Science.gov

Sample records for drugs mutually inhibit

  1. Sigma opiates and certain antipsychotic drugs mutually inhibit (+)-[3H] SKF 10,047 and [3H]haloperidol binding in guinea pig brain membranes.

    PubMed Central

    Tam, S W; Cook, L

    1984-01-01

    The relationship between binding of antipsychotic drugs and sigma psychotomimetic opiates to binding sites for the sigma agonist (+)-[3H]SKF 10,047 (N-allylnormetazocine) and to dopamine D2 sites was investigated. In guinea pig brain membranes, (+)-[3H]SKF 10,047 bound to a single class of sites with a Kd of 4 X 10(-8) M and a Bmax of 333 fmol/mg of protein. This binding was different from mu, kappa, or delta opiate receptor binding. It was inhibited by opiates that produce psychotomimetic activities but not by opiates that lack such activities. Some antipsychotic drugs inhibited (+)-[3H]SKF 10,047 binding with high to moderate affinities in the following order of potency: haloperidol greater than perphenazine greater than fluphenazine greater than acetophenazine greater than trifluoperazine greater than molindone greater than or equal to pimozide greater than or equal to thioridazine greater than or equal to chlorpromazine greater than or equal to triflupromazine. However, there were other antipsychotic drugs such as spiperone and clozapine that showed low affinity for the (+)-[3H]SKF 10,047 binding sites. Affinities of antipsychotic drugs for (+)-[3H]SKF 10,047 binding sites did not correlate with those for [3H]spiperone (dopamine D2) sites. [3H]-Haloperidol binding in whole brain membranes was also inhibited by the sigma opiates pentazocine, cyclazocine, and (+)-SKF 10,047. In the striatum, about half of the saturable [3H]haloperidol binding was to [3H]spiperone (D2) sites and the other half was to sites similar to (+)-[3H]SKF 10,047 binding sites. PMID:6147851

  2. sigma opiates and certain antipsychotic drugs mutually inhibit (+)-(/sup 3/H)SKF 10,047 and (/sup 3/H)haloperidol binding in guinea pig brain membranes

    SciTech Connect

    Tam, S.W.; Cook, L.

    1984-09-01

    The relationship between binding of antipsychotic drugs and sigma psychotomimetic opiates to binding sites for the sigma agonist (+)-(/sup 3/H)SKF 10,047 (N-allylnormetazocine) and to dopamine D/sub 2/ sites was investigated. In guinea pig brain membranes, (+)-(/sup 3/H)SKF 10,047 bound to single class of sites with a K/sub d/ of 4 x 10/sup -8/ M and a B/sub max/ of 333 fmol/mg of protein. This binding was different from ..mu.., kappa, or delta opiate receptor binding. It was inhibited by opiates that produce psychotomimetic activities but not by opiates that lack such activities. Some antipsychotic drugs inhibited (+)-(/sup 3/H)SKF 10,047 bindingmore » with high to moderate affinities in the following order of potency: haloperidol > perphenazine > fluphenazine > acetophenazine > trifluoperazine > molindone greater than or equal to pimozide greater than or equal to thioridazine greater than or equal to chlorpromazine greater than or equal to triflupromazine. However, there were other antipsychotic drugs such as spiperone and clozapine that showed low affinity for the (+)-(/sup 3/H)SKF 10,047 binding sites. Affinities of antipsychotic drugs for (+)-(/sup 3/H)SKF 10,047 binding sites did not correlate with those for (/sup 3/H)spiperone (dopamine D/sub 2/) sites. (/sup 3/H)-Haloperidol binding in whole brain membranes was also inhibited by the sigma opiates pentazocine, cyclazocine, and (+)-(/sup 3/H)SKF 10,047. In the striatum, about half of the saturable (/sup 3/H)haloperidol binding was to (/sup 3/H)spiperone (D/sub 2/) sites and the other half was to sites similar to (+)-(/sup 3/H)SKF 10,047 binding sites. 15 references, 4 figures, 1 table.« less

  3. Reward value comparison via mutual inhibition in ventromedial prefrontal cortex

    PubMed Central

    Strait, Caleb E.; Blanchard, Tommy C.; Hayden, Benjamin Y.

    2014-01-01

    Recent theories suggest that reward-based choice reflects competition between value signals in the ventromedial prefrontal cortex (vmPFC). We tested this idea by recording vmPFC neurons while macaques performed a gambling task with asynchronous offer presentation. We found that neuronal activity shows four patterns consistent with selection via mutual inhibition. (1) Correlated tuning for probability and reward size, suggesting that vmPFC carries an integrated value signal, (2) anti-correlated tuning curves for the two options, suggesting mutual inhibition, (3) neurons rapidly come to signal the value of the chosen offer, suggesting the circuit serves to produce a choice, (4) after regressing out the effects of option values, firing rates still could predict choice – a choice probability signal. In addition, neurons signaled gamble outcomes, suggesting that vmPFC contributes to both monitoring and choice processes. These data suggest a possible mechanism for reward-based choice and endorse the centrality of vmPFC in that process. PMID:24881835

  4. The Antiviral Drug Arbidol Inhibits Zika Virus.

    PubMed

    Fink, Susan L; Vojtech, Lucia; Wagoner, Jessica; Slivinski, Natalie S J; Jackson, Konner J; Wang, Ruofan; Khadka, Sudip; Luthra, Priya; Basler, Christopher F; Polyak, Stephen J

    2018-06-12

    There are many emerging and re-emerging globally prevalent viruses for which there are no licensed vaccines or antiviral medicines. Arbidol (ARB, umifenovir), used clinically for decades in several countries as an anti-influenza virus drug, inhibits many other viruses. In the current study, we show that ARB inhibits six different isolates of Zika virus (ZIKV), including African and Asian lineage viruses in multiple cell lines and primary human vaginal and cervical epithelial cells. ARB protects against ZIKV-induced cytopathic effects. Time of addition studies indicate that ARB is most effective at suppressing ZIKV when added to cells prior to infection. Moreover, ARB inhibits pseudoviruses expressing the ZIKV Envelope glycoprotein. Thus, ARB, a broadly acting anti-viral agent with a well-established safety profile, inhibits ZIKV, likely by blocking viral entry.

  5. Flurbiprofen–antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, pharmacological investigation, and computational molecular modeling

    PubMed Central

    Ashraf, Zaman; Alamgeer; Kanwal, Munazza; Hassan, Mubashir; Abdullah, Sahar; Waheed, Mamuna; Ahsan, Haseeb; Kim, Song Ja

    2016-01-01

    Flurbiprofen–antioxidant mutual prodrugs were synthesized to reduce the gastrointestinal (GI) effects associated with flurbiprofen. For reducing the GI toxicity, the free carboxylic group (–COOH) was temporarily masked by esterification with phenolic –OH of natural antioxidants vanillin, thymol, umbelliferone, and sesamol. The in vitro hydrolysis of synthesized prodrugs showed that they were stable in buffer solution at pH 1.2, indicating their stability in the stomach. The synthesized prodrugs undergo significant hydrolysis in 80% human plasma and thus release free flurbiprofen. The minimum reversion was observed at pH 1.2, suggesting that prodrugs are less irritating to the stomach than flurbiprofen. The anti-inflammatory, analgesic, antipyretic, and ulcerogenic activities of prodrugs were evaluated. All the synthesized prodrugs significantly (P<0.001) reduced the inflammation against carrageenan and egg albumin-induced paw edema at 4 hours of study. The reduction in the size of the inflamed paw showed that most of the compounds inhibited the later phase of inflammation. The prodrug 2-oxo-2H-chromen-7-yl-2-(2-fluorobiphenyl-4-yl)propanoate (4b) showed significant reduction in paw licking with percentage inhibition of 58%. It also exhibited higher analgesic activity, reducing the number of writhes with a percentage of 75%, whereas flurbiprofen showed 69% inhibition. Antipyretic activity was investigated using brewer’s yeast-induced pyrexia model, and significant (P<0.001) reduction in rectal temperature was shown by all prodrugs at all times of assessment. The results of ulcerogenic activity showed that all prodrugs produced less GI irritation than flurbiprofen. Molecular docking and simulation studies were carried out with cyclooxygenase (COX-1 and COX-2) proteins, and it was observed that our prodrugs have more potential to selectively bind to COX-2 than to COX-1. It is concluded that the synthesized prodrugs have promising pharmacological activities

  6. Flurbiprofen-antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, pharmacological investigation, and computational molecular modeling.

    PubMed

    Ashraf, Zaman; Alamgeer; Kanwal, Munazza; Hassan, Mubashir; Abdullah, Sahar; Waheed, Mamuna; Ahsan, Haseeb; Kim, Song Ja

    2016-01-01

    Flurbiprofen-antioxidant mutual prodrugs were synthesized to reduce the gastrointestinal (GI) effects associated with flurbiprofen. For reducing the GI toxicity, the free carboxylic group (-COOH) was temporarily masked by esterification with phenolic -OH of natural antioxidants vanillin, thymol, umbelliferone, and sesamol. The in vitro hydrolysis of synthesized prodrugs showed that they were stable in buffer solution at pH 1.2, indicating their stability in the stomach. The synthesized prodrugs undergo significant hydrolysis in 80% human plasma and thus release free flurbiprofen. The minimum reversion was observed at pH 1.2, suggesting that prodrugs are less irritating to the stomach than flurbiprofen. The anti-inflammatory, analgesic, antipyretic, and ulcerogenic activities of prodrugs were evaluated. All the synthesized prodrugs significantly (P<0.001) reduced the inflammation against carrageenan and egg albumin-induced paw edema at 4 hours of study. The reduction in the size of the inflamed paw showed that most of the compounds inhibited the later phase of inflammation. The prodrug 2-oxo-2H-chromen-7-yl-2-(2-fluorobiphenyl-4-yl)propanoate (4b) showed significant reduction in paw licking with percentage inhibition of 58%. It also exhibited higher analgesic activity, reducing the number of writhes with a percentage of 75%, whereas flurbiprofen showed 69% inhibition. Antipyretic activity was investigated using brewer's yeast-induced pyrexia model, and significant (P<0.001) reduction in rectal temperature was shown by all prodrugs at all times of assessment. The results of ulcerogenic activity showed that all prodrugs produced less GI irritation than flurbiprofen. Molecular docking and simulation studies were carried out with cyclooxygenase (COX-1 and COX-2) proteins, and it was observed that our prodrugs have more potential to selectively bind to COX-2 than to COX-1. It is concluded that the synthesized prodrugs have promising pharmacological activities with

  7. Clinically Evaluated Cancer Drugs Inhibiting Redox Signaling.

    PubMed

    Kirkpatrick, D Lynn; Powis, Garth

    2017-02-20

    There are a number of redox-active anticancer agents currently in development based on the premise that altered redox homeostasis is necessary for cancer cell's survival. Recent Advances: This review focuses on the relatively few agents that target cellular redox homeostasis to have entered clinical trial as anticancer drugs. The success rate of redox anticancer drugs has been disappointing compared to other classes of anticancer agents. This is due, in part, to our incomplete understanding of the functions of the redox targets in normal and cancer tissues, leading to off-target toxicities and low therapeutic indexes of the drugs. The field also lags behind in the use biomarkers and other means to select patients who are most likely to respond to redox-targeted therapy. If we wish to derive clinical benefit from agents that attack redox targets, then the future will require a more sophisticated understanding of the role of redox targets in cancer and the increased application of personalized medicine principles for their use. Antioxid. Redox Signal. 26, 262-273.

  8. The mutual extraction industry: drug use and the normative structure of social capital in the Russian far north.

    PubMed

    Pilkington, Hilary; Sharifullina, El'vira

    2009-05-01

    The article contributes to the literature on the role of social networks and social capital in young people's drug use. It considers the structural and cultural dimensions of the 'risk environment' of post-Soviet Russia, the micro risk-environment of a de-industrializing city in the far north of the country and the kind of social capital that circulates in young people's social networks there. Its focus is thus on social capital at the micro-level, the 'bridging' networks of peer friendship groups and the norms that govern them. The research is based on a small ethnographic study of the friendship groups and social networks of young people in the city of Vorkuta in 2006-2007. It draws on data from 32 respondents aged 17-27 in the form of 17 semi-structured audio and video interviews and field diaries. Respondents were selected from friendship groups in which drug use was a regular and symbolically significant practice. The risk environment of the Russian far north is characterised by major de-industrialization, poor health indicators, low life expectancy and limited educational and employment opportunities. It is also marked by a 'work hard, play hard' cultural ethos inherited from the Soviet period when risk-laden manual labour was well-rewarded materially and symbolically. However, young people today often rely on informal economic practices to generate the resource needed to fulfil their expectations. This is evident from the social networks among respondents which were found to be focused around a daily routine of generating and spending income, central to which is the purchase, sale and use of drugs. These practices are governed by norms that often invert those normally ascribed to social networks: reciprocity is replaced by mutual exploitation and trust by cheating. Social networks are central to young people's management of the risk environment associated with post-Soviet economic transformation. However, such networks are culturally as well as structurally

  9. Computational analysis of an autophagy/translation switch based on mutual inhibition of MTORC1 and ULK1

    DOE PAGES

    Szymańska, Paulina; Martin, Katie R.; MacKeigan, Jeffrey P.; ...

    2015-03-11

    We constructed a mechanistic, computational model for regulation of (macro)autophagy and protein synthesis (at the level of translation). The model was formulated to study the system-level consequences of interactions among the following proteins: two key components of MTOR complex 1 (MTORC1), namely the protein kinase MTOR (mechanistic target of rapamycin) and the scaffold protein RPTOR; the autophagy-initiating protein kinase ULK1; and the multimeric energy-sensing AMP-activated protein kinase (AMPK). Inputs of the model include intrinsic AMPK kinase activity, which is taken as an adjustable surrogate parameter for cellular energy level or AMP:ATP ratio, and rapamycin dose, which controls MTORC1 activity. Outputsmore » of the model include the phosphorylation level of the translational repressor EIF4EBP1, a substrate of MTORC1, and the phosphorylation level of AMBRA1 (activating molecule in BECN1-regulated autophagy), a substrate of ULK1 critical for autophagosome formation. The model incorporates reciprocal regulation of mTORC1 and ULK1 by AMPK, mutual inhibition of MTORC1 and ULK1, and ULK1-mediated negative feedback regulation of AMPK. Through analysis of the model, we find that these processes may be responsible, depending on conditions, for graded responses to stress inputs, for bistable switching between autophagy and protein synthesis, or relaxation oscillations, comprising alternating periods of autophagy and protein synthesis. A sensitivity analysis indicates that the prediction of oscillatory behavior is robust to changes of the parameter values of the model. The model provides testable predictions about the behavior of the AMPK-MTORC1-ULK1 network, which plays a central role in maintaining cellular energy and nutrient homeostasis.« less

  10. Nonsteroidal anti-inflammatory drugs inhibit gastric peroxidase activity.

    PubMed

    Banerjee, R K

    1990-06-20

    The peroxidase activity of the mitochondrial fraction of rat gastric mucosa was inhibited with various nonsteroidal anti-inflammatory drugs (NSAIDs) in vitro. Indomethacin was found to be more effective than phenylbutazone (PB) or acetylsalicylic acid (ASA). Mouse gastric peroxidase was also very sensitive to indomethacin inhibition. Indomethacin has no significant effect on submaxillary gland peroxidase activity of either of the species studied. Purified rat gastric peroxidase activity was inhibited 75% with 0.15 mM indomethacin showing half-maximal inhibition at 0.04 mM. The inhibition could be withdrawn by increasing the concentration of iodide but not by H2O2. NSAIDs inhibit gastric peroxidase activity more effectively at acid pH (pH 5.2) than at neutral pH. Spectral studies showed a bathochromic shift of the Soret band of the enzyme with indomethacin indicating its interaction at or near the heme part of the enzyme.

  11. Drug-Eluting Fibers for HIV-1 Inhibition and Contraception

    PubMed Central

    Ball, Cameron; Krogstad, Emily; Chaowanachan, Thanyanan; Woodrow, Kim A.

    2012-01-01

    Multipurpose prevention technologies (MPTs) that simultaneously prevent sexually transmitted infections (STIs) and unintended pregnancy are a global health priority. Combining chemical and physical barriers offers the greatest potential to design effective MPTs, but integrating both functional modalities into a single device has been challenging. Here we show that drug-eluting fiber meshes designed for topical drug delivery can function as a combination chemical and physical barrier MPT. Using FDA-approved polymers, we fabricated nanofiber meshes with tunable fiber size and controlled degradation kinetics that facilitate simultaneous release of multiple agents against HIV-1, HSV-2, and sperm. We observed that drug-loaded meshes inhibited HIV-1 infection in vitro and physically obstructed sperm penetration. Furthermore, we report on a previously unknown activity of glycerol monolaurate (GML) to potently inhibit sperm motility and viability. The application of drug-eluting nanofibers for HIV-1 prevention and sperm inhibition may serve as an innovative platform technology for drug delivery to the lower female reproductive tract. PMID:23209601

  12. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed Central

    Hong, Y L; Hossler, P A; Calhoun, D H; Meshnick, S R

    1995-01-01

    Forty-four sulfa drugs were screened against crude preparations of recombinant Pneumocystis carinii dihydropteroate synthetase. The apparent Michaelis-Menten constants (Km) for p-aminobenzoic acid and 7,8-dihydro-6-hydroxymethylpterin pyrophosphate were 0.34 +/- 0.02 and 2.50 +/- 0.71 microM, respectively. Several sulfa drugs, including sulfathiazole, sulfachlorpyridazine, sulfamethoxypyridazine, and sulfathiourea, inhibited dihydropteroate synthetase approximately as well as sulfamethoxazole, as determined by the concentrations which cause 50% inhibition and/or by Ki. For all sulfones and sulfonamides tested, unsubstituted p-amino groups were necessary for activity, and sulfonamides containing an N1-heterocyclic substituent were found to be the most effective inhibitors. Folate biosynthesis in isolated intact P. carinii was approximately equally sensitive to inhibition by sulfamethoxazole, sulfachlorpyridazine, sulfamethoxypyridazine, sulfisoxazole, and sulfathiazole. Two of these drugs, sulfamethoxypyridazine and sulfisoxazole, are known to be less toxic than sulfamethoxazole and should be further evaluated for the treatment of P. carinii pneumonia. PMID:7486915

  13. High-Throughput Cytochrome P450 Cocktail Inhibition Assay for Assessing Drug-Drug and Drug-Botanical Interactions

    PubMed Central

    Li, Guannan; Huang, Ke; Nikolic, Dejan

    2015-01-01

    Detection of drug-drug interactions is essential during the early stages of drug discovery and development, and the understanding of drug-botanical interactions is important for the safe use of botanical dietary supplements. Among the different forms of drug interactions that are known, inhibition of cytochrome P450 (P450) enzymes is the most common cause of drug-drug or drug-botanical interactions. Therefore, a rapid and comprehensive mass spectrometry–based in vitro high-throughput P450 cocktail inhibition assay was developed that uses 10 substrates simultaneously against nine CYP isoforms. Including probe substrates for CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and two probes targeting different binding sites of CYP3A4/5, this cocktail simultaneously assesses at least as many P450 enzymes as previous assays while remaining among the fastest due to short incubation times and rapid analysis using ultrahigh pressure liquid chromatography–tandem mass spectrometry. The method was validated using known inhibitors of each P450 enzyme and then shown to be useful not only for single-compound testing but also for the evaluation of potential drug-botanical interactions using the botanical dietary supplement licorice (Glycyrrhiza glabra) as an example. PMID:26285764

  14. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme

    SciTech Connect

    Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.

    2011-08-12

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial {beta}-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial {beta}-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial {beta}-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally,more » oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.« less

  15. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme

    PubMed Central

    Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.; Scott, John E.; Orans, Jillian; Koo, Ja Seol; Venkatesh, Madhukumar; Jobin, Christian; Yeh, Li-An; Mani, Sridhar; Redinbo, Matthew R.

    2011-01-01

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial β-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial β-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial β-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11–induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy. PMID:21051639

  16. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme.

    PubMed

    Wallace, Bret D; Wang, Hongwei; Lane, Kimberly T; Scott, John E; Orans, Jillian; Koo, Ja Seol; Venkatesh, Madhukumar; Jobin, Christian; Yeh, Li-An; Mani, Sridhar; Redinbo, Matthew R

    2010-11-05

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial β-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial β-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial β-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.

  17. TANKYRASE Inhibition Enhances the Antiproliferative Effect of PI3K and EGFR Inhibition, Mutually Affecting β-CATENIN and AKT Signaling in Colorectal Cancer.

    PubMed

    Solberg, Nina T; Waaler, Jo; Lund, Kaja; Mygland, Line; Olsen, Petter A; Krauss, Stefan

    2018-03-01

    Overactivation of the WNT/β-CATENIN signaling axis is a common denominator in colorectal cancer. Currently, there is no available WNT inhibitor in clinical practice. Although TANKYRASE (TNKS) inhibitors have been proposed as promising candidates, there are many colorectal cancer models that do not respond positively to TNKS inhibition in vitro and in vivo Therefore, a combinatorial therapeutic approach combining a TNKS inhibitor (G007-LK) with PI3K (BKM120) and EGFR (erlotinib) inhibitors in colorectal cancer was investigated. The data demonstrate that TNKS inhibition enhances the effect of PI3K and EGFR inhibition in the TNKS inhibitor-sensitive COLO320DM, and in the nonsensitive HCT-15 cell line. In both cell lines, combined TNKS/PI3K/EGFR inhibition is more effective at reducing growth than a dual TNKS/MEK inhibition. TNKS/PI3K/EGFR inhibition affected in a context-dependent manner components of the WNT/β-CATENIN, AKT/mTOR, EGFR, and RAS signaling pathways. TNKS/PI3K/EGFR inhibition also efficiently reduced growth of both COLO320DM and HCT-15 tumor xenografts in vivo At the highest doses, tumor xenograft growth was halted without affecting the body weight of the tested animals. Implications: Combining TNKS inhibitors with PI3K and EGFR inhibition may expand the therapeutic arsenal against colorectal cancers. Mol Cancer Res; 16(3); 543-53. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Inhibition of cardiac inward rectifier currents by cationic amphiphilic drugs.

    PubMed

    van der Heyden, M A G; Stary-Weinzinger, A; Sanchez-Chapula, J A

    2013-09-01

    Cardiac inward rectifier channels belong to three different classes of the KIR channel protein family. The KIR2.x proteins generate the classical inward rectifier current, IK1, while KIR3 and KIR6 members are responsible for the acetylcholine responsive and ATP sensitive inward rectifier currents IKAch and IKATP, respectively. Aberrant function of these channels has been correlated with severe cardiac arrhythmias, indicating their significant contribution to normal cardiac electrophysiology. A common feature of inward rectifier channels is their dependence on the lipid phosphatidyl-4,5-bisphospate (PIP2) interaction for functional activity. Cationic amphiphilic drugs (CADs) are one of the largest classes of pharmaceutical compounds. Several widely used CADs have been associated with inward rectifier current disturbances, and recent evidence points to interference of the channel-PIP2 interaction as the underlying mechanism of action. Here, we will review how six of these well known drugs, used for treatment in various different conditions, interfere in cardiac inward rectifier functioning. In contrast, KIR channel inhibition by the anionic anesthetic thiopental is achieved by a different mechanism of channel-PIP2 interference. We will discuss the latest basic science insights of functional inward rectifier current characteristics, recently derived KIR channel structures and specific PIP2-receptor interactions at the molecular level and provide insight in how these drugs interfere in the structure-function relationships.

  19. Synthesis of biocompatible nanoparticle drug complexes for inhibition of mycobacteria

    NASA Astrophysics Data System (ADS)

    Bhave, Tejashree; Ghoderao, Prachi; Sanghavi, Sonali; Babrekar, Harshada; Bhoraskar, S. V.; Ganesan, V.; Kulkarni, Anjali

    2013-12-01

    Tuberculosis (TB) is one of the most critical infectious diseases affecting the world today. Current TB treatment involves six months long daily administration of four oral doses of antibiotics. Due to severe side effects and the long treatment, a patient's adherence is low and this results in relapse of symptoms causing an alarming increase in the prevalence of multi-drug resistant (MDR) TB. Hence, it is imperative to develop a new drug delivery technology wherein these effects can be reduced. Rifampicin (RIF) is one of the widely used anti-tubercular drugs (ATD). The present study discusses the development of biocompatible nanoparticle-RIF complexes with superior inhibitory activity against both Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis). Iron oxide nanoparticles (NPs) synthesized by gas phase condensation and NP-RIF complexes were tested against M. smegmatis SN2 strain as well as M. tuberculosis H37Rv laboratory strain. These complexes showed significantly better inhibition of M. smegmatis SN2 strain at a much lower effective concentration (27.5 μg ml-1) as compared to neat RIF (125 μg ml-1). Similarly M. tuberculosis H37Rv laboratory strain was susceptible to both nanoparticle-RIF complex and neat RIF at a minimum inhibitory concentration of 0.22 and 1 μg ml-1, respectively. Further studies are underway to determine the efficacy of NPs-RIF complexes in clinical isolates of M. tuberculosis as well as MDR isolates.

  20. DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents?

    SciTech Connect

    Asmis, Lars; Tanner, Felix C.; Center for Integrative Human Physiology, University of Zuerich, Zuerich

    2010-01-22

    Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysismore » showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 {+-} 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% {+-} 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 {+-} 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.« less

  1. Importance of multi-P450 inhibition in drug-drug interactions: evaluation of incidence, inhibition magnitude and prediction from in vitro data

    PubMed Central

    Isoherranen, Nina; Lutz, Justin D; Chung, Sophie P; Hachad, Houda; Levy, Rene H; Ragueneau-Majlessi, Isabelle

    2012-01-01

    Drugs that are mainly cleared by a single enzyme are considered more sensitive to drug-drug interactions (DDIs) than drugs cleared by multiple pathways. However, whether this is true when a drug cleared by multiple pathways is co-administered with an inhibitor of multiple P450 enzymes (multi-P450 inhibition) is not known. Mathematically, simultaneous equipotent inhibition of two elimination pathways that each contributes half of the drug clearance is equal to equipotent inhibition of a single pathway that clears the drug. However, simultaneous strong or moderate inhibition of two pathways by a single inhibitor is perceived as an unlikely scenario. The aim of this study was (i) to identify P450 inhibitors currently in clinical use that can inhibit more than one clearance pathway of an object drug in vivo, and (ii) to evaluate the magnitude and predictability of DDIs caused by these multi-P450 inhibitors. Multi-P450 inhibitors were identified using the Metabolism and Transport Drug Interaction Database™. A total of 38 multi-P450 inhibitors, defined as inhibitors that increased the AUC or decreased the clearance of probes of two or more P450’s, were identified. Seventeen (45 %) multi-P450 inhibitors were strong inhibitors of at least one P450 and an additional 12 (32 %) were moderate inhibitors of one or more P450s. Only one inhibitor (fluvoxamine) was a strong inhibitor of more than one enzyme. Fifteen of the multi-P450 inhibitors also inhibit drug transporters in vivo, but such data are lacking on many of the inhibitors. Inhibition of multiple P450 enzymes by a single inhibitor resulted in significant (>2-fold) clinical DDIs with drugs that are cleared by multiple pathways such as imipramine and diazepam while strong P450 inhibitors resulted in only weak DDIs with these object drugs. The magnitude of the DDIs between multi-P450 inhibitors and diazepam, imipramine and omeprazole could be predicted using in vitro data with similar accuracy as probe substrate

  2. Statin Drugs Markedly Inhibit Testosterone Production by Rat Leydig Cells In Vitro: Implications for Men

    EPA Science Inventory

    Statin drugs lower blood cholesterol by inhibiting hepatic 3-hydroxy-3-methylglutaryl-Coenzyme-A reductase. During drug development it was shown that statins inhibit production of cholesterol in the testis. We evaluated testosterone production in vitro, using highly purified rat ...

  3. The "Flavor" of the Social Ecology Paradigm in Use: Building on Mutual Social Support in Preventing Drug Abuse.

    ERIC Educational Resources Information Center

    Thorsheim, Howard I.; Roberts, Bruce B.

    The "Bottled Pain" project, a drug abuse prevention program in 24 Lutheran congregations in southern Minnesota, is based on a social ecology paradigm designed to prevent drug abuse through the development of socially supportive relationshps and through using the environment as a natural strength within the community. According to the…

  4. Response inhibition moderates the association between drug use and risky sexual behavior.

    PubMed

    Nydegger, Liesl A; Ames, Susan L; Stacy, Alan W; Grenard, Jerry L

    2014-09-01

    HIV infection is problematic among all drug users, not only injection drug users. Drug users are at risk for contracting HIV by engaging in risky sexual behaviors. The present study sought to determine whether inhibitory processes moderate the relationship between problematic drug use and HIV-risk behaviors (unprotected sex and multiple sex partners). One hundred ninety-six drug offenders enrolled in drug education programs were administered a battery of computer-based assessments. Measures included a cued go/no-go assessment of inhibitory processes, the Drug Abuse Screening Test (DAST) assessment of problematic drug use, and self-report assessment of condom use and multiple sex partners. Findings revealed that response inhibition assessed by the proportion of false alarms on the cued go/no-go moderated the relationship between problematic drug use and an important measure of HIV risk (condom nonuse) among drug offenders. However, response inhibition did not moderate the relationship between problematic drug use and another measure of HIV risk: multiple sex partners. Among this sample of drug offenders, we have found a relationship between problematic drug use and condom nonuse, which is exacerbated by poor control of inhibition. These findings have implications for the development of HIV intervention components among high-risk populations.

  5. Drug-induced Inhibition and Trafficking Disruption of ion Channels: Pathogenesis of QT Abnormalities and Drug-induced Fatal Arrhythmias

    PubMed Central

    Cubeddu, Luigi X.

    2016-01-01

    Risk of severe and fatal ventricular arrhythmias, presenting as Torsade de Pointes (TdP), is increased in congenital and acquired forms of long QT syndromes (LQTS). Drug-induced inhibition of K+ currents, IKs, IKr, IK1, and/or Ito, delay repolarization, prolong QT, and increase the risk of TdP. Drug-induced interference with IKr is the most common cause of acquired LQTS/TdP. Multiple drugs bind to KNCH2-hERG-K+ channels affecting IKr, including antiarrythmics, antibiotics, antivirals, azole-antifungals, antimalarials, anticancer, antiemetics, prokinetics, antipsychotics, and antidepressants. Azithromycin has been recently added to this list. In addition to direct channel inhibition, some drugs interfere with the traffic of channels from the endoplasmic reticulum to the cell membrane, decreasing mature channel membrane density; e.g., pentamidine, geldalamicin, arsenic trioxide, digoxin, and probucol. Other drugs, such as ketoconazole, fluoxetine, norfluoxetine, citalopram, escitalopram, donepezil, tamoxifen, endoxifen, atazanavir, and roxitromycin, induce both direct channel inhibition and impaired channel trafficking. Although many drugs prolong the QT interval, TdP is a rare event. The following conditions increase the risk of drug-induced TdP: a) Disease states/electrolyte levels (heart failure, structural cardiac disease, bradycardia, hypokalemia); b) Pharmacogenomic variables (presence of congenital LQTS, subclinical ion-channel mutations, history of or having a relative with history of drug-induced long QT/TdP); c) Pharmacodynamic and kinetic factors (high doses, women, elderly, metabolism inhibitors, combining two or more QT prolonging drugs, drugs that prolong the QT and increase QT dispersion, and drugs with multiple actions on ion channels). Because most of these conditions are preventable, careful evaluation of risk factors and increased knowledge of drug use associated with repolarization abnormalities are strongly recommended. PMID:26926294

  6. hERG trafficking inhibition in drug-induced lethal cardiac arrhythmia.

    PubMed

    Nogawa, Hisashi; Kawai, Tomoyuki

    2014-10-15

    Acquired long QT syndrome induced by non-cardiovascular drugs can cause lethal cardiac arrhythmia called torsades de points and is a significant problem in drug development. The prolongation of QT interval and cardiac action potential duration are mainly due to reduced physiological function of the rapidly activating voltage-dependent potassium channels encoded by human ether-a-go-go-related gene (hERG). Structurally diverse groups of drugs are known to directly inhibit hERG channel conductance. Therefore, the ability of acute hERG inhibition is routinely assessed at the preclinical stages in pharmaceutical testing. Recent findings indicated that chronic treatment with various drugs not only inhibits hERG channels but also decreases hERG channel expression in the plasma membrane of cardiomyocytes, which has become another concern in safety pharmacology. The mechanisms involve the disruption of hERG trafficking to the surface membrane or the acceleration of hERG protein degradation. From this perspective, we present a brief overview of mechanisms of drug-induced trafficking inhibition and pathological regulation. Understanding of drug-induced hERG trafficking inhibition may provide new strategies for predicting drug-induced QT prolongation and lethal cardiac arrhythmia in pharmaceutical drug development. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The anti-hypertensive drug prazosin inhibits glioblastoma growth via the PKCδ-dependent inhibition of the AKT pathway.

    PubMed

    Assad Kahn, Suzana; Costa, Silvia Lima; Gholamin, Sharareh; Nitta, Ryan T; Dubois, Luiz Gustavo; Fève, Marie; Zeniou, Maria; Coelho, Paulo Lucas Cerqueira; El-Habr, Elias; Cadusseau, Josette; Varlet, Pascale; Mitra, Siddhartha S; Devaux, Bertrand; Kilhoffer, Marie-Claude; Cheshier, Samuel H; Moura-Neto, Vivaldo; Haiech, Jacques; Junier, Marie-Pierre; Chneiweiss, Hervé

    2016-05-01

    A variety of drugs targeting monoamine receptors are routinely used in human pharmacology. We assessed the effect of these drugs on the viability of tumor-initiating cells isolated from patients with glioblastoma. Among the drugs targeting monoamine receptors, we identified prazosin, an α1- and α2B-adrenergic receptor antagonist, as the most potent inducer of patient-derived glioblastoma-initiating cell death. Prazosin triggered apoptosis of glioblastoma-initiating cells and of their differentiated progeny, inhibited glioblastoma growth in orthotopic xenografts of patient-derived glioblastoma-initiating cells, and increased survival of glioblastoma-bearing mice. We found that prazosin acted in glioblastoma-initiating cells independently from adrenergic receptors. Its off-target activity occurred via a PKCδ-dependent inhibition of the AKT pathway, which resulted in caspase-3 activation. Blockade of PKCδ activation prevented all molecular changes observed in prazosin-treated glioblastoma-initiating cells, as well as prazosin-induced apoptosis. Based on these data, we conclude that prazosin, an FDA-approved drug for the control of hypertension, inhibits glioblastoma growth through a PKCδ-dependent mechanism. These findings open up promising prospects for the use of prazosin as an adjuvant therapy for glioblastoma patients. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  8. Lack of association between parental alcohol or drug addiction and behavioral inhibition in children.

    PubMed

    Biederman, J; Hirshfeld-Becker, D R; Rosenbaum, J F; Perenick, S G; Wood, J; Faraone, S V

    2001-10-01

    "Behavioral inhibition to the unfamiliar" has been proposed as a precursor to anxiety. A recent study proposed that it may also be a precursor to alcoholism. The authors sought to replicate the latter finding through a secondary analysis of data from a large study of young children (age 2-6 years)-offspring of parents with panic and depressive disorders-who had been assessed for behavioral inhibition through laboratory-based observations. The offspring were stratified on the basis of presence or absence of parental lifetime history of DSM-III-R alcohol dependence (N=115 versus N=166, respectively) or drug dependence (N=78 versus N=203). The rates of behavioral inhibition were then compared between groups. Despite adequate power to detect associations, neither parental alcohol dependence nor drug dependence was associated with a higher risk for behavioral inhibition in the offspring. These results are not consistent with the hypothesis linking behavioral inhibition to addictions.

  9. Synthesis, kinetic studies and pharmacological evaluation of mutual azo prodrug of 5-aminosalicylic acid with D-phenylalanine for colon specific drug delivery in inflammatory bowel disease.

    PubMed

    Dhaneshwar, Suneela S; Gairola, Neha; Kandpal, Mini; Bhatt, Lokesh; Vadnerkar, Gaurav; Kadam, S S

    2007-04-01

    Mutual azo prodrug of 5-aminosalicylic acid with d-phenylalanine was synthesized by coupling D-phenylalanine with salicylic acid, for targeted drug delivery to the inflamed gut tissue in inflammatory bowel disease. The structure of synthesized prodrug was confirmed by elemental analysis, IR and NMR spectroscopy. In vitro kinetic studies in HCl buffer (pH 1.2) showed negligible release of 5-aminosalicylic acid, whereas in phosphate buffer (pH 7.4) only 15% release was observed over a period of 7h. In rat fecal matter the release of 5-aminosalicylic acid was almost complete (85%), with a half-life of 160.1 min, following first order kinetics. The azo conjugate was evaluated for its ulcerogenic potential by Rainsford's cold stress method. Therapeutic efficacy of the carrier system and the mitigating effect of the azo conjugate were evaluated in trinitrobenzenesulfonic acid-induced experimental colitis model. The synthesized prodrug was found to be equally effective in mitigating the colitis in rats as that of sulfasalazine without the ulcerogenicity of 5-aminosalicylic acid.

