Ian A.

    2016-12-21

    The broad-spectrum antiviral drug Arbidol shows efficacy against influenza viruses by targeting the hemagglutinin (HA) fusion machinery. However, the structural basis of the mechanism underlying fusion inhibition by Arbidol has remained obscure, thereby hindering its further development as a specific and optimized influenza therapeutic. We determined crystal structures of Arbidol in complex with influenza virus HA from pandemic 1968 H3N2 and recent 2013 H7N9 viruses. Arbidol binds in a hydrophobic cavity in the HA trimer stem at the interface between two protomers. This cavity is distal to the conserved epitope targeted by broadly neutralizing stem antibodies and is ~16 Å from the fusion peptide. Arbidol primarily makes hydrophobic interactions with the binding site but also induces some conformational rearrangements to form a network of inter- and intraprotomer salt bridges. By functioning as molecular glue, Arbidol stabilizes the prefusion conformation of HA that inhibits the large conformational rearrangements associated with membrane fusion in the low pH of the endosome. This unique binding mode compared with the small-molecule inhibitors of other class I fusion proteins enhances our understanding of how small molecules can function as fusion inhibitors and guides the development of broad-spectrum therapeutics against influenza virus.

  9. Anti-inflammatory drug (BW755C) inhibits airway hyperresponsiveness induced by ozone in dogs

    SciTech Connect

    Fabbri, L.M.; Aizawa, H.; O'Byrne, P.M.; Bethel, R.A.; Walters, E.H.; Holtzman, M.J.; Nadel, J.A.

    1985-08-01

    To follow up a previous observation that airway hyperresponsiveness induced by ozone is linked to airway inflammation, the authors investigated the effect of BW755C, an anti-inflammatory drug, on ozone-induced hyperresponsiveness in dogs. Airway responsiveness was assessed with dose-response curves of acetylcholine aerosol versus pulmonary resistance in two sets of experiments. In one set (placebo treatment), five dogs were given only saline solution treatment and were studied before treatment or ozone exposure and then after treatment both before and after ozone (3.0 ppm, 2 hours); in another set (BW755C treatment), the same dogs were studied before BW755C treatment or ozone and then after treatment (10 mg/kg intravenously) both before and after ozone. When the dogs were given no BW755C treatment, ozone induced a marked increase in airway responsiveness to acetylcholine. When the dogs were given BW755C, responsiveness was no different during treatment than before treatment but, more importantly, responsiveness did not increase significantly after ozone. The authors conclude that BW755C markedly inhibits ozone-induced airway hyperresponsiveness in dogs, probably by inhibiting the formation of oxygenation products of arachidonic acid.

  10. Sorafenib overcomes irinotecan resistance in colorectal cancer by inhibiting the ABCG2 drug-efflux pump.

    PubMed

    Mazard, Thibault; Causse, Annick; Simony, Joelle; Leconet, Wilhem; Vezzio-Vie, Nadia; Torro, Adeline; Jarlier, Marta; Evrard, Alexandre; Del Rio, Maguy; Assenat, Eric; Martineau, Pierre; Ychou, Marc; Robert, Bruno; Gongora, Celine

    2013-10-01

    Despite recent advances in the treatment of colorectal cancer (CRC), tumor resistance is a frequent cause of chemotherapy failure. Therefore, new treatment options are needed to improve survival of patients with irinotecan-refractory CRCs, particularly those bearing KRAS mutations that preclude the use of anti-EGFR therapies. In this study, we investigated whether sorafenib could reverse irinotecan resistance, thereby enhancing the therapeutic efficacy of routinely used irinotecan-based chemotherapy. We used both in vitro (the HCT116, SW48, SW620, and HT29 colon adenocarcinoma cell lines and four SN-38-resistant HCT-116 and SW48 clones) and in vivo models (nude mice xenografted with SN-38-resistant HCT116 cells) to test the efficacy of sorafenib alone or in combination with irinotecan or its active metabolite, SN-38. We have shown that sorafenib improved the antitumoral activity of irinotecan in vitro, in both parental and SN-38-resistant colon adenocarcinoma cell lines independently of their KRAS status, as well as in vivo, in xenografted mice. By inhibiting the drug-efflux pump ABCG2, sorafenib favors irinotecan intracellular accumulation and enhances its toxicity. Moreover, we found that sorafenib improved the efficacy of irinotecan by inhibiting the irinotecan-mediated p38 and ERK activation. In conclusion, our results show that sorafenib can suppress resistance to irinotecan and suggest that sorafenib could be used to overcome resistance to irinotecan-based chemotherapies in CRC, particularly in KRAS-mutated tumors.

  11. In vitro cytochrome P450 inhibition potential of methylenedioxy-derived designer drugs studied with a two-cocktail approach.

    PubMed

    Dinger, Julia; Meyer, Markus R; Maurer, Hans H

    2016-02-01

    In vitro cytochrome P450 (CYP) inhibition assays are common approaches for testing the inhibition potential of drugs for predicting potential interactions. In contrast to marketed medicaments, drugs of abuse, particularly the so-called novel psychoactive substances, were not tested before distribution and consumption. Therefore, the inhibition potential of methylenedioxy-derived designer drugs (MDD) of different drug classes such as aminoindanes, amphetamines, benzofurans, cathinones, piperazines, pyrrolidinophenones, and tryptamines should be elucidated. The FDA-preferred test substrates, split in two cocktails, were incubated with pooled human liver microsomes and analysed after protein precipitation using LC-high-resolution-MS/MS. IC50 values were determined of MDD showing more than 50 % inhibition in the prescreening. Values were calculated by plotting the relative metabolite concentration formed over the logarithm of the inhibitor concentration. All MDD showed inhibition against CYP2D6 activity and most of them in the range of the clinically relevant CYP2D6 inhibitors quinidine and fluoxetine. In addition, the beta-keto compounds showed inhibition of the activity of CYP2B6, 5,6-MD-DALT of CYP1A2 and CYP3A, and MDAI of CYP2A6, all in the range of clinically relevant inhibitors. In summary, all MDD showed inhibition of the activity of CYP2D6, six of CYP1A2, three of CYP2A6, 13 of CYP2B6, two of CYP2C9, six of CYP2C19, one of CYP2E1, and six of CYP3A. These results showed that the CYP inhibition by MDD might be clinically relevant, but further studies are needed for final conclusions.

  12. Classification of Drugs Based on Properties of Sodium Channel Inhibition: A Comparative Automated Patch-Clamp Study

    PubMed Central

    Lenkey, Nora; Karoly, Robert; Lukacs, Peter; Vizi, E. Sylvester; Sunesen, Morten; Fodor, Laszlo; Mike, Arpad

    2010-01-01

    Background There is only one established drug binding site on sodium channels. However, drug binding of sodium channels shows extreme promiscuity: ∼25% of investigated drugs have been found to potently inhibit sodium channels. The structural diversity of these molecules suggests that they may not share the binding site, and/or the mode of action. Our goal was to attempt classification of sodium channel inhibitors by measuring multiple properties of inhibition in electrophysiology experiments. We also aimed to investigate if different properties of inhibition correlate with specific chemical properties of the compounds. Methodology/Principal Findings A comparative electrophysiological study of 35 compounds, including classic sodium channel inhibitors (anticonvulsants, antiarrhythmics and local anesthetics), as well as antidepressants, antipsychotics and neuroprotective agents, was carried out using rNav1.2 expressing HEK-293 cells and the QPatch automatic patch-clamp instrument. In the multi-dimensional space defined by the eight properties of inhibition (resting and inactivated affinity, potency, reversibility, time constants of onset and offset, use-dependence and state-dependence), at least three distinct types of inhibition could be identified; these probably reflect distinct modes of action. The compounds were clustered similarly in the multi-dimensional space defined by relevant chemical properties, including measures of lipophilicity, aromaticity, molecular size, polarity and electric charge. Drugs of the same therapeutic indication typically belonged to the same type. We identified chemical properties, which were important in determining specific properties of inhibition. State-dependence correlated with lipophilicity, the ratio of the neutral form of molecules, and aromaticity: We noticed that the highly state dependent inhibitors had at least two aromatic rings, logP>4.0, and pKa<8.0. Conclusions/Significance The correlations of inhibition properties

  13. Inhibition of brain [(3)H]cimetidine binding by improgan-like antinociceptive drugs.

    PubMed

    Stadel, Rebecca; Carpenter, Amanda B; Nalwalk, Julia W; de Esch, Iwan J P; Janssen, Elwin; Hough, Lindsay B

    2010-04-25

    [(3)H]cimetidine, a radiolabeled histamine H(2) receptor antagonist, binds with high affinity to an unknown hemoprotein in the brain which is not the histamine H(2) receptor. Improgan, a close chemical congener of cimetidine, is a highly effective pain-relieving drug following CNS administration, yet its mechanism of action remains unknown. To test the hypothesis that the [(3)H]cimetidine-binding site is the improgan antinociceptive target, improgan, cimetidine, and 8 other chemical congeners were studied as potential inhibitors of [(3)H]cimetidine binding in membrane fractions from the rat brain. All compounds produced a concentration-dependent inhibition of [(3)H]cimetidine binding over a 500-fold range of potencies (K(i) values were 14.5 to >8000nM). However, antinociceptive potencies in rats did not significantly correlate with [(3)H]cimetidine-binding affinities (r=0.018, p=0.97, n=10). These results suggest that the [(3)H]cimetidine-binding site is not the analgesic target for improgan-like drugs.

  14. Co-treatment with the anti-malarial drugs mefloquine and primaquine highly sensitizes drug-resistant cancer cells by increasing P-gp inhibition.

    PubMed

    Kim, Ju-Hwa; Choi, Ae-Ran; Kim, Yong Kee; Yoon, Sungpil

    2013-11-22

    The purpose of this study was to identify conditions that will increase the sensitivity of resistant cancer cells to anti-mitotic drugs. Currently, atovaquine (ATO), chloroquine (CHL), primaquine (PRI), mefloquine (MEF), artesunate (ART), and doxycycline (DOY) are the most commonly used anti-malarial drugs. Herein, we tested whether anti-malarial drugs can sensitize drug-resistant KBV20C cancer cells. None of the six tested anti-malarial drugs was found to better sensitize the drug-resistant cells compared to the sensitive KB cells. With an exception of DOY, all other anti-malarial drugs tested could sensitize both KB and KBV20C cells to a similar extent, suggesting that anti-malarial drugs could be used for sensitive as well as resistant cancer cells. Furthermore, we examined the effects of anti-malarial drugs in combination with an antimitotic drug, vinblastine (VIN) on the sensitisation of resistant KBV20C cells. Using viability assay, microscopic observation, assessment of cleaved PARP, and Hoechst staining, we identified that two anti-malarial drugs, PRI and MEF, highly sensitized KBV20C-resistant cells to VIN treatment. Moreover, PRI- or MEF-induced sensitisation was not observed in VIN-treated sensitive KB parent cells, suggesting that the observed effect is specific to resistant cancer cells. We demonstrated that the PRI and MEF sensitisation mechanism mainly depends on the inhibition of p-glycoprotein (P-gp). Our findings may contribute to the development of anti-malarial drug-based combination therapies for patients resistant to anti-mitotic drugs.

  15. Metabolic Drug-Drug Interaction Potential of Macrolactin A and 7-O-Succinyl Macrolactin A Assessed by Evaluating Cytochrome P450 Inhibition and Induction and UDP-Glucuronosyltransferase Inhibition In Vitro

    PubMed Central

    Bae, Soo Hyeon; Kwon, Min Jo; Park, Jung Bae; Kim, Doyun; Kim, Dong-Hee; Kang, Jae-Seon; Kim, Chun-Gyu; Oh, Euichaul

    2014-01-01

    Macrolactin A (MA) and 7-O-succinyl macrolactin A (SMA), polyene macrolides containing a 24-membered lactone ring, show antibiotic effects superior to those of teicoplanin against vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. MA and SMA are currently being evaluated as antitumor agents in preclinical studies in Korea. We evaluated the potential of MA and SMA for the inhibition or induction of human liver cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGTs) in vitro to assess their safety as new molecular entities. We demonstrated that MA and SMA are potent competitive inhibitors of CYP2C9, with Ki values of 4.06 μM and 10.6 μM, respectively. MA and SMA also weakly inhibited UGT1A1 activity, with Ki values of 40.1 μM and 65.3 μM, respectively. However, these macrolactins showed no time-dependent inactivation of the nine CYPs studied. In addition, MA and SMA did not induce CYP1A2, CYP2B6, or CYP3A4/5. On the basis of an in vitro-in vivo extrapolation, our data strongly suggested that MA and SMA are unlikely to cause clinically significant drug-drug interactions mediated via inhibition or induction of most of the CYPs involved in drug metabolism in vivo, except for the inhibition of CYP2C9 by MA. Similarly, MA and SMA are unlikely to inhibit the activity of UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 enzymes in vivo. Although further investigations will be required to clarify the in vivo interactions of MA with CYP2C9-targeted drugs, our findings offer a clearer understanding and prediction of drug-drug interactions for the safe use of MA and SMA in clinical practice. PMID:24890600

  16. Metabolic drug-drug interaction potential of macrolactin A and 7-O-succinyl macrolactin A assessed by evaluating cytochrome P450 inhibition and induction and UDP-glucuronosyltransferase inhibition in vitro.

    PubMed

    Bae, Soo Hyeon; Kwon, Min Jo; Park, Jung Bae; Kim, Doyun; Kim, Dong-Hee; Kang, Jae-Seon; Kim, Chun-Gyu; Oh, Euichaul; Bae, Soo Kyung

    2014-09-01

    Macrolactin A (MA) and 7-O-succinyl macrolactin A (SMA), polyene macrolides containing a 24-membered lactone ring, show antibiotic effects superior to those of teicoplanin against vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. MA and SMA are currently being evaluated as antitumor agents in preclinical studies in Korea. We evaluated the potential of MA and SMA for the inhibition or induction of human liver cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGTs) in vitro to assess their safety as new molecular entities. We demonstrated that MA and SMA are potent competitive inhibitors of CYP2C9, with Ki values of 4.06 μM and 10.6 μM, respectively. MA and SMA also weakly inhibited UGT1A1 activity, with Ki values of 40.1 μM and 65.3 μM, respectively. However, these macrolactins showed no time-dependent inactivation of the nine CYPs studied. In addition, MA and SMA did not induce CYP1A2, CYP2B6, or CYP3A4/5. On the basis of an in vitro-in vivo extrapolation, our data strongly suggested that MA and SMA are unlikely to cause clinically significant drug-drug interactions mediated via inhibition or induction of most of the CYPs involved in drug metabolism in vivo, except for the inhibition of CYP2C9 by MA. Similarly, MA and SMA are unlikely to inhibit the activity of UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 enzymes in vivo. Although further investigations will be required to clarify the in vivo interactions of MA with CYP2C9-targeted drugs, our findings offer a clearer understanding and prediction of drug-drug interactions for the safe use of MA and SMA in clinical practice.

  17. Melanin Protects Paracoccidioides brasiliensis from the Effects of Antimicrobial Photodynamic Inhibition and Antifungal Drugs

    PubMed Central

    Baltazar, Ludmila Matos; Werneck, Silvia Maria Cordeiro; Soares, Betânia Maria; Ferreira, Marcus Vinicius L.; Souza, Danielle G.; Pinotti, Marcos; Santos, Daniel Assis

    2015-01-01

    Paracoccidioidomycosis (PCM) is a public health concern in Latin America and South America that when not correctly treated can lead to patient death. In this study, the influence of melanin produced by Paracoccidioides spp. on the effects of treatment with antimicrobial photodynamic inhibition (aPI) and antifungal drugs was evaluated. aPI was performed using toluidine blue (TBO) as a photosensitizer and a 630-nm light-emitting diode (LED) light. The antifungals tested were itraconazole and amphotericin B. We evaluated the effects of each approach, aPI or antifungals, against nonmelanized and melanized yeast cells by performing susceptibility tests and by quantifying oxidative and nitrosative bursts during the experiments. aPI reduced nonmelanized cells by 3.0 log units and melanized cells by 1.3 log units. The results showed that melanization protects the fungal cell, probably by acting as a scavenger of nitric oxide and reactive oxygen species, but not of peroxynitrite. Melanin also increased the MICs of itraconazole and amphotericin B, and the drugs were fungicidal for nonmelanized and fungistatic for melanized yeast cells. Our study shows that melanin production by Paracoccidioides yeast cells serves a protective function during aPI and treatment with itraconazole and amphotericin B. The results suggest that melanin binds to the drugs, changing their antifungal activities, and also acts as a scavenger of reactive oxygen species and nitric oxide, but not of peroxynitrite, indicating that peroxynitrite is the main radical that is responsible for fungal death after aPI. PMID:25896704

  18. Antimalarial Drug Artemether Inhibits Neuroinflammation in BV2 Microglia Through Nrf2-Dependent Mechanisms.

    PubMed

    Okorji, Uchechukwu P; Velagapudi, Ravikanth; El-Bakoush, Abdelmeneim; Fiebich, Bernd L; Olajide, Olumayokun A

    2016-11-01

    Artemether, a lipid-soluble derivative of artemisinin has been reported to possess anti-inflammatory properties. In this study, we have investigated the molecular mechanisms involved in the inhibition of neuroinflammation by the drug. The effects of artemether on neuroinflammation-mediated HT22 neuronal toxicity were also investigated in a BV2 microglia/HT22 neuron co-culture. To investigate effects on neuroinflammation, we used LPS-stimulated BV2 microglia treated with artemether (5-40 μM) for 24 h. ELISAs and western blotting were used to detect pro-inflammatory cytokines, nitric oxide, prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1). Beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) activity and Aβ levels were measured with ELISA kits. Protein levels of targets in nuclear factor kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signalling, as well as heme oxygenase-1 (HO-1), NQO1 and nuclear factor-erythroid 2-related factor 2 (Nrf2) were also measured with western blot. NF-κB binding to the DNA was investigated using electrophoretic mobility shift assays (EMSA). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), DNA fragmentation and reactive oxygen species (ROS) assays in BV2-HT22 neuronal co-culture were used to evaluate the effects of artemether on neuroinflammation-induced neuronal death. The role of Nrf2 in the anti-inflammatory activity of artemether was investigated in BV2 cells transfected with Nrf2 siRNA. Artemether significantly suppressed pro-inflammatory mediators (NO/iNOS, PGE2/COX-2/mPGES-1, tumour necrosis factor-alpha (TNFα) and interleukin (IL)-6); Aβ and BACE-1 in BV2 cells following LPS stimulation. These effects of artemether were shown to be mediated through inhibition of NF-κB and p38 MAPK signalling. Artemether produced increased levels of HO-1, NQO1 and GSH in BV2 microglia. The drug activated

  19. Increase in E-selectin expression in umbilical vein endothelial cells by anticancer drugs and inhibition by cimetidine.

    PubMed

    Kawase, Jin; Ozawa, Soji; Kobayashi, Kenichi; Imaeda, Yoshihiro; Umemoto, Shunji; Matsumoto, Sumio; Ueda, Masakazu

    2009-12-01

    E-selectin is expressed on the surfaces of stimulated vascular endothelial cells and is sometimes involved in cancer cell metastasis. The H2-receptor antagonist cimetidine inhibits the increase in E-selectin expression on vascular endothelial cells that is induced by interleukin-1beta (IL-1beta) and cimetidine. It also inhibits the adhesion of sialyl-Lewis-antigen-positive cancer cells to vascular endothelial cells, ultimately inhibiting hematogenous metastasis. Anticancer drugs are essential to cancer therapy, but whether they can alter the expression of E-selectin in vascular endothelial cells remains unclear. Whether cimetidine inhibits the expression of E-selectin in the same manner in the presence or absence of anticancer drugs also remains unknown. Human umbilical vein endothelial cells were cultured with 5-fluorouracil (5-FU), doxorubicin (DXR), cisplatin (CDDP), or IL-1beta and with or without cimetidine. The expression of E-selectin at the mRNA and protein levels was then determined using quantitative reverse transcription-polymerase chain reaction and immunohistochemical staining, respectively. The E-selectin mRNA level increased in cells exposed to 5-FU, DXR, or CDDP, but the addition of cimetidine had no effect on the E-selectin mRNA level. The expression of E-selectin protein was also significantly higher after the addition of 5-FU, DXR, or CDDP, compared with that of a negative control. However, when cimetidine was added prior to the addition of 5-FU, DXR, or CDDP, the expression of E-selectin was significantly suppressed. Thus, cimetidine significantly inhibited the expression of E-selectin at the protein level without affecting its expression at the mRNA level in cells treated with anticancer drugs. In conclusion, anticancer drugs increased the expression of E-selectin and this increase was inhibited by cimetidine. These findings suggest that the administration of cimetidine during treatment with anticancer drugs might be useful for preventing

  20. Time-dependent drug-drug interaction alerts in care provider order entry: software may inhibit medication error reductions.

    PubMed

    van der Sijs, Heleen; Lammers, Laureen; van den Tweel, Annemieke; Aarts, Jos; Berg, Marc; Vulto, Arnold; van Gelder, Teun

    2009-01-01

    Time-dependent drug-drug interactions (TDDIs) are drug combinations that result in a decreased drug effect due to coadministration of a second drug. Such interactions can be prevented by separately administering the drugs. This study attempted to reduce drug administration errors due to overridden TDDIs in a care provider order entry (CPOE) system. In four periods divided over two studies, logged TDDIs were investigated by reviewing the time intervals prescribed in the CPOE and recorded on the patient chart. The first study showed significant drug administration error reduction from 56.4 to 36.2% (p<0.05), whereas the second study was not successful (46.7 and 45.2%; p>0.05). Despite interventions, drug administration errors still occurred in more than one third of cases and prescribing errors in 79-87%. Probably the low alert specificity, the unclear alert information content, and the inability of the software to support safe and efficient TDDI alert handling all diminished correct prescribing, and consequently, insufficiently reduced drug administration errors.

  1. Targeting BMK1 Impairs the Drug Resistance to Combined Inhibition of BRAF and MEK1/2 in Melanoma

    PubMed Central

    Song, Chengli; Wang, Lina; Xu, Qiang; Wang, Kai; Xie, Dan; Yu, Zhe; Jiang, Kui; Liao, Lujian; Yates, John R.; Lee, Jiing-Dwan; Yang, Qingkai

    2017-01-01

    Combined inhibition of BRAF and MEK1/2 (CIBM) improves therapeutic efficacy of BRAF-mutant melanoma. However, drug resistance to CIBM is inevitable and the drug resistance mechanisms still remain to be elucidated. Here, we show that BMK1 pathway contributes to the drug resistance to CIBM. Considering that ERK1/2 pathway regulates cellular processes by phosphorylating, we first performed a SILAC phosphoproteomic profiling of CIBM. Phosphorylation of 239 proteins was identified to be downregulated, while phosphorylation of 47 proteins was upregulated. Following siRNA screening of 47 upregulated proteins indicated that the knockdown of BMK1 showed the most significant ability to inhibit the proliferation of CIBM resistant cells. It was found that phosphorylation of BMK1 was enhanced in resistant cells, which suggested an association of BMK1 with drug resistance. Further study indicated that phospho-activation of BMK1 by MEK5D enhanced the resistance to CIBM. Conversely, inhibition of BMK1 by shRNAi or BMK1 inhibitor (XMD8-92) impaired not only the acquirement of resistance to CIBM, but also the proliferation of CIBM resistant cells. Further kinome-scale siRNA screening demonstrated that SRC\\MEK5 cascade promotes the phospho-activation of BMK1 in response to CIBM. Our study not only provides a global phosphoproteomic view of CIBM in melanoma, but also demonstrates that inhibition of BMK1 has therapeutic potential for the treatment of melanoma. PMID:28387310

  2. STAT3 Inhibition by Microtubule-Targeted Drugs: Dual Molecular Effects of Chemotherapeutic Agents

    PubMed Central

    Walker, Sarah R.; Chaudhury, Mousumi; Frank, David A.

    2011-01-01

    To improve the effectiveness of anti-cancer therapies, it is necessary to identify molecular targets that are essential to a tumor cell but dispensable in a normal cell. Increasing evidence indicates that the transcription factor STAT3, which regulates the expression of genes controlling proliferation, survival, and self-renewal, constitutes such a target. Recently it has been found that STAT3 can associate with the cytoskeleton. Since many of the tumors in which STAT3 is activated, such as breast cancer and ovarian cancer, are responsive to drugs that target microtubules, we examined the effect of these compounds on STAT3. We found that microtubule stabilizers, such as paclitaxel, or microtubule inhibitors, such as vinorelbine, decrease the activating tyrosine phosphorylation of STAT3 in tumor cells and inhibit the expression of STAT3 target genes. Paclitaxel decreases the association between STAT3 and microtubules, and appears to decrease STAT3 phosphorylation through induction of a negative feedback regulator. The cytotoxic activity of paclitaxel in breast cancer cell lines correlates with its ability to decrease STAT3 phosphorylation. However, consistent with the necessity for expression of a negative regulator, treatment of resistant MDA-MB-231 cells with the DNA demethylating agent 5-azacytidine restores the ability of paclitaxel to block STAT3-dependent gene expression. Finally, the combination of paclitaxel and agents that directly target STAT3 has beneficial effects in killing STAT3-dependent cell lines. Thus, microtubule-targeted agents may exert some of their effects by inhibiting STAT3, and understanding this interaction may be important for optimizing rational targeted cancer therapies. PMID:21949561

  3. Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine.

    PubMed

    Vucicevic, Ljubica; Misirkic-Marjanovic, Maja; Paunovic, Verica; Kravic-Stevovic, Tamara; Martinovic, Tamara; Ciric, Darko; Maric, Nadja; Petricevic, Sasa; Harhaji-Trajkovic, Ljubica; Bumbasirevic, Vladimir; Trajkovic, Vladimir

    2014-01-01

    We investigated the role of autophagy, a controlled cellular self-digestion process, in regulating survival of neurons exposed to atypical antipsychotic olanzapine. Olanzapine induced autophagy in human SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression of autophagy-related (ATG) genes ATG4B, ATG5, and ATG7. The production of reactive oxygen species, but not modulation of the main autophagy repressor MTOR or its upstream regulators AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy. Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage, and the autophagic clearance of dysfunctional mitochondria was confirmed by electron microscopy, colocalization of autophagosome-associated MAP1LC3B (LC3B henceforth) and mitochondria, and mitochondrial association with the autophagic cargo receptor SQSTM1/p62. While olanzapine-triggered mitochondrial damage was not overtly toxic to SH-SY5Y cells, their death was readily initiated upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown of BECN1 and LC3B, or biological free radical nitric oxide. The treatment of mice with olanzapine for 14 d increased the brain levels of autophagosome-associated LC3B-II and mRNA encoding Atg4b, Atg5, Atg7, Atg12, Gabarap, and Becn1. The administration of the autophagy inhibitor chloroquine significantly increased the expression of proapoptotic genes (Trp53, Bax, Bak1, Pmaip1, Bcl2l11, Cdkn1a, and Cdkn1b) and DNA fragmentation in the frontal brain region of olanzapine-exposed animals. These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action of the drug.

  4. Inhibition of monoacylglycerol lipase attenuates nonsteroidal anti-inflammatory drug-induced gastric hemorrhages in mice.

    PubMed

    Kinsey, Steven G; Nomura, Daniel K; O'Neal, Scott T; Long, Jonathan Z; Mahadevan, Anu; Cravatt, Benjamin F; Grider, John R; Lichtman, Aron H

    2011-09-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used analgesics, but can cause gastric and esophageal hemorrhages, erosion, and ulceration. The endogenous cannabinoid (endocannabinoid; eCB) system possesses several potential targets to reduce gastric inflammatory states, including cannabinoid receptor type 1 (CB(1)), cannabinoid receptor type 2 (CB(2)), and enzymes that regulate the eCB ligands 2-arachidonoylglycerol (2-AG) and N-arachidonoyl ethanolamine (anandamide; AEA). In the presented study, we tested whether 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184), a selective inhibitor of the primary catabolic enzyme of 2-AG, monoacylglycerol lipase (MAGL), would protect against NSAID-induced gastric damage. Food-deprived mice administered the nonselective cyclooxygenase inhibitor diclofenac sodium displayed gastric hemorrhages and increases in proinflammatory cytokines. JZL184, the proton pump inhibitor omeprazole (positive control), or the primary constituent of marijuana, Δ(9)-tetrahydrocannabinol (THC), significantly prevented diclofenac-induced gastric hemorrhages. JZL184 also increased stomach levels of 2-AG, but had no effect on AEA, arachidonic acid, or the prostaglandins E(2) and D(2). MAGL inhibition fully blocked diclofenac-induced increases in gastric levels of proinflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor α, and granulocyte colony-stimulating factor, as well as IL-10. Pharmacological inhibition or genetic deletion of CB(1) or CB(2) revealed that the gastroprotective effects of JZL184 and THC were mediated via CB(1). The antihemorrhagic effects of JZL184 persisted with repeated administration, indicating a lack of tolerance. These data indicate that increasing 2-AG protects against gastric damage induced by NSAIDs, and its primary catabolic enzyme MAGL offers a promising target for the development of analgesic therapeutics possessing gastroprotective properties.

  5. Inhibition of bacterial carbonic anhydrases and zinc proteases: from orphan targets to innovative new antibiotic drugs.

    PubMed

    Supuran, C T

    2012-01-01

    Zinc-containing enzymes, such as carbonic anhydrases (CAs) and metalloproteases (MPs) play critical functions in bacteria, being involved in various steps of their life cycle, which are important for survival, colonization, acquisition of nutrients for growth and proliferation, facilitation of dissemination, invasion and pathogenicity. The development of resistance to many classes of clinically used antibiotics emphasizes the need of new antibacterial drug targets to be explored. There is a wealth of data regarding bacterial CAs and zinc MPs present in many pathogenic species, such as Neisseria spp., Helycobacter pylori Escherichia coli, Mycobacterium tuberculosis, Brucella spp., Streptococcus pneumoniae, Salmonella enterica, Haemophilus influenzae, Listeria spp, Vibrio spp., Pseudomonas aeruginosa, Legionella pneumophila, Streptomyces spp., Clostridium spp., Enterococcus spp., etc. Some of these enzymes have been cloned, purified and characterized by crystallographic techniques. However, for the moment, few potent and specific inhibitors for bacterial MPs have been reported except for Clostridium histolyticum collagenase, botulinum and tetanus neurotoxin and anthrax lethal factor, which will be reviewed in this article. Bacteria encode α-,β-, and/or γ-CA families, but up to now only the first two classes have been investigated in some detail in different species. The α-CAs from Neisseria spp. and H. pylori as well as the β-class enzymes from E. coli, H. pylori, M. tuberculosis, Brucella spp., S. pneumoniae, S. enterica and H. influenzae have been cloned and characterized. The catalytic/inhibition mechanisms of these CAs are well understood as X-ray crystal structures are available for some of them, but no adducts of these enzymes with inhibitors have been characterized so far. In vitro and in vivo studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates have been reported. Only for Neisseria spp., H. pylori, B. suis and S

  6. Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites

    NASA Astrophysics Data System (ADS)

    Gong, Changyang; Wang, Cheng; Wang, Yujun; Wu, Qinjie; Zhang, Doudou; Luo, Feng; Qian, Zhiyong

    2012-05-01

    In this work, we aim to develop a dual drug delivery system (DDDS) of self-assembled micelles in thermosensitive hydrogel composite to deliver hydrophilic and hydrophobic drugs simultaneously for colorectal peritoneal carcinomatosis (CRPC) therapy. In our previous studies, we found that poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCEC) copolymers with different molecular weight and PEG/PCL ratio could be administered to form micelles or thermosensitive hydrogels, respectively. Therefore, the DDDS was constructed from paclitaxel (PTX) encapsulated PCEC micelles (PTX-micelles) and a fluorouracil (Fu) loaded thermosensitive PCEC hydrogel (Fu-hydrogel). PTX-micelles were prepared by self-assembly of biodegradable PCEC copolymer (Mn = 3700) and PTX without using any surfactants or excipients. Meanwhile, biodegradable and injectable thermosensitive Fu-hydrogel (Mn = 3000) with a lower sol-gel transition temperature at around physiological temperature was also prepared. The obtained PTX-micelles in thermosensitive Fu-hydrogel (PTX-micelles-Fu-hydrogel) composite is a free-flowing sol at ambient temperature and rapidly turned into a non-flowing gel at physiological temperature. In addition, the results of cytotoxicity, hemolytic study, and acute toxicity evaluation suggested that the PTX-micelles-Fu-hydrogel was non-toxic and biocompatible. In vitro release behaviors of PTX-micelles-Fu-hydrogel indicated that both PTX and Fu have a sustained release behavior. Furthermore, intraperitoneal application of PTX-micelles-Fu-hydrogel effectively inhibited growth and metastasis of CT26 peritoneal carcinomatosis in vivo (p < 0.001), and induced a stronger antitumor effect than that of Taxol® plus Fu (p < 0.001). The pharmacokinetic study indicated that PTX-micelles-Fu-hydrogel significantly increased PTX and Fu concentration and residence time in peritoneal fluids compared with Taxol® plus Fu group. Thus, the results suggested the micelles-hydrogel DDDS may

  7. Sigma 1 receptor agonists act as neuroprotective drugs through inhibition of inducible nitric oxide synthase.

    PubMed

    Vagnerova, Kamila; Hurn, Patricia D; Bhardwaj, Anish; Kirsch, Jeffrey R

    2006-08-01

    Postischemic administration of the sigma-1 agonists reduces ischemic brain injury; however, the mechanism is unclear. We hypothesized that the sigma-1 agonist (+)isoform of pentazocine (P(+)) reduces damage in part by ameliorating cell death mediated via inducible nitric oxide synthase (iNOS) and that the (-)isoform (P(-)) lacks this effect. We compared treatment with P(+) with or without the iNOS inhibitor aminoguanidine (AG) and also the effects of P(+) in iNOS deficient (iNOSKO) mice. A possible mechanism of neuroprotection is inhibition of iNOS expression. Male C57/Bl6 mice were subjected to transient middle cerebral artery occlusion (90 min) and drugs were administered with reperfusion: 1) P(+) with AG (P+/AG), 2) P(+), 3) P(-), 4) AG, or 5) placebo. iNOSKOs were treated with either P(+) or placebo. Infarction (triphenyltetrazolium chloride histology, 72 h) was reduced by P(+) treatment in striatum by 44% and in neocortex by 23% versus placebo (P < 0.05), a reduction comparable to AG effect. P(-) did not attenuate brain injury. There was no difference in P(+)/AG treatment compared with showed the same level of neuroprotection as P(+) alone. P(+) also did not provide further neuroprotection for iNOSKOs. We conclude that postischemic administration of P(+) reduces infarct volume in mice. Because AG provides no additional benefit to P(+) treatment and iNOSKOs do not benefit from P(+), we speculate that P(+) acts by suppressing cell death resulting from iNOS toxicity.

  8. Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin.

    PubMed

    Chan, Pan F; Srikannathasan, Velupillai; Huang, Jianzhong; Cui, Haifeng; Fosberry, Andrew P; Gu, Minghua; Hann, Michael M; Hibbs, Martin; Homes, Paul; Ingraham, Karen; Pizzollo, Jason; Shen, Carol; Shillings, Anthony J; Spitzfaden, Claus E; Tanner, Robert; Theobald, Andrew J; Stavenger, Robert A; Bax, Benjamin D; Gwynn, Michael N

    2015-12-07

    New antibacterials are needed to tackle antibiotic-resistant bacteria. Type IIA topoisomerases (topo2As), the targets of fluoroquinolones, regulate DNA topology by creating transient double-strand DNA breaks. Here we report the first co-crystal structures of the antibacterial QPT-1 and the anticancer drug etoposide with Staphylococcus aureus DNA gyrase, showing binding at the same sites in the cleaved DNA as the fluoroquinolone moxifloxacin. Unlike moxifloxacin, QPT-1 and etoposide interact with conserved GyrB TOPRIM residues rationalizing why QPT-1 can overcome fluoroquinolone resistance. Our data show etoposide's antibacterial activity is due to DNA gyrase inhibition and suggests other anticancer agents act similarly. Analysis of multiple DNA gyrase co-crystal structures, including asymmetric cleavage complexes, led to a 'pair of swing-doors' hypothesis in which the movement of one DNA segment regulates cleavage and religation of the second DNA duplex. This mechanism can explain QPT-1's bacterial specificity. Structure-based strategies for developing topo2A antibacterials are suggested.

  9. Phosphorus-32, a Clinically Available Drug, Inhibits Cancer Growth by Inducing DNA Double-Strand Breakage

    PubMed Central

    Cheng, Yulan; Kiess, Ana P.; Herman, Joseph M.; Pomper, Martin G.; Meltzer, Stephen J.; Abraham, John M.

    2015-01-01

    Radioisotopes that emit electrons (beta particles), such as radioiodine, can effectively kill target cells, including cancer cells. Aqueous 32P[PO4] is a pure beta-emitter that has been used for several decades to treat non-malignant human myeloproliferative diseases. 32P[PO4] was directly compared to a more powerful pure beta-emitter, the clinically important 90Y isotope. In vitro, 32P[PO4] was more effective at killing cells than was the more powerful isotope 90Y (P ≤ 0.001) and also caused substantially more double-stranded DNA breaks than did 90Y. In vivo, a single low-dose intravenous dose of aqueous elemental 32P significantly inhibited tumor growth in the syngeneic murine cancer model (P ≤ 0.001). This effect is exerted by direct incorporation into nascent DNA chains, resulting in double-stranded breakage, a unique mechanism not duplicatable by other, more powerful electron-emitting radioisotopes. 32P[PO4] should be considered for human clinical trials as a potential novel anti-cancer drug. PMID:26030880

  10. Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin

    PubMed Central

    Chan, Pan F.; Srikannathasan, Velupillai; Huang, Jianzhong; Cui, Haifeng; Fosberry, Andrew P.; Gu, Minghua; Hann, Michael M.; Hibbs, Martin; Homes, Paul; Ingraham, Karen; Pizzollo, Jason; Shen, Carol; Shillings, Anthony J.; Spitzfaden, Claus E.; Tanner, Robert; Theobald, Andrew J.; Stavenger, Robert A.; Bax, Benjamin D.; Gwynn, Michael N.

    2015-01-01

    New antibacterials are needed to tackle antibiotic-resistant bacteria. Type IIA topoisomerases (topo2As), the targets of fluoroquinolones, regulate DNA topology by creating transient double-strand DNA breaks. Here we report the first co-crystal structures of the antibacterial QPT-1 and the anticancer drug etoposide with Staphylococcus aureus DNA gyrase, showing binding at the same sites in the cleaved DNA as the fluoroquinolone moxifloxacin. Unlike moxifloxacin, QPT-1 and etoposide interact with conserved GyrB TOPRIM residues rationalizing why QPT-1 can overcome fluoroquinolone resistance. Our data show etoposide's antibacterial activity is due to DNA gyrase inhibition and suggests other anticancer agents act similarly. Analysis of multiple DNA gyrase co-crystal structures, including asymmetric cleavage complexes, led to a ‘pair of swing-doors' hypothesis in which the movement of one DNA segment regulates cleavage and religation of the second DNA duplex. This mechanism can explain QPT-1's bacterial specificity. Structure-based strategies for developing topo2A antibacterials are suggested. PMID:26640131

  11. Covariant mutually unbiased bases

    NASA Astrophysics Data System (ADS)

    Carmeli, Claudio; Schultz, Jussi; Toigo, Alessandro

    2016-06-01

    The connection between maximal sets of mutually unbiased bases (MUBs) in a prime-power dimensional Hilbert space and finite phase-space geometries is well known. In this article, we classify MUBs according to their degree of covariance with respect to the natural symmetries of a finite phase-space, which are the group of its affine symplectic transformations. We prove that there exist maximal sets of MUBs that are covariant with respect to the full group only in odd prime-power dimensional spaces, and in this case, their equivalence class is actually unique. Despite this limitation, we show that in dimension 2r covariance can still be achieved by restricting to proper subgroups of the symplectic group, that constitute the finite analogues of the oscillator group. For these subgroups, we explicitly construct the unitary operators yielding the covariance.

  12. In vitro selective inhibition of human UDP-glucuronosyltransferase (UGT) 1A4 by finasteride, and prediction of in vivo drug-drug interactions.

    PubMed

    Lee, Seung Jun; Park, Jung Bae; Kim, Doyun; Bae, Soo Hyeon; Chin, Young-Won; Oh, Euichaul; Bae, Soo Kyung

    2015-01-22

    In the present study, we evaluated the inhibitory potentials of finasteride for the major human hepatic UDP-glucuronosyltransferases (UGTs) (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7, and UGT2B15) in vitro using LC-MS/MS by specific marker reactions in human liver microsomes (except for UGT2B15) or recombinant supersomes (UGT2B15). Of the seven tested UGTs, finasteride potently, selectively, and competitively inhibited UGT1A4-mediated trifluoperazine-N-glucuronidation in human liver microsomes with an IC₅₀ value of 11.5 ± 1.78 μM and Ki value of 6.03 ± 0.291 μM. This inhibitory potency was similar to that of hecogenin, a well-known inhibitor of UGT1A4. However, finasteride did not seem to inhibit any of the other six UGTs: UGT1A1, UGT1A3, UGT1A6, UGT1A9, UGT2B7, or UGT2B15. Similarly, finasteride markedly inhibited UGT1A4 activity in recombinant human UGT1A4 supersomes, with a Ki value of 6.05 ± 0.410 μM. In addition, finasteride strongly inhibited UGT1A4-catalyzed imipramine-N-β-D-glucuronidation. However, on the basis of an in vitro-in vivo extrapolation, our data strongly suggested that finasteride is unlikely to cause clinically significant drug-drug interactions mediated via inhibition of the hepatic UGT enzymes involved in drug metabolism in vivo.

  13. Inhibition of hydrogen sulfide biosynthesis sensitizes lung adenocarcinoma to chemotherapeutic drugs by inhibiting mitochondrial DNA repair and suppressing cellular bioenergetics

    PubMed Central

    Szczesny, Bartosz; Marcatti, Michela; Zatarain, John R.; Druzhyna, Nadiya; Wiktorowicz, John E.; Nagy, Péter; Hellmich, Mark R.; Szabo, Csaba

    2016-01-01

    Therapeutic manipulation of the gasotransmitter hydrogen sulfide (H2S) has recently been proposed as a novel targeted anticancer approach. Here we show that human lung adenocarcinoma tissue expresses high levels of hydrogen sulfide (H2S) producing enzymes, namely, cystathionine beta-synthase (CBS), cystathionine gamma lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), in comparison to adjacent lung tissue. In cultured lung adenocarcinoma but not in normal lung epithelial cells elevated H2S stimulates mitochondrial DNA repair through sulfhydration of EXOG, which, in turn, promotes mitochondrial DNA repair complex assembly, thereby enhancing mitochondrial DNA repair capacity. In addition, inhibition of H2S-producing enzymes suppresses critical bioenergetics parameters in lung adenocarcinoma cells. Together, inhibition of H2S-producing enzymes sensitize lung adenocarcinoma cells to chemotherapeutic agents via induction of mitochondrial dysfunction as shown in in vitro and in vivo models, suggesting a novel mechanism to overcome tumor chemoresistance. PMID:27808278

  14. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem?

    NASA Astrophysics Data System (ADS)

    Armijo, Leisha M.; Jain, Priyanka; Malagodi, Angelina; Fornelli, F. Zuly; Hayat, Allison; Rivera, Antonio C.; French, Michael; Smyth, Hugh D. C.; Osiński, Marek

    2015-03-01

    Pseudomonas aeruginosa is among the top three leading causative opportunistic human pathogens, possessing one of the largest bacterial genomes and an exceptionally large proportion of regulatory genes therein. It has been known for more than a decade that the size and complexity of the P. aeruginosa genome is responsible for the adaptability and resilience of the bacteria to include its ability to resist many disinfectants and antibiotics. We have investigated the susceptibility of P. aeruginosa bacterial biofilms to iron oxide (magnetite) nanoparticles (NPs) with and without attached drug (tobramycin). We also characterized the susceptibility of zero-valent iron NPs, which are known to inactivate microbes. The particles, having an average diameter of 16 nm were capped with natural alginate, thus doubling the hydrodynamic size. Nanoparticle-drug conjugates were produced via cross-linking drug and alginate functional groups. Drug conjugates were investigated in the interest of determining dosage, during these dosage-curve experiments, NPs unbound to drug were tested in cultures as a negative control. Surprisingly, we found that the iron oxide NPs inhibited bacterial growth, and thus, biofilm formation without the addition of antibiotic drug. The inhibitory dosages of iron oxide NPs were investigated and the minimum inhibitory concentrations are presented. These findings suggest that NP-drug conjugates may overcome the antibiotic drug resistance common in P. aeruginosa infections.

  15. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog

    SciTech Connect

    Akiyama, S.; Cornwell, M.M.; Kuwano, M.; Pastan, I.; Gottesman, M.M.

    1988-02-01

    Multidrug-resistant human KB carcinoma cells express a 170,000-dalton membrane glycoprotein (P-glycoprotein) that can be photoaffinity labeled with the vinblastine analog N-(p-azido-(3-/sup 125/I)salicyl)-N'-(beta-aminoethyl)vindesine. Several agents that suppress the multidrug-resistant phenotype, including N-solanesyl-N,N'-bis(3,4-dimethylbenzyl)ethylenediamine, cepharanthine, quinidine, and reserpine, were found to inhibit photolabeling of P-glycoprotein at doses comparable to those that reverse multidrug resistance. However, the phenothiazines chlorpromazine and trifluoperazine, which also effectively reverse multidrug resistance, were poor inhibitors of the photoaffinity labeling of P-glycoprotein. Chloroquine, propranolol, or atropine, which only partially reversed the drug resistance, also did not inhibit photolabeling. Naphthalene sulfonamide calmodulin inhibitors, W7 and W5, as well as many other drugs that did not circumvent multidrug resistance, did not inhibit photolabeling. These studies suggest that most, but not all, agents that phenotypically suppress multidrug resistance also inhibit drug binding to a site on P-glycoprotein with which a photoaffinity analog of vinblastine interacts.

  16. Zoledronic acid inhibits aromatase activity and phosphorylation: potential mechanism for additive zoledronic acid and letrozole drug interaction.

    PubMed

    Schech, Amanda J; Nemieboka, Brandon E; Brodie, Angela H

    2012-11-01

    Zoledronic acid (ZA), a bisphosphonate originally indicated for use in osteoporosis, has been reported to exert a direct effect on breast cancer cells, although the mechanism of this effect is currently unknown. Data from the ABCSG-12 and ZO-FAST clinical trials suggest that treatment with the combination of ZA and aromatase inhibitors (AI) result in increased disease free survival in breast cancer patients over AI alone. To determine whether the mechanism of this combination involved inhibition of aromatase, AC-1 cells (MCF-7 human breast cancer cells transfected with an aromatase construct) were treated simultaneously with combinations of ZA and AI letrozole. This combination significantly increased inhibition of aromatase activity of AC-1 cells when compared to letrozole alone. Treatment of 1 nM letrozole in combination with 1 μM or 10 μM ZA resulted in an additive drug interaction on inhibition of cell viability, as measured by MTT assay. Treatment with ZA was found to inhibit phosphorylation of aromatase on serine residues. Zoledronic acid was also shown to be more effective in inhibiting cell viability in aromatase transfected AC-1 cells when compared to inhibition of cell viability observed in non-transfected MCF-7. Estradiol was able to partially rescue the effect of 1 μM and 10 μM ZA on cell viability following treatment for 72 h, as shown by a shift to the right in the estradiol dose-response curve. In conclusion, these results indicate that the combination of ZA and letrozole results in an additive inhibition of cell viability. Furthermore, ZA alone can inhibit aromatase activity through inhibition of serine phosphorylation events important for aromatase enzymatic activity and contributes to inhibition of cell viability.

  17. 26 CFR 1.831-1 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... mutual), mutual marine insurance companies, and mutual fire insurance companies issuing perpetual... insurance companies (other than life or mutual), mutual marine insurance companies, and mutual fire... marine insurance companies and mutual fire insurance companies exclusively issuing either...

  18. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    SciTech Connect

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on ion channels are a

  19. MicroRNA-199a-5p inhibits cisplatin-induced drug resistance via inhibition of autophagy in osteosarcoma cells

    PubMed Central

    Li, Yusheng; Jiang, Wei; Hu, Yuling; Da, Zixun; Zeng, Chao; Tu, Min; Deng, Zhenhan; Xiao, Wenfeng

    2016-01-01

    Osteosarcoma (OS) is the most common cancer of the bone. Chemotherapy is commonly used for the clinical treatment of OS. However, chemoresistance to cisplatin [also known as diamminedichloridoplatinum (II) (DDP)] is a major obstacle for OS therapy, the underlying mechanism of which is not fully understood. The present study aimed to investigate the role of microRNA (miR)-199a-5p in the regulation of chemoresistance to DDP in OS cells. Reverse transcription-quantitative polymerase chain reaction demonstrated that the expression level of miR-199a-5p was significantly reduced in human OS MG63 cells. In addition, DDP treatment also upregulated the protein levels of light chain 3 (LC3)-II and Beclin1 as well as the ratio of LC3-II vs. LC3-I in MG63 cells, indicating that autophagy was activated. Restoration of miR-199a-5p expression promoted DDP-induced inhibition of MG63 cell proliferation and inhibited DDP-induced autophagy, as indicated by the reduced protein levels of LC3-II and Beclin1 and the ratio of LC3-II vs. LC3-I. Finally, luciferase reporter assay data revealed that miR-199a-5p directly targeted Beclin1 and negatively mediated Beclin1 expression at a post-transcriptional level in MG63 cells. In conclusion, our study suggests that miR-199a-5p promotes the cytotoxicity of DDP in OS cells via inhibition of autophagy. Therefore, miR-199a-5p/autophagy signaling is involved in chemoresistance and may become a potential target for the treatment of DDP-resistant OS. PMID:27895792

  20. Toxicity of xanthene food dyes by inhibition of human drug-metabolizing enzymes in a noncompetitive manner.

    PubMed

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC(50) values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC(50) values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of (1)O(2) originating on xanthene dyes by light irradiation, because inhibition was prevented by (1)O(2) quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin.

  1. Inhibition by Levorphanol and Related Drugs of Amino Acid Transport by Isolated Membrane Vesicles from Escherichia coli

    PubMed Central

    Holland, Mary J. C.; Simon, Eric J.

    1975-01-01

    Levorphanol inhibits the transport of the amino acids proline and lysine by cytoplasmic membrane vesicles derived from Escherichia coli. The degree of inhibition increases with increasing levorphanol concentration and ranges from 26% at 10−6 M levorphanol to 92% at 10−3 M levorphanol. The effect is independent of the energy source, since levorphanol inhibits proline uptake to the same extent in the presence of 20 mM d-lactate or 20 mM succinate and in the absence of an exogenous energy source. Levorphanol does not irreversibly alter the ability of membrane vesicles to transport proline, since incubation of membrane vesicles for 15 min in the presence of 0.25 mM levorphanol, a concentration which inhibits proline transport by more than 75%, has no effect on the rate of proline transport by these vesicles once the drug is removed. Both the maximum velocity and the Km of proline transport are modified by levorphanol, hence, the type of inhibition produced by levorphanol is mixed. The inhibitor constant (Ki) for levorphanol inhibition of proline transport is approximately 3 × 10−4 M. Membrane vesicles incubated in the presence of levorphanol accumulate much less proline at the steady state than do control vesicles. Furthermore, the addition of levorphanol to membrane vesicles preloaded to the steady state with proline produces a marked net efflux of proline. Levorphanol does not block either temperature-induced efflux or exchange of external proline with [14C]proline present in the intravesicular pool. Dextrorphan, the enantiomorph of levorphanol, and levallorphan, the N-allyl analogue of levorphanol, inhibit proline and lysine transport in a similar manner. Possible mechanisms of the effects of these drugs on cell membranes are discussed. PMID:1096802

  2. Sleep deprivation disrupts prepulse inhibition of the startle reflex: reversal by antipsychotic drugs.

    PubMed

    Frau, Roberto; Orrù, Marco; Puligheddu, Monica; Gessa, Gian Luigi; Mereu, Giampaolo; Marrosu, Francesco; Bortolato, Marco

    2008-11-01

    Sleep deprivation (SD) is known to induce perceptual impairments, ranging from perceptual distortion to hallucinatory states. Although this phenomenon has been extensively described in the literature, its neurobiological underpinnings remain elusive. In rodents, SD induces a series of behavioural patterns that might be reflective of psychosis and mania, such as hyperlocomotion and sensitization to psychotogenic drugs. Notably, such changes are accompanied by transitory alterations of dopaminergic signalling. Based on the hypothesis that both psychotic and manic disorders reflect gating impairments, the present study was aimed at the assessment of the impact of SD on the behavioural model of prepulse inhibition (PPI) of the startle reflex, a reliable paradigm for the study of informational filtering. Rats subjected to SD (24 h, 48 h, 72 h) exhibited a time-dependent increase in startle reflex and a dramatic deficit in PPI. Both alterations were reversed 24 h after termination of the SD period. Interestingly, PPI disruption was efficiently prevented by haloperidol (0.1 mg/kg i.p.) clozapine (5 mg/kg i.p.) and risperidone (1 mg/kg i.p.). Conversely, neither the anxiolytic diazepam (5 mg/kg i.p.) nor the antidepressant citalopram (5 mg/kg i.p) affected the PPI disruption mediated by SD, although diazepam reversed the enhancement in startle reflex magnitude induced by this manipulation. Our data suggest that SD induces gating deficits that might be relevant to the hallucinatory phenomena observed in humans, and provide a novel reliable animal model where such relationship can be studied.

  3. Electrospinning of artemisinin-loaded core-shell fibers for inhibiting drug re-crystallization.

    PubMed

    Shi, Yongli; Zhang, Jianhua; Xu, Shuxin; Dong, Anjie

    2013-01-01

    The main aim of this study was to inhibit the re-crystallization of a potent antimalarial drug, artemisinin (ART), by encapsulating it in core-shell fibers via a coaxially electrospun method. The ART-infiltrated cellulose acetate (CA) solution as the core material and poly(vinyl pyrrolidone) (PVP) solution as the shell material were used to prepared ART-loaded core-shell fibers ([ART/CA]/PVP). Transmission electron microscopy images confirmed the core-shell structures of the coaxially electrospun fibers. The scanning electron microscope (SEM), X-ray diffraction, and differential scanning calorimetry were performed to characterize the physical states of ART in the fibers. It was observed that ART crystals were formed in the ART-loaded CA/PVP composite fibers (ART/CA/PVP) during the electrospinning process and increased during storage duration. While ART crystals hardly were observed in the fresh core-shell [ART/CA]/PVP fibers with high ART entrapped amount (20 wt.%) and a little was detected after 6-month storage. Fourier transform infrared spectroscopy (FTIR) results illustrated the hydrogen bonding interaction between ART and CA in the core-shell [ART/CA]/PVP fibers mainly contributed to the amorphous state of ART. Importantly, combination of the hydrophilic PVP shell and the amorphous ART in CA core, the core-shell [ART/CA]/PVP fibers provided a continued and stable ART release manner. Ex vivo permeation studies suggested the amorphous ART in the medicated core-shell fibers could permeate through the stratum corneum smoothly. Hence, the core-shell [ART/CA]/PVP fiber matrix could provide a potential application in transdermal patches.