  10. Dodecyltriphenylphosphonium inhibits multiple drug resistance in the yeast Saccharomyces cerevisiae.

    PubMed

    Knorre, Dmitry A; Markova, Olga V; Smirnova, Ekaterina A; Karavaeva, Iuliia E; Sokolov, Svyatoslav S; Severin, Fedor F

    2014-08-08

    Multiple drug resistance pumps are potential drug targets. Here we asked whether the lipophilic cation dodecyltriphenylphosphonium (C12TPP) can interfere with their functioning. First, we found that suppression of ABC transporter gene PDR5 increases the toxicity of C12TPP in yeast. Second, C12TPP appeared to prevent the efflux of rhodamine 6G - a fluorescent substrate of Pdr5p. Moreover, C12TPP increased the cytostatic effects of some other known Pdr5p substrates. The chemical nature of C12TPP suggests that after Pdr5p-driven extrusion the molecules return to the plasma membrane and then into the cytosol, thus effectively competing with other substrates of the pump. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Drug Design Relating Amebicides to Inhibition of Protein Synthesis.

    DTIC Science & Technology

    1977-09-01

    A study of the effect of emetine on protein synthesis in E. histolytica was made on log phase amebas as compared to stationary phase amebas ...Sensitivity to emetine was maintained independently of the rate of protein synthesis. Furthermore, both stages of amebas had the same capacity to bind emetine...elongation site. Finally, evidence was obtained that the capacity to bind emetine provides a basis for conferring drug resistance in amebas . A direct

  12. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers

    SciTech Connect

    Volkow, N.D.; Fowler, J.; Wang, G.J.

    Loss of control over drug taking is considered a hallmark of addiction and is critical in relapse. Dysfunction of frontal brain regions involved with inhibitory control may underlie this behavior. We evaluated whether addicted subjects when instructed to purposefully control their craving responses to drug-conditioned stimuli can inhibit limbic brain regions implicated in drug craving. We used PET and 2-deoxy-2[18F]fluoro-D-glucose to measure brain glucose metabolism (marker of brain function) in 24 cocaine abusers who watched a cocaine-cue video and compared brain activation with and without instructions to cognitively inhibit craving. A third scan was obtained at baseline (without video). Statisticalmore » parametric mapping was used for analysis and corroborated with regions of interest. The cocaine-cue video increased craving during the no-inhibition condition (pre 3 {+-} 3, post 6 {+-} 3; p < 0.001) but not when subjects were instructed to inhibit craving (pre 3 {+-} 2, post 3 {+-} 3). Comparisons with baseline showed visual activation for both cocaine-cue conditions and limbic inhibition (accumbens, orbitofrontal, insula, cingulate) when subjects purposefully inhibited craving (p < 0.001). Comparison between cocaine-cue conditions showed lower metabolism with cognitive inhibition in right orbitofrontal cortex and right accumbens (p < 0.005), which was associated with right inferior frontal activation (r = -0.62, p < 0.005). Decreases in metabolism in brain regions that process the predictive (nucleus accumbens) and motivational value (orbitofrontal cortex) of drug-conditioned stimuli were elicited by instruction to inhibit cue-induced craving. This suggests that cocaine abusers may retain some ability to inhibit craving and that strengthening fronto-accumbal regulation may be therapeutically beneficial in addiction.« less

  13. Modeling Synergistic Drug Inhibition of Mycobacterium tuberculosis Growth in Murine Macrophages

    DTIC Science & Technology

    2011-01-01

    important application of metabolic network modeling is the ability to quantitatively model metabolic enzyme inhibition and predict bacterial growth...describe the extensions of this framework to model drug- induced growth inhibition of M. tuberculosis in macrophages.39 Mathematical framework Fig. 1 shows...starting point, we used the previously developed iNJ661v model to represent the metabolic Fig. 1 Mathematical framework: a set of coupled models used to

  14. Building a Morbidostat: An automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition

    PubMed Central

    Toprak, Erdal; Veres, Adrian; Yildiz, Sadik; Pedraza, Juan M.; Chait, Remy; Paulsson, Johan; Kishony, Roy

    2013-01-01

    We present a protocol for building and operating an automated fluidic system for continuous culture that we call the “morbidostat”. The morbidostat is used to follow evolution of microbial drug resistance in real time. Instead of exposing bacteria to predetermined drug environments, the morbidostat constantly measures the growth rates of evolving microbial populations and dynamically adjusts drug concentrations inside culture vials in order to maintain a constant drug induced inhibition. The growth rate measurements are done using an optical detection system that is based on measuring the intensity of back-scattered light from bacterial cells suspended in the liquid culture. The morbidostat can additionally be used as a chemostat or a turbidostat. The whole system can be built from readily available components within two to three weeks, by biologists with some electronics experience or engineers familiar with basic microbiology. PMID:23429717

  15. Drug effects on drug targets: inhibition of enzymes by neuroleptics, antimycotics, antibiotics and other drugs on human pathogenic amoebas and their anti-proliferative effects.

    PubMed

    Ondarza, Raúl N

    2007-11-01

    This paper reviews the inhibition of various enzymes by neuroleptics, anti-mycotics, antibiotics and other drugs on three species of human pathogenic amoebas, mainly Entamoeba histolytica, Acanthamoeba polyphaga and Naegleria fowleri, and their antiproliferative effects. A recent patent registered by Philip relates to the combination of an antibacterial formulation and antifungal agent for producing a therapeutically effective quantity of an antimicrobial that is suitable for suppressing or treating fungal growth. The rationale behind this patent focused on essential and valid targets with a description of the main pathogenic characteristics of these amoebas. The study of new targets, such as trypanothione and trypanothione reductase, and the drug effects of selected agents were arranged into six main groups: A) Inhibition of disulfide reducing enzymes by neuroleptics, antimycotics and antibiotics; B) Comparative evaluation of the efficacies of several drugs with antiproliferative activities; C) Inhibition of the enzymes for the synthesis of trypanothione, such as ornithine decarboxylase, spermidine synthase and trypanothione synthetase; D) Inhibition of the glycolytic enzyme PPi-dependent phosphofructokinase (PFK) from Entamoeba and Naegleria by pyrophosphate analogues, different from the host enzyme; E) Inhibition of enzymes secreted by these parasites to invade the human host, for example cysteine proteinases; and F) Inhibition of encystment pathways and cyst-wall assembly proteins.

  16. Inhibition mechanism of hydroxypropyl methylcellulose acetate succinate on drug crystallization in gastrointestinal fluid and drug permeability from a supersaturated solution.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Kataoka, Makoto; Yamashita, Shinji; Yamamoto, Keiji; Moribe, Kunikazu

    2014-10-01

    The effects of drug-crystallization inhibitor in bile acid/lipid micelles solution on drug permeation was evaluated during the drug crystallization process. Hydroxypropyl methylcellulose acetate succinate (HPMC-AS) was used as a drug-crystallization inhibitor, which efficiently suppressed dexamethasone (DEX) crystallization in a gastrointestinal fluid model containing sodium taurocholate (NaTC) and egg-phosphatidylcholine (egg-PC). Changes of molecular state of supersaturated DEX during the DEX crystallization process was monitored in real time using proton nuclear magnetic resonance (1H NMR). It revealed that DEX distribution to bulk water and micellar phases formed by NaTC and egg-PC was not changed during the DEX crystallization process even in the presence of HPMC-AS. DEX permeation during DEX crystallization was evaluated using dissolution/permeability system. The combination of crystallization inhibition by HPMC-AS and micellar encapsulation by NaTC and egg-PC led to considerably higher DEX concentrations and improvement of DEX permeation at the beginning of the DEX crystallization process. Crystallization inhibition by HPMC-AS can efficiently work even in the micellar solution, where NaTC/egg-PC micelles encapsulates some DEX. It was concluded that a crystallization inhibitor contributed to improvement of permeation of a poorly water-soluble drug in gastrointestinal fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Gelatin Nano-coating for Inhibiting Surface Crystallization of Amorphous Drugs.

    PubMed

    Teerakapibal, Rattavut; Gui, Yue; Yu, Lian

    2018-01-05

    Inhibit the fast surface crystallization of amorphous drugs with gelatin nano-coatings. The free surface of amorphous films of indomethacin or nifedipine was coated by a gelatin solution (type A or B) and dried. The coating's effect on surface crystallization was evaluated. Coating thickness was estimated from mass change after coating. For indomethacin (weak acid, pK a  = 4.5), a gelatin coating of either type deposited at pH 5 and 10 inhibited its fast surface crystal growth. The coating thickness was 20 ± 10 nm. A gelatin coating deposited at pH 3, however, provided no protective effect. These results suggest that an effective gelatin coating does not require that the drug and the polymer have opposite charges. The ineffective pH 3 coating might reflect the poor wetting of indomethacin's neutral, hydrophobic surface by the coating solution. For nifedipine (weak base, pK a  = 2.6), a gelatin coating of either type deposited at pH 5 inhibited its fast surface crystal growth. Gelatin nano-coatings can be conveniently applied to amorphous drugs from solution to inhibit fast surface crystallization. Unlike strong polyelectrolyte coatings, a protective gelatin coating does not require strict pairing of opposite charges. This could make gelatin coating a versatile, pharmaceutically acceptable coating for stabilizing amorphous drugs.

  18. Drug-nutrient interactions: inhibition of amino acid intestinal absorption by fluoxetine.

    PubMed

    Urdaneta, E; Idoate, I; Larralde, J

    1998-05-01

    Fluoxetine is one of the most widely used antidepressants and nowadays it is also being used to manage obesity problems. In our laboratory we demonstrated that the drug inhibited sugar absorption (Monteiro et al. 1993). The aim of the present work was to determine the effect of fluoxetine on intestinal leucine absorption. Using a procedure of successive absorptions in vivo the drug diminished amino acid absorption by 30% (P < 0.001). Experiments in vitro in isolated jejunum also revealed a reduction in leucine uptake of 37% (P < 0.001). In both cases fluoxetine only affected mediated transport without altering diffusion. In a preparation enriched in basolateral membrane, fluoxetine inhibited the Na+,K(+)-ATPase (EC 3.6.1.37) activity (55%; P < 0.001) in a non-competitive manner with an inhibition constant (Ki) value of 0.92 mM. Leucine uptake by brush-border membrane vesicles was diminished by the drug (a reduction of 48% was observed at 30s, P < 0.001); only the apical Na(+)-dependent transport system of the amino acid was modified and the inhibition was non-competitive. Leucine uptake in the presence of lysine indicated that transporter B was involved. These results suggest that fluoxetine reduces leucine absorption by its action on the basolateral and apical membrane of the enterocyte; the nutritional status of the patients under drug treatment may be affected as neutral amino acid absorption is decreased.

  19. Inhibition of Human Drug Transporter Activities by the Pyrethroid Pesticides Allethrin and Tetramethrin

    PubMed Central

    Chedik, Lisa; Bruyere, Arnaud; Le Vee, Marc; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Potin, Sophie; Fardel, Olivier

    2017-01-01

    Pyrethroids are widely-used chemical insecticides, to which humans are commonly exposed, and known to alter functional expression of drug metabolizing enzymes. Limited data have additionally suggested that drug transporters, that constitute key-actors of the drug detoxification system, may also be targeted by pyrethroids. The present study was therefore designed to analyze the potential regulatory effects of these pesticides towards activities of main ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, using transporter-overexpressing cells. The pyrethroids allethrin and tetramethrin were found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein (MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2, with IC50 values however ranging from 2.6 μM (OCT1 inhibition by allethrin) to 77.6 μM (OAT3 inhibition by tetramethrin) and thus much higher than pyrethroid concentrations (in the nM range) reached in environmentally pyrethroid-exposed humans. By contrast, allethrin and tetramethrin cis-stimulated OATP2B1 activity and failed to alter activities of OATP1B3, OAT1 and MATE2-K, whereas P-glycoprotein activity was additionally moderately inhibited. Twelve other pyrethoids used at 100 μM did not block activities of the various investigated transporters, or only moderately inhibited some of them (inhibition by less than 50%). In silico analysis of structure-activity relationships next revealed that molecular parameters, including molecular weight and lipophilicity, are associated with transporter inhibition by allethrin/tetramethrin and successfully predicted transporter inhibition by the pyrethroids imiprothrin and prallethrin. Taken together, these data fully demonstrated that two pyrethoids, i.e., allethrin and tetramethrin, can

  20. Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy.

    PubMed

    Zheng, Ling; Howell, Scott J; Hatala, Denise A; Huang, Kun; Kern, Timothy S

    2007-02-01

    It has been previously reported that aspirin inhibited the development of diabetic retinopathy in diabetic animals, raising the possibility that anti-inflammatory drugs may have beneficial effects on diabetic retinopathy. To further explore this, we compared effects of oral consumption of three different salicylate-based drugs (aspirin, sodium salicylate, and sulfasalazine) on the development of early stages of diabetic retinopathy in rats. These three drugs differ in their ability to inhibit cyclooxygenase but share an ability to inhibit nuclear factor-kappaB (NF-kappaB). Diabetes of 9-10 months duration significantly increased the number of TUNEL (transferase-mediated dUTP nick-end labeling)-positive capillary cells and acellular (degenerate) capillaries in the retinal vasculature, and all three salicylate-based drugs inhibited this cell death and formation of acellular capillaries without altering the severity of hyperglycemia. In short-term diabetes (2-4 months), all three salicylates inhibited the diabetes-induced loss of neuronal cells from the ganglion cell layer. Oral aspirin (as a representative of the salicylate family) inhibited diabetes-induced increase in NF-kappaB DNA-binding affinity in electrophoretic mobility shift assay and transcription factor array in nuclear extract isolated from whole retina. All three salicylates inhibited the diabetes-induced translocation of p50 (a subunit of NF-kappaB) into nuclei of retinal vascular endothelial cells of the isolated retinal vasculature, as well as of p50 and p65 into nuclei of cells in the ganglion cell layer and inner nuclear layer on whole-retinal sections. Sulfasalazine (also as a representative of the salicylates) inhibited the diabetes-induced upregulation of several inflammatory gene products, which are regulated by NF-kappaB, including vascular cell adhesion molecule, intracellular adhesion molecule-1, inducible nitric oxide synthase, and cyclooxygenase-2 in whole-retinal lysate. Salicylates, in

  1. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation

    PubMed Central

    Senarathna, S M D K Ganga; Page-Sharp, Madhu; Crowe, Andrew

    2016-01-01

    The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10−6 cm/sec, followed by amodiaquine around 20 x 10−6 cm/sec; both mefloquine and artesunate were around 10 x 10−6 cm/sec. Methylene blue was between 2 and 6 x 10−6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine. PMID:27045516

  2. Role of Molecular Interactions for Synergistic Precipitation Inhibition of Poorly Soluble Drug in Supersaturated Drug-Polymer-Polymer Ternary Solution.

    PubMed

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2016-03-07

    We are reporting a synergistic effect of combined Eudragit E100 and PVP K90 in precipitation inhibition of indomethacin (IND) in solutions at low polymer concentration, a phenomenon that has significant implications on the usefulness of developing novel ternary solid dispersion of poorly soluble drugs. The IND supersaturation was created by cosolvent technique, and the precipitation studies were performed in the absence and the presence of individual and combined PVP K90 and Eudragit E100. The studies were also done with PEG 8000 as a noninteracting control polymer. A continuous UV recording of the IND absorption was used to observe changes in the drug concentration over time. The polymorphic form and morphology of precipitated IND were characterized by Raman spectroscopy and scanning electron microscopy. The change in the chemical shift in solution (1)H NMR was used as novel approach to probe IND-polymer interactions. Molecular modeling was used for calculating binding energy between IND-polymer as another indication of IND-polymer interaction. Spontaneous IND precipitation was observed in the absence of polymers. Eudragit E100 showed significant inhibitory effect on nuclei formation due to stronger interaction as reflected in higher binding energy and greater change in chemical shift by NMR. PVP K90 led to significant crystal growth inhibition due to adsorption on growing IND crystals as confirmed by modified crystal habit of precipitate in the presence of PVP K90. Combination of polymers resulted in a synergistic precipitation inhibition and extended supersaturation. The NMR confirmed interaction between IND-Eudragit E100 and IND-PVP K90 in solution. The combination of polymers showed similar peak shift albeit using lower polymer concentration indicating stronger interactions. The results established the significant synergistic precipitation inhibition effect upon combining Eudragit E100 and PVP K90 due to drug-polymer interaction.

  3. Sulfa drugs inhibit sepiapterin reduction and chemical redox cycling by sepiapterin reductase.

    PubMed

    Yang, Shaojun; Jan, Yi-Hua; Mishin, Vladimir; Richardson, Jason R; Hossain, Muhammad M; Heindel, Ned D; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-03-01

    Sepiapterin reductase (SPR) catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4), a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism. SPR also mediates chemical redox cycling, catalyzing one-electron reduction of redox-active chemicals, including quinones and bipyridinium herbicides (e.g., menadione, 9,10-phenanthrenequinone, and diquat); rapid reaction of the reduced radicals with molecular oxygen generates reactive oxygen species (ROS). Using recombinant human SPR, sulfonamide- and sulfonylurea-based sulfa drugs were found to be potent noncompetitive inhibitors of both sepiapterin reduction and redox cycling. The most potent inhibitors of sepiapterin reduction (IC50s = 31-180 nM) were sulfasalazine, sulfathiazole, sulfapyridine, sulfamethoxazole, and chlorpropamide. Higher concentrations of the sulfa drugs (IC50s = 0.37-19.4 μM) were required to inhibit redox cycling, presumably because of distinct mechanisms of sepiapterin reduction and redox cycling. In PC12 cells, which generate catecholamine and monoamine neurotransmitters via BH4-dependent amino acid hydroxylases, sulfa drugs inhibited both BH2/BH4 biosynthesis and redox cycling mediated by SPR. Inhibition of BH2/BH4 resulted in decreased production of dopamine and dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 5-hydroxytryptamine. Sulfathiazole (200 μM) markedly suppressed neurotransmitter production, an effect reversed by BH4. These data suggest that SPR and BH4-dependent enzymes, are "off-targets" of sulfa drugs, which may underlie their untoward effects. The ability of the sulfa drugs to inhibit redox cycling may ameliorate ROS-mediated toxicity generated by redox active drugs and chemicals, contributing to their anti-inflammatory activity. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Neuroimaging Impaired Response Inhibition and Salience Attribution in Human Drug Addiction: A Systematic Review.

    PubMed

    Zilverstand, Anna; Huang, Anna S; Alia-Klein, Nelly; Goldstein, Rita Z

    2018-06-06

    The impaired response inhibition and salience attribution (iRISA) model proposes that impaired response inhibition and salience attribution underlie drug seeking and taking. To update this model, we systematically reviewed 105 task-related neuroimaging studies (n > 15/group) published since 2010. Results demonstrate specific impairments within six large-scale brain networks (reward, habit, salience, executive, memory, and self-directed networks) during drug cue exposure, decision making, inhibitory control, and social-emotional processing. Addicted individuals demonstrated increased recruitment of these networks during drug-related processing but a blunted response during non-drug-related processing, with the same networks also being implicated during resting state. Associations with real-life drug use, relapse, therapeutic interventions, and the relevance to initiation of drug use during adolescence support the clinical relevance of the results. Whereas the salience and executive networks showed impairments throughout the addiction cycle, the reward network was dysregulated at later stages of abuse. Effects were similar in alcohol, cannabis, and stimulant addiction. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Inhibition of Lactate Transport Erases Drug Memory and Prevents Drug Relapse.

    PubMed

    Zhang, Yan; Xue, Yanxue; Meng, Shiqiu; Luo, Yixiao; Liang, Jie; Li, Jiali; Ai, Sizhi; Sun, Chengyu; Shen, Haowei; Zhu, Weili; Wu, Ping; Lu, Lin; Shi, Jie

    2016-06-01

    Drug memories that associate drug-paired stimuli with the effects of abused drugs contribute to relapse. Exposure to drug-associated contexts causes consolidated drug memories to be in a labile state, during which manipulations can be given to impair drug memories. Although substantial evidence demonstrates the crucial role of neuronal signaling in addiction, little is known about the contribution of astrocyte-neuron communication. Rats were trained for cocaine-induced conditioned place preference (CPP) or self-administration and microinjected with the glycogen phosphorylation inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol into the basolateral amygdala (BLA) immediately after retrieval. The concentration of lactate was measured immediately after retrieval via microdialysis, and the CPP score and number of nosepokes were recorded 24 hours later. Furthermore, we used antisense oligodeoxynucleotides to disrupt the expression of astrocytic lactate transporters (monocarboxylate transporters 1 and 2) in the BLA after retrieval, tested the expression of CPP 1 day later, and injected L-lactate into the BLA 15 minutes before retrieval to rescue the effects of the oligodeoxynucleotides. Injection of 1,4-dideoxy-1,4-imino-D-arabinitol into the BLA immediately after retrieval prevented the subsequent expression of cocaine-induced CPP, decreased the concentration of lactate in the BLA, and reduced the number of nosepokes for cocaine self-administration. Disrupting the expression of monocarboxylate transporters 1 and 2 in the BLA also caused subsequent deficits in the expression of cocaine-induced CPP, which was rescued by pretreatment with L-lactate. Our results suggest that astrocyte-neuron lactate transport in the BLA is critical for the reconsolidation of cocaine memory. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Common theme for drugs effective in overactive bladder treatment: Inhibition of afferent signaling from the bladder

    PubMed Central

    Hood, Brandy; Andersson, Karl-Erik

    2013-01-01

    The overactive bladder syndrome and detrusor overactivity are conditions that can have major effects on quality of life and social functioning. Antimuscarinic drugs are still first-line treatment. These drugs often have good initial response rates, but adverse effects and decreasing efficacy cause long-term compliance problems, and alternatives are needed. The recognition of the functional contribution of the urothelium/suburothelium, the autonomous detrusor muscle activity during bladder filling and the diversity of nerve transmitters involved has sparked interest in both peripheral and central modulation of overactive bladder syndrome/detrusor overactivity pathophysiology. Three drugs recently approved for treatment of overactive bladder syndrome/detrusor overactivity (mirabegron, tadalafil and onabotulinum toxin A), representing different pharmacological mechanisms; that is, β-adrenoceptor agonism, phosphodiesterase type 5 inhibition, and inhibition of nerve release of efferent and afferent transmitters, all seem to have one effect in common: inhibition of the afferent nervous activity generated by the bladder during filling. In the present review, the different mechanisms forming the pharmacological basis for the use of these drugs are discussed. PMID:23072271

  7. Gap Junction Inhibition Prevents Drug-induced Liver Toxicity and Fulminant Hepatic Failure

    PubMed Central

    Patel, Suraj J; Milwid, Jack M; King, Kevin R; Bohr, Stefan; Iracheta, Arvin; Li, Matthew; Vitalo, Antonia; Parekkadan, Biju; Jindal, Rohit; Yarmush, Martin L

    2013-01-01

    Drug-induced liver injury (DILI) limits the development and utilization of numerous therapeutic compounds, and consequently presents major challenges to the pharmaceutical industry and clinical medicine1, 2. Acetaminophen (APAP) containing compounds are among the most frequently prescribed drugs, and also the most common cause of DILI3. Here we describe a pharmacological strategy that targets gap junction communication to prevent amplification of fulminant hepatic failure and APAP-induced hepatotoxicity. We report that connexin 32 (Cx32), a key hepatic gap junction protein, is an essential mediator of DILI by showing that mice deficient in Cx32 are protected against liver damage, acute inflammation, and death. We identified a small molecule inhibitor of Cx32 as a novel hepatoprotectant that achieves the same result in wildtype mice when coadministered with known hepatotoxic drugs. These findings demonstrate that gap junction inhibition is an effective therapy for limiting DILI, and suggest a novel pharmaceutical strategy to improve drug safety. PMID:22252509

  8. Mechanisms Underlying Food-Drug Interactions: Inhibition of Intestinal Metabolism and Transport

    PubMed Central

    Won, Christina S.; Oberlies, Nicholas H.; Paine, Mary F.

    2012-01-01

    Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively. PMID:22884524

  9. Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine.

    PubMed

    Olafson, Katy N; Ketchum, Megan A; Rimer, Jeffrey D; Vekilov, Peter G

    2015-04-21

    Hematin crystallization is the primary mechanism of heme detoxification in malaria parasites and the target of the quinoline class of antimalarials. Despite numerous studies of malaria pathophysiology, fundamental questions regarding hematin growth and inhibition remain. Among them are the identity of the crystallization medium in vivo, aqueous or organic; the mechanism of crystallization, classical or nonclassical; and whether quinoline antimalarials inhibit crystallization by sequestering hematin in the solution, or by blocking surface sites crucial for growth. Here we use time-resolved in situ atomic force microscopy (AFM) and show that the lipid subphase in the parasite may be a preferred growth medium. We provide, to our knowledge, the first evidence of the molecular mechanisms of hematin crystallization and inhibition by chloroquine, a common quinoline antimalarial drug. AFM observations demonstrate that crystallization strictly follows a classical mechanism wherein new crystal layers are generated by 2D nucleation and grow by the attachment of solute molecules. We identify four classes of surface sites available for binding of potential drugs and propose respective mechanisms of drug action. Further studies reveal that chloroquine inhibits hematin crystallization by binding to molecularly flat {100} surfaces. A 2-μM concentration of chloroquine fully arrests layer generation and step advancement, which is ∼10(4)× less than hematin's physiological concentration. Our results suggest that adsorption at specific growth sites may be a general mode of hemozoin growth inhibition for the quinoline antimalarials. Because the atomic structures of the identified sites are known, this insight could advance the future design and/or optimization of new antimalarials.

  10. The selenazal drug ebselen potently inhibits indoleamine 2,3-dioxygenase by targeting enzyme cysteine residues.

    PubMed

    Terentis, Andrew C; Freewan, Mohammed; Sempértegui Plaza, Tito S; Raftery, Mark J; Stocker, Roland; Thomas, Shane R

    2010-01-26

    The heme enzyme indoleamine 2,3-dioxygenase (IDO) plays an important immune regulatory role by catalyzing the oxidative degradation of l-tryptophan. Here we show that the selenezal drug ebselen is a potent IDO inhibitor. Exposure of human macrophages to ebselen inhibited IDO activity in a manner independent of changes in protein expression. Ebselen inhibited the activity of recombinant human IDO (rIDO) with an apparent inhibition constant of 94 +/- 17 nM. Optical and resonance Raman spectroscopy showed that ebselen altered the active site heme of rIDO by inducing a transition of the ferric heme iron from the predominantly high- to low-spin form and by lowering the vibrational frequency of the Fe-CO stretch of the CO complex, indicating an opening of the distal heme pocket. Substrate binding studies showed that ebselen enhanced nonproductive l-tryptophan binding, while circular dichroism indicated that the drug reduced the helical content and protein stability of rIDO. Thiol labeling and mass spectrometry revealed that ebselen reacted with multiple cysteine residues of IDO. Removal of cysteine-bound ebselen with dithiothreitol reversed the effects of the drug on the heme environment and significantly restored enzyme activity. These findings indicate that ebselen inhibits IDO activity by reacting with the enzyme's cysteine residues that result in changes to protein conformation and active site heme, leading to an increase in the level of nonproductive substrate binding. This study highlights that modification of cysteine residues is a novel and effective means of inhibiting IDO activity. It also suggests that IDO is under redox control and that the enzyme represents a previously unrecognized in vivo target of ebselen.

  11. Structure and Inhibition of Microbiome β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity

    SciTech Connect

    Wallace, Bret D.; Roberts, Adam B.; Pollet, Rebecca M.

    The selective inhibition of bacterial β-glucuronidases was recently shown to alleviate drug-induced gastrointestinal toxicity in mice, including the damage caused by the widely used anticancer drug irinotecan. Here, we report crystal structures of representative β-glucuronidases from the Firmicutes Streptococcus agalactiae and Clostridium perfringens and the Proteobacterium Escherichia coli, and the characterization of a β-glucuronidase from the Bacteroidetes Bacteroides fragilis. While largely similar in structure, these enzymes exhibit marked differences in catalytic properties and propensities for inhibition, indicating that the microbiome maintains functional diversity in orthologous enzymes. Small changes in the structure of designed inhibitors can induce significant conformational changes inmore » the β-glucuronidase active site. Finally, we establish that β-glucuronidase inhibition does not alter the serum pharmacokinetics of irinotecan or its metabolites in mice. Together, the data presented advance our in vitro and in vivo understanding of the microbial β-glucuronidases, a promising new set of targets for controlling drug-induced gastrointestinal toxicity.« less

  12. Drug packaging and delivery using perfluorocarbon nanoparticles for targeted inhibition of vascular smooth muscle cells

    PubMed Central

    Zhou, Zhao-xiong; Zhang, Bai-gen; Zhang, Hao; Huang, Xiao-zhong; Hu, Ya-li; Sun, Li; Wang, Xiao-min; Zhang, Ji-wei

    2009-01-01

    Aim: To investigate the in vitro release profile of drugs encapsulated within perfluorocarbon (PFC) nanoparticles (NPs) and their ability to inhibit the activity of vascular smooth muscle cells (SMCs). Methods: Dexamethasone phosphate (DxP) or dexamethasone acetate (DxA) was encapsulated into PFC nanoparticles using a high-pressure homogenous method. The morphology and size of the NPs were examined using scanning electron microscopy (SEM) and a laser particle size analyzer. Drug loading and in vitro release were assessed by high-performance liquid chromatography (HPLC). The impact of NP capsules on SMC proliferation, migration and apoptosis in vitro was assessed using cell counting kit-8, transwell cell migration and flow cytometry assays. Results: The sizes of DxP-NPs and DxA-NPs were 224±6 nm and 236±9 nm, respectively. The encapsulation efficiency (EE) of DxP-NPs was 66.4%±1.0%, with an initial release rate of 77.2%, whereas the EE of DxA-NPs was 95.3%±1.3%, with an initial release rate of 23.6%. Both of the NP-coated drugs could be released over 7 d. Human umbilical artery SMCs were harvested and cultured for four to six passages. Compared to free DxP, SMCs treated with tissue factor (TF)-directed DxP-NPs showed significant differences in the inhibition of proliferation, migration and apoptosis (P<0.05). Conclusion: The results collectively suggest that PFC nanoparticles will be beneficial for targeted drug delivery because of the sustained drug release and effective inhibition of SMC proliferation and migration. PMID:19890365

  13. Zika viral polymerase inhibition using anti-HCV drugs both in market and under clinical trials.

    PubMed

    Elfiky, Abdo A

    2016-12-01

    In the last few months, a new Zika virus (ZIKV) outbreak evolved in America. In accordance, World Health Organization (WHO) in February 2016 declared it as Public Health Emergency of International Concern (PHEIC). ZIKV infection was reported in more than 60 countries and the disease was spreading since 2007 but with little momentum. Many antiviral drugs are available in market or in laboratories under clinical trials, could affect ZIKV infection. In silico docking study were performed on the ZIKV polymerase to test some of Hepatitis C Virus (HCV) drugs (approved and in clinical trials). The results show potency of almost all of the studied compounds on ZIKV polymerase and hence inhibiting the propagation of the disease. In addition, the study suggested two nucleotide inhibitors (IDX-184 and MK0608) that may be tested as drugs against ZIKV infection. J. Med. Virol. 88:2044-2051, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Cardiotoxicity of copper-based antineoplastic drugs casiopeinas is related to inhibition of energy metabolism

    SciTech Connect

    Hernandez-Esquivel, Luz; Marin-Hernandez, Alvaro; Pavon, Natalia

    2006-04-01

    Isolated rat hearts were perfused with glucose, octanoate or glucose + octanoate and different concentrations of the copper-based antineoplastic drugs casiopeina II-gly (CSII) or casiopeina III-i-a (CSIII). In isolated perfused hearts with glucose + octanoate, both casiopeinas induced diminution in cardiac work and O{sub 2} consumption with half-maximal inhibitory concentrations (IC{sub 5}) of 4 (CSII) and 4.6 (CSIII) {mu}M, after 1 h of perfusion. Strong inhibition of the pyruvate and 2-oxoglutarate dehydrogenases as well as total creatine kinase by casiopeinas suggested that ATP generation by oxidative phosphorylation and its transfer towards myofibrils were targets for these drugs. In consequence, themore » cellular contents of ATP and phosphocreatine were also lowered by casiopeinas. Remarkably, casiopeinas were less toxic than adriamycin (IC{sub 5} = 2.6 {mu}M), a well-known potent cardiotoxic and antineoplastic drug, which has a wide clinical use. In an open-chest animal, which is a more physiological model than the isolated heart, femoral administration of 1 {mu}M drug revealed that CSII was innocuous very likely due to strong binding to serum albumin, whereas adriamycin induced again a potent cardiotoxic effect (diminution in heart rate and severe depression of systolic blood pressure). Thus, it seems that casiopeinas are a group of new antineoplastic drugs with milder secondary toxic effects than proven drugs such as adriamycin.« less

  15. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition.

    PubMed

    He, Qianjun; Shi, Jianlin

    2014-01-22

    In the anti-cancer war, there are three main obstacles resulting in high mortality and recurrence rate of cancers: the severe toxic side effect of anti-cancer drugs to normal tissues due to the lack of tumor-selectivity, the multi-drug resistance (MDR) to free chemotherapeutic drugs and the deadly metastases of cancer cells. The development of state-of-art nanomedicines based on mesoporous silica nanoparticles (MSNs) is expected to overcome the above three main obstacles. In the view of the fast development of anti-cancer strategy, this review highlights the most recent advances of MSN anti-cancer nanomedicines in enhancing chemotherapeutic efficacy, overcoming the MDR and inhibiting metastasis. Furthermore, we give an outlook of the future development of MSNs-based anti-cancer nanomedicines, and propose several innovative and forward-looking anti-cancer strategies, including tumor tissue-cell-nuclear successionally targeted drug delivery strategy, tumor cell-selective nuclear-targeted drug delivery strategy, multi-targeting and multi-drug strategy, chemo-/radio-/photodynamic-/ultrasound-/thermo-combined multi-modal therapy by virtue of functionalized hollow/rattle-structured MSNs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Exposure time independent summary statistics for assessment of drug dependent cell line growth inhibition.

    PubMed

    Falgreen, Steffen; Laursen, Maria Bach; Bødker, Julie Støve; Kjeldsen, Malene Krag; Schmitz, Alexander; Nyegaard, Mette; Johnsen, Hans Erik; Dybkær, Karen; Bøgsted, Martin

    2014-06-05

    In vitro generated dose-response curves of human cancer cell lines are widely used to develop new therapeutics. The curves are summarised by simplified statistics that ignore the conventionally used dose-response curves' dependency on drug exposure time and growth kinetics. This may lead to suboptimal exploitation of data and biased conclusions on the potential of the drug in question. Therefore we set out to improve the dose-response assessments by eliminating the impact of time dependency. First, a mathematical model for drug induced cell growth inhibition was formulated and used to derive novel dose-response curves and improved summary statistics that are independent of time under the proposed model. Next, a statistical analysis workflow for estimating the improved statistics was suggested consisting of 1) nonlinear regression models for estimation of cell counts and doubling times, 2) isotonic regression for modelling the suggested dose-response curves, and 3) resampling based method for assessing variation of the novel summary statistics. We document that conventionally used summary statistics for dose-response experiments depend on time so that fast growing cell lines compared to slowly growing ones are considered overly sensitive. The adequacy of the mathematical model is tested for doxorubicin and found to fit real data to an acceptable degree. Dose-response data from the NCI60 drug screen were used to illustrate the time dependency and demonstrate an adjustment correcting for it. The applicability of the workflow was illustrated by simulation and application on a doxorubicin growth inhibition screen. The simulations show that under the proposed mathematical model the suggested statistical workflow results in unbiased estimates of the time independent summary statistics. Variance estimates of the novel summary statistics are used to conclude that the doxorubicin screen covers a significant diverse range of responses ensuring it is useful for biological

  17. The drug ornidazole inhibits photosynthesis in a different mechanism described for protozoa and anaerobic bacteria.

    PubMed

    Marcus, Yehouda; Tal, Noam; Ronen, Mordechai; Carmieli, Raanan; Gurevitz, Michael

    2016-12-01

    Ornidazole of the 5-nitroimidazole drug family is used to treat protozoan and anaerobic bacterial infections via a mechanism that involves preactivation by reduction of the nitro group, and production of toxic derivatives and radicals. Metronidazole, another drug family member, has been suggested to affect photosynthesis by draining electrons from the electron carrier ferredoxin, thus inhibiting NADP + reduction and stimulating radical and peroxide production. Here we show, however, that ornidazole inhibits photosynthesis via a different mechanism. While having a minute effect on the photosynthetic electron transport and oxygen photoreduction, ornidazole hinders the activity of two Calvin cycle enzymes, triose-phosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Modeling of ornidazole's interaction with ferredoxin of the protozoan Trichomonas suggests efficient electron tunneling from the iron-sulfur cluster to the nitro group of the drug. A similar docking site of ornidazole at the plant-type ferredoxin does not exist, and the best simulated alternative does not support such efficient tunneling. Notably, TPI was inhibited by ornidazole in the dark or when electron transport was blocked by dichloromethyl diphenylurea, indicating that this inhibition was unrelated to the electron transport machinery. Although TPI and GAPDH isoenzymes are involved in glycolysis and gluconeogenesis, ornidazole's effect on respiration of photoautotrophs is moderate, thus raising its value as an efficient inhibitor of photosynthesis. The scarcity of Calvin cycle inhibitors capable of penetrating cell membranes emphasizes on the value of ornidazole for studying the regulation of this cycle. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  18. Endotoxin administration to humans inhibits hepatic cytochrome P450-mediated drug metabolism.

    PubMed Central

    Shedlofsky, S I; Israel, B C; McClain, C J; Hill, D B; Blouin, R A

    1994-01-01

    In experimental animals, injection of gram-negative endotoxin (LPS) decreases hepatic cytochrome P450-mediated drug metabolism. To evaluate this phenomenon in a human model of gram-negative sepsis, LPS was administered on two consecutive days to healthy male volunteers during which time a cocktail of antipyrine (AP-250 mg), hexobarbital (HB-500 mg), and theophylline (TH-150 mg) was ingested and the apparent oral clearance of each drug determined. Each subject had a control drug clearance study with saline injections. In the first experiment, six subjects received the drug cocktail 0.5 h after the first dose of LPS. In the second experiment, another six subjects received the drug cocktail 0.5 h after the second dose of LPS. In both experiments, LPS caused the expected physiologic responses of inflammation including fever with increases in serum concentrations of TNF alpha, IL-1 beta, IL-6, and acute phase reactants. In the first experiment, only minor decreases in clearances of the probe drugs were observed (7-12%). However in the second experiment, marked decreases in the clearances of AP (35, 95% CI 18-48%), HB (27, 95% CI 14-34%), and TH (22, 95% CI 12-32%) were seen. The decreases in AP clearance correlated with initial peak values of TNF alpha (r = 0.82) and IL-6 (r = 0.86). These data show that in humans the inflammatory response to even a very low dose of LPS significantly decreases hepatic cytochrome P450-mediated drug metabolism and this effect evolves over a 24-h period. It is likely that septic patients with much higher exposures to LPS have more profound inhibition of drug metabolism. PMID:7989576

  19. Inhibition.

    ERIC Educational Resources Information Center

    Kupperman, Joel J.

    1978-01-01

    Explores the use of the concept of inhibition in moral philosophy. Argues that there are strong practical reasons for basing moral teaching on simple moral rules and for inculcating inhibitions about breaking these rules. (Author)

  20. New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate

    PubMed Central

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T.; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-01

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells (HMLER-shEcad cells, representing BCSCs) and control immortalized non-tumorigenic human mammary cells (HMLE cells, representing normal stem cells). 19 compounds were identified from screening. The chemically related molecules benztropine mesylate and deptropine citrate were selected for further validation and both potently inhibited sphere formation and self-renewal of BCSCs in vitro. Benztropine mesylate treatment decreased cell subpopulations with high ALDH activity and with a CD44+/CD24− phenotype. In vivo, benztropine mesylate inhibited tumor-initiating potential in a 4T1 mouse model. Functional studies indicated that benztropine mesylate inhibits functions of CSCs via the acetylcholine receptors, dopamine transporters/receptors, and/or histamine receptors. In summary, our findings identify benztropine mesylate as an inhibitor of BCSCs in vitro and in vivo. This study also provides a screening platform for identification of additional anti-CSC agents. PMID:27894093

  1. New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate.

    PubMed

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-03

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells (HMLER-shEcad cells, representing BCSCs) and control immortalized non-tumorigenic human mammary cells (HMLE cells, representing normal stem cells). 19 compounds were identified from screening. The chemically related molecules benztropine mesylate and deptropine citrate were selected for further validation and both potently inhibited sphere formation and self-renewal of BCSCs in vitro. Benztropine mesylate treatment decreased cell subpopulations with high ALDH activity and with a CD44+/CD24- phenotype. In vivo, benztropine mesylate inhibited tumor-initiating potential in a 4T1 mouse model. Functional studies indicated that benztropine mesylate inhibits functions of CSCs via the acetylcholine receptors, dopamine transporters/receptors, and/or histamine receptors. In summary, our findings identify benztropine mesylate as an inhibitor of BCSCs in vitro and in vivo. This study also provides a screening platform for identification of additional anti-CSC agents.

  2. Mutual inhibition between HDAC9 and miR-17 regulates osteogenesis of human periodontal ligament stem cells in inflammatory conditions.

    PubMed

    Li, Liya; Liu, Wenjia; Wang, Hong; Yang, Qianjuan; Zhang, Liqiang; Jin, Fang; Jin, Yan

    2018-04-24

    Histone deacetylases (HDAC) plays important roles in the post-translational modifications of histone cores as well as non-histone targets. Many of them are involved in key inflammatory processes. Despite their importance, whether and how HDAC9 is regulated under inflammatory conditions remains unclear. The aim of this study was to evaluate the effects of HDAC9 under chronic inflammation condition in human periodontal ligament stromal cell (PDLSCs) and to explore the underlying regulatory mechanism. PDLSCs from healthy or periodontitis human tissue was compared. The therapeutic effects of HDAC inhibitors was determined in PDLSC pellet transplanted nude mice and LPS-induced rat periodontitis. We report that HDAC9 was the most affected HDAC family member under inflammatory conditions in PDLSCs. HDAC9 impaired osteogenic differentiation capacity of PDLSCs under inflammatory conditions. Downregulation of HDAC9 by HDAC inhibitors or si-HDAC9 rescued the osteogenic differentiation capacity of inflammatory PDLSC to a similar level with the healthy PDLSC. In this context, HDAC9 and miR-17 formed an inhibitory loop. The inhibition of miR-17 aggravated loss of calcified nodules in inflamed PDLSCs and interrupted the effect of HDAC inhibitor in rescuing osteogenesis. In vivo experiments using nude mice and LPS-induced periodontitis model confirmed that HDAC inhibitors could improve new bone formation. We conclude that HDAC inhibitors improved osteogenesis of PDLSCs in vitro and periodontitis in vivo.

  3. Effect of drug-related cues on response inhibition through abstinence: A pilot study in male heroin abstainers.

    PubMed

    Su, Bobo; Yang, Ling; Wang, Grace Y; Wang, Sha; Li, Shaomei; Cao, Hua; Zhang, Yan

    2017-11-01

    Chronic heroin use can cause a deficit of inhibitory function, leading to a loss of control over drug use. Exposure to drug-related cues is considered as one of the contributing factors. However, it is unclear whether there are dynamic changes on the effect of drug-related cues on response inhibition following prolonged abstinence. The present study investigated the effect of drug-related cues on response inhibition in heroin abstainers at different abstinent phases. 26 shorter-term (2-6 months) and 26 longer-term (19-24 months) male heroin abstainers performed on a modified two-choice Oddball task, which included two conditions: in the cued condition, neutral pictures served as the background of standard stimuli (yellow frame) and heroin-related pictures served as the background of deviant stimuli (blue frame), reversed in the controlled conditions. Compared to longer-term abstainers, mean reaction time (RT) for drug deviants in shorter-term abstainers was significantly longer. Shorter-term abstainers also showed markedly slower response to neutral deviants relative to drug deviants, but this tendency was not observed in longer-term abstainers. Nevertheless, both groups had similar RT for standard stimuli regardless of their paired background pictures. Effect of drug-related cues on response inhibition remains at the early stage of abstinence; however, this effect may be reduced following a longer period of drug abstinence. Our findings highlight the importance of assessing and improving the ability of inhibiting drug-related cue reactivity during treatment.

  4. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    SciTech Connect

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cellmore » proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.« less

  5. Inhibition of cation channel function at the nicotinic acethylcholine receptor from Torpedo: Agonist self-inhibition and anesthetic drugs

    SciTech Connect

    Forman, S.A.

    1989-01-01

    Modulation of the nicotinic acethylcholine receptor from Torpedo by cholinergic agonists, local anesthetics, and n-alkanols was studied using {sup 86}Rb{sup +} flux studies in sealed native Torpedo electroplaque membrane vesicles. Reliable concentration-response and kinetic data were obtained using manual ten sec filtration assays in vesicles partially blocked with alpha-bungarotoxin to remove spare receptors and quenched-flow assays to assess initial {sup 86}Rb{sup +} flux rates or the rate of drug-induced receptor inactivation. Concentration response relationships for the agonists acetylcholine, carbamylcholine, suberyldicholine, phenyltrimethylammonium, and (-)-nicotine are all bell-shape due to stimulation of cation channel opening at low concentrations and inhibition of channelsmore » at higher concentrations. The rate of agonist-induced fast desensitization (k{sub d}) increases with (acetylcholine) in parallel with channel activation, suggesting that desensitization proceeds from the open state and/or states in rapid equilibrium with it. At self-inhibitory acetylcholine concentrations, a new rapid inactivation (rate = k{sub f}) is observed before fast desensitization. The rate and extent of rapid inactivation is compatible with bimolecular association between acethylcholine and inhibitory site with K{sub B} = 40 mM.« less

  6. Inhibition of the development of myringosclerosis by local administration of fenspiride, an anti-inflammatory drug.

    PubMed

    Mattsson, C; Hellström, S

    1997-01-01

    Earlier studies have revealed a relationship between the development of myringosclerosis and oxygen-derived free radicals. The latter can be blocked by the anti-inflammatory drug fenspiride. The present study was undertaken to test the ability of fenspiride to prevent myringosclerosis from developing during healing of the tympanic membrane. Myringotomized rats were treated with either topical applications or intraperitoneal injections of fenspiride for 12 days, after which the tympanic membranes were examined by otomicroscopy and studied histologically by light microscopy. Topically applied fenspiride was found to inhibit the development of sclerotic lesions, whereas intraperitoneal injections were ineffective.

  7. Inhibition of epithelial ovarian cancer by Minnelide, a water-soluble pro-drug.

    PubMed

    Rivard, Colleen; Geller, Melissa; Schnettler, Erica; Saluja, Manju; Vogel, Rachel Isaksson; Saluja, Ashok; Ramakrishnan, Sundaram

    2014-11-01

    Minnelide is a water-soluble pro-drug of triptolide, a natural product. The goal of this study was to evaluate the effectiveness of Minnelide on ovarian cancer growth in vitro and in vivo. The effect of Minnelide on ovarian cancer cell proliferation was determined by real time electrical impedance measurements. Multiple mouse models with C200 and A2780 epithelial ovarian cancer cell lines were used to assess the efficacy of Minnelide in inhibiting ovarian cancer growth. Minnelide decreased cell viability of both platinum sensitive and resistant epithelial ovarian cancer cells in vitro. Minnelide with carboplatin showed additive effects in vitro. Minnelide monotherapy increased the survival of mice bearing established ovarian tumors. Minnelide, in combination with carboplatin and paclitaxel, improved overall survival of mice. Minnelide is a promising pro-drug for the treatment of ovarian cancer, especially when combined with standard chemotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Belinostat and vincristine demonstrate mutually synergistic cytotoxicity associated with mitotic arrest and inhibition of polyploidy in a preclinical model of aggressive diffuse large B cell lymphoma.

    PubMed

    Havas, Aaron P; Rodrigues, Kameron B; Bhakta, Anvi; Demirjian, Joseph A; Hahn, Seongmin; Tran, Jack; Scavello, Margarethakay; Tula-Sanchez, Ana A; Zeng, Yi; Schmelz, Monika; Smith, Catharine L

    2016-12-01

    Diffuse Large B-cell lymphoma (DLBCL) is an aggressive malignancy that has a 60 percent 5-year survival rate, highlighting a need for new therapeutic approaches. Histone deacetylase inhibitors (HDACi) are novel therapeutics being clinically-evaluated in combination with a variety of other drugs. However, rational selection of companion therapeutics for HDACi is difficult due to their poorly-understood, cell-type specific mechanisms of action. To address this, we developed a pre-clinical model system of sensitivity and resistance to the HDACi belinostat using DLBCL cell lines. In the current study, we demonstrate that cell lines sensitive to the cytotoxic effects of HDACi undergo early mitotic arrest prior to apoptosis. In contrast, HDACi-resistant cell lines complete mitosis after a short delay and arrest in G1. To force mitotic arrest in HDACi-resistant cell lines, we used low dose vincristine or paclitaxel in combination with belinostat and observed synergistic cytotoxicity. Belinostat curtails vincristine-induced mitotic arrest and triggers a strong apoptotic response associated with downregulated MCL-1 expression and upregulated BIM expression. Resistance to microtubule targeting agents (MTAs) has been associated with their propensity to induce polyploidy and thereby increase the probability of genomic instability that enables cancer progression. Co-treatment with belinostat effectively eliminated a vincristine-induced, actively cycling polyploid cell population. Our study demonstrates that vincristine sensitizes DLBCL cells to the cytotoxic effects of belinostat and that belinostat prevents polyploidy that could cause vincristine resistance. Our findings provide a rationale for using low dose MTAs in conjunction with HDACi as a potential therapeutic strategy for treatment of aggressive DLBCL.

  9. Structural basis for non-competitive product inhibition in human thymidine phosphorylase: implications for drug design

    PubMed Central

    Omari, Kamel EL; Bronckaers, Annelies; Liekens, Sandra; Pérez-Pérez, Maria-Jésus; Balzarini, Jan; Stammers, David K.

    2006-01-01

    HTP (human thymidine phosphorylase), also known as PD-ECGF (platelet-derived endothelial cell growth factor) or gliostatin, has an important role in nucleoside metabolism. HTP is implicated in angiogenesis and apoptosis and therefore is a prime target for drug design, including antitumour therapies. An HTP structure in a closed conformation complexed with an inhibitor has previously been solved. Earlier kinetic studies revealed an ordered release of thymine followed by ribose phosphate and product inhibition by both ligands. We have determined the structure of HTP from crystals grown in the presence of thymidine, which, surprisingly, resulted in bound thymine with HTP in a closed dead-end com-plex. Thus thymine appears to be able to reassociate with HTP after its initial ordered release before ribose phosphate and induces the closed conformation, hence explaining the mechanism of non-competitive product inhibition. In the active site in one of the four HTP molecules within the crystal asymmetric unit, additional electron density is present. This density has not been previously seen in any pyrimidine nucleoside phosphorylase and it defines a subsite that may be exploitable in drug design. Finally, because our crystals did not require proteolysed HTP to grow, the structure reveals a loop (residues 406–415), disordered in the previous HTP structure. This loop extends across the active-site cleft and appears to stabilize the dimer interface and the closed conformation by hydrogen-bonding. The present study will assist in the design of HTP inhibitors that could lead to drugs for anti-angiogenesis as well as for the potentiation of other nucleoside drugs. PMID:16803458

  10. Emetine inhibits replication of RNA and DNA viruses without generating drug-resistant virus variants.

    PubMed

    Khandelwal, Nitin; Chander, Yogesh; Rawat, Krishan Dutt; Riyesh, Thachamvally; Nishanth, Chikkahonnaiah; Sharma, Shalini; Jindal, Naresh; Tripathi, Bhupendra N; Barua, Sanjay; Kumar, Naveen

    2017-08-01

    At a noncytotoxic concentration, emetine was found to inhibit replication of DNA viruses [buffalopoxvirus (BPXV) and bovine herpesvirus 1 (BHV-1)] as well as RNA viruses [peste des petits ruminants virus (PPRV) and Newcastle disease virus (NDV)]. Using the time-of-addition and virus step-specific assays, we showed that emetine treatment resulted in reduced synthesis of viral RNA (PPRV and NDV) and DNA (BPXV and BHV-1) as well as inhibiting viral entry (NDV and BHV-1). In addition, emetine treatment also resulted in decreased synthesis of viral proteins. In a cell free endogenous viral polymerase assay, emetine was found to significantly inhibit replication of NDV, but not BPXV genome, suggesting that besides directly inhibiting specific viral polymerases, emetine may also target other factors essentially required for efficient replication of the viral genome. Moreover, emetine was found to significantly inhibit BPXV-induced pock lesions on chorioallantoic membrane (CAM) along with associated mortality of embryonated chicken eggs. At a lethal dose 50 (LD 50 ) of 126.49 ng/egg and at an effective concentration 50 (EC 50 ) of 3.03 ng/egg, the therapeutic index of the emetine against BPXV was determined to be 41.74. Emetine was also found to significantly delay NDV-induced mortality in chicken embryos associated with reduced viral titers. Further, emetine-resistant mutants were not observed upon long-term (P = 25) sequential passage of BPXV and NDV in cell culture. Collectively, we have extended the effective antiviral activity of emetine against diverse groups of DNA and RNA viruses and propose that emetine could provide significant therapeutic value against some of these viruses without inducing an antiviral drug-resistant phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Drug Repurposing Screening Identifies Novel Compounds That Effectively Inhibit Toxoplasma gondii Growth

    PubMed Central

    Dittmar, Ashley J.; Drozda, Allison A.

    2016-01-01

    ABSTRACT The urgent need to develop new antimicrobial therapies has spawned the development of repurposing screens in which well-studied drugs and other types of compounds are tested for potential off-label uses. As a proof-of-principle screen to identify compounds effective against Toxoplasma gondii, we screened a collection of 1,120 compounds for the ability to significantly reduce Toxoplasma replication. A total of 94 compounds blocked parasite replication with 50% inhibitory concentrations of <5 µM. A significant number of these compounds are established inhibitors of dopamine or estrogen signaling. Follow-up experiments with the dopamine receptor inhibitor pimozide revealed that the drug impacted both parasite invasion and replication but did so independently of inhibition of dopamine or other neurotransmitter receptor signaling. Tamoxifen, which is an established inhibitor of the estrogen receptor, also reduced parasite invasion and replication. Even though Toxoplasma can activate the estrogen receptor, tamoxifen inhibits parasite growth independently of this transcription factor. Tamoxifen is also a potent inducer of autophagy, and we find that the drug stimulates recruitment of the autophagy marker light chain 3-green fluorescent protein onto the membrane of the vacuolar compartment in which the parasite resides and replicates. In contrast to other antiparasitic drugs, including pimozide, tamoxifen treatment of infected cells leads to a time-dependent elimination of intracellular parasites. Taken together, these data suggest that tamoxifen restricts Toxoplasma growth by inducing xenophagy or autophagic destruction of this obligate intracellular parasite. IMPORTANCE There is an urgent need to develop new therapies to treat microbial infections, and the repurposing of well-characterized compounds is emerging as one approach to achieving this goal. Using the protozoan parasite Toxoplasma gondii, we screened a library of 1,120 compounds and identified several

  12. Molecular Basis for Cyclooxygenase Inhibition by the Non-steroidal Anti-inflammatory Drug Naproxen

    SciTech Connect

    Duggan, Kelsey C.; Walters, Matthew J.; Musee, Joel

    Naproxen ((S)-6-methoxy-{alpha}-methyl-2-naphthaleneacetic acid) is a powerful non-selective non-steroidal anti-inflammatory drug that is extensively used as a prescription and over-the-counter medication. Naproxen exhibits gastrointestinal toxicity, but its cardiovascular toxicity may be reduced compared with other drugs in its class. Despite the fact that naproxen has been marketed for many years, the molecular basis of its interaction with cyclooxygenase (COX) enzymes is unknown. We performed a detailed study of naproxen-COX-2 interactions using site-directed mutagenesis, structure-activity analysis, and x-ray crystallography. The results indicate that each of the pendant groups of the naphthyl scaffold are essential for COX inhibition, and only minimal substitutions aremore » tolerated. Mutation of Trp-387 to Phe significantly reduced inhibition by naproxen, a result that appears unique to this inhibitor. Substitution of S or CH2 for the O atom of the p-methoxy group yielded analogs that were not affected by the W387F substitution and that exhibited increased COX-2 selectivity relative to naproxen. Crystallization and x-ray analysis yielded structures of COX-2 complexed to naproxen and its methylthio analog at 1.7 and 2.3 {angstrom} resolution, respectively. The combination of mutagenesis, structure analysis, and x-ray crystallography provided comprehensive information on the unique interactions responsible for naproxen binding to COX-2.« less

  13. Multiple myeloma phosphotyrosine proteomic profile associated with FGFR3 expression, ligand activation, and drug inhibition

    PubMed Central

    St-Germain, Jonathan R.; Taylor, Paul; Tong, Jiefei; Jin, Lily L.; Nikolic, Ana; Stewart, Ian I.; Ewing, Robert M.; Dharsee, Moyez; Li, Zhihua; Trudel, Suzanne; Moran, Michael F.

    2009-01-01

    Signaling by growth factor receptor tyrosine kinases is manifest through networks of proteins that are substrates and/or bind to the activated receptors. FGF receptor-3 (FGFR3) is a drug target in a subset of human multiple myelomas (MM) and is mutationally activated in some cervical and colon and many bladder cancers and in certain skeletal dysplasias. To define the FGFR3 network in multiple myeloma, mass spectrometry was used to identify and quantify phosphotyrosine (pY) sites modulated by FGFR3 activation and inhibition in myeloma-derived KMS11 cells. Label-free quantification of peptide ion currents indicated the activation of FGFR3 by phosphorylation of tandem tyrosines in the kinase domain activation loop when cellular pY phosphatases were inhibited by pervanadate. Among the 175 proteins that accumulated pY in response to pervanadate was a subset of 52 including FGFR3 that contained a total of 61 pY sites that were sensitive to inhibition by the FGFR3 inhibitor PD173074. The FGFR3 isoform containing the tandem pY motif in its activation loop was targeted by PD173074. Forty of the drug-sensitive pY sites, including two located within the 35-residue cytoplasmic domain of the transmembrane growth factor binding proteoglycan (and multiple myeloma biomarker) Syndecan-1/CD138, were also stimulated in cells treated with the ligand FGF1, providing additional validation of their link to FGFR3. The identification of these overlapping sets of co-modulated tyrosine phosphorylations presents an outline of an FGFR3 network in the MM model and demonstrates the potential for pharmacodynamic monitoring by label-free quantitative phospho-proteomics. PMID:19901323

  14. Choline Kinase, A Novel Drug Target for the Inhibition of Streptococcus pneumoniae.

    PubMed

    Zimmerman, Tahl; Ibrahim, Salam

    2017-09-25

    Gram-positive pathogens, such as S treptococcus pneumoniae , can have deleterious effects on both human and animal health. Antibiotics and antimicrobials have been developed to treat infections caused by such pathogens and to prevent food contamination. However, these strategies have been increasingly thwarted by the emergence of resistant bacteria strains. Thus, new methods for controlling Gram-positive pathogen growth need to be continuously developed. Choline analogs, such as Hemicholinium-3 (HC-3), have been shown to be useful in blocking cell division in eukaryotic cells through the inhibition of choline kinase, an enzyme which catalyzes the production of phosphocholine from choline and ATP. In some Gram-positive pathogens, choline kinase is an important enzyme in the production of the cell wall element, lipoteichoic acid. However, it is not known if inhibiting this enzyme has any effect on cell division in Gram-positive bacteria. Using the R6 strain as a model, we tested the ability of HC-3 to block the activity of choline kinase in S. pneumoniae and inhibit cell growth. Mass-spectrometry measurements of crude extracts revealed that HC-3 blocked choline kinase activity. Turbidity measurements and population counts showed that HC-3 inhibited cell growth. Competition assays with choline suggested that HC-3 also blocked choline transporters. Western blots showed that lipoteichoic acid production was blocked in the presence of HC-3, and autolytic assays showed that this decrease in lipoteichoic acids caused cells to be more resistant to autolysis. Scanning electron microscopy revealed that HC-3 distorted the cell wall. This study thus establishes choline kinase as a novel drug target for S. pneumoniae .

  15. The clinically approved drugs amiodarone, dronedarone and verapamil inhibit filovirus cell entry.

    PubMed

    Gehring, Gerrit; Rohrmann, Katrin; Atenchong, Nkacheh; Mittler, Eva; Becker, Stephan; Dahlmann, Franziska; Pöhlmann, Stefan; Vondran, Florian W R; David, Sascha; Manns, Michael P; Ciesek, Sandra; von Hahn, Thomas

    2014-08-01

    Filoviruses such as Ebola virus and Marburg virus cause a severe haemorrhagic fever syndrome in humans for which there is no specific treatment. Since filoviruses use a complex route of cell entry that depends on numerous cellular factors, we hypothesized that there may be drugs already approved for human use for other indications that interfere with signal transduction or other cellular processes required for their entry and hence have anti-filoviral properties. We used authentic filoviruses and lentiviral particles pseudotyped with filoviral glycoproteins to identify and characterize such compounds. We discovered that amiodarone, a multi-ion channel inhibitor and adrenoceptor antagonist, is a potent inhibitor of filovirus cell entry at concentrations that are routinely reached in human serum during anti-arrhythmic therapy. A similar effect was observed with the amiodarone-related agent dronedarone and the L-type calcium channel blocker verapamil. Inhibition by amiodarone was concentration dependent and similarly affected pseudoviruses as well as authentic filoviruses. Inhibition of filovirus entry was observed with most but not all cell types tested and was accentuated by the pre-treatment of cells, indicating a host cell-directed mechanism of action. The New World arenavirus Guanarito was also inhibited by amiodarone while the Old World arenavirus Lassa and members of the Rhabdoviridae (vesicular stomatitis virus) and Bunyaviridae (Hantaan) families were largely resistant. The ion channel blockers amiodarone, dronedarone and verapamil inhibit filoviral cell entry. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Exposure time independent summary statistics for assessment of drug dependent cell line growth inhibition

    PubMed Central

    2014-01-01

    Background In vitro generated dose-response curves of human cancer cell lines are widely used to develop new therapeutics. The curves are summarised by simplified statistics that ignore the conventionally used dose-response curves’ dependency on drug exposure time and growth kinetics. This may lead to suboptimal exploitation of data and biased conclusions on the potential of the drug in question. Therefore we set out to improve the dose-response assessments by eliminating the impact of time dependency. Results First, a mathematical model for drug induced cell growth inhibition was formulated and used to derive novel dose-response curves and improved summary statistics that are independent of time under the proposed model. Next, a statistical analysis workflow for estimating the improved statistics was suggested consisting of 1) nonlinear regression models for estimation of cell counts and doubling times, 2) isotonic regression for modelling the suggested dose-response curves, and 3) resampling based method for assessing variation of the novel summary statistics. We document that conventionally used summary statistics for dose-response experiments depend on time so that fast growing cell lines compared to slowly growing ones are considered overly sensitive. The adequacy of the mathematical model is tested for doxorubicin and found to fit real data to an acceptable degree. Dose-response data from the NCI60 drug screen were used to illustrate the time dependency and demonstrate an adjustment correcting for it. The applicability of the workflow was illustrated by simulation and application on a doxorubicin growth inhibition screen. The simulations show that under the proposed mathematical model the suggested statistical workflow results in unbiased estimates of the time independent summary statistics. Variance estimates of the novel summary statistics are used to conclude that the doxorubicin screen covers a significant diverse range of responses ensuring it is

  17. Evaluation of human D-amino acid oxidase inhibition by anti-psychotic drugs in vitro.

    PubMed

    Shishikura, Miho; Hakariya, Hitomi; Iwasa, Sumiko; Yoshio, Takashi; Ichiba, Hideaki; Yorita, Kazuko; Fukui, Kiyoshi; Fukushima, Takeshi

    2014-06-01

    It is of importance to determine whether antipsychotic drugs currently prescribed for schizophrenia exert D-amino acid oxidase (DAO)-inhibitory effects. We first investigated whether human (h)DAO can metabolize D-kynurenine (D-KYN) to produce the fluorescent compound kynurenic acid (KYNA) by using high-performance liquid chromatography with mass spectrometry, and fluorescence spectrometry. After confirmation of KYNA production from D-KYN by hDAO, 8 first- and second-generation antipsychotic drugs, and 6 drugs often prescribed concomitantly, were assayed for hDAO-inhibitory effects by using in vitro fluorometric methods with D-KYN as the substrate. DAO inhibitors 3-methylpyrazole-5-carboxylic acid and 4H-thieno[3,2-b]pyrrole-5-carboxylic acid inhibited KYNA production in a dose-dependent manner. Similarly, the second-generation antipsychotics blonanserin and risperidone were found to possess relatively strong hDAO-inhibitory effects in vitro (5.29 ± 0.47 μM and 4.70 ± 0.17 μM, respectively). With regard to blonanserin and risperidone, DAO-inhibitory effects should be taken into consideration in the context of their in vivo pharmacotherapeutic efficacy.

  18. Structural Insights into Drug Processing by Human Carboxylesterase 1: Tamoxifen, Mevastatin, and Inhibition by Benzil

    SciTech Connect

    Fleming, Christopher D.; Bencharit, Sompop; Edwards, Carol C.

    2010-07-19

    Human carboxylesterase 1 (hCE1) exhibits broad substrate specificity and is involved in xenobiotic processing and endobiotic metabolism. We present and analyze crystal structures of hCE1 in complexes with the cholesterol-lowering drug mevastatin, the breast cancer drug tamoxifen, the fatty acyl ethyl ester (FAEE) analogue ethyl acetate, and the novel hCE1 inhibitor benzil. We find that mevastatin does not appear to be a substrate for hCE1, and instead acts as a partially non-competitive inhibitor of the enzyme. Similarly, we show that tamoxifen is a low micromolar, partially non-competitive inhibitor of hCE1. Further, we describe the structural basis for the inhibition ofmore » hCE1 by the nanomolar-affinity dione benzil, which acts by forming both covalent and non-covalent complexes with the enzyme. Our results provide detailed insights into the catalytic and non-catalytic processing of small molecules by hCE1, and suggest that the efficacy of clinical drugs may be modulated by targeted hCE1 inhibitors.« less

  19. Structural insights into drug processing by human carboxylesterase 1: tamoxifen, mevastatin, and inhibition by benzil.

    PubMed

    Fleming, Christopher D; Bencharit, Sompop; Edwards, Carol C; Hyatt, Janice L; Tsurkan, Lyudmila; Bai, Feng; Fraga, Charles; Morton, Christopher L; Howard-Williams, Escher L; Potter, Philip M; Redinbo, Matthew R

    2005-09-09

    Human carboxylesterase 1 (hCE1) exhibits broad substrate specificity and is involved in xenobiotic processing and endobiotic metabolism. We present and analyze crystal structures of hCE1 in complexes with the cholesterol-lowering drug mevastatin, the breast cancer drug tamoxifen, the fatty acyl ethyl ester (FAEE) analogue ethyl acetate, and the novel hCE1 inhibitor benzil. We find that mevastatin does not appear to be a substrate for hCE1, and instead acts as a partially non-competitive inhibitor of the enzyme. Similarly, we show that tamoxifen is a low micromolar, partially non-competitive inhibitor of hCE1. Further, we describe the structural basis for the inhibition of hCE1 by the nanomolar-affinity dione benzil, which acts by forming both covalent and non-covalent complexes with the enzyme. Our results provide detailed insights into the catalytic and non-catalytic processing of small molecules by hCE1, and suggest that the efficacy of clinical drugs may be modulated by targeted hCE1 inhibitors.

  20. A thiopurine drug inhibits West Nile virus production in cell culture, but not in mice.

    PubMed

    Lim, Pei-Yin; Keating, Julie A; Hoover, Spencer; Striker, Rob; Bernard, Kristen A

    2011-01-01

    Many viruses within the Flavivirus genus cause significant disease in humans; however, effective antivirals against these viruses are not currently available. We have previously shown that a thiopurine drug, 6-methylmercaptopurine riboside (6MMPr), inhibits replication of distantly related viruses within the Flaviviridae family in cell culture, including bovine viral diarrhea virus and hepatitis C virus replicon. Here we further examined the potential antiviral effect of 6MMPr on several diverse flaviviruses. In cell culture, 6MMPr inhibited virus production of yellow fever virus, dengue virus-2 (DENV-2) and West Nile virus (WNV) in a dose-dependent manner, and DENV-2 was significantly more sensitive to 6MMPr treatment than WNV. We then explored the use of 6MMPr as an antiviral against WNV in an immunocompetent mouse model. Once a day treatment of mice with 0.5 mg 6MMPr was just below the toxic dose in our mouse model, and this dose was used in subsequent studies. Mice were treated with 6MMPr immediately after subcutaneous inoculation with WNV for eight consecutive days. Treatment with 6MMPr exacerbated weight loss in WNV-inoculated mice and did not significantly affect mortality. We hypothesized that 6MMPr has low bioavailability in the central nervous system (CNS) and examined the effect of pre-treatment with 6MMPr on viral loads in the periphery and CNS. Pre-treatment with 6MMPr had no significant effect on viremia or viral titers in the periphery, but resulted in significantly higher viral loads in the brain, suggesting that the effect of 6MMPr is tissue-dependent. In conclusion, despite being a potent inhibitor of flaviviruses in cell culture, 6MMPr was not effective against West Nile disease in mice; however, further studies are warranted to reduce the toxicity and/or improve the bioavailability of this potential antiviral drug.

  1. Amino acid conjugated antimicrobial drugs: Synthesis, lipophilicity- activity relationship, antibacterial and urease inhibition activity.

    PubMed

    Ullah, Atta; Iftikhar, Fatima; Arfan, Muhammad; Batool Kazmi, Syeda Tayyaba; Anjum, Muhammad Naveed; Haq, Ihsan-Ul; Ayaz, Muhammad; Farooq, Sadia; Rashid, Umer

    2018-02-10

    Present work describes the in vitro antibacterial evaluation of some new amino acid conjugated antimicrobial drugs. Structural modification was attempted on the three existing antimicrobial pharmaceuticals namely trimethoprim, metronidazole, isoniazid. Twenty one compounds from seven series of conjugates of these drugs were synthesized by coupling with some selected Boc-protected amino acids. The effect of structural features and lipophilicity on the antibacterial activity was investigated. The synthesized compounds were evaluated against five standard American type culture collection (ATCC) i.e. Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi strains of bacteria. Our results identified a close relationship between the lipophilicity and the activity. Triazine skeleton proved beneficial for the increase in hydrophobicity and potency. Compounds with greater hydrophobicity have shown excellent activities against Gram-negative strains of bacteria than Gram-positive. 4-amino unsubstituted trimethoprim-triazine derivative 7b have shown superior activity with MIC = 3.4 μM (2 μg/mL) for S. aureus and 1.1 μM (0.66 μg/mL) for E. coli. The synthesized compounds were also evaluated for their urease inhibition study. Microbial urease from Bacillus pasteurii was chosen for this study. Triazine derivative 7a showed excellent inhibition with IC 50  = 6.23 ± 0.09 μM. Docking studies on the crystal structure of B. pasteurii urease (PDB ID 4UBP) were carried out. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Studies on cadmium-induced inhibition of hepatic microsomal drug biotransformation in the rat.

    PubMed Central

    Schnell, R C; Means, J R; Roberts, S A; Pence, D H

    1979-01-01

    Cadmium is a potent inhibitor of hepatic microsomal drug biotransformation in the rat. Male rats receiving a single intraperitoneal dose of cadmium exhibit significant decreases in hepatic microsomal metabolism of a variety of substrates. The threshold cadmium dose is 0.84 mg Cd/kg, and the effect lasts at least 28 days. Mechanistically, the inhibitory effect results from decreased cytochrome P-450 content since cadmium does not alter NADPH cytochrome c reductase activity. This effect is also observed following acute oral administration of cadmium in doses greater than 80 mg Cd/kg but is not observed following chronic administration of the metal via drinking water in concentrations of 5-200 ppm for periods ranging from 2 to 50 weeks. A tolerance to the inhibitory cadmium effect is observed if male rats are pretreated with subthreshold doses of the metal prior to the challenge cadmium dose. The degree of tolerance can be overcome by increasing the challenge dose of cadmium. Characterization of the tolerance phenomenon in terms of onset, duration, and intensity reveals a good correlation with the kinetics of metallothionein production, suggesting that the underlying basis for the tolerance phenomenon is likely the induction of metallothionein. A sex-related difference in the inhibitory effect of cadmium was observed. Cadmium did not inhibit the metabolism of hexobarbital or ethylmorphine in female rats but did inhibit that of aniline or zoxazolamine. Cadmium did not lower cytochrome P-450 content in female rats. PMID:488042

  3. Natural products inhibiting the ubiquitin-proteasome proteolytic pathway, a target for drug development.

    PubMed

    Tsukamoto, Sachiko; Yokosawa, Hideyoshi

    2006-01-01

    The ubiquitin-proteasome proteolytic pathway plays a major role in selective protein degradation and regulates various cellular events including cell cycle progression, transcription, DNA repair, signal transduction, and immune response. Ubiquitin, a highly conserved small protein in eukaryotes, attaches to a target protein prior to degradation. The polyubiquitin chain tagged to the target protein is recognized by the 26S proteasome, a high-molecular-mass protease subunit complex, and the protein portion is degraded by the 26S proteasome. The potential of specific proteasome inhibitors, which act as anti-cancer agents, is now under intensive investigation, and bortezomib (PS-341), a proteasome inhibitor, has been recently approved by FDA for multiple myeloma treatment. Since ubiquitination of proteins requires the sequential action of three enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin-protein ligase (E3), and polyubiquitination is a prerequisite for proteasome-mediated protein degradation, inhibitors of E1, E2, and E3 are reasonably thought to be drug candidates for treatment of diseases related to ubiquitination. Recently, various compounds inhibiting the ubiquitin-proteasome pathway have been isolated from natural resources. We also succeeded in isolating inhibitors against the proteasome and E1 enzyme from marine natural resources. In this review, we summarize the structures and biological activities of natural products that inhibit the ubiquitin-proteasome proteolytic pathway.