  4. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth

    PubMed Central

    Zhu, Wei; Lee, Se-Jun; Castro, Nathan J.; Yan, Dayun; Keidar, Michael; Zhang, Lijie Grace

    2016-01-01

    Nano-based drug delivery devices allowing for effective and sustained targeted delivery of therapeutic agents to solid tumors have revolutionized cancer treatment. As an emerging biomedical technique, cold atmospheric plasma (CAP), an ionized non-thermal gas mixture composed of various reactive oxygen species, reactive nitrogen species, and UV photons, shows great potential for cancer treatment. Here we seek to develop a new dual cancer therapeutic method by integrating promising CAP and novel drug loaded core-shell nanoparticles and evaluate its underlying mechanism for targeted breast cancer treatment. For this purpose, core-shell nanoparticles were synthesized via co-axial electrospraying. Biocompatible poly (lactic-co-glycolic acid) was selected as the polymer shell to encapsulate anti-cancer therapeutics. Results demonstrated uniform size distribution and high drug encapsulation efficacy of the electrosprayed nanoparticles. Cell studies demonstrated the effectiveness of drug loaded nanoparticles and CAP for synergistic inhibition of breast cancer cell growth when compared to each treatment separately. Importantly, we found CAP induced down-regulation of metastasis related gene expression (VEGF, MTDH, MMP9, and MMP2) as well as facilitated drug loaded nanoparticle uptake which may aid in minimizing drug resistance-a major problem in chemotherapy. Thus, the integration of CAP and drug encapsulated nanoparticles provides a promising tool for the development of a new cancer treatment strategy. PMID:26917087

  5. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth.

    PubMed

    Zhu, Wei; Lee, Se-Jun; Castro, Nathan J; Yan, Dayun; Keidar, Michael; Zhang, Lijie Grace

    2016-02-26

    Nano-based drug delivery devices allowing for effective and sustained targeted delivery of therapeutic agents to solid tumors have revolutionized cancer treatment. As an emerging biomedical technique, cold atmospheric plasma (CAP), an ionized non-thermal gas mixture composed of various reactive oxygen species, reactive nitrogen species, and UV photons, shows great potential for cancer treatment. Here we seek to develop a new dual cancer therapeutic method by integrating promising CAP and novel drug loaded core-shell nanoparticles and evaluate its underlying mechanism for targeted breast cancer treatment. For this purpose, core-shell nanoparticles were synthesized via co-axial electrospraying. Biocompatible poly (lactic-co-glycolic acid) was selected as the polymer shell to encapsulate anti-cancer therapeutics. Results demonstrated uniform size distribution and high drug encapsulation efficacy of the electrosprayed nanoparticles. Cell studies demonstrated the effectiveness of drug loaded nanoparticles and CAP for synergistic inhibition of breast cancer cell growth when compared to each treatment separately. Importantly, we found CAP induced down-regulation of metastasis related gene expression (VEGF, MTDH, MMP9, and MMP2) as well as facilitated drug loaded nanoparticle uptake which may aid in minimizing drug resistance-a major problem in chemotherapy. Thus, the integration of CAP and drug encapsulated nanoparticles provides a promising tool for the development of a new cancer treatment strategy.

  6. VX-509 (Decernotinib)-Mediated CYP3A Time-Dependent Inhibition: An Aldehyde Oxidase Metabolite as a Perpetrator of Drug-Drug Interactions.

    PubMed

    Zetterberg, Craig; Maltais, Francois; Laitinen, Leena; Liao, Shengkai; Tsao, Hong; Chakilam, Ananthsrinivas; Hariparsad, Niresh

    2016-08-01

    (R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide (VX-509, decernotinib) is an oral Janus kinase 3 inhibitor that has been studied in patients with rheumatoid arthritis. Patients with rheumatoid arthritis often receive multiple medications, such as statins and steroids, to manage the signs and symptoms of comorbidities, which increases the chances of drug-drug interactions (DDIs). Mechanism-based inhibition is a subset of time-dependent inhibition (TDI) and occurs when a molecule forms a reactive metabolite which irreversibly binds and inactivates drug-metabolizing enzymes, potentially increasing the systemic load to toxic concentrations. Traditionally, perpetrating compounds are screened using human liver microsomes (HLMs); however, this system may be inadequate when the precipitant is activated by a non-cytochrome P450 (P450)-mediated pathway. Even though studies assessing competitive inhibition and TDI using HLM suggested a low risk for CYP3A4-mediated DDI in the clinic, VX-509 increased the area under the curve of midazolam, atorvastatin, and methyl-prednisolone by approximately 12.0-, 2.7-, and 4.3-fold, respectively. Metabolite identification studies using human liver cytosol indicated that VX-509 is converted to an oxidative metabolite, which is the perpetrator of the DDIs observed in the clinic. As opposed to HLM, hepatocytes contain the full complement of drug-metabolizing enzymes and transporters and can be used to assess TDI arising from non-P450-mediated metabolic pathways. In the current study, we highlight the role of aldehyde oxidase in the formation of the hydroxyl-metabolite of VX-509, which is involved in clinically significant TDI-based DDIs and represents an additional example in which a system-dependent prediction of TDI would be evident.

  7. Estimating mutual information

    NASA Astrophysics Data System (ADS)

    Kraskov, Alexander; Stögbauer, Harald; Grassberger, Peter

    2004-06-01

    We present two classes of improved estimators for mutual information M(X,Y) , from samples of random points distributed according to some joint probability density μ(x,y) . In contrast to conventional estimators based on binnings, they are based on entropy estimates from k -nearest neighbor distances. This means that they are data efficient (with k=1 we resolve structures down to the smallest possible scales), adaptive (the resolution is higher where data are more numerous), and have minimal bias. Indeed, the bias of the underlying entropy estimates is mainly due to nonuniformity of the density at the smallest resolved scale, giving typically systematic errors which scale as functions of k/N for N points. Numerically, we find that both families become exact for independent distributions, i.e. the estimator M̂ (X,Y) vanishes (up to statistical fluctuations) if μ(x,y)=μ(x)μ(y) . This holds for all tested marginal distributions and for all dimensions of x and y . In addition, we give estimators for redundancies between more than two random variables. We compare our algorithms in detail with existing algorithms. Finally, we demonstrate the usefulness of our estimators for assessing the actual independence of components obtained from independent component analysis (ICA), for improving ICA, and for estimating the reliability of blind source separation.

  8. [Biological mutualism, concepts and models].

    PubMed

    Perru, Olivier

    2011-01-01

    Mutualism is a biological association for a mutual benefit between two different species. In this paper, firstly, we examine the history and signification of mutualism in relation to symbiosis. Then, we consider the link between concepts and models of mutualism. Models of mutualism depend on different concepts we use: If mutualism is situated at populations' level, it will be expressed by Lotka-Volterra models, concerning exclusively populations' size. If mutualism is considered as a resources' exchange or a biological market increasing the fitness of these organisms, it will be described at an individual level by a cost-benefit model. Our analysis will be limited to the history and epistemology of Lotka-Volterra models and we hypothesize that these models are adapted at first to translate dynamic evolutions of mutualism. They render stability or variations of size and assume that there are clear distinctions and a state of equilibrium between populations of different species. Italian mathematician Vito Volterra demonstrated that biological associations consist in a constant relation between some species. In 1931 and 1935, Volterra described the general form of antagonistic or mutualistic biological associations by the same differential equations. We recognize that these equations have been more used to model competition or prey-predator interactions, but a simple sign change allows describing mutualism. The epistemological problem is the following: Volterra's equations help us to conceptualize a global phenomenon. However, mutualistic interactions may have stronger effects away from equilibrium and these effects may be better understood at individual level. We conclude that, between 1985 and 2000, some researchers carried on working and converting Lotka-Volterra models but this description appeared as insufficient. So, other researchers adopted an economical viewpoint, considering mutualism as a biological market.

  9. EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function.

    PubMed

    Phuchareon, Janyaporn; McCormick, Frank; Eisele, David W; Tetsu, Osamu

    2015-07-21

    Nonsmall cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. About 14% of NSCLCs harbor mutations in epidermal growth factor receptor (EGFR). Despite remarkable progress in treatment with tyrosine kinase inhibitors (TKIs), only 5% of patients achieve tumor reduction >90%. The limited primary responses are attributed partly to drug resistance inherent in the tumor cells before therapy begins. Recent reports showed that activation of receptor tyrosine kinases (RTKs) is an important determinant of this innate drug resistance. In contrast, we demonstrate that EGFR inhibition promotes innate drug resistance despite blockade of RTK activity in NSCLC cells. EGFR TKIs decrease both the mitogen-activated protein kinase (MAPK) and Akt protein kinase pathways for a short time, after which the Ras/MAPK pathway becomes reactivated. Akt inhibition selectively blocks the transcriptional activation of Ets-1, which inhibits its target gene, dual specificity phosphatase 6 (DUSP6), a negative regulator specific for ERK1/2. As a result, ERK1/2 is activated. Furthermore, elevated c-Src stimulates Ras GTP-loading and activates Raf and MEK kinases. These observations suggest that not only ERK1/2 but also Akt activity is essential to maintain Ets-1 in an active state. Therefore, despite high levels of ERK1/2, Ets-1 target genes including DUSP6 and cyclins D1, D3, and E2 remain suppressed by Akt inhibition. Reduction of DUSP6 in combination with elevated c-Src renews activation of the Ras/MAPK pathway, which enhances cell survival by accelerating Bim protein turnover. Thus, EGFR TKIs evoke innate drug resistance by preventing Akt activity and inactivating Ets-1 function in NSCLC cells.

  10. Use of Telemorace Inhibition in Combination with Anti-Cancer Drugs to Induce Cell Death in Tumor Cells

    DTIC Science & Technology

    2006-08-01

    mitotic spindle, excluding specificity for DNA -damaging agents at least in the context of the mutant hTR. Altogether, our data indicate that interfering...drugs upon telomerase inhibition in HeLa cells, and suggested a specific interaction between telomer- ase and the DNA repair process in human cells (11...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and

  11. Inhibition of Human Immunodeficiency Virus and Growth of Infected T Cells by the Immunosuppressive Drugs Cyclosporin A and FK 506

    NASA Astrophysics Data System (ADS)

    Karpas, Abraham; Lowdell, Mark; Jacobson, S. Kim; Hill, Fergal

    1992-09-01

    The effects of the immunosuppressive drugs cyclosporin A and FK 506 were studied on cells chronically infected with human immunodeficiency virus type 1 (HIV-1) as well as on uninfected and newly infected cells. When cells chronically infected with HIV-1 or with HIV-2 were cocultivated with uninfected cells in the presence of cyclosporin A or FK 506 there was a delay in the formation of syncytia and of cytopathic effects. This inhibitory effect was not due to decreased membrane expression of CD4. In addition, there was an ≈100-fold reduction in the yield of infectious HIV-1 when the infected cells were grown in the presence of these drugs, a finding consistent with other evidence of decreased HIV expression. Both drugs were found to inhibit the growth of chronically infected cells at concentrations that did not inhibit the growth of the uninfected cells. These results, demonstrating that cyclosporin A and FK 506 interfere with HIV production and selectively inhibit the growth of infected cells, suggest that they may be useful in the treatment of this infection and indicate further cellular targets for antiviral agents.

  12. Appropriate risk criteria for OATP inhibition at the drug discovery stage based on the clinical relevancy between OATP inhibitors and drug-induced adverse effect.

    PubMed

    Nakakariya, Masanori; Goto, Akihiko; Amano, Nobuyuki

    2016-10-01

    DDI could be caused by the inhibition of OATP-mediated hepatic uptakes. The aim of this study is to set the risk criteria for the compounds that would cause DDI via OATP inhibition at the drug discovery stage. The IC50 values of OATP inhibitors for human OATP-mediated atorvastatin uptake were evaluated in the expression system. In order to set the risk criteria for OATP inhibition, the relationship was clarified between OATP inhibitory effect and severe adverse effects of OATP substrates, rhabdomyolysis, hyperbilirubinemia and jaundice. Rhabdomyolysis would be caused in the atorvastatin AUC more than 9-fold of that at a minimum therapeutic dose. The atorvastatin AUC was 6- to 9-fold increased with the OATP inhibitors of which IC50 values were ≤1 μmol/L. Hyperbilirubinemia and jaundice would be caused with the OATP inhibitors of which IC50 values were ≤6 μmol/L. This investigation showed that the compounds with IC50 of ≤1 μmol/L would have high risk for OATP-mediated DDI that would cause severe side effects. Before the detailed analysis based on the dosage, unbound fraction in blood and effective concentration to evaluate the clinical DDI potency, this criteria enable high throughput screening and optimize lead compounds at the drug discovery stage.

  13. The antimalarial drug mefloquine inhibits cardiac inward rectifier K+ channels: evidence for interference in PIP2-channel interaction.

    PubMed

    López-Izquierdo, Angélica; Ponce-Balbuena, Daniela; Moreno-Galindo, Eloy G; Aréchiga-Figueroa, Iván A; Rodríguez-Martínez, Martín; Ferrer, Tania; Rodríguez-Menchaca, Aldo A; Sánchez-Chapula, José A

    2011-04-01

    The antimalarial drug mefloquine was found to inhibit the KATP channel by an unknown mechanism. Because mefloquine is a Cationic amphiphilic drug and is known to insert into lipid bilayers, we postulate that mefloquine interferes with the interaction between PIP2 and Kir channels resulting in channel inhibition. We studied the inhibitory effects of mefloquine on Kir2.1, Kir2.3, Kir2.3(I213L), and Kir6.2/SUR2A channels expressed in HEK-293 cells, and on IK1 and IKATP from feline cardiac myocytes. The order of mefloquine inhibition was Kir6.2/SUR2A ≈ Kir2.3 (IC50 ≈ 2 μM) > Kir2.1 (IC50 > 30 μM). Similar results were obtained in cardiac myocytes. The Kir2.3(I213L) mutant, which enhances the strength of interaction with PIP2 (compared to WT), was significantly less sensitive (IC50 = 9 μM). In inside-out patches, continuous application of PIP2 strikingly prevented the mefloquine inhibition. Our results support the idea that mefloquine interferes with PIP2-Kir channels interactions.

  14. A retrospective drug use evaluation of cabergoline for lactation inhibition at a tertiary care teaching hospital in Qatar

    PubMed Central

    AlSaad, Doua; ElSalem, Samah; Abdulrouf, Palli Valapila; Thomas, Binny; Alsaad, Tayseer; Ahmed, Afif; AlHail, Moza

    2016-01-01

    Background Breastfeeding is considered as gold standard for infant nutrition and should be interrupted only when a compelling indication exists. Certain medical conditions such as abortion, stillbirth, HIV infection, or infant galactosemia and certain medications such as chemotherapy necessitate lactation inhibition to protect the health of mother and infant. Drug use evaluation (DUE) studies are done to explore the current practice in a setting and help to identify areas in which further information and education may be needed by clinicians. Objective The aim of this study was to conduct a DUE of cabergoline to assess indications for lactation inhibition, dosage regimen, and its safety. Method A retrospective cross-sectional DUE study was conducted over a period of 4 months from September 1, 2013, till December 31, 2013, at the Women’s Hospital, Qatar. All cabergoline prescriptions written for lactation inhibition within 10 days of delivery or abortion were included in the study. A descriptive data analysis was undertaken. Results Of the 85 patients included, stillbirth (50.6%) was considered as the main reason for lactation inhibition, followed by abortion (27.1%) and neonatal death (12.9%). The remaining 9.4% of the patients had live baby, and the majority of them were prescribed cabergoline for lactation inhibition because their maternal medical conditions required the use of drugs with insufficient safety data (n=6). Seventy-four percent of patients received cabergoline at accurate time and dose. However, 14% of the patients had preexisting hypertensive disorder and 58.3% of them were diagnosed as uncontrolled hypertension. Conclusion The current DUE study found that cabergoline was mainly used to inhibit lactation for patients with stillbirth, abortion, and neonatal death. In mothers who use medications for other medical conditions, benefits and risks of breastfeeding should be carefully balanced before prescribing cabergoline. Current prescribing pattern

  15. Risk Factors for Development of Cholestatic Drug-Induced Liver Injury: Inhibition of Hepatic Basolateral Bile Acid Transporters Multidrug Resistance-Associated Proteins 3 and 4

    PubMed Central

    Köck, Kathleen; Ferslew, Brian C.; Netterberg, Ida; Yang, Kyunghee; Urban, Thomas J.; Swaan, Peter W.; Stewart, Paul W.

    2014-01-01

    Impaired hepatic bile acid export may contribute to development of cholestatic drug-induced liver injury (DILI). The multidrug resistance-associated proteins (MRP) 3 and 4 are postulated to be compensatory hepatic basolateral bile acid efflux transporters when biliary excretion by the bile salt export pump (BSEP) is impaired. BSEP inhibition is a risk factor for cholestatic DILI. This study aimed to characterize the relationship between MRP3, MRP4, and BSEP inhibition and cholestatic potential of drugs. The inhibitory effect of 88 drugs (100 μM) on MRP3- and MRP4-mediated substrate transport was measured in membrane vesicles. Drugs selected for investigation included 50 BSEP non-inhibitors (24 non-cholestatic; 26 cholestatic) and 38 BSEP inhibitors (16 non-cholestatic; 22 cholestatic). MRP4 inhibition was associated with an increased risk of cholestatic potential among BSEP non-inhibitors. In this group, for each 1% increase in MRP4 inhibition, the odds of the drug being cholestatic increased by 3.1%. Using an inhibition cutoff of 21%, which predicted a 50% chance of cholestasis, 62% of cholestatic drugs inhibited MRP4 (P < 0.05); in contrast, only 17% of non-cholestatic drugs were MRP4 inhibitors. Among BSEP inhibitors, MRP4 inhibition did not provide additional predictive value of cholestatic potential; almost all BSEP inhibitors were also MRP4 inhibitors. Inclusion of pharmacokinetic predictor variables (e.g., maximal unbound concentration in plasma) in addition to percent MRP4 inhibition in logistic regression models did not improve cholestasis prediction. Association of cholestasis with percent MRP3 inhibition was not statistically significant, regardless of BSEP-inhibition status. Inhibition of MRP4, in addition to BSEP, may be a risk factor for the development of cholestatic DILI. PMID:24154606

  16. Inhibition of FAAH and activation of PPAR: New approaches to the treatment of cognitive dysfunction and drug addiction

    PubMed Central

    Panlilio, Leigh V.; Justinova, Zuzana; Goldberg, Steven R.

    2013-01-01

    Enhancing the effects of endogenously-released cannabinoid ligands in the brain might provide therapeutic effects more safely and effectively than administering drugs that act directly at the cannabinoid receptor. Inhibitors of fatty acid amide hydrolase (FAAH) prevent the breakdown of endogenous ligands for cannabinoid receptors and peroxisome proliferator-activated receptors (PPAR), prolonging and enhancing the effects of these ligands when they are naturally released. This review considers recent research on the effects of FAAH inhibitors and PPAR activators in animal models of addiction and cognition (specifically learning and memory). These studies show that FAAH inhibitors can produce potentially therapeutic effects, some through cannabinoid receptors and some through PPAR. These effects include enhancing certain forms of learning, counteracting the rewarding effects of nicotine and alcohol, relieving symptoms of withdrawal from cannabis and other drugs, and protecting against relapse-like reinstatement of drug self-administration. Since FAAH inhibition might have a wide range of therapeutic actions but might also share some of the adverse effects of cannabis, it is noteworthy that at least one FAAH-inhibiting drug (URB597) has been found to have potentially beneficial effects but no indication of liability for abuse or dependence. Although these areas of research are new, the preliminary evidence indicates that they might lead to improved therapeutic interventions and a better understanding of the brain mechanisms underlying addiction and memory. PMID:23333350

  17. Drugs designed to inhibit human p38 mitogen-activated protein kinase activation treat Toxoplasma gondii and Encephalitozoon cuniculi infection.

    PubMed

    Wei, Shuang; Daniel, Benjamin J; Brumlik, Michael J; Burow, Matthew E; Zou, Weiping; Khan, Imtiaz A; Wadsworth, Scott; Siekierka, John; Curiel, Tyler J

    2007-12-01

    We recently showed that the pyridinylimidazoles SB203580 and SB202190, drugs designed to block human p38 mitogen-activated protein kinase (MAPK) activation, also inhibited replication of the medically important intracellular parasite Toxoplasma gondii in cultured human fibroblasts through a direct effect on the parasite. We now show that additional pyridinylimidazole and imidazopyrimidine p38 MAPK inhibitors inhibit intracellular T. gondii replication in vitro and protect mice against fatal T. gondii infection. Mice surviving infection following treatment with p38 MAPK inhibitors were resistant to subsequent T. gondii challenge, demonstrating induction of protective immunity. Thus, drugs originally developed to block human p38 MAPK activation are useful for treating T. gondii infection without inducing significant immunosuppression. MAPK inhibitors combined with either of the approved anti-Toxoplasma drugs sulfadiazine and pyrimethamine resulted in improved survival among mice challenged with a fatal T. gondii inoculum. A MAPK inhibitor also treated mice infected with the Microsporidium parasite Encephalitozoon cuniculi, suggesting that MAPK inhibitors represent a novel class of agents that may have a broad spectrum of antiparasitic activity. Preliminary studies implicate a T. gondii MAPK homologue as the target of drug action, suggesting possibilities for more-selective agents.

  18. Inhibition of FAAH and activation of PPAR: new approaches to the treatment of cognitive dysfunction and drug addiction.

    PubMed

    Panlilio, Leigh V; Justinova, Zuzana; Goldberg, Steven R

    2013-04-01

    Enhancing the effects of endogenously-released cannabinoid ligands in the brain might provide therapeutic effects more safely and effectively than administering drugs that act directly at the cannabinoid receptor. Inhibitors of fatty acid amide hydrolase (FAAH) prevent the breakdown of endogenous ligands for cannabinoid receptors and peroxisome proliferator-activated receptors (PPAR), prolonging and enhancing the effects of these ligands when they are naturally released. This review considers recent research on the effects of FAAH inhibitors and PPAR activators in animal models of addiction and cognition (specifically learning and memory). These studies show that FAAH inhibitors can produce potentially therapeutic effects, some through cannabinoid receptors and some through PPAR. These effects include enhancing certain forms of learning, counteracting the rewarding effects of nicotine and alcohol, relieving symptoms of withdrawal from cannabis and other drugs, and protecting against relapse-like reinstatement of drug self-administration. Since FAAH inhibition might have a wide range of therapeutic actions but might also share some of the adverse effects of cannabis, it is noteworthy that at least one FAAH-inhibiting drug (URB597) has been found to have potentially beneficial effects but no indication of liability for abuse or dependence. Although these areas of research are new, the preliminary evidence indicates that they might lead to improved therapeutic interventions and a better understanding of the brain mechanisms underlying addiction and memory.

  19. [Dual inhibition of cholesterol using the drug combination ezetimibe/simvastatin?].

    PubMed

    Vaverková, H

    2007-04-01

    The latest clinical intervention studies of statins have shown that more aggressive reductions in LDL-cholesterol to values lower than existing target values for persons with a high risk of cardiovascular disease produce greater success in terms of halted progression and even regression of the atherosclerotic process and fewer cardiovascular events. This has lead to a series of international and national recommendations for a further reduction in target values for LDL-cholesterol, which is often difficult to achieve with the usual dosage of statins. The combination of a statin with ezetimibe, acting as a dual inhibition mechanism against the synthesis and absorption of cholesterol, reduces LDL-cholesterol significantly more than treatment with a statin in monotherapy. This allows many more patients to achieve the target value for LDL-cholesterol. At present a drug combination comprising ezetimibe 10 mg and simvastatin in all doses (10, 20, 40 and 80 mg) is being introduced into our market under the company name Inegy. In addition to reducing LDL-cholesterol by up to 61% this combination has a positive effect on a range of other parameters for lipid metabolism and inflamation. A typical initial dose of ezetimibe 10 mg/simvastatin 20 mg reduces LDL-cholesterol by around 50%, which is necessary for the stabilisation of atherosclerotic plaque. For patients requiring more aggressive reduction of LDL-cholesterol it is best to start with a dose of ezetimibe 10 mg/simvastatin 40 mg. The highest dose of 10 mg/80 mg is intended for patients with the highest level of risk and reduces LDL-cholesterol by around 60%. In all the studies that have been carried out so far, the combination of ezetimibe and statin was very well tolerated and the safety profile of this combination was the same a treatment with the statin alone. At present a wide range of large clinical studies are underway to test whether LDL-cholesterol reduction using the ezetimibe + statin combination will also

  20. Inhibition of Major Drug Metabolizing CYPs by Common Herbal Medicines used by HIV/AIDS Patients in Africa– Implications for Herb-Drug Interactions

    PubMed Central

    Awortwe, Charles; Bouic, Patrick J.; Masimirembwa, Collen M.; Rosenkranz, Bernd

    2015-01-01

    The purpose of this study was to evaluate the potential risk of common herbal medicines used by HIV-infected patients in Africa for herb-drug interactions (HDI). High throughput screening assays consisting of recombinant Cytochrome P450 enzymes (CYPs) and fluorescent probes, and parallel artificial membrane permeability assays (PAMPA) were used. The potential of herbal medicines to cause HDI was ranked according to FDA guidelines for reversible inhibition and categorization of time dependent inhibition was based on the normalized ratio. CYPs 1A2 and 3A4 were most inhibited by the herbal extracts. H. hemerocallidea (IC50 = 0.63 μg/mL and 58 μg/mL) and E. purpurea (IC50 = 20 μg/mL and 12 μg/mL) were the potent inhibitors of CYPs 1A2 and 3A4 respectively. L. frutescens and H. hemerocallidea showed clear time dependent inhibition on CYP3A4. Furthermore, the inhibitory effect of both H. hemerocallidea and L. frutescens before and after PAMPA were identical. The results indicate potential HDI of H. hemerocallidea, L. frutescens and E. purpurea with substrates of the affected enzymes if maximum in vivo concentration is achieved. PMID:24475926

  1. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability

    PubMed Central

    Wilkinson, Emma L.; Sidaway, James E.

    2016-01-01

    ABSTRACT Cardiotoxicity induced by anti-cancer therapeutics is a severe, and potentially fatal, adverse reaction of the heart in response to certain drugs. Current in vitro approaches to assess cardiotoxicity have focused on analysing cardiomyocytes. More recently it has become apparent that non-cardiomyocyte cells of the heart can potentially contribute to cardiotoxicity. Herceptin and doxorubicin are known to induce cardiotoxicity in the clinic. The effect of these drugs on the endothelial tight junction barrier was tested by analysing tight junction formation and zona occludens-1 (ZO-1) levels, revealing that Herceptin and doxorubicin are able to induce barrier perturbment and decrease barrier function in human cardiac microvascular endothelial cells (HCMECs) leading to increased permeability. Herceptin treatment had no effect on the tight junction barrier function in human dermal and human brain microvascular endothelial cells. HCMECs showed detectable levels of HER2 compared with the other endothelial cells suggesting that Herceptin binding to HER2 in these cells may interfere with tight junction formation. Our data suggests that doxorubicin and Herceptin can affect tight junction formation in the cardiac microvasculature leading to increased drug permeability and adverse effects on the cardiac myocytes. PMID:27543060

  2. Oxidative stress-induced protein damage inhibits DNA repair and determines mutation risk and anticancer drug effectiveness

    PubMed Central

    McAdam, Elizabeth; Brem, Reto; Karran, Peter

    2016-01-01

    The relationship between sun exposure and non-melanoma skin cancer risk is well established. Solar ultraviolet radiation (UV; wavelengths 280-400 nm) is firmly implicated in skin cancer development. Nucleotide excision repair (NER) protects against cancer by removing potentially mutagenic DNA lesions induced by UVB (280-320 nm). How the 20-fold more abundant UVA (320-400 mn) component of solar UV radiation increases skin cancer risk is not understood. We demonstrate here that the contribution of UVA to the effects of UV radiation on cultured human cells is largely independent of its ability to damage DNA. Instead, the effects of UVA reflect the induction of oxidative stress that causes extensive protein oxidation. Because NER proteins are among those damaged, UVA irradiation inhibits NER and increases the cells’ susceptibility to mutation by UVB. NER inhibition is a common consequence of oxidative stress. Exposure to chemical oxidants, treatment with drugs that deplete cellular antioxidants, and interventions that interfere with glucose metabolism to disrupt the supply of cellular reducing power all inhibit NER. Tumor cells are often in a condition of oxidative stress and one effect of the NER inhibition that results from stress-induced protein oxidation is an increased sensitivity to the anticancer drug cisplatin. Statement of implication: Since NER is both a defence against cancer a significant determinant of cell survival after treatment with anticancer drugs, its attenuation by protein damage under conditions of oxidative-stress has implications for both cancer risk and for the effectiveness of anticancer therapy. PMID:27106867

  3. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections.

    PubMed

    Karslake, Jason; Maltas, Jeff; Brumm, Peter; Wood, Kevin B

    2016-10-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.

  4. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections

    PubMed Central

    Maltas, Jeff; Brumm, Peter; Wood, Kevin B.

    2016-01-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095

  5. Prediction of drug-drug interactions with carbamazepine-10,11-epoxide using a new in vitro assay for epoxide hydrolase inhibition.

    PubMed

    Rosa, Maria; Bonnaillie, Pierre; Chanteux, Hugues

    2016-12-01

    1. Carbamazepine is an antiepileptic drug which is metabolized by CYP3A4 into carbamazepine-10,11-epoxide. This metabolite is then detoxified by epoxide hydrolase. As carbamazepine-10,11-epoxide has been associated with neurotoxicity, it is critical to identify whether a new antiepileptic drug has the potential to inhibit epoxide hydrolase and therefore increase carbamazepine-10,11-epoxide plasma levels. 2. In this study, an in vitro assay was developed to evaluate epoxide hydrolase activity by using carbamazepine-10,11-epoxide as probe substrate. The ability of this assay to predict drug-drug interactions (DDI) at the epoxide hydrolase level was also investigated. 3. To this aim, known inhibitors of epoxide hydrolase for which in vivo data are available were used. Firstly, carbamazepine-10,11-epoxide hydrolase activity was determined in liver microsomes, cytosol and hepatocytes. Thereafter, the IC50 of epoxide hydrolase inhibitors (progabide, valproic acid, valpromide and valnoctamide) was determined in liver microsomes and hepatocytes. Finally, prediction of AUC increase was performed using the in vitro data generated. 4. Interestingly, epoxide hydrolase activity was found to be much higher in human hepatocytes compared to liver microsomes/cytosol. Even though assessed on a limited number of compounds, this study demonstrated that the use of hepatocytes seems to be a more relevant model to assess and predict DDI at the epoxide hydrolase level.

  6. Clitocine targets Mcl-1 to induce drug-resistant human cancer cell apoptosis in vitro and tumor growth inhibition in vivo.

    PubMed

    Sun, Jian-Guo; Li, Hua; Li, Xia; Zeng, Xueli; Wu, Ping; Fung, Kwok-Pui; Liu, Fei-Yan

    2014-05-01

    Drug resistance is a major reason for therapy failure in cancer. Clitocine is a natural amino nucleoside isolated from mushroom and has been shown to inhibit cancer cell proliferation in vitro. In this study, we observed that clitocine can effectively induce drug-resistant human cancer cell apoptosis in vitro and inhibit tumor xenograft growth in vivo. Clitocine treatment inhibited drug-resistant human cancer cell growth in vitro in a dose- and time-dependent manner. Biochemical analysis revealed that clitocine-induced tumor growth inhibition is associated with activation of caspases 3, 8 and 9, PARP cleavage, cytochrome c release and Bax, Bak activation, suggesting that clitocine inhibits drug-resistant cancer cell growth through induction of apoptosis. Analysis of apoptosis regulatory genes indicated that Mcl-1 level was dramatically decreased after clitocine treatment. Over-expression of Mcl-1 reversed the activation of Bax and attenuated clitocine-induced apoptosis, suggesting that clitocine-induced apoptosis was at least partially by inducing Mcl-1 degradation to release Bax and Bak. Consistent with induction of apoptosis in vitro, clitocine significantly suppressed the drug-resistant hepatocellular carcinoma xenograft growth in vivo by inducing apoptosis as well as inhibiting cell proliferation. Taken together, our data demonstrated that clitocine is a potent Mcl-1 inhibitor that can effectively induce apoptosis to suppress drug-resistant human cancer cell growth both in vitro and in vivo, and thus holds great promise for further development as potentially a novel therapeutic agent to overcome drug resistance in cancer therapy.

  7. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    SciTech Connect

    Ma, Hai-Ying; Sun, Dong-Xue; Cao, Yun-Feng; Ai, Chun-Zhi; Qu, Yan-Qing; Hu, Cui-Min; Jiang, Changtao; Dong, Pei-Pei; Sun, Xiao-Yu; Hong, Mo; Tanaka, Naoki; Gonzalez, Frank J.; and others

    2014-05-15

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K{sub i}) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K{sub i}) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors.

  8. Uncertainty relation for mutual information

    NASA Astrophysics Data System (ADS)

    Schneeloch, James; Broadbent, Curtis J.; Howell, John C.

    2014-12-01

    We postulate the existence of a universal uncertainty relation between the quantum and classical mutual informations between pairs of quantum systems. Specifically, we propose that the sum of the classical mutual information, determined by two mutually unbiased pairs of observables, never exceeds the quantum mutual information. We call this the complementary-quantum correlation (CQC) relation and prove its validity for pure states, for states with one maximally mixed subsystem, and for all states when one measurement is minimally disturbing. We provide results of a Monte Carlo simulation suggesting that the CQC relation is generally valid. Importantly, we also show that the CQC relation represents an improvement to an entropic uncertainty principle in the presence of a quantum memory, and that it can be used to verify an achievable secret key rate in the quantum one-time pad cryptographic protocol.

  9. Inhibition of two monomeric butyrylcholinesterases from rabbit liver by chlorpromazine and other drugs.

    PubMed

    Rush, R S; Main, A R; Kilpatrick, B F; Faulkner, G D

    1981-03-01

    A new form of cholinesterases has been discovered in rabbit liver; the new enzymes are monomeric butyrylcholinesterases (EC 3.1.1.8), mBuChE I and mBuChE II. These enzymes are inhibited reversibly by chlorpromazine in the pharmacologically active concentration range and they exhibit mixed competitive-noncompetitive inhibition patterns. The apparent competitive inhibition constants, Ki with chlorpromazine, are 1.8 x 10(-6) M for mBuChE I and 7.6 x 10(-6) M for mBuChE II, whereas the noncompetitive inhibition constant is 1.1 x 10(-5) M for mBuChE II as determined by spectrophotometric assay with n-butyrylthiocholine iodide substrate. Although inhibition of mBuChE I also exhibited noncompetitive behavior, a binding constant could not be determined. Human serum oligometric butyrylcholinesterase (oBuChE) was employed as a control cholinesterase and also demonstrated mixed inhibition kinetics. The competitive inhibition constant for the oBuChE was 5.5 x 10(-7) M in the low substrate region, whereas the apparent noncompetitive binding constant was 1.6 x 10(-5) M in the activated higher substrate region with n-butyrylthiocholine iodide as the substrate and chlorpromazine as the reversible inhibitor. The presence of a noncompetitive binding component indicates the presence of an operative modifier or allosteric site binding the inhibitor on both mBuChEs and the oBuChE. The inhibition constants were calculated assuming that the enzymes followed simple Michaelian kinetics.

  10. Aptamer-Drug Conjugates of Active Metabolites of Nucleoside Analogs and Cytotoxic Agents Inhibit Pancreatic Tumor Cell Growth.

    PubMed

    Yoon, Sorah; Huang, Kai-Wen; Reebye, Vikash; Spalding, Duncan; Przytycka, Teresa M; Wang, Yijie; Swiderski, Piotr; Li, Lin; Armstrong, Brian; Reccia, Isabella; Zacharoulis, Dimitris; Dimas, Konstantinos; Kusano, Tomokazu; Shively, John; Habib, Nagy; Rossi, John J

    2017-03-17

    Aptamer-drug conjugates (ApDCs) have the potential to improve the therapeutic index of traditional chemotherapeutic agents due to their ability to deliver cytotoxic drugs specifically to cancer cells while sparing normal cells. This study reports on the conjugation of cytotoxic drugs to an aptamer previously described by our group, the pancreatic cancer RNA aptamer P19. To this end, P19 was incorporated with gemcitabine and 5-fluorouracil (5-FU), or conjugated to monomethyl auristatin E (MMAE) and derivative of maytansine 1 (DM1). The ApDCs P19-dFdCMP and P19-5FdUMP were shown to induce the phosphorylation of histone H2AX on Ser139 (γ-H2AX) and significantly inhibited cell proliferation by 51%-53% in PANC-1 and by 54%-34% in the gemcitabine-resistant pancreatic cancer cell line AsPC-1 (p ≤ 0.0001). P19-MMAE and P19-DM1 caused mitotic G2/M phase arrest and inhibited cell proliferation by up to 56% in a dose-dependent manner when compared to the control group (p ≤ 0.001). In addition, the cytotoxicity of P19-MMAE and P19-DM1 in normal cells and the control human breast cancer cell line MCF7 was minimal. These results suggest that this approach may be useful in decreasing cytotoxic side effects in non-tumoral tissue.

  11. Modeling Organic Anion-Transporting Polypeptide 1B1 Inhibition to Elucidate Interaction Risks in Early Drug Design.

    PubMed

    Zamora, Ismael; Winiwarter, Susanne

    2016-10-01

    The importance of transporter proteins for the disposition of drugs has become increasingly apparent during the past decade. A noted drug-drug interaction risk is the inhibition of organic anion-transporting polypeptides (OATPs), key transporters for the liver uptake of the widely used statins. We show here the development of a ligand-based in silico model for interaction with OATP1B1, an important representative of the OATP family. The model is based on a structural overlay of 6 known OATP1B1 inhibitors. A data set of about 150 compounds with published OATP1B1 inhibition data was compared to the resulting "transportophor," and a similarity threshold was defined to distinguish between active and inactive molecules. In addition, using a statistical model based on physicochemical properties of the compounds as prefilter was found to enhance the overall predictivity of the model (final accuracy 0.73, specificity 074, and sensitivity 0.71, based on 126 compounds). The combined model was validated using an in-house data set (accuracy, specificity, and sensitivity were 0.63, 0.59, and 0.78, respectively; 62 compounds). The model gives also a structural overlay to the most similar template enabling visualization of where a change in a given structure might reduce the interaction with the transporter.

  12. An evaluation of the CYP2D6 and CYP3A4 inhibition potential of metoprolol metabolites and their contribution to drug-drug and drug-herb interaction by LC-ESI/MS/MS.

    PubMed

    Borkar, Roshan M; Bhandi, Murali Mohan; Dubey, Ajay P; Ganga Reddy, V; Komirishetty, Prashanth; Nandekar, Prajwal P; Sangamwar, Abhay T; Kamal, Ahmed; Banerjee, Sanjay K; Srinivas, R

    2016-10-01

    The aim of the present study was to evaluate the contribution of metabolites to drug-drug interaction and drug-herb interaction using the inhibition of CYP2D6 and CYP3A4 by metoprolol (MET) and its metabolites. The peak concentrations of unbound plasma concentration of MET, α-hydroxy metoprolol (HM), O-desmethyl metoprolol (ODM) and N-desisopropyl metoprolol (DIM) were 90.37 ± 2.69, 33.32 ± 1.92, 16.93 ± 1.70 and 7.96 ± 0.94 ng/mL, respectively. The metabolites identified, HM and ODM, had a ratio of metabolic area under the concentration-time curve (AUC) to parent AUC of ≥0.25 when either total or unbound concentration of metabolite was considered. In vitro CYP2D6 and CYP3A4 inhibition by MET, HM and ODM study revealed that MET, HM and ODM were not inhibitors of CYP3A4-catalyzed midazolam metabolism and CYP2D6-catalyzed dextromethorphan metabolism. However, DIM only met the criteria of >10% of the total drug related material and <25% of the parent using unbound concentrations. If CYP inhibition testing is solely based on metabolite exposure, DIM metabolite would probably not be considered. However, the present study has demonstrated that DIM contributes significantly to in vitro drug-drug interaction. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Binding and inhibition of drug transport proteins by heparin: a potential drug transporter modulator capable of reducing multidrug resistance in human cancer cells.

    PubMed

    Chen, Yunliang; Scully, Michael; Petralia, Gloria; Kakkar, Ajay

    2014-01-01

    A major problem in cancer treatment is the development of resistance to chemotherapeutic agents, multidrug resistance (MDR), associated with increased activity of transmembrane drug transporter proteins which impair cytotoxic treatment by rapidly removing the drugs from the targeted cells. Previously, it has been shown that heparin treatment of cancer patients undergoing chemotherapy increases survival. In order to determine whether heparin is capable reducing MDR and increasing the potency of chemotherapeutic drugs, the cytoxicity of a number of agents toward four cancer cell lines (a human enriched breast cancer stem cell line, two human breast cancer cell lines, MCF-7 and MDA-MB-231, and a human lung cancer cell line A549) was tested in the presence or absence of heparin. Results demonstrated that heparin increased the cytotoxicity of a range of chemotherapeutic agents. This effect was associated with the ability of heparin to bind to several of the drug transport proteins of the ABC and non ABC transporter systems. Among the ABC system, heparin treatment caused significant inhibition of the ATPase activity of ABCG2 and ABCC1, and of the efflux function observed as enhanced intracellular accumulation of specific substrates. Doxorubicin cytoxicity, which was enhanced by heparin treatment of MCF-7 cells, was found to be under the control of one of the major non-ABC transporter proteins, lung resistance protein (LRP). LRP was also shown to be a heparin-binding protein. These findings indicate that heparin has a potential role in the clinic as a drug transporter modulator to reduce multidrug resistance in cancer patients.

  14. Artemisinin-derived dimer ART-838 potently inhibited human acute leukemias, persisted in vivo, and synergized with antileukemic drugs

    PubMed Central

    Fox, Jennifer M.; Moynihan, James R.; Mott, Bryan T.; Mazzone, Jennifer R.; Anders, Nicole M.; Brown, Patrick A.; Rudek, Michelle A.; Liu, Jun O.; Arav-Boger, Ravit; Posner, Gary H.

    2016-01-01

    Artemisinins, endoperoxide-containing molecules, best known as antimalarials, have potent antineoplastic activity. The established antimalarial, artesunate (AS), and the novel artemisinin-derived trioxane diphenylphosphate dimer 838 (ART-838) inhibited growth of all 23 tested acute leukemia cell lines, reduced cell proliferation and clonogenicity, induced apoptosis, and increased intracellular levels of reactive oxygen species (ROS). ART-838 was 88-fold more potent that AS in vitro, inhibiting all leukemia cell lines at submicromolar concentrations. Both ART-838 and AS cooperated with several established antileukemic drugs and newer kinase inhibitors to inhibit leukemia cell growth. ART-838 had a longer plasma half-life than AS in immunodeficient NOD-SCID-IL2Rgnull (NSG) mice, remaining at effective antileukemic concentrations for >8h. Intermittent cycles of ART-838 inhibited growth of acute leukemia xenografts and primagrafts in NSG mice, at higher potency than AS. Based on these preclinical data, we propose that AS, with its established low toxicity and low cost, and ART-838, with its higher potency and longer persistence in vivo, should be further developed toward integration into antileukemic regimens. PMID:26771236

  15. Artemisinin-derived dimer ART-838 potently inhibited human acute leukemias, persisted in vivo, and synergized with antileukemic drugs.

    PubMed

    Fox, Jennifer M; Moynihan, James R; Mott, Bryan T; Mazzone, Jennifer R; Anders, Nicole M; Brown, Patrick A; Rudek, Michelle A; Liu, Jun O; Arav-Boger, Ravit; Posner, Gary H; Civin, Curt I; Chen, Xiaochun

    2016-02-09

    Artemisinins, endoperoxide-containing molecules, best known as antimalarials, have potent antineoplastic activity. The established antimalarial, artesunate (AS), and the novel artemisinin-derived trioxane diphenylphosphate dimer 838 (ART-838) inhibited growth of all 23 tested acute leukemia cell lines, reduced cell proliferation and clonogenicity, induced apoptosis, and increased intracellular levels of reactive oxygen species (ROS). ART-838 was 88-fold more potent that AS in vitro, inhibiting all leukemia cell lines at submicromolar concentrations. Both ART-838 and AS cooperated with several established antileukemic drugs and newer kinase inhibitors to inhibit leukemia cell growth. ART-838 had a longer plasma half-life than AS in immunodeficient NOD-SCID-IL2Rgnull (NSG) mice, remaining at effective antileukemic concentrations for >8h. Intermittent cycles of ART-838 inhibited growth of acute leukemia xenografts and primagrafts in NSG mice, at higher potency than AS. Based on these preclinical data, we propose that AS, with its established low toxicity and low cost, and ART-838, with its higher potency and longer persistence in vivo, should be further developed toward integration into antileukemic regimens.

  16. Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy.

    PubMed

    Mast, Natalia; Lin, Joseph B; Pikuleva, Irina A

    2015-09-01

    Cytochrome P450 CYP27A1 is the only enzyme in humans converting cholesterol to 27-hydroxycholesterol, an oxysterol of multiple functions, including tissue-specific modulation of estrogen and liver X receptors. Both receptors seem to mediate adverse effects of 27-hydroxycholesterol in breast cancer when the levels of this oxysterol are elevated. The present work assessed druggability of CYP27A1 as a potential antibreast cancer target. We selected 26 anticancer and noncancer medications, most approved by the Food and Drug Administration, and evaluated them first in vitro for inhibition of purified recombinant CYP27A1 and binding to the enzyme active site. Six strong CYP27A1 inhibitors/binders were identified. These were the two antibreast cancer pharmaceuticals anastrozole and fadrozole, antiprostate cancer drug bicalutamide, sedative dexmedetomidine, and two antifungals ravuconazole and posaconazole. Anastrozole was then tested in vivo on mice, which received subcutaneous drug injections for 1 week. Mouse plasma and hepatic 27-hydroxycholesterol levels were decreased 2.6- and 1.6-fold, respectively, whereas plasma and hepatic cholesterol content remained unchanged. Thus, pharmacologic CYP27A1 inhibition is possible in the whole body and individual organs, but does not negatively affect cholesterol elimination. Our results enhance the potential of CYP27A1 as an antibreast cancer target, could be of importance for the interpretation of Femara versus Anastrozole Clinical Evaluation Trial, and bring attention to posaconazole as a potential complementary anti-breast cancer medication. More medications on the US market may have unanticipated off-target inhibition of CYP27A1, and we propose strategies for their identification.

  17. Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy

    PubMed Central

    Mast, Natalia; Lin, Joseph B.

    2015-01-01

    Cytochrome P450 CYP27A1 is the only enzyme in humans converting cholesterol to 27-hydroxycholesterol, an oxysterol of multiple functions, including tissue-specific modulation of estrogen and liver X receptors. Both receptors seem to mediate adverse effects of 27-hydroxycholesterol in breast cancer when the levels of this oxysterol are elevated. The present work assessed druggability of CYP27A1 as a potential antibreast cancer target. We selected 26 anticancer and noncancer medications, most approved by the Food and Drug Administration, and evaluated them first in vitro for inhibition of purified recombinant CYP27A1 and binding to the enzyme active site. Six strong CYP27A1 inhibitors/binders were identified. These were the two antibreast cancer pharmaceuticals anastrozole and fadrozole, antiprostate cancer drug bicalutamide, sedative dexmedetomidine, and two antifungals ravuconazole and posaconazole. Anastrozole was then tested in vivo on mice, which received subcutaneous drug injections for 1 week. Mouse plasma and hepatic 27-hydroxycholesterol levels were decreased 2.6- and 1.6-fold, respectively, whereas plasma and hepatic cholesterol content remained unchanged. Thus, pharmacologic CYP27A1 inhibition is possible in the whole body and individual organs, but does not negatively affect cholesterol elimination. Our results enhance the potential of CYP27A1 as an antibreast cancer target, could be of importance for the interpretation of Femara versus Anastrozole Clinical Evaluation Trial, and bring attention to posaconazole as a potential complementary anti-breast cancer medication. More medications on the US market may have unanticipated off-target inhibition of CYP27A1, and we propose strategies for their identification. PMID:26082378

  18. Ingredients in fruit juices interact with dasatinib through inhibition of BCRP: a new mechanism of beverage-drug interaction.

    PubMed

    Fleisher, Brett; Unum, Jesse; Shao, Jie; An, Guohua

    2015-01-01

    Small molecule tyrosine kinase inhibitors (TKIs) are a group of highly novel and target-specific anticancer drugs. Recently, most TKIs are found to be substrates of P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP). However, little information is available regarding the Pgp- or BCRP-mediated interaction of TKIs with coadministered drugs/food/beverage. Our objective was to evaluate the effect of the major ingredients of grapefruit juice (GFJ), orange juice (OJ), apple juice (AJ), and green tea on P-gp and BCRP-mediated dasatinib efflux. Among the 14 ingredients screened, only tangeretin and nobiletin moderately inhibited P-gp-mediated dasatinib efflux. In contrast, four ingredients in GFJ [i.e., bergamottin, 6',7'-dihydroxybergamottin (DHB), quercetin, and kaempferol], two ingredients in OJ (tangeretin and nobiletin), and one ingredient in AJ (i.e., hesperetin) greatly inhibited BCRP-mediated dasatinib efflux at the concentration of 50 μM (p < 0.001). Further concentration-dependent studies revealed that bergamottin, DHB, tangeretin, and nobiletin are potent BCRP inhibitors, with IC₅₀ values 3.19, 5.2, 1.19, and 1.04 μM, respectively. Further in vivo investigations are warranted to evaluate the BCRP-mediated FJ-TKI interaction. Literature reports only documented the modulatory effect of FJ and green tea on CYP3A, P-gp, and OATP. Our novel finding that FJ ingredients strongly inhibit BCRP may represent a new mechanism of beverage-drug interaction.

  19. The enriched fraction of Elephantopus scaber Triggers apoptosis and inhibits multi-drug resistance transporters in human epithelial cancer cells

    PubMed Central

    Beeran, Asmy Appadath; Maliyakkal, Naseer; Rao, Chamallamudi Mallikarjuna; Udupa, Nayanabhirama

    2015-01-01

    Background: Medicinal plants have played an important role in the development of clinically useful anticancer agents. Elephantopus scaber (Asteraceae) (ES) is widely used in Indian traditional system of medicine for the treatment of various ailments including cancer. Objective: To investigate anticancer effects of ES in human epithelial cancer cells. Materials and Methods: Cytotoxicity of ethanolic extract of ES (ES-ET) and its fractions, such as ES Petroleum ether fraction (ES-PET), ES Dichloromethane fraction (ES DCM), n Butyl alcohol fraction (ES-BT), and ES-Rest (ES-R) were assessed in human epithelial cancer cell lines using sulforhodamine B (SRB) assay. Acridine orange/ethidium bromide assay and Hoechst 33342 assays were used to gauge induction of apoptosis. Cell cycle analysis and micronuclei assay were used to assess cell cycle specific pharmacological effects and drug induced genotoxicty. Further, the ability of ES to inhibit multi drug resistant (MDR) transporters (ABC-B1 and ABC-G2) was determined by Rhodamine (Rho) and Mitoxantrone (MXR) efflux assays. Results: The enriched fraction of ES (ES DCM) possessed dose-dependent potent cytotoxicity in human epithelial cancer cells. Further, treatment of cancer cells (HeLa, A549, MCF-7, and Caco-2) with ES DCM showed hall mark properties of apoptosis (membrane blebbing, nuclear condensation etc.). Similarly, ES DCM caused enhanced sub G0 content and micronuclei formation indicating the induction of apoptosis and drug induced genotoxicity in cancer cells, respectively. Interestingly, ES DCM inhibited MDR transporters (ABC B1 and ABC G2) in cancer cells. Conclusion: The enriched fraction of ES imparted cytotoxic effects, triggered apoptosis, induced genotoxicity, and inhibited MDR transporters in human epithelial cancer cells. Thus, ES appears to be potential anticancer agent. PMID:25829763

  20. Antibiotic drug tigecycline reduces neuroblastoma cells proliferation by inhibiting Akt activation in vitro and in vivo.

    PubMed

    Zhong, Xiaoxia; Zhao, Erhu; Tang, Chunling; Zhang, Weibo; Tan, Juan; Dong, Zhen; Ding, Han-Fei; Cui, Hongjuan

    2016-06-01

    As the first member of glycylcycline bacteriostatic agents, tigecycline is approved as a novel expanded-spectrum antibiotic, which is clinically available. However, accumulating evidence indicated that tigecycline was provided with the potential application in cancer therapy. In this paper, tigecycline was shown to exert an anti-proliferative effect on neuroblastoma cell lines. Furthermore, it was found that tigecycline induced G1-phase cell cycle arrest instead of apoptosis by means of Akt pathway inhibition. In neuroblastoma cell lines, the Akt activator insulin-like growth factor-1 (hereafter referred to as IGF-1) reversed tigecycline-induced cell cycle arrest. Besides, tigecycline inhibited colony formation and suppressed neuroblastoma cells xenograft formation and growth. After tigecycline treatment in vivo, the Akt pathway inhibition was confirmed as well. Collectively, our data provided strong evidences that tigecycline inhibited neuroblastoma cells growth and proliferation through the Akt pathway inhibition in vitro and in vivo. In addition, these results were supported by previous studies concerning the application of tigecycline in human tumors treatment, suggesting that tigecycline might act as a potential candidate agent for neuroblastoma treatment.

  1. Inhibition of neutrophil priming and tyrosyl phosphorylation by cepharanthine, a nonsteroidal antiinflammatory drug.

    PubMed

    Kobuchi, H; Li, M J; Matsuno, T; Yasuda, T; Utsumi, K

    1992-12-01

    Receptor-mediated superoxide (O2.-)-generation and tyrosyl phosphorylation of neutrophil proteins, such as 58, 65, 84, 108 and 115 kDa, were enhanced by priming cells with granulocyte colony stimulating factor (G-CSF) [Akimura, K. et al. Arch. Biochem. Biophys. 298: 703-709, 1992]. To elucidate the possible involvement of tyrosyl phosphorylation of neutrophil proteins in the enhancing mechanism of O2.- generation, the effect of cepharanthine, a biscoclaurine alkaloid that inhibits phorbol 12-myristate 13-acetate (PMA)- and receptor-mediated O2.- generation, on the priming of human peripheral neutrophils (HPPMN) was studied. Both enhancement of formyl-methionyl-leucyl- phenylalanine (FMLP)-mediated O2.- generation and tyrosyl phosphorylation of some neutrophil proteins, i.e., 115, 108 and 84 kDa proteins, by HHPMN after treatment with G-CSF were strongly inhibited by cepharanthine in a concentration- and treatment-time-dependent manner. In contrast, inhibition of PMA-mediated O2.- generation by cepharanthine was weak and independent of treatment time. These results suggest that cepharanthine might inhibit the priming step of neutrophil activation concomitantly with its inhibition of the tyrosyl phosphorylation of some neutrophil proteins that might underlie the mechanism for priming of neutrophils with G-CSF.

  2. Polysome shift assay for direct measurement of miRNA inhibition by anti-miRNA drugs.

    PubMed

    Androsavich, John R; Sobczynski, Daniel J; Liu, Xueqing; Pandya, Shweta; Kaimal, Vivek; Owen, Tate; Liu, Kai; MacKenna, Deidre A; Chau, B Nelson

    2016-01-29

    Anti-miRNA (anti-miR) oligonucleotide drugs are being developed to inhibit overactive miRNAs linked to disease. To help facilitate the transition from concept to clinic, new research tools are required. Here we report a novel method--miRNA Polysome Shift Assay (miPSA)--for direct measurement of miRNA engagement by anti-miR, which is more robust than conventional pharmacodynamics using downstream target gene derepression. The method takes advantage of size differences between active and inhibited miRNA complexes. Active miRNAs bind target mRNAs in high molecular weight polysome complexes, while inhibited miRNAs are sterically blocked by anti-miRs from forming this interaction. These two states can be assessed by fractionating tissue or cell lysates using differential ultracentrifugation through sucrose gradients. Accordingly, anti-miR treatment causes a specific shift of cognate miRNA from heavy to light density fractions. The magnitude of this shift is dose-responsive and maintains a linear relationship with downstream target gene derepression while providing a substantially higher dynamic window for aiding drug discovery. In contrast, we found that the commonly used 'RT-interference' approach, which assumes that inhibited miRNA is undetectable by RT-qPCR, can yield unreliable results that poorly reflect the binding stoichiometry of anti-miR to miRNA. We also demonstrate that the miPSA has additional utility in assessing anti-miR cross-reactivity with miRNAs sharing similar seed sequences.