  4. Inhibition of the NorA multi-drug transporter by oxygenated monoterpenes.

    PubMed

    Coêlho, Mayara Ladeira; Ferreira, Josie Haydée Lima; de Siqueira Júnior, José Pinto; Kaatz, Glenn W; Barreto, Humberto Medeiros; de Carvalho Melo Cavalcante, Ana Amélia

    2016-10-01

    The aim of this study was to investigate intrinsic antimicrobial activity of three monoterpenes nerol, dimethyl octanol and estragole, against bacteria and yeast strains, as well as, investigate if these compounds are able to inhibit the NorA efflux pump related to fluoroquinolone resistance in Staphylococcus aureus. Minimal inhibitory concentrations (MICs) of the monoterpenes against Staphylococcus aureus, Escherichia coli and Candida albicans strains were determined by micro-dilution assay. MICs of the norfloxacin against a S. aureus strain overexpressing the NorA protein were determined in the absence or in the presence of the monoterpenes at subinhibitory concentrations, aiming to verify the ability of this compounds act as efflux pump inhibitors. The monoterpenes were inactive against S. aureus however the nerol was active against E. coli and C. albicans. The addition of the compounds to growth media at sub-inhibitory concentrations enhanced the activity of norfloxacin against S. aureus SA1199-B. This result shows that bioactives tested, especially the nerol, are able to inhibit NorA efflux pump indicating a potential use as adjuvants of norfloxacin for therapy of infections caused by multi-drug resistant S. aureus strains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Drug-induced in vitro inhibition of neutrophil-endothelial cell adhesion.

    PubMed Central

    Pellegatta, F.; Lu, Y.; Radaelli, A.; Zocchi, M. R.; Ferrero, E.; Chierchia, S.; Gaja, G.; Ferrero, M. E.

    1996-01-01

    1. Leukocyte-endothelial cell interactions play an important role during ischaemia-reperfusion events. Adhesion molecules are specifically implicated in this interaction process. 2. Since defibrotide has been shown to be an efficient drug in reducing damage due to ischaemia-reperfusion in many experimental models, we analysed the effect of defibrotide in vitro on leukocyte adhesion to endothelial cells in basal conditions and after their stimulation. 3. In basal conditions, defibrotide (1000 micrograms ml-1) partially inhibited leukocyte adhesion to endothelial cells by 17.3% +/- 3.6 (P < 0.05), and after endothelial cell stimulation (TNF-alpha, 500 u ml-1) or after leukocyte stimulation (fMLP, 10(-7) M), it inhibited leukocyte adhesion by 26.5% +/- 3.4 and 32.4% +/- 1.8, respectively (P < 0.05). 4. In adhesion blockage experiments, the use of the monoclonal antibody anti-CD31 (5 micrograms ml-1) did not demonstrate a significant inhibitory effect whereas use of the monoclonal antibody anti-LFA-1 (5 micrograms ml-1) significantly interfered with the effect of defibrotide. 5. This result was confirmed in NIH/3T3-ICAM-1 transfected cells. 6. We conclude that defibrotide is able to interfere with leukocyte adhesion to endothelial cells mainly in activated conditions and that the ICAM-1/LFA-1 adhesion system is involved in the defibrotide mechanism of action. PMID:8762067

  6. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol

    SciTech Connect

    Kadam, Rameshwar U.; Wilson, Ian A.

    The broad-spectrum antiviral drug Arbidol shows efficacy against influenza viruses by targeting the hemagglutinin (HA) fusion machinery. However, the structural basis of the mechanism underlying fusion inhibition by Arbidol has remained obscure, thereby hindering its further development as a specific and optimized influenza therapeutic. We determined crystal structures of Arbidol in complex with influenza virus HA from pandemic 1968 H3N2 and recent 2013 H7N9 viruses. Arbidol binds in a hydrophobic cavity in the HA trimer stem at the interface between two protomers. This cavity is distal to the conserved epitope targeted by broadly neutralizing stem antibodies and is ~16 Åmore » from the fusion peptide. Arbidol primarily makes hydrophobic interactions with the binding site but also induces some conformational rearrangements to form a network of inter- and intraprotomer salt bridges. By functioning as molecular glue, Arbidol stabilizes the prefusion conformation of HA that inhibits the large conformational rearrangements associated with membrane fusion in the low pH of the endosome. This unique binding mode compared with the small-molecule inhibitors of other class I fusion proteins enhances our understanding of how small molecules can function as fusion inhibitors and guides the development of broad-spectrum therapeutics against influenza virus.« less

  7. Molecular Insights into Human Monoamine Oxidase B Inhibition by the Glitazone Antidiabetes Drugs

    PubMed Central

    2011-01-01

    The widely employed antidiabetic drug pioglitazone (Actos) is shown to be a specific and reversible inhibitor of human monoamine oxidase B (MAO B). The crystal structure of the enzyme–inhibitor complex shows that the R-enantiomer is bound with the thiazolidinedione ring near the flavin. The molecule occupies both substrate and entrance cavities of the active site, establishing noncovalent interactions with the surrounding amino acids. These binding properties differentiate pioglitazone from the clinically used MAO inhibitors, which act through covalent inhibition mechanisms and do not exhibit a high degree of MAO A versus B selectivity. Rosiglitazone (Avandia) and troglitazone, other members of the glitazone class, are less selective in that they are weaker inhibitors of both MAO A and MAO B. These results suggest that pioglitazone may have utility as a “repurposed” neuroprotectant drug in retarding the progression of disease in Parkinson's patients. They also provide new insights for the development of reversible isoenzyme-specific MAO inhibitors. PMID:22282722

  8. PREPARATION, DRUG RELEASE, AND CELL GROWTH INHIBITION OF A GELATIN – DOXORUBICIN CONJUGATE

    PubMed Central

    Wu, Darren C.; Cammarata, Christopher R.; Park, Hyun Joo; Rhodes, Brian T.; Ofner, Clyde M.

    2013-01-01

    Purpose To demonstrate the feasibility of a novel macromolecular delivery system for doxorubicin (DOX) which combines pH dependent DOX release with a high molecular weight and biodegradable gelatin carrier. Methods DOX was conjugated to gelatin using an acid labile hydrazone bond and a glycylglycine linker. The gelatin-doxorubicin conjugate (G-DOX) was evaluated for hydrazide and DOX content by spectrophotometry, molecular weight by HPLC-SEC, in vitro DOX release at various pH, and cell growth inhibition using EL4 mouse lymphoma and PC3 human prostate cells. Results G-DOX hydrazide and DOX content was 47% and 5-7%, respectively of theoretical gelatin carboxylic acid sites. During preparation of G-DOX, the molecular weight decreased to 22 kDa. DOX release was 48% in pH 4.8 phosphate buffer, 22% at pH 6.5, but 10% at pH 7.4. The G-DOX IC50 values in EL4 and PC3 cells were 0.26 μM and 0.77 μM, respectively; the latter value 3 times greater than that of free DOX. Conclusions A 22 kDa macromolecular DOX conjugate containing 3.4-5.0% w/w DOX has been prepared. The pH dependent drug release in combination with a biodegradable gelatin carrier offer potential therapeutic advantages of enhanced tumor cell localization and reduced systemic toxicities of the drug. PMID:23686374

  9. Oleamide derivatives are prototypical anti-metastasis drugs that act by inhibiting Connexin 26.

    PubMed

    Nojima, Hiroshi; Ohba, Yusuke; Kita, Yasuyuki

    2007-09-01

    Despite considerable research, metastasis remains a major challenge in the clinical management of cancer. Recent reports show that abnormally augmented expression of Cx26 is responsible for the enhanced spontaneous metastasis of mouse BL6 melanoma cells. The function of Cx26 appears to be responsible for this phenotype since exogenous expression of a dominant-negative form of Cx26 and oleamide derivatives called MI-18 and MI-22 that specifically inhibit Cx26-mediated gap junction-mediated intercellular communications (GJIC) prevent the spontaneous metastasis of BL6 cells. As expected from their structural similarity to oleic acid (the major component of olive oil), both MI-18 and MI-22 are safe drugs; nonetheless, they are potent inhibitors of the spontaneous metastasis of BL6 mouse melanoma cells. Thus, they are a novel prototype of an anti-metastasis drug that has minimal side effects. While the primary tumors do not necessarily show strong Cx26-immunostaining signals, pronounced Cx26 expression is detected in the highly invasive tumor regions; it is also more frequently observed in metastasized tumors. Thus, Cx26 expression may be useful as a prognostic tool that can predict the existence of highly metastatic cancer cells in clinical samples.

  10. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels

    PubMed Central

    Chauhan, Vikash P.; Martin, John D.; Liu, Hao; Lacorre, Delphine A.; Jain, Saloni R.; Kozin, Sergey V.; Stylianopoulos, Triantafyllos; Mousa, Ahmed S.; Han, Xiaoxing; Adstamongkonkul, Pichet; Popović, Zoran; Huang, Peigen; Bawendi, Moungi G.; Boucher, Yves; Jain, Rakesh K.

    2013-01-01

    Cancer and stromal cells actively exert physical forces (solid stress) to compress tumour blood vessels, thus reducing vascular perfusion. Tumour interstitial matrix also contributes to solid stress, with hyaluronan implicated as the primary matrix molecule responsible for vessel compression because of its swelling behaviour. Here we show, unexpectedly, that hyaluronan compresses vessels only in collagen-rich tumours, suggesting that collagen and hyaluronan together are critical targets for decompressing tumour vessels. We demonstrate that the angiotensin inhibitor losartan reduces stromal collagen and hyaluronan production, associated with decreased expression of profibrotic signals TGF-β1, CCN2 and ET-1, downstream of angiotensin-II-receptor-1 inhibition. Consequently, losartan reduces solid stress in tumours resulting in increased vascular perfusion. Through this physical mechanism, losartan improves drug and oxygen delivery to tumours, thereby potentiating chemotherapy and reducing hypoxia in breast and pancreatic cancer models. Thus, angiotensin inhibitors —inexpensive drugs with decades of safe use — could be rapidly repurposed as cancer therapeutics. PMID:24084631

  11. Mutually Exclusive, Complementary, or . . .

    ERIC Educational Resources Information Center

    Schloemer, Cathy G.

    2016-01-01

    Whether students are beginning their study of probability or are well into it, distinctions between complementary sets and mutually exclusive sets can be confusing. Cathy Schloemer writes in this article that for years she used typical classroom examples but was not happy with the student engagement or the level of understanding they produced.…

  12. Mutual Adaptaion in Action

    ERIC Educational Resources Information Center

    Siskin, Leslie Santee

    2016-01-01

    Building on an expanded concept of mutual adaptation, this chapter explores a distinctive and successful aspect of International Baccalaureate's effort to scale up, as they moved to expand their programs and support services in Title I schools. Based on a three-year, mixed-methods study, it offers a case where we see not only local adaptations…

  13. Melanin Protects Paracoccidioides brasiliensis from the Effects of Antimicrobial Photodynamic Inhibition and Antifungal Drugs

    PubMed Central

    Baltazar, Ludmila Matos; Werneck, Silvia Maria Cordeiro; Soares, Betânia Maria; Ferreira, Marcus Vinicius L.; Souza, Danielle G.; Pinotti, Marcos; Santos, Daniel Assis

    2015-01-01

    Paracoccidioidomycosis (PCM) is a public health concern in Latin America and South America that when not correctly treated can lead to patient death. In this study, the influence of melanin produced by Paracoccidioides spp. on the effects of treatment with antimicrobial photodynamic inhibition (aPI) and antifungal drugs was evaluated. aPI was performed using toluidine blue (TBO) as a photosensitizer and a 630-nm light-emitting diode (LED) light. The antifungals tested were itraconazole and amphotericin B. We evaluated the effects of each approach, aPI or antifungals, against nonmelanized and melanized yeast cells by performing susceptibility tests and by quantifying oxidative and nitrosative bursts during the experiments. aPI reduced nonmelanized cells by 3.0 log units and melanized cells by 1.3 log units. The results showed that melanization protects the fungal cell, probably by acting as a scavenger of nitric oxide and reactive oxygen species, but not of peroxynitrite. Melanin also increased the MICs of itraconazole and amphotericin B, and the drugs were fungicidal for nonmelanized and fungistatic for melanized yeast cells. Our study shows that melanin production by Paracoccidioides yeast cells serves a protective function during aPI and treatment with itraconazole and amphotericin B. The results suggest that melanin binds to the drugs, changing their antifungal activities, and also acts as a scavenger of reactive oxygen species and nitric oxide, but not of peroxynitrite, indicating that peroxynitrite is the main radical that is responsible for fungal death after aPI. PMID:25896704

  14. Inhibition of bacterial carbonic anhydrases and zinc proteases: from orphan targets to innovative new antibiotic drugs.

    PubMed

    Supuran, C T

    2012-01-01

    Zinc-containing enzymes, such as carbonic anhydrases (CAs) and metalloproteases (MPs) play critical functions in bacteria, being involved in various steps of their life cycle, which are important for survival, colonization, acquisition of nutrients for growth and proliferation, facilitation of dissemination, invasion and pathogenicity. The development of resistance to many classes of clinically used antibiotics emphasizes the need of new antibacterial drug targets to be explored. There is a wealth of data regarding bacterial CAs and zinc MPs present in many pathogenic species, such as Neisseria spp., Helycobacter pylori Escherichia coli, Mycobacterium tuberculosis, Brucella spp., Streptococcus pneumoniae, Salmonella enterica, Haemophilus influenzae, Listeria spp, Vibrio spp., Pseudomonas aeruginosa, Legionella pneumophila, Streptomyces spp., Clostridium spp., Enterococcus spp., etc. Some of these enzymes have been cloned, purified and characterized by crystallographic techniques. However, for the moment, few potent and specific inhibitors for bacterial MPs have been reported except for Clostridium histolyticum collagenase, botulinum and tetanus neurotoxin and anthrax lethal factor, which will be reviewed in this article. Bacteria encode α-,β-, and/or γ-CA families, but up to now only the first two classes have been investigated in some detail in different species. The α-CAs from Neisseria spp. and H. pylori as well as the β-class enzymes from E. coli, H. pylori, M. tuberculosis, Brucella spp., S. pneumoniae, S. enterica and H. influenzae have been cloned and characterized. The catalytic/inhibition mechanisms of these CAs are well understood as X-ray crystal structures are available for some of them, but no adducts of these enzymes with inhibitors have been characterized so far. In vitro and in vivo studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates have been reported. Only for Neisseria spp., H. pylori, B. suis and S

  15. Inhibition of the high affinity myo-inositol transport system: a common mechanism of action of antibipolar drugs?

    PubMed

    Lubrich, B; van Calker, D

    1999-10-01

    The mechanism of action of antibipolar drugs like lithium, carbamazepine, and valproate that are used in the treatment of manic-depressive illness, is unknown. Lithium is believed to act through uncompetitive inhibition of inositolmonophosphatase, which results in a depletion of neural cells of inositol and a concomitant modulation of phosphoinositol signaling. Here, we show that lithium ions, carbamazepine, and valproate, but not the tricyclic antidepressant amitriptyline, inhibit at therapeutically relevant concentrations and with a time course similar to their clinical actions the high affinity myo-inositol transport in astrocyte-like cells and downregulate the level of the respective mRNA. Inhibition of inositol uptake could thus represent an additional pathway for inositol depletion, which might be relevant in the mechanism of action of all three antibipolar drugs.

  16. Cyclosporine-inhibitable Cerebral Drug Transport Does not Influence Clinical Methadone Pharmacodynamics

    PubMed Central

    Meissner, Konrad; Blood, Jane; Francis, Amber M.; Yermolenka, Viktar; Kharasch, Evan D.

    2015-01-01

    Background Interindividual variability and drug interaction studies suggest that blood-brain barrier drug transporters mediate human methadone brain biodistribution. In vitro and animal studies suggest that methadone is a substrate for the efflux transporter P-glycoprotein, and that P-glycoprotein-mediated transport influences brain access and pharmacologic effect. This investigation tested whether methadone is a transporter substrate in humans. Methods Healthy volunteers received oral (N=16) or IV (N=12) methadone in different crossover protocols after nothing (control) or the validated P-glycoprotein inhibitor cyclosporine (4.5 mg/kg orally twice daily for 4 days, or 5 mg/kg IV over 2 hr). Plasma and urine methadone and metabolite concentrations were measured by mass spectrometry. Methadone effects were measured by miosis and thermal analgesia (maximally tolerated temperature and verbal analog scale rating of discreet temperatures). Results Cyclosporine marginally but significantly decreased methadone plasma concentrations and apparent oral clearance, but had no effect on methadone renal clearance or on hepatic N-demethylation. Cyclosporine had no effect on miosis, or on R-methadone concentration-miosis relationships after either oral or IV methadone. Peak miosis was similar in controls and cyclosporine-treated subjects after oral methadone (1.4 ± 0.4 and 1.3 ± 0.5 mm/mg, respectively) and IV methadone (3.1 ± 1.0 and 3.2 ± 0.8 mm respectively). Methadone increased maximally tolerated temperature, but analgesia testing was confounded by cyclosporine-related pain. Conclusions Cyclosporine did not affect methadone pharmacodynamics. This result does not support a role for cyclosporine-inhibitable transporters mediating methadone brain access and biodistribution. PMID:25072223

  17. The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis.

    PubMed

    Nelson, Michaela; Yang, Ming; Dowle, Adam A; Thomas, Jerry R; Brackenbury, William J

    2015-01-27

    Voltage-gated Na(+) channels (VGSCs) are heteromeric protein complexes containing pore-forming α subunits and smaller, non-pore-forming β subunits. VGSCs are classically expressed in electrically excitable cells, e.g. neurons. VGSCs are also expressed in tumour cells, including breast cancer (BCa) cells, where they enhance cellular migration and invasion. However, despite extensive work defining in detail the molecular mechanisms underlying the expression of VGSCs and their pro-invasive role in cancer cells, there has been a notable lack of clinically relevant in vivo data exploring their value as potential therapeutic targets. We have previously reported that the VGSC-blocking antiepileptic drug phenytoin inhibits the migration and invasion of metastatic MDA-MB-231 cells in vitro. The purpose of the present study was to establish whether VGSCs might be viable therapeutic targets by testing the effect of phenytoin on tumour growth and metastasis in vivo. We found that expression of Nav1.5, previously detected in MDA-MB-231 cells in vitro, was retained on cells in orthotopic xenografts. Treatment with phenytoin, at a dose equivalent to that used to treat epilepsy (60 mg/kg; daily), significantly reduced tumour growth, without affecting animal weight. Phenytoin also reduced cancer cell proliferation in vivo and invasion into surrounding mammary tissue. Finally, phenytoin significantly reduced metastasis to the liver, lungs and spleen. This is the first study showing that phenytoin reduces breast tumour growth and metastasis in vivo. We propose that pharmacologically targeting VGSCs, by repurposing antiepileptic or antiarrhythmic drugs, should be further studied as a potentially novel anti-cancer therapy.

  18. Gemfibrozil, a Lipid-lowering Drug, Inhibits the Induction of Nitric-oxide Synthase in Human Astrocytes*

    PubMed Central

    Pahan, Kalipada; Jana, Malabendu; Liu, Xiaojuan; Taylor, Bradley S.; Wood, Charles; Fischer, Susan M.

    2007-01-01

    Gemfibrozil, a lipid-lowering drug, inhibited cytokine-induced production of NO and the expression of inducible nitric-oxide synthase (iNOS) in human U373MG astroglial cells and primary astrocytes. Similar to gemfibrozil, clofibrate, another fibrate drug, also inhibited the expression of iNOS. Inhibition of human iNOS promoter-driven luciferase activity by gemfibrozil in cytokine-stimulated U373MG astroglial cells suggests that this compound inhibits the transcription of iNOS. Since gemfibrozil is known to activate peroxisome proliferator-activated receptor-α (PPAR-α), we investigated the role of PPAR-α in gemfibrozil-mediated inhibition of iNOS. Gemfibrozil induced peroxisome proliferator-responsive element (PPRE)-dependent luciferase activity, which was inhibited by the expression of ΔhPPAR-α, the dominant-negative mutant of human PPAR-α. However, ΔhPPAR-α was unable to abrogate gemfibrozil-mediated inhibition of iNOS suggesting that gemfibrozil inhibits iNOS independent of PPAR-α. The human iNOS promoter contains consensus sequences for the binding of transcription factors, including interferon-γ (IFN-γ) regulatory factor-1 (IRF-1) binding to interferon-stimulated responsive element (ISRE), signal transducer and activator of transcription (STAT) binding to γ-activation site (GAS), nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and CCAAT/enhancer-binding protein β (C/EBPβ); therefore, we investigated the effect of gemfibrozil on the activation of these transcription factors. The combination of interleukin (IL)-1β and IFN-γ induced the activation of NF-κB, AP-1, C/EBPβ, and GAS but not that of ISRE, suggesting that IRF-1 may not be involved in cytokine-induced expression of iNOS in human astrocytes. Interestingly, gemfibrozil strongly inhibited the activation of NF-κB, AP-1, and C/EBPβ but not that of GAS in cytokine-stimulated astroglial cells. These results suggest that gemfibrozil inhibits the induction of iNOS probably by

  19. On-command drug release from nanochains inhibits growth of breast tumors

    PubMed Central

    Peiris, Pubudu M.; Tam, Morgan; Vicente, Peter; Abramowski, Aaron; Toy, Randall; Bauer, Lisa; Mayer, Aaron; Pansky, Jenna; Doolittle, Elizabeth; Tucci, Samantha; Schmidt, Erik; Shoup, Christopher; Rao, Swetha; Murray, Kaitlyn; Gopalakrishnan, Ramamurthy; Keri, Ruth A.; Basilion, James P.; Griswold, Mark A.; Karathanasis, Efstathios

    2013-01-01

    Purpose To evaluate the ability of radiofrequency (RF)-triggered drug release from a multicomponent chain-shaped nanoparticle to inhibit the growth of an aggressive breast tumor. Methods A two-step solid phase chemistry was employed to synthesize doxorubicin-loaded nanochains, which were composed of three iron oxide nanospheres and one doxorubicin-loaded liposome assembled in a 100-nm-long linear nanochain. The nanochains were tested in the Luc-GFP-4T1 orthotopic mouse model, which is a highly aggressive breast cancer model. The Luc-GFP-4T1 cell line stably expresses firefly luciferase, which allowed the non-invasive in vivo imaging of tumor response to the treatment using bioluminescence imaging (BLI). Results Longitudinal BLI imaging showed that a single nanochain treatment followed by application of RF resulted in an at least 100-fold lower BLI signal compared to the groups treated with nanochains (without RF) or free doxorubicin followed by RF. A statistically significant increase in survival time of the nanochain-treated animals followed by RF (64.3 days) was observed when compared to the nanochain-treated group without RF (35.7 days), free doxorubicin-treated group followed by RF (38.5 days), and the untreated group (30.5 days; n=5 animals per group). Conclusions These studies showed that the combination of RF and nanochains has the potential to effectively treat highly aggressive cancers and prolong survival. PMID:23934254

  20. On-command drug release from nanochains inhibits growth of breast tumors.

    PubMed

    Peiris, Pubudu M; Tam, Morgan; Vicente, Peter; Abramowski, Aaron; Toy, Randall; Bauer, Lisa; Mayer, Aaron; Pansky, Jenna; Doolittle, Elizabeth; Tucci, Samantha; Schmidt, Erik; Shoup, Christopher; Rao, Swetha; Murray, Kaitlyn; Gopalakrishnan, Ramamurthy; Keri, Ruth A; Basilion, James P; Griswold, Mark A; Karathanasis, Efstathios

    2014-06-01

    To evaluate the ability of radiofrequency (RF)-triggered drug release from a multicomponent chain-shaped nanoparticle to inhibit the growth of an aggressive breast tumor. A two-step solid phase chemistry was employed to synthesize doxorubicin-loaded nanochains, which were composed of three iron oxide nanospheres and one doxorubicin-loaded liposome assembled in a 100-nm-long linear nanochain. The nanochains were tested in the 4T1-LUC-GFP orthotopic mouse model, which is a highly aggressive breast cancer model. The 4T1-LUC-GFP cell line stably expresses firefly luciferase, which allowed the non-invasive in vivo imaging of tumor response to the treatment using bioluminescence imaging (BLI). Longitudinal BLI imaging showed that a single nanochain treatment followed by application of RF resulted in an at least 100-fold lower BLI signal compared to the groups treated with nanochains (without RF) or free doxorubicin followed by RF. A statistically significant increase in survival time of the nanochain-treated animals followed by RF (64.3 days) was observed when compared to the nanochain-treated group without RF (35.7 days), free doxorubicin-treated group followed by RF (38.5 days), and the untreated group (30.5 days; n=5 animals per group). These studies showed that the combination of RF and nanochains has the potential to effectively treat highly aggressive cancers and prolong survival.

  1. Prediction of in vivo drug-drug interactions based on mechanism-based inhibition from in vitro data: inhibition of 5-fluorouracil metabolism by (E)-5-(2-Bromovinyl)uracil.

    PubMed

    Kanamitsu, S I; Ito, K; Okuda, H; Ogura, K; Watabe, T; Muro, K; Sugiyama, Y

    2000-04-01

    The fatal drug-drug interaction between sorivudine, an antiviral drug, and 5-fluorouracil (5-FU) has been shown to be caused by a mechanism-based inhibition. In this interaction, sorivudine is converted by gut flora to (E)-5-(2-bromovinyl)uracil (BVU), which is metabolically activated by dihydropyrimidine dehydrogenase (DPD), and the activated BVU irreversibly binds to DPD itself, thereby inactivating it. In an attempt to predict this interaction in vivo from in vitro data, inhibition of 5-FU metabolism by BVU was investigated by using rat and human hepatic cytosol and human recombinant DPD. Whichever enzyme was used, increased inhibition was observed that depended on the preincubation time of BVU and enzyme in the presence of NADPH and BVU concentration. The kinetic parameters obtained for inactivation represented by k(inact) and K'(app) were 2.05 +/- 1.52 min(-1), 69.2 +/- 60.8 microM (rat hepatic cytosol), 2.39 +/- 0.13 min(-1), 48.6 +/- 11.8 microM (human hepatic cytosol), and 0.574 +/- 0.121 min(-1), 2.20 +/- 0.57 microM (human recombinant DPD). The drug-drug interaction in vivo was predicted quantitatively based on a physiologically based pharmacokinetic model, using pharmacokinetic parameters obtained from the literature and kinetic parameters for the enzyme inactivation obtained in the in vitro studies. In rats, DPD was predicted to be completely inactivated by administration of BVU and the area under the curve of 5-FU was predicted to increase 11-fold, which agreed well with the reported data. In humans, a 5-fold increase in the area under the curve of 5-FU was predicted after administration of sorivudine, 150 mg/day for 5 days. Mechanism-based inhibition of drug metabolism is supposed to be very dangerous. We propose that such in vitro studies should be carried out during the drug-developing phase so that in vivo drug-drug interactions can be predicted.

  2. Nonsteroidal anti-inflammatory drug-induced fracture nonunion: an inhibition of angiogenesis?

    PubMed

    Murnaghan, Mark; Li, Gang; Marsh, David R

    2006-11-01

    Approximately 5% to 10% of fractures may result in delayed union or nonunion. The results of research done over the past three decades have shown that the use of nonsteroidal anti-inflammatory drugs (NSAIDs) has an inhibitory effect on fracture repair, but the exact mechanism of action remains to be elucidated. Cancer research has identified that NSAIDs impede cell proliferation by inhibiting angiogenesis. It is proposed that a similar mechanism occurs in the induction of NSAID-induced nonunions. This hypothesis was investigated in a randomized placebo-controlled trial of the NSAID rofecoxib with use of a murine femoral fracture model. Two hundred and forty mice were randomized to receive either the nonsteroidal anti-inflammatory drug rofecoxib (5 mg/kg orally) in a 0.5% methylcellulose solution (the NSAID group) or the 0.5% methylcellulose solution only (the control group). Two hundred and thirty-five of the 240 mice underwent surgery to induce an open transverse middiaphyseal femoral fracture, which was then treated with use of a custom-made external fixator. Five additional animals underwent sham surgery with no fracture induced. Outcomes measures included radiographic assessment, histologic analysis, biomechanical testing, and use of laser Doppler flowmetry to assess blood flow across the fracture gap. Radiography revealed similar healing patterns in both groups; however, at the later stages (day 32), the NSAID group had poorer healing. Histological analysis demonstrated that the control animals healed quicker (at days 24 and 32) and had more callus and less fibrous tissue (at days 8 and 32) than the NSAID animals did. Biomechanical testing found that the control animals were stronger at day 32. Both groups exhibited a similar pattern of blood flow; however, the NSAID group exhibited a lower median flow from day 4 onward (significant at days 4, 16, and 24). Positive correlations were demonstrated between both histological and radiographic assessments of healing

  3. Zoledronic Acid Inhibits Aromatase Activity and Phosphorylation: Potential Mechanism for Additive Zoledronic Acid and Letrozole Drug Interaction

    PubMed Central

    Schech, Amanda J.; Nemieboka, Brandon E.; Brodie, Angela H.

    2012-01-01

    Zoledronic acid (ZA), a bisphosphonate originally indicated for use in osteoporosis, has been reported to exert a direct effect on breast cancer cells, although the mechanism of this effect is currently unknown. Data from the ABCSG-12 and ZO-FAST clinical trials suggest that treatment with the combination of ZA and aromatase inhibitors (AI) result in increased disease free survival in breast cancer patients over AI alone. To determine whether the mechanism of this combination involved inhibition of aromatase, AC-1 cells (MCF-7 human breast cancer cells transfected with an aromatase construct) were treated simultaneously with combinations of ZA and AI letrozole for 72 hours. This combination significantly increased inhibition of aromatase activity of AC-1 cells by compared to letrozole alone. Combination treatment of 1nM letrozole and 1μM and 10μM zoledronic acid resulted in an additive drug interaction on inhibiting cell viability, as measured by MTT assay. Treatment with ZA was found to inhibit phosphorylation of aromatase on serine 473. Zoledronic acid was also shown to be more effective in inhibiting cell viability in aromatase transfected AC-1 cells when compared to inhibition of cell viability observed in non-transfected MCF-7. Estradiol was able to partially rescue the effect of 1μM and 10μM ZA on cell viability following treatment for 72 hours, as shown by a shift to the right in the estradiol dose response curve. In conclusion, these results indicate that the combination of ZA and letrozole results in an additive inhibition of cell viability. Furthermore, ZA alone can inhibit aromatase activity through inhibition of serine phosphorylation events important for aromatase enzymatic activity and contributes to inhibition of cell viability. PMID:22659283

  4. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile☆

    PubMed Central

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-01-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. PMID:23707769

  5. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: a study to assess the drug's cardiac ion channel profile.

    PubMed

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K; Lukacs, Peter; Gawali, Vaibhavkumar S; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licensed as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Therapeutic effects of antibiotic drug tigecycline against cervical squamous cell carcinoma by inhibiting Wnt/β-catenin signaling

    SciTech Connect

    Li, Hui; Jiao, Shun; Li, Xin

    Aberrant activation of the Wnt/β-catenin signaling pathway is common in human cervical cancers and has great potential therapeutic value. We show that tigecycline, a FDA-approved antibiotic drug, targets cervical squamous cell carcinoma through inhibiting Wnt/β-catenin signaling pathway. Tigecycline is effective in inducing apoptosis, inhibiting proliferation and anchorage-independent colony formation of Hela cells. The inhibitory effects of tigecycline are further enhanced upon combination with paclitaxel, a most commonly used chemotherapeutic drug for cervical cancer. In a cervical xenograft model, tigecycline inhibits tumor growth as a single agent and its combination with paclitaxel significantly inhibits more tumor growth throughout the duration ofmore » treatment. We further show that tigecycline decreases level of both cytoplasmic and nuclear β-catenin and suppressed Wnt/β-catenin-mediated transcription through increasing levels of Axin 1 in Hela cells. In addition, stabilization or overexpression of β-catenin using pharmacological and genetic approaches abolished the effects of tigecycline in inhibiting proliferation and inducing apoptosis of Hela cells. Our study suggests that tigecycline is a useful addition to the treatment armamentarium for cervical cancer and targeting Wnt/β-catenin represents a potential therapeutic strategy in cervical cancer. - Highlights: • We repurposed the antibiotic drug tigecycline for cervical cancer treatment. • Tigecycline is effectively against cervical cancer cells in vitro and in vivo. • Combination of tigecycline and paclitaxel is synergistic in targeting Hela cells. • Tigecycline acts on Hela cells through inhibiting Wnt/β-catenin signaling.« less

  7. Drug-protein hydrogen bonds govern the inhibition of the ATP hydrolysis of the multidrug transporter P-glycoprotein.

    PubMed

    Chufan, Eduardo E; Kapoor, Khyati; Ambudkar, Suresh V

    2016-02-01

    P-glycoprotein (P-gp) is a member of the ATP-binding cassette transporter superfamily. This multidrug transporter utilizes energy from ATP hydrolysis for the efflux of a variety of hydrophobic and amphipathic compounds including anticancer drugs. Most of the substrates and modulators of P-gp stimulate its basal ATPase activity, although some inhibit it. The molecular mechanisms that are in play in either case are unknown. In this report, mutagenesis and molecular modeling studies of P-gp led to the identification of a pair of phenylalanine-tyrosine structural motifs in the transmembrane region that mediate the inhibition of ATP hydrolysis by certain drugs (zosuquidar, elacridar and tariquidar), with high affinity (IC50's ranging from 10 to 30nM). Upon mutation of any of these residues, drugs that inhibit the ATPase activity of P-gp switch to stimulation of the activity. Molecular modeling revealed that the phenylalanine residues F978 and F728 interact with tyrosine residues Y953 and Y310, respectively, in an edge-to-face conformation, which orients the tyrosines in such a way that they establish hydrogen-bond contacts with the inhibitor. Biochemical investigations along with transport studies in intact cells showed that the inhibitors bind at a high affinity site to produce inhibition of ATP hydrolysis and transport function. Upon mutation, they bind at lower affinity sites, stimulating ATP hydrolysis and only poorly inhibiting transport. These results also reveal that screening chemical compounds for their ability to inhibit the basal ATP hydrolysis can be a reliable tool to identify modulators with high affinity for P-gp. Published by Elsevier Inc.

  8. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem?

    NASA Astrophysics Data System (ADS)

    Armijo, Leisha M.; Jain, Priyanka; Malagodi, Angelina; Fornelli, F. Zuly; Hayat, Allison; Rivera, Antonio C.; French, Michael; Smyth, Hugh D. C.; Osiński, Marek

    2015-03-01

    Pseudomonas aeruginosa is among the top three leading causative opportunistic human pathogens, possessing one of the largest bacterial genomes and an exceptionally large proportion of regulatory genes therein. It has been known for more than a decade that the size and complexity of the P. aeruginosa genome is responsible for the adaptability and resilience of the bacteria to include its ability to resist many disinfectants and antibiotics. We have investigated the susceptibility of P. aeruginosa bacterial biofilms to iron oxide (magnetite) nanoparticles (NPs) with and without attached drug (tobramycin). We also characterized the susceptibility of zero-valent iron NPs, which are known to inactivate microbes. The particles, having an average diameter of 16 nm were capped with natural alginate, thus doubling the hydrodynamic size. Nanoparticle-drug conjugates were produced via cross-linking drug and alginate functional groups. Drug conjugates were investigated in the interest of determining dosage, during these dosage-curve experiments, NPs unbound to drug were tested in cultures as a negative control. Surprisingly, we found that the iron oxide NPs inhibited bacterial growth, and thus, biofilm formation without the addition of antibiotic drug. The inhibitory dosages of iron oxide NPs were investigated and the minimum inhibitory concentrations are presented. These findings suggest that NP-drug conjugates may overcome the antibiotic drug resistance common in P. aeruginosa infections.

  9. Mutual help in SETIs

    NASA Astrophysics Data System (ADS)

    Melia, F.; Frisch, D. H.

    1985-06-01

    Techniques to establish communication between earth and extraterrestrial intelligent beings are examined analytically, emphasizing that the success of searches for extraterrestrial intelligence (SETIs) depends on the selection by both sender and receiver of one of a few mutually helpful SETI strategies. An equation for estimating the probability that an SETI will result in the recognition of an ETI signal is developed, and numerical results for various SETI strategies are presented in tables. A minimum approach employing 10 40-m 20-kW dish antennas for a 30-yr SETI in a 2500-light-year disk is proposed.

  10. Toxicity of xanthene food dyes by inhibition of human drug-metabolizing enzymes in a noncompetitive manner.

    PubMed

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC(50) values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC(50) values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of (1)O(2) originating on xanthene dyes by light irradiation, because inhibition was prevented by (1)O(2) quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin.