  3. Cannabidiol, among Other Cannabinoid Drugs, Modulates Prepulse Inhibition of Startle in the SHR Animal Model: Implications for Schizophrenia Pharmacotherapy

    PubMed Central

    Peres, Fernanda F.; Levin, Raquel; Almeida, Valéria; Zuardi, Antonio W.; Hallak, Jaime E.; Crippa, José A.; Abilio, Vanessa C.

    2016-01-01

    Schizophrenia is a severe psychiatric disorder that involves positive, negative and cognitive symptoms. Prepulse inhibition of startle reflex (PPI) is a paradigm that assesses the sensorimotor gating functioning and is impaired in schizophrenia patients as well as in animal models of this disorder. Recent data point to the participation of the endocannabinoid system in the pathophysiology and pharmacotherapy of schizophrenia. Here, we focus on the effects of cannabinoid drugs on the PPI deficit of animal models of schizophrenia, with greater focus on the SHR (Spontaneously Hypertensive Rats) strain, and on the future prospects resulting from these findings. PMID:27667973

  4. Screening of Drugs Inhibiting In vitro Oligomerization of Cu/Zn-Superoxide Dismutase with a Mutation Causing Amyotrophic Lateral Sclerosis.

    PubMed

    Anzai, Itsuki; Toichi, Keisuke; Tokuda, Eiichi; Mukaiyama, Atsushi; Akiyama, Shuji; Furukawa, Yoshiaki

    2016-01-01

    Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) gene have been shown to cause a familial form of amyotrophic lateral sclerosis (SOD1-ALS). A major pathological hallmark of this disease is abnormal accumulation of mutant SOD1 oligomers in the affected spinal motor neurons. While no effective therapeutics for SOD1-ALS is currently available, SOD1 oligomerization will be a good target for developing cures of this disease. Recently, we have reproduced the formation of SOD1 oligomers abnormally cross-linked via disulfide bonds in a test tube. Using our in vitro model of SOD1 oligomerization, therefore, we screened 640 FDA-approved drugs for inhibiting the oligomerization of SOD1 proteins, and three effective classes of chemical compounds were identified. Those hit compounds will provide valuable information on the chemical structures for developing a novel drug candidate suppressing the abnormal oligomerization of mutant SOD1 and possibly curing the disease.

  5. Inhibition of bacterial and fungal pathogens by the orphaned drug auranofin

    PubMed Central

    Fuchs, Beth Burgwyn; RajaMuthiah, Rajmohan; Souza, Ana Carolina Remondi; Eatemadpour, Soraya; Rossoni, Rodnei Dennis; Santos, Daniel Assis; Junqueira, Juliana C; Rice, Louis B; Mylonakis, Eleftherios

    2016-01-01

    Background: We identified auranofin as an antimicrobial compound utilizing a high-throughput screen using a Caenorhabditis elegans–Staphylococcus aureus infection model. Results/methodology: Treatment of infected nematodes with auranofin resulted in a prolonged survival rate of 95%, reached with 0.78 μg/ml. Further investigation of the antimicrobial activity of auranofin found inhibition against S. aureus, Enterococcus faecium and Enterococcus faecalis. Importantly, the fungal pathogens Cryptococcus neoformans was also effectively inhibited with an MIC at 0.5 μg/ml. Auranofin appears to target the thioredoxin system. Conclusion: This work provides extensive additional data on the antibacterial effects of auranofin that includes both reference and clinical isolates and reports a novel inhibition of fungal pathogens by this compound. PMID:26808006

  6. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition

    PubMed Central

    Venter, Henrietta; Mowla, Rumana; Ohene-Agyei, Thelma; Ma, Shutao

    2015-01-01

    Drug efflux protein complexes confer multidrug resistance on bacteria by transporting a wide spectrum of structurally diverse antibiotics. Moreover, organisms can only acquire resistance in the presence of an active efflux pump. The substrate range of drug efflux pumps is not limited to antibiotics, but it also includes toxins, dyes, detergents, lipids, and molecules involved in quorum sensing; hence efflux pumps are also associated with virulence and biofilm formation. Inhibitors of efflux pumps are therefore attractive compounds to reverse multidrug resistance and to prevent the development of resistance in clinically relevant bacterial pathogens. Recent successes on the structure determination and functional analysis of the AcrB and MexB components of the AcrAB-TolC and MexAB-OprM drug efflux systems as well as the structure of the fully assembled, functional triparted AcrAB-TolC complex significantly contributed to our understanding of the mechanism of substrate transport and the options for inhibition of efflux. These data, combined with the well-developed methodologies for measuring efflux pump inhibition, could allow the rational design, and subsequent experimental verification of potential efflux pump inhibitors (EPIs). In this review we will explore how the available biochemical and structural information can be translated into the discovery and development of new compounds that could reverse drug resistance in Gram-negative pathogens. The current literature on EPIs will also be analyzed and the reasons why no compounds have yet progressed into clinical use will be explored. PMID:25972857

  7. Marked enhancement of lysosomal targeting and efficacy of ErbB2-targeted drug delivery by HSP90 inhibition

    PubMed Central

    Mohapatra, Bhopal; Luan, Haitao; Soni, Kruti; Zhang, Jinjin; Storck, Matthew A.; Feng, Dan; Bielecki, Timothy A.; Band, Vimla; Cohen, Samuel M.; Bronich, Tatiana K.; Band, Hamid

    2016-01-01

    Targeted delivery of anticancer drugs to tumor cells using monoclonal antibodies against oncogenic cell surface receptors is an emerging therapeutic strategy. These strategies include drugs directly conjugated to monoclonal antibodies through chemical linkers (Antibody-Drug Conjugates, ADCs) or those encapsulated within nanoparticles that in turn are conjugated to targeting antibodies (Antibody-Nanoparticle Conjugates, ANPs). The recent FDA approval of the ADC Trastuzumab-TDM1 (Kadcyla®; Genentech; San Francisco) for the treatment of ErbB2-overexpressing metastatic breast cancer patients has validated the strong potential of these strategies. Even though the activity of ANPs and ADCs is dependent on lysosomal traffic, the roles of the endocytic route traversed by the targeted receptor and of cancer cell-specific alterations in receptor dynamics on the efficiency of drug delivery have not been considered in these new targeted therapies. For example, constitutive association with the molecular chaperone HSP90 is thought to either retard ErbB2 endocytosis or to promote its recycling, traits undesirable for targeted therapy with ANPs and ADCs. HSP90 inhibitors are known to promote ErbB2 ubiquitination, targeting to lysosome and degradation. We therefore hypothesized that ErbB2-targeted drug delivery using Trastuzumab-conjugated nanoparticles could be significantly improved by HSP90 inhibitor-promoted lysosomal traffic of ErbB2. Studies reported here validate this hypothesis and demonstrate, both in vitro and in vivo, that HSP90 inhibition facilitates the intracellular delivery of Trastuzumab-conjugated ANPs carrying a model chemotherapeutic agent, Doxorubicin, specifically into ErbB2-overexpressing breast cancer cells, resulting in improved antitumor activity. These novel findings highlight the need to consider oncogene-specific alterations in receptor traffic in the design of targeted drug delivery strategies. We suggest that combination of agents that enhance

  8. Marked enhancement of lysosomal targeting and efficacy of ErbB2-targeted drug delivery by HSP90 inhibition.

    PubMed

    Raja, Srikumar M; Desale, Swapnil S; Mohapatra, Bhopal; Luan, Haitao; Soni, Kruti; Zhang, Jinjin; Storck, Matthew A; Feng, Dan; Bielecki, Timothy A; Band, Vimla; Cohen, Samuel M; Bronich, Tatiana K; Band, Hamid

    2016-03-01

    Targeted delivery of anticancer drugs to tumor cells using monoclonal antibodies against oncogenic cell surface receptors is an emerging therapeutic strategy. These strategies include drugs directly conjugated to monoclonal antibodies through chemical linkers (Antibody-Drug Conjugates, ADCs) or those encapsulated within nanoparticles that in turn are conjugated to targeting antibodies (Antibody-Nanoparticle Conjugates, ANPs). The recent FDA approval of the ADC Trastuzumab-TDM1 (Kadcyla; Genentech; San Francisco) for the treatment of ErbB2-overexpressing metastatic breast cancer patients has validated the strong potential of these strategies. Even though the activity of ANPs and ADCs is dependent on lysosomal traffic, the roles of the endocytic route traversed by the targeted receptor and of cancer cell-specific alterations in receptor dynamics on the efficiency of drug delivery have not been considered in these new targeted therapies. For example, constitutive association with the molecular chaperone HSP90 is thought to either retard ErbB2 endocytosis or to promote its recycling, traits undesirable for targeted therapy with ANPs and ADCs. HSP90 inhibitors are known to promote ErbB2 ubiquitination, targeting to lysosome and degradation. We therefore hypothesized that ErbB2-targeted drug delivery using Trastuzumab-conjugated nanoparticles could be significantly improved by HSP90 inhibitor-promoted lysosomal traffic of ErbB2. Studies reported here validate this hypothesis and demonstrate, both in vitro and in vivo, that HSP90 inhibition facilitates the intracellular delivery of Trastuzumab-conjugated ANPs carrying a model chemotherapeutic agent, Doxorubicin, specifically into ErbB2-overexpressing breast cancer cells, resulting in improved antitumor activity. These novel findings highlight the need to consider oncogene-specific alterations in receptor traffic in the design of targeted drug delivery strategies. We suggest that combination of agents that enhance receptor

  9. Inhibition of adenylyl and guanylyl cyclase isoforms by the antiviral drug foscarnet.

    PubMed

    Kudlacek, O; Mitterauer, T; Nanoff, C; Hohenegger, M; Tang, W J; Freissmuth, M; Kleuss, C

    2001-02-02

    The pyrophosphate (PP(i)) analog foscarnet inhibits viral DNA-polymerases and is used to treat cytomegalovirus and human immunodeficiency vius infections. Nucleotide cyclases and DNA-polymerases catalyze analogous reactions, i.e. a phosphodiester bond formation, and have similar topologies in their active sites. Inhibition by foscarnet of adenylyl cyclase isoforms was therefore tested with (i) purified catalytic domains C1 and C2 of types I and VII (IC1 and VIIC1) and of type II (IIC2) and (ii) membrane-bound holoenzymes (from mammalian tissues and types I, II, and V heterologously expressed in Sf9 cell membranes). Foscarnet was more potent than PP(i) in suppressing forskolin-stimulated catalysis by both, IC1/IIC2 and VIIC1/IIC2. Stimulation of VIIC1/IIC2 by Galpha(s) relieved the inhibition by foscarnet but not that by PP(i). The IC(50) of foscarnet on membrane-bound adenylyl cyclases also depended on their mode of regulation. These findings predict that receptor-dependent cAMP formation is sensitive to inhibition by foscarnet in some, but not all, cells. This was verified with two cell lines; foscarnet blocked cAMP accumulation after A(2A)-adenosine receptor stimulation in PC12 but not in HEK-A(2A) cells. Foscarnet also inhibited soluble and, to a lesser extent, particulate guanylyl cylase. Thus, foscarnet interferes with the generation of cyclic nucleotides, an effect which may give rise to clinical side effects. The extent of inhibition varies with the enzyme isoform and with the regulatory input.

  10. Altering metabolic profiles of drugs by precision deuteration: reducing mechanism-based inhibition of CYP2D6 by paroxetine.

    PubMed

    Uttamsingh, Vinita; Gallegos, Richard; Liu, Julie F; Harbeson, Scott L; Bridson, Gary W; Cheng, Changfu; Wells, David S; Graham, Philip B; Zelle, Robert; Tung, Roger

    2015-07-01

    Selective deuterium substitution as a means of ameliorating clinically relevant pharmacokinetic drug interactions is demonstrated in this study. Carbon-deuterium bonds are more stable than corresponding carbon-hydrogen bonds. Using a precision deuteration platform, the two hydrogen atoms at the methylenedioxy carbon of paroxetine were substituted with deuterium. The new chemical entity, CTP-347 [(3S,4R)-3-((2,2-dideuterobenzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidine], demonstrated similar selectivity for the serotonin receptor, as well as similar neurotransmitter uptake inhibition in an in vitro rat synaptosome model, as unmodified paroxetine. However, human liver microsomes cleared CTP-347 faster than paroxetine as a result of decreased inactivation of CYP2D6. In phase 1 studies, CTP-347 was metabolized more rapidly in humans and exhibited a lower pharmacokinetic accumulation index than paroxetine. These alterations in the metabolism profile resulted in significantly reduced drug-drug interactions between CTP-347 and two other CYP2D6-metabolized drugs: tamoxifen (in vitro) and dextromethorphan (in humans). Our results show that precision deuteration can improve the metabolism profiles of existing pharmacotherapies without affecting their intrinsic pharmacologies.

  11. Quantitative evaluation of the combination between cytotoxic drug and efflux transporter inhibitors based on a tumour growth inhibition model.

    PubMed

    Sostelly, Alexandre; Payen, Léa; Guitton, Jérôme; Di Pietro, Attilio; Falson, Pierre; Honorat, Mylène; Boumendjel, Ahcène; Gèze, Annabelle; Freyer, Gilles; Tod, Michel

    2014-04-01

    ATP-Binding Cassette transporters such as ABCG2 confer resistance to various anticancer drugs including irinotecan and its active metabolite, SN38. Early quantitative evaluation of efflux transporter inhibitors-cytotoxic combination requires quantitative drug-disease models. A proof-of-concept study has been carried out for studying the effect of a new ABCG2 transporter inhibitor, MBLI87 combined to irinotecan in mice xenografted with cells overexpressing ABCG2. Mice were treated with irinotecan alone or combined to MBLI87, and tumour size was periodically measured. To model those data, a tumour growth inhibition model was developed. Unperturbed tumour growth was modelled using Simeoni's model. Drug effect kinetics was accounted for by a Kinetic-Pharmacodynamic approach. Effect of inhibitor was described with a pharmacodynamic interaction model where inhibitor enhances activity of cytotoxic. This model correctly predicted tumour growth dynamics from our study. MBLI87 increased irinotecan potency by 20% per μmol of MBLI87. This model retains enough complexity to simultaneously describe tumour growth and effect of this type of drug combination. It can thus be used as a template to early evaluate efflux transporter inhibitors in-vivo.

  12. Heat Shock Protein 90 Inhibition in Cancer Drug Discovery: From Chemistry to Futural Clinical Applications.

    PubMed

    Özgür, Aykut; Tutar, Yusuf

    2016-01-01

    Heat shock protein 90 (Hsp90) is an important member of the chaperone protein family and it is involved in stabilization, regulation, and maintenance of oncogenic client proteins with co-chaperones. Cochaperones regulate the ATPase activity of Hsp90 and its interactions with oncogenic client proteins. Therefore, Hsp90 and its co-chaperones have become significant therapeutic targets for cancer treatment. Many chemical compounds have been evaluated for Hsp90 inhibition as well as significant results were obtained in clinical trials. In this paper, we emphasize on the key roles of Hsp90 and its co-chaperones in tumorigenesis and overview therapeutic strategies of Hsp90 inhibition in oncology.

  13. Inhibition of a solid phase reaction among excipients that accelerates drug release from a solid dispersion with aging.

    PubMed

    Mizuno, Masayasu; Hirakura, Yutaka; Yamane, Ikuro; Miyanishi, Hideo; Yokota, Shoji; Hattori, Munetaka; Kajiyama, Atsushi

    2005-11-23

    separation of the drug substance and CMEC upon production. The solid phase reaction advanced differentially in the solid dispersion depending on the degree of phase separation set initially. The use of non-aqueous solvents and/or a decrease in the coating temperatures inhibited the occurrence of phase separation upon production, thereby preventing the formation of CMEC-rich phases where the solid phase reaction occurred during storage.

  14. Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro: preferential inhibition of CYP2D6.

    PubMed

    Shin, J G; Soukhova, N; Flockhart, D A

    1999-09-01

    The ability of antipsychotic drugs to inhibit the catalytic activity of five cytochrome P-450 (CYP) isoforms was compared using in vitro human liver microsomal preparations to evaluate the relative potential of these drugs to inhibit drug metabolism. The apparent kinetic parameters for enzyme inhibition were determined by nonlinear regression analysis of the data. All antipsychotic drugs tested competitively inhibited dextromethorphan O-demethylation, a selective marker for CYP2D6, in a concentration-dependent manner. Thioridazine and perphenazine were the most potent, with IC(50) values (2.7 and 1.5 microM) that were comparable to that of quinidine (0.52 microM). The estimated K(i) values for CYP2D6-catalyzing dextrorphan formation were ranked in the following order: perphenazine (0.8 microM), thioridazine (1.4 microM), chlorpromazine (6.4 microM), haloperidol (7.2 microM), fluphenazine (9.4 microM), risperidone (21.9 microM), clozapine (39.0 microM), and cis-thiothixene (65.0 microM). No remarkable inhibition of other CYP isoforms was observed except for moderate inhibition of CYP1A2-catalyzed phenacetin O-deethylation by fluphenazine (K(i) = 40.2 microM) and perphenazine (K(i) = 65.1). The estimated K(i) values for the inhibition of CYP2C9, 2C19, and 3A were >300 microM in almost all antipsychotics tested. These results suggest that antipsychotic drugs exhibit a striking selectivity for CYP2D6 compared with other CYP isoforms. This may reflect a remarkable commonality of structure between the therapeutic targets for these drugs, the transporters, and metabolic enzymes that distribute and eliminate them. Clinically, coadministration of these medicines with drugs that are primarily metabolized by CYP2D6 may result in significant drug interactions.

  15. Perspectives on Inhibiting β-Amyloid Aggregation through Structure-Based Drug Design.

    PubMed

    Mishra, Pankaj; Ayyannan, Senthil R; Panda, Gautam

    2015-09-01

    Targeting β-amyloid (Aβ) remains the most desired strategy in Alzheimer's disease (AD) drug discovery research. Many peptides that specifically target Aβ aggregates are known, encompassing efforts from both industrial and academic research settings. However, in clinical terms, not much success has been gained with peptide research; in turn, small drug-like molecules are already globally recognized as showing promise as an alternate approach. Aβ aggregation inhibitors are the most important part of the multifunctional drug design regimen for treating AD. Unfortunately, rational drug design approaches with small molecules are still in the initial stages. Herein we highlight, update, and elaborate on the structural anatomy of Aβ and known Aβ aggregation inhibitors in hopes of helping to optimize their use in structure-based drug design approaches toward inhibitors with greater specificity. Furthermore, we present the first review of efforts to target a previously uncharacterized region of acetylcholinesterase: the N-terminal 7-20 sub-region, which was experimentally elucidated to participate in Aβ aggregation and deposition.

  16. Orally Administered Mucolytic Drug l-Carbocisteine Inhibits Angiogenesis and Tumor Growth in Mice.

    PubMed

    Shinya, Tomohiro; Yokota, Tsubasa; Nakayama, Shiori; Oki, Sayuri; Mutoh, Junpei; Takahashi, Satoru; Sato, Keizo

    2015-09-01

    Angiogenesis, the formation of new blood vessels from pre-existing vessels, is essential for the growth and metastasis of tumors. In this study, we found that l-carbocisteine, a widely used expectorant, potently inhibits angiogenesis in vitro and in vivo. An in vivo Matrigel plug assay revealed that l-carbocisteine (2.5 mg/kg i.p. twice daily) significantly inhibited vascular endothelial growth factor (VEGF)-induced angiogenesis. l-Carbocisteine also suppressed VEGF-stimulated proliferation, migration, and formation of capillary-like structures of human umbilical vein endothelial cells (HUVECs). We examined the signaling pathways affected in VEGF-stimulated HUVECs, and found that l-carbocisteine significantly inhibited VEGF-induced phosphorylation of phospholipase C (PLC) γ, protein kinase C (PKC) μ, and extracellular signal-related kinases (ERK) 1/2, which have been shown to be essential for angiogenesis. However, these inhibitory effects of l-carbocisteine were not observed in the HeLa human cervical cancer cell line. An in vivo study of Colon-26 tumor-bearing mice found that tumor volumes were significantly smaller in mice treated with l-carbocisteine (150 mg/kg administered orally twice daily) in comparison with vehicle-treated mice. However, l-carbocisteine had no direct effect on Colon-26 cell proliferation or ERK activation. Collectively, our results suggest that l-carbocisteine inhibits tumor angiogenesis by suppressing PLCγ/PKC/ERK signaling.

  17. Molecular properties of psychopharmacological drugs determining non-competitive inhibition of 5-HT3A receptors.

    PubMed

    Kornhuber, Johannes; Terfloth, Lothar; Bleich, Stefan; Wiltfang, Jens; Rupprecht, Rainer

    2009-06-01

    We developed a structure-property-activity relationship (SPAR)-model for psychopharmacological drugs acting as non-competitive 5-HT(3A) receptor antagonists by using a decision-tree learner provided by the RapidMiner machine learning tool. A single molecular descriptor, namely the molecular dipole moment per molecular weight (mu/MW), predicts whether or not a substance non-competitively antagonizes 5-HT-induced Na(+) currents. A low mu/MW is compatible with drug-cumulation in apolar lipid rafts. This study confirms that size-intensive descriptors allow the development of compact SPAR models.

  18. Repurposing of antiparasitic drugs: the hydroxy-naphthoquinone buparvaquone inhibits vertical transmission in the pregnant neosporosis mouse model.

    PubMed

    Müller, Joachim; Aguado-Martínez, Adriana; Manser, Vera; Wong, Ho Ning; Haynes, Richard K; Hemphill, Andrew

    2016-02-17

    The three anti-malarial drugs artemiside, artemisone, and mefloquine, and the naphthoquinone buparvaquone known to be active against theileriosis in cattle and Leishmania infections in rodents, were assessed for activity against Neospora caninum infection. All four compounds inhibited the proliferation of N. caninum tachyzoites in vitro with IC50 in the sub-micromolar range, but artemisone and buparvaquone were most effective (IC50 = 3 and 4.9 nM, respectively). However, in a neosporosis mouse model for cerebral infection comprising Balb/c mice experimentally infected with the virulent isolate Nc-Spain7, the three anti-malarial compounds failed to exhibit any activity, since treatment did not reduce the parasite burden in brains and lungs compared to untreated controls. Thus, these compounds were not further evaluated in pregnant mice. On the other hand, buparvaquone, shown earlier to be effective in reducing the parasite load in the lungs in an acute neosporosis disease model, was further assessed in the pregnant mouse model. Buparvaquone efficiently inhibited vertical transmission in Balb/c mice experimentally infected at day 7 of pregnancy, reduced clinical signs in the pups, but had no effect on cerebral infection in the dams. This demonstrates proof-of-concept that drug repurposing may lead to the discovery of an effective compound against neosporosis that can protect offspring from vertical transmission and disease.

  19. Biofilm inhibition and drug-eluting properties of novel DMAEMA-modified polyethylene and silicone rubber surfaces.

    PubMed

    Contreras-García, Angel; Bucio, Emilio; Brackman, Gilles; Coenye, Tom; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2011-02-01

    Poly(2-(dimethylaminoethyl) methacrylate) (pDMAEMA) was grafted to low density polyethylene (LDPE) and silicone rubber (SR) in order to make them less susceptible to microbial biofilm formation. The direct grafting of DMAEMA using γ-rays was an efficient and fast procedure for obtaining modified materials, which could be quaternized in a second step using methyl iodide. Raman spectroscopy showed that the grafting occurred only at the surface of the LDPE, but both at the surface and in the bulk of the SR. Consequently, the grafted chains caused changes in the surface-related features of the LDPE (water contact angle and viscoelastic behavior in the dry state) and in the bulk-related properties of the SR (swelling and viscoelasticity in the swollen state). The microbiological assays revealed that the grafted DMAEMA reduced Candida albicans biofilm formation (almost no biofilm on SR), while the quaternized surfaces inhibited C. albicans and Staphylococcus aureus biofilm by more than 99% compared to pristine materials. Modified LDPE and SR were capable of holding considerable amounts of nalidixic acid, an anionic antimicrobial drug, and sustained the release for several hours. In addition, the grafted materials were cytocompatible (fibroblast cell survival > 70%). In conclusion, these materials have the ability to inhibit microbial biofilm formation and at the same time act as drug-eluting systems, and for that reason may hold great promise for anti-biofouling applications.

  20. Inhibition of aminophylline-induced convulsions in mice by antiepileptic drugs and other agents.

    PubMed

    Czuczwar, S J; Janusz, W; Wamil, A; Kleinrok, Z

    1987-12-15

    Common antiepileptic drugs and agents affecting different neurotransmitter systems were studied against aminophylline (280 mg/kg i.p.)-induced convulsions in mice. All drugs and agents were administered i.p. Diazepam and phenobarbital antagonized the whole seizure pattern and the respective ED50 values for the clonic phase were 3.5 and 62 mg/kg. Valproate at 500 mg/kg protected fewer than 50% of mice against the clonic phase. The remaining antiepileptics (acetazolamide, up to 1,000 mg/kg; carbamazepine and diphenylhydantoin, up to 50 mg/kg; ethosuximide, 500 mg/kg and trimethadione, 400 mg/kg) were totally ineffective in this respect. Propranolol (up to 20 mg/kg), baclofen (20 mg/kg), gamma-hydroxybutyric acid (300 mg/kg), aminooxyacetic acid (20 mg/kg), clonidine (up to 0.2 mg/kg), ketamine (30 mg/kg), atropine (20 mg/kg), papaverine (50 mg/kg) and L-phenylisopropyladenosine (2 mg/kg) did not affect the clonic phase either. Only antagonists of N-methyl-D-aspartic acid excitation, 2-amino-5-phosphonopentanoic acid and 2-amino-7-phosphonoheptanoic acid afforded protection against aminophylline-induced clonic seizure activity. The results show that aminophylline convulsions are relatively resistant to antiepileptic drugs and suggest that antagonists of excitatory transmission are potential antiaminophylline drugs.

  1. Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs

    PubMed Central

    Tang, Lin; Gamal El-Din, Tamer M.; Swanson, Teresa M.; Pryde, David C.; Scheuer, Todd; Zheng, Ning; Catterall, William A.

    2016-01-01

    Ca2+ antagonist drugs are widely used in therapy of cardiovascular disorders1,2. Three chemical classes of drugs bind to three separate, but allosterically interacting, receptor sites on CaV1.2 channels, the most prominent voltage-gated Ca2+ (CaV) channel type in myocytes in cardiac and vascular smooth muscle3–9. The 1,4-dihydropyridines are used primarily for treatment of hypertension and angina pectoris and are thought to act as allosteric modulators of voltage-dependent Ca2+ channel activation, whereas phenylalkylamines and benzothiazepines are used primarily for treatment of cardiac arrhythmias and are thought to physically block the pore1,2. The structural basis for the different binding, action, and therapeutic uses of these drugs remains unknown. Here we present crystallographic and functional analyses of drug binding to the bacterial homotetrameric model CaV channel CaVAb, which is inhibited by dihydropyridines and phenylalkylamines with nanomolar affinity in a state-dependent manner. The binding site for amlodipine and other dihydropyridines is located on the external, lipid-facing surface of the pore module, positioned at the interface of two subunits. Dihydropyridine binding allosterically induces an asymmetric conformation of the selectivity filter, in which partially dehydrated Ca2+ interacts directly with one subunit and blocks the pore. In contrast, the phenylalkylamine Br-verapamil binds in the central cavity of the pore on the intracellular side of the selectivity filter, physically blocking the ion-conducting pathway. Structure-based mutations of key amino-acid residues confirm drug binding at both sites. Our results define the structural basis for binding of dihydropyridines and phenylalkylamines at their distinct receptor sites on CaV channels and offer key insights into their fundamental mechanisms of action and differential therapeutic uses in cardiovascular diseases. PMID:27556947

  2. D-amphetamine and antipsychotic drug effects on latent inhibition in mice lacking dopamine D2 receptors.

    PubMed

    Bay-Richter, C; O'Callaghan, M J; Mathur, N; O'Tuathaigh, C M P; Heery, D M; Fone, K C F; Waddington, J L; Moran, P M

    2013-07-01

    Drugs that induce psychosis, such as D-amphetamine (AMP), and those that alleviate it, such as antipsychotics, are suggested to exert behavioral effects via dopamine receptor D2 (D2). All antipsychotic drugs are D2 antagonists, but D2 antagonism underlies the severe and debilitating side effects of these drugs; it is therefore important to know whether D2 is necessary for their behavioral effects. Using D2-null mice (Drd2-/-), we first investigated whether D2 is required for AMP disruption of latent inhibition (LI). LI is a process of learning to ignore irrelevant stimuli. Disruption of LI by AMP models impaired attention and abnormal salience allocation consequent to dysregulated dopamine relevant to schizophrenia. AMP disruption of LI was seen in both wild-type (WT) and Drd2-/-. This was in contrast to AMP-induced locomotor hyperactivity, which was reduced in Drd2-/-. AMP disruption of LI was attenuated in mice lacking dopamine receptor D1 (Drd1-/-), suggesting that D1 may play a role in AMP disruption of LI. Further supporting this possibility, we found that D1 antagonist SKF83566 attenuated AMP disruption of LI in WT. Remarkably, both haloperidol and clozapine attenuated AMP disruption of LI in Drd2-/-. This demonstrates that antipsychotic drugs can attenuate AMP disruption of learning to ignore irrelevant stimuli in the absence of D2 receptors. Data suggest that D2 is not essential either for AMP to disrupt or for antipsychotic drugs to reverse AMP disruption of learning to ignore irrelevant stimuli and further that D1 merits investigation in the mediation of AMP disruption of these processes.

  3. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells.

    PubMed

    He, Xuedan; Alves, Carla S; Oliveira, Nilsa; Rodrigues, João; Zhu, Jingyi; Bányai, István; Tomás, Helena; Shi, Xiangyang

    2015-01-01

    Development of multifunctional nanoscale drug-delivery systems for targeted cancer therapy still remains a great challenge. Here, we report the synthesis of cyclic arginine-glycine-aspartic acid (RGD) peptide-conjugated generation 5 (G5) poly(amidoamine) dendrimers for anticancer drug encapsulation and targeted therapy of cancer cells overexpressing αvβ3 integrins. In this study, amine-terminated G5 dendrimers were used as a platform to be sequentially modified with fluorescein isothiocyanate (FI) via a thiourea linkage and RGD peptide via a polyethylene glycol (PEG) spacer, followed by acetylation of the remaining dendrimer terminal amines. The developed multifunctional dendrimer platform (G5.NHAc-FI-PEG-RGD) was then used to encapsulate an anticancer drug doxorubicin (DOX). We show that approximately six DOX molecules are able to be encapsulated within each dendrimer platform. The formed complexes are water-soluble, stable, and able to release DOX in a sustained manner. One- and two-dimensional NMR techniques were applied to investigate the interaction between dendrimers and DOX, and the impact of the environmental pH on the release rate of DOX from the dendrimer/DOX complexes was also explored. Furthermore, cell biological studies demonstrate that the encapsulation of DOX within the G5.NHAc-FI-PEG-RGD dendrimers does not compromise the anticancer activity of DOX and that the therapeutic efficacy of the dendrimer/DOX complexes is solely related to the encapsulated DOX drug. Importantly, thanks to the role played by RGD-mediated targeting, the developed dendrimer/drug complexes are able to specifically target αvβ3 integrin-overexpressing cancer cells and display specific therapeutic efficacy to the target cells. The developed RGD peptide-targeted multifunctional dendrimers may thus be used as a versatile platform for targeted therapy of different types of αvβ3 integrin-overexpressing cancer cells.

  4. Impact of polymer conformation on the crystal growth inhibition of a poorly water-soluble drug in aqueous solution.

    PubMed

    Schram, Caitlin J; Beaudoin, Stephen P; Taylor, Lynne S

    2015-01-01

    Poor aqueous solubility is a major hindrance to oral delivery of many emerging drugs. Supersaturated drug solutions can improve passive absorption across the gastrointestinal tract membrane as long as crystallization can be inhibited, enhancing the delivery of such poorly soluble therapeutics. Polymers can inhibit crystallization and prolong supersaturation; therefore, it is desirable to understand the attributes which render a polymer effective. In this study, the conformation of a polymer adsorbed to a crystal surface and its impact on crystal growth inhibition were investigated. The crystal growth rate of a poorly soluble pharmaceutical compound, felodipine, was measured in the presence of hydroxypropyl methylcellulose acetate succinate (HPMCAS) at two different pH conditions: pH 3 and pH 6.8. HPMCAS was found to be a less effective growth rate inhibitor at pH 3, below its pKa. It was expected that the ionization state of HPMCAS would most likely influence its conformation at the solid-liquid interface. Further investigation with atomic force microscopy (AFM) revealed significant differences in the conformation of HPMCAS adsorbed to felodipine at the two pH conditions. At pH 3, HPMCAS formed coiled globules on the surface, whereas at pH 6.8, HPMCAS adsorbed more uniformly. Thus, it appeared that the reduced effectiveness of HPMCAS at pH 3 was directly related to its conformation. The globule formation leaves many felodipine growth sites open and available for growth units to attach, rendering the polymer less effective as a growth rate inhibitor.

  5. An isocorydine derivative (d-ICD) inhibits drug resistance by downregulating IGF2BP3 expression in hepatocellular carcinoma

    PubMed Central

    Ge, Chao; Chen, Lijuan; Fang, Tao; Li, Hong; Tian, Hua; Liu, Junxi; Chen, Taoyang; Jiang, Guoping; Xie, Haiyang; Cui, Ying; Yao, Ming; Li, Jinjun

    2015-01-01

    In our previous studies, we reported that CD133+ cancer stem cells (CSCs) were chemoresistant in hepatocellular carcinoma (HCC) and that isocorydine treatment decreased the percentage of CD133+ CSCs. Here, we found that a derivative of isocorydine (d-ICD) inhibited HCC cell growth, particularly among the CD133+ subpopulation, and rendered HCC cells more sensitive to sorafenib treatment. d-ICD inhibited IGF2BP3 expression in a time-dependent manner, and IGF2BP3 expression negatively correlated with d-ICD-induced growth suppression. IGF2BP3 overexpression enriched the CD133+ CSC subpopulation in HCC, enhanced tumor sphere formation and suppressed the cytotoxic effects of sorafenib and doxorubicin. The expression of drug resistance-related genes, including ABCB1 and ABCG2, and the CSC marker CD133 expression was increased after IGF2BP3 overexpression. The significance of these observations was underscored by our findings that high IGF2BP3 expression predicted poor survival in a cohort of 236 patients with HCC and positively correlated with ABCG2 and CD133 expression in vivo. These results suggested that the d-ICD may inhibit HCC cells growth by IGF2BP3 decrease and that IGF2BP3 may serve as a therapeutic target for HCC. PMID:26327240

  6. Oral Multiple Sclerosis Drugs Inhibit the In vitro Growth of Epsilon Toxin Producing Gut Bacterium, Clostridium perfringens

    PubMed Central

    Rumah, Kareem R.; Vartanian, Timothy K.; Fischetti, Vincent A.

    2017-01-01

    There are currently three oral medications approved for the treatment of multiple sclerosis (MS). Two of these medications, Fingolimod, and Teriflunomide, are considered to be anti-inflammatory agents, while dimethyl fumarate (DMF) is thought to trigger a robust antioxidant response, protecting vulnerable cells during an MS attack. We previously proposed that epsilon toxin from the gut bacterium, Clostridium perfringens, may initiate newly forming MS lesions due to its tropism for blood-brain barrier (BBB) vasculature and central nervous system myelin. Because gut microbiota will be exposed to these oral therapies prior to systemic absorption, we sought to determine if these compounds affect C. perfringens growth in vitro. Here we show that Fingolimod, Teriflunomide, and DMF indeed inhibit C. perfringens growth. Furthermore, several compounds similar to DMF in chemical structure, namely α, β unsaturated carbonyls, also known as Michael acceptors, inhibit C. perfringens. Sphingosine, a Fingolimod homolog with known antibacterial properties, proved to be a potent C. perfringens inhibitor with a Minimal Inhibitory Concentration similar to that of Fingolimod. These findings suggest that currently approved oral MS therapies and structurally related compounds possess antibacterial properties that may alter the gut microbiota. Moreover, inhibition of C. perfringens growth and resulting blockade of epsilon toxin production may contribute to the clinical efficacy of these disease-modifying drugs. PMID:28180112

  7. Oral Multiple Sclerosis Drugs Inhibit the In vitro Growth of Epsilon Toxin Producing Gut Bacterium, Clostridium perfringens.

    PubMed

    Rumah, Kareem R; Vartanian, Timothy K; Fischetti, Vincent A

    2017-01-01

    There are currently three oral medications approved for the treatment of multiple sclerosis (MS). Two of these medications, Fingolimod, and Teriflunomide, are considered to be anti-inflammatory agents, while dimethyl fumarate (DMF) is thought to trigger a robust antioxidant response, protecting vulnerable cells during an MS attack. We previously proposed that epsilon toxin from the gut bacterium, Clostridium perfringens, may initiate newly forming MS lesions due to its tropism for blood-brain barrier (BBB) vasculature and central nervous system myelin. Because gut microbiota will be exposed to these oral therapies prior to systemic absorption, we sought to determine if these compounds affect C. perfringens growth in vitro. Here we show that Fingolimod, Teriflunomide, and DMF indeed inhibit C. perfringens growth. Furthermore, several compounds similar to DMF in chemical structure, namely α, β unsaturated carbonyls, also known as Michael acceptors, inhibit C. perfringens. Sphingosine, a Fingolimod homolog with known antibacterial properties, proved to be a potent C. perfringens inhibitor with a Minimal Inhibitory Concentration similar to that of Fingolimod. These findings suggest that currently approved oral MS therapies and structurally related compounds possess antibacterial properties that may alter the gut microbiota. Moreover, inhibition of C. perfringens growth and resulting blockade of epsilon toxin production may contribute to the clinical efficacy of these disease-modifying drugs.

  8. Modeling Synergistic Drug Inhibition of Mycobacterium tuberculosis Growth in Murine Macrophages

    DTIC Science & Technology

    2011-01-01

    mycolic acid utilization for Mycobacteria, the determination of nutrient requirements and metabolite processing steps, and the ability to probe...tuberculosis in a medium with the fatty acid propionate used as its carbon source. Similarly, we modeled the growth inhibition of M. tuberculosis by 50-O-(N... salicyl - sulfamoyl)adenosine in a medium with a low iron concentration. Both studies used in vitro media modified to capture some characteristic feature

  9. Inhibition of antiviral drug cidofovir on proliferation of human papillomavirus-infected cervical cancer cells

    PubMed Central

    Yang, Jing; Dai, Lv-Xia; Chen, Ming; Li, Bei; Ding, Nana; Li, Gang; Liu, Yan-Qing; Li, Ming-Yuan; Wang, Bao-Ning; Shi, Xin-Li; Tan, Hua-Bing

    2016-01-01

    In order to evaluate the potential application value of cidofovir (CDV) in the prevention of human papillomavirus (HPV) infection and treatment of cervical cancer, the inhibitory effect of CDV on the proliferation of HPV 18-positive HeLa cells in cervical cancer was preliminarily investigated, using cisplatin (DDP) as a positive control. An MTT assay was used to analyze the effects of CDV and DDP on HeLa cell proliferation. In addition, clone formation assay and Giemsa staining were used to examine the extent of HeLa cell apoptosis caused by CDV and DDP. Flow cytometry was also used to detect the shape and size of apoptotic cells following propidium iodide staining, while western blot analysis identified the expression levels of of E6 and p53 proteins in HeLa cells. A cell climbing immunofluorescence technique was used to locate the subcellular position of p53 in HeLa cells. The results demonstrated that CDV and DDP inhibited the proliferation of HeLa cells in a concentration- and time-dependent manner. Flow cytometry showed that CDV and DDP treatments resulted in cell arrest in the S-phase, and triggered programmed cell death. Furthermore, western blot analysis revealed that CDV and DDP inhibited E6 protein expression and activated p53 expression in HeLa cells. Finally, the immunofluorescence results indicated that CDV and DDP inhibited the nuclear export of p53 by E6 protein, which is required for degradation of endogenous p53 by MDM2 and human papilloma virus E6. In conclusion, CDV and DDP inhibited HeLa cell proliferation in a concentration- and time-dependent manner, reduced the expression of E6 protein, and reinstated p53 protein activity. Thus, CDV regulates cell cycle arrest and apoptosis, and may be a potential cervical cancer therapeutic strategy. PMID:27882102

  10. Inhibition of antiviral drug cidofovir on proliferation of human papillomavirus-infected cervical cancer cells.

    PubMed

    Yang, Jing; Dai, Lv-Xia; Chen, Ming; Li, Bei; Ding, Nana; Li, Gang; Liu, Yan-Qing; Li, Ming-Yuan; Wang, Bao-Ning; Shi, Xin-Li; Tan, Hua-Bing

    2016-11-01

    In order to evaluate the potential application value of cidofovir (CDV) in the prevention of human papillomavirus (HPV) infection and treatment of cervical cancer, the inhibitory effect of CDV on the proliferation of HPV 18-positive HeLa cells in cervical cancer was preliminarily investigated, using cisplatin (DDP) as a positive control. An MTT assay was used to analyze the effects of CDV and DDP on HeLa cell proliferation. In addition, clone formation assay and Giemsa staining were used to examine the extent of HeLa cell apoptosis caused by CDV and DDP. Flow cytometry was also used to detect the shape and size of apoptotic cells following propidium iodide staining, while western blot analysis identified the expression levels of of E6 and p53 proteins in HeLa cells. A cell climbing immunofluorescence technique was used to locate the subcellular position of p53 in HeLa cells. The results demonstrated that CDV and DDP inhibited the proliferation of HeLa cells in a concentration- and time-dependent manner. Flow cytometry showed that CDV and DDP treatments resulted in cell arrest in the S-phase, and triggered programmed cell death. Furthermore, western blot analysis revealed that CDV and DDP inhibited E6 protein expression and activated p53 expression in HeLa cells. Finally, the immunofluorescence results indicated that CDV and DDP inhibited the nuclear export of p53 by E6 protein, which is required for degradation of endogenous p53 by MDM2 and human papilloma virus E6. In conclusion, CDV and DDP inhibited HeLa cell proliferation in a concentration- and time-dependent manner, reduced the expression of E6 protein, and reinstated p53 protein activity. Thus, CDV regulates cell cycle arrest and apoptosis, and may be a potential cervical cancer therapeutic strategy.

  11. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    PubMed

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-05

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  12. Parental substance abuse and function of the motivation and behavioral inhibition systems in drug-naïve youth.

    PubMed

    Ivanov, Iliyan; Liu, Xun; Shulz, Kurt; Fan, Jin; London, Edythe; Friston, Karl; Halperin, Jeffrey M; Newcorn, Jeffrey H

    2012-02-28

    It is hypothesized that the development of substance abuse (SA) may be due to imbalance in functions of the motivation-reward and behavioral inhibition systems in the brain. This speaks to the search for biological risk factors for SA in drug-naïve children who also exhibit motivational and inhibitory control deficits; however, this type of research is currently lacking. The objective of this study was to establish a neurobiological basis for addiction vulnerability using functional magnetic resonance imaging (fMRI) in drug-naïve youth with attention deficit/hyperactivity disorder (ADHD). We hypothesized that children with ADHD alone would show higher activity in regions of the motivation-reward and behavioral inhibition systems than children with ADHD and a parental history of SA. Toward this goal we scanned 20 drug-naïve children with ADHD ages 8-13 while performing an event-related reward task. High (N=10) and low (N=10) risk subjects were identified, based on parental history of SA. The effects of anticipation, conflict, and reward were assessed with appropriate linear contrasts, and between-group differences were assessed using statistical parametric mapping. The two groups did not differ on behavioral measures of the task. The fMRI results show heightened activation in the brain motivational-reward system and reduced activation of the inhibitory control system in high-risk compared to low-risk children. These results suggest that a functional mismatch between these two systems may represent one possible biological underpinning of SA risk, which is conferred by a parental history of addiction.

  13. P-glycoprotein inhibition by the agricultural pesticide propiconazole and its hydroxylated metabolites: Implications for pesticide-drug interactions.

    PubMed

    Mazur, Christopher S; Marchitti, Satori A; Zastre, Jason

    2015-01-05

    The human efflux transporter P-glycoprotein (P-gp, MDR1) functions as an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure assessment because of their use as both pesticides and drugs. Propiconazole is an agricultural pesticide undergoing evaluation by the U.S. Environmental Protection Agency's Endocrine Disruptor Screening Program. In this study, the P-gp interaction of propiconazole and its hydroxylated metabolites were evaluated using MDR1-expressing membrane vesicles and NIH-3T3/MDR1 cells. Membrane vesicle assays demonstrated propiconazole (IC50,122.9μM) and its metabolites (IC50s, 350.8μM, 366.4μM, and 456.3μM) inhibited P-gp efflux of a probe substrate, with propiconazole demonstrating the strongest interaction. P-gp mediated transport of propiconazole in MDR1-expressed vesicles was not detected indicating propiconazole interacts with P-gp as an inhibitor rather than a substrate. In NIH-3T3/MDR1 cells, propiconazole (1 and 10μM) led to decreased cellular resistance (chemosensitization) to paclitaxel, a chemotherapeutic drug and known MDR1 substrate. Collectively, these results have pharmacokinetic and risk assessment implications as P-gp interaction may influence pesticide toxicity and the potential for pesticide-drug interactions.

  14. [Influence of ion pump-inhibiting drugs on the accumulation of ofloxacin and grepafloxacin in human polymorphonuclear leukocytes].

    PubMed

    Orero, A; Cantón, E; Pemán, J; Velert, M M; Bermejo, M V

    2002-12-01

    In this study we tested the influence of three ion pump-inhibiting drugs (digoxin, omeprazole and verapamil) on the accumulation of ofloxacin and grepafloxacin in human polymorphonuclear leukocytes. Two assay conditions were established: cell preincubation with the drug for 30 or 60 minutes before addition of quinolone, or addition of both drugs simultaneously. The maximum I/E for ofloxacin is different depending on the assay conditions: 7.69+/-0.88; 5.64+/-1.91 and 3.56+/-1.04 for the assay without preincubation and with preincubation for 30 or 60 minutes at 37 masculine C, respectively. Similarly, grepafloxacin reached the following maximums: 61.27+/-3.04; 32.18+/-3.25 and 22.52+/-3.86. Digoxin did not significantly modify the accumulation of the quinolones, but it increased the I/E compared with the control. In general, omeprazole reduced the accumulation of both quinolones. When omeprazole and ofloxacin were added together, ofloxacin's I/E was significantly lower; however, for grepafloxacin, 60 minutes of preincubation were necessary. Verapamil induced a significant increase in the I/E for both quinolones when the cells were preincubated at 10 times the plasma concentration.

  15. Mutual Respect and Civic Education

    ERIC Educational Resources Information Center

    Bird, Colin

    2010-01-01

    Contemporary theories of civic education frequently appeal to an ideal of mutual respect in the context of ethical, ethical and religious disagreement. This paper critically examines two recently popular criticisms of this ideal. The first, coming from a postmodern direction, charges that the ideal is hypocritical in its effort to be maximally…

  16. Hospital mutual aid evacuation plan.

    PubMed

    Phillips, R

    1997-02-01

    Health care facilities need to be prepared for disasters such as floods, tornadoes and earthquakes. Rochester, NY, and its surrounding communities devised a hospital mutual aid evacuation plan in the event a disaster occurs and also to comply with the Joint Commission. This document discusses the plan's development process and also provides the end result.

  17. Analgesic-antiinflammatory drugs inhibit orbicularis oculi reflexes in humans via a central mode of action.

    PubMed

    Ferracuti, S; Leardi, M G; Cruccu, G; Fabbri, A; Itil, T M

    1994-01-01

    1. A cross-over single blind study examined the possible central effects of non-opioid analgesic drugs on the trigeminal reflexes. 2. The corneal reflex and blink reflex (R1, R2) were recorded electromyographically and response areas measured in healthy volunteers before and after intramuscular injection of piroxicam (40 mg); and after intravenous injection of lysine acetylsalicylate (500 mg). After the last drug recording the subjects received intravenous naloxone (2 mg) followed 5 minutes later by further reflex testing. Saline was used as a placebo in control experiments. 3. Both analgesics reduced the corneal reflex: piroxicam induced a 27% and lysine acetylsalicylate a 21% a reduction that naloxone did not reverse. Neither drug reduced the early or the late component of the blink reflex. 4. The marked inhibitory changes that the two non-narcotic analgesics produced on the corneal reflex--a nociceptive response--indicate a centrally-mediated action. 5. Naloxone's failure to reverse the induced analgesia argues against opiate receptor mediation.

  18. Inhibition of Fatty Acid Synthase (FAS): A New Drug for Breast Cancer Chemoprevention

    DTIC Science & Technology

    2005-04-01

    induced obesity. Proc Natl Acad Sci U S A 99: 9498-9502, 2002. 6. Hakkak, R., Holley, A. W., Macleod, S. L ., Simpson, P. M., Fuchs, G. J., Jo, C. H...transgenic mice Patricia M Alli1, Michael L Pinn1, Elizabeth M Jaffee2, Jill M McFadden3 and Francis P Kuhajda*,1,2,4 Department of Pathology, The Johns...dependent densation of acetyl -CoA 1989). Inhibition of FAS in breast and prostate cancer cells led to apoptosis both in vitro and in vivo (Pizer et al

  19. Adamantyl analogues of paracetamol as potent analgesic drugs via inhibition of TRPA1.

    PubMed

    Fresno, Nieves; Pérez-Fernández, Ruth; Goicoechea, Carlos; Alkorta, Ibon; Fernández-Carvajal, Asia; de la Torre-Martínez, Roberto; Quirce, Susana; Ferrer-Montiel, Antonio; Martín, M Isabel; Goya, Pilar; Elguero, José

    2014-01-01

    Paracetamol also known as acetaminophen, is a widely used analgesic and antipyretic agent. We report the synthesis and biological evaluation of adamantyl analogues of paracetamol with important analgesic properties. The mechanism of nociception of compound 6a/b, an analog of paracetamol, is not exerted through direct interaction with cannabinoid receptors, nor by inhibiting COX. It behaves as an interesting selective TRPA1 channel antagonist, which may be responsible for its analgesic properties, whereas it has no effect on the TRPM8 nor TRPV1 channels. The possibility of replacing a phenyl ring by an adamantyl ring opens new avenues in other fields of medicinal chemistry.

  20. Adamantyl Analogues of Paracetamol as Potent Analgesic Drugs via Inhibition of TRPA1

    PubMed Central

    Fresno, Nieves; Pérez-Fernández, Ruth; Goicoechea, Carlos; Alkorta, Ibon; Fernández-Carvajal, Asia; de la Torre-Martínez, Roberto; Quirce, Susana; Ferrer-Montiel, Antonio; Martín, M. Isabel; Goya, Pilar; Elguero, José

    2014-01-01

    Paracetamol also known as acetaminophen, is a widely used analgesic and antipyretic agent. We report the synthesis and biological evaluation of adamantyl analogues of paracetamol with important analgesic properties. The mechanism of nociception of compound 6a/b, an analog of paracetamol, is not exerted through direct interaction with cannabinoid receptors, nor by inhibiting COX. It behaves as an interesting selective TRPA1 channel antagonist, which may be responsible for its analgesic properties, whereas it has no effect on the TRPM8 nor TRPV1 channels. The possibility of replacing a phenyl ring by an adamantyl ring opens new avenues in other fields of medicinal chemistry. PMID:25438056

  1. Gemifloxacin, a fluoroquinolone antimicrobial drug, inhibits migration and invasion of human colon cancer cells.

    PubMed

    Kan, Jung-Yu; Hsu, Ya-Ling; Chen, Yen-Hsu; Chen, Tun-Chieh; Wang, Jaw-Yuan; Kuo, Po-Lin

    2013-01-01

    Gemifloxacin (GMF) is an orally administered broad-spectrum fluoroquinolone antimicrobial agent used to treat acute bacterial exacerbation of pneumonia and bronchitis. Although fluoroquinolone antibiotics have also been found to have anti-inflammatory and anticancer effects, studies on the effect of GMF on treating colon cancer have been relatively rare. To the best of our knowledge, this is the first report to describe the antimetastasis activities of GMF in colon cancer and the possible mechanisms involved. Results have shown that GMF inhibits the migration and invasion of colon cancer SW620 and LoVo cells and causes epithelial mesenchymal transition (EMT). In addition, GMF suppresses the activation of NF- κ B and cell migration and invasion induced by TNF- α and inhibits the TAK1/TAB2 interaction, resulting in decreased I κ B phosphorylation and NF- κ B nuclear translocation in SW620 cells. Furthermore, Snail, a critical transcriptional factor of EMT, was downregulated after GMF treatment. Overexpression of Snail by cDNA transfection significantly decreases the inhibitory effect of GMF on EMT and cell migration and invasion. In conclusion, GMF may be a novel anticancer agent for the treatment of metastasis in colon cancer.

  2. Regulation of Microglial Phagocytosis by RhoA/ROCK-Inhibiting Drugs.

    PubMed

    Scheiblich, Hannah; Bicker, Gerd

    2017-04-01

    Inflammation within the central nervous system (CNS) is a major component of many neurodegenerative diseases. The underlying mechanisms of neuronal loss are not fully understood, but the activation of CNS resident phagocytic microglia seems to be a significant element contributing to neurodegeneration. At the onset of inflammation, high levels of microglial phagocytosis may serve as an essential prerequisite for creating a favorable environment for neuronal regeneration. However, the excessive and long-lasting activation of microglia and the augmented engulfment of neurons have been suggested to eventually govern widespread neurodegeneration. Here, we investigated in a functional assay of acute inflammation how the small GTPase RhoA and its main target the Rho kinase (ROCK) influence microglial phagocytosis of neuronal debris. Using BV-2 microglia and human NT2 model neurons, we demonstrate that the pain reliever Ibuprofen decreases RhoA activation and microglial phagocytosis of neuronal cell fragments. Inhibition of the downstream effector ROCK with the small-molecule agents Y-27632 and Fasudil reduces the engulfment of neuronal debris and attenuates the production of the inflammatory mediator nitric oxide during stimulation with lipopolysaccharide. Our results support a therapeutic potential for RhoA/ROCK-inhibiting agents as an effective treatment of excessive inflammation and the resulting progression of microglia-mediated neurodegeneration in the CNS.

  3. Inhibition of demethylase KDM6B sensitizes diffuse large B-cell lymphoma to chemotherapeutic drugs

    PubMed Central

    Mathur, Rohit; Sehgal, Lalit; Havranek, Ondrej; Köhrer, Stefan; Khashab, Tamer; Jain, Neeraj; Burger, Jan A.; Neelapu, Sattva S.; Davis, R. Eric; Samaniego, Felipe

    2017-01-01

    Histone methylation and demethylation regulate B-cell development, and their deregulation correlates with tumor chemoresistance in diffuse large B-cell lymphoma, limiting cure rates. Since histone methylation status correlates with disease aggressiveness and relapse, we investigated the therapeutic potential of inhibiting histone 3 Lys27 demethylase KDM6B, in vitro, using the small molecule inhibitor GSK-J4. KDM6B is overexpressed in the germinal center B-cell subtype of diffuse large B-cell lymphoma, and higher KDM6B levels are associated with worse survival in patients with diffuse large B-cell lymphoma treated with R-CHOP. GSK-J4-induced apoptosis was observed in five (SU-DHL-6, OCI-Ly1, Toledo, OCI-Ly8, SU-DHL-8) out of nine germinal center B-cell diffuse large B-cell lymphoma cell lines. Treatment with GSK-J4 predominantly resulted in downregulation of B-cell receptor signaling and BCL6. Cell lines expressing high BCL6 levels or CREBBP/EP300 mutations were sensitive to GSK-J4. Our results suggest that B-cell receptor-dependent downregulation of BCL6 is responsible for GSK-J4-induced cytotoxicity. Furthermore, GSK-J4-mediated inhibition of KDM6B sensitizes germinal center B-cell diffuse large B-cell lymphoma cells to chemotherapy agents that are currently utilized in treatment regimens for diffuse large B-cell lymphoma. PMID:27742770

  4. Cyclophilin A inhibition: targeting transition-state-bound enzyme conformations for structure-based drug design.

    PubMed

    Nagaraju, Mulpuri; McGowan, Lauren C; Hamelberg, Donald

    2013-02-25

    Human Cyclophilin A (CypA) catalyzes cis-trans isomerization of the prolyl peptide ω-bond in proteins and is involved in many subcellular processes. CypA has, therefore, been identified as a potential drug target in many diseases, and the development of potent inhibitors with high selectivity is a key objective. In computer-aided drug design, selectivity is improved by taking into account the inherent flexibility of the receptor. However, the relevant receptor conformations to focus on in order to develop highly selective inhibitors are not always obvious from available X-ray crystal structures or ensemble of conformations generated using molecular dynamics simulations. Here, we show that the conformation of the active site of CypA varies as the substrate configuration changes during catalytic turnover. We have analyzed the principal modes of the active site dynamics of CypA from molecular dynamics simulations to show that similar ensembles of enzyme conformations recognize diverse inhibitors and bind the different configurations of the peptide substrate. Small nonpeptidomimetic inhibitors with varying activity are recognized by enzyme ensembles that are similar to those that tightly bind the transition state and cis configurations of the substrate. Our results suggest that enzyme-substrate ensembles are more relevant in structure-based drug design for CypA than free enzyme. Of the vast conformational space of the free enzyme, the enzyme conformations of the tightly bound enzyme-substrate complexes are the most important for catalysis. Therefore, functionalizing lead compounds to optimize their interactions with the enzyme's conformational ensemble bound to the substrate in the cis or the transition state could lead to more potent inhibitors.

  5. Substrate dependent inhibition profiles of fourteen drugs on CYP3A4 activity measured by a high throughput LCMS/MS method with four probe drugs, midazolam, testosterone, nifedipine and terfenadine.

    PubMed

    Racha, Jagdish K; Zhao, Z Sylvia; Olejnik, Nicholas; Warner, Nadine; Chan, Rebecca; Moore, David; Satoh, Hiroko

    2003-01-01

    The CYP3A4 enzyme is known for its atypical inhibition kinetics; ligand inhibition can differ depending upon the probe drug used. A high throughput-LCMS/MS CYP3A4 inhibition assay with four substrate drugs was developed to minimize the potential oversight of CYP3A4 inhibition. The assay uses a 96-well format, human liver microsomes, and four CYP3A4 substrate drugs, midazolam, testosterone, nifedipine and terfenadine. After incubation of the individual substrate with human liver microsomes, the reaction is stopped by solid phase extraction and the four probe metabolites produced are pooled and measured by LCMS/MS with multiple-ion-monitoring mode. Using this assay, the IC(50) values of fourteen compounds recognized as substrates/inhibitors of CYP3A4, were measured for the CYP3A4 catalyzed-metabolism of probe drugs. IC(50) values were also obtained for the common set of compounds by the microtiter plate fluorescent assays with cDNA-expressed CYP3A4. Comparison of the results from the two methods suggests that decision making should be cautiously executed to predict drug interaction potential caused by inhibition of CYP3A4 considering the gap between the two assays and various other factors.

  6. Nematode-Bacteria Mutualism: Selection Within the Mutualism Supersedes Selection Outside of the Mutualism

    PubMed Central

    Morran, Levi T.; Penley, McKenna J.; Byrd, Victoria S.; Meyer, Andrew J.; O’Sullivan, Timothy S.; Bashey, Farrah; Goodrich-Blair, Heidi; Lively, Curtis M.

    2016-01-01

    The coevolution of interacting species can lead to co-dependent mutualists. Little is known about the effect of selection on partners within verses apart from the association. Here, we determined the effect of selection on bacteria (Xenorhabdus nematophila) both within and apart from its mutualistic partner (a nematode, Steinernema carpocapsae). In nature, the two species cooperatively infect and kill arthropods. We passaged the bacteria either together with (M+), or isolated from (M−), nematodes under two different selection regimes: random selection (S−) and selection for increased virulence against arthropod hosts (S+). We found that the isolated bacteria evolved greater virulence under selection for greater virulence (M−S+) than under random selection (M−S−). In addition, the response to selection in the isolated bacteria (M−S+) caused a breakdown of the mutualism following reintroduction to the nematode. Finally, selection for greater virulence did not alter the evolutionary trajectories of bacteria passaged within the mutualism (M+S+ = M+S−), indicating that selection for the maintenance of the mutualism was stronger than selection for increased virulence. The results show that selection on isolated mutualists can rapidly breakdown beneficial interactions between species, but that selection within a mutualism can supersede external selection, potentially generating co-dependence over time. PMID:26867502

  7. ZEB1 knockdown mediated using polypeptide cationic micelles inhibits metastasis and effects sensitization to a chemotherapeutic drug for cancer therapy

    NASA Astrophysics Data System (ADS)

    Fang, Shengtao; Wu, Lei; Li, Mingxing; Yi, Huqiang; Gao, Guanhui; Sheng, Zonghai; Gong, Ping; Ma, Yifan; Cai, Lintao

    2014-08-01

    Metastasis and drug resistance are the main causes for the failure in clinical cancer therapy. Emerging evidence suggests an intricate role of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in metastasis and drug resistance. The EMT-activator ZEB1 is crucial in malignant tumor progression by linking EMT-activation and stemness-maintenance. Here, we used multifunctional polypeptide micelle nanoparticles (NP) as nanocarriers for the delivery of ZEB1 siRNA and doxorubicin (DOX). The nanocarriers could effectively deliver siRNA to the cytoplasm and knockdown the target gene in H460 cells and H460 xenograft tumors, leading to reduced EMT and repressed CSC properties in vitro and in vivo. The complex micelle nanoparticles with ZEB1 siRNA (siRNA-NP) significantly reduced metastasis in the lung. When DOX and siRNA were co-delivered by the nanocarriers (siRNA-DOX-NP), a synergistic therapeutic effect was observed, resulting in dramatic inhibition of tumor growth in a H460 xenograft model. These results demonstrated that the siRNA-NP or siRNA-DOX-NP complex targeting ZEB1 could be developed into a new therapeutic approach for non-small cell lung cancer (NSCLC) treatment.Metastasis and drug resistance are the main causes for the failure in clinical cancer therapy. Emerging evidence suggests an intricate role of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in metastasis and drug resistance. The EMT-activator ZEB1 is crucial in malignant tumor progression by linking EMT-activation and stemness-maintenance. Here, we used multifunctional polypeptide micelle nanoparticles (NP) as nanocarriers for the delivery of ZEB1 siRNA and doxorubicin (DOX). The nanocarriers could effectively deliver siRNA to the cytoplasm and knockdown the target gene in H460 cells and H460 xenograft tumors, leading to reduced EMT and repressed CSC properties in vitro and in vivo. The complex micelle nanoparticles with ZEB1 siRNA (siRNA-NP) significantly reduced

  8. Multivalent drug design and inhibition of cholera toxin by specific and transient protein-ligand interactions.

    PubMed

    Liu, Jiyun; Begley, Darren; Mitchell, Daniel D; Verlinde, Christophe L M J; Varani, Gabriele; Fan, Erkang

    2008-05-01

    Multivalent inhibitors of the cholera toxin B pentamer are potential therapeutic drugs for treating cholera and serve as models for demonstrating multivalent ligand effects through a structure-based approach. A crucial yet often overlooked aspect of multivalent drug design is the length, rigidity and chemical composition of the linker used to connect multiple binding moieties. To specifically study the role of chemical linkers in multivalent ligand design, we have synthesized a series of compounds with one and two binding motifs connected by several different linkers. These compounds have affinity for and potency against the cholera toxin B pentamer despite the fact that none can simultaneously bind two toxin receptor sites. Results from saturation transfer difference NMR reveal transient, non-specific interactions between the cholera toxin and linker groups contribute significantly to overall binding affinity of monovalent compounds. However, the same random protein-ligand interactions do not appear to affect binding of bivalent molecules. Moreover, the binding affinities and potencies of these 'non-spanning' bivalent ligands appear to be wholly independent of linker length. Our detailed analysis identifies multiple effects that account for the improved inhibitory potencies of bivalent ligands and suggest approaches to further improve the activity of this class of compounds.

  9. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells

    PubMed Central

    WEN, CHUANGYU; HUANG, LANLAN; CHEN, JUNXIONG; LIN, MENGMENG; LI, WEN; LU, BIYAN; RUTNAM, ZINA JEYAPALAN; IWAMOTO, AIKICHI; WANG, ZHONGYANG; YANG, XIANGLING; LIU, HUANLIANG

    2015-01-01

    The emergence of chemoresistance is a major limitation of colorectal cancer (CRC) therapies and novel biologically based therapies are urgently needed. Natural products represent a novel potential anticancer therapy. Gambogic acid (GA), a small molecule derived from Garcinia hanburyi Hook. f., has been demonstrated to be highly cytotoxic to several types of cancer cells and have low toxicity to the hematopoietic system. However, the potential role of GA in colorectal cancer and its ability to overcome the chemotherapeutic resistance in CRC cells have not been well studied. In the present study, we showed that GA directly inhibited proliferation and induced apoptosis in both 5-fluorouracil (5-FU) sensitive and 5-FU resistant colorectal cancer cells; induced apoptosis via activating JNK signaling pathway. The data, therefore, suggested an alternative strategy to overcome 5-FU resistance in CRC and that GA could be a promising medicinal compound for colorectal cancer therapy. PMID:26397804

  10. Tolperisone-type drugs inhibit spinal reflexes via blockade of voltage-gated sodium and calcium channels.

    PubMed

    Kocsis, Pál; Farkas, Sándor; Fodor, László; Bielik, Norbert; Thán, Márta; Kolok, Sándor; Gere, Anikó; Csejtei, Mónika; Tarnawa, István

    2005-12-01

    The spinal reflex depressant mechanism of tolperisone and some of its structural analogs with central muscle relaxant action was investigated. Tolperisone (50-400 microM), eperisone, lanperisone, inaperisone, and silperisone (25-200 microM) dose dependently depressed the ventral root potential of isolated hemisected spinal cord of 6-day-old rats. The local anesthetic lidocaine (100-800 microM) produced qualitatively similar depression of spinal functions in the hemicord preparation, whereas its blocking effect on afferent nerve conduction was clearly stronger. In vivo, tolperisone and silperisone as well as lidocaine (10 mg/kg intravenously) depressed ventral root reflexes and excitability of motoneurons. However, in contrast with lidocaine, the muscle relaxant drugs seemed to have a more pronounced action on the synaptic responses than on the excitability of motoneurons. Whole-cell measurements in dorsal root ganglion cells revealed that tolperisone and silperisone depressed voltage-gated sodium channel conductance at concentrations that inhibited spinal reflexes. Results obtained with tolperisone and its analogs in the [3H]batrachotoxinin A 20-alpha-benzoate binding in cortical neurons and in a fluorimetric membrane potential assay in cerebellar neurons further supported the view that blockade of sodium channels may be a major component of the action of tolperisone-type centrally acting muscle relaxant drugs. Furthermore, tolperisone, eperisone, and especially silperisone had a marked effect on voltage-gated calcium channels, whereas calcium currents were hardly influenced by lidocaine. These data suggest that tolperisone-type muscle relaxants exert their spinal reflex inhibitory action predominantly via a presynaptic inhibition of the transmitter release from the primary afferent endings via a combined action on voltage-gated sodium and calcium channels.

  11. Noscapine inhibits hypoxia-mediated HIF-1alpha expression andangiogenesis in vitro: a novel function for an old drug.

    PubMed

    Newcomb, Elizabeth W; Lukyanov, Yevgeniy; Schnee, Tona; Ali, M Aktar; Lan, Li; Zagzag, David

    2006-05-01

    Overexpression of hypoxia-inducible factor-1 (HIF-1) is a common feature in solid malignancies related to oxygen deficiency. Since increased HIF-1 expression correlates with advanced disease stage, increased angiogenesis and poor prognosis, HIF-1 and its signaling pathway have become targets for cancer chemotherapy. In this study, we identified noscapine to be a novel small molecule inhibitor of the HIF-1 pathway based on its structure-function relation-ships with HIF-1 pathway inhibitors belonging to the benzylisoquinoline class of plant metabolites and/or to microtubule binding agents. We demonstrate that noscapine treatment of human glioma U87MG and T98G cell lines exposed to the hypoxic mimetic agent, CoCl2, inhibits hypoxia-mediated HIF-1alpha expression and transcriptional activity as measured by decreased secretion of VEGF, a HIF-1 target gene. Inhibition of hypoxia-mediated HIF-1alpha expression was due, in part, to its ability to inhibit accumulation of HIF-1alpha in the nucleus and target it for degradation via the proteasome. One mechanism of action of microtubule binding agents is their antiangiogenic activity associated with disruption of endothelial tubule formation. We show that noscapine has similar properties in vitro. Thus, noscapine may possess novel antiangiogenic activity associated with two broad mechanisms of action: first, by decreasing HIF-1alpha expression in hypoxic tumor cells, upregulation of target genes, such as VEGF, would be decreased concomitant with its associated angiogenic activity; second, by inhibiting endothelial cells from forming blood vessels in response to VEGF stimulation, it may limit the process of neo-vascularization, correlating with antitumor activity in vivo. For more than 75 years, noscapine has traditionally been used as an oral cough suppressant with no known toxic side effects in man. Thus, the studies reported here have found a novel function for an old drug. Given its low toxicity profile, its demonstrated

  12. Anti-hepatocellular carcinoma properties of the anti-alcoholism drug disulfiram discovered to enzymatically inhibit the AMPK-related kinase SNARK in vitro

    PubMed Central

    Goto, Kaku; Kato, Naoya; Chung, Raymond T.

    2016-01-01

    We recently described that the anti-apoptotic AMPK-related kinase, SNARK, promotes transforming growth factor (TGF)-β signaling in hepatocellular carcinoma (HCC) cells, as a potentially new therapeutic target. Here we explored FDA-approved drugs inhibiting the enzymatic activity of SNARK, using an in vitro luminescence kinase assay system. Interestingly, the long-used anti-alcoholism drug disulfiram (DSF), also known as Antabuse, emerged as the top hit. Enzymatic kinetics analyses revealed that DSF inhibited SNARK kinase activity in a noncompetitive manner to ATP or phosphosubstrates. Comparative in vitro analyses of DSF analogs indicated the significance of the disulfide bond-based molecular integrity for the kinase inhibition. DSF suppressed SNARK-promoted TGF-β signaling and demonstrated anti-HCC effects. The chemical and enzymatic findings herein reveal novel pharmacological effects of and use for DSF and its derivatives, and could be conducive to prevention and inhibition of liver fibrosis and HCC. PMID:27602492

  13. Cyclosporine-inhibitable Blood-Brain Barrier Drug Transport Influences Clinical Morphine Pharmacodynamics

    PubMed Central

    Meissner, Konrad; Avram, Michael J.; Yermolenka, Viktar; Francis, Amber M.; Blood, Jane; Kharasch, Evan D.

    2013-01-01

    Background The blood-brain barrier is richly populated by active influx and efflux transporters influencing brain drug concentrations. Morphine, a drug with delayed clinical onset, is a substrate for the efflux transporter P-glycoprotein in vitro and in animals. This investigation tested whether morphine is a transporter substrate in humans. Methods Fourteen healthy volunteers received morphine (0.1 mg/kg, 1 h intravenous infusion) in a crossover study after nothing (control) or the validated P-glycoprotein inhibitor cyclosporine (5 mg/kg, 2 h infusion). Plasma and urine morphine and morphine glucuronide metabolite concentrations were measured by mass spectrometry. Morphine effects were measured by miosis and analgesia. Results Cyclosporine minimally altered morphine disposition, increasing the area under the plasma morphine concentration versus time curve to 100 ± 21 versus 85 ± 24 ng/ml•hr (p < 0.05) without changing maximum plasma concentration. Cyclosporine enhanced (3.2 ± 0.9 vs. 2.5 ± 1.0 mm peak) and prolonged miosis, and increased the area under the miosis-time curve (18 ± 9 vs. 11 ± 5 mm-hr), plasma-effect site transfer rate constant (ke0, median 0.27 vs. 0.17 hr−1), and maximum calculated effect site morphine concentration (11.5 ± 3.7 vs. 7.6 ± 2.9 ng/ml) (all p < 0.05). Analgesia testing was confounded by cyclosporine-related pain. Conclusions Morphine is a transporter substrate at the human blood-brain barrier. Results suggest a role for P-glycoprotein or other efflux transporters in brain morphine access, although the magnitude of the effect is small, and unlikely to be a major determinant of morphine clinical effects. Efflux may explain some variability in clinical morphine effects. PMID:23851346

  14. Human UDP-Glucuronosyltransferase (UGT) 2B10: Validation of Cotinine as a Selective Probe Substrate, Inhibition by UGT Enzyme-Selective Inhibitors and Antidepressant and Antipsychotic Drugs, and Structural Determinants of Enzyme Inhibition.

    PubMed

    Pattanawongsa, Attarat; Nair, Pramod C; Rowland, Andrew; Miners, John O

    2016-03-01

    Although there is evidence for an important role of UGT2B10 in the N-glucuronidation of drugs and other xenobiotics, the inhibitor selectivity of this enzyme is poorly understood. This study sought primarily to characterize the inhibition selectivity of UGT2B10 by UDP-glucuronosyltransferase (UGT) enzyme-selective inhibitors used for reaction phenotyping, and 34 antidepressant and antipsychotic drugs that contain an amine functional group. Initial studies demonstrated that cotinine is a highly selective substrate of human liver microsomal UGT2B10. The kinetics of cotinine N-glucuronidation by recombinant UGT and human liver microsomes (± bovine serum albumin) were consistent with the involvement of a single enzyme. Of the UGT enzyme-selective inhibitors employed for reaction phenotyping, only the UGT2B4/7 inhibitor fluconazole reduced recombinant UGT2B10 activity to an appreciable extent. The majority of antidepressant and antipsychotic drugs screened for effects on UGT2B10 inhibited enzyme activity with IC50 values <100 µM. The most potent inhibition was observed with the tricyclic antidepressants amitriptyline and doxepin and the tetracyclic antidepressant mianserin, and the structurally related compounds desloratadine and loratadine. Molecular modeling using a ligand-based approach indicated that hydrophobic and charge interactions are involved in inhibitor binding, whereas spatial features influence the potency of UGT2B10 inhibition. Respective mean Ki,u (± S.D.) values for amitriptyline, doxepin, and mianserin inhibition of human liver microsomal UGT2B10 were 0.61 ± 0.05, 0.95 ± 0.18, and 0.43 ± 0.01 µM. In vitro-in vivo extrapolation indicates that these drugs may perpetrate inhibitory drug-drug interactions when coadministered with compounds that are cleared predominantly by UGT2B10.

  15. Sucrose esters increase drug penetration, but do not inhibit p-glycoprotein in caco-2 intestinal epithelial cells.

    PubMed

    Kiss, Lóránd; Hellinger, Éva; Pilbat, Ana-Maria; Kittel, Ágnes; Török, Zsolt; Füredi, András; Szakács, Gergely; Veszelka, Szilvia; Sipos, Péter; Ózsvári, Béla; Puskás, László G; Vastag, Monika; Szabó-Révész, Piroska; Deli, Mária A

    2014-10-01

    Sucrose fatty acid esters are increasingly used as excipients in pharmaceutical products, but few data are available on their toxicity profile, mode of action, and efficacy on intestinal epithelial models. Three water-soluble sucrose esters, palmitate (P-1695), myristate (M-1695), laurate (D-1216), and two reference absorption enhancers, Tween 80 and Cremophor RH40, were tested on Caco-2 cells. Caco-2 monolayers formed a good barrier as reflected by high transepithelial resistance and positive immunostaining for junctional proteins claudin-1, ZO-1, and β-catenin. Sucrose esters in nontoxic concentrations significantly reduced resistance and impedance, and increased permeability for atenolol, fluorescein, vinblastine, and rhodamine 123 in Caco-2 monolayers. No visible opening of the tight junctions was induced by sucrose esters assessed by immunohistochemistry and electron microscopy, but some alterations were seen in the structure of filamentous actin microfilaments. Sucrose esters fluidized the plasma membrane and enhanced the accumulation of efflux transporter ligands rhodamine 123 and calcein AM in epithelial cells, but did not inhibit the P-glycoprotein (P-gp)-mediated calcein AM accumulation in MES-SA/Dx5 cell line. These data indicate that in addition to their dissolution-increasing properties sucrose esters can enhance drug permeability through both the transcellular and paracellular routes without inhibiting P-gp.

  16. Pluto-charon mutual events

    SciTech Connect

    Binzel, R.P. )

    1989-11-01

    Since 1985, planetary astronomers have been working to take advantage of a once-per-century apparent alignment between Pluto and its satellite, Charon, which has allowed mutual occultation and transit events to be observed. There events, which will cease in 1990, have permitted the first precise determinations of their individual radii, densities, and surface compositions. In addition, information on their surface albedo distributions can be obtained.

  17. The Antifungal Drug Itraconazole Inhibits Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Glycosylation, Trafficking, and Signaling in Endothelial Cells*

    PubMed Central

    Nacev, Benjamin A.; Grassi, Paola; Dell, Anne; Haslam, Stuart M.; Liu, Jun O.

    2011-01-01

    Itraconazole is a safe and widely used antifungal drug that was recently found to possess potent antiangiogenic activity. Currently, there are four active clinical trials evaluating itraconazole as a cancer therapeutic. Tumor growth is dependent on angiogenesis, which is driven by the secretion of growth factors from the tumor itself. We report here that itraconazole significantly inhibited the binding of vascular endothelial growth factor (VEGF) to VEGF receptor 2 (VEGFR2) and that both VEGFR2 and an immediate downstream substrate, phospholipase C γ1, failed to become activated after VEGF stimulation. These effects were due to a defect in VEGFR2 trafficking, leading to a decrease in cell surface expression, and were associated with the accumulation of immature N-glycans on VEGFR2. Small molecule inducers of lysosomal cholesterol accumulation and mammalian target of rapamycin (mTOR) inhibition, two previously reported itraconazole activities, failed to recapitulate itraconazole's effects on VEGFR2 glycosylation and signaling. Likewise, glycosylation inhibitors did not alter cholesterol trafficking or inhibit mTOR. Repletion of cellular cholesterol levels, which was known to rescue the effects of itraconazole on mTOR and cholesterol trafficking, was also able to restore VEGFR2 glycosylation and signaling. This suggests that the new effects of itraconazole occur in parallel to those previously reported but are downstream of a common target. We also demonstrated that itraconazole globally reduced poly-N-acetyllactosamine and tetra-antennary complex N-glycans in endothelial cells and induced hypoglycosylation of the epidermal growth factor receptor in a renal cell carcinoma line, suggesting that itraconazole's effects extend beyond VEGFR2. PMID:22025615

  18. Mutuality in the provision of Scottish healthcare.

    PubMed

    Howieson, Brian

    2015-11-01

    The backdrop to this article is provided by the Better Health, Better Care Action Plan (Scottish Government, 2007), Section 1 of which is entitled 'Towards a Mutual NHS'. According to Better Health, Better Care (Scottish Government, 2007: 5): 'Mutual organisations are designed to serve their members. They are designed to gather people around a common sense of purpose. They are designed to bring the organisation together in what people often call "co-production."' The aim of this article is to précis the current knowledge of mutuality in the provision of Scottish healthcare. In detail, it will: introduce the 'mutual' organisation; offer a historical perspective of mutuality; suggest why healthcare mutuality is important; and briefly, detail the differences in mutual health-care policy in England and Scotland. It is hoped that this analysis will help researchers and practitioners alike appreciate further the philosophy of mutuality in the provision of Scottish healthcare.

  19. Loss of Feedback Inhibition via D2 Autoreceptors Enhances Acquisition of Cocaine Taking and Reactivity to Drug-Paired Cues

    PubMed Central

    Holroyd, Kathryn B; Adrover, Martin F; Fuino, Robert L; Bock, Roland; Kaplan, Alanna R; Gremel, Christina M; Rubinstein, Marcelo; Alvarez, Veronica A

    2015-01-01

    A prominent aspect of drug addiction is the ability of drug-associated cues to elicit craving and facilitate relapse. Understanding the factors that regulate cue reactivity will be vital for improving treatment of addictive disorders. Low availability of dopamine (DA) D2 receptors (D2Rs) in the striatum is associated with high cocaine intake and compulsive use. However, the role of D2Rs of nonstriatal origin in cocaine seeking and taking behavior and cue reactivity is less understood and possibly underestimated. D2Rs expressed by midbrain DA neurons function as autoreceptors, exerting inhibitory feedback on DA synthesis and release. Here, we show that selective loss of D2 autoreceptors impairs the feedback inhibition of DA release and amplifies the effect of cocaine on DA transmission in the nucleus accumbens (NAc) in vitro. Mice lacking D2 autoreceptors acquire a cued-operant self-administration task for cocaine faster than littermate control mice but acquire similarly for a natural reward. Furthermore, although mice lacking D2 autoreceptors were able to extinguish self-administration behavior in the absence of cocaine and paired cues, they exhibited perseverative responding when cocaine-paired cues were present. This enhanced cue reactivity was selective for cocaine and was not seen during extinction of sucrose self-administration. We conclude that low levels of D2 autoreceptors enhance the salience of cocaine-paired cues and can contribute to the vulnerability for cocaine use and relapse. PMID:25547712

  20. The pro-oxidative drug WF-10 inhibits serial killing by primary human cytotoxic T-cells.

    PubMed

    Wabnitz, G H; Balta, E; Schindler, S; Kirchgessner, H; Jahraus, B; Meuer, S; Samstag, Y

    2016-01-01

    Cytotoxic T-cells (CTLs) play an important role in many immune-mediated inflammatory diseases. Targeting cytotoxicity of CTLs would allow to interfere with immune-mediated tissue destruction. Here we demonstrate that WF-10, a pro-oxidative compound, inhibits CTL-mediated cytotoxicity. WF-10 did not influence early steps of target-cell killing, but impaired the ability of CTLs to detach from the initial target cell and to move to a second target cell. This reduced serial killing was accompanied by stronger enrichment of the adhesion molecule LFA-1 in the cytolytic immune synapse. LFA-1 clustering requires activation of the actin-bundling protein L-plastin and was accordingly diminished in L-plastin knockdown cells. Interestingly, WF-10 likely acts through regulating L-plastin: (I) It induced L-plastin activation through phosphorylation leading to enhanced LFA-1-mediated cell adhesion, and, importantly, (II) WF-10 lost its influence on target-cell killing in L-plastin knockdown cells. Finally, we demonstrate that WF-10 can improve immunosuppression by conventional drugs. Thus, while cyclosporine A alone had no significant effect on cytotoxicity of CTLs, a combination of cyclosporine A and WF-10 blocked target-cell killing synergistically. Together, our findings suggest that WF-10 - either alone or in combination with conventional immunosuppressive drugs - may be efficient to control progression of diseases, in which CTLs are crucially involved.

  1. Sex-dependent antipsychotic capacity of 17β-estradiol in the latent inhibition model: a typical antipsychotic drug in both sexes, atypical antipsychotic drug in males.

    PubMed

    Arad, Michal; Weiner, Ina

    2010-10-01

    The estrogen hypothesis of schizophrenia suggests that estrogen is a natural neuroprotector in women and that exogenous estrogen may have antipsychotic potential, but results of clinical studies have been inconsistent. We have recently shown using the latent inhibition (LI) model of schizophrenia that 17β-estradiol exerts antipsychotic activity in ovariectomized (OVX) rats. The present study sought to extend the characterization of the antipsychotic action of 17β-estradiol (10, 50 and 150 μg/kg) by testing its capacity to reverse amphetamine- and MK-801-induced LI aberrations in gonadally intact female and male rats. No-drug controls of both sexes showed LI, ie, reduced efficacy of a previously non-reinforced stimulus to gain behavioral control when paired with reinforcement, if conditioned with two but not five tone-shock pairings. In both sexes, amphetamine (1 mg/kg) and MK-801 (50 μg/kg) produced disruption (under weak conditioning) and persistence (under strong conditioning) of LI, modeling positive and negative/cognitive symptoms, respectively. 17β-estradiol at 50 and 150 μg/kg potentiated LI under strong conditioning and reversed amphetamine-induced LI disruption in both males and females, mimicking the action of typical and atypical antipsychotic drugs (APDs) in the LI model. 17β-estradiol also reversed MK-induced persistent LI, an effect mimicking atypical APDs and NMDA receptor enhancers, but this effect was observed in males and OVX females but not in intact females. These findings indicate that in the LI model, 17β-estradiol exerts a clear-cut antipsychotic activity in both sexes and, remarkably, is more efficacious in males and OVX females where it also exerts activity considered predictive of anti-negative/cognitive symptoms.

  2. Time-dependent inhibition and estimation of CYP3A clinical pharmacokinetic drug-drug interactions using plated human cell systems.

    PubMed

    Albaugh, Daniel R; Fullenwider, Cody L; Fisher, Michael B; Hutzler, J Matthew

    2012-07-01

    The current studies assessed the utility of freshly plated hepatocytes, cryopreserved plated hepatocytes, and cryopreserved plated HepaRG cells for the estimation of inactivation parameters k(inact) and K(I) for CYP3A. This was achieved using a subset of CYP3A time-dependent inhibitors (fluoxetine, verapamil, clarithromycin, troleandomycin, and mibefradil) representing a range of potencies. The estimated k(inact) and K(I) values for each time-dependent inhibitor were compared with those obtained using human liver microsomes and used to estimate the magnitude of clinical pharmacokinetic drug-drug interaction (DDI). The inactivation kinetic parameter, k(inact), was most consistent across systems tested for clarithromycin, verapamil, and troleandomycin, with a high k(inact) of 0.91 min(-1) observed for mibefradil in HepaRG cells. The apparent K(I) estimates derived from the various systems displayed a range of variability from 3-fold for clarithromycin (5.4-17.7 μM) to 6-fold for verapamil (1.9-12.6 μM). In general, the inactivation kinetic parameters derived from the cell systems tested fairly replicated what was observed in time-dependent inhibition studies using human liver microsomes. Despite some of the observed differences in inactivation kinetic parameters, the estimated DDIs derived from each of the tested systems generally agreed with the clinically reported DDI within approximately 2-fold. In addition, a plated cell approach offered the ability to conduct longer primary incubations (greater than 30 min), which afforded improved ability to identify the weak time-dependent inhibitor fluoxetine. Overall, results from these studies suggest that in vitro inactivation parameters generated from plated cell systems may be a practical approach for identifying time-dependent inhibitors and for estimating the magnitude of clinical DDIs.

  3. Inhibition of P-glycoprotein expression and function by anti-diabetic drugs gliclazide, metformin, and pioglitazone in vitro and in situ

    PubMed Central

    Abbasi, Mehran Mesgari; Valizadeh, Hadi; Hamishehkar, Hamed; Zakeri-Milani, Parvin

    2016-01-01

    P-glycoprotein (P-gp) is a trans-membrane drug efflux pump. Several drugs are P-gp substrates. Some drugs may affect the activity of P-gp by inhibiting its function, resulting in significant drug-drug interactions (DDIs). It is critical to understand which drugs are inhibitors of P-gp so that adverse DDIs can be minimized or avoided. This study investigated the effects of gliclazide, metformin, and pioglitazone on the function and expression of P-gp. Rhodamine 123 (Rh 123) efflux assays in Caco-2 cells and western blot testing were used to study in vitro the effect of the drugs on P-gp function and expression. The in situ rat single-pass intestinal permeability model was developed to study the effect of the drugs on P-gp function. Digoxin and verapamil were used as a known substrate and inhibitor of P-gp, respectively. Digoxin levels in intestinal perfusion samples were analyzed by high-performance liquid chromatography. Intestinal effective permeability (Peff) of digoxin in the presence of 0.1, 10, and 500 μM gliclazide, 100 and 7000 μM metformin, and 50 and 300 μM pioglitazone was significantly increased relative to the digoxin treated cells (P < 0.01). P-gp expression was decreased by gliclazide, metformin and pioglitazone. Intracellular accumulation of Rh 123 by the drugs increased, but the differences were not significant relative to the control cells (P > 0.05). It was found that gliclazide, metformin, and pioglitazone inhibited P-gp efflux activity in situ and down-regulated P-gp expression in vitro. Further investigations are necessary to confirm the obtained results and to define the mechanism underlying P-gp inhibition by the drugs. PMID:27499787

  4. Anti-prion drug mPPIg5 inhibits PrP(C) conversion to PrP(Sc).

    PubMed

    McCarthy, James M; Franke, Markus; Resenberger, Ulrike K; Waldron, Sibeal; Simpson, Jeremy C; Tatzelt, Jörg; Appelhans, Dietmar; Rogers, Mark S

    2013-01-01

    Prion diseases, also known as transmissible spongiform encephalopathies, are a group of fatal neurodegenerative diseases that include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in humans. The 'protein only hypothesis' advocates that PrP(Sc), an abnormal isoform of the cellular protein PrP(C), is the main and possibly sole component of prion infectious agents. Currently, no effective therapy exists for these diseases at the symptomatic phase for either humans or animals, though a number of compounds have demonstrated the ability to eliminate PrPSc in cell culture models. Of particular interest are synthetic polymers known as dendrimers which possess the unique ability to eliminate PrP(Sc) in both an intracellular and in vitro setting. The efficacy and mode of action of the novel anti-prion dendrimer mPPIg5 was investigated through the creation of a number of innovative bio-assays based upon the scrapie cell assay. These assays were used to demonstrate that mPPIg5 is a highly effective anti-prion drug which acts, at least in part, through the inhibition of PrP(C) to PrP(Sc) conversion. Understanding how a drug works is a vital component in maximising its performance. By establishing the efficacy and method of action of mPPIg5, this study will help determine which drugs are most likely to enhance this effect and also aid the design of dendrimers with anti-prion capabilities for the future.

  5. Anti-Prion Drug mPPIg5 Inhibits PrPC Conversion to PrPSc

    PubMed Central

    McCarthy, James M.; Franke, Markus; Resenberger, Ulrike K.; Waldron, Sibeal; Simpson, Jeremy C.; Tatzelt, Jörg; Appelhans, Dietmar; Rogers, Mark S.

    2013-01-01

    Prion diseases, also known as transmissible spongiform encephalopathies, are a group of fatal neurodegenerative diseases that include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in humans. The ‘protein only hypothesis’ advocates that PrPSc, an abnormal isoform of the cellular protein PrPC, is the main and possibly sole component of prion infectious agents. Currently, no effective therapy exists for these diseases at the symptomatic phase for either humans or animals, though a number of compounds have demonstrated the ability to eliminate PrPSc in cell culture models. Of particular interest are synthetic polymers known as dendrimers which possess the unique ability to eliminate PrPSc in both an intracellular and in vitro setting. The efficacy and mode of action of the novel anti-prion dendrimer mPPIg5 was investigated through the creation of a number of innovative bio-assays based upon the scrapie cell assay. These assays were used to demonstrate that mPPIg5 is a highly effective anti-prion drug which acts, at least in part, through the inhibition of PrPC to PrPSc conversion. Understanding how a drug works is a vital component in maximising its performance. By establishing the efficacy and method of action of mPPIg5, this study will help determine which drugs are most likely to enhance this effect and also aid the design of dendrimers with anti-prion capabilities for the future. PMID:23383136

  6. Targeting Drug-Sensitive and -Resistant Strains of Mycobacterium tuberculosis by Inhibition of Src Family Kinases Lowers Disease Burden and Pathology.

    PubMed

    Chandra, Pallavi; Rajmani, R S; Verma, Garima; Bhavesh, Neel Sarovar; Kumar, Dhiraj

    2016-01-01

    In view of emerging drug resistance among bacterial pathogens, including Mycobacterium tuberculosis, the development of novel therapeutic strategies is increasingly being sought. A recent paradigm in antituberculosis (anti-TB) drug development is to target the host molecules that are crucial for intracellular survival of the pathogen. We previously showed the importance of Src tyrosine kinases in mycobacterial pathogenesis. Here, we report that inhibition of Src significantly reduced survival of H37Rv as well as multidrug-resistant (MDR) and extremely drug-resistant (XDR) strains of M. tuberculosis in THP-1 macrophages. Src inhibition was also effective in controlling M. tuberculosis infection in guinea pigs. In guinea pigs, reduced M. tuberculosis burden due to Src inhibition also led to a marked decline in the disease pathology. In agreement with the theoretical framework of host-directed approaches against the pathogen, Src inhibition was equally effective against an XDR strain in controlling infection in guinea pigs. We propose that Src inhibitors could be developed into effective host-directed anti-TB drugs, which could be indiscriminately used against both drug-sensitive and drug-resistant strains of M. tuberculosis. IMPORTANCE The existing treatment regimen for tuberculosis (TB) suffers from deficiencies like high doses of antibiotics, long treatment duration, and inability to kill persistent populations in an efficient manner. Together, these contribute to the emergence of drug-resistant tuberculosis. Recently, several host factors were identified which help intracellular survival of Mycobacterium tuberculosis within the macrophage. These factors serve as attractive targets for developing alternate therapeutic strategies against M. tuberculosis. This strategy promises to be effective against drug-resistant strains. The approach also has potential to considerably lower the risk of emergence of new drug-resistant strains. We explored tyrosine kinase Src as a

  7. 76 FR 36625 - Mutual Holding Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... Office of Thrift Supervision Mutual Holding Company AGENCY: Office of Thrift Supervision (OTS), Treasury... collection. Title of Proposal: Mutual Holding Company. OMB Number: 1550-0072. Form Numbers: MHC-1 (OTS Form... whether the applicant meets the statutory and regulatory criteria to form a mutual holding company...

  8. 76 FR 20458 - Mutual Holding Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... Office of Thrift Supervision Mutual Holding Company AGENCY: Office of Thrift Supervision (OTS), Treasury... collection. Title of Proposal: Mutual Holding Company. OMB Number: 1550-0072. Form Numbers: MHC-1 (OTS Form... whether the applicant meets the statutory and regulatory criteria to form a mutual holding company...

  9. Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites

    PubMed Central

    Bougdour, Alexandre; Maubon, Danièle; Baldacci, Patricia; Ortet, Philippe; Bastien, Olivier; Bouillon, Anthony; Barale, Jean-Christophe; Pelloux, Hervé; Ménard, Robert

    2009-01-01

    Plasmodium and Toxoplasma are parasites of major medical importance that belong to the Apicomplexa phylum of protozoa. These parasites transform into various stages during their life cycle and express a specific set of proteins at each stage. Although little is yet known of how gene expression is controlled in Apicomplexa, histone modifications, particularly acetylation, are emerging as key regulators of parasite differentiation and stage conversion. We investigated the anti-Apicomplexa effect of FR235222, a histone deacetylase inhibitor (HDACi). We show that FR235222 is active against a variety of Apicomplexa genera, including Plasmodium and Toxoplasma, and is more potent than other HDACi's such as trichostatin A and the clinically relevant compound pyrimethamine. We identify T. gondii HDAC3 (TgHDAC3) as the target of FR235222 in Toxoplasma tachyzoites and demonstrate the crucial role of the conserved and Apicomplexa HDAC-specific residue TgHDAC3 T99 in the inhibitory activity of the drug. We also show that FR235222 induces differentiation of the tachyzoite (replicative) into the bradyzoite (nonreplicative) stage. Additionally, via its anti-TgHDAC3 activity, FR235222 influences the expression of ∼370 genes, a third of which are stage-specifically expressed. These results identify FR235222 as a potent HDACi of Apicomplexa, and establish HDAC3 as a central regulator of gene expression and stage conversion in Toxoplasma and, likely, other Apicomplexa. PMID:19349466

  10. Coproporphyrins in Plasma and Urine Can Be Appropriate Clinical Biomarkers to Recapitulate Drug-Drug Interactions Mediated by Organic Anion Transporting Polypeptide Inhibition.

    PubMed

    Lai, Yurong; Mandlekar, Sandhya; Shen, Hong; Holenarsipur, Vinay K; Langish, Robert; Rajanna, Prabhakar; Murugesan, Senthilkumar; Gaud, Nilesh; Selvam, Sabariya; Date, Onkar; Cheng, Yaofeng; Shipkova, Petia; Dai, Jun; Humphreys, William G; Marathe, Punit

    2016-09-01

    In the present study, an open-label, three-treatment, three-period clinical study of rosuvastatin (RSV) and rifampicin (RIF) when administered alone and in combination was conducted in 12 male healthy subjects to determine if coproporphyrin I (CP-I) and coproporphyrin III (CP-III) could serve as clinical biomarkers for organic anion transporting polypeptide 1B1 (OATP1B1) and 1B3 that belong to the solute carrier organic anion gene subfamily. Genotyping of the human OATP1B1 gene was performed in all 12 subjects and confirmed absence of OATP1B1*5 and OATP1B1*15 mutations. Average plasma concentrations of CP-I and CP-III prior to drug administration were 0.91 ± 0.21 and 0.15 ± 0.04 nM, respectively, with minimum fluctuation over the three periods. CP-I was passively eliminated, whereas CP-III was actively secreted from urine. Administration of RSV caused no significant changes in the plasma and urinary profiles of CP-I and CP-III. RIF markedly increased the maximum plasma concentration (Cmax) of CP-I and CP-III by 5.7- and 5.4-fold (RIF) or 5.7- and 6.5-fold (RIF+RSV), respectively, as compared with the predose values. The area under the plasma concentration curves from time 0 to 24 h (AUC0-24h) of CP-I and CP-III with RIF and RSV increased by 4.0- and 3.3-fold, respectively, when compared with RSV alone. In agreement with this finding, Cmax and AUC0-24h of RSV increased by 13.2- and 5.0-fold, respectively, when RIF was coadministered. Collectively, we conclude that CP-I and CP-III in plasma and urine can be appropriate endogenous biomarkers specifically and reliably reflecting OATP inhibition, and thus the measurement of these molecules can serve as a useful tool to assess OATP drug-drug interaction liabilities in early clinical studies.

  11. Histone deacetylase inhibition overcomes drug resistance through a miRNA-dependent mechanism

    PubMed Central

    Murray-Stewart, Tracy; Hanigan, Christin L.; Woster, Patrick M.; Marton, Laurence J.; Casero, Robert A.

    2013-01-01

    The treatment of specific tumor cell lines with poly- and oligoamine analogues results in a super-induction of polyamine catabolism that is associated with cytotoxicity; however, other tumor cells demonstrate resistance to analogue treatment. Recent data indicate that some of these analogues also have direct epigenetic effects. We therefore sought to determine the effects of combining specific analogues with an epigenetic targeting agent in phenotypically resistant human lung cancer cell lines. We demonstrate that the histone deacetylase inhibitor MS-275 when combined with (N1, N11)-bisethylnorspermine (BENSpm) or (N1, N12)-bis(ethyl)-cis-6,7-dehydrospermine tetrahydrochloride (PG-11047) synergistically induces the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SSAT), a major determinant of sensitivity to the antitumor analogues. Evidence indicates that the mechanism of this synergy includes reactivation of miR-200a, which targets and destabilizes kelch-like ECH-associated protein 1 (KEAP1) mRNA, resulting in the translocation and binding of nuclear factor (erythroid-derived 2)-like 2 (NRF2) to the polyamine-responsive element of the SSAT promoter. This transcriptional stimulation combined with positive regulation of SSAT mRNA and protein by the analogues results in decreased intracellular concentrations of natural polyamines and growth inhibition. The finding that an epigenetic targeting agent is capable of inducing a rate-limiting step in polyamine catabolism to overcome resistance to the antitumor analogues represents a completely novel chemotherapeutic approach. This is also the first demonstration of miRNA-mediated regulation of the polyamine catabolic pathway. Furthermore, the individual agents used in this study have been investigated clinically; therefore, translation of these combinations into the clinical setting holds promise. PMID:23943804

  12. Histone deacetylase inhibition overcomes drug resistance through a miRNA-dependent mechanism.

    PubMed

    Murray-Stewart, Tracy; Hanigan, Christin L; Woster, Patrick M; Marton, Laurence J; Casero, Robert A

    2013-10-01

    The treatment of specific tumor cell lines with poly- and oligoamine analogs results in a superinduction of polyamine catabolism that is associated with cytotoxicity; however, other tumor cells show resistance to analog treatment. Recent data indicate that some of these analogs also have direct epigenetic effects. We, therefore, sought to determine the effects of combining specific analogs with an epigenetic targeting agent in phenotypically resistant human lung cancer cell lines. We show that the histone deacetylase inhibitor MS-275, when combined with (N(1), N(11))-bisethylnorspermine (BENSpm) or (N(1), N(12))-bis(ethyl)-cis-6,7-dehydrospermine tetrahydrochloride (PG-11047), synergistically induces the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase (SSAT), a major determinant of sensitivity to the antitumor analogs. Evidence indicates that the mechanism of this synergy includes reactivation of miR-200a, which targets and destabilizes kelch-like ECH-associated protein 1 (KEAP1) mRNA, resulting in the translocation and binding of nuclear factor (erythroid-derived 2)-like 2 (NRF2) to the polyamine-responsive element of the SSAT promoter. This transcriptional stimulation, combined with positive regulation of SSAT mRNA and protein by the analogs, results in decreased intracellular concentrations of natural polyamines and growth inhibition. The finding that an epigenetic targeting agent is capable of inducing a rate-limiting step in polyamine catabolism to overcome resistance to the antitumor analogs represents a completely novel chemotherapeutic approach. In addition, this is the first demonstration of miRNA-mediated regulation of the polyamine catabolic pathway. Furthermore, the individual agents used in this study have been investigated clinically; therefore, translation of these combinations into the clinical setting holds promise.

  13. [Modified tests basophil degranulation and leukocyte migration inhibition factor in drug allergy. Study 2009-2014].

    PubMed

    Irigoyen-Coria, María Lourdes; Rojo-Gutiérrez, María Isabel; Meyer-Gómez, Rubén Humberto; Leyva-Carmona, Isabel; Zendejas-Buitrón, Víctor Manuel; García-Ruiz, Angélica Dinorah; Mellado-Ábrego, Jaime; García-Ortega, Ilayalid; Castillo-Narváez, Gloria

    2016-01-01

    Antecedentes: Existe incremento de reacciones adversas a medicamentos y pocos estudios para el diagnóstico. Objetivo: Determinar la utilidad de pruebas modificadas de degranulación de basófilos (DB) y del factor inhibidor de la migración de leucocitos (LIF, leukocyte migration inhibition factor) para comprobar la hipersensibilidad a medicamentos. Métodos: Se estudiaron 177 pacientes, de uno y otro sexo, con diagnóstico de hipersensibilidad a medicamentos, en quienes se determinó pruebas modificadas de DB, LIF, o ambas entre 2009 y 2014. Se parearon con controles positivos, negativos y población no alérgica. Las solicitudes se emitieron de acuerdo con el tipo de hipersensibilidad, considerando tipo I a DB y tipo IV a LIF Resultados: 170 pacientes (96.04%) fueron positivos al menos a un medicamento (RR, 4.71). Se realizaron 561 pruebas modificadas de DB (73.62%) y 201 de LIF (26.37%). El sexo femenino fue más frecuente (64.41%); la edad promedio fue de 38.5 años. La prueba modificada de DB resultó positiva en 70.23% y la de LIF en 67.16%. La sensibilidad de las pruebas se incrementó en forma complementaria y a dos diluciones. La correlación de las pruebas fue altamente significativa. Conclusiones: Las mujeres presentan más reacciones a fármacos. La prueba modificada de DB es útil en cualquier edad. Como los medicamentos pueden activar uno u otro mecanismo de hipersensibilidad es importante solicitar las pruebas simultáneamente.

  14. Inhibition of Established Micrometastases by Targeted Drug Delivery via Cell Surface Associated GRP78

    PubMed Central

    Miao, Yu Rebecca; Eckhardt, Bedrich L.; Cao, Yuan; Pasqualini, Renata; Argani, Pedram; Arap, Wadih; Ramsay, Robert G.; Anderson, Robin L.

    2015-01-01

    Purpose The major cause of morbidity in breast cancer is development of metastatic disease, for which few effective therapies exist. Since tumor cell dissemination is often an early event in breast cancer progression and can occur prior to diagnosis, new therapies need to focus on targeting established metastatic disease in secondary organs. We report an effective therapy based on targeting cell surface-localized glucose regulated protein 78 (GRP78). GRP78 is expressed normally in the endoplasmic reticulum, but many tumors and disseminated tumor cells are subjected to environmental stresses and exhibit elevated levels of GRP78, some of which is localized at the plasma membrane. Experimental Design and Results Here we show that matched primary tumors and metastases from patients who died from advanced breast cancer also express high levels of GRP78. We utilized a peptidomimetic targeting strategy that employs a known GRP78-binding peptide fused to a pro-apoptotic moiety (designated BMTP78) and show that it can selectively kill breast cancer cells that express surface-localized GRP78. Further, in preclinical metastasis models, we demonstrate that administration of BMTP78 can inhibit primary tumor growth as well as prolong overall survival by reducing the extent of outgrowth of established lung and bone micrometastases. Conclusions The data presented here provide strong evidence that it is possible to induce cell death in established micrometastases by peptide mediated targeting of cell surface localized GRP in advanced breast cancers. The significance to patients with advanced breast cancer of a therapy that can reduce established metastatic disease should not be underestimated. PMID:23470966

  15. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone.

    PubMed

    Timoshnikov, V A; Kobzeva, T V; Polyakov, N E; Kontoghiorghes, G J

    2015-01-01

    Deferiprone (L1) is an effective iron-chelating drug that is widely used for the treatment of iron-overload diseases. It is known that in aqueous solutions Fe(2+) and Fe(3+) ions can produce hydroxyl radicals via Fenton and photo-Fenton reactions. Although previous studies with Fe(2+) have reported ferroxidase activity by L1 followed by the formation of Fe(3+) chelate complexes and potential inhibition of Fenton reaction, no detailed data are available on the molecular antioxidant mechanisms involved. Similarly, in vitro studies have also shown that L1-Fe(3+) complexes exhibit intense absorption bands up to 800nm and might be potential sources of phototoxicity. In this study we have applied an EPR spin trapping technique to answer two questions: (1) does L1 inhibit the Fenton reaction catalyzed by Fe(2+) and Fe(3+) ions and (2) does UV-Vis irradiation of the L1-Fe(3+) complex result in the formation of reactive oxygen species. PBN and TMIO spin traps were used for detection of oxygen free radicals, and TEMP was used to trap singlet oxygen if it was formed via energy transfer from L1 in the triplet excited state. It was demonstrated that irradiation of Fe(3+) aqua complexes by UV and visible light in the presence of spin traps results in the appearance of an EPR signal of the OH spin adduct (TMIO-OH, a(N)=14.15G, a(H)=16.25G; PBN-OH, a(N)=16.0G, a(H)=2.7G). The presence of L1 completely inhibited the OH radical production. The mechanism of OH spin adduct formation was confirmed by the detection of methyl radicals in the presence of dimethyl sulfoxide. No formation of singlet oxygen was detected under irradiation of L1 or its iron complexes. Furthermore, the interaction of L1 with Fe(2+) ions completely inhibited hydroxyl radical production in the presence of hydrogen peroxide. These findings confirm an antioxidant targeting potential of L1 in diseases related to oxidative damage.

  16. A drug-disease model describing the effect of oseltamivir neuraminidase inhibition on influenza virus progression.

    PubMed

    Kamal, Mohamed A; Gieschke, Ronald; Lemenuel-Diot, Annabelle; Beauchemin, Catherine A A; Smith, Patrick F; Rayner, Craig R

    2015-09-01

    A population drug-disease model was developed to describe the time course of influenza virus with and without oseltamivir treatment and to investigate opportunities for antiviral combination therapy. Data included viral titers from 208 subjects, across 4 studies, receiving placebo and oseltamivir at 20 to 200 mg twice daily for 5 days. A 3-compartment mathematical model, comprising target cells infected at rate β, free virus produced at rate p and cleared at rate c, and infected cells cleared at rate δ, was implemented in NONMEM with an inhibitory Hill function on virus production (p), accounting for the oseltamivir effect. In congruence with clinical data, the model predicts that the standard 75-mg regimen initiated 2 days after infection decreased viral shedding duration by 1.5 days versus placebo; the 150-mg regimen decreased shedding by an additional average 0.25 day. The model also predicts that initiation of oseltamivir sooner postinfection, specifically at day 0.5 or 1, results in proportionally greater decreases in viral shedding duration of 5 and 3.5 days, respectively. Furthermore, the model suggests that combining oseltamivir (acting to subdue virus production rate) with an antiviral whose activity decreases viral infectivity (β) results in a moderate additive effect dependent on therapy initiation time. In contrast, the combination of oseltamivir with an antiviral whose activity increases viral clearance (c) shows significant additive effects independent of therapy initiation time. The utility of the model for investigating the pharmacodynamic effects of novel antivirals alone or in combination on emergent influenza virus strains warrants further investigation.

  17. A Drug-Disease Model Describing the Effect of Oseltamivir Neuraminidase Inhibition on Influenza Virus Progression

    PubMed Central

    Gieschke, Ronald; Lemenuel-Diot, Annabelle; Beauchemin, Catherine A. A.; Smith, Patrick F.; Rayner, Craig R.

    2015-01-01

    A population drug-disease model was developed to describe the time course of influenza virus with and without oseltamivir treatment and to investigate opportunities for antiviral combination therapy. Data included viral titers from 208 subjects, across 4 studies, receiving placebo and oseltamivir at 20 to 200 mg twice daily for 5 days. A 3-compartment mathematical model, comprising target cells infected at rate β, free virus produced at rate p and cleared at rate c, and infected cells cleared at rate δ, was implemented in NONMEM with an inhibitory Hill function on virus production (p), accounting for the oseltamivir effect. In congruence with clinical data, the model predicts that the standard 75-mg regimen initiated 2 days after infection decreased viral shedding duration by 1.5 days versus placebo; the 150-mg regimen decreased shedding by an additional average 0.25 day. The model also predicts that initiation of oseltamivir sooner postinfection, specifically at day 0.5 or 1, results in proportionally greater decreases in viral shedding duration of 5 and 3.5 days, respectively. Furthermore, the model suggests that combining oseltamivir (acting to subdue virus production rate) with an antiviral whose activity decreases viral infectivity (β) results in a moderate additive effect dependent on therapy initiation time. In contrast, the combination of oseltamivir with an antiviral whose activity increases viral clearance (c) shows significant additive effects independent of therapy initiation time. The utility of the model for investigating the pharmacodynamic effects of novel antivirals alone or in combination on emergent influenza virus strains warrants further investigation. PMID:26100715

  18. Milk Thistle Constituents Inhibit Raloxifene Intestinal Glucuronidation: A Potential Clinically Relevant Natural Product-Drug Interaction.