  11. Toxicity of Xanthene Food Dyes by Inhibition of Human Drug-Metabolizing Enzymes in a Noncompetitive Manner

    PubMed Central

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC50 values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC50 values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of 1O2 originating on xanthene dyes by light irradiation, because inhibition was prevented by 1O2 quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016

  12. FKBP12-Dependent Inhibition of Calcineurin Mediates Immunosuppressive Antifungal Drug Action in Malassezia.

    PubMed

    Ianiri, Giuseppe; Applen Clancey, Shelly; Lee, Soo Chan; Heitman, Joseph

    2017-10-24

    has adverse side effects and is not recommended for long treatment periods. Calcineurin inhibitors have been proposed as a suitable alternative to treat patients affected by skin lesions caused by Malassezia Although calcineurin inhibitors are well-known as immunosuppressive drugs, they are also characterized by potent antimicrobial activity. In the present study, we investigated the mechanism of action of FK506 (tacrolimus), ascomycin (FK520), and pimecrolimus in M. furfur and M. sympodialis and found that the conserved immunophilin FKBP12 is the target of these drugs with which it forms a complex that directly binds calcineurin and inhibits its signaling activity. We found that FKBP12 is also required for the additive activity of calcineurin inhibitors with fluconazole. Furthermore, the increasing natural occurrence in fungal pathogen populations of mutator strains poses a high risk for the rapid emergence of drug resistance and adaptation to host defense. This led us to generate an engineered hypermutator msh2 Δ mutant strain of M. sympodialis and genetically evaluate mutational events resulting in a substantially increased rate of resistance to FK506 compared to that of the wild type. Our study paves the way for the novel clinical use of calcineurin inhibitors with lower immunosuppressive activity that could be used clinically to treat a broad range of fungal infections, including skin disorders caused by Malassezia . Copyright © 2017 Ianiri et al.

  13. VX-509 (Decernotinib)-Mediated CYP3A Time-Dependent Inhibition: An Aldehyde Oxidase Metabolite as a Perpetrator of Drug-Drug Interactions.

    PubMed

    Zetterberg, Craig; Maltais, Francois; Laitinen, Leena; Liao, Shengkai; Tsao, Hong; Chakilam, Ananthsrinivas; Hariparsad, Niresh

    2016-08-01

    (R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide (VX-509, decernotinib) is an oral Janus kinase 3 inhibitor that has been studied in patients with rheumatoid arthritis. Patients with rheumatoid arthritis often receive multiple medications, such as statins and steroids, to manage the signs and symptoms of comorbidities, which increases the chances of drug-drug interactions (DDIs). Mechanism-based inhibition is a subset of time-dependent inhibition (TDI) and occurs when a molecule forms a reactive metabolite which irreversibly binds and inactivates drug-metabolizing enzymes, potentially increasing the systemic load to toxic concentrations. Traditionally, perpetrating compounds are screened using human liver microsomes (HLMs); however, this system may be inadequate when the precipitant is activated by a non-cytochrome P450 (P450)-mediated pathway. Even though studies assessing competitive inhibition and TDI using HLM suggested a low risk for CYP3A4-mediated DDI in the clinic, VX-509 increased the area under the curve of midazolam, atorvastatin, and methyl-prednisolone by approximately 12.0-, 2.7-, and 4.3-fold, respectively. Metabolite identification studies using human liver cytosol indicated that VX-509 is converted to an oxidative metabolite, which is the perpetrator of the DDIs observed in the clinic. As opposed to HLM, hepatocytes contain the full complement of drug-metabolizing enzymes and transporters and can be used to assess TDI arising from non-P450-mediated metabolic pathways. In the current study, we highlight the role of aldehyde oxidase in the formation of the hydroxyl-metabolite of VX-509, which is involved in clinically significant TDI-based DDIs and represents an additional example in which a system-dependent prediction of TDI would be evident. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Hypusine modification in eukaryotic initiation factor 5A in rodent cells selected for resistance to growth inhibition by ornithine decarboxylase-inhibiting drugs.

    PubMed Central

    Tome, M E; Gerner, E W

    1996-01-01

    Selection of HTC cells in drugs that inhibit ornithine decarboxylase (ODC) has produced two cell lines, HMOA and DH23A/b, that contain increased amounts of more stable ODC. In addition to alterations in ODC, these cells appear to produce modified eukaryotic initiation factor 5A (eIF-5A) at different rates, a reaction that both requires spermidine and is essential for proliferation. Alterations to the modification of eIF-5A by spermidine cannot be accounted for by changes in eIF-5A protein or modified eIF-5A turnover. Deoxyhypusine synthetase activity is similar in the parental and variant cell lines and is unaltered by growth into plateau phase or by spermidine depletion. The increased rate of eIF-5A modification in DH23A/b cells is due to an increased accumulation of the unmodified eIF-5A precursor. Increased precursor accumulation is not due to increased eIF-5A transcription, but rather it can be attributed to a metabolic accumulation caused by growth under conditions of chronically limiting spermidine. Selection using drugs that inhibit ODC apparently does not cause alterations in the eIF-5A modification pathway. These data support the hypothesis that one of the main effects of spermidine depletion is depletion of the modified eIF-5A pool, and that this is a critical factor in the cytostasis often observed after depletion of cellular polyamines. PMID:8947467

  15. Organotypic three-dimensional cancer cell cultures mirror drug responses in vivo: lessons learned from the inhibition of EGFR signaling

    PubMed Central

    Jacobi, Nico; Seeboeck, Rita; Hofmann, Elisabeth; Schweiger, Helmut; Smolinska, Veronika; Mohr, Thomas; Boyer, Alexandra; Sommergruber, Wolfgang; Lechner, Peter; Pichler-Huebschmann, Corina; Önder, Kamil; Hundsberger, Harald; Wiesner, Christoph; Eger, Andreas

    2017-01-01

    Complex three-dimensional (3D) in vitro models that recapitulate human tumor biology are essential to understand the pathophysiology of the disease and to aid in the discovery of novel anti-cancer therapies. 3D organotypic cultures exhibit intercellular communication, nutrient and oxygen gradients, and cell polarity that is lacking in two-dimensional (2D) monolayer cultures. In the present study, we demonstrate that 2D and 3D cancer models exhibit different drug sensitivities towards both targeted inhibitors of EGFR signaling and broad acting cytotoxic agents. Changes in the kinase activities of ErbB family members and differential expression of apoptosis- and survival-associated genes before and after drug treatment may account for the differential drug sensitivities. Importantly, EGFR oncoprotein addiction was evident only in the 3D cultures mirroring the effect of EGFR inhibition in the clinic. Furthermore, targeted drug efficacy was strongly increased when incorporating cancer-associated fibroblasts into the 3D cultures. Taken together, we provide conclusive evidence that complex 3D cultures are more predictive of the clinical outcome than their 2D counterparts. In the future, 3D cultures will be instrumental for understanding the mode of action of drugs, identifying genotype-drug response relationships and developing patient-specific and personalized cancer treatments. PMID:29296175

  16. Inhibition of Major Drug Metabolizing CYPs by Common Herbal Medicines used by HIV/AIDS Patients in Africa– Implications for Herb-Drug Interactions

    PubMed Central

    Awortwe, Charles; Bouic, Patrick J.; Masimirembwa, Collen M.; Rosenkranz, Bernd

    2015-01-01

    The purpose of this study was to evaluate the potential risk of common herbal medicines used by HIV-infected patients in Africa for herb-drug interactions (HDI). High throughput screening assays consisting of recombinant Cytochrome P450 enzymes (CYPs) and fluorescent probes, and parallel artificial membrane permeability assays (PAMPA) were used. The potential of herbal medicines to cause HDI was ranked according to FDA guidelines for reversible inhibition and categorization of time dependent inhibition was based on the normalized ratio. CYPs 1A2 and 3A4 were most inhibited by the herbal extracts. H. hemerocallidea (IC50 = 0.63 μg/mL and 58 μg/mL) and E. purpurea (IC50 = 20 μg/mL and 12 μg/mL) were the potent inhibitors of CYPs 1A2 and 3A4 respectively. L. frutescens and H. hemerocallidea showed clear time dependent inhibition on CYP3A4. Furthermore, the inhibitory effect of both H. hemerocallidea and L. frutescens before and after PAMPA were identical. The results indicate potential HDI of H. hemerocallidea, L. frutescens and E. purpurea with substrates of the affected enzymes if maximum in vivo concentration is achieved. PMID:24475926

  17. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents.

    PubMed

    Mailloux, Ryan J; Adjeitey, Cyril Nii-Klu; Harper, Mary-Ellen

    2010-10-13

    Uncoupling protein-2 (UCP2) is known to suppress mitochondrial reactive oxygen species (ROS) production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.

  18. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections.

    PubMed

    Karslake, Jason; Maltas, Jeff; Brumm, Peter; Wood, Kevin B

    2016-10-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.

  19. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections

    PubMed Central

    Maltas, Jeff; Brumm, Peter; Wood, Kevin B.

    2016-01-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095

  20. Oxidative stress-induced protein damage inhibits DNA repair and determines mutation risk and anticancer drug effectiveness

    PubMed Central

    McAdam, Elizabeth; Brem, Reto; Karran, Peter

    2016-01-01

    The relationship between sun exposure and non-melanoma skin cancer risk is well established. Solar ultraviolet radiation (UV; wavelengths 280-400 nm) is firmly implicated in skin cancer development. Nucleotide excision repair (NER) protects against cancer by removing potentially mutagenic DNA lesions induced by UVB (280-320 nm). How the 20-fold more abundant UVA (320-400 mn) component of solar UV radiation increases skin cancer risk is not understood. We demonstrate here that the contribution of UVA to the effects of UV radiation on cultured human cells is largely independent of its ability to damage DNA. Instead, the effects of UVA reflect the induction of oxidative stress that causes extensive protein oxidation. Because NER proteins are among those damaged, UVA irradiation inhibits NER and increases the cells’ susceptibility to mutation by UVB. NER inhibition is a common consequence of oxidative stress. Exposure to chemical oxidants, treatment with drugs that deplete cellular antioxidants, and interventions that interfere with glucose metabolism to disrupt the supply of cellular reducing power all inhibit NER. Tumor cells are often in a condition of oxidative stress and one effect of the NER inhibition that results from stress-induced protein oxidation is an increased sensitivity to the anticancer drug cisplatin. Statement of implication: Since NER is both a defence against cancer a significant determinant of cell survival after treatment with anticancer drugs, its attenuation by protein damage under conditions of oxidative-stress has implications for both cancer risk and for the effectiveness of anticancer therapy. PMID:27106867

  1. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    SciTech Connect

    Ma, Hai-Ying, E-mail: cmu4h-mhy@126.com; Sun, Dong-Xue; Cao, Yun-Feng

    2014-05-15

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K{sub i}) were determined for themore » compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K{sub i}) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors.« less

  2. Anti-addiction drug ibogaine inhibits hERG channels: a cardiac arrhythmia risk!

    PubMed Central

    Boehm, Stefan; Sandtner, Walter; Hilber, Karlheinz

    2016-01-01

    Ibogaine, an alkaloid derived from the African shrub Tabernanthe iboga, has shown promising anti-addictive properties in animals. Anecdotal evidence suggests that ibogaine is also anti-addictive in humans. Thus, it alleviates drug craving and impedes relapse of drug use. Although not licensed as therapeutic drug, and despite evidence that ibogaine may disturb the rhythm of the heart, this alkaloid is currently used as an anti-addiction drug in alternative medicine. Here we report that therapeutic concentrations of ibogaine reduce currents through human ERG potassium channels. Thereby, we provide a mechanism by which ibogaine may generate life-threatening cardiac arrhythmias. PMID:22458604

  3. Kinetic studies of the inhibition of a human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme by bile acids and anti-inflammatory drugs.

    PubMed

    Miyabe, Y; Amano, T; Deyashiki, Y; Hara, A; Tsukada, F

    1995-01-01

    We have investigated the steady-state kinetics for a cytosolic 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme of human liver and its inhibition by several bile acids and anti-inflammatory drugs such as indomethacin, flufemanic acid and naproxen. Initial velocity and product inhibition studies performed in the NADP(+)-linked (S)-1-indanol oxidation at pH 7.4 were consistent with a sequential ordered mechanism in which NADP+ binds first and leaves last. The bile acids and drugs, competitive inhibitors with respect to the alcohol substrate, exhibited uncompetitive inhibition with respect to the coenzyme, with Ki values less than 1 microM, whereas indomethacin exhibited noncompetitive inhibition (Ki < 24 microM). The kinetics of the inhibition by a mixture of the two inhibitors suggests that bile acids and drugs, except indomethacin, bind to overlapping sites at the active center of the enzyme-coenzyme binary complex.

  4. Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells.

    PubMed

    Correia, Alexandra; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Almeida, Sérgio; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2015-10-21

    Over the past decade, the potential of polymeric structures has been investigated to overcome many limitations related to nanosized drug carriers by modulating their toxicity, cellular interactions, stability, and drug-release kinetics. In this study, we have developed a successful nanocomposite consisting of undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with an anticancer drug, sorafenib, and surface-conjugated with heptakis(6-amino-6-deoxy)-β-cyclodextrin (HABCD) to show the impact of the surface polymeric functionalization on the physical and biological properties of the drug-loaded nanoparticles. Cytocompatibility studies showed that the UnTHCPSi-HABCD NPs were not toxic to breast cancer cells. HABCD also enhanced the suspensibility and both the colloidal and plasma stabilities of the UnTHCPSi NPs. UnTHCPSi-HABCD NPs showed a significantly increased interaction with breast cancer cells compared to bare NPs and also sustained the drug release. Furthermore, the sorafenib-loaded UnTHCPSi-HABCD NPs efficiently inhibited cell proliferation of the breast cancer cells.

  5. Improved Predictions of Drug-Drug Interactions Mediated by Time-Dependent Inhibition of CYP3A.

    PubMed

    Yadav, Jaydeep; Korzekwa, Ken; Nagar, Swati

    2018-05-07

    Time-dependent inactivation (TDI) of cytochrome P450s (CYPs) is a leading cause of clinical drug-drug interactions (DDIs). Current methods tend to overpredict DDIs. In this study, a numerical approach was used to model complex CYP3A TDI in human-liver microsomes. The inhibitors evaluated included troleandomycin (TAO), erythromycin (ERY), verapamil (VER), and diltiazem (DTZ) along with the primary metabolites N-demethyl erythromycin (NDE), norverapamil (NV), and N-desmethyl diltiazem (NDD). The complexities incorporated into the models included multiple-binding kinetics, quasi-irreversible inactivation, sequential metabolism, inhibitor depletion, and membrane partitioning. The resulting inactivation parameters were incorporated into static in vitro-in vivo correlation (IVIVC) models to predict clinical DDIs. For 77 clinically observed DDIs, with a hepatic-CYP3A-synthesis-rate constant of 0.000 146 min -1 , the average fold difference between the observed and predicted DDIs was 3.17 for the standard replot method and 1.45 for the numerical method. Similar results were obtained using a synthesis-rate constant of 0.000 32 min -1 . These results suggest that numerical methods can successfully model complex in vitro TDI kinetics and that the resulting DDI predictions are more accurate than those obtained with the standard replot approach.

  6. Overexpression of uncoupling protein-2 in cancer: metabolic and heat changes, inhibition and effects on drug resistance.

    PubMed

    Pitt, Michael A

    2015-12-01

    This paper deals with the role of uncoupling protein-2 (UCP2) in cancer. UCP2 is overexpressed in cancer. This overexpression results in uncoupling of mitochondrial oxidative phosphorylation and a shift in production of ATP from mitochondrial oxidative phosphorylation to cytosolic aerobic glycolysis. UCP2 overexpression results in the following changes. Mitochondrial membrane potential (Δψ(m)) is decreased and lactate accumulates. There is a diminished production of reactive oxygen species and apoptosis is inhibited post-exposure to chemotherapeutic agents. There is an increase in heat and entropy production and a departure from the stationary state of non-cancerous tissue. Uncoupling of oxidative phosphorylation may also be caused by protonophores and non-steroidal anti-inflammatory drugs. UCP2 requires activation by superoxide and lipid peroxidation derivatives. As vitamin E inhibits lipid peroxidation, it might be expected that vitamin E would act as a chemotherapeutic agent against cancer. A recent study has shown that vitamin E and another anti-oxidant accelerate cancer progression. UCP2 is inhibited by genipin, chromane compounds and short interfering RNAs (siRNA). Genipin, chromanes and siRNA are taken up by both cancer and non-cancerous cells. Targeting the uptake of these agents by cancer cells by the enhanced permeability and retention effect is considered. Inhibition of UCP2 enhances the action of several anti-cancer agents.

  7. Artemisinin-derived dimer ART-838 potently inhibited human acute leukemias, persisted in vivo, and synergized with antileukemic drugs

    PubMed Central

    Fox, Jennifer M.; Moynihan, James R.; Mott, Bryan T.; Mazzone, Jennifer R.; Anders, Nicole M.; Brown, Patrick A.; Rudek, Michelle A.; Liu, Jun O.; Arav-Boger, Ravit; Posner, Gary H.

    2016-01-01

    Artemisinins, endoperoxide-containing molecules, best known as antimalarials, have potent antineoplastic activity. The established antimalarial, artesunate (AS), and the novel artemisinin-derived trioxane diphenylphosphate dimer 838 (ART-838) inhibited growth of all 23 tested acute leukemia cell lines, reduced cell proliferation and clonogenicity, induced apoptosis, and increased intracellular levels of reactive oxygen species (ROS). ART-838 was 88-fold more potent that AS in vitro, inhibiting all leukemia cell lines at submicromolar concentrations. Both ART-838 and AS cooperated with several established antileukemic drugs and newer kinase inhibitors to inhibit leukemia cell growth. ART-838 had a longer plasma half-life than AS in immunodeficient NOD-SCID-IL2Rgnull (NSG) mice, remaining at effective antileukemic concentrations for >8h. Intermittent cycles of ART-838 inhibited growth of acute leukemia xenografts and primagrafts in NSG mice, at higher potency than AS. Based on these preclinical data, we propose that AS, with its established low toxicity and low cost, and ART-838, with its higher potency and longer persistence in vivo, should be further developed toward integration into antileukemic regimens. PMID:26771236

  8. Assessment of Enzyme Inhibition: A Review with Examples from the Development of Monoamine Oxidase and Cholinesterase Inhibitory Drugs.

    PubMed

    Ramsay, Rona R; Tipton, Keith F

    2017-07-15

    The actions of many drugs involve enzyme inhibition. This is exemplified by the inhibitors of monoamine oxidases (MAO) and the cholinsterases (ChE) that have been used for several pharmacological purposes. This review describes key principles and approaches for the reliable determination of enzyme activities and inhibition as well as some of the methods that are in current use for such studies with these two enzymes. Their applicability and potential pitfalls arising from their inappropriate use are discussed. Since inhibitor potency is frequently assessed in terms of the quantity necessary to give 50% inhibition (the IC 50 value), the relationships between this and the mode of inhibition is also considered, in terms of the misleading information that it may provide. Incorporation of more than one functionality into the same molecule to give a multi-target-directed ligands (MTDLs) requires careful assessment to ensure that the specific target effects are not significantly altered and that the kinetic behavior remains as favourable with the MTDL as it does with the individual components. Such factors will be considered in terms of recently developed MTDLs that combine MAO and ChE inhibitory functions.

  9. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition* | Office of Cancer Genomics

    Cancer.gov

    Acquired drug resistance prevents cancer therapies from achieving stable and complete responses. Emerging evidence implicates a key role for non-mutational drug resistance mechanisms underlying the survival of residual cancer 'persister' cells. The persister cell pool constitutes a reservoir from which drug-resistant tumours may emerge. Targeting persister cells therefore presents a therapeutic opportunity to impede tumour relapse. We previously found that cancer cells in a high mesenchymal therapy-resistant cell state are dependent on the lipid hydroperoxidase GPX4 for survival.

  10. Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy

    PubMed Central

    Mast, Natalia; Lin, Joseph B.

    2015-01-01

    Cytochrome P450 CYP27A1 is the only enzyme in humans converting cholesterol to 27-hydroxycholesterol, an oxysterol of multiple functions, including tissue-specific modulation of estrogen and liver X receptors. Both receptors seem to mediate adverse effects of 27-hydroxycholesterol in breast cancer when the levels of this oxysterol are elevated. The present work assessed druggability of CYP27A1 as a potential antibreast cancer target. We selected 26 anticancer and noncancer medications, most approved by the Food and Drug Administration, and evaluated them first in vitro for inhibition of purified recombinant CYP27A1 and binding to the enzyme active site. Six strong CYP27A1 inhibitors/binders were identified. These were the two antibreast cancer pharmaceuticals anastrozole and fadrozole, antiprostate cancer drug bicalutamide, sedative dexmedetomidine, and two antifungals ravuconazole and posaconazole. Anastrozole was then tested in vivo on mice, which received subcutaneous drug injections for 1 week. Mouse plasma and hepatic 27-hydroxycholesterol levels were decreased 2.6- and 1.6-fold, respectively, whereas plasma and hepatic cholesterol content remained unchanged. Thus, pharmacologic CYP27A1 inhibition is possible in the whole body and individual organs, but does not negatively affect cholesterol elimination. Our results enhance the potential of CYP27A1 as an antibreast cancer target, could be of importance for the interpretation of Femara versus Anastrozole Clinical Evaluation Trial, and bring attention to posaconazole as a potential complementary anti-breast cancer medication. More medications on the US market may have unanticipated off-target inhibition of CYP27A1, and we propose strategies for their identification. PMID:26082378

  11. Liver proteomics for therapeutic drug discovery: inhibition of the cyclophilin receptor CD147 attenuates sepsis-induced acute renal failure

    PubMed Central

    Dear, James W.; Leelahavanichkul, Asada; Aponte, Angel; Hu, Xuzhen; Constant, Stephanie L.; Hewitt, Stephen M.; Yuen, Peter S.T.; Star, Robert A.

    2008-01-01

    Objective Sepsis-induced multi-organ failure continues to have a high mortality. The liver is an organ central to the disease pathogenesis. The objective of this study was to identify the liver proteins that change in abundance with sepsis and, therefore, identify new drug targets. Design Proteomic discovery study and drug target validation Setting Research institute laboratory Subjects Three month old C57BL/6 mice Interventions We used a mouse model of sepsis based on cecal ligation and puncture (CLP) but with fluid and antibiotic resuscitation. Liver proteins that changed in abundance were identified by difference in-gel electrophoresis (DIGE). We compared liver proteins from 6 hr post-CLP to sham-operated mice (‘early proteins’) and 24 hr post-CLP with 6 hr post-CLP (‘late proteins’). Proteins that changed in abundance were identified by tandem mass spectrometry. We then inhibited the receptor for one protein and determined the effect on sepsis-induced organ dysfunction. Results The liver proteins that changed in abundance after sepsis had a range of functions such as acute phase proteins, coagulation, ER stress, oxidative stress, apoptosis, mitochondrial proteins and nitric oxide metabolism. We found that cyclophilin increased in abundance after CLP. When the receptor for this protein, CD147, was inhibited sepsis-induced renal dysfunction was reduced. There was also a significant reduction in serum cytokine production when CD147 was inhibited. Conclusion By applying proteomics to a clinically relevant mouse model of sepsis we identified a number of novel proteins that changed in abundance. The inhibition of the receptor for one of these proteins, cyclophilin, attenuated sepsis-induced acute renal failure. The application of proteomics to sepsis research can facilitate the discovery of new therapeutic targets. PMID:17944020

  12. Optimization of drug-drug interaction study design: comparison of minimal physiologically based pharmacokinetic models on prediction of CYP3A inhibition by ketoconazole.

    PubMed

    Han, Bing; Mao, Jialin; Chien, Jenny Y; Hall, Stephen D

    2013-07-01

    Ketoconazole is a potent CYP3A inhibitor used to assess the contribution of CYP3A to drug clearance and quantify the increase in drug exposure due to a strong inhibitor. Physiologically based pharmacokinetic (PBPK) models have been used to evaluate treatment regimens resulting in maximal CYP3A inhibition by ketoconazole but have reached different conclusions. We compare two PBPK models of the ketoconazole-midazolam interaction, model 1 (Chien et al., 2006) and model 2 implemented in Simcyp (version 11), to predict 16 published treatment regimens. With use of model 2, 41% of the study point estimates of area under the curve (AUC) ratio and 71% of the 90% confidence intervals were predicted within 1.5-fold of the observed, but these increased to 82 and 100%, respectively, with model 1. For midazolam, model 2 predicted a maximal midazolam AUC ratio of 8 and a hepatic fraction metabolized by CYP3A (f(m)) of 0.97, whereas model 1 predicted 17 and 0.90, respectively, which are more consistent with observed data. On the basis of model 1, ketoconazole (400 mg QD) for at least 3 days and substrate administration within 2 hours is required for maximal CYP3A inhibition. Ketoconazole treatment regimens that use 200 mg BID underestimate the systemic fraction metabolized by CYP3A (0.86 versus 0.90) for midazolam. The systematic underprediction also applies to CYP3A substrates with high bioavailability and long half-lives. The superior predictive performance of model 1 reflects the need for accumulation of ketoconazole at enzyme site and protracted inhibition. Model 2 is not recommended for inferring optimal study design and estimation of fraction metabolized by CYP3A.

  13. An evaluation of the CYP2D6 and CYP3A4 inhibition potential of metoprolol metabolites and their contribution to drug-drug and drug-herb interaction by LC-ESI/MS/MS.

    PubMed

    Borkar, Roshan M; Bhandi, Murali Mohan; Dubey, Ajay P; Ganga Reddy, V; Komirishetty, Prashanth; Nandekar, Prajwal P; Sangamwar, Abhay T; Kamal, Ahmed; Banerjee, Sanjay K; Srinivas, R

    2016-10-01

    The aim of the present study was to evaluate the contribution of metabolites to drug-drug interaction and drug-herb interaction using the inhibition of CYP2D6 and CYP3A4 by metoprolol (MET) and its metabolites. The peak concentrations of unbound plasma concentration of MET, α-hydroxy metoprolol (HM), O-desmethyl metoprolol (ODM) and N-desisopropyl metoprolol (DIM) were 90.37 ± 2.69, 33.32 ± 1.92, 16.93 ± 1.70 and 7.96 ± 0.94 ng/mL, respectively. The metabolites identified, HM and ODM, had a ratio of metabolic area under the concentration-time curve (AUC) to parent AUC of ≥0.25 when either total or unbound concentration of metabolite was considered. In vitro CYP2D6 and CYP3A4 inhibition by MET, HM and ODM study revealed that MET, HM and ODM were not inhibitors of CYP3A4-catalyzed midazolam metabolism and CYP2D6-catalyzed dextromethorphan metabolism. However, DIM only met the criteria of >10% of the total drug related material and <25% of the parent using unbound concentrations. If CYP inhibition testing is solely based on metabolite exposure, DIM metabolite would probably not be considered. However, the present study has demonstrated that DIM contributes significantly to in vitro drug-drug interaction. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Retrovirus XMRV Is Inhibited by Host Proteins and Anti-HIV Drugs AZT, Tenofovir, and Raltegravir | Center for Cancer Research

    Cancer.gov

    A newly discovered retrovirus, XMRV, isolated from prostate cancer tissues for the first time in 2006, has recently been reported in patients with this cancer, as well as in patients with chronic fatigue syndrome (CFS). However, five subsequent studies could not validate these reports. Since XMRV was isolated from the T and B cells of CFS patients, Vinay Pathak and his colleagues in the HIV Drug Resistance Program sought to determine how XMRV was countering intracellular defense mechanisms that inhibit retroviral replication in human cells.

  15. Anti-addiction drug ibogaine inhibits hERG channels: a cardiac arrhythmia risk.

    PubMed

    Koenig, Xaver; Kovar, Michael; Boehm, Stefan; Sandtner, Walter; Hilber, Karlheinz

    2014-03-01

    Ibogaine, an alkaloid derived from the African shrub Tabernanthe iboga, has shown promising anti-addictive properties in animals. Anecdotal evidence suggests that ibogaine is also anti-addictive in humans. Thus, it alleviates drug craving and impedes relapse of drug use. Although not licensed as therapeutic drug, and despite evidence that ibogaine may disturb the rhythm of the heart, this alkaloid is currently used as an anti-addiction drug in alternative medicine. Here, we report that therapeutic concentrations of ibogaine reduce currents through human ether-a-go-go-related gene potassium channels. Thereby, we provide a mechanism by which ibogaine may generate life-threatening cardiac arrhythmias. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  16. Construction of High Drug Loading and Enzymatic Degradable Multilayer Films for Self-Defense Drug Release and Long-Term Biofilm Inhibition.

    PubMed

    Wang, Bailiang; Liu, Huihua; Sun, Lin; Jin, Yingying; Ding, Xiaoxu; Li, Lingli; Ji, Jian; Chen, Hao

    2018-01-08

    Bacterial infections and biofilm formation on the surface of implants are important issues that greatly affect biomedical applications and even cause device failure. Construction of high drug loading systems on the surface and control of drug release on-demand is an efficient way to lower the development of resistant bacteria and biofilm formation. In the present study, (montmorillonite/hyaluronic acid-gentamicin) 10 ((MMT/HA-GS) 10 ) organic/inorganic hybrid multilayer films were alternately self-assembled on substrates. The loading dosage of GS was as high as 0.85 mg/cm 2 , which could be due the high specific surface area of MMT. The obtained multilayer film with high roughness gradually degraded in hyaluronidase (HAS) solutions or a bacterial infection microenvironment, which caused the responsive release of GS. The release of GS showed dual enzyme and bacterial infection responsiveness, which also indicated good drug retention and on-demand self-defense release properties of the multilayer films. Moreover, the GS release responsiveness to E. coli showed higher sensitivity than that to S. aureus. There was only ∼5 wt % GS release from the film in PBS after 48 h of immersion, and the amount quickly increased to 30 wt % in 10 5 CFU/mL of E. coli. Importantly, the high drug dosage, smart drug release, and film peeling from the surface contributed to the efficient antibacterial properties and long-term biofilm inhibition functions. Both in vitro and in vivo antibacterial tests indicated efficient sterilization function and good mammalian cell and tissue compatibility.

  17. The relationship between the pharmacokinetics, cholinesterase inhibition and facilitation of twitch tension of the quaternary ammonium anticholinesterase drugs, neostigmine, pyridostigmine, edrophonium and 3-hydroxyphenyltrimethylammonium.

    PubMed Central

    Barber, H. E.; Calvey, T. N.; Muir, K. T.

    1979-01-01

    1 The relationship between the concentration of drug in plasma, the inhibition of erythrocyte acetylcholinesterase and the facilitation of neuromuscular transmission has been studied in the rat after the administration of neostigmine, pyridostigmine, edrophonium and 3-hydroxyphenyltrimethyl-ammonium (3-OH PTMA). 2 After the administration of neostigmine or pyridostigmine, acetylcholinesterase activity recovered only slowly due to the covalent nature of the inhibition. In contrast, recovery from the reversible inhibition caused by edrophonium or 3-OH PTMA was rapid and showed a direct relationship to the plasma concentration of these drugs. 3 There was a statistically significant linear correlation between the logarithm of the plasma concentration of the drugs and the increase in the tibialis twitch tension. 4 The relationship between the inhibition of acetylcholinesterase and the facilitation of neuromuscular transmission was complex. When the enzyme was less than 85% inhibited no facilitation occurred. Between 85% and 98% inhibition, facilitation was linearly related to enzyme inhibition. Above 98% inhibition, facilitation was unrelated to inhibition of the enzyme. PMID:223706

  18. Inhibition of plasma lipid oxidation induced by peroxyl radicals, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen by clinical drugs.

    PubMed

    Morita, Mayuko; Naito, Yuji; Yoshikawa, Toshikazu; Niki, Etsuo

    2016-11-15

    With increasing evidence showing the involvement of oxidative stress in the pathogenesis of various diseases, the effects of clinical drugs possessing antioxidant functions have received much attention. The unregulated oxidative modification of biological molecules leading to diseases is mediated by multiple oxidants including free radicals, peroxynitrite, hypochlorite, lipoxygenase, and singlet oxygen. The capacity of antioxidants to scavenge or quench oxidants depends on the nature of oxidants. In the present study, the antioxidant effects of several clinical drugs against plasma lipid oxidation induced by the aforementioned five kinds of oxidants were investigated from the production of lipid hydroperoxides, which have been implicated in the pathogenesis of various diseases. Troglitazone acted as a potent peroxyl radical scavenger, whereas probucol and edaravone showed only moderate reactivity and carvedilol, pentoxifylline, and ebselen did not act as radical scavenger. Probucol and edaravone suppressed plasma oxidation mediated by peroxynitrite and hypochlorite. Troglitazone and edaravone inhibited 15-lipoxygenase mediated plasma lipid oxidation, the IC 50 being 20 and 34μM respectively. None of the drugs used in this study suppressed plasma lipid oxidation by singlet oxygen. This study shows that the antioxidant effects of drugs depend on the nature of oxidants and that antioxidants against multiple oxidants are required to cope with oxidative stress in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Grief and Palliative Care: Mutuality

    PubMed Central

    Moon, Paul J

    2013-01-01

    Grief and palliative care are interrelated and perhaps mutually inclusive. Conceptually and practically, grief intimately relates to palliative care, as both domains regard the phenomena of loss, suffering, and a desire for abatement of pain burden. Moreover, the notions of palliative care and grief may be construed as being mutually inclusive in terms of one cueing the other. As such, the discussions in this article will center on the conceptualizations of the mutuality between grief and palliative care related to end-of-life circumstances. Specifically, the complementarity of grief and palliative care, as well as a controvertible view thereof, will be considered. PMID:25278758

  20. Experimental anti-inflammatory drug Semapimod inhibits Toll-like receptor signaling by targeting the TLR chaperone gp961

    PubMed Central

    Wang, Jin; Grishin, Anatoly V.; Ford, Henri R.

    2016-01-01

    Semapimod, a tetravalent guanylhydrazone, suppresses inflammatory cytokine production and has potential in a variety of inflammatory and autoimmune disorders. The mechanism of action of Semapimod is not well understood. Here we demonstrate that in rat IEC-6 intestinal epithelioid cells, Semapimod inhibits activation of p38 MAPK, NF-kB and induction of COX-2 by TLR ligands, but not by IL-1β or stresses. Semapimod inhibits TLR4 signaling (IC50≈0.3 μM) and acts by desensitizing cells to LPS; it fails to block responses to LPS concentrations of 5 μg/ml or higher. Inhibition of TLR signaling by Semapimod is almost instantaneous: the drug is effective when applied simultaneously with LPS. Semapimod blocks cell surface recruitment of the MyD88 adapter, one of the earliest events in TLR signaling. gp96, the ER-localized chaperone of the HSP90 family critically involved in the biogenesis of TLRs, was identified as a target of Semapimod using ATP-desthiobiotin pull-down and mass spectroscopy. Semapimod inhibits ATP-binding and ATPase activities of gp96 in vitro (IC50≈0.2-0.4 μM). On prolonged exposure, Semapimod causes accumulation of TLR4 and TLR9 in perinuclear space, consistent with ER retention, an anticipated consequence of impaired gp96 chaperone function. Our data indicate that Semapimod desensitizes TLR signaling via its effect on the TLR chaperone gp96. Fast inhibition by Semapimod is consistent with gp96 participating in high affinity sensing of TLR ligands in addition to its role as a TLR chaperone. PMID:27194788

  1. Repaglinide-gemfibrozil drug interaction: inhibition of repaglinide glucuronidation as a potential additional contributing mechanism

    PubMed Central

    Gan, Jinping; Chen, Weiqi; Shen, Hong; Gao, Ling; Hong, Yang; Tian, Yuan; Li, Wenying; Zhang, Yueping; Tang, Yuwei; Zhang, Hongjian; Humphreys, William Griffith; Rodrigues, A David

    2010-01-01

    AIM To further explore the mechanism underlying the interaction between repaglinide and gemfibrozil, alone or in combination with itraconazole. METHODS Repaglinide metabolism was assessed in vitro (human liver subcellular fractions, fresh human hepatocytes, and recombinant enzymes) and the resulting incubates were analyzed, by liquid chromatography-mass spectrometry (LC-MS) and radioactivity counting, to identify and quantify the different metabolites therein. Chemical inhibitors, in addition to a trapping agent, were also employed to elucidate the importance of each metabolic pathway. Finally, a panel of human liver microsomes (genotyped for UGT1A1*28 allele status) was used to determine the importance of UGT1A1 in the direct glucuronidation of repaglinide. RESULTS The results of the present study demonstrate that repaglinide can undergo direct glucuronidation, a pathway that can possibly contribute to the interaction with gemfibrozil. For example, [3H]-repaglinide formed glucuronide and oxidative metabolites (M2 and M4) when incubated with primary human hepatocytes. Gemfibrozil effectively inhibited (∼78%) both glucuronide and M4 formation, but had a minor effect on M2 formation. Concomitantly, the overall turnover of repaglinide was also inhibited (∼80%), and was completely abolished when gemfibrozil was co-incubated with itraconazole. These observations are in qualitative agreement with the in vivo findings. UGT1A1 plays a significant role in the glucuronidation of repaglinide. In addition, gemfibrozil and its glucuronide inhibit repaglinide glucuronidation and the inhibition by gemfibrozil glucuronide is time-dependent. CONCLUSIONS Inhibition of UGT enzymes, especially UGT1A1, by gemfibrozil and its glucuronide is an additional mechanism to consider when rationalizing the interaction between repaglinide and gemfibrozil. PMID:21175442

  2. Repaglinide-gemfibrozil drug interaction: inhibition of repaglinide glucuronidation as a potential additional contributing mechanism.

    PubMed

    Gan, Jinping; Chen, Weiqi; Shen, Hong; Gao, Ling; Hong, Yang; Tian, Yuan; Li, Wenying; Zhang, Yueping; Tang, Yuwei; Zhang, Hongjian; Humphreys, William Griffith; Rodrigues, A David

    2010-12-01

    To further explore the mechanism underlying the interaction between repaglinide and gemfibrozil, alone or in combination with itraconazole. Repaglinide metabolism was assessed in vitro (human liver subcellular fractions, fresh human hepatocytes, and recombinant enzymes) and the resulting incubates were analyzed, by liquid chromatography-mass spectrometry (LC-MS) and radioactivity counting, to identify and quantify the different metabolites therein. Chemical inhibitors, in addition to a trapping agent, were also employed to elucidate the importance of each metabolic pathway. Finally, a panel of human liver microsomes (genotyped for UGT1A1*28 allele status) was used to determine the importance of UGT1A1 in the direct glucuronidation of repaglinide. The results of the present study demonstrate that repaglinide can undergo direct glucuronidation, a pathway that can possibly contribute to the interaction with gemfibrozil. For example, [³H]-repaglinide formed glucuronide and oxidative metabolites (M2 and M4) when incubated with primary human hepatocytes. Gemfibrozil effectively inhibited (∼78%) both glucuronide and M4 formation, but had a minor effect on M2 formation. Concomitantly, the overall turnover of repaglinide was also inhibited (∼80%), and was completely abolished when gemfibrozil was co-incubated with itraconazole. These observations are in qualitative agreement with the in vivo findings. UGT1A1 plays a significant role in the glucuronidation of repaglinide. In addition, gemfibrozil and its glucuronide inhibit repaglinide glucuronidation and the inhibition by gemfibrozil glucuronide is time-dependent. Inhibition of UGT enzymes, especially UGT1A1, by gemfibrozil and its glucuronide is an additional mechanism to consider when rationalizing the interaction between repaglinide and gemfibrozil. © 2010 The Authors. British Journal of Clinical Pharmacology © 2010 The British Pharmacological Society.

  3. First-line drugs inhibiting the renin angiotensin system versus other first-line antihypertensive drug classes for hypertension.

    PubMed

    Xue, Hao; Lu, Zhuang; Tang, Wen Lu; Pang, Lu Wei; Wang, Gan Mi; Wong, Gavin W K; Wright, James M

    2015-01-11

    Renin-angiotensin system (RAS) inhibitors are widely prescribed for treatment of hypertension, especially for diabetic patients on the basis of postulated advantages for the reduction of diabetic nephropathy and cardiovascular morbidity and mortality. Despite widespread use of angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) for hypertension in both diabetic and non-diabetic patients, the efficacy and safety of RAS inhibitors compared to other antihypertensive drug classes remains unclear. To evaluate the benefits and harms of first-line RAS inhibitors compared to other first-line antihypertensive drugs in patients with hypertension. We searched the Cochrane Hypertension Group's Specialised Register, MEDLINE, MEDLINE In-Process, EMBASE and ClinicalTrials.gov for randomized controlled trials up to November 19, 2014 and the Cochrane Central Register of Controlled Trials (CENTRAL) up to October 19, 2014. The WHO International Clinical Trials Registry Platform (ICTRP) is searched for inclusion in the Cochrane Hypertension Group's Specialised Register. We included randomized, active-controlled, double-blinded studies with at least six months follow-up in people with primary elevated blood pressure (≥130/85 mmHg), which compared first-line RAS inhibitors with other first-line antihypertensive drug classes and reported morbidity and mortality or blood pressure outcomes. Patients with proven secondary hypertension were excluded. Two authors independently selected the included trials, evaluated the risk of bias and entered the data for analysis. We included 42 studies, involving 65,733 participants, with a mean age of 66 years. Much of the evidence for our key outcomes is dominated by a small number of large studies at a low risk of bias for most sources of bias. Imbalances in the added second-line antihypertensive drugs in some of the studies were important enough for us to downgrade the quality of the evidence.Primary outcomes were

  4. A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus

    PubMed Central

    Ekins, Sean; Freundlich, Joel S.; Coffee, Megan

    2014-01-01

    We are currently faced with a global infectious disease crisis which has been anticipated for decades. While many promising biotherapeutics are being tested, the search for a small molecule has yet to deliver an approved drug or therapeutic for the Ebola or similar filoviruses that cause haemorrhagic fever. Two recent high throughput screens published in 2013 did however identify several hits that progressed to animal studies that are FDA approved drugs used for other indications. The current computational analysis uses these molecules from two different structural classes to construct a common features pharmacophore. This ligand-based pharmacophore implicates a possible common target or mechanism that could be further explored. A recent structure based design project yielded nine co-crystal structures of pyrrolidinone inhibitors bound to the viral protein 35 (VP35). When receptor-ligand pharmacophores based on the analogs of these molecules and the protein structures were constructed, the molecular features partially overlapped with the common features of solely ligand-based pharmacophore models based on FDA approved drugs. These previously identified FDA approved drugs with activity against Ebola were therefore docked into this protein. The antimalarials chloroquine and amodiaquine docked favorably in VP35. We propose that these drugs identified to date as inhibitors of the Ebola virus may be targeting VP35. These computational models may provide preliminary insights into the molecular features that are responsible for their activity against Ebola virus in vitro and in vivo and we propose that this hypothesis could be readily tested. PMID:25653841

  5. Chemical Proteomics and Structural Biology Define EPHA2 Inhibition by Clinical Kinase Drugs.

    PubMed

    Heinzlmeir, Stephanie; Kudlinzki, Denis; Sreeramulu, Sridhar; Klaeger, Susan; Gande, Santosh Lakshmi; Linhard, Verena; Wilhelm, Mathias; Qiao, Huichao; Helm, Dominic; Ruprecht, Benjamin; Saxena, Krishna; Médard, Guillaume; Schwalbe, Harald; Kuster, Bernhard

    2016-12-16

    The receptor tyrosine kinase EPHA2 (Ephrin type-A receptor 2) plays important roles in oncogenesis, metastasis, and treatment resistance, yet therapeutic targeting, drug discovery, or investigation of EPHA2 biology is hampered by the lack of appropriate inhibitors and structural information. Here, we used chemical proteomics to survey 235 clinical kinase inhibitors for their kinase selectivity and identified 24 drugs with submicromolar affinities for EPHA2. NMR-based conformational dynamics together with nine new cocrystal structures delineated drug-EPHA2 interactions in full detail. The combination of selectivity profiling, structure determination, and kinome wide sequence alignment allowed the development of a classification system in which amino acids in the drug binding site of EPHA2 are categorized into key, scaffold, potency, and selectivity residues. This scheme should be generally applicable in kinase drug discovery, and we anticipate that the provided information will greatly facilitate the development of selective EPHA2 inhibitors in particular and the repurposing of clinical kinase inhibitors in general.

  6. A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus.

    PubMed

    Ekins, Sean; Freundlich, Joel S; Coffee, Megan

    2014-01-01

    We are currently faced with a global infectious disease crisis which has been anticipated for decades. While many promising biotherapeutics are being tested, the search for a small molecule has yet to deliver an approved drug or therapeutic for the Ebola or similar filoviruses that cause haemorrhagic fever. Two recent high throughput screens published in 2013 did however identify several hits that progressed to animal studies that are FDA approved drugs used for other indications. The current computational analysis uses these molecules from two different structural classes to construct a common features pharmacophore. This ligand-based pharmacophore implicates a possible common target or mechanism that could be further explored. A recent structure based design project yielded nine co-crystal structures of pyrrolidinone inhibitors bound to the viral protein 35 (VP35). When receptor-ligand pharmacophores based on the analogs of these molecules and the protein structures were constructed, the molecular features partially overlapped with the common features of solely ligand-based pharmacophore models based on FDA approved drugs. These previously identified FDA approved drugs with activity against Ebola were therefore docked into this protein. The antimalarials chloroquine and amodiaquine docked favorably in VP35. We propose that these drugs identified to date as inhibitors of the Ebola virus may be targeting VP35. These computational models may provide preliminary insights into the molecular features that are responsible for their activity against Ebola virus in vitro and in vivo and we propose that this hypothesis could be readily tested.

  7. Counterion-Release Entropy Governs the Inhibition of Serum Proteins by Polyelectrolyte Drugs.

    PubMed

    Xu, Xiao; Ran, Qidi; Dey, Pradip; Nikam, Rohit; Haag, Rainer; Ballauff, Matthias; Dzubiella, Joachim

    2018-02-12

    Dendritic polyelectrolytes constitute high potential drugs and carrier systems for biomedical purposes. Still, their biomolecular interaction modes, in particular those determining the binding affinity to proteins, have not been rationalized. We study the interaction of the drug candidate dendritic polyglycerol sulfate (dPGS) with serum proteins using isothermal titration calorimetry (ITC) interpreted and complemented with molecular computer simulations. Lysozyme is first studied as a well-defined model protein to verify theoretical concepts, which are then applied to the important cell adhesion protein family of selectins. We demonstrate that the driving force of the strong complexation, leading to a distinct protein corona, originates mainly from the release of only a few condensed counterions from the dPGS upon binding. The binding constant shows a surprisingly weak dependence on dPGS size (and bare charge) which can be understood by colloidal charge-renormalization effects and by the fact that the magnitude of the dominating counterion-release mechanism almost exclusively depends on the interfacial charge structure of the protein-specific binding patch. Our findings explain the high selectivity of P- and L-selectins over E-selectin for dPGS to act as a highly anti-inflammatory drug. The entire analysis demonstrates that the interaction of proteins with charged polymeric drugs can be predicted by simulations with unprecedented accuracy. Thus, our results open new perspectives for the rational design of charged polymeric drugs and carrier systems.

  8. Drug inhibition of first-stage radioemesis. Interim report, 5 November 1975--31 December 1976

    SciTech Connect

    Gralla, E.J.; Krupp, J.H.; Mattsson, J.L.

    1977-06-01

    An animal model of irradiation-induced emesis was developed which involved exposing young male beagle dogs to 800 rads in the abdominal area. This caused a 100% incidence of emesis within 8 hr and a second wave of emesis and hemorrhagic diarrhea approximately 48 hr later. Seven drugs and one combination of two drugs were examined for effects against these responses. Chlorpromazine proved to be the most potent antagonist of first-stage emesis while dimenhydrinate and diphenhydramine HC1 showed the same activity but to a lesser degree. Inactive drugs were phenytoin sodium, perphenazine (at a low dose), WR2721, and the combination ofmore » amphetamine plus scopolamine. Acetylsalicylic acid intensified the emetic responses. (Author)« less

  9. Modified Metformin as a More Potent Anticancer Drug: Mitochondrial Inhibition, Redox Signaling, Antiproliferative Effects and Future EPR Studies.

    PubMed

    Kalyanaraman, Balaraman; Cheng, Gang; Hardy, Micael; Ouari, Olivier; Sikora, Adam; Zielonka, Jacek; Dwinell, Michael B

    2017-12-01

    Metformin, one of the most widely prescribed antidiabetic drugs in the world, is being repurposed as a potential drug in cancer treatment. Epidemiological studies suggest that metformin exerts anticancer effects in diabetic patients with pancreatic cancer. However, at typical antidiabetic doses the bioavailability of metformin is presumably too low to exert antitumor effects. Thus, more potent analogs of metformin are needed in order to increase its anticancer efficacy. To this end, a new class of mitochondria-targeted metformin analogs (or mito-metformins) containing a positively-charged lipophilic triphenylphosphonium group was synthesized and tested for their antitumor efficacy in pancreatic cancer cells. Results indicate that the lead compound, mito-metformin 10 , was nearly 1000-fold more potent than metformin in inhibiting mitochondrial complex I activity, inducing reactive oxygen species (superoxide and hydrogen peroxide) that stimulate redox signaling mechanisms, including the activation of adenosinemonophosphate kinase and inhibition of proliferation of pancreatic cancer cells. The potential use of the low-temperature electron paramagnetic resonance technique in assessing the role of mitochondrial complexes including complex I in tumor regression in response to metformin and mito-metformins in the in vivo setting is discussed.

  10. Mutual Mentoring Makes Better Mentors

    NASA Astrophysics Data System (ADS)

    Blaha, Cindy; Bug, Amy; Cox, Anne; Fritz, Linda; Whitten, Barbara

    2011-03-01

    In this talk we discuss one of the impacts of an NSF ADVANCE sponsored horizontal, mutual mentoring alliance. Our cohort of five women physicists at liberal arts colleges has found that mutual mentoring has had a profound impact on many aspects of our professional lives. In this talk we will describe how our peer-to-peer mentoring has enabled us to become better mentors for our undergraduate students, for recent graduates beginning their careers and for colleagues at local and neighboring institutions.

  11. Correlation of cholinergic drug induced quenching of acetylcholinesterase bound thioflavin-T fluorescence with their inhibition activity

    NASA Astrophysics Data System (ADS)

    Islam, Mullah Muhaiminul; Rohman, Mostofa Ataur; Gurung, Arun Bahadur; Bhattacharjee, Atanu; Aguan, Kripamoy; Mitra, Sivaprasad

    2018-01-01

    The development of new acetylcholinesterase inhibitors (AChEIs) and subsequent assay of their inhibition efficiency is considered to be a key step for AD treatment. The fluorescence intensity of thioflavin-T (ThT) bound in the active site of acetylcholinesterase (AChE) quenches substantially in presence of standard AChEI drugs due to the dynamic replacement of the fluorophore from the AChE active site as confirmed from steady state emission as well as time-resolved fluorescence anisotropy measurement and molecular dynamics simulation in conjunction with docking calculation. The parametrized % quenching data for individual system shows excellent correlation with enzyme inhibition activity measured independently by standard Ellman AChE assay method in a high throughput plate reader system. The results are encouraging towards design of a fluorescence intensity based AChE inhibition assay method and may provide a better toolset to rapidly evaluate as well as develop newer AChE-inhibitors for AD treatment.

  12. T-18, a stemonamide synthetic intermediate inhibits Pim kinase activity and induces cell apoptosis, acting as a potent anticancer drug.

    PubMed

    Wang, Zhen; Li, Xing-Min; Shang, Kun; Zhang, Peng; Wang, Chao-Fu; Xin, Yu-Hu; Zhou, Lu; Li, Ying-Yi

    2013-03-01

    Pim-3 kinase has been shown to be aberrantly expressed in premalignant and malignant lesions of endoderm-derived organs such as the liver, pancreas, colon and stomach. Pim-3 kinase inactivates the Bad protein, a proapoptotic molecule, and improves the expression of Bcl-xL, an antiapoptotic molecule, to promote cell proliferation. Thus, blocking Pim-3 kinase activity may be a new strategy for the treatment of pancreatic cancer. In this study, we screened low molecular compounds and observed that the stemonamide synthetic intermediate, T-18, potently inhibited Pim kinase activity. Moreover, T-18 inhibited the proliferation of human pancreatic, as well as that of hepatocellular and colon cancer cells in vitro. It also induced the apoptosis of human pancreatic carcinoma cells in vitro by decreasing the levels of phospho-Ser112-Bad; the levels of Pim-3 kinase and total Bad protein were not altered. Furthermore, T-18 inhibited the growth of human pancreatic cancer cells in nude mice without apparent adverse effects when the tumor was palpable. These observations indicate that stemonamide synthetic intermediates may be novel drugs for the treatment of gastrointestinal cancers, particularly pancreatic cancer.

  13. Oral Multiple Sclerosis Drugs Inhibit the In vitro Growth of Epsilon Toxin Producing Gut Bacterium, Clostridium perfringens.

    PubMed

    Rumah, Kareem R; Vartanian, Timothy K; Fischetti, Vincent A

    2017-01-01

    There are currently three oral medications approved for the treatment of multiple sclerosis (MS). Two of these medications, Fingolimod, and Teriflunomide, are considered to be anti-inflammatory agents, while dimethyl fumarate (DMF) is thought to trigger a robust antioxidant response, protecting vulnerable cells during an MS attack. We previously proposed that epsilon toxin from the gut bacterium, Clostridium perfringens , may initiate newly forming MS lesions due to its tropism for blood-brain barrier (BBB) vasculature and central nervous system myelin. Because gut microbiota will be exposed to these oral therapies prior to systemic absorption, we sought to determine if these compounds affect C. perfringens growth in vitro . Here we show that Fingolimod, Teriflunomide, and DMF indeed inhibit C. perfringens growth. Furthermore, several compounds similar to DMF in chemical structure, namely α, β unsaturated carbonyls, also known as Michael acceptors, inhibit C. perfringens . Sphingosine, a Fingolimod homolog with known antibacterial properties, proved to be a potent C. perfringens inhibitor with a Minimal Inhibitory Concentration similar to that of Fingolimod. These findings suggest that currently approved oral MS therapies and structurally related compounds possess antibacterial properties that may alter the gut microbiota. Moreover, inhibition of C. perfringens growth and resulting blockade of epsilon toxin production may contribute to the clinical efficacy of these disease-modifying drugs.

  14. Oral Multiple Sclerosis Drugs Inhibit the In vitro Growth of Epsilon Toxin Producing Gut Bacterium, Clostridium perfringens

    PubMed Central

    Rumah, Kareem R.; Vartanian, Timothy K.; Fischetti, Vincent A.

    2017-01-01

    There are currently three oral medications approved for the treatment of multiple sclerosis (MS). Two of these medications, Fingolimod, and Teriflunomide, are considered to be anti-inflammatory agents, while dimethyl fumarate (DMF) is thought to trigger a robust antioxidant response, protecting vulnerable cells during an MS attack. We previously proposed that epsilon toxin from the gut bacterium, Clostridium perfringens, may initiate newly forming MS lesions due to its tropism for blood-brain barrier (BBB) vasculature and central nervous system myelin. Because gut microbiota will be exposed to these oral therapies prior to systemic absorption, we sought to determine if these compounds affect C. perfringens growth in vitro. Here we show that Fingolimod, Teriflunomide, and DMF indeed inhibit C. perfringens growth. Furthermore, several compounds similar to DMF in chemical structure, namely α, β unsaturated carbonyls, also known as Michael acceptors, inhibit C. perfringens. Sphingosine, a Fingolimod homolog with known antibacterial properties, proved to be a potent C. perfringens inhibitor with a Minimal Inhibitory Concentration similar to that of Fingolimod. These findings suggest that currently approved oral MS therapies and structurally related compounds possess antibacterial properties that may alter the gut microbiota. Moreover, inhibition of C. perfringens growth and resulting blockade of epsilon toxin production may contribute to the clinical efficacy of these disease-modifying drugs. PMID:28180112

  15. Short- and long-term inhibition of cardiac inward-rectifier potassium channel current by an antiarrhythmic drug bepridil.

    PubMed

    Ma, Fangfang; Takanari, Hiroki; Masuda, Kimiko; Morishima, Masaki; Ono, Katsushige

    2016-07-01

    Bepridil is an effective antiarrhythmic drug on supraventricular and ventricular arrhythmias, and inhibitor of calmodulin. Recent investigations have been elucidating that bepridil exerts antiarrhythmic effects through its acute and chronic application for patients. The aim of this study was to identify the efficacy and the potential mechanism of bepridil on the inward-rectifier potassium channel in neonatal rat cardiomyocytes in acute- and long-term conditions. Bepridil inhibited inward-rectifier potassium current (I K1) as a short-term effect with IC50 of 17 μM. Bepridil also reduced I K1 of neonatal cardiomyocytes when applied for 24 h in the culture medium with IC50 of 2.7 μM. Both a calmodulin inhibitor (W-7) and an inhibitor of calmodulin-kinase II (KN93) reduced I K1 when applied for 24 h as a long-term effect in the same fashion, suggesting that the long-term application of bepridil inhibits I K1 more potently than that of the short-term application through the inhibition of calmodulin kinase II pathway in cardiomyocytes.

  16. A drug-like antagonist inhibits thyrotropin receptor-mediated stimulation of cAMP production in Graves' orbital fibroblasts.

    PubMed

    Neumann, Susanne; Pope, Arthur; Geras-Raaka, Elizabeth; Raaka, Bruce M; Bahn, Rebecca S; Gershengorn, Marvin C

    2012-08-01

    Fibroblasts (FIBs) within the retro-orbital space of patients with Graves' disease (GOFs) express thyrotropin receptors (TSHRs) and are thought to be an orbital target of TSHR-stimulating autoantibodies in Graves' ophthalmopathy (GO). Recently, we developed a low molecular weight, drug-like TSHR antagonist (NCGC00229600) that inhibited TSHR activation in a model cell system overexpressing TSHRs and in normal human thyrocytes expressing endogenous TSHRs. Herein, we test the hypothesis that NCGC00229600 will inhibit activation of TSHRs endogenously expressed in GOFs. Three strains of GOFs, previously obtained from patients with GO, were studied as undifferentiated FIBs and after differentiation into adipocytes (ADIPs), and another seven strains were studied only as FIBs. ADIP differentiation was monitored by morphology and measurement of adiponectin mRNA. FIBs and ADIPs were treated with the TSH- or TSHR-stimulating antibody M22 in the absence or presence of NCGC00229600 and TSHR activation was monitored by cAMP production. FIBs contained few if any lipid vesicles and undetectable levels of adiponectin mRNA, whereas ADIPs exhibited abundant lipid vesicles and levels of adiponectin mRNA more than 250,000 times greater than FIBs; TSHR mRNA levels were 10-fold higher in ADIPs than FIBs. FIBs exhibited higher absolute levels of basal and forskolin-stimulated cAMP production than ADIPs. Consistent with previous findings, TSH stimulated cAMP production in the majority of ADIP strains and less consistently in FIBs. Most importantly, NCGC00229600 reduced both TSH- and M22-stimulated cAMP production in GOFs. These data confirm previous findings that TSHR activation may cause increased cAMP production in GOFs and show that NCGC00229600 can inhibit TSHR activation in GOFs. These findings suggest that drug-like TSHR antagonists may have a role in treatment of GO.

  17. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells.

    PubMed

    He, Xuedan; Alves, Carla S; Oliveira, Nilsa; Rodrigues, João; Zhu, Jingyi; Bányai, István; Tomás, Helena; Shi, Xiangyang

    2015-01-01

    Development of multifunctional nanoscale drug-delivery systems for targeted cancer therapy still remains a great challenge. Here, we report the synthesis of cyclic arginine-glycine-aspartic acid (RGD) peptide-conjugated generation 5 (G5) poly(amidoamine) dendrimers for anticancer drug encapsulation and targeted therapy of cancer cells overexpressing αvβ3 integrins. In this study, amine-terminated G5 dendrimers were used as a platform to be sequentially modified with fluorescein isothiocyanate (FI) via a thiourea linkage and RGD peptide via a polyethylene glycol (PEG) spacer, followed by acetylation of the remaining dendrimer terminal amines. The developed multifunctional dendrimer platform (G5.NHAc-FI-PEG-RGD) was then used to encapsulate an anticancer drug doxorubicin (DOX). We show that approximately six DOX molecules are able to be encapsulated within each dendrimer platform. The formed complexes are water-soluble, stable, and able to release DOX in a sustained manner. One- and two-dimensional NMR techniques were applied to investigate the interaction between dendrimers and DOX, and the impact of the environmental pH on the release rate of DOX from the dendrimer/DOX complexes was also explored. Furthermore, cell biological studies demonstrate that the encapsulation of DOX within the G5.NHAc-FI-PEG-RGD dendrimers does not compromise the anticancer activity of DOX and that the therapeutic efficacy of the dendrimer/DOX complexes is solely related to the encapsulated DOX drug. Importantly, thanks to the role played by RGD-mediated targeting, the developed dendrimer/drug complexes are able to specifically target αvβ3 integrin-overexpressing cancer cells and display specific therapeutic efficacy to the target cells. The developed RGD peptide-targeted multifunctional dendrimers may thus be used as a versatile platform for targeted therapy of different types of αvβ3 integrin-overexpressing cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Thiopurine Drugs Azathioprine and 6-Mercaptopurine Inhibit Mycobacterium paratuberculosis Growth In Vitro▿

    PubMed Central

    Shin, Sung Jae; Collins, Michael T.

    2008-01-01

    The in vitro susceptibility of human- and bovine-origin Mycobacterium paratuberculosis to the thioupurine drugs 6-mercaptopurine (6-MP) and azathioprine (AZA) was established using conventional plate counting methods and the MGIT 960 ParaTB culture system. Both 6-MP and AZA had antibacterial activity against M. paratuberculosis; isolates from Crohn's disease patients tended to be more susceptible than were bovine-origin isolates. Isolates of Mycobacterium avium, used as controls, were generally resistant to both AZA and 6-MP, even at high concentrations (≥64.0 μg/ml). Among rapidly growing mycobacteria, Mycobacterium phlei was susceptible to 6-MP and AZA whereas Mycobacterium smegmatis strains were not. AZA and 6-MP limited the growth of, but did not kill, M. paratuberculosis in a dose-dependent manner. Anti-inflammatory drugs in the sulfonamide family (sulfapyridine, sulfasalazine, and 5-aminosalycilic acid [mesalamine]) had little or no antibacterial activity against M. paratuberculosis. The conventional antibiotics azithromycin and ciprofloxacin, used as control drugs, were bactericidal for M. paratuberculosis, exerting their killing effects on the organism relatively quickly. Simultaneous exposure of M. paratuberculosis to 6-MP and ciprofloxacin resulted in significantly higher CFU than use of ciprofloxacin alone. These data may partially explain the paradoxical response of Crohn's disease patients infected with M. paratuberculosis to treatment with immunosuppressive thiopurine drugs, i.e., they do not worsen with anti-inflammatory treatment as would be expected with a microbiological etiologic pathogen. These findings also should influence the design of therapeutic trials to evaluate antibiotic treatments of Crohn's disease: AZA drugs may confound interpretation of data on therapeutic responses for both antibiotic-treated and control groups. PMID:18070971

  19. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    PubMed

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-05

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  20. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse

    PubMed Central

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F.; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2018-01-01

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time– and bile-acid-concentration–dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  1. Co-treatment with grapefruit juice inhibits while chronic administration activates intestinal P-glycoprotein-mediated drug efflux.

    PubMed

    Panchagnula, R; Bansal, T; Varma, M V S; Kaul, C L

    2005-12-01

    P-Glycoprotein (P-gp) mediated efflux is recognized as a significant biochemical barrier affecting oral absorption for a number of drugs. Various conflicting reports have been published regarding the effects of grapefruit juice (GFJ) on P-gp-mediated drug efflux, in which GFJ has been shown both to inhibit and activate it. Hence, the present study adopted a two-way approach, involving both co-treatment and chronic administration. Bi-directional transport of paclitaxel (PCL) was carried out in the absence and presence of GFJ extract, in rat everted ileum sac. Further, the effect of chronic administration of GFJ to rats was characterized by permeability studies with indinavir (INDI). Co-treatment of GFJ extract at 100% concentration reduced the asymmetric transport of PCL (efflux ratio = 20.8) by increasing absorptive (A --> B) transport by 921% and reducing secretory (B --> A) transport by 41%. Further, GFJ showed a concentration dependent effect on PCL permeability. Imipramine, a passive permeability marker with absorptive permeability of 15.33 +/- 4.26 x 10(-6) cm/s showed no asymmetric transport and also no significant (P < 0.05) change in permeability in the presence of GFJ. Chronic administration of GFJ resulted in a significant decrease in absorptive transport of indinavir, which was even greater than that produced by rifampicin pretreatment. No change in permeability of propranolol, a passive permeability marker, was observed. Further, the decrease in absorptive transport of INDI was reversed by the P-gp inhibitor verapamil. In conclusion, GFJ extract inhibited P-gp-mediated efflux in co-treatment, whereas chronic administration led to increased levels of P-gp expression, thus having a profound effect on intestinal absorption and GFJ-drug interactions in vivo.

  2. Parental substance abuse and function of the motivation and behavioral inhibition systems in drug-naïve youth.

    PubMed

    Ivanov, Iliyan; Liu, Xun; Shulz, Kurt; Fan, Jin; London, Edythe; Friston, Karl; Halperin, Jeffrey M; Newcorn, Jeffrey H

    2012-02-28

    It is hypothesized that the development of substance abuse (SA) may be due to imbalance in functions of the motivation-reward and behavioral inhibition systems in the brain. This speaks to the search for biological risk factors for SA in drug-naïve children who also exhibit motivational and inhibitory control deficits; however, this type of research is currently lacking. The objective of this study was to establish a neurobiological basis for addiction vulnerability using functional magnetic resonance imaging (fMRI) in drug-naïve youth with attention deficit/hyperactivity disorder (ADHD). We hypothesized that children with ADHD alone would show higher activity in regions of the motivation-reward and behavioral inhibition systems than children with ADHD and a parental history of SA. Toward this goal we scanned 20 drug-naïve children with ADHD ages 8-13 while performing an event-related reward task. High (N=10) and low (N=10) risk subjects were identified, based on parental history of SA. The effects of anticipation, conflict, and reward were assessed with appropriate linear contrasts, and between-group differences were assessed using statistical parametric mapping. The two groups did not differ on behavioral measures of the task. The fMRI results show heightened activation in the brain motivational-reward system and reduced activation of the inhibitory control system in high-risk compared to low-risk children. These results suggest that a functional mismatch between these two systems may represent one possible biological underpinning of SA risk, which is conferred by a parental history of addiction. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress

    SciTech Connect

    Liu, Yingying; Fang, Shanshan; Sun, Qiushi

    Glioblastoma is one of the most vascular brain tumour and highly resistant to current therapy. Targeting both glioblastoma cells and angiogenesis may present an effective therapeutic strategy for glioblastoma. In our work, we show that an anthelmintic drug, ivermectin, is active against glioblastoma cells in vitro and in vivo, and also targets angiogenesis. Ivermectin significantly inhibits growth and anchorage-independent colony formation in U87 and T98G glioblastoma cells. It induces apoptosis in these cells through a caspase-dependent manner. Ivermectin significantly suppresses the growth of two independent glioblastoma xenograft mouse models. In addition, ivermectin effectively targets angiogenesis through inhibiting capillary network formation, proliferation andmore » survival in human brain microvascular endothelial cell (HBMEC). Mechanistically, ivermectin decreases mitochondrial respiration, membrane potential, ATP levels and increases mitochondrial superoxide in U87, T98G and HBMEC cells exposed to ivermectin. The inhibitory effects of ivermectin are significantly reversed in mitochondria-deficient cells or cells treated with antioxidants, further confirming that ivermectin acts through mitochondrial respiration inhibition and induction of oxidative stress. Importantly, we show that ivermectin suppresses phosphorylation of Akt, mTOR and ribosomal S6 in glioblastoma and HBMEC cells, suggesting its inhibitory role in deactivating Akt/mTOR pathway. Altogether, our work demonstrates that ivermectin is a useful addition to the treatment armamentarium for glioblastoma. Our work also highlights the therapeutic value of targeting mitochondrial metabolism in glioblastoma. - Highlights: • Ivermectin is effective in glioblastoma cells in vitro and in vivo. • Ivermectin inhibits angiogenesis. • Ivermectin induces mitochondrial dysfunction and oxidative stress. • Ivermectin deactivates Akt/mTOR signaling pathway.« less

  4. Strong synergism of dexamethasone in combination with fluconazole against resistant Candida albicans mediated by inhibiting drug efflux and reducing virulence.

    PubMed

    Sun, Wenwen; Wang, Decai; Yu, Cuixiang; Huang, Xin; Li, Xiuyun; Sun, Shujuan

    2017-09-01

    Candida albicans is the most commonly isolated Candida spp. in the clinic and its resistance to fluconazole (FLC) has been emerging rapidly. Combination therapy may be a potentially effective approach to combat drug resistance. In this study, the combination antifungal effects of dexamethasone (DXM) and FLC against resistant C. albicans in vitro were assayed using minimum inhibitory concentrations (MICs), sessile MICs and time-kill curves. The in vivo efficacy of this drug combination was evaluated using a Galleria mellonella model by determining survival rate, fungal burden and histological damage. In addition, the impact of DXM on efflux pump activity was investigated using a rhodamine 6G assay. Expression of CDR1, CDR2 and MDR1 was determined by real-time quantitative PCR, and extracellular phospholipase activity was detected by the egg yolk agar method to reveal the potential synergistic mechanism. The results showed that DXM potentiates the antifungal effect of FLC against resistant C. albicans strains both in vitro and in vivo, and the synergistic mechanism is related to inhibiting the efflux of drugs and reducing the virulence of C. albicans. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  5. Identifying kinase dependency in cancer cells by integrating high-throughput drug screening and kinase inhibition data.

    PubMed

    Ryall, Karen A; Shin, Jimin; Yoo, Minjae; Hinz, Trista K; Kim, Jihye; Kang, Jaewoo; Heasley, Lynn E; Tan, Aik Choon

    2015-12-01

    Targeted kinase inhibitors have dramatically improved cancer treatment, but kinase dependency for an individual patient or cancer cell can be challenging to predict. Kinase dependency does not always correspond with gene expression and mutation status. High-throughput drug screens are powerful tools for determining kinase dependency, but drug polypharmacology can make results difficult to interpret. We developed Kinase Addiction Ranker (KAR), an algorithm that integrates high-throughput drug screening data, comprehensive kinase inhibition data and gene expression profiles to identify kinase dependency in cancer cells. We applied KAR to predict kinase dependency of 21 lung cancer cell lines and 151 leukemia patient samples using published datasets. We experimentally validated KAR predictions of FGFR and MTOR dependence in lung cancer cell line H1581, showing synergistic reduction in proliferation after combining ponatinib and AZD8055. KAR can be downloaded as a Python function or a MATLAB script along with example inputs and outputs at: http://tanlab.ucdenver.edu/KAR/. aikchoon.tan@ucdenver.edu. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Identification of proton-pump inhibitor drugs that inhibit Trichomonas vaginalis uridine nucleoside ribohydrolase.

    PubMed

    Shea, Tara A; Burburan, Paola J; Matubia, Vivian N; Ramcharan, Sandy S; Rosario, Irving; Parkin, David W; Stockman, Brian J

    2014-02-15

    Trichomonas vaginalis continues to be a major health problem with drug-resistant strains increasing in prevalence. Novel antitrichomonal agents that are mechanistically distinct from current therapies are needed. The NIH Clinical Compound Collection was screened to find inhibitors of the uridine ribohydrolase enzyme required by the parasite to scavenge uracil for its growth. The proton-pump inhibitors omeprazole, pantoprazole, and rabeprazole were identified as inhibitors of this enzyme, with IC50 values ranging from 0.3 to 14.5 μM. This suggests a molecular mechanism for the in vitro antitrichomonal activity of these proton-pump inhibitors, and may provide important insights toward structure-based drug design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Adamantyl Analogues of Paracetamol as Potent Analgesic Drugs via Inhibition of TRPA1

    PubMed Central

    Fresno, Nieves; Pérez-Fernández, Ruth; Goicoechea, Carlos; Alkorta, Ibon; Fernández-Carvajal, Asia; de la Torre-Martínez, Roberto; Quirce, Susana; Ferrer-Montiel, Antonio; Martín, M. Isabel; Goya, Pilar; Elguero, José

    2014-01-01

    Paracetamol also known as acetaminophen, is a widely used analgesic and antipyretic agent. We report the synthesis and biological evaluation of adamantyl analogues of paracetamol with important analgesic properties. The mechanism of nociception of compound 6a/b, an analog of paracetamol, is not exerted through direct interaction with cannabinoid receptors, nor by inhibiting COX. It behaves as an interesting selective TRPA1 channel antagonist, which may be responsible for its analgesic properties, whereas it has no effect on the TRPM8 nor TRPV1 channels. The possibility of replacing a phenyl ring by an adamantyl ring opens new avenues in other fields of medicinal chemistry. PMID:25438056

  8. Ginger Phytochemicals Inhibit Cell Growth and Modulate Drug Resistance Factors in Docetaxel Resistant Prostate Cancer Cell.

    PubMed

    Liu, Chi-Ming; Kao, Chiu-Li; Tseng, Yu-Ting; Lo, Yi-Ching; Chen, Chung-Yi

    2017-09-05

    Ginger has many bioactive compounds with pharmacological activities. However, few studies are known about these bioactive compounds activity in chemoresistant cells. The aim of the present study was to investigate the anticancer properties of ginger phytochemicals in docetaxel-resistant human prostate cancer cells in vitro. In this study, we isolated 6-gingerol, 10-gingerol, 4-shogaol, 6-shogaol, 10-shogaol, and 6-dehydrogingerdione from ginger. Further, the antiproliferation activity of these compounds was examined in docetaxel-resistant (PC3R) and sensitive (PC3) human prostate cancer cell lines. 6-gingerol, 10-gingerol, 6-shogaol, and 10-shogaol at the concentration of 100 μM significantly inhibited the proliferation in PC3R but 6-gingerol, 6-shogaol, and 10-shogaol displayed similar activity in PC3. The protein expression of multidrug resistance associated protein 1 (MRP1) and glutathione-S-transferase (GSTπ) is higher in PC3R than in PC3. In summary, we isolated the bioactive compounds from ginger. Our results showed that 6-gingerol, 10-gingerol, 6-shogaol, and 10-shogaol inhibit the proliferation of PC3R cells through the downregulation of MRP1 and GSTπ protein expression.

  9. 26 CFR 1.831-3 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 8 2014-04-01 2014-04-01 false Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual fire insurance companies issuing perpetual policies, and mutual fire or flood insurance companies operating on the basis of premium deposits; taxable years...

  10. 26 CFR 1.831-3 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 8 2012-04-01 2012-04-01 false Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual fire insurance companies issuing perpetual policies, and mutual fire or flood insurance companies operating on the basis of premium deposits; taxable years...