    PubMed

    Gufford, Brandon T; Chen, Gang; Vergara, Ana G; Lazarus, Philip; Oberlies, Nicholas H; Paine, Mary F

    2015-09-01

    Women at high risk of developing breast cancer are prescribed selective estrogen response modulators, including raloxifene, as chemoprevention. Patients often seek complementary and alternative treatment modalities, including herbal products, to supplement prescribed medications. Milk thistle preparations, including silibinin and silymarin, are top-selling herbal products that may be consumed by women taking raloxifene, which undergoes extensive first-pass glucuronidation in the intestine. Key constituents in milk thistle, flavonolignans, were previously shown to be potent inhibitors of intestinal UDP-glucuronosyl transferases (UGTs), with IC50s ≤ 10 μM. Taken together, milk thistle preparations may perpetrate unwanted interactions with raloxifene. The objective of this work was to evaluate the inhibitory effects of individual milk thistle constituents on the intestinal glucuronidation of raloxifene using human intestinal microsomes and human embryonic kidney cell lysates overexpressing UGT1A1, UGT1A8, and UGT1A10, isoforms highly expressed in the intestine that are critical to raloxifene clearance. The flavonolignans silybin A and silybin B were potent inhibitors of both raloxifene 4'- and 6-glucuronidation in all enzyme systems. The Kis (human intestinal microsomes, 27-66 µM; UGT1A1, 3.2-8.3 µM; UGT1A8, 19-73 µM; and UGT1A10, 65-120 µM) encompassed reported intestinal tissue concentrations (20-310 µM), prompting prediction of clinical interaction risk using a mechanistic static model. Silibinin and silymarin were predicted to increase raloxifene systemic exposure by 4- to 5-fold, indicating high interaction risk that merits further evaluation. This systematic investigation of the potential interaction between a widely used herbal product and chemopreventive agent underscores the importance of understanding natural product-drug interactions in the context of cancer prevention.

  19. Structure-activity studies of Wnt/β-catenin inhibition in the Niclosamide chemotype: Identification of derivatives with improved drug exposure.

    PubMed

    Mook, Robert A; Wang, Jiangbo; Ren, Xiu-Rong; Chen, Minyong; Spasojevic, Ivan; Barak, Larry S; Lyerly, H Kim; Chen, Wei

    2015-09-01

    The Wnt signaling pathway plays a key role in regulation of organ development and tissue homeostasis. Dysregulated Wnt activity is one of the major underlying mechanisms responsible for many diseases including cancer. We previously reported the FDA-approved anthelmintic drug Niclosamide inhibits Wnt/β-catenin signaling and suppresses colon cancer cell growth in vitro and in vivo. Niclosamide is a multi-functional drug that possesses important biological activity in addition to inhibition of Wnt/β-catenin signaling. Here, we studied the SAR of Wnt signaling inhibition in the anilide and salicylamide region of Niclosamide. We found that the 4'-nitro substituent can be effectively replaced by trifluoromethyl or chlorine and that the potency of inhibition was dependent on the substitution pattern in the anilide ring. Non-anilide, N-methyl amides and reverse amide derivatives lost significant potency, while acylated salicylamide derivatives inhibited signaling with potency similar to non-acyl derivatives. Niclosamide's low systemic exposure when dosed orally may hinder its use to treat systemic disease. To overcome this limitation we identified an acyl derivative of Niclosamide, DK-520 (compound 32), that significantly increased both the plasma concentration and the duration of exposure of Niclosamide when dosed orally. The studies herein provide a medicinal chemical foundation to improve the pharmacokinetic exposure of Niclosamide and Wnt-signaling inhibitors based on the Niclosamide chemotype. The identification of novel derivatives of Niclosamide that metabolize to Niclosamide and increase its drug exposure may provide important research tools for in vivo studies and provide drug candidates for treating cancers with dysregulated Wnt signaling including drug-resistant cancers. Moreover, since Niclosamide is a multi-functional drug, new research tools such as DK520 could directly result in novel treatments against bacterial and viral infection, lupus, and metabolic

  20. Drugs.

    ERIC Educational Resources Information Center

    Hurst, Hunter, Ed.; And Others

    1984-01-01

    This document contains the third volume of "Today's Delinquent," an annual publication of the National Center for Juvenile Justice. This volume deals with the issue of drugs and includes articles by leading authorities in delinquency and substance abuse who share their views on causes and cures for the drug problem among youth in this country.…

  1. Developing a microbiological growth inhibition screening assay for the detection of 27 veterinary drugs from 13 different classes in animal feedingstuffs.

    PubMed

    Bohn, Torsten; Pellet, Terence; Boscher, Aurore; Hoffmann, Lucien

    2013-01-01

    Many regulations prohibit using veterinary drugs in feedingstuffs to protect consumers and animals alike. Within this investigation we developed a simple, cost-efficient primary screening method for detecting antibiotics and coccidiostats in animal feeds. Thirty-two veterinary drugs were originally considered. Following matrix-free testing to optimise detection, an assay based on matrix extraction with methanol/acetonitrile/phosphate buffer followed by inoculation and diffusion in agar plates was developed. Final validation was performed with 14 representative drugs (one per drug class) and four bacteria (Escherichia coli ATCC11303 and ATCC27166, Staphylococcus aureus ATCC6538P, Micrococcus luteus ATCC9341) in bovine, lamb and swine fodder, measuring growth inhibition zones. Of the original drugs tested, 27 remained detectable in feed matrices at or below 20 mg kg(-1). Of the 14 validated representatives, two had estimated minimum detectable concentrations of 10-11 mg kg(-1), others of 5 mg kg(-1) or lower, an earlier minimum European Union inclusion rate for many veterinary drugs. No significant matrix effect on inhibition zones was detected. Per cent wrong negative deviations ranged from 0% (nine of 14 compounds) to 20-27% (two of 14), while inter-day precision based on inhibition zones had relative standard deviations (RSDs) of 6-109% (mean of 40%). When setting a 1 mm inhibition zone, the maximum observed for negative controls, as a cut-off level, no false-positives were found. While not all targeted antibiotics were detectable in complex matrices, the majority of veterinary drugs were detected with reasonable sensitivity, indicating that this method could be suitable for screening feedingstuffs prior to further confirmatory investigation of positive findings such as by LC-MS/MS.

  2. Poor Response Inhibition as a Predictor of Problem Drinking and Illicit Drug Use in Adolescents at Risk for Alcoholism and Other Substance Use Disorders

    ERIC Educational Resources Information Center

    Nigg, Joel T.; Wong, Maria M.; Martel, Michelle M.; Jester, Jennifer M.; Puttler, Leon I.; Glass, Jennifer M.; Adams, Kenneth M.; Fitzgerald, Hiram E.; Zucker, Robert A.

    2006-01-01

    Objective: To evaluate the predictive power of executive functions, in particular, response inhibition, in relation to alcohol-related problems and illicit drug use in adolescence. Method: A total of 498 children from 275 families from a longitudinal high-risk study completed executive function measures in early and late adolescence and lifetime…

  3. Waveguide mutually pumped phase conjugators.

    PubMed

    James, S W; Youden, K E; Jeffrey, P M; Eason, R W; Chandler, P J; Zhang, L; Townsend, P D

    1993-09-20

    The operation of the bridge mutually pumped phase conjugator is reported in a planar waveguide structure in photorefractive BaTiO(3). The waveguide was fabricated by the technique of ion implantation, using 1.5-MeVH(+) ions at a dose of 10(16) ions/cm(2). An order of magnitude decrease in response time is observed in the waveguide as compared with typical values obtained in bulk crystals, probably as a result of a combination of the optical confinement within the waveguide and possible modification of the charge-transport properties induced by the implantation process.

  4. Colon tumor cell growth-inhibitory activity of sulindac sulfide and other nonsteroidal anti-inflammatory drugs is associated with phosphodiesterase 5 inhibition.

    PubMed

    Tinsley, Heather N; Gary, Bernard D; Thaiparambil, Jose; Li, Nan; Lu, Wenyan; Li, Yonghe; Maxuitenko, Yulia Y; Keeton, Adam B; Piazza, Gary A

    2010-10-01

    Nonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity, but toxicity resulting from cyclooxygenase (COX) inhibition limits their clinical use for chemoprevention. Studies suggest that the mechanism may be COX independent, although alternative targets have not been well defined. Here, we show that the NSAID sulindac sulfide (SS) inhibits cyclic guanosine 3',5'-monophosphate (cGMP) phosphodiesterase (PDE) activity in colon tumor cell lysates at concentrations that inhibit colon tumor cell growth in vitro and in vivo. A series of chemically diverse NSAIDs also inhibited cGMP hydrolysis at concentrations that correlate with their potency to inhibit colon tumor cell growth, whereas no correlation was observed with COX-2 inhibition. Consistent with its selectivity for inhibiting cGMP hydrolysis compared with cyclic AMP hydrolysis, SS inhibited the cGMP-specific PDE5 isozyme and increased cGMP levels in colon tumor cells. Of numerous PDE isozyme-specific inhibitors evaluated, only the PDE5-selective inhibitor MY5445 inhibited colon tumor cell growth. The effects of SS and MY5445 on cell growth were associated with inhibition of β-catenin-mediated transcriptional activity to suppress the synthesis of cyclin D and survivin, which regulate tumor cell proliferation and apoptosis, respectively. SS had minimal effects on cGMP PDE activity in normal colonocytes, which displayed reduced sensitivity to SS and did not express PDE5. PDE5 was found to be overexpressed in colon tumor cell lines as well as in colon adenomas and adenocarcinomas compared with normal colonic mucosa. These results suggest that PDE5 inhibition, cGMP elevation, and inhibition of β-catenin transcriptional activity may contribute to the chemopreventive properties of certain NSAIDs.

  5. Chemoprevention of Colon Cancer through Inhibition of Angiogenesis and Induction of Apoptosis by Nonsteroidal Anti-Inflammatory Drugs.

    PubMed

    Ghanghas, Preety; Jain, Shelly; Rana, Chandan; Sanyal, Sankar Nath

    2016-01-01

    Cancer cells require nourishment for the growth of the primary tumor mass and spread of the metastatic colony. These needs are fulfilled by tumor-associated neovasculature known as angiogenesis, which also favors the transition from hyperplasia to neoplasia, that is, from a state of cellular multiplication to uncontrolled proliferation. Therefore, targeting angiogenesis is profitable as a mechanism to inhibit tumor growth. Furthermore, it is important to understand the cross-communication between vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in the neoplastic and proinflammatory milieu. We studied the role of two important chemokines (monocyte chemoattractant protein-1 [MCP-1] and macrophage inflammatory protein-1β [MIP-1β]) along with VEGF and MMPs in nonsteroidal anti-inflammatory drug (NSAID)-induced chemopreventive effects in experimental colon cancer in rats. 1,2-Dimethylhydrazine dihydrochloride (DMH) was used as cancer-inducing agent and three NSAIDs (celecoxib, etoricoxib, and diclofenac) were given orally as chemopreventive agents. Analysis by immunofluorescence and western blotting shows that the expression of VEGF, MMP-2, and MMP-9 was found to be significantly elevated in the DMH- treated group and notably lowered by NSAID coadministration. The expression of MCP-1 was found to be markedly decreased, whereas that of MIP-1β increased after NSAID coadministration. NSAID coadministration was also able to induce apoptosis, confirmed using studies by Hoechst/propidium iodide (PI) costaining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results from the present study indicate the potential role of these chemokines along with VEGF and MMPs against angiogenesis in DMH-induced cancer. The inhibition of angiogenesis and induction of apoptosis by NSAIDs were found to be possible mechanisms in the chemoprevention of colon cancer.

  6. Genetic Pharmacotherapy as an Early CNS Drug Development Strategy: Testing Glutaminase Inhibition for Schizophrenia Treatment in Adult Mice.

    PubMed

    Mingote, Susana; Masson, Justine; Gellman, Celia; Thomsen, Gretchen M; Lin, Chyuan-Sheng; Merker, Robert J; Gaisler-Salomon, Inna; Wang, Yvonne; Ernst, Rachel; Hen, René; Rayport, Stephen

    2015-01-01

    Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to ask whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAG(ERT2cre∕+) mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction-mimicking pharmacological inhibition-strongly attenuated the response to a propsychotic challenge, suggesting that glutaminase may be a novel target

  7. Defense mutualisms enhance plant diversification

    PubMed Central

    Weber, Marjorie G.; Agrawal, Anurag A.

    2014-01-01

    The ability of plants to form mutualistic relationships with animal defenders has long been suspected to influence their evolutionary success, both by decreasing extinction risk and by increasing opportunity for speciation through an expanded realized niche. Nonetheless, the hypothesis that defense mutualisms consistently enhance plant diversification across lineages has not been well tested due to a lack of phenotypic and phylogenetic information. Using a global analysis, we show that the >100 vascular plant families in which species have evolved extrafloral nectaries (EFNs), sugar-secreting organs that recruit arthropod mutualists, have twofold higher diversification rates than families that lack species with EFNs. Zooming in on six distantly related plant clades, trait-dependent diversification models confirmed the tendency for lineages with EFNs to display increased rates of diversification. These results were consistent across methodological approaches. Inference using reversible-jump Markov chain Monte Carlo (MCMC) to model the placement and number of rate shifts revealed that high net diversification rates in EFN clades were driven by an increased number of positive rate shifts following EFN evolution compared with sister clades, suggesting that EFNs may be indirect facilitators of diversification. Our replicated analysis indicates that defense mutualisms put lineages on a path toward increased diversification rates within and between clades, and is concordant with the hypothesis that mutualistic interactions with animals can have an impact on deep macroevolutionary patterns and enhance plant diversity. PMID:25349406

  8. Non-steroidal anti-inflammatory drug, nabumetone, prevents indometacin-induced gastric damage via inhibition of neutrophil functions.

    PubMed

    Ishiwata, Yoshiro; Okamoto, Masayuki; Yokochi, Shoji; Hashimoto, Hiroyuki; Nakamura, Takashi; Miyachi, Atsushi; Naito, Yuji; Yoshikawa, Toshikazu

    2003-02-01

    Nabumetone is a non-steroidal anti-inflammatory drug (NSAID). It works as a prodrug and is extensively metabolized to an active metabolite, 6-methoxy-2-naphthylacetic acid (6MNA). It is well known that neutrophil infiltration and activation are critical in the pathogenesis of NSAID-induced gastric injury, and nabumetone shows less incidence of gastrointestinal irritancy. We examined the effects of nabumetone on neutrophil activation and on indometacin-induced gastric damage. In the indometacin-induced gastric mucosal injury, rats were treated with indometacin and then nabumetone or 6MNA was orally administered. Nabumetone prevented gastric damage accompanied by the reduction of neutrophil infiltration into gastric mucosa, but such an effect was not observed with 6MNA. Nabumetone reduced the formyl methionyl leucyl phenylalanine (fMLP)-induced respiratory burst of human neutrophils to 30% of the control level in-vitro, but 6MNA did not. In addition, nabumetone prevented the fMLP-induced migration of neutrophils. Nabumetone did not inhibit O2- generation in the xanthine-xanthine oxidase system. These results suggest that nabumetone prevents gastric damage induced by the active metabolite, 6MNA, via the suppression of neutrophil activation in gastric mucosa.

  9. Sulindac, a nonsteroidal anti-inflammatory drug, selectively inhibits interferon-{gamma}-induced expression of the chemokine CXCL9 gene in mouse macrophages

    SciTech Connect

    Sakaeda, Yoshiichi; Hiroi, Miki; Shimojima, Takahiro; Iguchi, Mayumi; Kanegae, Haruhide; Ohmori, Yoshihiro . E-mail: ohmori@dent.meikai.ac.jp

    2006-11-17

    Sulindac, a non-steroidal anti-inflammatory drug, has been shown to exert an anti-tumor effect on several types of cancer. To determine the effect of sulindac on intracellular signaling pathways in host immune cells such as macrophages, we investigated the effect of the drug on interferon gamma (IFN{gamma})-induced expression of signal transducer and activator of transcription 1 (STAT1) and other genes in mouse macrophage-like cell line RAW264.7 cells. Sulindac, but not aspirin or sodium salicylate, inhibited IFN{gamma}-induced expression of the CXC ligand 9 (CXCL9) mRNA, a chemokine for activated T cells, whereas the interferon-induced expression of CXCL10 or IFN regulatory factor-1 was not affected by sulindac. Luciferase reporter assay demonstrated that sulindac inhibited IFN{gamma}-induced promoter activity of the CXCL9 gene. Surprisingly, sulindac had no inhibitory effect on IFN{gamma}-induced STAT1 activation; however, constitutive nuclear factor {kappa}B activity was suppressed by the drug. These results indicate that sulindac selectively inhibited IFN{gamma}-inducible gene expression without inhibiting STAT1 activation.

  10. Inhibition of endothelin-1 and KCL-induced increase of [CA2+]i by antiglaucoma drugs in cultured A7r5 vascular smooth-muscle cells.

    PubMed

    Wu, Kwou-Yeung; Wang, Hwei-Zu; Hong, Show-Jen

    2004-06-01

    Over contraction of vascular smooth muscle may result in ischemia to ocular neuronal cells and deteriorate the glaucoma. The purpose of this study was to investigate the inhibitory effects of various commercial antiglaucoma drugs including brimonidine, dipivefrin, betaxolol, timolol, levobunolol, carteolol, brinzolamide, dorzolamide, unoprostone, latanoprost, pilocarpine, and preservative benzalkonium chloride on endothelin-1(ET-1) and KCl-induced increase of intracellular free Ca2+ ([Ca2+]i) in cultured rat A7r5 vascular smooth muscle cells. These drugs were diluted from original concentrations to 1/100, 1/1000, and 1/10000. [Ca2+]i mobility was analyzed by spectrofluorometry after loading with fura-2-AM. Betaxolol, timolol, levobunolol, and carteolol were found to inhibit KCl-induced release of [Ca2+]i in a dose-dependent manner. High concentrations of betaxolol, timolol, levobunolol, carteolol, and unoprostone also inhibited ET-1-induced increase of [Ca2+]i in A7r5 cells. However, ET-1- and KCl-induced increase of [Ca2+]i was not diminished by other drugs including brimonidine, dipivefrin, brinzolamide, dorzolamide, latanoprost, pilocarpine, and benzalkonium chloride. These results indicate that high concentrations of unoprostone and beta-adrenergic blocking agents including betaxolol, timolol, levobunolol, and carteolol may inhibit ET-1-induced increase of [Ca2+]i. The mechanism may be mediated by inhibition of extracellular calcium influx via blocking of L-type voltage-dependent Ca2+ channel in A7r5 cells.

  11. The Investigational Drug VT-1129 Is a Highly Potent Inhibitor of Cryptococcus Species CYP51 but Only Weakly Inhibits the Human Enzyme

    PubMed Central

    Warrilow, Andrew G. S.; Parker, Josie E.; Price, Claire L.; Nes, W. David; Garvey, Edward P.; Hoekstra, William J.; Schotzinger, Robert J.; Kelly, Diane E.

    2016-01-01

    Cryptococcosis is a life-threatening disease often associated with HIV infection. Three Cryptococcus species CYP51 enzymes were purified and catalyzed the 14α-demethylation of lanosterol, eburicol, and obtusifoliol. The investigational agent VT-1129 bound tightly to all three CYP51 proteins (dissociation constant [Kd] range, 14 to 25 nM) with affinities similar to those of fluconazole, voriconazole, itraconazole, clotrimazole, and ketoconazole (Kd range, 4 to 52 nM), whereas VT-1129 bound weakly to human CYP51 (Kd, 4.53 μM). VT-1129 was as effective as conventional triazole antifungal drugs at inhibiting cryptococcal CYP51 activity (50% inhibitory concentration [IC50] range, 0.14 to 0.20 μM), while it only weakly inhibited human CYP51 activity (IC50, ∼600 μM). Furthermore, VT-1129 weakly inhibited human CYP2C9, CYP2C19, and CYP3A4, suggesting a low drug-drug interaction potential. Finally, the cellular mode of action for VT-1129 was confirmed to be CYP51 inhibition, resulting in the depletion of ergosterol and ergosta-7-enol and the accumulation of eburicol, obtusifolione, and lanosterol/obtusifoliol in the cell membranes. PMID:27161631

  12. Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas

    PubMed Central

    Roller, Devin G.; Capaldo, Brian; Bekiranov, Stefan; Mackey, Aaron J.; Conaway, Mark R.; Petricoin, Emanuel F.; Gioeli, Daniel; Weber, Michael J.

    2016-01-01

    Over half of BRAFV600E melanomas display intrinsic resistance to BRAF inhibitors, in part due to adaptive signaling responses. In this communication we ask whether BRAFV600E melanomas share common adaptive responses to BRAF inhibition that can provide clinically relevant targets for drug combinations. We screened a panel of 12 treatment-naïve BRAFV600E melanoma cell lines with MAP Kinase pathway inhibitors in pairwise combination with 58 signaling inhibitors, assaying for synergistic cytotoxicity. We found enormous diversity in the drug combinations that showed synergy, with no two cell lines having an identical profile. Although the 6 lines most resistant to BRAF inhibition showed synergistic benefit from combination with lapatinib, the signaling mechanisms by which this combination generated synergistic cytotoxicity differed between the cell lines. We conclude that adaptive responses to inhibition of the primary oncogenic driver (BRAFV600E) are determined not only by the primary oncogenic driver but also by diverse secondary genetic and epigenetic changes (“back-seat drivers”) and hence optimal drug combinations will be variable. Because upregulation of receptor tyrosine kinases is a major source of drug resistance arising from diverse adaptive responses, we propose that inhibitors of these receptors may have substantial clinical utility in combination with inhibitors of the MAP Kinase pathway. PMID:26673621

  13. Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1alpha accumulation and activity by disrupting microtubule function.

    PubMed

    Escuin, Daniel; Kline, Erik R; Giannakakou, Paraskevi

    2005-10-01

    We have recently identified a mechanistic link between disruption of the microtubule cytoskeleton and inhibition of tumor angiogenesis via the hypoxia-inducible factor-1 (HIF-1) pathway. Based on this model, we hypothesized that other microtubule-targeting drugs may have a similar effect on HIF-1alpha. To test that hypothesis, we studied the effects of different clinically relevant microtubule-disrupting agents, including taxotere, epothilone B, discodermolide, vincristine, 2-methoxyestradiol, and colchicine. In all cases, HIF-1alpha protein, but not mRNA, was down-regulated in a drug dose-dependent manner. In addition, HIF-1alpha transcriptional activity was also inhibited by all drugs tested. To further examine whether these effects were dependent on microtubule network disruption, we tested the ability of epothilone B to inhibit HIF-1alpha protein in the human ovarian cancer cell line 1A9 and its beta-tubulin mutant epothilone-resistant subclone 1A9/A8. Our data showed that epothilone B treatment down-regulated HIF-1alpha protein in the parental 1A9 cells but had no effect in the resistant 1A9/A8 cells. These observations were confirmed by confocal microscopy, which showed impaired nuclear accumulation of HIF-1alpha in parental 1A9 cells at epothilone B concentrations that induced extensive microtubule stabilization. In contrast, epothilone B treatment had no effect on either microtubules or HIF-1alpha nuclear accumulation in the resistant 1A9/A8 cells. Furthermore, epothilone B inhibited HIF-1 transcriptional activity in 1A9 cells, as evidenced by a hypoxia response element-luciferase reporter assay, but had no effect on HIF-1 activity in the resistant 1A9/A8 cells. These data directly link beta-tubulin drug binding with HIF-1alpha protein inhibition. Our results further provide a strong rationale for testing taxanes and epothilones in clinical trials targeting HIF-1 in cancer patients.

  14. Inhibition of mediator release in RBL-2H3 cells by some H1-antagonist derived anti-allergic drugs: relation to lipophilicity and membrane effects.

    PubMed

    Fischer, M J; Paulussen, J J; Horbach, D A; Roelofsen, E P; van Miltenburg, J C; de Mol, N J; Janssen, L H

    1995-02-01

    In a model for mucosal mast cells (RBL-2H3 cells) a set H1-antagonist derived anti-allergic drugs containing a diphenylmethyl piperazinyl moiety was examined for their ability to inhibit release of the mediator beta-hexosaminidase. Cells were activated with antigen or the calcium ionophore A23187, whether or not in combination with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Oxatomide, hydroxyzine and cetirizine inhibit the antigen induced beta-hexosaminidase release. The release triggered by A23187, whether or not in combination with TPA is hardly influenced by the compounds. A biphasic dependence of the inhibition of exocytosis in RBL cells on lipophilicity is observed with the optimum at log P is 5-6. The extremely lipophilic compounds meclozine and buclizine are not active in this model. pH dependence of the effect of the drugs shows that especially the uncharged species are active in inhibiting exocytosis. The investigated compounds show an effect on phase transitions in L-alpha-phosphatidylcholine dipalmitoyl liposomes as assayed with differential scanning calorimetry (DSC). For the less extremely lipophilic compounds the induced changes in the phospholipid membranes increased with lipophilicity. The relation between structural features of the drug and the interaction with phospholipids is discussed in view of the DSC results. We conclude that location of the active drugs at the membrane or the membrane/protein interface is important for the inhibiting activity on exocytosis. This could affect several membrane related processes, which are abundant in the early phases of the IgE-mediated signal transduction process.

  15. 26 CFR 1.831-1 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... mutual), mutual marine insurance companies, and mutual fire insurance companies issuing perpetual policies. 1.831-1 Section 1.831-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... insurance companies (other than life or mutual), mutual marine insurance companies, and mutual...

  16. 26 CFR 1.831-1 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... mutual), mutual marine insurance companies, and mutual fire insurance companies issuing perpetual policies. 1.831-1 Section 1.831-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... insurance companies (other than life or mutual), mutual marine insurance companies, and mutual...

  17. In silico studies in probing the role of kinetic and structural effects of different drugs for the reactivation of tabun-inhibited AChE.

    PubMed

    Lo, Rabindranath; Chandar, Nellore Bhanu; Kesharwani, Manoj K; Jain, Aastha; Ganguly, Bishwajit

    2013-01-01

    We have examined the reactivation mechanism of the tabun-conjugated AChE with various drugs using density functional theory (DFT) and post-Hartree-Fock methods. The electronic environments and structural features of neutral oximes (deazapralidoxime and 3-hydroxy-2-pyridinealdoxime) and charged monopyridinium oxime (2-PAM) and bispyridinium oxime (Ortho-7) are different, hence their efficacy varies towards the reactivation process of tabun-conjugated AChE. The calculated potential energy surfaces suggest that a monopyridinium reactivator is less favorable for the reactivation of tabun-inhibited AChE compared to a bis-quaternary reactivator, which substantiates the experimental study. The rate determining barrier with neutral oximes was found to be ∼2.5 kcal/mol, which was ∼5.0 kcal/mol lower than charged oxime drugs such as Ortho-7. The structural analysis of the calculated geometries suggest that the charged oximes form strong O(…)H and N(…)H hydrogen bonding and C-H(…)π non-bonding interaction with the tabun-inhibited enzyme to stabilize the reactant complex compared to separated reactants, which influences the activation barrier. The ability of neutral drugs to cross the blood-brain barrier was also found to be superior to charged antidotes, which corroborates the available experimental observations. The calculated activation barriers support the superiority of neutral oximes for the activation of tabun-inhibited AChE compared to charged oximes. However, they lack effective interactions with their peripheral sites. Docking studies revealed that the poor binding affinity of simple neutral oxime drugs such as 3-hydroxy-2-pyridinealdoxime inside the active-site gorge of AChE was significantly augmented with the addition of neutral peripheral units compared to conventional charged peripheral sites. The newly designed oxime drug 2 appears to be an attractive candidate as efficient antidote to kinetically and structurally reactivate the tabun-inhibited

  18. In Silico Studies in Probing the Role of Kinetic and Structural Effects of Different Drugs for the Reactivation of Tabun-Inhibited AChE

    PubMed Central

    Lo, Rabindranath; Chandar, Nellore Bhanu; Kesharwani, Manoj K.; Jain, Aastha; Ganguly, Bishwajit

    2013-01-01

    We have examined the reactivation mechanism of the tabun-conjugated AChE with various drugs using density functional theory (DFT) and post-Hartree-Fock methods. The electronic environments and structural features of neutral oximes (deazapralidoxime and 3-hydroxy-2-pyridinealdoxime) and charged monopyridinium oxime (2-PAM) and bispyridinium oxime (Ortho-7) are different, hence their efficacy varies towards the reactivation process of tabun-conjugated AChE. The calculated potential energy surfaces suggest that a monopyridinium reactivator is less favorable for the reactivation of tabun-inhibited AChE compared to a bis-quaternary reactivator, which substantiates the experimental study. The rate determining barrier with neutral oximes was found to be ∼2.5 kcal/mol, which was ∼5.0 kcal/mol lower than charged oxime drugs such as Ortho-7. The structural analysis of the calculated geometries suggest that the charged oximes form strong O…H and N…H hydrogen bonding and C-H…π non-bonding interaction with the tabun-inhibited enzyme to stabilize the reactant complex compared to separated reactants, which influences the activation barrier. The ability of neutral drugs to cross the blood-brain barrier was also found to be superior to charged antidotes, which corroborates the available experimental observations. The calculated activation barriers support the superiority of neutral oximes for the activation of tabun-inhibited AChE compared to charged oximes. However, they lack effective interactions with their peripheral sites. Docking studies revealed that the poor binding affinity of simple neutral oxime drugs such as 3-hydroxy-2-pyridinealdoxime inside the active-site gorge of AChE was significantly augmented with the addition of neutral peripheral units compared to conventional charged peripheral sites. The newly designed oxime drug 2 appears to be an attractive candidate as efficient antidote to kinetically and structurally reactivate the tabun-inhibited enzyme

  19. Targeting the PI3K/AKT pathway via GLI1 inhibition enhanced the drug sensitivity of acute myeloid leukemia cells

    PubMed Central

    Liang, Hui; Zheng, Qi-Li; Fang, Peng; Zhang, Jian; Zhang, Tuo; Liu, Wei; Guo, Min; Robinson, Christopher L.; Chen, Shui-bing; Chen, Xiao-Ping; Chen, Fang-Ping; Zeng, Hui

    2017-01-01

    Combination targeted therapy is commonly used to treat acute myeloid leukemia (AML) patients, particularly in refractory/relapse (RR) population. However, concerns have been raised regarding the safety and patient tolerance of combination chemotherapy. It is critical to choose the appropriate treatment for precision therapy. We performed genome-wide RNA profiling using RNA-Seq to compare the RR group and the complete remission (CR) group (a total of 42 adult AML patients). The Hedgehog (Hh) and PI3K/AKT pathways were upregulated in the RR population, which was further confirmed by western blot and/or qPCR. Overexpression of GLI1 in AML cells led to increased AKT phosphorylation and decreased drug sensitivity, which was attenuated by GLI1 inhibition. By contrast, neither the expression of GLI1 nor apoptosis in response to Ara-C treatment of AML cells was significantly affected by PI3K inhibition. Furthermore, co-inhibition of GLI1 and PI3K induced apoptosis of hematopoietic stem/progenitor cells (HSPCs), which raised serious concerns about the side effects of this treatment. These results indicated that GLI1 inhibition alone, but not combined inhibition, is sufficient to enhance AML drug sensitivity, which provides a novel therapeutic strategy for AML treatment. PMID:28098170

  20. Anthelminthic drug niclosamide sensitizes the responsiveness of cervical cancer cells to paclitaxel via oxidative stress-mediated mTOR inhibition.

    PubMed

    Chen, Liping; Wang, Li; Shen, Haibin; Lin, Hui; Li, Dan

    2017-03-04

    Drug repurposing represents an alternative therapeutic strategy to cancer treatment. The potent anti-cancer activities of a FDA-approved anthelminthic drug niclosamide have been demonstrated in various cancers. However, whether niclosamide is active against cervical cancer is unknown. In this study, we investigated the effects of niclosamide alone and its combination with paclitaxel in cervical cancer in vitro and in vivo. We found that niclosamide significantly inhibited proliferation and induced apoptosis of a panel of cervical cancer cell lines, regardless of their cellular origin and genetic pattern. Niclosamide also inhibited tumor growth in cervical cancer xenograft mouse model. Importantly, niclosamide significantly enhanced the responsiveness of cervical cancer cell to paclitaxel. We further found that niclosamide induced mitochondrial dysfunctions via inhibiting mitochondrial respiration, complex I activity and ATP generation, which led to oxidative stress. ROS scavenge agent N-acetyl-l-cysteine (NAC) completely reversed the effects of niclosamide in increasing cellular ROS, inhibiting proliferation and inducing apoptosis, suggesting that oxidative stress induction is the mechanism of action of niclosamide in cervical cancer cells. In addition, niclosamide significantly inhibited mammalian target of rapamycin (mTOR) signaling pathway in cervical cancer cells and its inhibitory effect on mTOR is modulated by oxidative stress. Our work suggests that niclosamide is a useful addition to the treatment armamentarium for cervical cancer and induction of oxidative stress may be a potential therapeutic strategy in cervical cancer.

  1. Construction of bacteria-eukaryote synthetic mutualism.

    PubMed

    Kubo, Isao; Hosoda, Kazufumi; Suzuki, Shingo; Yamamoto, Kayo; Kihara, Kumiko; Mori, Kotaro; Yomo, Tetsuya

    2013-08-01

    Mutualism is ubiquitous in nature but is known to be intrinsically vulnerable with regard to both population dynamics and evolution. Synthetic ecology has indicated that it is feasible for organisms to establish novel mutualism merely through encountering each other by showing that it is feasible to construct synthetic mutualism between organisms. However, bacteria-eukaryote mutualism, which is ecologically important, has not yet been constructed. In this study, we synthetically constructed mutualism between a bacterium and a eukaryote by using two model organisms. We mixed a bacterium, Escherichia coli (a genetically engineered glutamine auxotroph), and an amoeba, Dictyostelium discoideum, in 14 sets of conditions in which each species could not grow in monoculture but potentially could grow in coculture. Under a single condition in which the bacterium and amoeba mutually compensated for the lack of required nutrients (lipoic acid and glutamine, respectively), both species grew continuously through several subcultures, essentially establishing mutualism. Our results shed light on the establishment of bacteria-eukaryote mutualism and indicate that a bacterium and eukaryote pair in nature also has a non-negligible possibility of establishing novel mutualism if the organisms are potentially mutualistic.

  2. Quercetin potentiates L-Dopa reversal of drug-induced catalepsy in rats: possible COMT/MAO inhibition.

    PubMed

    Singh, Amanpreet; Naidu, Pattipati S; Kulkarni, Shrinivas K

    2003-06-01

    L-Dopa plus carbidopa treatment remains the first-line therapy in Parkinson's disease. The use of catechol-O-methyltransferase (COMT) and/or monoamine oxidase (MAO) inhibitors as an adjunct to L-dopa therapy has yielded varying degrees of success. Quercetin, a flavonoid present in many plants, is reported to inhibit COMT and MAO activities, the key enzymes involved in the metabolism of dopamine. In the present study we have studied the effect of quercetin on the L-dopa plus carbidopa combination against perphenazine and reserpine-induced catalepsy in rats. Neuroleptic-induced catalepsy is a widely accepted animal model for testing the drugs used in parkinsonism. Catalepsy in rats was induced by administration of perphenazine (5 mg/kg i.p.) or reserpine (2.5 mg/kg i.p.) + alpha-methyl-P-tyrosine (200 mg/kg i.p.). Catalepsy in animals was assessed by using the bar test. The quercetin dose (25-100 mg/kg, p.o.) dependently reversed perphenazine- as well as reserpine-induced catalepsy. When quercetin was combined with a subthreshold dose of L-dopa plus carbidopa, the anticatatonic effect was potentiated. Pretreatment with a central COMT inhibitor, 3,5-dinitrocatechol (OR-486) (10 mg/kg p.o.), or a MAO-B inhibitor, selegiline (5 mg/kg i.p.), also potentiated the actions of threshold dose of quercetin against perphenazine- or reserpine-induced catalepsy. On the other hand adenosine (100 mg/kg i.p.), which is known to decrease the release of catecholamines through an action on presynaptic A(1) receptors, partly reversed the protective effect of quercetin against perphenazine-induced catalepsy. Quercetin through its COMT and MAO enzyme-inhibiting properties might potentiate the anticatatonic effect of L-dopa plus carbidopa treatment. The results of the present study strongly suggest that quercetin could serve as an effective adjunct to L-dopa therapy in Parkinson's disease.

  3. Genetic Pharmacotherapy as an Early CNS Drug Development Strategy: Testing Glutaminase Inhibition for Schizophrenia Treatment in Adult Mice

    PubMed Central

    Mingote, Susana; Masson, Justine; Gellman, Celia; Thomsen, Gretchen M.; Lin, Chyuan-Sheng; Merker, Robert J.; Gaisler-Salomon, Inna; Wang, Yvonne; Ernst, Rachel; Hen, René; Rayport, Stephen

    2016-01-01

    Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to ask whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAGERT2cre∕+ mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction—mimicking pharmacological inhibition—strongly attenuated the response to a propsychotic challenge, suggesting that glutaminase may be a novel

  4. Role of mutual punishment in the snowdrift game

    NASA Astrophysics Data System (ADS)

    Yang, Han-Xin; Wang, Zhen

    2015-09-01

    The effects of punishment on cooperation have drawn increasing attention. In this paper, we propose a new mechanism of punishment, in which an individual will punish each neighbor if their strategies are different, and vice versa. We incorporate the mutual punishment into the snowdrift game. Results for well-mixed and structured populations have shown that, for no punishment or small values of punishment fine, the fraction of cooperators continuously decreases with the temptation to defect. However, for large values of punishment fine, there exists an abrupt transition point, at which the fraction of cooperators suddenly drops from 1 to 0. Compared to no punishment, mutual punishment promotes cooperation when the temptation to defect is small but inhibits cooperation when the temptation to defect is large. For weak (strong) temptation to defect, the cooperation level increases (decreases) with the punishment fine. For moderate temptation to defect, there exists an optimal value of the punishment fine that leads to the highest cooperation level.

  5. 26 CFR 1.831-3 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... business within the United States, and all mutual marine insurance companies and mutual fire or flood insurance companies exclusively issuing perpetual policies or whose principal business is the issuance of...) Foreign insurance companies not carrying on an insurance business within the United States are not...

  6. 26 CFR 1.831-3 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... insurance business within the United States, and all mutual marine insurance companies and mutual fire or flood insurance companies exclusively issuing perpetual policies or whose principal business is the...) Foreign insurance companies not carrying on an insurance business within the United States are not...

  7. 26 CFR 1.831-3 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 8 2014-04-01 2014-04-01 false Tax on insurance companies (other than life or... beginning after December 31, 1962. 1.831-3 Section 1.831-3 Internal Revenue INTERNAL REVENUE SERVICE... Companies § 1.831-3 Tax on insurance companies (other than life or mutual), mutual marine...

  8. 26 CFR 1.831-3 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 8 2013-04-01 2013-04-01 false Tax on insurance companies (other than life or... beginning after December 31, 1962. 1.831-3 Section 1.831-3 Internal Revenue INTERNAL REVENUE SERVICE... Companies § 1.831-3 Tax on insurance companies (other than life or mutual), mutual marine...

  9. Verapamil, and its metabolite norverapamil, inhibit macrophage-induced, bacterial efflux pump-mediated tolerance to multiple anti-tubercular drugs.

    PubMed

    Adams, Kristin N; Szumowski, John D; Ramakrishnan, Lalita

    2014-08-01

    Drug tolerance likely represents an important barrier to tuberculosis treatment shortening. We previously implicated the Mycobacterium tuberculosis efflux pump Rv1258c as mediating macrophage-induced tolerance to rifampicin and intracellular growth. In this study, we infected the human macrophage-like cell line THP-1 with drug-sensitive and drug-resistant M. tuberculosis strains and found that tolerance developed to most antituberculosis drugs, including the newer agents moxifloxacin, PA-824, linezolid, and bedaquiline. Multiple efflux pump inhibitors in clinical use for other indications reversed tolerance to isoniazid and rifampicin and slowed intracellular growth. Moreover, verapamil reduced tolerance to bedaquiline and moxifloxacin. Verapamil's R isomer and its metabolite norverapamil have substantially less calcium channel blocking activity yet were similarly active as verapamil at inhibiting macrophage-induced drug tolerance. Our finding that verapamil inhibits intracellular M. tuberculosis growth and tolerance suggests its potential for treatment shortening. Norverapamil, R-verapamil, and potentially other derivatives present attractive alternatives that may have improved tolerability.

  10. Effect of substrate concentration on inhibition of prostaglandin synthetase of bull seminal vesicles by anti-inflammatory drugs and fenamic acid analogs.

    PubMed

    Cushman, D W; Cheung, H S

    1976-03-26

    Although microsomes of bull seminal vesicle synthesize prostaglandins F2alpha, E2 and D2 from arachidonic acid under suitable assay conditions, prostaglandin E2 is the only significant product at either low concentration of arachidonic acid or high concentration of microsomes. Studies of inhibition of prostaglandin synthesis in vitro by anti-inflammatory drugs at both high (1 mM) and low (1 muM) concentrations of arachidonic acid, suggest three distinct mechanisms of inhibition. Benzydamine and flazalone are non-competitive or weakly competitive with arachidonic acid and, at high concentrations of arachidonic acid, they augment sythesis of prostaglandin E2 while inhibiting production of prostaglandins F2alpha and D2. Niflumic acid and the arylacetic acids naproxen and ibuprofen are competitive inhibiting all products equally, but with 100-500-fold greater potency at the low substrate concentration. The fenamic acids, indomethacin, aspirin, and phenylbutazone also inhibit equally all prostaglandin products, but are only 20--50 times more potent at the low substrate concentration. Studies with analogs of the fenamic acids indicate that the diphenylamine protion of their structure is essential for inhibition of prostaglandin synthesis, whereas the o-carboxyl and m-alkul substitutents greatly enhance inhibitory potency.

  11. Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-κB/GLUT1 axis

    PubMed Central

    Jiang, Jie; Geng, Guojun; Yu, Xiuyi; Liu, Hongming; Gao, Jing; An, Hanxiang; Cai, Chengfu; Li, Ning; Shen, Dongyan; Wu, Xiaoqiang; Zheng, Lisheng; Mi, Yanjun; Yang, Shuyu

    2016-01-01

    Non-small-cell lung cancer (NSCLC) is an aggressive malignancy and long-term survival remains unsatisfactory for patients with metastatic and recurrent disease. Repurposing the anti-malarial drug dihydroartemisinin (DHA) has been proved to possess potent antitumor effect on various cancers. However, the effects of DHA in preventing the invasion of NSCLC cells have not been studied. In the present study, we determined the inhibitory effects of DHA on invasion and migration and the possible mechanisms involved using A549 and H1975 cells. DHA inhibited in vitro migration and invasion of NSCLC cells even in low concentration with little cytotoxicity. Additionally, low concentration DHA also inhibited Warburg effect in NSCLC cells. Mechanically, DHA negatively regulates NF-κB signaling to inhibit the GLUT1 translocation. Blocking the NF-κB signaling largely abolishes the inhibitory effects of DHA on the translocation of GLUT1 to the plasma membrane and the Warburg effect. Furthermore, GLUT1 knockdown significantly decreased the inhibition of invasion, and migration by DHA. Our results suggested that DHA can inhibit metastasis of NSCLC by targeting glucose metabolism via inhibiting NF-κB signaling pathway and DHA may deserve further investigation in NSCLC treatment. PMID:27895313

  12. Inhibition of tumour necrosis factor-alpha (TNF-alpha) release from mast cells by the anti-inflammatory drugs, sodium cromoglycate and nedocromil sodium.

    PubMed

    Bissonnette, E Y; Enciso, J A; Befus, A D

    1995-10-01

    TNF-alpha is a cytokine thought to be involved in the pathogenesis of asthma and in several other inflammatory conditions. Given recent evidence that mast cells (MC) are an important source of TNF-alpha, we investigated the effects of two anti-inflammatory drugs, nedocromil sodium (NED) and sodium cromoglycate (SCG), on rat MC-derived TNF-alpha. We established that at least 2 h pretreatment with NED or SCG followed by washing was required to inhibit TNF-alpha-dependent cytotoxicity by rat peritoneal MC (PMC). A maximum inhibition of TNF-alpha occurred after 6 h treatment. The inhibitory effect of NED and SCG (10(-5)-10(-3)M) was concentration-dependent (20-37% for NED and 16-37% for SCG). The time-course analysis and the use of cycloheximide, an inhibitor of protein synthesis, provided strong evidence that new protein synthesis by the MC is required for this inhibitory effect. Furthermore, 24 h treatment with 1 mM NED inhibited the levels of mRNA for TNF-alpha by 59-83%. In addition to the effect on TNF-alpha-dependent cytotoxicity by MC, 20 min pretreatment with 10(-4) M NED and SCG inhibited antigen-stimulated TNF-alpha release (6h) by 42% and 48%, respectively. Interestingly, the functionally distinct intestinal mucosal MC (IMMC) is unresponsive to these drugs with regard to histamine secretion. However, as with PMC, 2h pretreatment with NED or SCG inhibited TNF-alpha-dependent cytotoxicity by IMMC. These effects may be important in the action of these drugs in vivo in the late phase reaction in asthma or other inflammatory conditions.

  13. Inhibition of tumour necrosis factor-alpha (TNF-alpha) release from mast cells by the anti-inflammatory drugs, sodium cromoglycate and nedocromil sodium.

    PubMed Central

    Bissonnette, E Y; Enciso, J A; Befus, A D

    1995-01-01

    TNF-alpha is a cytokine thought to be involved in the pathogenesis of asthma and in several other inflammatory conditions. Given recent evidence that mast cells (MC) are an important source of TNF-alpha, we investigated the effects of two anti-inflammatory drugs, nedocromil sodium (NED) and sodium cromoglycate (SCG), on rat MC-derived TNF-alpha. We established that at least 2 h pretreatment with NED or SCG followed by washing was required to inhibit TNF-alpha-dependent cytotoxicity by rat peritoneal MC (PMC). A maximum inhibition of TNF-alpha occurred after 6 h treatment. The inhibitory effect of NED and SCG (10(-5)-10(-3)M) was concentration-dependent (20-37% for NED and 16-37% for SCG). The time-course analysis and the use of cycloheximide, an inhibitor of protein synthesis, provided strong evidence that new protein synthesis by the MC is required for this inhibitory effect. Furthermore, 24 h treatment with 1 mM NED inhibited the levels of mRNA for TNF-alpha by 59-83%. In addition to the effect on TNF-alpha-dependent cytotoxicity by MC, 20 min pretreatment with 10(-4) M NED and SCG inhibited antigen-stimulated TNF-alpha release (6h) by 42% and 48%, respectively. Interestingly, the functionally distinct intestinal mucosal MC (IMMC) is unresponsive to these drugs with regard to histamine secretion. However, as with PMC, 2h pretreatment with NED or SCG inhibited TNF-alpha-dependent cytotoxicity by IMMC. These effects may be important in the action of these drugs in vivo in the late phase reaction in asthma or other inflammatory conditions. Images Fig. 6 PMID:7554404

  14. QSAR Modelling of CYP3A4 Inhibition as a Screening Tool in the Context of DrugDrug Interaction Studies.

    PubMed

    Hamon, Véronique; Horvath, Dragos; Gaudin, Cédric; Desrivot, Julie; Junges, Céline; Arrault, Alban; Bertrand, Marc; Vayer, Philippe

    2012-09-01

    Drugdrug interaction potential (DDI), especially cytochrome P450 (CYP) 3A4 inhibition potential, is one of the most important parameters to be optimized before preclinical and clinical pharmaceutical development as regard to the number of marketed drug metabolized mainly by this CYP and potentially co-administered with the future drug. The present study aims to develop in silico models for CYP3A4 inhibition prediction to help medicinal chemists during the discovery phase and even before the synthesis of new chemical entities (NCEs), focusing on NCEs devoid of any inhibitory potential toward this CYP. In order to find a relevant relationship between CYP3A4 inhibition and chemical features of the screened compounds, we applied a genetic-algorithm-based QSAR exploratory tool SQS (Stochastic QSAR Sampler) in combination with different description approaches comprising alignment-independent Volsurf descriptors, ISIDA fragments and Topological Fuzzy Pharmacophore Triplets. The experimental data used to build models were extracted from an in-house database. We derived a model with good prediction ability that was confirmed on both newly synthesized compound and public dataset retrieved from Pubchem database. This model is a promising efficient tool for filtering out potentially problematic compounds.

  15. [Maintaining solidarity: is mutuality the solution?].

    PubMed

    Gevers, J K M; Ploem, M C

    2013-01-01

    Solidarity is essentially the willingness to contribute to the community and its demands, which may even involve contributing more than one is expecting to receive. Another principle is mutuality: this refers to a balance between rights and obligations or between mutual obligations. In its advisory document 'The importance of mutuality......solidarity takes work!', The Dutch Council for Public Health and Health Care underlines the importance of ensuring solidarity within the Dutch health care system, e.g. by encouraging patients to take responsibility for their own health, possibly by introducing elements of mutuality. In our contribution, we comment on the Council's advice. Although we fully agree with the overall conclusion that solidarity should be maintained within the system, we do not see how the introduction of increased mutuality will contribute to this goal.

  16. Enantioselective inhibition of Cytochrome P450-mediated drug metabolism by a novel antithrombotic agent, S002-333: Major effect on CYP2B6.

    PubMed

    Bhateria, Manisha; Ramakrishna, Rachumallu; Puttrevu, Santosh Kumar; Saxena, Anil K; Bhatta, Rabi Sankar

    2016-08-25

    A significant number of new chemical entities (NCEs) fail in drug discovery due to inhibition of Cytochrome P450 (CYP) enzymes. Therefore, to avert costly drug failure at the clinical phase it becomes indispensable to evaluate the CYP inhibition profile of NCEs early in drug discovery. In light of these concerns, we envisioned to investigate the inhibitory effects of S002-333 [2-(4-methoxy-benzenesulfonyl)-2,3,4,9-tetrahydro-1H-b-carboxylic acid amide], a novel and potent antithrombotic agent, on nine major CYP enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4) of human liver microsomes (HLM). S002-333 exists as racemic mixture of S004-1032 (R-isomer) and S007-1558 (S-isomer), consequently, we further examined the enantioselective differences of S002-333 in the inhibition of human CYP enzymes. Of the CYP enzymes tested, CYP2B6-catalyzed bupropion 6-hydroxylation was inhibited by S002-333 (IC50 ∼ 9.25 ± 2.46 μM) in a stereoselective manner with (S)-isomer showing potent inhibition (IC50 ∼ 5.28 ± 1.25 μM) in contrast to (R)-isomer which showed negligible inhibition on CYP2B6 activity (IC50 > 50 μM). S002-333 and its (S)-isomer inhibited CYP2B6 activity in a non-competitive fashion with estimated Ki values of 10.1 ± 3.4 μM and 5.09 ± 1.05 μM, respectively. No shift in the IC50 value was observed for S002-333 and its isomers when preincubated for 30 min in the presence of NADPH suggesting that neither S002-333 nor its enantiomers are time-dependent inhibitors. Thus, the present findings signified that S002-333 is a potent stereoselective inhibitor of CYP2B6, whereas, inhibition for other CYPs was substantially negligible. These in vitro findings would be useful in deciding the development of S002-333 as a single-enantiomer or as a racemic mixture.

  17. Two non-steroidal anti-inflammatory drugs, niflumic acid and diclofenac, inhibit the human glutamate transporter EAAT1 through different mechanisms.

    PubMed

    Takahashi, Kanako; Ishii-Nozawa, Reiko; Takeuchi, Kouichi; Nakazawa, Ken; Sato, Kaoru

    2010-01-01

    We investigated the effects of non-steroidal anti-inflammatory drugs on substrate-induced currents of L-glutamate (L-Glu) transporter EAAT1 expressed in Xenopus laevis oocytes. Niflumic acid (NFA) and diclofenac inhibited L-Glu-induced current through EAAT1 in a non-competitive manner. NFA produced a leftward shift in reversal potential (E(rev)) of L-Glu-induced current and increased current amplitude at the potentials more negative than -100 mV. Diclofenac had no effects on E(rev) and inhibited the current amplitude to the same extent at all negative potentials. These results indicate that NFA and diclofenac inhibit the L-Glu-induced EAAT1 current via different mechanisms.

  18. Mutual Recognition of the Food and Drug Administration and European Community Member State Conformity Assessment Procedures; pharmaceutical GMP inspection reports, medical device quality system evaluation reports, and certain medical device premarket evaluation reports--FDA. Proposed rule.

    PubMed

    1998-04-10

    The Food and Drug Administration (FDA) is proposing to amend its regulations pursuant to an international agreement that is expected to be concluded between the United States and the European Community (EC) (Ref. 1). Under the terms of that agreement, FDA may normally endorse good manufacturing practice (GMP) inspection reports for pharmaceuticals provided by equivalent EC Member State regulatory authorities and medical device quality system evaluation reports and certain medical device premarket evaluation reports provided by equivalent conformity assessment bodies. FDA is taking this action to enhance its ability to ensure the safety and efficacy of pharmaceuticals and medical devices through more efficient and effective utilization of its regulatory resources. The agency is requesting comments on the proposed rule.

  19. Potent Inhibition of Nitric Oxide-Releasing Bifendate Derivatives against Drug-Resistant K562/A02 Cells in Vitro and in Vivo.

    PubMed

    Gu, Xiaoke; Huang, Zhangjian; Ren, Zhiguang; Tang, Xiaobo; Xue, Rongfang; Luo, Xiaojun; Peng, Sixun; Peng, Hui; Lu, Bin; Tian, Jide; Zhang, Yihua

    2017-02-09

    Multidrug resistance is a major obstacle to successful chemotherapy for leukemia. In this study, a series of nitric oxide (NO)-releasing bifendate derivatives (7a-n) were synthesized. Biological evaluation indicated that the most active compound (7a) produced relatively high levels of NO and significantly inhibited the proliferation of drug-resistant K562/A02 cells in vitro and in vivo. In addition, 7a induced the mitochondrial tyrosine nitration and the intracellular accumulation of rhodamine 123 by inhibiting P-gp activity in K562/A02 cells. Furthermore, 7a remarkably down-regulated AKT, NF-κB, and ERK activation and HIF-1α expression in K562/A02 cells, which are associated with the tumor cell proliferation and drug resistance. Notably, the antitumor effects were dramatically attenuated by an NO scavenger or elimination of the NO-releasing capability of 7a, indicating that NO produced by 7a contributed to, at least partly, its cytotoxicity against drug-resistant K562/A02 cells. Overall, 7a may be a potential agent against drug-resistant myelogenous leukemia.

  20. Development of a Fluorescence-based Trypanosoma cruzi CYP51 Inhibition Assay for Effective Compound Triaging in Drug Discovery Programmes for Chagas Disease

    PubMed Central

    Riley, Jennifer; Brand, Stephen; Voice, Michael; Caballero, Ivan; Calvo, David; Read, Kevin D.

    2015-01-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life threatening global health problem with only two drugs available for treatment (benznidazole and nifurtimox), both having variable efficacy in the chronic stage of the disease and high rates of adverse drug reactions. Inhibitors of sterol 14α-demethylase (CYP51) have proven effective against T. cruzi in vitro and in vivo in animal models of Chagas disease. Consequently two azole inhibitors of CYP51 (posaconazole and ravuconazole) have recently entered clinical development by the Drugs for Neglected Diseases initiative. Further new drug treatments for this disease are however still urgently required, particularly having a different mode of action to CYP51 in order to balance the overall risk in the drug discovery portfolio. This need has now been further strengthened by the very recent reports of treatment failure in the clinic for both posaconazole and ravuconazole. To this end and to prevent enrichment of drug candidates against a single target, there is a clear need for a robust high throughput assay for CYP51 inhibition in order to evaluate compounds active against T. cruzi arising from phenotypic screens. A high throughput fluorescence based functional assay using recombinantly expressed T. cruzi CYP51 (Tulahuen strain) is presented here that meets this requirement. This assay has proved valuable in prioritising medicinal chemistry resource on only those T. cruzi active series arising from a phenotypic screening campaign where it is clear that the predominant mode of action is likely not via inhibition of CYP51. PMID:26394211

  1. Development of a Fluorescence-based Trypanosoma cruzi CYP51 Inhibition Assay for Effective Compound Triaging in Drug Discovery Programmes for Chagas Disease.

    PubMed

    Riley, Jennifer; Brand, Stephen; Voice, Michael; Caballero, Ivan; Calvo, David; Read, Kevin D

    2015-09-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life threatening global health problem with only two drugs available for treatment (benznidazole and nifurtimox), both having variable efficacy in the chronic stage of the disease and high rates of adverse drug reactions. Inhibitors of sterol 14α-demethylase (CYP51) have proven effective against T. cruzi in vitro and in vivo in animal models of Chagas disease. Consequently two azole inhibitors of CYP51 (posaconazole and ravuconazole) have recently entered clinical development by the Drugs for Neglected Diseases initiative. Further new drug treatments for this disease are however still urgently required, particularly having a different mode of action to CYP51 in order to balance the overall risk in the drug discovery portfolio. This need has now been further strengthened by the very recent reports of treatment failure in the clinic for both posaconazole and ravuconazole. To this end and to prevent enrichment of drug candidates against a single target, there is a clear need for a robust high throughput assay for CYP51 inhibition in order to evaluate compounds active against T. cruzi arising from phenotypic screens. A high throughput fluorescence based functional assay using recombinantly expressed T. cruzi CYP51 (Tulahuen strain) is presented here that meets this requirement. This assay has proved valuable in prioritising medicinal chemistry resource on only those T. cruzi active series arising from a phenotypic screening campaign where it is clear that the predominant mode of action is likely not via inhibition of CYP51.

  2. 12 CFR 575.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 6 2014-01-01 2012-01-01 true Mutual holding company reorganizations. 575.3... COMPANIES § 575.3 Mutual holding company reorganizations. A mutual savings association may reorganize to become a mutual holding company, or join in a mutual holding company reorganization as an...

  3. 12 CFR 239.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 4 2014-01-01 2014-01-01 false Mutual holding company reorganizations. 239.3... RESERVE SYSTEM (CONTINUED) MUTUAL HOLDING COMPANIES (REGULATION MM) Mutual Holding Companies § 239.3 Mutual holding company reorganizations. (a) A mutual savings association may not reorganize to become...

  4. 12 CFR 575.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 6 2013-01-01 2012-01-01 true Mutual holding company reorganizations. 575.3... COMPANIES § 575.3 Mutual holding company reorganizations. A mutual savings association may reorganize to become a mutual holding company, or join in a mutual holding company reorganization as an...

  5. 12 CFR 239.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Mutual holding company reorganizations. 239.3... RESERVE SYSTEM (CONTINUED) MUTUAL HOLDING COMPANIES (REGULATION MM) Mutual Holding Companies § 239.3 Mutual holding company reorganizations. (a) A mutual savings association may not reorganize to become...

  6. 12 CFR 575.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Mutual holding company reorganizations. 575.3... COMPANIES § 575.3 Mutual holding company reorganizations. A mutual savings association may reorganize to become a mutual holding company, or join in a mutual holding company reorganization as an...

  7. 12 CFR 575.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false Mutual holding company reorganizations. 575.3... COMPANIES § 575.3 Mutual holding company reorganizations. A mutual savings association may reorganize to become a mutual holding company, or join in a mutual holding company reorganization as an...

  8. 12 CFR 239.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 4 2012-01-01 2012-01-01 false Mutual holding company reorganizations. 239.3... RESERVE SYSTEM (CONTINUED) MUTUAL HOLDING COMPANIES (REGULATION MM) Mutual Holding Companies § 239.3 Mutual holding company reorganizations. (a) A mutual savings association may not reorganize to become...

  9. 12 CFR 575.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 6 2012-01-01 2012-01-01 false Mutual holding company reorganizations. 575.3... COMPANIES § 575.3 Mutual holding company reorganizations. A mutual savings association may reorganize to become a mutual holding company, or join in a mutual holding company reorganization as an...

  10. Investigation of drug-drug interaction via mechanism-based inhibition of cytochrome P450 3A by macrolides in dexamethasone-treated female rats.

    PubMed

    Kanazu, Takushi; Sato, Norihito; Kadono, Kyoko; Touchi, Akira; Takeda, Yuri; Yamaguchi, Yoshitaka; Baba, Takahiko

    2012-05-01

    The in vitro and in vivo inhibition of cytochrome P450 (CYP) 3A with mechanism-based inhibition (MBI) by macrolides was investigated using dexamethasone-treated female rats (DEX-female rats). In the in vitro CYP inhibition studies using erythromycin (ERM) and clarithromycin (CAM), similar inhibition responses were observed between human and DEX-female rat liver microsomes, however, there were fewer effects in intact male rats. The ex vivo study showed that midazolam (MDZ) metabolism in liver microsomes of DEX-female rats was reduced by ERM administration and the inhibitory effect was increased with increasing ERM doses, indicating that metabolite intermediate complex formation caused irreversible inhibition of CYP3A activity in DEX-female rats as well as in humans. In the in vivo studies, ERM and CAM significantly increased the area under the plasma concentration-time curve of MDZ and decreased the total clearance in DEX-female rats. It was concluded that the DDIs via MBI of CYP3A following macrolide administration in humans could be reproduced in female rats, suggesting that DEX-female rats can serve as an in vivo model for assessing this DDI in humans.

  11. Oscillatory dynamics in a bacterial cross-protection mutualism

    PubMed Central

    Yurtsev, Eugene Anatoly; Conwill, Arolyn; Gore, Jeff

    2016-01-01

    Cooperation between microbes can enable microbial communities to survive in harsh environments. Enzymatic deactivation of antibiotics, a common mechanism of antibiotic resistance in bacteria, is a cooperative behavior that can allow resistant cells to protect sensitive cells from antibiotics. Understanding how bacterial populations survive antibiotic exposure is important both clinically and ecologically, yet the implications of cooperative antibiotic deactivation on the population and evolutionary dynamics remain poorly understood, particularly in the presence of more than one antibiotic. Here, we show that two Escherichia coli strains can form an effective cross-protection mutualism, protecting each other in the presence of two antibiotics (ampicillin and chloramphenicol) so that the coculture can survive in antibiotic concentrations that inhibit growth of either strain alone. Moreover, we find that daily dilutions of the coculture lead to large oscillations in the relative abundance of the two strains, with the ratio of abundances varying by nearly four orders of magnitude over the course of the 3-day period of the oscillation. At modest antibiotic concentrations, the mutualistic behavior enables long-term survival of the oscillating populations; however, at higher antibiotic concentrations, the oscillations destabilize the population, eventually leading to collapse. The two strains form a successful cross-protection mutualism without a period of coevolution, suggesting that similar mutualisms may arise during antibiotic treatment and in natural environments such as the soil. PMID:27194723

  12. San Huang Decoction downregulates Aurora kinase A to inhibit breast cancer cell growth and enhance chemosenstivity to anti-tumor drugs.

    PubMed

    Xu, Yanlei; Chen, Xu; Chen, Xiyan; Bian, Weihe; Yao, Chang; Zhang, Xiaoqing; Zhu, Xiaoshu; Chen, Jiajing; Ye, Xiaozhou

    2016-08-01

    Our study aimed to explore whether San Huang Decoction (SHD) inhibited the development of breast cancer by regulating Aurora A. Human breast cancer cell lines MCF-7 and MDA-MB-231 were cultured and SHD extract was prepared. Cell growth assay and apoptosis analysis were respectively performed to detect the effects of SHD on breast cancer cells. In addition, the effects of SHD on the expression of Aurora A and p53 were determined by RT-PCR and western blot. Besides, we used Aurora A siRNA to knock down Aurora A. We then co-administrated SHD and tamoxifen or epirubicin to detect the effect of SHD on chemosensitivity to tamoxifen or epirubicin. SHD treatment significantly inhibited cell growth in a dose-dependent manner. Moreover, SHD treatment resulted in a marked decrease in Aurora A expression and obvious increase in p53 expression. In addition, knockdown of Aurora A induced cell growth inhibition, which was similar to the effect of SHD treatment. Besides, SHD exerted an additive effect on cell growth inhibition and apoptosis induction when breast cancer cells were co-administration of SHD with tamoxifen or epirubicin. Our study indicates that SHD treatment may inhibit cell growth and enhance chemosenstivity to other anti-tumor drugs in breast cancer via down-regulation of Aurora A.

  13. Time-dependent Drug–Drug Interaction Alerts in Care Provider Order Entry: Software May Inhibit Medication Error Reductions

    PubMed Central

    van der Sijs, Heleen; Lammers, Laureen; van den Tweel, Annemieke; Aarts, Jos; Berg, Marc; Vulto, Arnold; van Gelder, Teun

    2009-01-01

    Time-dependent drug–drug interactions (TDDIs) are drug combinations that result in a decreased drug effect due to coadministration of a second drug. Such interactions can be prevented by separately administering the drugs. This study attempted to reduce drug administration errors due to overridden TDDIs in a care provider order entry (CPOE) system. In four periods divided over two studies, logged TDDIs were investigated by reviewing the time intervals prescribed in the CPOE and recorded on the patient chart. The first study showed significant drug administration error reduction from 56.4 to 36.2% (p < 0.05), whereas the second study was not successful (46.7 and 45.2%; p > 0.05). Despite interventions, drug administration errors still occurred in more than one third of cases and prescribing errors in 79–87%. Probably the low alert specificity, the unclear alert information content, and the inability of the software to support safe and efficient TDDI alert handling all diminished correct prescribing, and consequently, insufficiently reduced drug administration errors. PMID:19717806

  14. In-vitro and in-vivo inhibition of melanoma growth and metastasis by the drug combination of celecoxib and dacarbazine.

    PubMed

    Sadhu, Satya S; Wang, Shenggang; Averineni, Ranjith K; Seefeldt, Teresa; Yang, Yang; Guan, Xiangming

    2016-12-01

    Celecoxib has been found to be effective in cancer prevention and treatment. Its combination with other chemotherapeutic agents was reported to produce synergistic/additive effects on various cancers. Dacarbazine (DTIC) is one of the most commonly used drugs in the treatment of metastatic melanoma. This investigation aimed to determine the in-vitro and in-vivo effects of the drug combination of celecoxib and DTIC on melanoma growth and metastasis. Melanoma cells B16-F10 and SK-MEL-28, and female C57BL/6 mice were used for the study. Our in-vitro data showed that significant synergistic effects were obtained when celecoxib was used together with various concentrations of DTIC. A study with B16-F10 cells using flow cytometry analysis showed that the drug combination induced significantly more apoptosis than each drug used individually. Our in-vivo results showed that the drug combination was much more effective than each drug used alone for the inhibition of both melanoma growth and metastasis in the B16-F10+C57BL/6 mouse models. For melanoma growth, the median survival rates for phosphate-buffered saline (PBS) (control), celecoxib (30 mg/kg), DTIC-1 (10 mg/kg), DTIC-2 (positive control, 50 mg/kg), and the drug combination (DTIC 10 mg/kg+celecoxib 30 mg/kg) were 6, 6.5, 7.5, 7.5, and 9 days, respectively. For melanoma metastasis, the average number of metastatic tumors in murine lungs was 53.7±10.7, 31.8±18.6, 21.2±21.7, 7.0±9.0, and 0.8±2.0 for PBS, DTIC-1, celecoxib, the drug combination, and DTIC-2. Our results warrant further investigation of the combination as an effective treatment for melanoma patients.

  15. Permutation auto-mutual information of electroencephalogram in anesthesia

    NASA Astrophysics Data System (ADS)

    Liang, Zhenhu; Wang, Yinghua; Ouyang, Gaoxiang; Voss, Logan J.; Sleigh, Jamie W.; Li, Xiaoli

    2013-04-01

    Objective. The dynamic change of brain activity in anesthesia is an interesting topic for clinical doctors and drug designers. To explore the dynamical features of brain activity in anesthesia, a permutation auto-mutual information (PAMI) method is proposed to measure the information coupling of electroencephalogram (EEG) time series obtained in anesthesia. Approach. The PAMI is developed and applied on EEG data collected from 19 patients under sevoflurane anesthesia. The results are compared with the traditional auto-mutual information (AMI), SynchFastSlow (SFS, derived from the BIS index), permutation entropy (PE), composite PE (CPE), response entropy (RE) and state entropy (SE). Performance of all indices is assessed by pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability. Main results. The PK/PD modeling and prediction probability analysis show that the PAMI index correlates closely with the anesthetic effect. The coefficient of determination R2 between PAMI values and the sevoflurane effect site concentrations, and the prediction probability Pk are higher in comparison with other indices. The information coupling in EEG series can be applied to indicate the effect of the anesthetic drug sevoflurane on the brain activity as well as other indices. The PAMI of the EEG signals is suggested as a new index to track drug concentration change. Significance. The PAMI is a useful index for analyzing the EEG dynamics during general anesthesia.

  16. Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine β-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer.

    PubMed

    Druzhyna, Nadiya; Szczesny, Bartosz; Olah, Gabor; Módis, Katalin; Asimakopoulou, Antonia; Pavlidou, Athanasia; Szoleczky, Petra; Gerö, Domokos; Yanagi, Kazunori; Törö, Gabor; López-García, Isabel; Myrianthopoulos, Vassilios; Mikros, Emmanuel; Zatarain, John R; Chao, Celia; Papapetropoulos, Andreas; Hellmich, Mark R; Szabo, Csaba

    2016-11-01

    Cystathionine-β-synthase (CBS) has been recently identified as a drug target for several forms of cancer. Currently no potent and selective CBS inhibitors are available. Using a composite collection of 8871 clinically used drugs and well-annotated pharmacological compounds (including the LOPAC library, the FDA Approved Drug Library, the NIH Clinical Collection, the New Prestwick Chemical Library, the US Drug Collection, the International Drug Collection, the 'Killer Plates' collection and a small custom collection of PLP-dependent enzyme inhibitors), we conducted an in vitro screen in order to identify inhibitors for CBS using a primary 7-azido-4-methylcoumarin (AzMc) screen to detect CBS-derived hydrogen sulfide (H2S) production. Initial hits were subjected to counterscreens using the methylene blue assay (a secondary assay to measure H2S production) and were assessed for their ability to quench the H2S signal produced by the H2S donor compound GYY4137. Four compounds, hexachlorophene, tannic acid, aurintricarboxylic acid and benserazide showed concentration-dependent CBS inhibitory actions without scavenging H2S released from GYY4137, identifying them as direct CBS inhibitors. Hexachlorophene (IC50: ∼60μM), tannic acid (IC50: ∼40μM) and benserazide (IC50: ∼30μM) were less potent CBS inhibitors than the two reference compounds AOAA (IC50: ∼3μM) and NSC67078 (IC50: ∼1μM), while aurintricarboxylic acid (IC50: ∼3μM) was equipotent with AOAA. The second reference compound NSC67078 not only inhibited the CBS-induced AzMC fluorescence signal (IC50: ∼1μM), but also inhibited with the GYY4137-induced AzMC fluorescence signal with (IC50 of ∼6μM) indicative of scavenging/non-specific effects. Hexachlorophene (IC50: ∼6μM), tannic acid (IC50: ∼20μM), benserazide (IC50: ∼20μM), and NSC67078 (IC50: ∼0.3μM) inhibited HCT116 colon cancer cells proliferation with greater potency than AOAA (IC50: ∼300μM). In contrast, although a CBS inhibitor

  17. Reconsolidation and extinction are dissociable and mutually exclusive processes: behavioral and molecular evidence.

    PubMed

    Merlo, Emiliano; Milton, Amy L; Goozée, Zara Y; Theobald, David E; Everitt, Barry J

    2014-02-12

    Memory persistence is critically influenced by retrieval. In rats, a single presentation of a conditioned fear stimulus induces memory reconsolidation and fear memory persistence, while repeated fear cue presentations result in loss of fear through extinction. These two opposite behavioral outcomes are operationally linked by the number of cue presentations at memory retrieval. However, the behavioral properties and mechanistic determinants of the transition have not yet been explored; in particular, whether reconsolidation and extinction processes coexist or are mutually exclusive, depending on the exposure to non-reinforced retrieval events. We characterized both behaviorally and molecularly the transition from reconsolidation to extinction of conditioned fear and showed that an increase in calcineurin (CaN) in the basolateral amygdala (BLA) supports the shift from fear maintenance to fear inhibition. Gradually increasing the extent of retrieval induces a gradual decrease in freezing responses to the conditioned stimulus and a gradual increase in amygdala CaN level. This newly synthesized CaN is required for the extinction, but not the reconsolidation, of conditioned fear. During the transition from reconsolidation to extinction, we have revealed an insensitive state of the fear memory where NMDA-type glutamate receptor agonist and antagonist drugs are unable either to modulate CaN levels in the BLA or alter the reconsolidation or extinction processes. Together, our data indicate both that reconsolidation and extinction are mutually exclusive processes and also reveal the presence of a transitional, or "limbo," state of the original memory between these two alternative outcomes of fear memory retrieval, when neither process is engaged.

  18. PRO-2-PAM: The First Therapeutic Drug for Reactivation of Organo-Phosphate-Inhibited Central (Brain) and Peripheral Cholinesterases

    DTIC Science & Technology

    2008-12-01

    1. Synthesis and Properties of 1-Methyl- 1,6- dihydropyridine -2-carbaldoxime, a Pro-Drug of N- Methylpyridinium-2-carbaldoxime Chloride, J. Med... Synthesis of pro-2-PAM (Fig. 1). We synthesized the pro-drug, pro-2-PAM, as previously described (Bodor, 1976). However, the final step, the E1

  19. The Inhibition of Folylpolyglutamate Synthetase (folC) in the Prevention of Drug Resistance in Mycobacterium tuberculosis by Traditional Chinese Medicine

    PubMed Central

    Hung, Tzu-Chieh; Chen, Kuen-Bao; Lee, Wen-Yuan

    2014-01-01

    Tuberculosis (TB) is an infectious disease caused by many strains of mycobacteria, but commonly Mycobacterium tuberculosis. As a possible method of reducing the drug resistance of M. tuberculosis, this research investigates the inhibition of Folylpolyglutamate synthetase, a protein transcript from the resistance association gene folC. After molecular docking to screen the traditional Chinese medicine (TCM) database, the candidate TCM compounds, with Folylpolyglutamate synthetase, were selected by molecular dynamics. The 10,000 ps simulation in association with RMSD analysis and total energy and structural variation defined the protein-ligand interaction. The selected TCM compounds Saussureamine C, methyl 3-O-feruloylquinate, and Labiatic acid have been found to inhibit the activity of bacteria and viruses and to regulate immunity. We also suggest the possible pathway in protein for each ligand. Compared with the control, similar interactions and structural variations indicate that these compounds might have an effect on Folylpolyglutamate synthetase. Finally, we suggest Saussureamine C is the best candidate compound as the complex has a high score, maintains its structural composition, and has a larger variation value than the control, thus inhibiting the drug resistance ability of Mycobacterium tuberculosis. PMID:25050369

  20. Mycorrhiza: A Common Form of Mutualism.

    ERIC Educational Resources Information Center

    Medve, Richard J.

    1978-01-01

    Mycorrhizae are among the most common examples of mutualism. This article discusses their structure, symbolic relationship, factors affecting formation and applying research. Questions are posed and answers suggested. (MA)

  1. Recovery from sexual exhaustion-induced copulatory inhibition and drug hypersensitivity follow a same time course: two expressions of a same process?

    PubMed

    Rodríguez-Manzo, Gabriela; Guadarrama-Bazante, Irma Lorena; Morales-Calderón, Aída

    2011-03-01

    Male rats allowed copulating without restriction with a single oestrous female ejaculate repeatedly until reaching sexual exhaustion. Twenty-four hours after this process, sexually exhausted males exhibit a series of physiological alterations when compared to non-exhausted males. Among them, the most conspicuous are a long-lasting sexual behaviour inhibition and a generalised hypersensitivity to drug actions. The objective of the present work was to establish if there was a correlation between these two features of sexual satiation in relation to the duration of its expression. To that aim, we characterised the spontaneous sexual behaviour recovery process from sexual satiation, as well as the duration of the drug hypersensitivity phenomenon. The latter was assessed through the appearance of a sign of the serotonergic syndrome: the flat body posture. Results showed that the drug hypersensitivity phenomenon and the sexual inhibition that results from copulation to satiation follow a similar time course of recovery, with a drastic decrease in their expression 96 h after the sexual satiation process. This finding indicates that these phenomena might represent two expressions of a same brain plasticity process, as suggested by the long lasting character of both events, which interestingly appears to be reversible.

  2. Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro

    PubMed Central

    Bryukhovetskiy, Igor; Lyakhova, Irina; Mischenko, Polina; Milkina, Elena ; Zaitsev, Sergei ; Khotimchenko, Yuri; Bryukhovetskiy, Andrey; Polevshchikov, Alexander ; Kudryavtsev, Igor; Khotimchenko, Maxim; Zhidkov, Maxim

    2017-01-01

    Glioblastoma multiforme is an invasive malignant glial brain tumor with a poor prognosis for patients. The primary reasons that lead to the development of treatment resistance are associated with tumor cells infiltrating the brain parenchyma and the specific properties of tumor stem cells. A crucial research area in medical science is the search for effective agents that are able to act on these targets. Fascaplysin alkaloids possess potent antitumor activity. Modern methods for the targeted delivery of drugs reveal extensive possibilities in terms of the clinical use of these compounds. The aim of the present study was to establish effective concentrations of fascaplysin that inhibit the growth and kill the cells of glial tumors, as well as to perform a comparative analysis of fascaplysin's effectiveness in relation to other chemotherapy drugs. C6 glioma cells were utilized as an optimal model of glioblastoma. It was established that fascaplysin at 0.5 µM has a strong cytotoxic effect, which is subsequently replaced by tumor cell death via apoptosis as the length of drug exposure time is increased. Fascaplysin kills glioma cells at a dose higher than 0.5 µM. The efficiency of fascaplysin was observed to significantly exceed that of temozolomide. Therefore, a significant feature of fascaplysin is its ability to inhibit the growth of and kill multipotent tumor cells. PMID:28356953

  3. The need for human breast cancer resistance protein substrate and inhibition evaluation in drug discovery and development: why, when, and how?

    PubMed

    Poirier, Agnès; Portmann, Renée; Cascais, Anne-Christine; Bader, Urs; Walter, Isabelle; Ullah, Mohammed; Funk, Christoph

    2014-09-01

    Although the multiplicity in transport proteins assessed during drug development is continuously increasing, the clinical relevance of the breast cancer resistance protein (BCRP) is still under debate. Here, our aim is to rationalize the need to consider BCRP substrate and inhibitor interactions and to define optimum selection and acceptance criteria between cell-based and vesicle-based assays in vitro. Information on the preclinical and clinical pharmacokinetics (PK), drug-drug interactions, and pharmacogenomics data was collated for 13 marketed drugs whose PK is reportedly associated with BCRP interaction. Clinical examples where BCRP impacts drug PK and efficacy appear to be rare and confounded by interactions with other transporters. Thirty-seven compounds were selected to be tested as BCRP substrates in a cell-based assay using MDCKII cells (Madin-Darby canine kidney cells) and 18 in membrane vesicles. Depending on the physicochemical compound properties, we observed both in vitro systems to give false-negative readouts. In addition, the inhibition potential of 19 compounds against BCRP was assessed in vesicles and in MDCKII cells, where we observed significant system and substrate-dependent IC50 values. Therefore, neither of the two test systems is superior to the other. Instead, one system may offer advantages under certain situations (e.g., low permeability) and thus should be selected based on the physicochemical compound properties. Finally, given the clinical relevance of BCRP, we propose that its evaluation should remain issue-driven: for low permeable, low bioavailable drugs, in particular when other more common processes do not allow a mechanistic understanding of any unexpected absorption or brain disposition, and for drugs with a low therapeutic window.

  4. Phenological shifts and the fate of mutualisms

    PubMed Central

    Rafferty, Nicole E.; CaraDonna, Paul J.; Bronstein, Judith L.

    2014-01-01

    Climate change is altering the timing of life history events in a wide array of species, many of which are involved in mutualistic interactions. Because many mutualisms can form only if partner species are able to locate each other in time, differential phenological shifts are likely to influence their strength, duration and outcome. At the extreme, climate change-driven shifts in phenology may result in phenological mismatch: the partial or complete loss of temporal overlap of mutualistic species. We have a growing understanding of how, when, and why phenological change can alter one type of mutualism–pollination. However, as we show here, there has been a surprising lack of attention to other types of mutualism. We generate a set of predictions about the characteristics that may predispose mutualisms in general to phenological mismatches. We focus not on the consequences of such mismatches but rather on the likelihood that mismatches will develop. We explore the influence of three key characteristics of mutualism: 1) intimacy, 2) seasonality and duration, and 3) obligacy and specificity. We predict that the following characteristics of mutualism may increase the likelihood of phenological mismatch: 1) a non-symbiotic life history in which co-dispersal is absent; 2) brief, seasonal interactions; and 3) facultative, generalized interactions. We then review the limited available data in light of our a priori predictions and point to mutualisms that are more and less likely to be at risk of becoming phenologically mismatched, emphasizing the need for research on mutualisms other than plant–pollinator interactions. Future studies should explicitly focus on mutualism characteristics to determine whether and how changing phenologies will affect mutualistic interactions. PMID:25883391

  5. Theoretical comparison of the self diffusion and mutual diffusion of interacting membrane proteins.

    PubMed Central

    Scalettar, B A; Abney, J R; Owicki, J C

    1988-01-01

    Self diffusion and mutual diffusion in two-dimensional membrane systems are analyzed. It is shown that interprotein interactions can produce markedly different density-dependent changes in the diffusion coefficients describing these two processes; the qualitative differences are illustrated by using a theoretical formalism valid for dilute solutions. Results are obtained for three analytical potentials: hard-core repulsions, soft repulsions, and soft repulsions with weak attractions. Self diffusion is inhibited by all three interactions. In contrast, mutual diffusion is inhibited by attractions but is enhanced by repulsions. It is shown that such interaction-dependent differences in self diffusion and mutual diffusion could underlie, among other things, the disparity in protein diffusion coefficients extracted from fluorescence recovery after photobleaching and postelectrophoresis relaxation data. PMID:3413121

  6. Alpha adrenergic drugs inhibit ( sup 3 H)-QNB binding to muscarinic receptors of rat heart, brain and parotid gland membranes

    SciTech Connect

    Simon, G.; Filep, J.; Zelles, T. )

    1990-01-01

    Alpha adrenergic agonists and antagonists as clonidine, guanfacine, yohimbine, phenylephrine and prazosin inhibited the ({sup 3}H)-QNB binding to rat brain cortex muscarinic acetylcholine receptor (mAChR, M-1 subtype), heart (M-2 subtype) and parotid gland homogenate (M-3 subtype) in a dose-dependent competitive fashion. Ki values were between 10{sup {minus}6} and 10{sup {minus}3} M. Hill coefficients were about 1. No correlation was found between mAChR inhibiting capacity of these drugs and their activity on alpha adrenergic receptors. In contrast, other transmitters, as dopamine, GABA, glutamic acid, histamine, serotonin, isoproterenol and platelet activating factor (PAF) did not affect the QNB binding.

  7. Ethanol oxidation and the inhibition by drugs in human liver, stomach and small intestine: Quantitative assessment with numerical organ modeling of alcohol dehydrogenase isozymes.

    PubMed

    Chi, Yu-Chou; Lee, Shou-Lun; Lai, Ching-Long; Lee, Yung-Pin; Lee, Shiao-Pieng; Chiang, Chien-Ping; Yin, Shih-Jiun

    2016-10-25

    Alcohol dehydrogenase (ADH) is the principal enzyme responsible for metabolism of ethanol. Human ADH constitutes a complex isozyme family with striking variations in kinetic function and tissue distribution. Liver and gastrointestinal tract are the major sites for first-pass metabolism (FPM). Their relative contributions to alcohol FPM and degrees of the inhibitions by aspirin and its metabolite salicylate, acetaminophen and cimetidine remain controversial. To address this issue, mathematical organ modeling of ethanol-oxidizing activities in target tissues and that of the ethanol-drug interactions were constructed by linear combination of the corresponding numerical rate equations of tissue constituent ADH isozymes with the documented isozyme protein contents, kinetic parameters for ethanol oxidation and the drug inhibitions of ADH isozymes/allozymes that were determined in 0.1 M sodium phosphate at pH 7.5 and 25 °C containing 0.5 mM NAD(+). The organ simulations reveal that the ADH activities in mucosae of the stomach, duodenum and jejunum with ADH1C*1/*1 genotype are less than 1%, respectively, that of the ADH1B*1/*1-ADH1C*1/*1 liver at 1-200 mM ethanol, indicating that liver is major site of the FPM. The apparent hepatic KM and Vmax for ethanol oxidation are simulated to be 0.093 ± 0.019 mM and 4.0 ± 0.1 mmol/min, respectively. At 95% clearance in liver, the logarithmic average sinusoidal ethanol concentration is determined to be 0.80 mM in accordance with the flow-limited gradient perfusion model. The organ simulations indicate that higher therapeutic acetaminophen (0.5 mM) inhibits 16% of ADH1B*1/*1 hepatic ADH activity at 2-20 mM ethanol and that therapeutic salicylate (1.5 mM) inhibits 30-31% of the ADH1B*2/*2 activity, suggesting potential significant inhibitions of ethanol FPM in these allelotypes. The result provides systematic evaluations and predictions by computer simulation on potential ethanol FPM in target tissues and hepatic

  8. Dual inhibition of AKT/FLT3-ITD by A674563 overcomes FLT3 ligand-induced drug resistance in FLT3-ITD positive AML

    PubMed Central

    Wang, Wenchao; Yu, Kailin; Liu, Xiaochuan; Zou, Fengming; Zhao, Zheng; Wu, Jiaxin; Liu, Juan; Liu, Feiyang; Wang, Li; Stone, Richard M.; Galinksy, Ilene A.; Griffin, James D.; Zhang, Shanchun; Weisberg, Ellen L.; Liu, Jing; Liu, Qingsong

    2016-01-01

    The FLT3-ITD mutation is one of the most prevalent oncogenic mutations in AML. Several FLT3 kinase inhibitors have shown impressive activity in clinical evaluation, however clinical responses are usually transient and clinical effects are rapidly lost due to drug resistance. One of the resistance mechanisms in the AML refractory patients involves FLT3-ligand induced reactivation of AKT and/or ERK signaling via FLT3 wt kinase. Via a screen of numerous AKT kinase inhibitors, we identified the well-established orally available AKT inhibitor, A674563, as a dual suppressor of AKT and FLT3-ITD. A674563 suppressed FLT3-ITD positive AML both in vitro and in vivo. More importantly, compared to other FLT3 inhibitors, A674563 is able to overcome FLT3 ligand-induced drug resistance through simultaneous inhibition of FLT3-ITD- and AKT-mediated signaling. Our findings suggest that A674563 might be a potential drug candidate for overcoming FLT3 ligand-mediated drug resistance in FLT3-ITD positive AML. PMID:27074558

  9. The acquisition, extinction and spontaneous recovery of Pavlovian drug conditioning induced by post-trial dopaminergic stimulation/inhibition.

    PubMed

    Santos, Breno Garone; Carey, Robert J; Carrera, Marinete Pinheiro

    2017-04-06

    In contextual drug conditioning, the onset of the drug treatment is contiguous with the contextual cues. Evidence suggests that drug conditioning also can occur if there is a discontinuity between the onset of the drug effect and offset of the contextual cues. Here we examine whether post-trial contextual drug conditioning conforms to several Pavlovian conditioning tenets namely: acquisition, extinction and spontaneous recovery. Six groups of rats received apomorphine (0.05 or 2.0mg/kg) and vehicle immediately or after a 15min delay following a 5min non-drug exposure to an open-field during three successive days (conditioning phase). The extinction phase occurred on days 4-8, in which all post-trial treatments were vehicle injections. After 2days of non-testing, the final test was performed. The results showed that on the first test day, the activity levels of the 6 groups were statistically equivalent. On test day 2, there were marked differences in activity levels selectively between the two immediate post-trial apomorphine treatment groups. The immediate low dose apomorphine group displayed a reduction in activity and the immediate high dose group an increase in activity relative to their day 1 levels. The activity levels of both vehicle groups and both apomorphine delay groups remained equivalent to their day 1 activity levels. On test day 3, the differences in activity levels between the two immediate post-trial apomorphine groups increased but the activity levels of the vehicle groups and the 15min delay post-trial apomorphine groups remained unchanged. In the extinction phase, the conditioned activity differences between the two immediate post-trial apomorphine groups were gradually eliminated. During the final test, the activity differences between the immediate post-trial apomorphine groups were partially restored, indicative of spontaneous recovery. These findings are consistent with several basic elements of Pavlovian conditioning and are supportive of

  10. Memory Disrupting Effects of Nonmuscle Myosin II Inhibition Depend on the Class of Abused Drug and Brain Region

    ERIC Educational Resources Information Center

    Briggs, Sherri B.; Blouin, Ashley M.; Young, Erica J.; Rumbaugh, Gavin; Miller, Courtney A.

    2017-01-01

    Depolymerizing actin in the amygdala through nonmuscle myosin II inhibition (NMIIi) produces a selective, lasting, and retrieval-independent disruption of the storage of methamphetamine-associated memories. Here we report a similar disruption of memories associated with amphetamine, but not cocaine or morphine, by NMIIi. Reconsolidation appeared…

  11. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth.

    PubMed

    Ghosh, Indrajit; Bose, Sonali; Vippagunta, Radha; Harmon, Ferris

    2011-05-16

    The purpose of this study was to develop a nanosuspension of a poorly soluble drug by nanomilling process using wet media milling to achieve superior in vitro dissolution and high in vivo exposure in pharmacokinetic studies. A promising nanosuspension was developed with Vitamin E TPGS based formulation with particle size in the nano range. Although the formulation showed significant improvement during in vitro dissolution and in vivo plasma level, probably due to the strong hydrophobic interaction between Vitamin TPGS and the drug molecule, crystal growth was observed during stability studies. A systematic study was done with different combinations of solubilizer/stabilizer system in order to obtain a more stable nanosuspension. Hydroxypropyl methylcellulose (HPMC 3 cps) was found to stabilize the nanosuspension by better surface coverage due to stronger interaction with the drug as compared to other stabilizers used in this study.

  12. Inhibition of lung tumor growth by complex pulmonary delivery of drugs with oligonucleotides as suppressors of cellular resistance.

    PubMed

    Garbuzenko, Olga B; Saad, Maha; Pozharov, Vitaly P; Reuhl, Kenneth R; Mainelis, Gediminas; Minko, Tamara

    2010-06-08

    Development of cancer cell resistance, low accumulation of therapeutic drug in the lungs, and severe adverse treatment side effects represent main obstacles to efficient chemotherapy of lung cancer. To overcome these difficulties, we propose inhalation local delivery of anticancer drugs in combination with suppressors of pump and nonpump cellular resistance. To test this approach, nanoscale-based delivery systems containing doxorubicin as a cell death inducer, antisense oligonucleotides targeted to MRP1 mRNA as a suppressor of pump resistance and to BCL2 mRNA as a suppressor of nonpump resistance, were developed and examined on an orthotopic murine model of human lung carcinoma. The experimental results show high antitumor activity and low adverse side effects of proposed complex inhalatory treatment that cannot be achieved by individual components applied separately. The present work potentially contributes to the treatment of lung cancer by describing a unique combinatorial local inhalation delivery of drugs and suppressors of pump and nonpump cellular resistance.

  13. Mitochondrial toxicity of diclofenac and its metabolites via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria: Possible role in drug induced liver injury (DILI).

    PubMed

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2016-03-01

    Diclofenac is a widely prescribed NSAID, which by itself and its reactive metabolites (Phase-I and Phase-II) may be involved in serious idiosyncratic hepatotoxicity. Mitochondrial injury is one of the mechanisms of drug induced liver injury (DILI). In the present work, an investigation of the inhibitory effects of diclofenac (Dic) and its phase I [4-hydroxy diclofenac (4'-OH-Dic) and 5-hydroxy diclofenac (5-OH-dic)] and Phase-II [diclofenac acyl glucuronide (DicGluA) and diclofenac glutathione thioester (DicSG)] metabolites, on ATP synthesis in rat liver mitochondria was carried out. A mechanism based inhibition of ATP synthesis is exerted by diclofenac and its metabolites. Phase-I metabolite (4'-OH-Dic) and Phase-II metabolites (DicGluA and DicSG) showed potent inhibition (2-5 fold) of ATP synthesis, where as 5-OH-Dic, one of the Phase-I metabolite, was a less potent inhibitor as compared to Dic. The calculated kinetic constants of mechanism based inhibition of ATP synthesis by Dic showed maximal rate of inactivation (Kinact) of 2.64 ± 0.15 min(-1) and half maximal rate of inactivation (KI) of 7.69 ± 2.48 μM with Kinact/KI ratio of 0.343 min(-1) μM(-1). Co-incubation of mitochondria with Dic and reduced GSH exhibited a protective effect on Dic mediated inhibition of ATP synthesis. Our data from this study strongly indicate that Dic as well as its metabolites could be involved in the hepato-toxic action through inhibition of ATP synthesis.

  14. The effect of macrophage and angiogenesis inhibition on the drug release and absorption from an intramuscular sustained-release paliperidone palmitate suspension.

    PubMed

    Darville, Nicolas; van Heerden, Marjolein; Mariën, Dirk; De Meulder, Marc; Rossenu, Stefaan; Vermeulen, An; Vynckier, An; De Jonghe, Sandra; Sterkens, Patrick; Annaert, Pieter; Van den Mooter, Guy

    2016-05-28

    The intramuscular (IM) administration of long-acting injectable (LAI) aqueous nano-/microsuspensions elicits a chronic granulomatous injection site reaction, which recently has been hypothesized to drive the (pro)drug dissolution and systemic absorption resulting in flip-flop pharmacokinetics. The goal of this mechanistic study was to investigate the effects of the local macrophage infiltration and angiogenesis on the systemic drug exposure following a single IM administration of a paliperidone palmitate (PP) LAI nano-/microsuspension in the rat. Liposomal clodronate (CLO) and sunitinib (SNT) were co-administered to inhibit the depot infiltration and nano-/microparticle phagocytosis by macrophages, and the neovascularization of the depot, respectively. Semi-quantitative histopathology of the IM administration sites at day 1, 3, 7, 14, 21 and 28 after dosing with PP-LAI illustrated that CLO significantly decreased the rate and extent of the granulomatous inflammatory reaction. The macrophage infiltration was slowed down, but only partially suppressed by CLO and this translated in paliperidone (PAL) plasma concentration-time profiles that resembled those observed upon injection of PP-LAI only, albeit with a lower PAL input rate and delayed maximum plasma concentration (CMAX). Conversely, SNT treatment completely suppressed the granulomatous reaction, besides effectively inhibiting the neovascularization of the PP-LAI depot. This resulted in an even slower systemic PAL input with delayed and lower maximum PAL CMAX. The reduced PP-LAI lymph node retention after CLO and SNT treatment, as well as pharmacokinetic drug-drug interactions were rejected as possible sources of the observed pharmacokinetic differences. The biphasic PAL plasma concentration-time profiles could best be described by an open first-order disposition model with parallel fast (first-order) and slow (sequential zero-first-order) absorption. The correlation of the pharmacokinetic data with the

  15. CRM1 Inhibition Sensitizes Drug Resistant Human Myeloma Cells to Topoisomerase II and Proteasome Inhibitors both In Vitro and Ex Vivo

    PubMed Central

    Turner, Joel G.; Dawson, Jana; Emmons, Michael F.; Cubitt, Christopher L.; Kauffman, Michael; Shacham, Sharon; Hazlehurst, Lori A.; Sullivan, Daniel M.

    2013-01-01

    Multiple myeloma (MM) remains an incurable disease despite improved treatments, including lenalidomide/pomalidomide and bortezomib/carfilzomib based therapies and high-dose chemotherapy with autologous stem cell rescue. New drug targets are needed to further improve treatment outcomes. Nuclear export of macromolecules is misregulated in many cancers, including in hematological malignancies such as MM. CRM1 (chromosome maintenance protein-1) is a ubiquitous protein that exports large proteins (>40 kDa) from the nucleus to the cytoplasm. We found that small-molecule Selective Inhibitors of Nuclear Export (SINE) prevent CRM1-mediated export of p53 and topoisomerase IIα (topo IIα). SINE's CRM1-inhibiting activity was verified by nuclear-cytoplasmic fractionation and immunocytochemical staining of the CRM1 cargoes p53 and topo IIα in MM cells. We found that SINE molecules reduced cell viability and induced apoptosis when used as both single agents in the sub-micromolar range and when combined with doxorubicin, bortezomib, or carfilzomib but not lenalidomide, melphalan, or dexamethasone. In addition, CRM1 inhibition sensitized MM cell lines and patient myeloma cells to doxorubicin, bortezomib, and carfilzomib but did not affect peripheral blood mononuclear or non-myeloma bone marrow mononuclear cells as shown by cell viability and apoptosis assay. Drug resistance induced by co-culture of myeloma cells with bone marrow stroma cells was circumvented by the addition of SINE molecules. These results support the continued development of SINE for patients with MM. PMID:24155773

  16. Inhibition of tumour spheroid-induced prometastatic intravasation gates in the lymph endothelial cell barrier by carbamazepine: drug testing in a 3D model.

    PubMed

    Teichmann, Mathias; Kretschy, Nicole; Kopf, Sabine; Jarukamjorn, Kanokwan; Atanasov, Atanas G; Viola, Katharina; Giessrigl, Benedikt; Saiko, Philipp; Szekeres, Thomas; Mikulits, Wolfgang; Dirsch, Verena M; Huttary, Nicole; Krieger, Sigurd; Jäger, Walter; Grusch, Michael; Dolznig, Helmut; Krupitza, Georg

    2014-03-01

    Metastatic breast cancer is linked to an undesired prognosis. One early and crucial metastatic step is the interaction of cancer emboli with adjacent stroma or endothelial cells, and understanding the mechanisms of this interaction provides the basis to define new targets as well as drugs for therapy and disease management. A three-dimensional (3D) co-culture model allowing the examination of lymphogenic dissemination of breast cancer cells was recently developed which facilitates not only the study of metastatic processes but also the testing of therapeutic concepts. This 3D setting consists of MCF-7 breast cancer cell spheroids (representing a ductal and hormone-dependent subtype) and of hTERT-immortalised lymph endothelial cell (LEC; derived from foreskin) monolayers. Tumour spheroids repel the continuous LEC layer, thereby generating "circular chemorepellent-induced defects" (CCIDs) that are reminiscent to the entry gates through which tumour emboli intravasate lymphatics. We found that the ion channel blocker carbamazepine (which is clinically used to treat epilepsy, schizophrenia and other neurological disorders) inhibited CCID formation significantly. This effect correlated with the inhibition of the activities of NF-κB, which contributes to cell motility, and with the inactivation of the mobility proteins MLC2, MYPT1 and FAK which are necessary for LEC migration. NF-κB activity and cell movement are prerequisites of CCID formation. On the other hand, the expression of the motility protein paxillin and of the NF-κB-dependent adhesion mediator ICAM-1 was unchanged. Also the activity of ALOX12 was unaffected. ALOX12 is the main enzyme synthesising 12(S)-HETE, which then triggers CCID formation. The relevance of the inhibition of CYP1A1, which is also involved in the generation of mid-chain HETEs such as 12(S)-HETE, by carbamazepine remains to be established, because the constitutive level of 12(S)-HETE did not change upon carbamazepine treatment

  17. Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A

    PubMed Central

    2011-01-01

    Background Herpes Simplex Virus 1 and 2 causes several infections in humans including cold sores and encephalitis. Previous antiviral studies on herpes viruses have focussed on developing nucleoside analogues that can inhibit viral polymerase and terminate the replicating viral DNA. However, these drugs bear an intrinsic non-specificity as they can also inhibit cellular polymerase apart from the viral one. The present study is an attempt to elucidate the action mechanism of naturally occurring withaferin A in inhibiting viral DNA polymerase, thus providing an evidence for its development as a novel anti-herpetic drug. Results Withaferin A was found to bind very similarly to that of the previously reported 4-oxo-DHQ inhibitor. Withaferin A was observed binding to the residues Gln 617, Gln 618, Asn 815 and Tyr 818, all of which are crucial to the proper functioning of the polymerase. A comparison of the conformation obtained from docking and the molecular dynamics simulations shows that substantial changes in the binding conformations have occurred. These results indicate that the initial receptor-ligand interaction observed after docking can be limited due to the receptor rigid docking algorithm and that the conformations and interactions observed after simulation runs are more energetically favoured. Conclusions We have performed docking and molecular dynamics simulation studies to elucidate the binding mechanism of prospective herbal drug withaferin A onto the structure of DNA polymerase of Herpes simplex virus. Our docking simulations results give high binding affinity of the ligand to the receptor. Long de novo MD simulations for 10 ns performed allowed us to evaluate the dynamic behaviour of the system studied and corroborate the docking results, as well as identify key residues in the enzyme-inhibitor interactions. The present MD simulations support the hypothesis that withaferin A is a potential ligand to target/inhibit DNA polymerase of the Herpes simplex

  18. Inhibition of macrophage phagocytotic activity by a receptor-targeted polymer vesicle-based drug delivery formulation of pravastatin.

    PubMed

    Broz, Pavel; Ben-Haim, Nadav; Grzelakowski, Mariusz; Marsch, Stephan; Meier, Wolfgang; Hunziker, Patrick

    2008-03-01

    Ruptures of macrophage-rich atherosclerotic plaques in the coronary arteries are the main reason for heart attack. Targeted therapeutic interventions with an inhibitory effect on the macrophages promise to be beneficial, but currently available drugs such as statins achieve event reductions of only 30%. Dose-limiting adverse effects in remote organs prohibit achieving higher drug levels known to have strong inhibitory effects on macrophages. Receptor-specific targeting using statin-loaded nanometer-sized triblock copolymer vesicles with targeting moieties might allow high-dose treatment for improved efficacy, while minimizing toxicity in other cells. Vesicle uptake by target cells but not other cell types and slow intracellular content release was observed. A major improvement in biologic efficacy was observed for polymer vesicles compared to free drug, whereas no increased cytotoxicity was observed in muscle cells. Such high-dose, targeted therapy of statins through cell-specific polymer vesicles allows novel treatment paradigms not only for atherosclerosis, but appears promising for a wide range of drugs and diseases.

  19. The green tea polyphenol, epigallocatechin-3-gallate inhibits telomerase and induces apoptosis in drug-resistant lung cancer cells.

    PubMed

    Sadava, David; Whitlock, Elizabeth; Kane, Susan E

    2007-08-17

    Epidemiological studies on humans and investigations in animal models suggest that consumption of green tea has anti-cancer effects. Small-cell lung carcinoma (SCLC) has a poor prognosis, particularly due to the development of drug resistance. We investigated the effects of the green tea polyphenol, epigallocatechin-3-gallate (EGCG) on human SCLC cells. EGCG had similar effects (IC(50) of approximately 70 microM) on drug-sensitive (H69) and drug-resistant (H69VP) SCLC cells, indicating that it is not part of the drug resistance phenotype expressed in these cells. In both cell lines, incubation in EGCG at 1 x IC(50) for 24h resulted in 50-60% reduced telomerase activity as measured by a PCR-based assay for telomeric repeats. Colorimetric assays of cells treated for 36 h with EGCG demonstrated a reduction in activities of caspases 3 (50%) and 9 (70%) but not caspase 8, indicating initiation of apoptosis. DNA fragmentation as measured by ELISA occurred within cells treated with EGCG and this was confirmed by TUNEL staining. Flow cytometric analysis of SCLC cells incubated for 36 h in EGCG indicated a cell-cycle block in S phase. These data indicate the potential use of EGCG, and possibly green tea, in treating SCLC.

  20. Role of the Strength of Drug-Polymer Interactions on the Molecular Mobility and Crystallization Inhibition in Ketoconazole Solid Dispersions.

    PubMed

    Mistry, Pinal; Mohapatra, Sarat; Gopinath, Tata; Vogt, Frederick G; Suryanarayanan, Raj

    2015-09-08

    The effects of specific drug-polymer interactions (ionic or hydrogen-bonding) on the molecular mobility of model amorphous solid dispersions (ASDs) were investigated. ASDs of ketoconazole (KTZ), a weakly basic drug, with each of poly(acrylic acid) (PAA), poly(2-hydroxyethyl methacrylate) (PHEMA), and polyvinylpyrrolidone (PVP) were prepared. Drug-polymer interactions in the ASDs were evaluated by infrared and solid-state NMR, the molecular mobility quantified by dielectric spectroscopy, and crystallization onset monitored by differential scanning calorimetry (DSC) and variable temperature X-ray diffractometry (VTXRD). KTZ likely exhibited ionic interactions with PAA, hydrogen-bonding with PHEMA, and weaker dipole-dipole interactions with PVP. On the basis of dielectric spectroscopy, the α-relaxation times of the ASDs followed the order: PAA > PHEMA > PVP. In addition, the presence of ionic interactions also translated to a dramatic and disproportionate decrease in mobility as a function of polymer concentration. On the basis of both DSC and VTXRD, an increase in strength of interaction translated to higher crystallization onset temperature and a decrease in extent of crystallization. Stronger drug-polymer interactions, by reducing the molecular mobility, can potentially delay the crystallization onset temperature as well as crystallization extent.

  1. Mutual Information Rate and Bounds for It

    PubMed Central

    Baptista, Murilo S.; Rubinger, Rero M.; Viana, Emilson R.; Sartorelli, José C.; Parlitz, Ulrich; Grebogi, Celso

    2012-01-01

    The amount of information exchanged per unit of time between two nodes in a dynamical network or between two data sets is a powerful concept for analysing complex systems. This quantity, known as the mutual information rate (MIR), is calculated from the mutual information, which is rigorously defined only for random systems. Moreover, the definition of mutual information is based on probabilities of significant events. This work offers a simple alternative way to calculate the MIR in dynamical (deterministic) networks or between two time series (not fully deterministic), and to calculate its upper and lower bounds without having to calculate probabilities, but rather in terms of well known and well defined quantities in dynamical systems. As possible applications of our bounds, we study the relationship between synchronisation and the exchange of information in a system of two coupled maps and in experimental networks of coupled oscillators. PMID:23112809

  2. Integrating plant carbon dynamics with mutualism ecology.

    PubMed

    Pringle, Elizabeth G

    2016-04-01

    Plants reward microbial and animal mutualists with carbohydrates to obtain nutrients, defense, pollination, and dispersal. Under a fixed carbon budget, plants must allocate carbon to their mutualists at the expense of allocation to growth, reproduction, or storage. Such carbon trade-offs are indirectly expressed when a plant exhibits reduced growth or fecundity in the presence of its mutualist. Because carbon regulates the costs of all plant mutualisms, carbon dynamics are a common platform for integrating these costs in the face of ecological complexity and context dependence. The ecophysiology of whole-plant carbon allocation could thus elucidate the ecology and evolution of plant mutualisms. If mutualisms are costly to plants, then they must be important but frequently underestimated sinks in the terrestrial carbon cycle.

  3. Mutual information and spontaneous symmetry breaking

    NASA Astrophysics Data System (ADS)

    Hamma, A.; Giampaolo, S. M.; Illuminati, F.

    2016-01-01

    We show that the metastable, symmetry-breaking ground states of quantum many-body Hamiltonians have vanishing quantum mutual information between macroscopically separated regions and are thus the most classical ones among all possible quantum ground states. This statement is obvious only when the symmetry-breaking ground states are simple product states, e.g., at the factorization point. On the other hand, symmetry-breaking states are in general entangled along the entire ordered phase, and to show that they actually feature the least macroscopic correlations compared to their symmetric superpositions is highly nontrivial. We prove this result in general, by considering the quantum mutual information based on the two-Rényi entanglement entropy and using a locality result stemming from quasiadiabatic continuation. Moreover, in the paradigmatic case of the exactly solvable one-dimensional quantum X Y model, we further verify the general result by considering also the quantum mutual information based on the von Neumann entanglement entropy.

  4. Purification and properties of a 3 alpha-hydroxysteroid dehydrogenase of rat liver cytosol and its inhibition by anti-inflammatory drugs.

    PubMed Central

    Penning, T M; Mukharji, I; Barrows, S; Talalay, P

    1984-01-01

    An NAD(P)-dependent 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) was purified to homogeneity from rat liver cytosol, where it is responsible for most if not all of the capacity for the oxidation of androsterone, 1-acenaphthenol and benzenedihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene). The dehydrogenase has many properties (substrate specificity, pI, Mr, amino acid composition) in common with the dihydrodiol dehydrogenase (EC 1.3.1.20) purified from the same source [Vogel, Bentley, Platt & Oesch (1980) J. Biol. Chem. 255, 9621-9625]. Since 3 alpha-hydroxysteroids are by far the most efficient substrates, the enzyme is more appropriately designated a 3 alpha-hydroxysteroid dehydrogenase. It also promotes the NAD(P)H-dependent reductions of quinones (e.g. 9,10-phenanthrenequinone, 1,4-benzoquinone), aromatic aldehydes (4-nitrobenzaldehyde) and aromatic ketones (4-nitroacetophenone). The dehydrogenase is not inhibited by dicoumarol, disulfiram, hexobarbital or pyrazole. The mechanism of the powerful inhibition of this enzyme by both non-steroidal and steroidal anti-inflammatory drugs [Penning & Talalay (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4504-4508] was examined with several substrates. Most non-steroidal anti-inflammatory drugs are competitive inhibitors (e.g. Ki for indomethacin, 0.20 microM for 9,10-phenanthrenequinone reduction at pH 6.0, and 0.835 microM for androsterone oxidation at pH 7.0), except for salicylates, which act non-competitively (e.g. Ki for aspirin, 650 microM for androsterone oxidation). The inhibitory potency of these agents falls sharply as the pH is increased from 6 to 9. Most anti-inflammatory steroids are likewise competitive inhibitors, except for the most potent (betamethasone and dexamethasone), which act non-competitively. The enzyme is inhibited competitively by arachidonic acid and various prostaglandins. PMID:6435601

  5. Promoting assembly and bundling of FtsZ as a strategy to inhibit bacterial cell division: a new approach for developing novel antibacterial drugs.

    PubMed

    Beuria, Tushar K; Singh, Parminder; Surolia, Avadhesha; Panda, Dulal

    2009-09-14

    FtsZ plays an essential role in bacterial cell division. We have used the assembly of FtsZ as a screen to find antibacterial agents with a novel mechanism of action. The effects of 81 compounds of 29 different structural scaffolds on FtsZ assembly in vitro were examined using a sedimentation assay. Out of these 81 compounds, OTBA (3-{5-[4-oxo-2-thioxo-3-(3-trifluoromethyl-phenyl)-thiazolidin-5-ylidenemethyl]-furan-2-yl}-benzoic acid) was found to promote FtsZ assembly in vitro. OTBA increased the assembly of FtsZ, caused bundling of FtsZ protofilaments, prevented dilution-induced disassembly of FtsZ protofilaments and decreased the GTPase activity in vitro. It bound to FtsZ with an apparent dissociation constant of 15+/-1.5 microM. Furthermore, OTBA inhibited the proliferation of Bacillus subtilis 168 cells with an MIC (minimum inhibitory concentration) of 2 microM, whereas it exerted minimal effects on mammalian cell proliferation, indicating that it might have a potential use as an antibacterial drug. In the effective proliferation inhibitory concentration range, OTBA induced filamentation in bacteria and also perturbed the formation of the cytokinetic Z-rings in bacteria. However, the agent neither perturbed the membrane structures nor affected the nucleoid segregation in B. subtilis cells. The results suggested that the OTBA inhibited bacterial cytokinesis by perturbing the formation and functioning of the Z-ring via altering FtsZ assembly dynamics. The antibacterial mechanism of action of OTBA is similar to that of the widely used anticancer drug paclitaxel, which inhibits cancer cell proliferation by promoting the assembly of tubulin, a eukaryotic homologue of FtsZ.