  11. 26 CFR 1.831-3 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 8 2013-04-01 2013-04-01 false Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual fire insurance companies issuing perpetual policies, and mutual fire or flood insurance companies operating on the basis of premium deposits; taxable years...

  12. 26 CFR 1.831-3 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 8 2011-04-01 2011-04-01 false Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual fire insurance companies issuing perpetual policies, and mutual fire or flood insurance companies operating on the basis of premium deposits; taxable years...

  13. Inhibition of bone loss with surface-modulated, drug-loaded nanoparticles in an intraosseous model of prostate cancer.

    PubMed

    Adjei, Isaac M; Sharma, Blanka; Peetla, Chiranjeevi; Labhasetwar, Vinod

    2016-06-28

    Advanced-stage prostate cancer usually metastasizes to bone and is untreatable due to poor biodistribution of intravenously administered anticancer drugs to bone. In this study, we modulated the surface charge/composition of biodegradable nanoparticles (NPs) to sustain their blood circulation time and made them small enough to extravasate through the openings of the bone's sinusoidal capillaries and thus localize into marrow. NPs with a neutral surface charge, achieved by modulating the NP surface-associated emulsifier composition, were more effective at localizing to bone marrow than NPs with a cationic or anionic surface charge. These small neutral NPs (~150nm vs. the more usual ~320nm) were also ~7-fold more effective in localizing in bone marrow than large NPs. We hypothesized that NPs that effectively localize to marrow could improve NP-mediated anticancer drug delivery to sites of bone metastasis, thereby inhibiting cancer progression and preventing bone loss. In a PC-3M-luc cell-induced osteolytic intraosseous model of prostate cancer, these small neutral NPs demonstrated greater accumulation in bone within metastatic sites than in normal contralateral bone as well as co-localization with the tumor mass in marrow. Significantly, a single-dose intravenous administration of these small neutral NPs loaded with paclitaxel (PTX-NPs), but not anionic PTX-NPs, slowed the progression of bone metastasis. In addition, neutral PTX-NPs prevented bone loss, whereas animals treated with the rapid-release drug formulation Cremophor EL (PTX-CrEL) or saline (control) showed >50% bone loss. Neutral PTX-NPs did not cause acute toxicity, whereas animals treated with PTX-CrEL experienced weight loss. These results indicate that NPs with appropriate physical and sustained drug-release characteristics could be explored to treat bone metastasis, a significant clinical issue in prostate and other cancers. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. ZEB1 knockdown mediated using polypeptide cationic micelles inhibits metastasis and effects sensitization to a chemotherapeutic drug for cancer therapy

    NASA Astrophysics Data System (ADS)

    Fang, Shengtao; Wu, Lei; Li, Mingxing; Yi, Huqiang; Gao, Guanhui; Sheng, Zonghai; Gong, Ping; Ma, Yifan; Cai, Lintao

    2014-08-01

    Metastasis and drug resistance are the main causes for the failure in clinical cancer therapy. Emerging evidence suggests an intricate role of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in metastasis and drug resistance. The EMT-activator ZEB1 is crucial in malignant tumor progression by linking EMT-activation and stemness-maintenance. Here, we used multifunctional polypeptide micelle nanoparticles (NP) as nanocarriers for the delivery of ZEB1 siRNA and doxorubicin (DOX). The nanocarriers could effectively deliver siRNA to the cytoplasm and knockdown the target gene in H460 cells and H460 xenograft tumors, leading to reduced EMT and repressed CSC properties in vitro and in vivo. The complex micelle nanoparticles with ZEB1 siRNA (siRNA-NP) significantly reduced metastasis in the lung. When DOX and siRNA were co-delivered by the nanocarriers (siRNA-DOX-NP), a synergistic therapeutic effect was observed, resulting in dramatic inhibition of tumor growth in a H460 xenograft model. These results demonstrated that the siRNA-NP or siRNA-DOX-NP complex targeting ZEB1 could be developed into a new therapeutic approach for non-small cell lung cancer (NSCLC) treatment.Metastasis and drug resistance are the main causes for the failure in clinical cancer therapy. Emerging evidence suggests an intricate role of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in metastasis and drug resistance. The EMT-activator ZEB1 is crucial in malignant tumor progression by linking EMT-activation and stemness-maintenance. Here, we used multifunctional polypeptide micelle nanoparticles (NP) as nanocarriers for the delivery of ZEB1 siRNA and doxorubicin (DOX). The nanocarriers could effectively deliver siRNA to the cytoplasm and knockdown the target gene in H460 cells and H460 xenograft tumors, leading to reduced EMT and repressed CSC properties in vitro and in vivo. The complex micelle nanoparticles with ZEB1 siRNA (siRNA-NP) significantly reduced

  15. Structure-activity relationships of phenothiazines and related drugs for inhibition of protein kinase C.

    PubMed

    Aftab, D T; Ballas, L M; Loomis, C R; Hait, W N

    1991-11-01

    Phenothiazines are known to inhibit the activity of protein kinase C. To identify structural features that determine inhibitory activity against the enzyme, we utilized a semiautomated assay [Anal. Biochem. 187:84-88 (1990)] to compare the potency of greater than 50 phenothiazines and related compounds. Potency was decreased by trifluoro substitution at position 2 on the phenothiazine nucleus and increased by quinoid structures on the nucleus. An alkyl bridge of at least three carbons connecting the terminal amine to the nucleus was required for activity. Primary amines and unsubstituted piperazines were the most potent amino side chains. We selected 7,8-dihydroxychlorpromazine (DHCP) (IC50 = 8.3 microM) and 2-chloro-9-(3-[1-piperazinyl]propylidene)thioxanthene (N751) (IC50 = 14 microM) for further study because of their potency and distinct structural features. Under standard (vesicle) assay conditions, DHCP was noncompetitive with respect to phosphatidylserine and a mixed-type inhibitor with respect to ATP. N751 was competitive with respect to phosphatidylserine and noncompetitive with respect to ATP. Using the mixed micelle assay, DHCP was a competitive inhibitor with respect to both phosphatidylserine and ATP. DHCP was selective for protein kinase C compared with cAMP-dependent protein kinase, calmodulin-dependent protein kinase type II, and casein kinase. N751 was more potent against protein kinase C compared with cAMP-dependent protein kinase and casein kinase but less potent against protein kinase C compared with calmodulin-dependent protein kinase type II. DHCP was analyzed for its ability to inhibit different isoenzymes of protein kinase C, and no significant isozyme selectivity was detected. These data provide important information for the rational design of more potent and selective inhibitors of protein kinase C.

  16. Inhibition of Voltage-Gated K+ Channel Kv1.5 by Antiarrhythmic Drugs.

    PubMed

    Chen, Rong; Chung, Shin-Ho

    2018-05-08

    Molecular dynamics simulations are employed to determine the inhibitory mechanisms of three drugs, 5-(4-phenoxybutoxy)psoralen (PAP-1), vernakalant, and flecainide, on the voltage-gated K + channel Kv1.5, a target for the treatment of cardiac arrhythmia. At neutral pH, PAP-1 is neutral, whereas the other two molecules carry one positive charge. We show that PAP-1 forms stable dimers in water, primarily through hydrophobic interactions between aromatic rings. All three molecules bind to the cavity between the Ile508 and Val512 residues from the four subunits of the channel. Once bound, the drug molecules are flexible, with the average root-mean-square fluctuation being between 2 and 3 Å, which is larger than the radius of gyration of a bulky amino acid. The presence of a monomeric PAP-1 causes the permeating K + ion to dehydrate, thereby creating a significant energy barrier. In contrast, vernakalant blocks the ion permeation primarily via an electrostatic mechanism and, therefore, must be in the protonated and charged form to be effective.

  17. Inhibition of amyloidogenesis by non-steroidal anti-inflammatory drugs and their hybrid nitrates

    PubMed Central

    Schiefer, Isaac T.; Abdul-Hay, Samer; Wang, Huali; Vanni, Michael; Qin, Zhihui; Thatcher, Gregory R. J.

    2011-01-01

    Poor blood-brain barrier penetration of non-steroidal anti-inflammatory drugs (NSAIDs) has been blamed for the failure of the selective amyloid lowering agent (SALA) R-flurbiprofen in phase 3 clinical trials for Alzheimer’s disease (AD). NO-donor NSAIDs (NO-NSAIDs) provide an alternative, gastric-sparing approach to NSAID SALAs, which may improve bioavailability. NSAID analogs were studied for anti-inflammatory activity and for SALA activity in N2a neuronal cells transfected with human amyloid precursor protein (APP). Flurbiprofen (1) analogs were obtained with enhanced anti-inflammatory and anti-amyloidogenic properties compared to 1, however, esterification led to elevated Aβ1–42 levels. Hybrid nitrate prodrugs possessed superior anti-inflammatory activity and reduced toxicity relative to the parent NSAIDs, including clinical candidate, CHF5074. Although hybrid nitrates elevated Aβ1–42 at higher concentration, SALA activity was observed at low concentrations (≤ 1 µM): both Aβ1–42 and the ratio of Aβ1–42/Aβ1–40 were lowered. This biphasic SALA activity was attributed to the intact nitrate drug. For several compounds the selective modulation of amyloidogenesis was tested using an immunoprecipitation MALDI-TOF approach. These data support the development of NO-NSAIDs as an alternative approach towards a clinically useful SALA. PMID:21405086

  18. Nanoparticle-mediated inhibition of survivin to overcome drug resistance in cancer therapy.

    PubMed

    Wang, Shengpeng; Xu, Yingqi; Chan, Hon Fai; Kim, Hae-Won; Wang, Yitao; Leong, Kam W; Chen, Meiwan

    2016-10-28

    The acquired resistance of human cancer cells to apoptosis is one of the defining hallmarks of cancer. Upregulated expression of inhibitors of apoptosis proteins (IAP) has been implicated in drug resistance in several cancers. Survivin (encoded by BIRC5), the smallest member of the IAP family, has been correlated with both the control of cell apoptosis and regulation of cell mitosis in cancer. Owing to its critical role in regulation of cell survival and development of cancer resistance, as well as its distinguishingly high level of expression in many types of cancer, survivin has long been regarded as a promising therapeutic target for cancer therapy. This review first presents an overview of the mechanism by which survivin regulates cell function, followed by a discussion of the current state of survivin-targeted therapies. We focus on the application of nanoparticulate systems to deliver survivin inhibitors, co-delivery of survivin inhibitors with chemotherapeutic agents, synchronous targeting of survivin, other drug resistant molecules, and survivin regulators. We conclude by highlighting the current limitations associated with survivin-targeted therapies and speculating on the future strategies to surmount these impediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Contrast media as carriers for local drug delivery. Successful inhibition of neointimal proliferation in the porcine coronary stent model.

    PubMed

    Scheller, Bruno; Speck, Ulrich; Romeike, Bernd; Schmitt, Alexander; Sovak, Milos; Böhm, Michael; Stoll, Hans Peter

    2003-08-01

    Lipophilic taxanes can be dissolved in contrast media at significantly higher concentration than in saline. As contrast media have occasionally been observed to delineate the contour of coronary arteries for some seconds they may serve as a matrix for an antiproliferative drug aimed at preventing restenosis. The aim of this study was to test a novel taxane-contrast agent formulation for this new approach in the setting of coronary stenting. In cell culture experiments (bovine vascular smooth muscle cells), 60-min incubation with contrast agent-taxane formulations (iopromide-paclitaxel, iopromide-protaxel) induced a significant, concentration-dependent inhibition of vascular smooth muscle cell (VSMC) proliferation over 12 days. Shorter incubation times of 10 and 3 min showed the same efficacy. For in vivo investigation, 16 stents were implanted into the coronary arteries of eight pigs using a 1.3 to 1 overstretch ratio. A control group received iopromide 370 alone while the treatment group was injected with a iopromide-protaxel formulation at a dose of 74 micromol/l, which is far below protaxel levels inducing systemic toxicity. Quantitative angiography and histomorphometry of the stented arteries asserted statistic equality of the baseline parameters between the control and treatment groups. After 28 days, the treatment group showed a marked reduction of the parameters characterizing in-stent restenosis, especially a 34% reduction of the neointimal area. First evidence is provided that using a contrast agent as solvent for a taxane constitutes a new drug delivery mechanism able to inhibit in-stent restenosis in the porcine restenosis model.

  20. Inhibitory Effect of Anti-rheumatic Drug Iguratimod for Hepatocellular Carcinogenesis by Inhibition of Serum Interleukin-8 Production.

    PubMed

    Sakamoto, Taro; Ishii, Yuji; Shiba, Hiroaki; Furukawa, Kenei; Fujiwara, Yuki; Haruki, Koichiro; Iwase, Ryota; Shirai, Yoshihiro; Yanaga, Katsuhiko

    2016-07-01

    Angiogenesis is a known factor for the development of hepatocellular carcinoma (HCC). The aim of this study was to assess the property of iguratimod, that is an anti-inflammatory drug for rheumatoid arthritis, on anti-angiogenesis and anti-carcinogensis for HCC. In vitro, human umbilical vein endothelial cells were cultured under interleukin-8 (IL-8) with or without iguratimod. In vivo, a rat model with HCC received iguratimod or distilled water for 6 weeks. Diameter of the largest tumor, number of tumors and serum interleukin-8 concentration were compared between iguratimod and control groups. By an in vitro angiogenesis assay, it was found angiogenesis in iguratimod group was significantly lower than that in control group (p=0.013). In vivo, largest tumor diameter (p=0.036), number of the tumor (p=0.011) and serum interleukin-8 concentration (p=0.036) in the iguratimod group were significantly smaller and lower than those in the control group. Iguratimod may inhibit hepatocellular carcinogensis by inhibition of interleukin-8 production in a rat model. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Identification of a potential biomarker for FABP4 inhibition: the power of lipidomics in preclinical drug testing.

    PubMed

    Suhre, Karsten; Römisch-Margl, Werner; de Angelis, Martin Hrabé; Adamski, Jerzy; Luippold, Gerd; Augustin, Robert

    2011-06-01

    The fatty acid binding protein 4 (FABP4) belongs to the family of lipid chaperones that control intracellular fluxes and compartmentalization of their respective ligands (e.g., fatty acids). FABP4, which is almost exclusively expressed in adipocytes and macrophages, contributes to the development of insulin resistance and atherosclerosis in mice. Lack of FABP4 protects against the development of insulin resistance associated with genetic or diet-induced obesity in mice. Furthermore, total or macrophage-specific FABP4 deficiency is protective against atherosclerosis in apolipoprotein E-deficient mice. The FABP4 small-molecule inhibitor BMS309403 has demonstrated efficacy in mouse models for type 2 diabetes mellitus and atherosclerosis, resembling phenotypes of mice with FABP4 deficiency. However, despite the therapeutically attractive long-term effects of FABP4 inhibition, an acute biomarker for drug action is lacking. The authors applied mass spectrometry lipidomics analysis to in vitro and in vivo (plasma and adipose tissue) samples upon inhibitor treatment. They report the identification of a potential biomarker for acute in vivo FABP4 inhibition that is applicable for further investigations and can be implemented in simple and fast-flow injection mass spectrometry assays. In addition, this approach can be considered a proof-of-principle study that can be applied to other lipid-pathway targeting mechanisms.

  2. Gemfibrozil, a lipid lowering drug, inhibits the activation of primary human microglia via peroxisome proliferator-activated receptor β.

    PubMed

    Jana, Malabendu; Pahan, Kalipada

    2012-08-01

    Microglial activation participates in the pathogenesis of various neuroinflammatory and neurodegenerative diseases. However, mechanisms by which microglial activation could be controlled are poorly understood. Peroxisome proliferator-activated receptors (PPAR) are transcription factors belonging to the nuclear receptor super family with diverse effect. This study underlines the importance of PPARβ/δ in mediating the anti-inflammatory effect of gemfibrozil, an FDA-approved lipid-lowering drug, in primary human microglia. Bacterial lipopolysachharides (LPS) induced the expression of various proinflammatory molecules and upregulated the expression of microglial surface marker CD11b in human microglia. However, gemfibrozil markedly suppressed proinflammatory molecules and CD11b in LPS-stimulated microglia. Human microglia expressed PPAR-β and -γ, but not PPAR-α. Interestingly, either antisense knockdown of PPAR-β or antagonism of PPAR-β by a specific chemical antagonist abrogated gemfibrozil-mediated inhibition of microglial activation. On the other hand, blocking of PPAR-α and -γ had no effect on gemfibrozil-mediated anti-inflammatory effect in microglia. These results highlight the fact that gemfibrozil regulates microglial activation by inhibiting inflammatory gene expression in a PPAR-β dependent pathway and further reinforce its therapeutic application in several neuroinflammatory and neurodegenerative diseases.

  3. Gemfibrozil, a lipid lowering drug, inhibits the activation of primary human microglia via peroxisome proliferator-activated receptor β

    PubMed Central

    Jana, Malabendu; Pahan, Kalipada

    2012-01-01

    Microglial activation participates in the pathogenesis of various neuroinflammatory and neurodegenerative diseases. However, mechanisms by which microglial activation could be controlled are poorly understood. Peroxisome proliferator-activated receptors (PPAR) are transcription factors belonging to the nuclear receptor super family with diverse effect. This study underlines the importance of PPARβ/δ in mediating the anti-inflammatory effect of gemfibrozil, an FDA-approved lipid-lowering drug, in primary human microglia. Bacterial lipopolysachharides (LPS) induced the expression of various proinflammatory molecules and upregulated the expression of microglial surface marker CD11b in human microglia. However, gemfibrozil markedly suppressed proinflammatory molecules and CD11b in LPS-stimulated microglia. Human microglia expressed PPAR-β and PPAR-γ, but not PPAR-α. Interestingly, either antisense knockdown of PPAR-β or antagonism of PPAR-β by a specific chemical antagonist abrogated gemfibrozil-mediated inhibition of microglial activation. On the other hand, blocking of PPAR-α and PPAR-γ had no effect on gemfibrozil-mediated anti-inflammatory effect in microglia. These results highlight the fact that gemfibrozil regulates microglial activation by inhibiting inflammatory gene expression in a PPAR-β dependent pathway and further reinforce its therapeutic application in several neuroinflammatory and neurodegenerative diseases. PMID:22528839

  4. Gum arabic capped-silver nanoparticles inhibit biofilm formation by multi-drug resistant strains of Pseudomonas aeruginosa.

    PubMed

    Ansari, Mohammad Azam; Khan, Haris Manzoor; Khan, Aijaz Ahmed; Cameotra, Swaranjit Singh; Saquib, Quaiser; Musarrat, Javed

    2014-07-01

    Clinical isolates (n = 55) of Pseudomonas aeruginosa were screened for the extended spectrum β-lactamases and metallo-β-lactamases activities and biofilm forming capability. The aim of the study was to demonstrate the antibiofilm efficacy of gum arabic capped-silver nanoparticles (GA-AgNPs) against the multi-drug resistant (MDR) biofilm forming P. aeruginosa. The GA-AgNPs were characterized by UV-spectroscopy, X-ray diffraction, and high resolution-transmission electron microscopy analysis. The isolates were screened for their biofilm forming ability, using the Congo red agar, tube method and tissue culture plate assays. The biofilm forming ability was further validated and its inhibition by GA-AgNPs was demonstrated by performing the scanning electron microscopy (SEM) and confocal laser scanning microscopy. SEM analysis of GA-AgNPs treated bacteria revealed severely deformed and damaged cells. Double fluorescent staining with propidium iodide and concanavalin A-fluorescein isothiocyanate concurrently detected the bacterial cells and exopolysaccharides (EPS) matrix. The CLSM results exhibited the GA-AgNPs concentration dependent inhibition of bacterial growth and EPS matrix of the biofilm colonizers on the surface of plastic catheters. Treatment of catheters with GA-AgNPs at 50 µg ml(-1) has resulted in 95% inhibition of bacterial colonization. This study elucidated the significance of GA-AgNPs, as the next generation antimicrobials, in protection against the biofilm mediated infections caused by MDR P. aeruginosa. It is suggested that application of GA-AgNPs, as a surface coating material for dispensing antibacterial attributes to surgical implants and implements, could be a viable approach for controlling MDR pathogens after adequate validations in clinical settings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Phosphodiesterase (PDE5) inhibition assay for rapid detection of erectile dysfunction drugs and analogs in sexual enhancement products.

    PubMed

    Santillo, Michael F; Mapa, Mapa S T

    2018-02-28

    Products marketed as dietary supplements for sexual enhancement are frequently adulterated with phosphodiesterase-5 (PDE5) inhibitors, which are erectile dysfunction drugs or their analogs that can cause adverse health effects. Due to widespread adulteration, a rapid screening assay was developed to detect PDE5 inhibitors in adulterated products. The assay employs fluorescence detection and is based on measuring inhibition of PDE5 activity, the pharmacological mechanism shared among the adulterants. Initially, the assay reaction scheme was established and characterized, followed by analysis of 9 representative PDE5 inhibitors (IC 50 , 0.4-4.0 ng mL -1 ), demonstrating sensitive detection in matrix-free solutions. Next, dietary supplements serving as matrix blanks (n = 25) were analyzed to determine matrix interference and establish a threshold value; there were no false positives. Finally, matrix blanks were spiked with 9 individual PDE5 inhibitors, along with several mixtures. All 9 adulterants were successfully detected (≤ 5 % false negative rate; n = 20) at a concentration of 1.00 mg g -1 , which is over 5 times lower than concentrations commonly encountered in adulterated products. A major distinction of the PDE5 inhibition assay is the ability to detect adulterants without prior knowledge of their chemical structures, demonstrating a broad-based detection capability that can address a continuously evolving threat of new adulterants. The PDE5 inhibition assay can analyze over 40 samples simultaneously within 15 minutes and involves a single incubation step and simple data analysis, all of which are advantageous for combating the widespread adulteration of sex-enhancement products. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  6. Hierarchical clustering using mutual information

    NASA Astrophysics Data System (ADS)

    Kraskov, A.; Stögbauer, H.; Andrzejak, R. G.; Grassberger, P.

    2005-04-01

    We present a conceptually simple method for hierarchical clustering of data called mutual information clustering (MIC) algorithm. It uses mutual information (MI) as a similarity measure and exploits its grouping property: The MI between three objects X, Y, and Z is equal to the sum of the MI between X and Y, plus the MI between Z and the combined object (XY). We use this both in the Shannon (probabilistic) version of information theory and in the Kolmogorov (algorithmic) version. We apply our method to the construction of phylogenetic trees from mitochondrial DNA sequences and to the output of independent components analysis (ICA) as illustrated with the ECG of a pregnant woman.

  7. A novel extracellular drug conjugate significantly inhibits head and neck squamous cell carcinoma

    PubMed Central

    Sweeny, Larissa; Hartman, Yolanda E.; Zinn, Kurt R.; Prudent, James R.; Marshall, David J.; Shekhani, Mohammed S.; Rosenthal, Eben L.

    2014-01-01

    Objectives Despite advances in treatment modalities, head and neck squamous cell carcinoma (HNSCC) remains a challenge to treat with poor survival and high morbidity, necessitating a therapy with greater efficacy. EDC22 is an extracellular drug conjugate of the monoclonal antibody targeting CD147 (glycoprotein highly expressed on HNSCC cells) linked with a small drug molecule inhibitor of Na, K-ATPase. In this study, EDC22’s potential as a treatment modality for HNSCC was performed. Materials and methods HNSCC cell lines (FADU, OSC-19, Cal27, SCC-1) were cultured in vitro and proliferation and cell viability were assessed following treatment with a range of concentrations of EDC22 (0.25–5.00 μg/mL). Mice bearing HNSCC xenografts (OSC-19, SCC-1) were treated with either EDC22 (3–10 mg/kg), anti-CD147 monoclonal antibody, cisplatin (1 mg/kg) or radiation therapy (2 Gy/week) monotherapy or in combination. Results In vitro, treatment with minimal concentration of EDC22 (0.25 μg/mL) significantly decreased cellular proliferation and cell viability (p < 0.0001). In vivo, systemic treatment with EDC22 significantly decreased primary tumor growth rate in both an orthotopic mouse model (OSC-19) and a flank tumor mouse model (SCC-1) (p < 0.05). In addition, EDC22 therapy resulted in a greater reduction in tumor growth in vivo compared to radiation monotherapy (p < 0.05) and a similar reduction in tumor growth compared to cisplatin monotherapy. Combination therapy provided no significant further reduction in tumor growth relative to EDC22 monotherapy. Conclusion EDC22 is a potent inhibitor of HNSCC cell proliferation in vitro and in vivo, warranting further investigations of its clinical potential in the treatment of HNSCC. PMID:23920309

  8. Loss of Feedback Inhibition via D2 Autoreceptors Enhances Acquisition of Cocaine Taking and Reactivity to Drug-Paired Cues

    PubMed Central

    Holroyd, Kathryn B; Adrover, Martin F; Fuino, Robert L; Bock, Roland; Kaplan, Alanna R; Gremel, Christina M; Rubinstein, Marcelo; Alvarez, Veronica A

    2015-01-01

    A prominent aspect of drug addiction is the ability of drug-associated cues to elicit craving and facilitate relapse. Understanding the factors that regulate cue reactivity will be vital for improving treatment of addictive disorders. Low availability of dopamine (DA) D2 receptors (D2Rs) in the striatum is associated with high cocaine intake and compulsive use. However, the role of D2Rs of nonstriatal origin in cocaine seeking and taking behavior and cue reactivity is less understood and possibly underestimated. D2Rs expressed by midbrain DA neurons function as autoreceptors, exerting inhibitory feedback on DA synthesis and release. Here, we show that selective loss of D2 autoreceptors impairs the feedback inhibition of DA release and amplifies the effect of cocaine on DA transmission in the nucleus accumbens (NAc) in vitro. Mice lacking D2 autoreceptors acquire a cued-operant self-administration task for cocaine faster than littermate control mice but acquire similarly for a natural reward. Furthermore, although mice lacking D2 autoreceptors were able to extinguish self-administration behavior in the absence of cocaine and paired cues, they exhibited perseverative responding when cocaine-paired cues were present. This enhanced cue reactivity was selective for cocaine and was not seen during extinction of sucrose self-administration. We conclude that low levels of D2 autoreceptors enhance the salience of cocaine-paired cues and can contribute to the vulnerability for cocaine use and relapse. PMID:25547712

  9. THE INHIBITION OF THE BACTERIOSTATIC ACTION OF SULFONAMIDE DRUGS BY SUBSTANCES OF ANIMAL AND BACTERIAL ORIGIN

    PubMed Central

    MacLeod, Colin M.

    1940-01-01

    Sulfonamide inhibitor has been demonstrated in extracts of fresh normal muscle, pancreas, and spleen of certain animals. When autolysis of tissues takes place the amount of inhibitor is greatly increased. Fresh liver from beef, rabbit, and guinea pig is free of active inhibitor, although inhibitor is demonstrable in autolysates of this tissue. Fresh rabbit kidney is likewise free of active inhibitor. Following acid hydrolysis extracts of fresh rabbit liver and kidney cause sulfonamide inhibition. Normal human urine contains little or no active inhibitor. However, upon acid hydrolysis, inhibitor is uniformly present. Sulfonamide inhibitor is present in some, but not all, sterile serous effusions occurring during certain diseases. Inhibitor was found uniformly in pus. None was found in blood serum. In certain species of bacteria the inhibitor is found in the cells only and is not demonstrable in the culture medium, whereas in other species, the inhibitor is found in the culture supernatant, and the cells themselves are relatively free. The development of sulfapyridine fastness in a strain of Pneumococcus Type I is accompanied by a greatly increased production of sulfonamide inhibitor. PMID:19871019

  10. THDP17 Decreases Ammonia Production through Glutaminase Inhibition. A New Drug for Hepatic Encephalopathy Therapy

    PubMed Central

    Carbonero-Aguilar, Pilar; Vega-Pérez, José M.; Iglesias-Guerra, Fernando; Periñán, Ignacio; Miñano, Francisco J.; Bautista, Juan; Romero-Gómez, Manuel

    2014-01-01

    Ammonia production is implicated in the pathogenesis of hepatic encephalopathy (HE), being intestinal glutaminase activity the main source for ammonia. Management of ammonia formation can be effective in HE treatment by lowering intestinal ammonia production. The use of glutaminase inhibitors represents one way to achieve this goal. In this work, we have performed a search for specific inhibitors that could decrease glutaminase activity by screening two different groups of compounds: i) a group integrated by a diverse, highly pure small molecule compounds derived from thiourea ranging from 200 to 800 Daltons; and ii) a group integrated by commonly use compounds in the treatment of HE. Results shown that THDP-17 (10 µM), a thiourea derivate product, could inhibit the intestinal glutaminase activity (57.4±6.7%). Inhibitory effect was tissue dependent, ranging from 40±5.5% to 80±7.8% in an uncompetitive manner, showing Vmax and Km values of 384.62 µmol min−1, 13.62 mM with THDP-17 10 µM, respectively. This compound also decreased the glutaminase activity in Caco-2 cell cultures, showing a reduction of ammonia and glutamate production, compared to control cultures. Therefore, the THDP-17 compound could be a good candidate for HE management, by lowering ammonia production. PMID:25329718

  11. Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance.

    PubMed

    Mohana, Krishnamoorthy; Achary, Anant

    2017-08-01

    Glutathione-S-transferase (GST) inhibition is a strategy to overcome drug resistance. Several isoforms of human GSTs are present and they are expressed in almost all the organs. Specific expression levels of GSTs in various organs are collected from the human transcriptome data and analysis of the organ-specific expression of GST isoforms is carried out. The variations in the level of expressions of GST isoforms are statistically significant. The GST expression differs in diseased conditions as reported by many investigators and some of the isoforms of GSTs are disease markers or drug targets. Structure analysis of various isoforms is carried out and literature mining has been performed to identify the differences in the active sites of the GSTs. The xenobiotic binding H site is classified into H1, H2, and H3 and the differences in the amino acid composition, the hydrophobicity and other structural features of H site of GSTs are discussed. The existing inhibition strategies are compared. The advent of rational drug design, mechanism-based inhibition strategies, availability of high-throughput screening, target specific, and selective inhibition of GST isoforms involved in drug resistance could be achieved for the reversal of drug resistance and aid in the treatment of diseases.

  12. Targeting Drug-Sensitive and -Resistant Strains of Mycobacterium tuberculosis by Inhibition of Src Family Kinases Lowers Disease Burden and Pathology.

    PubMed

    Chandra, Pallavi; Rajmani, R S; Verma, Garima; Bhavesh, Neel Sarovar; Kumar, Dhiraj

    2016-01-01

    In view of emerging drug resistance among bacterial pathogens, including Mycobacterium tuberculosis, the development of novel therapeutic strategies is increasingly being sought. A recent paradigm in antituberculosis (anti-TB) drug development is to target the host molecules that are crucial for intracellular survival of the pathogen. We previously showed the importance of Src tyrosine kinases in mycobacterial pathogenesis. Here, we report that inhibition of Src significantly reduced survival of H37Rv as well as multidrug-resistant (MDR) and extremely drug-resistant (XDR) strains of M. tuberculosis in THP-1 macrophages. Src inhibition was also effective in controlling M. tuberculosis infection in guinea pigs. In guinea pigs, reduced M. tuberculosis burden due to Src inhibition also led to a marked decline in the disease pathology. In agreement with the theoretical framework of host-directed approaches against the pathogen, Src inhibition was equally effective against an XDR strain in controlling infection in guinea pigs. We propose that Src inhibitors could be developed into effective host-directed anti-TB drugs, which could be indiscriminately used against both drug-sensitive and drug-resistant strains of M. tuberculosis. IMPORTANCE The existing treatment regimen for tuberculosis (TB) suffers from deficiencies like high doses of antibiotics, long treatment duration, and inability to kill persistent populations in an efficient manner. Together, these contribute to the emergence of drug-resistant tuberculosis. Recently, several host factors were identified which help intracellular survival of Mycobacterium tuberculosis within the macrophage. These factors serve as attractive targets for developing alternate therapeutic strategies against M. tuberculosis. This strategy promises to be effective against drug-resistant strains. The approach also has potential to considerably lower the risk of emergence of new drug-resistant strains. We explored tyrosine kinase Src as a

  13. The Mutual Storytelling Writing Game.

    ERIC Educational Resources Information Center

    Scorzelli, James F.; Gold, Julie

    1999-01-01

    Because of differences in cultural backgrounds and learning styles, some children have a difficult time verbalizing their emotions or appear resistant to talking about themselves. Describes a technique, referred to as the mutual storytelling writing game, that has been found to be useful for children who have difficulty in engaging in traditional…

  14. Mutual Respect and Civic Education

    ERIC Educational Resources Information Center

    Bird, Colin

    2010-01-01

    Contemporary theories of civic education frequently appeal to an ideal of mutual respect in the context of ethical, ethical and religious disagreement. This paper critically examines two recently popular criticisms of this ideal. The first, coming from a postmodern direction, charges that the ideal is hypocritical in its effort to be maximally…

  15. Theoretical study of Escherichia coli peptide deformylase inhibition by several drugs.

    PubMed

    Chikhi, Abdelouahab; Bensegueni, Abderrahmane; Boulahrouf, Abderrahmane; Bencharif, Mustapha

    2006-01-01

    Because peptide deformylase (PDF) is essential for the initiation of translation in eubacteria but not in eukaryotes, it is a potentially interesting target for antibiotics. Computer simulation using docking software can be used to model protein-ligand interactions, and in this brief report we describe its use in optimizing the design in PDF-directed inhibitors. PDF was used as target for a set of five inhibitors with substantial structural differences. Docking results show that the compound 1BB2 (actinonin) binds with high affinity to the enzyme and produces the most stable complex, forming nine hydrogen bonds with the enzyme active site. Its binding energy is DeltaG = -31.880 kJ/mol. The modeling study shows that when the methyl group of 1BB2 is replaced with an amine group, the binding energy is increased to -35.316 kJ/mole. This enhancement is more marked (DeltaG = -41.141 kJ/mol) when the propyl group and the five-membered ring of 1BB2 are replaced by an amide group and a phenyl ring, respectively. We describe an attempt to design better antibiotics on the basis of a computer-aided simulation of the interaction between a drug and its target molecule.

  16. Elucidating Rifampin’s Inducing and Inhibiting Effects on Glyburide Pharmacokinetics and Blood Glucose in Healthy Volunteers: Unmasking the Differential Effect of Enzyme Induction and Transporter Inhibition for a Drug and Its Primary Metabolite

    PubMed Central

    Zheng, HX; Huang, Y; Frassetto, LA; Benet, LZ

    2013-01-01

    The effects of single doses of intravenous ciprofloxacin and rifampin, multiple doses of rifampin, on glyburide exposure and effect on blood glucose levels in 9 healthy volunteers were investigated. The single intravenous dose of rifampin significantly increased the AUCs of glyburide and metabolite. Blood glucose levels dropped significantly in comparison to when glyburide was dosed alone. Multiple doses of rifampin induced liver enzymes leading to a marked decrease in glyburide exposure and in blood glucose measurements. When intravenous rifampin was given after multiple doses of rifampin, the inhibition of hepatic uptake transporters masked the induction effect, however, relative changes in AUC for glyburide and its hydroxyl metabolite were the same as that seen under non-induced conditions. The studies reported here demonstrate how measurements of both the parent drug and its primary metabolite are useful in unmasking simultaneous drug-drug induction and inhibition effects and characterizing enzymatic versus transporter mechanisms. PMID:18843263

  17. Inhibition of drug metabolizing cytochrome P450s by the aromatase inhibitor drug letrozole and its major oxidative metabolite 4,4′-methanol-bisbenzonitrile in vitro

    PubMed Central

    Jeong, Seongwook; Woo, Margaret M.; Flockhart, David A.

    2009-01-01

    Purpose To determine the inhibitory potency of letrozole and its main human metabolite, 4,4′-methanol-bisbenzonitrilee, on the activities of eight cytochrome P450 (CYP) enzymes. Methods Letrozole and its metabolite were incubated with human liver microsomes (HLMs) (or expressed CYP isoforms) and NADPH in the absence (control) and presence of the test inhibitor. Results Letrozole was a potent competitive inhibitor of CYP2A6 (Ki 4.6 ± 0.05 μM and 5.0 ± 2.4 μM in HLMs and CYP2A6, respectively) and a weak inhibitor of CYP2C19 (Ki 42.2 μM in HLMs and 33.3 μM in CYP2C19), while its metabolite showed moderate inhibition of CYP2C19 and CYP2B6. Letrozole or its metabolite had negligible effect on other CYPs. Conclusions Based on the in vitro Ki values, letrozole is predicted to be a weak inhibitor of CYP2A6 in vivo. Letrozole and its major human metabolite show inhibitory activity towards other CYPs, but clinically relevant drug interactions seem less likely as the Ki values are above the therapeutic plasma concentrations of letrozole. PMID:19198839

  18. Milk Thistle Constituents Inhibit Raloxifene Intestinal Glucuronidation: A Potential Clinically Relevant Natural Product–Drug Interaction

    PubMed Central

    Gufford, Brandon T.; Chen, Gang; Vergara, Ana G.; Lazarus, Philip; Oberlies, Nicholas H.