  6. How conformational changes can affect catalysis, inhibition and drug resistance of enzymes with induced-fit binding mechanism such as the HIV-1 protease.

    PubMed

    Weikl, Thomas R; Hemmateenejad, Bahram

    2013-05-01

    A central question is how the conformational changes of proteins affect their function and the inhibition of this function by drug molecules. Many enzymes change from an open to a closed conformation upon binding of substrate or inhibitor molecules. These conformational changes have been suggested to follow an induced-fit mechanism in which the molecules first bind in the open conformation in those cases where binding in the closed conformation appears to be sterically obstructed such as for the HIV-1 protease. In this article, we present a general model for the catalysis and inhibition of enzymes with induced-fit binding mechanism. We derive general expressions that specify how the overall catalytic rate of the enzymes depends on the rates for binding, for the conformational changes, and for the chemical reaction. Based on these expressions, we analyze the effect of mutations that mainly shift the conformational equilibrium on catalysis and inhibition. If the overall catalytic rate is limited by product unbinding, we find that mutations that destabilize the closed conformation relative to the open conformation increase the catalytic rate in the presence of inhibitors by a factor exp(ΔΔGC/RT) where ΔΔGC is the mutation-induced shift of the free-energy difference between the conformations. This increase in the catalytic rate due to changes in the conformational equilibrium is independent of the inhibitor molecule and, thus, may help to understand how non-active-site mutations can contribute to the multi-drug-resistance that has been observed for the HIV-1 protease. A comparison to experimental data for the non-active-site mutation L90M of the HIV-1 protease indicates that the mutation slightly destabilizes the closed conformation of the enzyme. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.

  7. Inhibition of CRM1-mediated nuclear export of influenza A nucleoprotein and nuclear export protein as a novel target for antiviral drug development.

    PubMed

    Chutiwitoonchai, Nopporn; Mano, Takafumi; Kakisaka, Michinori; Sato, Hirotaka; Kondoh, Yasumitsu; Osada, Hiroyuki; Kotani, Osamu; Yokoyama, Masaru; Sato, Hironori; Aida, Yoko

    2017-04-08

    An anti-influenza compound, DP2392-E10 based on inhibition of the nuclear export function of the viral nucleoprotein-nuclear export signal 3 (NP-NES3) domain was successfully identified by our previous high-throughput screening system. Here, we demonstrated that DP2392-E10 exerts its antiviral effect by inhibiting replication of a broad range of influenza A subtypes. In regard to the molecular mechanism, we revealed that DP2392-E10 inhibits nuclear export of both viral NP and nuclear export protein (NEP). More specifically, in vitro pull-down assays revealed that DP2392-E10 directly binds cellular CRM1, which mediates nuclear export of NP and NEP. In silico docking suggested that DP2392-E10 binds at a region close to the HEAT9 and HEAT10 domains of CRM1. Together, these results indicate that the CRM1-mediated nuclear export function of influenza virus represents a new potential target for antiviral drug development, and also provide a core structure for a novel class of inhibitors that target this function.

  8. X-ray structure and inhibition of the feline infectious peritonitis virus 3C-like protease: Structural implications for drug design.

    PubMed

    St John, Sarah E; Therkelsen, Matthew D; Nyalapatla, Prasanth R; Osswald, Heather L; Ghosh, Arun K; Mesecar, Andrew D

    2015-11-15

    Feline infectious peritonitis (FIP) is a deadly disease that effects both domestic and wild cats and is caused by a mutation in feline coronavirus (FCoV) that allows the virus to replicate in macrophages. Currently, there are no treatments or vaccines available for the treatment of FIP even though it kills approximately 5% of cats in multi-cat households per year. In an effort to develop small molecule drugs targeting FIP for the treatment of cats, we screened a small set of designed peptidomimetic inhibitors for inhibition of FIPV-3CL(pro), identifying two compounds with low to sub-micromolar inhibition, compound 6 (IC50=0.59±0.06 μM) and compound 7 (IC50=1.3±0.1 μM). We determined the first X-ray crystal structure of FIPV-3CL(pro) in complex with the best inhibitor identified, compound 6, to a resolution of 2.10 Å to better understand the structural basis for inhibitor specificity. Our study provides important insights into the structural requirements for the inhibition of FIPV-3CL(pro) by peptidomimetic inhibitors and expands the current structural knowledge of coronaviral 3CL(pro) architecture.

  9. Structure-based QSAR study on differential inhibition of human prostaglandin endoperoxide H synthase-2 (COX-2) by nonsteroidal anti-inflammatory drugs.

    PubMed

    Pouplana, R; Lozano, J J; Pérez, C; Ruiz, J

    2002-10-01

    The prostaglandin-endoperoxide H synthase-1 (PGHS- 1) and prostaglandin-endoperoxide H synthase-2 (PGHS-2) are the targets of nonsteroidal anti-inflammatory drugs (NSAIDs). It appears that the high degree of selectivity for inhibition of PGHS-2 shown by certain compounds is the result of two mechanisms (time-dependent, time-independent inhibition), by which they interact with each isoform. Molecular models of the complexes formed by indomethacin, sulindac, fenamates, 2-phenylpropionic acids and selective cyclooxygenase-2 (COX-2) inhibitors with the cyclooxygenase active site of human PGHS-2 have been built, paying particular attention to water molecules that participate in the hydrogen-bonding network at the polar active site entrance. The stability of the complexes has been assessed by molecular dynamics simulations and interaction energy decomposition analysis, and their biological significance has been discussed in light of available X-ray crystallographic and kinetic results. The selective PGHS-2 inhibitors exploit the extra space of a side-pocket in the active site of PGHS-2 that is not found in PGHS-1. The results suggest that active site hydration together with residues Tyr355, Glu524, Arg120 and Arg513 are crucial to understand the time-dependent inhibition mechanism. A marked relationship between the isoform selectivity and tightly interactions with residues into the side pocket bordered by Val523 is also found.

  10. Rationalization of the inhibition activity of structurally related organometallic compounds against the drug target cathepsin B by DFT.

    PubMed

    Casini, Angela; Edafe, Fabio; Erlandsson, Mikael; Gonsalvi, Luca; Ciancetta, Antonella; Re, Nazzareno; Ienco, Andrea; Messori, Luigi; Peruzzini, Maurizio; Dyson, Paul J

    2010-06-21

    A series of organometallic compounds of general formula [(arene)M(PTA)(n)X(m)]Y (arene = eta(6)-C(10)H(14), eta-C(5)Me(5)); M = Ru(ii), Os(ii), Rh(iii) and Ir(iii); X = Cl, mPTA; Y = OTf, PF(6)) have been screened for their cytotoxicity and ability to inhibit cathepsin B in vitro, in comparison to the antimetastatic compound NAMI-A. The Ru and Os analogues and NAMI-A showed similar enzyme inhibition properties (with IC(50) values in the low muM range), whereas the Rh(iii) and Ir(iii) compounds were inactive. In order to build up a rational for the observed differences, DFT calculations of the metal complexes adducts with N-acetyl-l-cysteine-N'-methylamide, a mimic for the Cys residue in the cathepsin B active site, were performed to provide insights into binding thermodynamics in solution. Initial structure-activity relationships have been defined with the calculated binding energies of the M-S bonds correlating well with the observed inhibition properties of the compounds.

  11. Coherence between Cellular Responses and in Vitro Splicing Inhibition for the Anti-tumor Drug Pladienolide B and Its Analogs*

    PubMed Central

    Effenberger, Kerstin A.; Anderson, David D.; Bray, Walter M.; Prichard, Beth E.; Ma, Nianchun; Adams, Matthew S.; Ghosh, Arun K.; Jurica, Melissa S.

    2014-01-01

    Pladienolide B (PB) is a potent cancer cell growth inhibitor that targets the SF3B1 subunit of the spliceosome. There is considerable interest in the compound as a potential chemotherapeutic, as well as a tool to study SF3B1 function in splicing and cancer development. The molecular structure of PB, a bacterial natural product, contains a 12-member macrolide ring with an extended epoxide-containing side chain. Using a novel concise enantioselective synthesis, we created a series of PB structural analogs and the structurally related compound herboxidiene. We show that two methyl groups in the PB side chain, as well as a feature of the macrolide ring shared with herboxidiene, are required for splicing inhibition in vitro. Unexpectedly, we find that the epoxy group contributes only modestly to PB potency and is not absolutely necessary for activity. The orientations of at least two chiral centers off the macrolide ring have no effect on PB activity. Importantly, the ability of analogs to inhibit splicing in vitro directly correlated with their effects in a series of cellular assays. Those effects likely arise from inhibition of some, but not all, endogenous splicing events in cells, as previously reported for the structurally distinct SF3B1 inhibitor spliceostatin A. Together, our data support the idea that the impact of PB on cells is derived from its ability to impair the function of SF3B1 in splicing and also demonstrate that simplification of the PB scaffold is feasible. PMID:24302718

  12. Antibiotic drug levofloxacin inhibits proliferation and induces apoptosis of lung cancer cells through inducing mitochondrial dysfunction and oxidative damage.

    PubMed

    Song, Meijun; Wu, Hongcheng; Wu, Shibo; Ge, Ting; Wang, Guoan; Zhou, Yingyan; Sheng, Shimo; Jiang, Jingbo

    2016-12-01

    Lung cancer is the leading cause of cancer death worldwide and its clinical management remains challenge. Here, we repurposed antibiotic levofloxacin for lung cancer treatment. We show that levofloxacin is effectively against a panel of lung cancer cell lines via inhibiting proliferation and inducing apoptosis, regardless of cellular origin and genetic pattern, in in vitro cell culture system and in vivo xenograft lung tumor model. Mechanistically, levofloxacin inhibits activities of mitochondrial electron transport chain complex I and III, leading to inhibition of mitochondrial respiration and reduction of ATP production. In addition, levofloxacin significantly increases levels of ROS, mitochondrial superoxide and hydrogen peroxide in vitro and oxidative stress markers (HEL and 4-HNE) in vivo. Antioxidants, such as NAC and vitamin C, prevent the inhibitory effects of levofloxacin, confirming the induction of oxidative damage as the mechanism of its action in lung cancer cells. Our work demonstrates that levofloxacin is a useful addition to the treatment of lung cancer. Our work also suggests that targeting mitochondria may be an alternative therapeutic strategy for lung cancer treatment.

  13. Conceptual Alignment: How Brains Achieve Mutual Understanding.

    PubMed

    Stolk, Arjen; Verhagen, Lennart; Toni, Ivan

    2016-03-01

    We share our thoughts with other minds, but we do not understand how. Having a common language certainly helps, but infants' and tourists' communicative success clearly illustrates that sharing thoughts does not require signals with a pre-assigned meaning. In fact, human communicators jointly build a fleeting conceptual space in which signals are a means to seek and provide evidence for mutual understanding. Recent work has started to capture the neural mechanisms supporting those fleeting conceptual alignments. The evidence suggests that communicators and addressees achieve mutual understanding by using the same computational procedures, implemented in the same neuronal substrate, and operating over temporal scales independent from the signals' occurrences.

  14. MDP, a database linking drug response data to genomic information, identifies dasatinib and statins as a combinatorial strategy to inhibit YAP/TAZ in cancer cells.

    PubMed

    Taccioli, Cristian; Sorrentino, Giovanni; Zannini, Alessandro; Caroli, Jimmy; Beneventano, Domenico; Anderlucci, Laura; Lolli, Marco; Bicciato, Silvio; Del Sal, Giannino

    2015-11-17

    Targeted anticancer therapies represent the most effective pharmacological strategies in terms of clinical responses. In this context, genetic alteration of several oncogenes represents an optimal predictor of response to targeted therapy. Integration of large-scale molecular and pharmacological data from cancer cell lines promises to be effective in the discovery of new genetic markers of drug sensitivity and of clinically relevant anticancer compounds. To define novel pharmacogenomic dependencies in cancer, we created the Mutations and Drugs Portal (MDP, http://mdp.unimore.it), a web accessible database that combines the cell-based NCI60 screening of more than 50,000 compounds with genomic data extracted from the Cancer Cell Line Encyclopedia and the NCI60 DTP projects. MDP can be queried for drugs active in cancer cell lines carrying mutations in specific cancer genes or for genetic markers associated to sensitivity or resistance to a given compound. As proof of performance, we interrogated MDP to identify both known and novel pharmacogenomics associations and unveiled an unpredicted combination of two FDA-approved compounds, namely statins and Dasatinib, as an effective strategy to potently inhibit YAP/TAZ in cancer cells.

  15. Studying a Drug-like, RNA-Focused Small Molecule Library Identifies Compounds That Inhibit RNA Toxicity in Myotonic Dystrophy.

    PubMed

    Rzuczek, Suzanne G; Southern, Mark R; Disney, Matthew D

    2015-12-18

    There are many RNA targets in the transcriptome to which small molecule chemical probes and lead therapeutics are desired. However, identifying compounds that bind and modulate RNA function in cellulo is difficult. Although rational design approaches have been developed, they are still in their infancies and leave many RNAs "undruggable". In an effort to develop a small molecule library that is biased for binding RNA, we computationally identified "drug-like" compounds from screening collections that have favorable properties for binding RNA and for suitability as lead drugs. As proof-of-concept, this collection was screened for binding to and modulating the cellular dysfunction of the expanded repeating RNA (r(CUG)(exp)) that causes myotonic dystrophy type 1. Hit compounds bind the target in cellulo, as determined by the target identification approach Competitive Chemical Cross-Linking and Isolation by Pull-down (C-ChemCLIP), and selectively improve several disease-associated defects. The best compounds identified from our 320-member library are more potent in cellulo than compounds identified by high-throughput screening (HTS) campaigns against this RNA. Furthermore, the compound collection has a higher hit rate (9% compared to 0.01-3%), and the bioactive compounds identified are not charged; thus, RNA can be "drugged" with compounds that have favorable pharmacological properties. Finally, this RNA-focused small molecule library may serve as a useful starting point to identify lead "drug-like" chemical probes that affect the biological (dys)function of other RNA targets by direct target engagement.

  16. When inhibitors do not inhibit: critical evaluation of rational drug design targeting chorismate mutase from Mycobacterium tuberculosis.

    PubMed

    Munack, Steffi; Leroux, Vincent; Roderer, Kathrin; Ökvist, Mats; van Eerde, André; Gundersen, Lise-Lotte; Krengel, Ute; Kast, Peter

    2012-11-01

    Tuberculosis (TB) is a devastating disease that claims millions of lives every year. Hindered access or non-compliance to medication, especially in developing countries, led to drug resistance, further aggravating the situation. With current standard therapies in use for over 50 years and only few new candidates in clinical trials, there is an urgent call for new TB drugs. A powerful tool for the development of new medication is structure-guided design, combined with virtual screening or docking studies. Here, we report the results of a drug-design project, which we based on a publication that claimed the structure-guided discovery of several promising and highly active inhibitors targeting the secreted chorismate mutase (*MtCM) from Mycobacterium tuberculosis. We set out to further improve on these compounds and synthesized a series of new derivatives. Thorough evaluation of these molecules in enzymatic assays revealed, to our dismay, that neither the claimed lead compounds, nor any of the synthesized derivatives, show any inhibitory effects against *MtCM.

  17. Inhibition of Protein Synthesis and Malaria Parasite Development by Drug Targeting of Methionyl-tRNA Synthetases

    PubMed Central

    Hussain, Tahir; Yogavel, Manickam

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes that couple cognate tRNAs with amino acids to transmit genomic information for protein translation. The Plasmodium falciparum nuclear genome encodes two P. falciparum methionyl-tRNA synthetases (PfMRS), termed PfMRScyt and PfMRSapi. Phylogenetic analyses revealed that the two proteins are of primitive origin and are related to heterokonts (PfMRScyt) or proteobacteria/primitive bacteria (PfMRSapi). We show that PfMRScyt localizes in parasite cytoplasm, while PfMRSapi localizes to apicoplasts in asexual stages of malaria parasites. Two known bacterial MRS inhibitors, REP3123 and REP8839, hampered Plasmodium growth very effectively in the early and late stages of parasite development. Small-molecule drug-like libraries were screened against modeled PfMRS structures, and several “hit” compounds showed significant effects on parasite growth. We then tested the effects of the hit compounds on protein translation by labeling nascent proteins with 35S-labeled cysteine and methionine. Three of the tested compounds reduced protein synthesis and also blocked parasite growth progression from the ring stage to the trophozoite stage. Drug docking studies suggested distinct modes of binding for the three compounds, compared with the enzyme product methionyl adenylate. Therefore, this study provides new targets (PfMRSs) and hit compounds that can be explored for development as antimalarial drugs. PMID:25583729

  18. Enantioselectivity in the methylation of the catecholic phase I metabolites of methylenedioxy designer drugs and their capability to inhibit catechol-O-methyltransferase-catalyzed dopamine 3-methylation.

    PubMed

    Meyer, Markus R; Maurer, Hans H

    2009-06-01

    The designer drugs R,S-3,4-methylenedioxy-methamphetamine (MDMA, Ecstasy), R,S-3,4-methylenedioxy-ethylamphetamine (MDEA, Eve), and R,S-N-methyl-benzodioxolyl-butanamine (MBDB, Eden) are chiral compounds, and their in vitro and in vivo metabolism is enantioselective with a preference for the S-enantiomer caused in part by P450-mediated demethylenation. As the elimination of the catecholamine metabolites could also be enantioselective, the aim of the present study was to investigate the O-methylation to the corresponding methoxy derivatives catalyzed by the soluble or membrane-bound form of the catechol-O-methyltransferase (COMT). As all three compounds showed substrate inhibition effects during the incubation, their inhibition potential was quantified using the methylation of dopamine as a marker reaction. For investigation of the catechol-O-methylation catalyzed by the soluble form of the COMT (sCOMT), incubations with human liver cytosol (HLC) were performed. Human liver microsomes (HLM) were used for investigation of the membrane-bound form. For inhibition studies, 3-hydroxytyramine (dopamine) was incubated in HLC. The respective catechols were added at various concentrations to check whether they influence the methylation of 3-hydroxytyramine. Our data showed that the S-enantiomers of all studied catecholamines were preferably O-methylated by both types of COMT. Comparing the resulting kinetics of the HLC and HLM assays, the affinity for all substrates was 10-fold higher for the membrane-bound COMT, whereas the turnover rate was 10-fold higher for the soluble COMT. Uncompetitive inhibition of dopamine methylation could be observed for all tested catechols. In conclusion, elimination of the catecholamine metabolites of MDMA, MDEA, and MBDB was shown to be enantioselective and might therefore contribute to the different pharmacokinetic properties observed for both enantiomers. Furthermore, the catecholic metabolites were identified to be uncompetitive inhibitors

  19. Anesthetic drug midazolam inhibits cardiac human ether-à-go-go-related gene channels: mode of action.

    PubMed

    Vonderlin, Nadine; Fischer, Fathima; Zitron, Edgar; Seyler, Claudia; Scherer, Daniel; Thomas, Dierk; Katus, Hugo A; Scholz, Eberhard P

    2015-01-01

    Midazolam is a short-acting benzodiazepine that is in wide clinical use as an anxiolytic, sedative, hypnotic, and anticonvulsant. Midazolam has been shown to inhibit ion channels, including calcium and potassium channels. So far, the effects of midazolam on cardiac human ether-à-go-go-related gene (hERG) channels have not been analyzed. The inhibitory effects of midazolam on heterologously expressed hERG channels were analyzed in Xenopus oocytes using the double-electrode voltage clamp technique. We found that midazolam inhibits hERG channels in a concentration-dependent manner, yielding an IC50 of 170 μM in Xenopus oocytes. When analyzed in a HEK 293 cell line using the patch-clamp technique, the IC50 was 13.6 μM. Midazolam resulted in a small negative shift of the activation curve of hERG channels. However, steady-state inactivation was not significantly affected. We further show that inhibition is state-dependent, occurring within the open and inactivated but not in the closed state. There was no frequency dependence of block. Using the hERG pore mutants F656A and Y652A we provide evidence that midazolam uses a classical binding site within the channel pore. Analyzing the subacute effects of midazolam on hERG channel trafficking, we further found that midazolam does not affect channel surface expression. Taken together, we show that the anesthetic midazolam is a low-affinity inhibitor of cardiac hERG channels without additional effects on channel surface expression. These data add to the current understanding of the pharmacological profile of the anesthetic midazolam.

  20. Mutual Group Hypnosis: A Social Interaction Analysis.

    ERIC Educational Resources Information Center

    Sanders, Shirley

    Mutual Group Hypnosis is discussed in terms of its similarity to group dynamics in general and in terms of its similarity to a social interaction program (Role Modeling) designed to foster the expression of warmth and acceptance among group members. Hypnosis also fosters a regression to prelogical thought processes in the service of the ego. Group…

  1. Mutually unbiased bases and generalized Bell states

    SciTech Connect

    Klimov, Andrei B.; Sych, Denis; Sanchez-Soto, Luis L.; Leuchs, Gerd

    2009-05-15

    We employ a straightforward relation between mutually unbiased and Bell bases to extend the latter in terms of a direct construction for the former. We analyze in detail the properties of these generalized Bell states, showing that they constitute an appropriate tool for testing entanglement in bipartite multiqudit systems.

  2. Do Mutual Children Cement Bonds in Stepfamilies?

    ERIC Educational Resources Information Center

    Ganong, Lawrence H.; Coleman, Marilyn

    1988-01-01

    Interviewed 105 midwestern stepfamilies, 39 of whom had reproduced together. Found no significant differences between families with mutual children and those without in terms of marital adjustment, stepparent- and parent-child relationships, and stepfamily affect. It was not possible to predict which families were most likely to reproduce together…

  3. Mutual diffusion of interacting membrane proteins.

    PubMed Central

    Abney, J R; Scalettar, B A; Owicki, J C

    1989-01-01

    The generalized Stokes-Einstein equation is used, together with the two-dimensional pressure equation, to analyze mutual diffusion in concentrated membrane systems. These equations can be used to investigate the role that both direct and hydrodynamic interactions play in determining diffusive behavior. Here only direct interactions are explicitly incorporated into the theory at high densities; however, both direct and hydrodynamic interactions are analyzed for some dilute solutions. We look at diffusion in the presence of weak attractions, soft repulsions, and hard-core repulsions. It is found that, at low densities, attractions retard mutual diffusion while repulsions enhance it. Mechanistically, attractions tend to tether particles together and oppose the dissipation of gradients or fluctuations in concentration, while repulsions provide a driving force that pushes particles apart. At higher concentrations, changes in the structure of the fluid enhance mutual diffusion even in the presence of attractions. It is shown that the theoretical description of postelectrophoresis relaxation and fluorescence correlation spectroscopy experiments must be modified if interacting systems are studied. The effects of interactions on mutual diffusion coefficients have probably already been seen in postelectrophoresis relaxation experiments. PMID:2775829

  4. Granulocyte colony-stimulating factor inhibits CXCR4/SDF-1α signaling and overcomes stromal-mediated drug resistance in the HL-60 cell line.

    PubMed

    Sheng, Xianfu; Zhong, Hua; Wan, Haixia; Zhong, Jihua; Chen, Fangyuan

    2016-07-01

    Combining cytarabine, aclarubicin and granulocyte colony-stimulating factor (G-CSF) has demonstrated marked efficacy in the treatment of elderly and relapsed/refractory patients with acute myeloid leukemia (AML); however, the role of G-CSF remains poorly understood. The present study aimed to investigate the ability of G-CSF to overcome stromal-mediated drug resistance and the underlying molecular mechanism. Two types of co-culture models were established in the HS-5 human bone marrow/stromal and HL-60 human promyelocytic leukemia cell lines, in order to imitate the interactions between stromal and leukemia cells in vitro, which is mediated by the stromal cell-derived factor (SDF)-1α signaling axis. In the present study, HL-60 cells were attracted and adhered to HS-5 cells using migration assay and flow cytometry, respectively; however, these interactions were inhibited by treatment with G-CSF and/or the C-X-C chemokine receptor type 4 (CXCR4) antagonist, AMD3100. Co-culture with HS-5 cells, including direct and indirect contact, protected HL-60 cells against spontaneous apoptosis or drug-induced apoptosis; however, these protective effects were disrupted by treatment with G-CSF and/or AMD3100. Notably, G-CSF and/or AMD3100 did not alter cell viability or apoptosis when HL-60 cells were cultured with medium alone. In addition, G-CSF significantly reduced the expression levels of surface CXCR4 protein, total CXCR4 protein and CXCR4 mRNA, and significantly upregulated the expression of microRNA (miR)-146a. Conversely, AMD3100 significantly reduced surface CXCR4 expression levels, but not the total CXCR4, CXCR4 mRNA or miR-146a expression levels. The results of the present study suggested that interfering with the CXCR4/SDF-1α signaling axis via G-CSF inhibited the migration and adhesion of HL-60 cells to HS-5 cells and eliminated HS5 cell-mediated protective effects. Furthermore, G-CSF administration reduced CXCR4 expression levels by upregulating the expression of

  5. Enhanced latent inhibition in dopamine receptor-deficient mice is sex-specific for the D1 but not D2 receptor subtype: implications for antipsychotic drug action.

    PubMed

    Bay-Richter, Cecilie; O'Tuathaigh, Colm M P; O'Sullivan, Gerard; Heery, David M; Waddington, John L; Moran, Paula M

    2009-04-01

    Latent inhibition (LI) is reduced learning to a stimulus that has previously been experienced without consequence. It is an important model of abnormal allocation of salience to irrelevant information in patients with schizophrenia. In rodents LI is abolished by psychotomimetic drugs and in experimental conditions where LI is low in controls, its expression is enhanced by antipsychotic drugs with activity at dopamine (DA) receptors. It is however unclear what the independent contributions of DA receptor subtypes are to these effects. This study therefore examined LI in congenic DA D1 and D2 receptor knockout (D1 KO and D2 KO) mice. Conditioned suppression of drinking was used as the measure of learning in the LI procedure. Both male and female DA D2 KO mice showed clear enhancement of LI reproducing antipsychotic drug effects in the model. Unexpectedly, enhancement was also seen in D1 KO female mice but not in D1 KO male mice. This sex-specific pattern was not replicated in locomotor or motor coordination tasks nor in the effect of DA KOs on baseline learning in control groups indicating some specificity of the effect to LI. These data suggest that the dopaminergic mechanism underlying LI potentiation and possibly antipsychotic action may differ between the sexes, being mediated by D2 receptors in males but by both D1 and D2 receptors in females. These data suggest that the DA D1 receptor may prove an important target for understanding sex differences in the mechanisms of action of antipsychotic drugs and in the aetiology of aberrant salience allocation in schizophrenia.

  6. Crystal structures and inhibition kinetics reveal a two-stage catalytic mechanism with drug design implications for rhomboid proteolysis

    PubMed Central

    Urban, Siniša

    2016-01-01

    SUMMARY Intramembrane proteases signal by releasing proteins from the membrane, but despite their importance their enzymatic mechanisms remain obscure. We probed rhomboid proteases with reversible, mechanism-based inhibitors that allow precise kinetic analysis, and faithfully mimic the transition-state structurally. Contrary to expectation, inhibition by peptide aldehydes is non-competitive, revealing that, in the Michaelis complex, substrate does not contact the catalytic center. Structural analysis in a membrane revealed all extracellular loops of rhomboid make stabilizing interactions with substrate, but mainly through backbone interactions, explaining rhomboid's broad sequence selectivity. At the catalytic site, the tetrahedral intermediate lies covalently attached to the catalytic serine alone, with the oxyanion stabilized by unusual tripartite interactions with the sidechains of H150, N154, and the backbone of S201. We also unexpectedly visualized ‘extra’ substrate-enzyme interactions at the non-essential P2/P3 residues. These interactions foster potent rhomboid inhibition in living cells, thereby opening avenues for rational design of selective rhomboid inhibitors. PMID:26805573

  7. Glutaminase-deficient mice display hippocampal hypoactivity, insensitivity to pro-psychotic drugs and potentiated latent inhibition: relevance to schizophrenia.

    PubMed

    Gaisler-Salomon, Inna; Miller, Gretchen M; Chuhma, Nao; Lee, Sooyeon; Zhang, Hong; Ghoddoussi, Farhad; Lewandowski, Nicole; Fairhurst, Stephen; Wang, Yvonne; Conjard-Duplany, Agnès; Masson, Justine; Balsam, Peter; Hen, René; Arancio, Ottavio; Galloway, Matthew P; Moore, Holly M; Small, Scott A; Rayport, Stephen

    2009-09-01

    Dysregulated glutamatergic neurotransmission has been strongly implicated in the pathophysiology of schizophrenia (SCZ). Recently, presynaptic modulation of glutamate transmission has been shown to have therapeutic promise. We asked whether genetic knockdown of glutaminase (gene GLS1) to reduce glutamatergic transmission presynaptically by slowing the recycling of glutamine to glutamate, would produce a phenotype relevant to SCZ and its treatment. GLS1 heterozygous (GLS1 het) mice showed about a 50% global reduction in glutaminase activity, and a modest reduction in glutamate levels in brain regions relevant to SCZ pathophysiology, but displayed neither general behavioral abnormalities nor SCZ-associated phenotypes. Functional imaging, measuring regional cerebral blood volume, showed hippocampal hypometabolism mainly in the CA1 subregion and subiculum, the inverse of recent clinical imaging findings in prodromal and SCZ patients. GLS1 het mice were less sensitive to the behavioral stimulating effects of amphetamine, showed a reduction in amphetamine-induced striatal dopamine release and in ketamine-induced frontal cortical activation, suggesting that GLS1 het mice are resistant to the effects of these pro-psychotic challenges. Moreover, GLS1 het mice showed clozapine-like potentiation of latent inhibition, suggesting that reduction in glutaminase has antipsychotic-like properties. These observations provide further support for the pivotal role of altered glutamatergic synaptic transmission in the pathophysiology of SCZ, and suggest that presynaptic modulation of the glutamine-glutamate pathway through glutaminase inhibition may provide a new direction for the pharmacotherapy of SCZ.

  8. Crystal Structures and Inhibition Kinetics Reveal a Two-Stage Catalytic Mechanism with Drug Design Implications for Rhomboid Proteolysis.

    PubMed

    Cho, Sangwoo; Dickey, Seth W; Urban, Siniša

    2016-02-04

    Intramembrane proteases signal by releasing proteins from the membrane, but despite their importance, their enzymatic mechanisms remain obscure. We probed rhomboid proteases with reversible, mechanism-based inhibitors that allow precise kinetic analysis and faithfully mimic the transition state structurally. Unexpectedly, inhibition by peptide aldehydes is non-competitive, revealing that in the Michaelis complex, substrate does not contact the catalytic center. Structural analysis in a membrane revealed that all extracellular loops of rhomboid make stabilizing interactions with substrate, but mainly through backbone interactions, explaining rhomboid's broad sequence selectivity. At the catalytic site, the tetrahedral intermediate lies covalently attached to the catalytic serine alone, with the oxyanion stabilized by unusual tripartite interactions with the side chains of H150, N154, and the backbone of S201. We also visualized unexpected substrate-enzyme interactions at the non-essential P2/P3 residues. These "extra" interactions foster potent rhomboid inhibition in living cells, thereby opening avenues for rational design of selective rhomboid inhibitors.

  9. Studying a Drug-like, RNA-Focused Small Molecule Library Identifies Compounds That Inhibit RNA Toxicity in Myotonic Dystrophy

    PubMed Central

    Rzuczek, Suzanne G.; Southern, Mark R.; Disney, Matthew D.

    2016-01-01

    There are many RNA targets in the transcriptome to which small molecule chemical probes and lead therapeutics are desired. However, identifying compounds that bind and modulate RNA function in cellulo is difficult. Although rational design approaches have been developed, they are still in their infancies and leave many RNAs “undruggable”. In an effort to develop a small molecule library that is biased for binding RNA, we computationally identified “drug-like” compounds from screening collections that have favorable properties for binding RNA and for suitability as lead drugs. As proof-of-concept, this collection was screened for binding to and modulating the cellular dysfunction of the expanded repeating RNA (r(CUG)exp) that causes myotonic dystrophy type 1. Hit compounds bind the target in cellulo, as determined by the target identification approach Competitive Chemical Cross-Linking and Isolation by Pull-down (C-ChemCLIP), and selectively improve several disease-associated defects. The best compounds identified from our 320-member library are more potent in cellulo than compounds identified by high-throughput screening (HTS) campaigns against this RNA. Furthermore, the compound collection has a higher hit rate (9% compared to 0.01–3%), and the bioactive compounds identified are not charged; thus, RNA can be “drugged” with compounds that have favorable pharmacological properties. Finally, this RNA-focused small molecule library may serve as a useful starting point to identify lead “drug-like” chemical probes that affect the biological (dys)function of other RNA targets by direct target engagement. PMID:26414664

  10. Structural insight into maternal embryonic leucine zipper kinase (MELK) conformation and inhibition toward structure-based drug design.

    PubMed

    Canevari, Giulia; Re Depaolini, Stefania; Cucchi, Ulisse; Bertrand, Jay A; Casale, Elena; Perrera, Claudia; Forte, Barbara; Carpinelli, Patrizia; Felder, Eduard R

    2013-09-17

    Maternal embryonic leucine zipper kinase (MELK) is upregulated in several types of tumor, including breast, prostate, and brain tumors. Its expression is generally associated with cell survival, cell proliferation, and resistance to apoptosis. Therefore, the potential of MELK inhibitors as therapeutic agents is recently attracting considerable interest. Here we report the first structures of MELK in complex with AMP-PNP and with nanomolar inhibitors. Our studies shed light on the role of the MELK UBA domain, provide a characterization of the kinase active site, and identify key residues for achieving high potency, laying the groundwork for structure-based drug design efforts.

  11. Mutual Coupling Compensation on Spectral-based DOA Algorithm

    NASA Astrophysics Data System (ADS)

    Sanudin, R.

    2016-11-01

    Direction of arrival (DOA) estimation using isotropic antenna arrays are commonly being implemented without considering the mutual coupling effect in between the array elements. This paper presents an analysis of DOA estimation with mutual coupling compensation using a linear antenna array. Mutual coupling effect is represented by mutual coupling coefficients and taken into account when calculating the array output. The mutual coupling compensation technique exploits a banded mutual coupling matrix to reduce the computational complexity. The banded matrix reflects the relationship between mutual coupling effect and the element spacing in an antenna array. The analysis is being carried out using the Capon algorithm, one of spectral-based DOA algorithms, for estimating the DOA of incoming signals. Computer simulations are performed to show the performance of the mutual coupling compensation technique on DOA estimation. Simulation results show that, in term of estimation resolution, the mutual coupling compensation technique manages to obtain a comparable results compared to the case without mutual coupling consideration. However, the mutual coupling compensation technique produces significant estimation error compared to the case without mutual coupling. The study concludes that the banded matrix of mutual coupling coefficients should be properly designed to improve the performance of mutual coupling compensation technique in DOA estimation.

  12. Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds.

    PubMed

    Ngo, Trieu-Du; Tran, Thanh-Dao; Le, Minh-Tri; Thai, Khac-Minh

    2016-11-01

    The human P-glycoprotein (P-gp) efflux pump is of great interest for medicinal chemists because of its important role in multidrug resistance (MDR). Because of the high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of this transmembrane protein, ligand-based, and structure-based approaches which were machine learning, homology modeling, and molecular docking were combined for this study. In ligand-based approach, individual two-dimensional quantitative structure-activity relationship models were developed using different machine learning algorithms and subsequently combined into the Ensemble model which showed good performance on both the diverse training set and the validation sets. The applicability domain and the prediction quality of the developed models were also judged using the state-of-the-art methods and tools. In our structure-based approach, the P-gp structure and its binding region were predicted for a docking study to determine possible interactions between the ligands and the receptor. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening using prediction models and molecular docking in an attempt to restore cancer cell sensitivity to cytotoxic drugs.

  13. Inhibition of EGF Uptake by Nephrotoxic Antisense Drugs In Vitro and Implications for Preclinical Safety Profiling.

    PubMed

    Moisan, Annie; Gubler, Marcel; Zhang, Jitao David; Tessier, Yann; Dumong Erichsen, Kamille; Sewing, Sabine; Gérard, Régine; Avignon, Blandine; Huber, Sylwia; Benmansour, Fethallah; Chen, Xing; Villaseñor, Roberto; Braendli-Baiocco, Annamaria; Festag, Matthias; Maunz, Andreas; Singer, Thomas; Schuler, Franz; Roth, Adrian B

    2017-03-17

    Antisense oligonucleotide (AON) therapeutics offer new avenues to pursue clinically relevant targets inaccessible with other technologies. Advances in improving AON affinity and stability by incorporation of high affinity nucleotides, such as locked nucleic acids (LNA), have sometimes been stifled by safety liabilities related to their accumulation in the kidney tubule. In an attempt to predict and understand the mechanisms of LNA-AON-induced renal tubular toxicity, we established human cell models that recapitulate in vivo behavior of pre-clinically and clinically unfavorable LNA-AON drug candidates. We identified elevation of extracellular epidermal growth factor (EGF) as a robust and sensitive in vitro biomarker of LNA-AON-induced cytotoxicity in human kidney tubule epithelial cells. We report the time-dependent negative regulation of EGF uptake and EGF receptor (EGFR) signaling by toxic but not innocuous LNA-AONs and revealed the importance of EGFR signaling in LNA-AON-mediated decrease in cellular activity. The robust EGF-based in vitro safety profiling of LNA-AON drug candidates presented here, together with a better understanding of the underlying molecular mechanisms, constitutes a significant step toward developing safer antisense therapeutics.

  14. Impact of target-mediated drug disposition on Linagliptin pharmacokinetics and DPP-4 inhibition in type 2 diabetic patients.

    PubMed

    Retlich, Silke; Duval, Vincent; Graefe-Mody, Ulrike; Jaehde, Ulrich; Staab, Alexander

    2010-08-01

    The pharmacokinetics of the novel dipeptidyl-peptidase 4 (DPP-4) inhibitor linagliptin is nonlinear. Based on in vitro experiments, concentration-dependent binding to DPP-4 is the most likely cause for the nonlinearity. Population pharmacokinetic/pharmacodynamic modeling was performed using linagliptin plasma concentrations and plasma DPP-4 activities from 2 phase 2a studies. In these studies, type 2 diabetic patients received either 1, 2.5, 5, or 10 mg of linagliptin once daily over 12 days (study 1) or 2.5, 5, or 10 mg of linagliptin once daily over 28 days (study 2). The modeling results supported the hypothesis that linagliptin exhibits target-mediated drug disposition. The linagliptin plasma concentrations were best described by a 2-compartment model including concentration-dependent protein binding in the central and peripheral compartment. The plasma DPP-4 activity was included in the model in a semi-mechanistic way by relating it to the model-calculated plasma DPP-4 occupancy with linagliptin. The target binding has a major impact on linagliptin pharmacokinetics. Although unbound linagliptin is cleared efficiently (CL/F 220 L/h), the concentration-dependent binding is responsible for the long terminal half-life (approximatelly 120 hours) of linagliptin and its nonlinear pharmacokinetics. The model allowed a comprehensive understanding of the impact of target-mediated drug disposition and provides a useful tool to support clinical development.

  15. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney.

    PubMed

    Ito, Sumito; Kusuhara, Hiroyuki; Yokochi, Miyu; Toyoshima, Junko; Inoue, Katsuhisa; Yuasa, Hiroaki; Sugiyama, Yuichi

    2012-02-01

    Cimetidine, an H₂ receptor antagonist, has been used to investigate the tubular secretion of organic cations in human kidney. We report a systematic comprehensive analysis of the inhibition potency of cimetidine for the influx and efflux transporters of organic cations [human organic cation transporter 1 (hOCT1) and hOCT2 and human multidrug and toxin extrusion 1 (hMATE1) and hMATE2-K, respectively]. Inhibition constants (K(i)) of cimetidine were determined by using five substrates [tetraethylammonium (TEA), metformin, 1-methyl-4-phenylpyridinium, 4-(4-(dimethylamino)styryl)-N-methylpyridinium, and m-iodobenzylguanidine]. They were 95 to 146 μM for hOCT2, providing at most 10% inhibition based on its clinically reported plasma unbound concentrations (3.6-7.8 μM). In contrast, cimetidine is a potent inhibitor of MATE1 and MATE2-K with K(i) values (μM) of 1.1 to 3.8 and 2.1 to 6.9, respectively. The same tendency was observed for mouse Oct1 (mOct1), mOct2, and mouse Mate1. Cimetidine showed a negligible effect on the uptake of metformin by mouse kidney slices at 20 μM. Cimetidine was administered to mice by a constant infusion to achieve a plasma unbound concentration of 21.6 μM to examine its effect on the renal disposition of Mate1 probes (metformin, TEA, and cephalexin) in vivo. The kidney- and liver-to-plasma ratios of metformin both were increased 2.4-fold by cimetidine, whereas the renal clearance was not changed. Cimetidine also increased the kidney-to-plasma ratio of TEA and cephalexin 8.0- and 3.3-fold compared with a control and decreased the renal clearance from 49 to 23 and 11 to 6.6 ml/min/kg, respectively. These results suggest that the inhibition of MATEs, but not OCT2, is a likely mechanism underlying the drug-drug interactions with cimetidine in renal elimination.

  16. The approved pediatric drug suramin identified as a clinical candidate for the treatment of EV71 infection-suramin inhibits EV71 infection in vitro and in vivo.

    PubMed

    Ren, Peijun; Zou, Gang; Bailly, Benjamin; Xu, Shanshan; Zeng, Mei; Chen, Xinsheng; Shen, Liang; Zhang, Ying; Guillon, Patrice; Arenzana-Seisdedos, Fernando; Buchy, Philippe; Li, Jian; von Itzstein, Mark; Li, Qihan; Altmeyer, Ralf

    2014-09-01

    Enterovirus 71 (EV71) causes severe central nervous system infections, leading to cardiopulmonary complications and death in young children. There is an urgent unmet medical need for new pharmaceutical agents to control EV71 infections. Using a multidisciplinary approach, we found that the approved pediatric antiparasitic drug suramin blocked EV71 infectivity by a novel mechanism of action that involves binding of the naphtalentrisulonic acid group of suramin to the viral capsid. Moreover, we demonstrate that when suramin is used in vivo at doses equivalent to or lower than the highest dose already used in humans, it significantly decreased mortality in mice challenged with a lethal dose of EV71 and peak viral load in adult rhesus monkeys. Thus, suramin inhibits EV71 infection by neutralizing virus particles prior to cell attachment. Consequently, these findings identify suramin as a clinical candidate for further development as a therapeutic or prophylactic treatment for severe EV71 infection.

  17. Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506.

    PubMed

    Carbajo-Lozoya, Javier; Müller, Marcel A; Kallies, Stephan; Thiel, Volker; Drosten, Christian; von Brunn, Albrecht

    2012-04-01

    Recent research has shown that Coronavirus (CoV) replication depends on active immunophilin pathways. Here we demonstrate that the drug FK506 (Tacrolimus) inhibited strongly the growth of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E at low, non-cytotoxic concentrations in cell culture. As shown by plaque titration, qPCR, Luciferase- and green fluorescent protein (GFP) reporter gene expression, replication was diminished by several orders of magnitude. Knockdown of the cellular FK506-binding proteins FKBP1A and FKBP1B in CaCo2 cells prevented replication of HCoV-NL63, suggesting the requirement of these members of the immunophilin family for virus growth.

  18. Zidovudine, an anti-viral drug, resensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine by inhibition of the Akt-GSK3β-Snail pathway.

    PubMed

    Namba, T; Kodama, R; Moritomo, S; Hoshino, T; Mizushima, T

    2015-06-25

    Pancreatic cancer is one of the most difficult malignancies to treat owing to the rapid acquisition of resistance to chemotherapy. Gemcitabine, a first-line treatment for pancreatic cancer, prolongs patient survival by several months, and combination treatment with gemcitabine and other anti-cancer drugs in the clinic do not show any significant effects on overall survival. Thus, identification of a drug that resensitizes gemcitabine-resistant pancreatic cancer to gemcitabine and a better understanding of the molecular mechanisms of gemcitabine resistance are critical to develop new therapeutic options for pancreatic cancer. Here, we report that zidovudine resensitizes gemcitabine-resistant pancreatic cancer to gemcitabine as shown by screening a compound library, including clinical medicine, using gemcitabine-resistant cells. In analyzing the molecular mechanisms of zidovudine effects, we found that the epithelial-to-mesenchymal transition (EMT)-like phenotype and downregulation of human equilibrative nucleoside transporter 1 (hENT1) are essential for the acquisition of gemcitabine resistance, and zidovudine restored these changes. The chemical biology investigations also revealed that activation of the Akt-GSK3β-Snail1 pathway in resistant cells is a key signaling event for gemcitabine resistance, and zidovudine resensitized resistant cells to gemcitabine by inhibiting this activated pathway. Moreover, our in vivo study demonstrated that co-administration of zidovudine and gemcitabine strongly suppressed the formation of tumors by gemcitabine-resistant pancreatic cancer and prevented gemcitabine-sensitive pancreatic tumors from acquiring gemcitabine-resistant properties, inducing an EMT-like phenotype and downregulating hENT1 expression. These results suggested that co-treatment with zidovudine and gemcitabine may become a novel therapeutic strategy for pancreatic cancer by inhibiting chemoresistance-specific signaling.

  19. A novel dopamine D3 receptor antagonist YQA14 inhibits methamphetamine self-administration and relapse to drug-seeking behaviour in rats.

    PubMed

    Chen, Ying; Song, Rui; Yang, Ri-Fang; Wu, Ning; Li, Jin

    2014-11-15

    Growing preclinical evidence suggests that dopamine D3 receptor antagonists are promising for the treatment of addiction. We have previously reported a novel dopamine D3 receptor antagonist YQA14 with better pharmacokinetic behaviours and pharmacotherapeutic efficacy than other tested compounds in attenuating the reward and relapse of cocaine. In the present study, we investigated whether YQA14 can similarly inhibit methamphetamine self-administration and cue- or methamphetamine-trigged reinstatement of drug-seeking behaviour. The research illustrated that systemic administration of YQA14 (6.25-25mg/kg, i.p. 20min prior to methamphetamine) failed to alter methamphetamine (0.05mg/kg) self-administration under fixed-ratio 2. However, YQA14 (6.25-25mg/kg, i.p. 20min prior to methamphetamine) significantly and dose-dependently reduced methamphetamine self-administration under fixed-ratio 2 by a low dose (0.006, 0.0125, 0.025mg/kg) of methamphetamine and shifted the dose curve right and down. Further, YQA14 also lowered the break point under progressive-ratio reinforcement conditions in rats. Finally, YQA14 also significantly inhibited cue- or methamphetamine-triggered reinstatement of extinguished drug-seeking behaviour. Overall, our findings suggest that blockade of the dopamine D3 receptor by YQA14 attenuated the rewarding and incentive motivational effects of methamphetamine in rats and may have pharmacotherapeutic potential in the treatment of methamphetamine addiction. Thus, YQA14 deserves further investigation as a promising medication for the treatment of addiction.

  20. Zidovudine, an anti-viral drug, resensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine by inhibition of the Akt-GSK3β-Snail pathway

    PubMed Central

    Namba, T; Kodama, R; Moritomo, S; Hoshino, T; Mizushima, T

    2015-01-01

    Pancreatic cancer is one of the most difficult malignancies to treat owing to the rapid acquisition of resistance to chemotherapy. Gemcitabine, a first-line treatment for pancreatic cancer, prolongs patient survival by several months, and combination treatment with gemcitabine and other anti-cancer drugs in the clinic do not show any significant effects on overall survival. Thus, identification of a drug that resensitizes gemcitabine-resistant pancreatic cancer to gemcitabine and a better understanding of the molecular mechanisms of gemcitabine resistance are critical to develop new therapeutic options for pancreatic cancer. Here, we report that zidovudine resensitizes gemcitabine-resistant pancreatic cancer to gemcitabine as shown by screening a compound library, including clinical medicine, using gemcitabine-resistant cells. In analyzing the molecular mechanisms of zidovudine effects, we found that the epithelial-to-mesenchymal transition (EMT)-like phenotype and downregulation of human equilibrative nucleoside transporter 1 (hENT1) are essential for the acquisition of gemcitabine resistance, and zidovudine restored these changes. The chemical biology investigations also revealed that activation of the Akt-GSK3β-Snail1 pathway in resistant cells is a key signaling event for gemcitabine resistance, and zidovudine resensitized resistant cells to gemcitabine by inhibiting this activated pathway. Moreover, our in vivo study demonstrated that co-administration of zidovudine and gemcitabine strongly suppressed the formation of tumors by gemcitabine-resistant pancreatic cancer and prevented gemcitabine-sensitive pancreatic tumors from acquiring gemcitabine-resistant properties, inducing an EMT-like phenotype and downregulating hENT1 expression. These results suggested that co-treatment with zidovudine and gemcitabine may become a novel therapeutic strategy for pancreatic cancer by inhibiting chemoresistance-specific signaling. PMID:26111057

  1. Plant invasions--the role of mutualisms.

    PubMed

    Richardson, D M; Allsopp, N; D'Antonio, C M; Milton, S J; Rejmánek, M

    2000-02-01

    Many introduced plant species rely on mutualisms in their new habitats to overcome barriers to establishment and to become naturalized and, in some cases, invasive. Mutualisms involving animal-mediated pollination and seed dispersal, and symbioses between plant roots and microbiota often facilitate invasions. The spread of many alien plants, particularly woody ones, depends on pollinator mutualisms. Most alien plants are well served by generalist pollinators (insects and birds), and pollinator limitation does not appear to be a major barrier for the spread of introduced plants (special conditions relating to Ficus and orchids are described). Seeds of many of the most notorious plant invaders are dispersed by animals, mainly birds and mammals. Our review supports the view that tightly coevolved, plant-vertebrate seed dispersal systems are extremely rare. Vertebrate-dispersed plants are generally not limited reproductively by the lack of dispersers. Most mycorrhizal plants form associations with arbuscular mycorrhizal fungi which, because of their low specificity, do not seem to play a major role in facilitating or hindering plant invasions (except possibly on remote islands such as the Galapagos which are poor in arbuscular mycorrhizal fungi). The lack of symbionts has, however, been a major barrier for many ectomycorrhizal plants, notably for Pinus spp. in parts of the southern hemisphere. The roles of nitrogen-fixing associations between legumes and rhizobia and between actinorhizal plants and Frankia spp. in promoting or hindering invasions have been virtually ignored in the invasions literature. Symbionts required to induce nitrogen fixation in many plants are extremely widespread, but intentional introductions of symbionts have altered the invasibility of many, if not most, systems. Some of the world's worst invasive alien species only invaded after the introduction of symbionts. Mutualisms in the new environment sometimes re-unite the same species that form

  2. Growth-promoting activity of pyrazinoic acid, a putative active compound of antituberculosis drug pyrazinamide, in niacin-deficient rats through the inhibition of ACMSD activity.

    PubMed

    Fukuwatari, Tsutomu; Sugimoto, Etsuro; Shibata, Katsumi

    2002-07-01

    We have recently reported that the antituberculosis drug, pyrazinamide (PZA), caused a significant increase in the conversion ratio of tryptophan to niacin in rats. In the present work, we investigated whether or not pyrazinoic acid (POA), a putative metabolite of PZA, increased the conversion ratio of tryptophan to niacin. Weaning rats were fed with a niacin-free and tryptophan-limited diet (negative control diet), or with the negative control diet supplemented with 0.003% nicotinic acid (positive control diet) or 1% POA (test diet) for 27 days. The growth rate was almost same between the groups fed on the positive control diet and the test diet. Dietary POA significantly increased the conversion ratio of tryptophan to niacin. Although POA did not directly inhibit the activity of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD), the rate-limiting enzyme in the tryptophan-niacin pathway, liver ACMSD activity was only not detected in the test diet group. These results suggest that a derivative of POA metabolized by rats inhibited the ACMSD activity.

  3. Isoform-selective phosphoinositide 3'-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell-mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach.

    PubMed

    Niedermeier, Matthias; Hennessy, Bryan T; Knight, Zachary A; Henneberg, Marina; Hu, Jianhua; Kurtova, Antonina V; Wierda, William G; Keating, Michael J; Shokat, Kevan M; Burger, Jan A

    2009-05-28

    Phosphoinositide 3-kinases (PI3Ks) are among the most frequently activated signaling pathways in cancer. In chronic lymphocytic leukemia (CLL), signals from the microenvironment are critical for expansion of the malignant B cells, and cause constitutive activation of PI3Ks. CXCR4 is a key receptor for CLL cell migration and adhesion to marrow stromal cells (MSCs). Because of the importance of CXCR4 and PI3Ks for CLL-microenvironment cross-talk, we investigated the activity of novel, isoform-selective PI3K inhibitors that target different isoforms of the p110-kDa subunit. Inhibition with p110alpha inhibitors (PIK-90 and PI-103) resulted in a significant reduction of chemotaxis and actin polymerization to CXCL12 and reduced migration beneath MSC (pseudoemperipolesis). Western blot and reverse phase protein array analyses consistently demonstrated that PIK-90 and PI-103 inhibited phosphorylation of Akt and S6, whereas p110delta or p110beta/p110delta inhibitors were less effective. In suspension and MSC cocultures, PI-103 and PIK-90 were potent inducers of CLL cell apoptosis. Moreover, these p110alpha inhibitors enhanced the cytotoxicity of fludarabine and reversed the protective effect of MSC on fludarabine-induced apoptosis. Collectively, our data demonstrate that p110alpha inhibitors antagonize stromal cell-derived migration, survival, and drug-resistance signals and therefore provide a rational to explore the therapeutic activity of these promising agents in CLL.

  4. Transcriptomic profiling of the Saccharomyces cerevisiae response to quinine reveals a glucose limitation response attributable to drug-induced inhibition of glucose uptake.

    PubMed

    dos Santos, Sandra C; Tenreiro, Sandra; Palma, Margarida; Becker, Jorg; Sá-Correia, Isabel

    2009-12-01

    Quinine has been employed in the treatment of malaria for centuries and is still used against severe Plasmodium falciparum malaria. However, its interactions with the parasite remain poorly understood and subject to debate. In this study, we used the Saccharomyces cerevisiae eukaryotic model to better understand quinine's mode of action and the mechanisms underlying the cell response to the drug. We obtained a transcriptomic profile of the yeast's early response to quinine, evidencing a marked activation of genes involved in the low-glucose response (e.g., CAT8, ADR1, MAL33, MTH1, and SNF3). We used a low inhibitory quinine concentration with no detectable effect on plasma membrane function, consistent with the absence of a general nutrient starvation response and suggesting that quinine-induced glucose limitation is a specific response. We have further shown that transport of [(14)C]glucose is inhibited by quinine, with kinetic data indicating competitive inhibition. Also, tested mutant strains deleted for genes encoding high- and low-affinity hexose transporters (HXT1 to HXT5, HXT8, and HXT10) exhibit resistance phenotypes, correlating with reduced levels of quinine accumulation in the mutants examined. These results suggest that the hexose transporters are facilitators of quinine uptake in S. cerevisiae, possibly through a competitive inhibition mechanism. Interestingly, P. falciparum is highly dependent on glucose uptake, which is mediated by the single-copy transporter PfHT1, a protein with high homology to yeast's hexose transporters. We propose that PfHT1 is an interesting candidate quinine target possibly involved in quinine import in P. falciparum, an uptake mechanism postulated in recent studies to occur through a still-unidentified importer(s).

  5. Inhibition of the β-carbonic anhydrase from Streptococcus pneumoniae by inorganic anions and small molecules: Toward innovative drug design of antiinfectives?

    PubMed

    Burghout, Peter; Vullo, Daniela; Scozzafava, Andrea; Hermans, Peter W M; Supuran, Claudiu T

    2011-01-01

    The Gram-positive bacterium Streptococcus pneumoniae is a human respiratory tract pathogen that contributes significantly to global mortality and morbidity. It was recently shown that this bacterial pathogen depends on a conserved β-carbonic anhydrase (CA, EC 4.2.1.1) for in vitro growth in environmental ambient air and during intracellular survival in host cells. Hence, it is to be expected that this pneumococcal carbonic anhydrase (PCA) contributes to transmission and pathogenesis of the bacterium, making it a potential therapeutic target. In this study, purified recombinant PCA has been further characterized kinetically and for inhibition with a series of inorganic anions and small molecules useful as leads. PCA has appreciable activity as catalyst for the hydration of CO(2) to bicarbonate, with a k(cat) of 7.4×10(5)s(-1) and k(cat)/K(m) of 6.5×10(7) M(-1)s(-1) at an optimum pH of 8.4. Inorganic anions such as chloride, bromide, iodide, cyanate, selenocyanate, trithiocarbonate, and cyanide were effective inhibitors of PCA (K(I)s of 21-98μM). Sulfamide, sulfamic acid, phenylboronic, phenylarsonic acid, and diethyldithiocarbamate showed inhibition constants in the low micromolar/submicromolar range (K(I)s of 0.61-6.68μM), whereas that of the sulfonamide acetazolamide was in the nanomolar range (K(I)s 89nM). In conclusion, our results show that PCA can effectively be inhibited by a range of molecules that could be interesting leads for obtaining more potent PCA inhibitors. PCA might be a novel target for designing antimicrobial drugs with a new mechanism of action.

  6. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    PubMed Central

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  7. "Fusion and binding inhibition" key target for HIV-1 treatment and pre-exposure prophylaxis: targets, drug delivery and nanotechnology approaches.

    PubMed

    Malik, Tanushree; Chauhan, Gaurav; Rath, Goutam; Murthy, R S R; Goyal, Amit K

    2017-11-01

    More than 35 million people are living with HIV worldwide with approximately 2.3 million new infections per year. Cascade of events (cell entry, virus replication, assembly and release of newly formed virions) is involved in the HIV-1 transmission process. Every single step offers a potential therapeutic strategy to halt this progression and HIV fusion into the human host cell is one such stage. Controlling the initial event of HIV-1 transmission is the best way to control its dissemination especially when prophylaxis is concerned. Action is required either on the HIV's or host's cell surface which is logically more rational when compared with other intracellular acting moieties. Aim of this manuscript is to detail the significance and current strategies to halt this initial step, thus blocking the entry of HIV-1 for further infection. Both HIV-1 and the possible host cell's receptors/co-receptors are under focus while specifying the targets available for inhibiting this fusion. Current and under investigation moieties are categorized based on their versatile mechanisms. Advanced drug delivery and nanotechnology approaches present a key tool to exploit the therapeutic potential in a boosted way. Current drug delivery and the impact of nanotechnology in potentiating this strategy are detailed.

  8. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    NASA Astrophysics Data System (ADS)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-04-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.

  9. Resistance of African Green Monkey Kidney Cell Lines to Actinomycin D: Drug Uptake in 37 RC Cells After Persistent Inhibition of Transcription

    PubMed Central

    Benedetto, Arrigo; Cassone, Antonio; Delfini, Carlo

    1979-01-01

    37 RC cells, a cultured line derived from African green monkey kidneys, survived long treatments with actinomycin D (AMD; 0.1 to 0.5 μg/ml) under strong inhibition of ribonucleic acid synthesis and blocking of cell division. One aspect of the complex cellular response to this treatment was a progressive lowering of the influx rate of AMD and, consequently, of its endocellular concentration, leading to a late resurgence of transcription. Overall protein synthesis decreased in AMD-treated cells, but more of the residual protein was exported to the cell surface, a fact associated with the development of numerous strands of endoplasmic reticulum and Golgi bodies in the cytoplasm. The lowering of AMD influx during the treatment was not simply due to the decay of protein synthesis, and there was no evidence for a carrier-mediated transport of the drug. It was paralleled by, but seemingly not related to, modifications in cellular microtubules and microfilaments. The rate of AMD influx was restored to levels comparable to those of untreated cells by short exposure to ethylenediaminetetraacetic acid and trypsin. It is concluded that the changes in plasma membrane of 37 RC cells, creating an obstacle to the influx of AMD after long treatment with this drug, probably consist of an accumulation and/or a different distribution of glycoproteins or other surface components on the cell surface. Images PMID:106777

  10. Two specific drugs, BMS-345541 and purvalanol A induce apoptosis of HTLV-1 infected cells through inhibition of the NF-kappaB and cell cycle pathways.

    PubMed

    Agbottah, Emmanuel; Yeh, Wen-I; Berro, Reem; Klase, Zachary; Pedati, Caitlin; Kehn-Hall, Kyleen; Wu, Weilin; Kashanchi, Fatah

    2008-06-10

    Human T-cell leukemia virus type-1 (HTLV-1) induces adult T-cell leukemia/lymphoma (ATL/L), a fatal lymphoproliferative disorder, and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic progressive disease of the central nervous system after a long period of latent infection. Although the mechanism of transformation and leukemogenesis is not fully elucidated, there is evidence to suggest that the viral oncoprotein Tax plays a crucial role in these processes through the regulation of several pathways including NF-kappaB and the cell cycle pathways. The observation that NF-kappaB, which is strongly induced by Tax, is indispensable for the maintenance of the malignant phenotype of HTLV-1 by regulating the expression of various genes involved in cell cycle regulation and inhibition of apoptosis provides a possible molecular target for these infected cells. To develop potential new therapeutic strategies for HTLV-1 infected cells, in this present study, we initially screened a battery of NF-kappaB and CDK inhibitors (total of 35 compounds) to examine their effects on the growth and survival of infected T-cell lines. Two drugs namely BMS-345541 and Purvalanol A exhibited higher levels of growth inhibition and apoptosis in infected cell as compared to uninfected cells. BMS-345541 inhibited IKKbeta kinase activity from HTLV-1 infected cells with an IC50 (the 50% of inhibitory concentration) value of 50 nM compared to 500 nM from control cells as measured by in vitro kinase assays. The effects of Purvalanol A were associated with suppression of CDK2/cyclin E complex activity as previously shown by us. Combination of both BMS-345541 and Purvalanol A showed a reduced level of HTLV-1 p19 Gag production in cell culture. The apparent apoptosis in these infected cells were associated with increased caspase-3 activity and PARP cleavage. The potent and selective apoptotic effects of these drugs suggest that both BMS-345541 and Purvalanol A, which target

  11. The Identification and Biochemical Characterization of Drug-Like Compounds that Inhibit Botulinum Neurotoxin Serotype A Endopeptidase Activity

    PubMed Central

    Cai, Shuowei; Lindo, Paul; Park, Jong-Beak; Vasa, Kruti; Singh, Bal Ram

    2009-01-01

    A robust, high throughput, two-tiered assay for screening small molecule inhibitors against botulinum neurotoxin serotype A was developed and employed to screen 16,544 compounds. Thirty-four compounds were identified as potent hits employing the first-tier assay. Subsequently, nine were confirmed as actives by our second-tier confirmatory assay. Of these, one displayed potent inhibitory efficacy, possessing an IC50 = 16 μM (± 1.6 μM) in our in vitro assay. This inhibitor (0831–1035) is highly water-soluble, and possesses an IC50 = 47 μM (± 7.0 μM) in our primary cell culture assay (with virtually no cytotoxicity up to 500 μM) suggesting that this inhibitor is a good candidate for further development as a therapeutic countermeasure to treat botulism resulting from botulinum neurotoxin serotype A intoxication. An enzyme kinetics study indicated that this inhibitor exhibits mixed non-competitive inhibition, with a KI = 9 μM. PMID:20003913

  12. Hardware device binding and mutual authentication

    DOEpatents

    Hamlet, Jason R; Pierson, Lyndon G

    2014-03-04

    Detection and deterrence of device tampering and subversion by substitution may be achieved by including a cryptographic unit within a computing device for binding multiple hardware devices and mutually authenticating the devices. The cryptographic unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a binding PUF value. The cryptographic unit uses the binding PUF value during an enrollment phase and subsequent authentication phases. During a subsequent authentication phase, the cryptographic unit uses the binding PUF values of the multiple hardware devices to generate a challenge to send to the other device, and to verify a challenge received from the other device to mutually authenticate the hardware devices.

  13. Identification of a Novel Drug Lead That Inhibits HCV Infection and Cell-to-Cell Transmission by Targeting the HCV E2 Glycoprotein

    PubMed Central

    Al Olaby, Reem R.; Cocquerel, Laurence; Zemla, Adam; Saas, Laure; Dubuisson, Jean; Vielmetter, Jost; Marcotrigiano, Joseph; Khan, Abdul Ghafoor; Catalan, Felipe Vences; Perryman, Alexander L.; Freundlich, Joel S.; Forli, Stefano; Levy, Shoshana; Balhorn, Rod; Azzazy, Hassan M.

    2014-01-01

    Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2’s interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421–645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. Surface plasmon resonance detection was used to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50’s ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment. PMID:25357246

  14. Identification of a Novel Drug Lead That Inhibits HCV Infection and Cell-to-Cell Transmission by Targeting the HCV E2 Glycoprotein

    SciTech Connect

    Al Olaby, Reem R.; Cocquerel, Laurence; Zemla, Adam; Saas, Laure; Dubuisson, Jean; Vielmetter, Jost; Marcotrigiano, Joseph; Khan, Abdul Ghafoor; Catalan, Felipe Vences; Perryman, Alexander L.; Freundlich, Joel S.; Forli, Stefano; Levy, Shoshana; Balhorn, Rod; Azzazy, Hassan M.

    2014-10-30

    We report that Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2’s interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421–645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. We used surface plasmon resonance detection to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50’s ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment.

  15. Identification of a Novel Drug Lead That Inhibits HCV Infection and Cell-to-Cell Transmission by Targeting the HCV E2 Glycoprotein

    DOE PAGES

    Al Olaby, Reem R.; Cocquerel, Laurence; Zemla, Adam; ...

    2014-10-30

    We report that Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2’smore » interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421–645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. We used surface plasmon resonance detection to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50’s ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment.« less

  16. Mutual synchronization of weakly coupled gyrotrons

    SciTech Connect

    Rozental, R. M.; Glyavin, M. Yu.; Sergeev, A. S.; Zotova, I. V.; Ginzburg, N. S.

    2015-09-15

    The processes of synchronization of two weakly coupled gyrotrons are studied within the framework of non-stationary equations with non-fixed longitudinal field structure. With the allowance for a small difference of the free oscillation frequencies of the gyrotrons, we found a certain range of parameters where mutual synchronization is possible while a high electronic efficiency is remained. It is also shown that synchronization regimes can be realized even under random fluctuations of the parameters of the electron beams.

  17. Three-Ship Mutual Interference Tests

    DTIC Science & Technology

    1965-11-16

    increase beyond this event; the data before Event 500 do not show these effects. Short duration transmit-receive misalignment as observed aboard GARCIA , is...on BELKNAP and GARCIA have not been noted on McCLOY. ii 10 CONFIDENTIAL CONFIDENTIAL TRACOR, jNC - , S, Aig? Te~oS 3. CORRECTED SEA TEST LOG Complete...frequency band causing mutual influence. In this example, chart #1 shows BELKNAP and GARCIA influencing McCLOY at a higher frequency band. Sanborn

  18. Combating isolation: Building mutual mentoring networks

    NASA Astrophysics Data System (ADS)

    Cox, Anne J.

    2015-12-01

    Women physicists can often feel isolated at work. Support from a grant through the ADVANCE program of the National Science Foundation (U.S. government funding) created mutual mentoring networks aimed at combating isolation specifically for women faculty at undergraduate-only institutions. This paper will discuss the organization of one such network, what contributed to its success, some of the outcomes, and how it might be implemented in other contexts.

  19. CCR5 antibodies HGS004 and HGS101 preferentially inhibit drug-bound CCR5 infection and restore drug sensitivity of Maraviroc-resistant HIV-1 in primary cells

    SciTech Connect

    Latinovic, Olga; Reitz, Marvin; Le, Nhut M.; Foulke, James S.; Faetkenheuer, Gerd; Lehmann, Clara; Redfield, Robert R.; Heredia, Alonso

    2011-03-01

    R5 HIV-1 strains resistant to the CCR5 antagonist Maraviroc (MVC) can use drug-bound CCR5. We demonstrate that MVC-resistant HIV-1 exhibits delayed kinetics of coreceptor engagement and fusion during drug-bound versus free CCR5 infection of cell lines. Antibodies directed against the second extracellular loop (ECL2) of CCR5 had greater antiviral activity against MVC-bound compared to MVC-free CCR5 infection. However, in PBMCs, only ECL2 CCR5 antibodies HGS004 and HGS101, but not 2D7, inhibited infection by MVC resistant HIV-1 more potently with MVC-bound than with free CCR5. In addition, HGS004 and HGS101, but not 2D7, restored the antiviral activity of MVC against resistant virus in PBMCs. In flow cytometric studies, CCR5 binding by the HGS mAbs, but not by 2D7, was increased when PBMCs were treated with MVC, suggesting MVC increases exposure of the relevant epitope. Thus, HGS004 and HGS101 have antiviral mechanisms distinct from 2D7 and could help overcome MVC resistance.

  20. 47 CFR 90.165 - Procedures for mutually exclusive applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Applications and Authorizations Special Rules Governing Facilities Used to Provide Commercial Mobile Radio Services § 90.165 Procedures for mutually exclusive applications. Mutually exclusive commercial mobile radio service applications are processed...

  1. Structure–activity relationships study of mTOR kinase inhibition using QSAR and structure-based drug design approaches

    PubMed Central

    Lakhlili, Wiame; Yasri, Abdelaziz; Ibrahimi, Azeddine

    2016-01-01

    The discovery of clinically relevant inhibitors of mammalian target of rapamycin (mTOR) for anticancer therapy has proved to be a challenging task. The quantitative structure–activity relationship (QSAR) approach is a very useful and widespread technique for ligand-based drug design, which can be used to identify novel and potent mTOR inhibitors. In this study, we performed two-dimensional QSAR tests, and molecular docking validation tests of a series of mTOR ATP-competitive inhibitors to elucidate their structural properties associated with their activity. The QSAR tests were performed using partial least square method with a correlation coefficient of r2=0.799 and a cross-validation of q2=0.714. The chemical library screening was done by associating ligand-based to structure-based approach using the three-dimensional structure of mTOR developed by homology modeling. We were able to select 22 compounds from two databases as inhibitors of the mTOR kinase active site. We believe that the method and applications highlighted in this study will help future efforts toward the design of selective ATP-competitive inhibitors. PMID:27980424

  2. A novel chemical, STF-083010, reverses tamoxifen-related drug resistance in breast cancer by inhibiting IRE1/XBP1.

    PubMed

    Ming, Jie; Ruan, Shengnan; Wang, Mengyi; Ye, Dan; Fan, Ningning; Meng, Qingyu; Tian, Bo; Huang, Tao

    2015-12-01

    Recent studies show that the unfolded protein response (UPR) within the endoplasmic reticulum is correlated with breast cancer drug resistance. In particular, human X-box binding protein-1(XBP1), a transcription factor which participates in UPR stress signaling, is reported to correlate with poor clinical responsiveness to tamoxifen. In this study, we develop a tamoxifen-resistant MCF-7 cell line by treating the cell line with low concentration of tamoxifen, and we find that XBP1 is indeed up-regulated at both the mRNA and protein levels compared to normal MCF-7 cells. STF-083010, a novel inhibitor which specifically blocks the XBP1 splicing, reestablishes tamoxifen sensitivity to resistant MCF-7 cells. Moreover, co-treatment with STF-083010 and tamoxifen can significantly delay breast cancer progression in a xenograft mammary tumor model. We next investigate the expression of XBP1s in over 170 breast cancer patients' samples and the results demonstrate that XBP1s expression level is highly correlated with overall survival in the ER+ subgroup, but not in the ER- subgroup, suggesting a potential therapeutic application of XBP1 inhibitors in ER+breast cancer treatment.

  3. Alkylating antitumor drug mechlorethamine conceals a structured PrP domain and inhibits in vitro prion amplification.

    PubMed

    Zhou, Xiaochen; Bi, Hao; Wong, Justin; Shimoji, Miyuki; Wang, Yifan; Yuan, Jue; Xiao, Xiangzhu; Wang, Gong-Xian; Zou, Wen-Quan

    2011-01-01

    Prion diseases are a group of incurable transmissible neurodegenerative disorders. The key molecular event in the pathogenesis of prion diseases is the conversion of the cellular prion protein (PrP(C)) into its pathological isoform (PrP(Sc)), accompanied by a conformational transition of α-helix into β-sheet structure involving the structured α-helix 1 domain from residues 144-154 of the protein (PrP144-154). Blocking the accessibility of PrP144-152 with anti-PrP antibody 6H4 was found to prevent PrP conversion and even to cure prion infection in cell models ( Enari et al. 2001 ). Previously, Yuan et al. (2005 ) demonstrated that the reduction and alkylation of PrP induced concealment of the 6H4 epitope. This study examined the ability of mechlorethamine (MCT), an alkylating antitumor drug, to conceal the 6H4 epitope and block PrP conversion in the presence of a reducing reagent. Mechlorethamine treatment significantly decreased in vitro amplification of PrP(Sc) in the highly efficient protein misfolding cyclic amplification system. Our findings suggest that MCT may serve as a potential therapeutic agent for prion diseases.

  4. Sequence comparisons via algorithmic mutual information

    SciTech Connect

    Milosavijevic, A.

    1994-12-31

    One of the main problems in DNA and protein sequence comparisons is to decide whether observed similarity of two sequences should be explained by their relatedness or by mere presence of some shared internal structure, e.g., shared internal tandem repeats. The standard methods that are based on statistics or classical information theory can be used to discover either internal structure or mutual sequence similarity, but cannot take into account both. Consequently, currently used methods for sequence comparison employ {open_quotes}masking{close_quotes} techniques that simply eliminate sequences that exhibit internal repetitive structure prior to sequence comparisons. The {open_quotes}masking{close_quotes} approach precludes discovery of homologous sequences of moderate or low complexity, which abound at both DNA and protein levels. As a solution to this problem, we propose a general method that is based on algorithmic information theory and minimal length encoding. We show that algorithmic mutual information factors out the sequence similarity that is due to shared internal structure and thus enables discovery of truly related sequences. We extend the recently developed algorithmic significance method to show that significance depends exponentially on algorithmic mutual information.

  5. Observations of Pluto-Charon mutual events

    SciTech Connect

    Blanco, C.; Di Martino, M.; Ferreri, W.; Osservatorio Astronomico, Turin )

    1989-07-01

    As part of the planned 'Pluto-Charon Mutual Eclipse Season Campaign', one mutual event was observed at the ESO Observatory on July 10, 1986 and seven mutual events were observed at the Serra La Nave stellar station of Catania Astrophysical Observatory from April 29 to July 21, 1987. At ESO the measurements were performed at the 61-cm Bochum telescope equipped with a photon-counting system and U, B, V, filters; at Serra La Nave the Cassegrain focus of the 91-cm reflector was equipped with a photon-counting system and B and V filters. The observed light losses and contact times do not show relevant systematic deviations from the predicted ones. An examination of the behavior of the B and V light curves gives slight indications of a different slope of the B and V light loss of the same event for a superior or an inferior event, and shows that the superior events are shallower at wavelengths longer than B. 6 refs.

  6. Angiotensin receptor blocker drugs and inhibition of adrenal beta-arrestin-1-dependent aldosterone production: Implications for heart failure therapy

    PubMed Central

    Lymperopoulos, Anastasios; Aukszi, Beatrix

    2017-01-01

    Aldosterone mediates many of the physiological and pathophysiological/cardio-toxic effects of angiotensin II (AngII). Its synthesis and secretion from the zona glomerulosa cells of the adrenal cortex, elevated in chronic heart failure (HF), is induced by AngII type 1 receptors (AT1Rs). The AT1R is a G protein-coupled receptor, mainly coupling to Gq/11 proteins. However, it can also signal through β-arrestin-1 (βarr1) or -2 (βarr2), both of which mediate G protein-independent signaling. Over the past decade, a second, Gq/11 protein-independent but βarr1-dependent signaling pathway emanating from the adrenocortical AT1R and leading to aldosterone production has become appreciated. Thus, it became apparent that AT1R antagonists that block both pathways equally well are warranted for fully effective aldosterone suppression in HF. This spurred the comparison of all of the currently marketed angiotensin receptor blockers (ARBs, AT1R antagonists or sartans) at blocking activation of the two signaling modes (G protein-, and βarr1-dependent) at the AngII-activated AT1R and hence, at suppression of aldosterone in vitro and in vivo. Although all agents are very potent inhibitors of G protein activation at the AT1R, candesartan and valsartan were uncovered to be the most potent ARBs at blocking βarr activation by AngII and at suppressing aldosterone in vitro and in vivo in post-myocardial infarction HF animals. In contrast, irbesartan and losartan are virtually G protein-“biased” blockers at the human AT1R, with very low efficacy for βarr inhibition and aldosterone suppression. Therefore, candesartan and valsartan (and other, structurally similar compounds) may be the most preferred ARB agents for HF pharmacotherapy, as well as for treatment of other conditions characterized by elevated aldosterone.

  7. Bcl-xL inhibition by molecular-targeting drugs sensitizes human pancreatic cancer cells to TRAIL.

    PubMed

    Hari, Yoko; Harashima, Nanae; Tajima, Yoshitsugu; Harada, Mamoru

    2015-12-08

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various types of cancer cells without damaging normal cells. However, in terms of pancreatic cancer, not all cancer cells are sensitive to TRAIL. In this study, we examined a panel of human pancreatic cancer cell lines for TRAIL sensitivity and investigated the effects of Bcl-2 family inhibitors on their response to TRAIL. Both ABT-263 and ABT-737 inhibited the function of Bcl-2, Bcl-xL, and Bcl-w. Of the nine pancreatic cancer cell lines tested, six showed no or low sensitivity to TRAIL, which correlated with protein expression of Bcl-xL. ABT-263 significantly sensitized four cell lines (AsPC-1, Panc-1, CFPAC-1, and Panc10.05) to TRAIL, with reduced cell viability and increased apoptosis. Knockdown of Bcl-xL, but not Bcl-2, by siRNA transfection increased the sensitivity of AsPC-1 and Panc-1 cells to TRAIL. ABT-263 treatment had no effect on protein expression of Bcl-2, Bcl-xL, or c-FLIPs. In Panc-1 cells, ABT-263 increased the surface expression of death receptor (DR) 5; the NF-κB pathway, but not endoplasmic reticulum stress, participated in the increase. In xenograft mouse models, the combination of TRAIL and ATB-737 suppressed the in vivo tumor growth of AsPC-1 and Panc-1 cells. These results indicate that Bcl-xL is responsible for TRAIL resistance in human pancreatic cancer cells, and that Bcl-2 family inhibitors could represent promising reagents to sensitize human pancreatic cancers in DR-targeting therapy.

  8. The anti-epileptic drug levetiracetam reverses the inhibition by negative allosteric modulators of neuronal GABA- and glycine-gated currents

    PubMed Central

    Rigo, J-M; Hans, G; Nguyen, L; Rocher, V; Belachew, S; Malgrange, B; Leprince, P; Moonen, G; Selak, I; Matagne, A; Klitgaard, H

    2002-01-01

    In this study in vitro and in vivo approaches were combined in order to investigate if the anti-epileptic mechanism(s) of action of levetiracetam (LEV; Keppra®) may involve modulation of inhibitory neurotransmission.GABA- and glycine-gated currents were studied in vitro using whole-cell patch-clamp techniques applied on cultured cerebellar granule, hippocampal and spinal neurons. Protection against clonic convulsions was assessed in vivo in sound-susceptible mice. The effect of LEV was compared with reference anti-epileptic drugs (AEDs): carbamazepine, phenytoin, valproate, clonazepam, phenobarbital and ethosuximide.LEV contrasted the reference AEDs by an absence of any direct effect on glycine-gated currents. At high concentrations, beyond therapeutic relevance, it induced a small reduction in the peak amplitude and a prolongation of the decay phase of GABA-gated currents. A similar action on GABA-elicited currents was observed with the reference AEDs, except ethosuximide.These minor direct effects contrasted with a potent ability of LEV (EC50=1 – 10 μM) to reverse the inhibitory effects of the negative allosteric modulators zinc and β-carbolines on both GABAA and glycine receptor-mediated responses.Clonazepam, phenobarbital and valproate showed a similar ability to reverse the inhibition of β-carbolines on GABA-gated currents. Blockade of zinc inhibition of GABA responses was observed with clonazepam and ethosuximide. Phenytoin was the only AED together with LEV that inhibited the antagonism of zinc on glycine-gated currents and only clonazepam and phenobarbital inhibited the action of DMCM.LEV (17 mg kg−1) produced a potent suppression of sound-induced clonic convulsions in mice. This protective effect was significantly abolished by co-administration of the β-carboline FG 7142, from a dose of 5 mg kg−1. In contrast, the benzodiazepine receptor antagonist flumazenil (up to 10 mg kg−1) was without any effect on the protection

  9. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni.

    PubMed

    Hoffman, Paul S; Sisson, Gary; Croxen, Matthew A; Welch, Kevin; Harman, W Dean; Cremades, Nunilo; Morash, Michael G

    2007-03-01

    Nitazoxanide (NTZ) exhibits broad-spectrum activity against anaerobic bacteria and parasites and the ulcer-causing pathogen Helicobacter pylori. Here we show that NTZ is a noncompetitive inhibitor (K(i), 2 to 10 microM) of the pyruvate:ferredoxin/flavodoxin oxidoreductases (PFORs) of Trichomonas vaginalis, Entamoeba histolytica, Giardia intestinalis, Clostridium difficile, Clostridium perfringens, H. pylori, and Campylobacter jejuni and is weakly active against the pyruvate dehydrogenase of Escherichia coli. To further mechanistic studies, the PFOR operon of H. pylori was cloned and overexpressed in E. coli, and the multisubunit complex was purified by ion-exchange chromatography. Pyruvate-dependent PFOR activity with NTZ, as measured by a decrease in absorbance at 418 nm (spectral shift from 418 to 351 nm), unlike the reduction of viologen dyes, did not result in the accumulation of products (acetyl coenzyme A and CO(2)) and pyruvate was not consumed in the reaction. NTZ did not displace the thiamine pyrophosphate (TPP) cofactor of PFOR, and the 351-nm absorbing form of NTZ was inactive. Optical scans and (1)H nuclear magnetic resonance analyses determined that the spectral shift (A(418) to A(351)) of NTZ was due to protonation of the anion (NTZ(-)) of the 2-amino group of the thiazole ring which could be generated with the pure compound under acidic solutions (pK(a) = 6.18). We propose that NTZ(-) intercepts PFOR at an early step in the formation of the lactyl-TPP transition intermediate, resulting in the reversal of pyruvate binding prior to decarboxylation and in coordination with proton transfer to NTZ. Thus, NTZ might be the first example of an antimicrobial that targets the "activated cofactor" of an enzymatic reaction rather than its substrate or catalytic sites, a novel mechanism that may escape mutation-based drug resistance.

  10. Tumor-selective use of DNA base excision repair inhibition in pancreatic cancer using the NQO1 bioactivatable drug, β-lapachone

    PubMed Central

    Chakrabarti, Gaurab; Silvers, Molly A.; Ilcheva, Mariya; Liu, Yuliang; Moore, Zachary R.; Luo, Xiuquan; Gao, Jinming; Anderson, Glenda; Liu, Lili; Sarode, Venetia; Gerber, David E.; Burma, Sandeep; DeBerardinis, Ralph J.; Gerson, Stanton L.; Boothman, David A.

    2015-01-01

    Base excision repair (BER) is an essential pathway for pancreatic ductal adenocarcinoma (PDA) survival. Attempts to target this repair pathway have failed due to lack of tumor-selectivity and very limited efficacy. The NAD(P)H:Quinone Oxidoreductase 1 (NQO1) bioactivatable drug, ß-lapachone (ARQ761 in clinical form), can provide tumor-selective and enhanced synergy with BER inhibition. ß-Lapachone undergoes NQO1-dependent futile redox cycling, generating massive intracellular hydrogen peroxide levels and oxidative DNA lesions that stimulate poly(ADP-ribose) polymerase 1 (PARP1) hyperactivation. Rapid NAD+/ATP depletion and programmed necrosis results. To identify BER modulators essential for repair of ß-lapachone-induced DNA base damage, a focused synthetic lethal RNAi screen demonstrated that silencing the BER scaffolding protein, XRCC1, sensitized PDA cells. In contrast, depleting OGG1 N-glycosylase spared cells from ß-lap-induced lethality and blunted PARP1 hyperactivation. Combining ß-lapachone with XRCC1 knockdown or methoxyamine (MeOX), an apyrimidinic/apurinic (AP)-modifying agent, led to NQO1-dependent synergistic killing in PDA, NSCLC, breast and head and neck cancers. OGG1 knockdown, dicoumarol-treatment or NQO1- cancer cells were spared. MeOX + ß-lapachone exposure resulted in elevated DNA double-strand breaks, PARP1 hyperactivation and TUNEL+ programmed necrosis. Combination treatment caused dramatic antitumor activity, enhanced PARP1-hyperactivation in tumor tissue, and improved survival of mice bearing MiaPaca2-derived xenografts, with 33% apparent cures. Significance: Targeting base excision repair (BER) alone has limited therapeutic potential for pancreatic or other cancers due to a general lack of tumor-selectivity. Here, we present a treatment strategy that makes BER inhibition tumor-selective and NQO1-dependent for therapy of most solid neoplasms, particularly for pancreatic cancer. PMID:26602448

  11. Benidipine, an anti-hypertensive drug, inhibits reactive oxygen species production in polymorphonuclear leukocytes and oxidative stress in salt-loaded stroke-prone spontaneously hypertensive rats.

    PubMed

    Matsubara, Masahiro; Akizuki, Osamu; Ikeda, Jun-ichi; Saeki, Koji; Yao, Kozo; Sasaki, Katsutoshi

    2008-02-02

    -derived reactive oxygen species production, which is due at least in part to its antioxidant action and inhibition of Ca(2+)/protein kinase C/NADPH oxidase signaling. The attenuation of reactive oxygen species production might contribute to the drug's reduction of oxidative stress and renal injuries in hypertension.

  12. Searching for disease modifiers-PKC activation and HDAC inhibition - a dual drug approach to Alzheimer's disease that decreases Abeta production while blocking oxidative stress.

    PubMed

    Kozikowski, Alan P; Chen, Yihua; Subhasish, Tapadar; Lewin, Nancy E; Blumberg, Peter M; Zhong, Zhenyu; D'Annibale, Melissa A; Wang, Weng-Long; Shen, Yong; Langley, Brett

    2009-07-01

    A series of benzolactam compounds were synthesized, some of which caused a concentration-dependent increase in sAPPalpha and decrease in Abeta production in the concentration range of 0.1-10 microM. Moreover, some compounds showed neuroprotective effects in the 10-20 microM range in the HCA cortical neuron model of oxidative stress and no toxicity in measurements of neuron viability by MTT assay, even at the highest concentrations tested (20 microM). Alzheimer's disease (AD) is a well-studied neurodegenerative process characterized by the presence of amyloid plaques and neurofibrillary tangles. In this study, a series of protein kinase C (PKC) activators were investigated, some of which also exhibit histone deacetylase (HDAC) inhibitory activity, under the hypothesis that such compounds might provide a new path forward in the discovery of drugs for the treatment of AD. The PKC-activating properties of these drugs were expected to enhance the alpha-secretase pathway in the processing of amyloid precursor protein (APP), while their HDAC inhibition was anticipated to confer neuroprotective activity. We found that benzolactams 9 and 11-14 caused a concentration-dependent increase in sAPPalpha and decrease in beta-amyloid (Abeta) production in the concentration range of 0.1-10 microM, consistent with a shift of APP metabolism toward the alpha-secretase-processing pathway. Moreover, compounds 9-14 showed neuroprotective effects in the 10-20 microM range in the homocysteate (HCA) cortical neuron model of oxidative stress. In parallel, we found that the most neuroprotective compounds caused increased levels of histone acetylation (H4), thus indicating their likely ability to inhibit HDAC activity. As the majority of the compounds studied also show nanomolar binding affinities for PKC, we conclude that it is possible to design, de novo, agents that combine both PKC-activating properties along with HDAC inhibitory properties. Such agents would be capable of modulating

  13. Identity theory and personality theory: mutual relevance.

    PubMed

    Stryker, Sheldon

    2007-12-01

    Some personality psychologists have found a structural symbolic interactionist frame and identity theory relevant to their work. This frame and theory, developed in sociology, are first reviewed. Emphasized in the review are a multiple identity conception of self, identities as internalized expectations derived from roles embedded in organized networks of social interaction, and a view of social structures as facilitators in bringing people into networks or constraints in keeping them out, subsequently, attention turns to a discussion of the mutual relevance of structural symbolic interactionism/identity theory and personality theory, looking to extensions of the current literature on these topics.

  14. Creating a culture of mutual respect.

    PubMed

    Kaplan, Kathryn; Mestel, Pamela; Feldman, David L

    2010-04-01

    The Joint Commission mandates that hospitals seeking accreditation have a process to define and address disruptive behavior. Leaders at Maimonides Medical Center, Brooklyn, New York, took the initiative to create a code of mutual respect that not only requires respectful behavior, but also encourages sensitivity and awareness to the causes of frustration that often lead to inappropriate behavior. Steps to implementing the code included selecting code advocates, setting up a system for mediating disputes, tracking and addressing operational system issues, providing training for personnel, developing a formal accountability process, and measuring the results.

  15. The PI3-Kinase/mTOR-Targeting Drug NVP-BEZ235 Inhibits Growth and IgE-Dependent Activation of Human Mast Cells and Basophils

    PubMed Central

    Blatt, Katharina; Herrmann, Harald; Mirkina, Irina; Hadzijusufovic, Emir; Peter, Barbara; Strommer, Sabine; Hoermann, Gregor; Mayerhofer, Matthias; Hoetzenecker, Konrad; Klepetko, Walter; Ghanim, Viviane; Marth, Katharina; Füreder, Thorsten; Wacheck, Volker; Valenta, Rudolf; Valent, Peter

    2012-01-01

    The phosphoinositide 3-kinase (PI3-kinase) and the mammalian target of rapamycin (mTOR) are two major signaling molecules involved in growth and activation of mast cells (MC) and basophils (BA). We examined the effects of the dual PI3-kinase/mTOR blocker NVP-BEZ235 on growth of normal and neoplastic BA and MC as well as immunoglobulin E (IgE)-dependent cell activation. Growth of MC and BA were determined by measuring 3H-thymidine uptake and apoptosis. Cell activation was determined in histamine release experiments and by measuring upregulation of CD63 and CD203c after challenging with IgE plus anti-IgE or allergen. We found that NVP-BEZ235 exerts profound inhibitory effects on growth of primary and cloned neoplastic MC. In the MC leukemia cell line HMC-1, NVP-BEZ235 showed similar IC50 values in the HMC-1.1 subclone lacking KIT D816V (0.025 µM) and the HMC-1.2 subclone expressing KIT D816V (0.005 µM). Moreover, NVP-BEZ235 was found to exert strong growth-inhibitory effects on neoplastic MC in a xenotransplant-mouse model employing NMR1-Foxn1nu mice. NVP-BEZ235 also exerted inhibitory effects on cytokine-dependent differentiation of normal BA and MC, but did not induce growth inhibition or apoptosis in mature MC or normal bone marrow cells. Finally, NVP-BEZ235 was found to inhibit IgE-dependent histamine release in BA and MC (IC50 0.5–1 µM) as well as anti-IgE-induced upregulation of CD203c in BA and IgE-dependent upregulation of CD63 in MC. In summary, NVP-BEZ235 produces growth-inhibitory effects in immature neoplastic MC and inhibits IgE-dependent activation of mature BA and MC. Whether these potentially beneficial drug effects have clinical implications is currently under investigation. PMID:22299028

  16. Towards an animal model of an antipsychotic drug-resistant cognitive impairment in schizophrenia: scopolamine induces abnormally persistent latent inhibition, which can be reversed by cognitive enhancers but not by antipsychotic drugs.

    PubMed

    Barak, Segev; Weiner, Ina

    2009-03-01

    Schizophrenia symptoms segregate into positive, negative and cognitive, which exhibit differential sensitivity to drugs. Recent efforts to identify treatments targeting cognitive impairments in schizophrenia have directed attention to the cholinergic system for its well documented role in cognition. Relatedly, muscarinic antagonists (e.g. scopolamine) produce an 'antimuscarinic syndrome', characterized by psychosis and cognitive impairments. Latent inhibition (LI) is the poorer conditioning to a stimulus resulting from its non-reinforced pre-exposure. LI indexes the ability to ignore irrelevant stimuli and aberrations of this capacity produced by pro-psychotic agents (e.g. amphetamine, MK-801) are used extensively to model attentional impairments in schizophrenia. We recently showed that LI was disrupted by scopolamine at low doses, and this was reversed by typical and atypical antipsychotic drugs (APDs) and the acetylcholinesterase inhibitor physostigmine. Here, at a higher dose (1.5 mg/kg), scopolamine produced an opposite pole of attentional impairment, namely, attentional perseveration, whereby scopolamine-treated rats persisted in expressing LI under strong conditioning that prevented LI expression in controls. Scopolamine-induced persistent LI was reversed by cholinergic and glycinergic cognitive enhancers (physostigmine and glycine) but was resistant to both typical and atypical APDs (haloperidol and clozapine). The latter sets scopolamine-induced persistent LI apart from scopolamine- and amphetamine-induced disrupted LI, which are reversed by both typical and atypical APDs, as well as from other cases of abnormally persistent LI including MK-801-induced persistent LI, which is reversed by atypical APDs. Thus, scopolamine-induced persistent LI may provide a pharmacological LI model for screening cognitive enhancers that are efficient for the treatment of APD-resistant cognitive impairments in schizophrenia.

  17. Transporter-mediated drug-drug interactions.

    PubMed

    Müller, Fabian; Fromm, Martin F

    2011-07-01

    Drug-drug interactions are a serious clinical issue. An important mechanism underlying drug-drug interactions is induction or inhibition of drug transporters that mediate the cellular uptake and efflux of xenobiotics. Especially drug transporters of the small intestine, liver and kidney are major determinants of the pharmacokinetic profile of drugs. Transporter-mediated drug-drug interactions in these three organs can considerably influence the pharmacokinetics and clinical effects of drugs. In this article, we focus on probe drugs lacking significant metabolism to highlight mechanisms of interactions of selected intestinal, hepatic and renal drug transporters (e.g., organic anion transporting polypeptide [OATP] 1A2, OATP2B1, OATP1B1, OATP1B3, P-gp, organic anion transporter [OAT] 1, OAT3, breast cancer resistance protein [BCRP], organic cation transporter [OCT] 2 and multidrug and toxin extrusion protein [MATE] 1). Genotype-dependent drug-drug interactions are also discussed.

  18. Characterization, anticancer drug susceptibility and atRA-induced growth inhibition of a novel cell line (HUMEMS) established from pleural effusion of alveolar rhabdomyosarcoma of breast tissue.

    PubMed

    Ohi, Satoshi

    2007-05-01

    We recently established a cell line derived from pleural effusion from a 13-year-old girl with primary alveolar rhabdomyosarcoma (RMS with a chromosomal translocation t[2;13]) in the breast tissue. The cell line was designated as HUMEMS. Cases of primary alveolar RMS swelling in the breast are extremely rare (about 0.2% of all RMSs). Therefore, the HUMEMS cell line is an important material for studying therapeutics for malignant tumors in children. The HUMEMS cell line we isolated consisted of two morphological subtypes. One type (SSN cells) is small in size and has a single nucleus. Another (LMN cells) is large in size and has two or more nuclei. Both SSN cells and LMN cells were immunohistochemically positive for desmin and slightly positive for myoglobin. Our data suggested LMN cells are well-differentiated SSN cells. Moreover, in some of the LMN cells, rapid cell contractions (1-5 times/10 sec) were observed. We investigated the anticancer drug susceptibility of the HUMEMS cell line with an oxygen electrode apparatus (Daikin, DOX-10, JPN) and effect of all-trans-retinoic acid (atRA) to the cell line. The atRA-treatment inhibited proliferation of the HUMEMS cells.

  19. The Novel Anticancer Drug Hydroxytriolein Inhibits Lung Cancer Cell Proliferation via a Protein Kinase Cα- and Extracellular Signal-Regulated Kinase 1/2-Dependent Mechanism.

    PubMed

    Guardiola-Serrano, Francisca; Beteta-Göbel, Roberto; Rodríguez-Lorca, Raquel; Ibarguren, Maitane; López, David J; Terés, Silvia; Alvarez, Rafael; Alonso-Sande, María; Busquets, Xavier; Escribá, Pablo V

    2015-08-01

    Membrane lipid therapy is a novel approach to rationally design or discover therapeutic molecules that target membrane lipids. This strategy has been used to design synthetic fatty acid analogs that are currently under study in clinical trials for the treatment of cancer. In this context, and with the aim of controlling tumor cell growth, we have designed and synthesized a hydroxylated analog of triolein, hydroxytriolein (HTO). Both triolein and HTO regulate the biophysical properties of model membranes, and they inhibit the growth of non-small-cell lung cancer (NSCLC) cell lines in vitro. The molecular mechanism underlying the antiproliferative effect of HTO involves regulation of the lipid membrane structure, protein kinase C-α and extracellular signal-regulated kinase activation, the production of reactive oxygen species, and autophagy. In vivo studies on a mouse model of NSCLC showed that HTO, but not triolein, impairs tumor growth, which could be associated with the relative resistance of HTO to enzymatic degradation. The data presented explain in part why olive oil (whose main component is the triacylglycerol triolein) is preventive but not therapeutic, and they demonstrate a potent effect of HTO against cancer. HTO shows a good safety profile, it can be administered orally, and it does not induce nontumor cell (fibroblast) death in vitro or side effects in mice, reflecting its specificity for cancer cells. For these reasons, HTO is a good candidate as a drug to combat cancer that acts by regulating lipid structure and function in the cancer cell membrane.

  20. Generalized mutual information of quantum critical chains

    NASA Astrophysics Data System (ADS)

    Alcaraz, F. C.; Rajabpour, M. A.

    2015-04-01

    We study the generalized mutual information I˜n of the ground state of different critical quantum chains. The generalized mutual information definition that we use is based on the well established concept of the Rényi divergence. We calculate this quantity numerically for several distinct quantum chains having either discrete Z (Q ) symmetries (Q -state Potts model with Q =2 ,3 ,4 and Z (Q ) parafermionic models with Q =5 ,6 ,7 ,8 and also Ashkin-Teller model with different anisotropies) or the U (1 ) continuous symmetries (Klein-Gordon field theory, X X Z and spin-1 Fateev-Zamolodchikov quantum chains with different anisotropies). For the spin chains these calculations were done by expressing the ground-state wave functions in two special bases. Our results indicate some general behavior for particular ranges of values of the parameter n that defines I˜n. For a system, with total size L and subsystem sizes ℓ and L -ℓ , the I˜n has a logarithmic leading behavior given by c/˜n4 log[L/π sin(π/ℓ L ) ] where the coefficient c˜n is linearly dependent on the central charge c of the underlying conformal field theory describing the system's critical properties.

  1. Thiocolchicoside suppresses osteoclastogenesis induced by RANKL and cancer cells through inhibition of inflammatory pathways: a new use for an old drug

    PubMed Central

    Reuter, Simone; Gupta, Subash C; Phromnoi, Kanokkarn; Aggarwal, Bharat B

    2012-01-01

    BACKGROUND AND PURPOSE Most patients with cancer die not because of the tumour in the primary site, but because it has spread to other sites. Common tumours, such as breast, multiple myeloma, and prostate tumours, frequently metastasize to the bone. To search for an inhibitor of cancer-induced bone loss, we investigated the effect of thiocolchicoside, a semi-synthetic colchicoside derived from the plant Gloriosa superba and clinically used as a muscle relaxant, on osteoclastogenesis induced by receptor activator of NF-κB ligand (RANKL) and tumour cells. EXPERIMENTAL APPROACH We used RAW 264.7 (murine macrophage) cells, a well-established system for osteoclastogenesis, and evaluated the effect of thiocolchicoside on RANKL-induced NF-κB signalling and osteoclastogenesis as well as on osteoclastogenesis induced by tumour cells. KEY RESULTS Thiocolchicoside suppressed osteoclastogenesis induced by RANKL, and by breast cancer and multiple myeloma cells. Inhibition of the NF-κB pathway was responsible for this effect since the colchicoside inhibited RANKL-induced NF-κB activation, activation of IκB kinase (IKK) and suppressed inhibitor of NF-κBα (IκBα) phosphorylation and degradation, an inhibitor of NF-κB. Furthermore, an inhibitor of the IκBα kinase γ or NF-κB essential modulator, the regulatory component of the IKK complex, demonstrated that the NF-κB signalling pathway is mandatory for osteoclastogenesis induced by RANKL. CONCLUSIONS AND IMPLICATIONS Together, these data suggest that thiocolchicoside significantly suppressed osteoclastogenesis induced by RANKL and tumour cells via the NF-κB signalling pathway. Thus, thiocolchicoside, a drug that has been used for almost half a century to treat muscle pain, may also be considered as a new treatment for bone loss. LINKED ARTICLE This article is commented on by Micheau et al., pp. 2124–2126 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2011.01792.x PMID:21955206

  2. Mutual information-based facial expression recognition

    NASA Astrophysics Data System (ADS)

    Hazar, Mliki; Hammami, Mohamed; Hanêne, Ben-Abdallah

    2013-12-01

    This paper introduces a novel low-computation discriminative regions representation for expression analysis task. The proposed approach relies on interesting studies in psychology which show that most of the descriptive and responsible regions for facial expression are located around some face parts. The contributions of this work lie in the proposition of new approach which supports automatic facial expression recognition based on automatic regions selection. The regions selection step aims to select the descriptive regions responsible or facial expression and was performed using Mutual Information (MI) technique. For facial feature extraction, we have applied Local Binary Patterns Pattern (LBP) on Gradient image to encode salient micro-patterns of facial expressions. Experimental studies have shown that using discriminative regions provide better results than using the whole face regions whilst reducing features vector dimension.

  3. Concurrent behavior: Are the interpretations mutually exclusive?

    PubMed Central

    Lyon, David O.

    1982-01-01

    The experimental literature is replete with examples of behavior which occur concurrently with a schedule of reinforcement. These concurrent behaviors, often with similar topographies and occurring under like circumstances, may be interpreted as functionally autonomous, collateral, adjunctive, superstitious or mediating behavior. The degree to which the interaction of concurrent and schedule controlled behavior is used in the interpretation of behavior illustrated the importance of distinguishing among these interpretations by experimental procedure. The present paper reviews the characteristics of these interpretations, and discusses the experimental procedures necessary to distinguish among them. The paper concludes that the interpretations are mutually exclusive and refer to distinct behaviors, but that the distinction between any two of the interpretations requires more than one experimental procedure. PMID:22478568

  4. Mutually-antagonistic interactions in baseball networks

    NASA Astrophysics Data System (ADS)

    Saavedra, Serguei; Powers, Scott; McCotter, Trent; Porter, Mason A.; Mucha, Peter J.

    2010-03-01

    We formulate the head-to-head matchups between Major League Baseball pitchers and batters from 1954 to 2008 as a bipartite network of mutually-antagonistic interactions. We consider both the full network and single-season networks, which exhibit structural changes over time. We find interesting structure in the networks and examine their sensitivity to baseball’s rule changes. We then study a biased random walk on the matchup networks as a simple and transparent way to (1) compare the performance of players who competed under different conditions and (2) include information about which particular players a given player has faced. We find that a player’s position in the network does not correlate with his placement in the random walker ranking. However, network position does have a substantial effect on the robustness of ranking placement to changes in head-to-head matchups.

  5. Propagating Resource Constraints Using Mutual Exclusion Reasoning

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Sanchez, Romeo; Do, Minh B.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    One of the most recent techniques for propagating resource constraints in Constraint Based scheduling is Energy Constraint. This technique focuses in precedence based scheduling, where precedence relations are taken into account rather than the absolute position of activities. Although, this particular technique proved to be efficient on discrete unary resources, it provides only loose bounds for jobs using discrete multi-capacity resources. In this paper we show how mutual exclusion reasoning can be used to propagate time bounds for activities using discrete resources. We show that our technique based on critical path analysis and mutex reasoning is just as effective on unary resources, and also shows that it is more effective on multi-capacity resources, through both examples and empirical study.

  6. On the Mutual Coupling Between Circular Resonant Slots

    NASA Technical Reports Server (NTRS)

    Abou-Khousa, M. A.; Kharkovsky, S.; Zoughi, R.

    2007-01-01

    For near- and far-field microwave imaging purposes, array of circular resonant slots can be utilized to sample the electric field at a given reference plane. In general, the sensitivity of such array probes is impaired by the mutual coupling present between the radiating elements. The mutual coupling problem poses a design tradeoff between the resolution of the array and its sensitivity. In this paper, we investigate the mutual coupling between circular resonant slots in conducting ground plane both numerically and experimentally. Based on the analysis of the dominant coupling mechanism, i.e., the surface currents, various remedies to reduce the slots' mutual coupling are proposed and verified.

  7. On the Mutual Coupling between Circular Resonant Slots

    NASA Technical Reports Server (NTRS)

    Abou-Khousa, M. A.; Kharkovshy, S.; Zoughi, R.

    2007-01-01

    For near- and far-field microwave imaging purposes, array of circular resonant slots can be utilized to sample the electric field at a given reference plane. In general, the sensitivity of such an array is impaired by the existing mutual coupling between the radiating elements or in this case circular slots. The mutual coupling problem imposes a design tradeoff between the resolution of the array and the overall system sensitivity and dynamic range. In this paper, the mutual coupling between circular resonant slots in conducting ground plane is investigated both numerically and experimentally. In particular, the mutual coupling in the E- and H-plane configurations of two identical slots is studied.

  8. Nonsteroidal anti-inflammatory drugs suppress cancer stem cells via inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1 and activating PPARG in colorectal cancer.

    PubMed

    Moon, Chang Mo; Kwon, Ji-Hee; Kim, Ji Suk; Oh, Sun-Hee; Jin Lee, Kyoung; Park, Jae Jun; Pil Hong, Sung; Cheon, Jae Hee; Kim, Tae Il; Kim, Won Ho

    2014-02-01

    Cancer stem cells (CSCs) play a pivotal role in cancer relapse or metastasis. We investigated the CSC-suppressing effect of nonsteroidal anti-inflammatory drugs (NSAIDs) and the relevant mechanisms in colorectal cancer. We measured the effect of NSAIDs on CSC populations in Caco-2 or SW620 cells using colosphere formation and flow cytometric analysis of PROM1 (CD133)(+) CD44(+) cells after indomethacin treatment with/without prostaglandin E2 (PGE2) or peroxisome proliferator-activated receptor γ (PPARG) antagonist, and examined the effect of indomethacin on transcriptional activity and protein expression of NOTCH/HES1 and PPARG. These effects of indomethacin were also evaluated in a xenograft mouse model. NSAIDs (indomethacin, sulindac and aspirin), celecoxib, γ-secretase inhibitor and PPARG agonist significantly decreased the number of colospheres formation compared to controls. In Caco-2 and SW620 cells, compared to controls, PROM1 (CD133)(+) CD44(+) cells were significantly decreased by indomethacin treatment, and increased by 5-fluorouracil (5-FU) treatment. This 5-FU-induced increase of PROM1 (CD133)(+) CD44(+) cells was significantly attenuated by combination with indomethacin. This CSC-inhibitory effect of indomethacin was reversed by addition of PGE2 and PPARG antagonist. Indomethacin significantly decreased CBFRE and increased PPRE transcriptional activity and their relative protein expressions. In xenograft mouse experiments using 5-FU-resistant SW620 cells, the 5-FU treatment combined with indomethacin significantly reduced tumor growth, compared to 5-FU alone. In addition, treatment of indomethacin alone or combination of 5-FU and indomethacin decreased the expressions of PROM1 (CD133), CD44, PTGS2 (cyclooxygenase 2) and HES1, and increased PPARG expression. NSAIDs could selectively reduce the colon CSCs and suppress 5-FU-induced increase of CSCs via inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1, and activating PPARG.

  9. Drug-eluting cements for hard tissue repair: a comparative study using vancomycin and RNPA1000 to inhibit growth of Staphylococcus aureus.

    PubMed

    Eidem, Tess M; Coughlan, Aisling; Towler, Mark R; Dunman, Paul M; Wren, Anthony William

    2014-04-01

    Bone cement used in orthopaedic applications can become colonized with bacterial biofilms, resulting in severe medical complications. Consequently, bone cements are often loaded with antibiotics in an effort to prevent bacterial colonization. However, current formulations may not release antibiotics into the environment at sufficient and sustained concentrations required to impede bacterial growth or may be incompatible with antibiotics that are effective against the colonizing organism. Thus, new cement formulation options are needed. This report describes the performance of a novel SiO2-TiO2-ZnO-CaO-SrO-based glass polyalkenoate cement as a carrier of antimicrobials active against Staphylococcus aureus, the predominant cause of orthopaedic biofilm-associated infections. The antibiotic vancomycin and a novel Staphylococcus aureus RnpA inhibitor under pre-clinical development, RNPA1000, were included in these studies. Rheological testing characterized the workability of the glass polyalkenoate cement over a range of powder-to-liquid ratios and polyacrylic acid concentrations and revealed that the most suitable powder-to-liquid ratio was 2/1.25 with 40 wt% polyacrylic acid. Loading glass polyalkenoate cement with either 20-30% RNPA1000 or vancomycin prevented bacterial growth. However, longer incubations allowed for Staphylococcus aureus colonies to form near the vancomycin-infused cement, indicating that vancomycin may not be suitable for long-term biofilm inhibition in comparison to RNPA1000. Scanning electron microscopy and energy-dispersive X-ray analyses confirmed successful incorporation RNPA1000 into the cement matrix and were indicative of its slow release. These studies establish a drug-eluting formulation of glass polyalkenoate cement with great potential in orthopaedic implants that incorporates known antibiotics as well as RNPA1000 to prevent growth of the dangerous pathogen Staphylococcus aureus.

  10. Presynaptic autoinhibition of central noradrenaline release in vitro: operational characteristics and effects of drugs acting at alpha-2 adrenoceptors in the presence of uptake inhibition

    SciTech Connect

    Valenta, B.; Drobny, H.; Singer, E.A.

    1988-06-01

    Functional characteristics of autoinhibition of central noradrenaline release were studied in the presence of uptake inhibition. Slices of rat cerebral cortex were incubated with (3H)noradrenaline, superfused and field-stimulated with 1 to 16 monophasic rectangular pulses at frequencies of 0.02 to 40 Hz. 1) Substances acting at presynaptic alpha-2 adrenoceptors were identified as antagonists, agonists or partial agonists by comparing their effects on 3H-overflow evoked by a single pulse or by two consecutive pulses at 1 Hz. 2) When 1 to 16 pulses were delivered at 0.02, 0.08, 0.3 and 1 Hz