    2015-01-01

    Women at high risk of developing breast cancer are prescribed selective estrogen response modulators, including raloxifene, as chemoprevention. Patients often seek complementary and alternative treatment modalities, including herbal products, to supplement prescribed medications. Milk thistle preparations, including silibinin and silymarin, are top-selling herbal products that may be consumed by women taking raloxifene, which undergoes extensive first-pass glucuronidation in the intestine. Key constituents in milk thistle, flavonolignans, were previously shown to be potent inhibitors of intestinal UDP-glucuronosyl transferases (UGTs), with IC50s ≤ 10 μM. Taken together, milk thistle preparations may perpetrate unwanted interactions with raloxifene. The objective of this work was to evaluate the inhibitory effects of individual milk thistle constituents on the intestinal glucuronidation of raloxifene using human intestinal microsomes and human embryonic kidney cell lysates overexpressing UGT1A1, UGT1A8, and UGT1A10, isoforms highly expressed in the intestine that are critical to raloxifene clearance. The flavonolignans silybin A and silybin B were potent inhibitors of both raloxifene 4′- and 6-glucuronidation in all enzyme systems. The Kis (human intestinal microsomes, 27–66 µM; UGT1A1, 3.2–8.3 µM; UGT1A8, 19–73 µM; and UGT1A10, 65–120 µM) encompassed reported intestinal tissue concentrations (20–310 µM), prompting prediction of clinical interaction risk using a mechanistic static model. Silibinin and silymarin were predicted to increase raloxifene systemic exposure by 4- to 5-fold, indicating high interaction risk that merits further evaluation. This systematic investigation of the potential interaction between a widely used herbal product and chemopreventive agent underscores the importance of understanding natural product–drug interactions in the context of cancer prevention. PMID:26070840

  19. Milk Thistle Constituents Inhibit Raloxifene Intestinal Glucuronidation: A Potential Clinically Relevant Natural Product-Drug Interaction.

    PubMed

    Gufford, Brandon T; Chen, Gang; Vergara, Ana G; Lazarus, Philip; Oberlies, Nicholas H; Paine, Mary F

    2015-09-01

    Women at high risk of developing breast cancer are prescribed selective estrogen response modulators, including raloxifene, as chemoprevention. Patients often seek complementary and alternative treatment modalities, including herbal products, to supplement prescribed medications. Milk thistle preparations, including silibinin and silymarin, are top-selling herbal products that may be consumed by women taking raloxifene, which undergoes extensive first-pass glucuronidation in the intestine. Key constituents in milk thistle, flavonolignans, were previously shown to be potent inhibitors of intestinal UDP-glucuronosyl transferases (UGTs), with IC50s ≤ 10 μM. Taken together, milk thistle preparations may perpetrate unwanted interactions with raloxifene. The objective of this work was to evaluate the inhibitory effects of individual milk thistle constituents on the intestinal glucuronidation of raloxifene using human intestinal microsomes and human embryonic kidney cell lysates overexpressing UGT1A1, UGT1A8, and UGT1A10, isoforms highly expressed in the intestine that are critical to raloxifene clearance. The flavonolignans silybin A and silybin B were potent inhibitors of both raloxifene 4'- and 6-glucuronidation in all enzyme systems. The Kis (human intestinal microsomes, 27-66 µM; UGT1A1, 3.2-8.3 µM; UGT1A8, 19-73 µM; and UGT1A10, 65-120 µM) encompassed reported intestinal tissue concentrations (20-310 µM), prompting prediction of clinical interaction risk using a mechanistic static model. Silibinin and silymarin were predicted to increase raloxifene systemic exposure by 4- to 5-fold, indicating high interaction risk that merits further evaluation. This systematic investigation of the potential interaction between a widely used herbal product and chemopreventive agent underscores the importance of understanding natural product-drug interactions in the context of cancer prevention. Copyright © 2015 by The American Society for Pharmacology and Experimental

  20. Mutual Impact of Diabetes Mellitus and Tuberculosis in China.

    PubMed

    Cheng, Jun; Zhang, Hui; Zhao, Yan Lin; Wang, Li Xia; Chen, Ming Ting

    2017-05-01

    China has a double burden of diabetes mellitus and tuberculosis, and many studies have been carried out on the mutual impact of these two diseases. This paper systematically reviewed studies conducted in China covering the mutual impact of epidemics of diabetes and tuberculosis, the impact of diabetes on multi-drug resistant tuberculosis and on the tuberculosis clinical manifestation and treatment outcome, the yields of bi-directional screening, and economic evaluation for tuberculosis screening among diabetes patients. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  1. Cytochrome P450 3A4 in vivo ketoconazole competitive inhibition: determination of Ki and dangers associated with high clearance drugs in general.

    PubMed

    Boxenbaum, H

    1999-01-01

    Assuming complete hepatic substrate metabolism and system linearity, quantitative effects of in vivo competitive inhibition are investigated. Following oral administration of a substrate in the presence of a competitive inhibitor, determination of the inhibition constant (Ki) is possible when plasma concentration-time profiles of both substrate and inhibitor are available. When triazolam is the P450 3A4 substrate and ketoconazole the competitive inhibitor, Ki approximately 1.2 microg/mL in humans. The effects of competitive inhibition can be divided into two components: first-pass hepatic metabolism and systemic metabolism. For drugs with high hepatic extraction ratios, the impact of competitive inhibition on hepatic first-pass metabolism can be particularly dramatic. For example, human terfenadine hepatic extraction goes from 95% in the absence of a competitive inhibitor to 35% in the presence of one (ketoconazole, 200 mg po Q 12 h dosed to steady-state). First-pass extraction therefore goes from 5% in the absence of the inhibitor to 65% in its presence. The combined effect on first-pass and systemic metabolism produces an approximate 37 fold increase in terfenadine area under the plasma concentration-time curve. Assuming intact drug is active and/or toxic, development of metabolized drugs with extensive first-pass metabolism should be avoided if possible, since inhibition of metabolism may lead to profound increases in exposure.

  2. Poor Response Inhibition as a Predictor of Problem Drinking and Illicit Drug Use in Adolescents at Risk for Alcoholism and Other Substance Use Disorders

    ERIC Educational Resources Information Center

    Nigg, Joel T.; Wong, Maria M.; Martel, Michelle M.; Jester, Jennifer M.; Puttler, Leon I.; Glass, Jennifer M.; Adams, Kenneth M.; Fitzgerald, Hiram E.; Zucker, Robert A.

    2006-01-01

    Objective: To evaluate the predictive power of executive functions, in particular, response inhibition, in relation to alcohol-related problems and illicit drug use in adolescence. Method: A total of 498 children from 275 families from a longitudinal high-risk study completed executive function measures in early and late adolescence and lifetime…

  3. Inhibition of monoamine oxidase A and B activities by imidazol(ine)/guanidine drugs, nature of the interaction and distinction from I2-imidazoline receptors in rat liver

    PubMed Central

    Ozaita, Andrés; Olmos, Gabriel; Assumpció Boronat, M; Miguel Lizcano, José; Unzeta, Mercedes; García-Sevilla, Jesús A

    1997-01-01

    I2-Imidazoline sites ([3H]-idazoxan binding) have been identified on monoamine oxidase (MAO) and proposed to modulate the activity of the enzyme through an allosteric inhibitory mechanism (Tesson et al., 1995). The main aim of this study was to assess the inhibitory effects and nature of the inhibition of imidazol(ine)/guanidine drugs on rat liver MAO-A and MAO-B isoforms and to compare their inhibitory potencies with their affinities for the sites labelled by [3H]-clonidine in the same tissue. Competition for [3H]-clonidine binding in rat liver mitochondrial fractions by imidazol(ine)/guanidine compounds revealed that the pharmacological profile of the interaction (2 - styryl - 2 - imidazoline, LSL 61112>idazoxan>2 - benzofuranyl - 2 - imidazoline, 2-BFI=cirazoline>guanabenz>oxymetazoline>>clonidine) was typical of that for I2-sites. Clonidine inhibited rat liver MAO-A and MAO-B activities with very low potency (IC50s: 700 μM and 6 mM, respectively) and displayed the typical pattern of competitive enzyme inhibition (Lineweaver-Burk plots: increased Km and unchanged Vmax values). Other imidazol(ine)/guanidine drugs also were weak MAO inhibitors with the exception of guanabenz, 2-BFI and cirazoline on MAO-A (IC50s: 4–11 μM) and 2-benzofuranyl-2-imidazol (LSL 60101) on MAO-B (IC50: 16 μM). Idazoxan was a full inhibitor, although with rather low potency, on both MAO-A and MAO-B isoenzymes (IC50s: 280 μM and 624 μM, respectively). Kinetic analyses of MAO-A inhibition by these drugs revealed that the interactions were competitive. For the same drugs acting on MAO-B the interactions were of the mixed type inhibition (increased Km and decreased Vmax values), although the greater inhibitory effects on the apparent value of Vmax/Km than on the Vmax value indicated that the competitive element of the MAO-B inhibition predominated. Competition for [3H]-Ro 41-1049 binding to MAO-A or [3H]-Ro 19-6327 binding to MAO-B in rat liver

  4. PANC-1 pancreatic cancer cell growth inhibited by cucurmosin alone and in combination with an epidermal growth factor receptor-targeted drug.

    PubMed

    Wang, Congfei; Yang, Aiqin; Zhang, Baoming; Yin, Qiang; Huang, Heguang; Chen, Minghuang; Xie, Jieming

    2014-03-01

    To investigate the inhibition of PANC-1 pancreatic cancer cell growth by cucurmosin (CUS) and its possible mechanism. We observed the inhibition of PANC-1 cell growth by sulforhodamine B and colony-forming experiments in vitro and established nonobese diabetic/severe combined immunodeficiency mouse subcutaneous tumor models in vivo. We used Western blot to analyze protein levels related to apoptosis and epidermal growth factor receptor (EGFR) signaling pathways after drug intervention, whereas the messenger RNA expression of EGFR was analyzed by quantitative real-time polymerase chain reaction. Sulforhodamine B and colony-forming experiments indicated that CUS inhibited PANC-1 cell proliferation in a dose- and time-dependent manner. A stronger inhibitory effect was observed when CUS was combined with gefitinib. The subcutaneous tumor growth was also inhibited. Western blot showed that all the examined proteins decreased, except for 4E-BP1 and the active fragments of caspase 3 and caspase 9 increased. Epidermal growth factor receptor expression did not change significantly in quantitative real-time polymerase chain reaction. Cucurmosin can strongly inhibit the growth of PANC-1 cells in vitro and in vivo. Cucurmosin can down-regulate EGFR protein expression, but not at the messenger RNA level. Cucurmosin can also inhibit the ras/raf and phosphatidylinositol 3-kinase/Akt downstream signaling pathways and enhance the sensitivity of the EGFR-targeted drug gefitinib.

  5. Low free drug concentration prevents inhibition of F508del CFTR functional expression by the potentiator VX-770 (ivacaftor).

    PubMed

    Matthes, Elizabeth; Goepp, Julie; Carlile, Graeme W; Luo, Yishan; Dejgaard, Kurt; Billet, Arnaud; Robert, Renaud; Thomas, David Y; Hanrahan, John W

    2016-02-01

    The most common cystic fibrosis (CF) mutation F508del inhibits the gating and surface expression of CFTR, a plasma membrane anion channel. Optimal pharmacotherapies will probably require both a 'potentiator' to increase channel open probability and a 'corrector' that improves folding and trafficking of the mutant protein and its stability at the cell surface. Interaction between CF drugs has been reported but remains poorly understood. CF bronchial epithelial cells were exposed to the corrector VX-809 (lumacaftor) and potentiator VX-770 (ivacaftor) individually or in combination. Functional expression of CFTR was assayed as the forskolin-stimulated short-circuit current (Isc ) across airway epithelial monolayers expressing F508del CFTR. The potentiated Isc response during forskolin stimulation was increased sixfold after pretreatment with VX-809 alone and reached ~11% that measured across non-CF monolayers. VX-770 (100 nM) and genistein (50 μM) caused similar levels of potentiation, which were not additive and were abolished by the CFTR inhibitor CFTRinh -172. The unbound fraction of VX-770 in plasma was 0.13 ± 0.04%, which together with previous measurements in patients given 250 mg p.o. twice daily, suggests a peak free plasma concentration of 1.5-8.5 nM. Chronic exposure to high VX-770 concentrations (>1 μM) inhibited functional correction by VX-809 but not in the presence of physiological protein levels (20-40 mg·mL(-1) ). Chronic exposure to a low concentration of VX-770 (100 nM) together with VX-809 (1 μM) also did not reduce the forskolin-stimulated Isc , relative to cells chronically exposed to VX-809 alone, provided it was assayed acutely using the same, clinically relevant concentration of potentiator. Chronic exposure to clinically relevant concentrations of VX-770 did not reduce F508del CFTR function. Therapeutic benefit of VX-770 + VX-809 (Orkambi) is probably limited by the efficacy of VX-809 rather than by inhibition by VX-770. © 2015

  6. Inhibition of Megakaryocyte Differentiation by Antibody-Drug Conjugates (ADCs) is Mediated by Macropinocytosis: Implications for ADC-induced Thrombocytopenia.

    PubMed

    Zhao, Hui; Gulesserian, Sara; Ganesan, Sathish Kumar; Ou, Jimmy; Morrison, Karen; Zeng, Zhilan; Robles, Veronica; Snyder, Josh; Do, Lisa; Aviña, Hector; Karki, Sher; Stover, David R; Doñate, Fernando

    2017-09-01

    Thrombocytopenia is a common adverse event in cancer patients treated with antibody-drug conjugates (ADC), including AGS-16C3F, an ADC targeting ENPP3 (ectonucleotide pyrophosphatase/phosphodiesterase-3) and trastuzumab emtansine (T-DM1). This study aims to elucidate the mechanism of action of ADC-induced thrombocytopenia. ENPP3 expression in platelets and megakaryocytes (MK) was investigated and shown to be negative. The direct effect of AGS-16C3F on platelets was evaluated using platelet rich plasma following the expression of platelet activation markers. Effects of AGS-16C3F, T-DM1, and control ADCs on maturing megakaryocytes were evaluated in an in vitro system in which human hematopoietic stem cells (HSC) were differentiated into MKs. AGS-16C3F, like T-DM1, did not affect platelets directly, but inhibited MK differentiation by the activity of Cys-mcMMAF, its active metabolite. FcγRIIA did not appear to play an important role in ADC cytotoxicity to differentiating MKs. AGS-16C3F, cytotoxic to MKs, did not bind to FcγRIIA on MKs. Blocking the interaction of T-DM1 with FcγRIIA did not prevent the inhibition of MK differentiation and IgG1-mcMMAF was not as cytotoxic to MKs despite binding to FcγRIIA. Several lines of evidence suggest that internalization of AGS-16C3F into MKs is mediated by macropinocytosis. Macropinocytosis activity of differentiating HSCs correlated with cell sensitivity to AGS-16C3F. AGS-16C3F was colocalized with a macropinocytosis marker, dextran-Texas Red in differentiating MKs. Ethyl isopropyl amiloride (EIPA), a macropinocytosis inhibitor, blocked internalization of dextran-Texas Red and AGS-16C3F. These data support the notion that inhibition of MK differentiation via macropinocytosis-mediated internalization plays a role in ADC-induced thrombocytopenia. Mol Cancer Ther; 16(9); 1877-86. ©2017 AACR See related article by Zhao et al., p. 1866 . ©2017 American Association for Cancer Research.

  7. Inhibition of multidrug resistance protein 1 (MRP1) improves chemotherapy drug response in primary and recurrent glioblastoma multiforme.

    PubMed

    Tivnan, Amanda; Zakaria, Zaitun; O'Leary, Caitrín; Kögel, Donat; Pokorny, Jenny L; Sarkaria, Jann N; Prehn, Jochen H M

    2015-01-01

    Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with extremely poor prognostic outcome despite intensive treatment. All chemotherapeutic agents currently used have no greater than 30-40% response rate, many fall into the range of 10-20%, with delivery across the blood brain barrier (BBB) or chemoresistance contributing to the extremely poor outcomes despite treatment. Increased expression of the multidrug resistance protein 1(MRP1) in high grade glioma, and it's role in BBB active transport, highlights this member of the ABC transporter family as a target for improving drug responses in GBM. In this study we show that small molecule inhibitors and gene silencing of MRP1 had a significant effect on GBM cell response to temozolomide (150 μM), vincristine (100 nM), and etoposide (2 μM). Pre-treatment with Reversan (inhibitor of MRP1 and P-glycoprotein) led to a significantly improved response to cell death in the presence of all three chemotherapeutics, in both primary and recurrent GBM cells. The presence of MK571 (inhibitor of MRP1 and multidrug resistance protein 4 (MRP4) led to an enhanced effect of vincristine and etoposide in reducing cell viability over a 72 h period. Specific MRP1 inhibition led to a significant increase in vincristine and etoposide-induced cell death in all three cell lines assessed. Treatment with MK571, or specific MRP1 knockdown, did not have any effect on temozolomide drug response in these cells. These findings have significant implications in providing researchers an opportunity to improve currently used chemotherapeutics for the initial treatment of primary GBM, and improved treatment for recurrent GBM patients.

  8. 42 CFR 423.508 - Modification or termination of contract by mutual consent.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Prohibition against Part D program participation by organizations whose owners, directors, or management employees served in a similar capacity with another organization that mutually terminated its Medicare... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM VOLUNTARY MEDICARE PRESCRIPTION DRUG BENEFIT...

  9. 42 CFR 423.508 - Modification or termination of contract by mutual consent.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Prohibition against Part D program participation by organizations whose owners, directors, or management employees served in a similar capacity with another organization that mutually terminated its Medicare... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) VOLUNTARY MEDICARE PRESCRIPTION DRUG...

  10. 42 CFR 423.508 - Modification or termination of contract by mutual consent.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Prohibition against Part D program participation by organizations whose owners, directors, or management employees served in a similar capacity with another organization that mutually terminated its Medicare... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) VOLUNTARY MEDICARE PRESCRIPTION DRUG...

  11. 42 CFR 423.508 - Modification or termination of contract by mutual consent.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Prohibition against Part D program participation by organizations whose owners, directors, or management employees served in a similar capacity with another organization that mutually terminated its Medicare... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) VOLUNTARY MEDICARE PRESCRIPTION DRUG...

  12. Inhibiting and Remodeling Toxic Amyloid-Beta Oligomer Formation Using a Computationally Designed Drug Molecule That Targets Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Downey, Matthew A.; Giammona, Maxwell J.; Lang, Christian A.; Buratto, Steven K.; Singh, Ambuj; Bowers, Michael T.

    2018-04-01

    Alzheimer's disease (AD) is rapidly reaching epidemic status among a burgeoning aging population. Much evidence suggests the toxicity of this amyloid disease is most influenced by the formation of soluble oligomeric forms of amyloid β-protein, particularly the 42-residue alloform (Aβ42). Developing potential therapeutics in a directed, streamlined approach to treating this disease is necessary. Here we utilize the joint pharmacophore space (JPS) model to design a new molecule [AC0107] incorporating structural characteristics of known Aβ inhibitors, blood-brain barrier permeability, and limited toxicity. To test the molecule's efficacy experimentally, we employed ion mobility mass spectrometry (IM-MS) to discover [AC0107] inhibits the formation of the toxic Aβ42 dodecamer at both high (1:10) and equimolar concentrations of inhibitor. Atomic force microscopy (AFM) experiments reveal that [AC0107] prevents further aggregation of Aβ42, destabilizes preformed fibrils, and reverses Aβ42 aggregation. This trend continues for long-term interaction times of 2 days until only small aggregates remain with virtually no fibrils or higher order oligomers surviving. Pairing JPS with IM-MS and AFM presents a powerful and effective first step for AD drug development.

  13. Inhibition of striatal cholinergic interneuron activity by the Kv7 opener retigabine and the nonsteroidal anti-inflammatory drug diclofenac.

    PubMed

    Paz, Rodrigo Manuel; Tubert, Cecilia; Stahl, Agostina; Díaz, Analía López; Etchenique, Roberto; Murer, Mario Gustavo; Rela, Lorena

    2018-05-11

    Striatal cholinergic interneurons provide modulation to striatal circuits involved in voluntary motor control and goal-directed behaviors through their autonomous tonic discharge and their firing "pause" responses to novel and rewarding environmental events. Striatal cholinergic interneuron hyperactivity was linked to the motor deficits associated with Parkinson's disease and the adverse effects of chronic antiparkinsonian therapy like l-DOPA-induced dyskinesia. Here we addressed whether Kv7 channels, which provide negative feedback to excitation in other neuron types, are involved in the control of striatal cholinergic interneuron tonic activity and response to excitatory inputs. We found that autonomous firing of striatal cholinergic interneurons is not regulated by Kv7 channels. In contrast, Kv7 channels limit the summation of excitatory postsynaptic potentials in cholinergic interneurons through a postsynaptic mechanism. Striatal cholinergic interneurons have a high reserve of Kv7 channels, as their opening using pharmacological tools completely silenced the tonic firing and markedly reduced their intrinsic excitability. A strong inhibition of striatal cholinergic interneurons was also observed in response to the anti-inflammatory drugs diclofenac and meclofenamic acid, however, this effect was independent of Kv7 channels. These data bring attention to new potential molecular targets and pharmacological tools to control striatal cholinergic interneuron activity in pathological conditions where they are believed to be hyperactive, including Parkinson's disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Mutuality in the provision of Scottish healthcare.

    PubMed

    Howieson, Brian

    2015-11-01

    The backdrop to this article is provided by the Better Health, Better Care Action Plan (Scottish Government, 2007), Section 1 of which is entitled 'Towards a Mutual NHS'. According to Better Health, Better Care (Scottish Government, 2007: 5): 'Mutual organisations are designed to serve their members. They are designed to gather people around a common sense of purpose. They are designed to bring the organisation together in what people often call "co-production."' The aim of this article is to précis the current knowledge of mutuality in the provision of Scottish healthcare. In detail, it will: introduce the 'mutual' organisation; offer a historical perspective of mutuality; suggest why healthcare mutuality is important; and briefly, detail the differences in mutual health-care policy in England and Scotland. It is hoped that this analysis will help researchers and practitioners alike appreciate further the philosophy of mutuality in the provision of Scottish healthcare. © The Author(s) 2015.

  15. Inhibition of oxidative drug metabolism by orphenadrine: in vitro and in vivo evidence for isozyme-specific complexation of cytochrome P-450 and inhibition kinetics.

    PubMed

    Reidy, G F; Mehta, I; Murray, M

    1989-05-01

    The anti-parkinsonian agent orphenadrine has been shown to form an in vitro metabolic intermediate (MI) complex in hepatic microsomes isolated from phenobarbital (PB)-treated rats. The present study was undertaken to assess the cytochrome P-450 isozyme specificity of inhibition and MI complexation. Spectral studies with untreated and PB-induced rat hepatic microsomes confirmed earlier reports on the selectivity of P-450 complexation by orphenadrine; MI complex formation was only observed with PB-induced microsomes. Inhibition studies with the P-450 substrates androst-4-ene-3,17-dione (androstenedione) and 7-pentoxyresorufin revealed selective inhibition of P-450 PB-B/D-associated monooxygenase activity. Thus, in microsomes from untreated male rats, orphenadrine failed to significantly inhibit (less than 50% inhibition up to a concentration of 300 microM) any of the major pathways of P-450-associated androstenedione metabolism. Preincubation of these microsomal fractions with orphenadrine and NADPH was not associated with increased inhibition of androstenedione metabolism. However, in PB-induced microsomes, P-450 PB-B/D-specific androstenedione 16 beta-hydroxylase activity was significantly and selectively inhibited (IC50 = 90 microM). Preincubation of orphenadrine with NADPH-supplemented PB-induced microsomes for 2, 4, or 8 min before androstenedione addition resulted in increased inhibition toward 16 beta-hydroxylase activity, lowering the observed IC50 to 6.6, 0.47, and 0.06 microM), respectively. Preincubation did not affect the selectivity of inhibition. In the absence of preincubation, orphenadrine appeared to be a potent mixed (competitive/noncompetitive)-type inhibitor of P-450 PB-B/D-associated pentoxyresorufin O-depentylation (Ki = 3.8 microM). Preincubation of orphenadrine with NADPH-supplemented microsomal fractions for 4 min resulted in a 30-fold lowering of the apparent inhibitor constant (Ki = 0.13 microM) and a change in the apparent inhibition

  16. Nonsteroidal Anti-inflammatory Drugs (NSAIDS) Inhibit the Growth and Reproduction of Chaetomium globosum and Other Fungi Associated with Water-Damaged Buildings.

    PubMed

    Dalmont, Kelsey; Biles, Charles L; Konsure, Heather; Dahal, Sujita; Rowsey, Tyler; Broge, Matthew; Poudyal, Shubhra; Gurung, Tara; Shrestha, Sabina; Biles, Caleb L; Cluck, Terry; Howard, Alisha

    2017-12-01

    Indoor mold due to water damage causes serious human respiratory disorders, and the remediation to homes, schools, and businesses is a major expense. Prevention of mold infestation of building materials would reduce health problems and building remediation costs. Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit yeasts and a limited number of filamentous fungi. The purpose of this research was to determine the possible inhibitory activity of nonsteroidal anti-inflammatory drugs (NSAIDs) on germination, fungal growth, and reproduction of Chaetomium globosum and other important filamentous fungi that occur in water-damaged buildings. Several NSAIDs were found to inhibit C. globosum germination, growth, and reproduction. The most effective NSAIDs inhibiting C. globosum were ibuprofen, diflunisal, and diclofenac. Fusarium oxysporum, Fusarium solani, Aspergillus niger, and Stachybotrys atra were also tested on the various media with similar results obtained. However, F. oxysporum and A. niger exhibited a higher level of resistance to aspirin and NaSAL when compared to the C. globosum isolates. The inhibition exhibited by NSAIDs was variable depending on growth media and stage of fungal development. These compounds have a great potential of inhibiting fungal growth on building materials such as gypsum board. Formulations of sprays or building materials with NSAID-like chemical treatments may hold promise in reducing mold in homes and buildings.

  17. Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas

    PubMed Central

    Roller, Devin G.; Capaldo, Brian; Bekiranov, Stefan; Mackey, Aaron J.; Conaway, Mark R.; Petricoin, Emanuel F.; Gioeli, Daniel; Weber, Michael J.

    2016-01-01

    Over half of BRAFV600E melanomas display intrinsic resistance to BRAF inhibitors, in part due to adaptive signaling responses. In this communication we ask whether BRAFV600E melanomas share common adaptive responses to BRAF inhibition that can provide clinically relevant targets for drug combinations. We screened a panel of 12 treatment-naïve BRAFV600E melanoma cell lines with MAP Kinase pathway inhibitors in pairwise combination with 58 signaling inhibitors, assaying for synergistic cytotoxicity. We found enormous diversity in the drug combinations that showed synergy, with no two cell lines having an identical profile. Although the 6 lines most resistant to BRAF inhibition showed synergistic benefit from combination with lapatinib, the signaling mechanisms by which this combination generated synergistic cytotoxicity differed between the cell lines. We conclude that adaptive responses to inhibition of the primary oncogenic driver (BRAFV600E) are determined not only by the primary oncogenic driver but also by diverse secondary genetic and epigenetic changes (“back-seat drivers”) and hence optimal drug combinations will be variable. Because upregulation of receptor tyrosine kinases is a major source of drug resistance arising from diverse adaptive responses, we propose that inhibitors of these receptors may have substantial clinical utility in combination with inhibitors of the MAP Kinase pathway. PMID:26673621

  18. Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas.

    PubMed

    Roller, Devin G; Capaldo, Brian; Bekiranov, Stefan; Mackey, Aaron J; Conaway, Mark R; Petricoin, Emanuel F; Gioeli, Daniel; Weber, Michael J

    2016-01-19

    Over half of BRAFV600E melanomas display intrinsic resistance to BRAF inhibitors, in part due to adaptive signaling responses. In this communication we ask whether BRAFV600E melanomas share common adaptive responses to BRAF inhibition that can provide clinically relevant targets for drug combinations. We screened a panel of 12 treatment-naïve BRAFV600E melanoma cell lines with MAP Kinase pathway inhibitors in pairwise combination with 58 signaling inhibitors, assaying for synergistic cytotoxicity. We found enormous diversity in the drug combinations that showed synergy, with no two cell lines having an identical profile. Although the 6 lines most resistant to BRAF inhibition showed synergistic benefit from combination with lapatinib, the signaling mechanisms by which this combination generated synergistic cytotoxicity differed between the cell lines. We conclude that adaptive responses to inhibition of the primary oncogenic driver (BRAFV600E) are determined not only by the primary oncogenic driver but also by diverse secondary genetic and epigenetic changes ("back-seat drivers") and hence optimal drug combinations will be variable. Because upregulation of receptor tyrosine kinases is a major source of drug resistance arising from diverse adaptive responses, we propose that inhibitors of these receptors may have substantial clinical utility in combination with inhibitors of the MAP Kinase pathway.

  19. Design of a Drug-in-Adhesive Transdermal Patch for Risperidone: Effect of Drug-Additive Interactions on the Crystallization Inhibition and In Vitro/In Vivo Correlation Study.

    PubMed

    Weng, Wei; Quan, Peng; Liu, Chao; Zhao, Hanqing; Fang, Liang

    2016-10-01

    The purpose of this work was to develop and design an appropriate drug-in-adhesive patch for transdermal delivery of risperidone (RISP). Various formulation factors were investigated by in vitro permeation study using excised rabbit skin. Increasing the drug concentration in the pressure sensitive adhesive (PSA) was used to enhance the drug permeation. To overcome the high crystallization tendency of the patch, several crystallization inhibitors such as PVP, PEG, and surfactants and fatty acids were evaluated by microscopy study. The mechanism of crystallization inhibition was investigated by differential scanning calorimetry, nuclear magnetic resonance spectrometer, and FT-IR studies. RISP and its active metabolite were determined after topical application of the optimized transdermal patch, and the in vivo pharmacokinetic parameters were compared with the intravenous administration group. The microscopy study indicated that fatty acid greatly inhibited the crystallization of RISP in PSA. The inhibition was attributed to the drug-additive interaction between amino group of RISP and the carboxyl group of fatty acid which was further confirmed by (1)H-NMR and FT-IR studies. The optimal permeation profile was obtained with the patches containing 5% RISP and 5% oleic acid in Duro-Tak(®) 87-2287. The in vivo pharmacokinetic study exhibited a sustained absorption and metabolism profile and well correlated with the in vitro permeation data. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. The ABC7 regimen: a new approach to metastatic breast cancer using seven common drugs to inhibit epithelial-to-mesenchymal transition and augment capecitabine efficacy.

    PubMed

    Kast, Richard E; Skuli, Nicolas; Cos, Samuel; Karpel-Massler, Georg; Shiozawa, Yusuke; Goshen, Ran; Halatsch, Marc-Eric

    2017-01-01

    Breast cancer metastatic to bone has a poor prognosis despite recent advances in our understanding of the biology of both bone and breast cancer. This article presents a new approach, the ABC7 regimen (Adjuvant for Breast Cancer treatment using seven repurposed drugs), to metastatic breast cancer. ABC7 aims to defeat aspects of epithelial-to-mesenchymal transition (EMT) that lead to dissemination of breast cancer to bone. As add-on to current standard treatment with capecitabine, ABC7 uses ancillary attributes of seven already-marketed noncancer treatment drugs to stop both the natural EMT process inherent to breast cancer and the added EMT occurring as a response to current treatment modalities. Chemotherapy, radiation, and surgery provoke EMT in cancer generally and in breast cancer specifically. ABC7 uses standard doses of capecitabine as used in treating breast cancer today. In addition, ABC7 uses 1) an older psychiatric drug, quetiapine, to block RANK signaling; 2) pirfenidone, an anti-fibrosis drug to block TGF-beta signaling; 3) rifabutin, an antibiotic to block beta-catenin signaling; 4) metformin, a first-line antidiabetic drug to stimulate AMPK and inhibit mammalian target of rapamycin, (mTOR); 5) propranolol, a beta-blocker to block beta-adrenergic signaling; 6) agomelatine, a melatonergic antidepressant to stimulate M1 and M2 melatonergic receptors; and 7) ribavirin, an antiviral drug to prevent eIF4E phosphorylation. All these block the signaling pathways - RANK, TGF-beta, mTOR, beta-adrenergic receptors, and phosphorylated eIF4E - that have been shown to trigger EMT and enhance breast cancer growth and so are worthwhile targets to inhibit. Agonism at MT1 and MT2 melatonergic receptors has been shown to inhibit both breast cancer EMT and growth. This ensemble was designed to be safe and augment capecitabine efficacy. Given the expected outcome of metastatic breast cancer as it stands today, ABC7 warrants a cautious trial.

  1. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir

    PubMed Central

    Yu, Yuqi; Wang, Jinan; Shao, Qiang; Shi, Jiye; Zhu, Weiliang

    2015-01-01

    Molecular dynamics simulations are performed to investigate the dynamic properties of wild-type HIV-1 protease and its two multi-drug-resistant variants (Flap + (L10I/G48V/I54V/V82A) and Act (V82T/I84V)) as well as their binding with APV and DRV inhibitors. The hydrophobic interactions between flap and 80 s (80’s) loop residues (mainly I50-I84’ and I50’-I84) play an important role in maintaining the closed conformation of HIV-1 protease. The double mutation in Act variant weakens the hydrophobic interactions, leading to the transition from closed to semi-open conformation of apo Act. APV or DRV binds with HIV-1 protease via both hydrophobic and hydrogen bonding interactions. The hydrophobic interactions from the inhibitor is aimed to the residues of I50 (I50’), I84 (I84’), and V82 (V82’) which create hydrophobic core clusters to further stabilize the closed conformation of flaps, and the hydrogen bonding interactions are mainly focused with the active site of HIV-1 protease. The combined change in the two kinds of protease-inhibitor interactions is correlated with the observed resistance mutations. The present study sheds light on the microscopic mechanism underlying the mutation effects on the dynamics of HIV-1 protease and the inhibition by APV and DRV, providing useful information to the design of more potent and effective HIV-1 protease inhibitors. PMID:26012849

  2. Pharmacokinetic interaction of diosmetin and silibinin with other drugs: Inhibition of CYP2C9-mediated biotransformation and displacement from serum albumin.

    PubMed

    Poór, Miklós; Boda, Gabriella; Mohos, Violetta; Kuzma, Mónika; Bálint, Mónika; Hetényi, Csaba; Bencsik, Tímea

    2018-06-01

    Diosmin and silibinin (SIL) are polyphenolic compounds which are the active components of several drugs and dietary supplements. After the oral administration of diosmin (flavonoid glycoside), only its aglycone diosmetin (DIO) reaches the systemic circulation. Both DIO and SIL form complexes with serum albumin and are able to inhibit several cytochrome P450 enzymes. Therefore, it is reasonable to hypothesize that these polyphenols may displace some drugs from serum albumin and inhibit their biotransformation, potentially leading to the disruption of drug therapy. In this study, the inhibitory action of DIO and SIL on CYP2C9-catalyzed metabolism of diclofenac to 4'-hydroxydiclofenac was examined, using warfarin as a positive control. Furthermore, interaction of DIO and SIL with human and bovine serum albumins as well as the displacement of warfarin from albumin by DIO and SIL were tested, employing steady-state fluorescence spectroscopy, fluorescence anisotropy, ultrafiltration, and molecular modeling. It is demonstrated that DIO and SIL are potent inhibitors of CYP2C9 enzyme and are able to displace the Site I ligand warfarin from human serum albumin. Because DIO and SIL may interfere with the pharmacokinetics of several drugs through both ways, we need to consider the potentially hazardous consequences of the consumption of diosmin or SIL together with other drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-κB/GLUT1 axis

    PubMed Central

    Jiang, Jie; Geng, Guojun; Yu, Xiuyi; Liu, Hongming; Gao, Jing; An, Hanxiang; Cai, Chengfu; Li, Ning; Shen, Dongyan; Wu, Xiaoqiang; Zheng, Lisheng; Mi, Yanjun; Yang, Shuyu

    2016-01-01

    Non-small-cell lung cancer (NSCLC) is an aggressive malignancy and long-term survival remains unsatisfactory for patients with metastatic and recurrent disease. Repurposing the anti-malarial drug dihydroartemisinin (DHA) has been proved to possess potent antitumor effect on various cancers. However, the effects of DHA in preventing the invasion of NSCLC cells have not been studied. In the present study, we determined the inhibitory effects of DHA on invasion and migration and the possible mechanisms involved using A549 and H1975 cells. DHA inhibited in vitro migration and invasion of NSCLC cells even in low concentration with little cytotoxicity. Additionally, low concentration DHA also inhibited Warburg effect in NSCLC cells. Mechanically, DHA negatively regulates NF-κB signaling to inhibit the GLUT1 translocation. Blocking the NF-κB signaling largely abolishes the inhibitory effects of DHA on the translocation of GLUT1 to the plasma membrane and the Warburg effect. Furthermore, GLUT1 knockdown significantly decreased the inhibition of invasion, and migration by DHA. Our results suggested that DHA can inhibit metastasis of NSCLC by targeting glucose metabolism via inhibiting NF-κB signaling pathway and DHA may deserve further investigation in NSCLC treatment. PMID:27895313

  4. Defense mutualisms enhance plant diversification

    PubMed Central

    Weber, Marjorie G.; Agrawal, Anurag A.

    2014-01-01

    The ability of plants to form mutualistic relationships with animal defenders has long been suspected to influence their evolutionary success, both by decreasing extinction risk and by increasing opportunity for speciation through an expanded realized niche. Nonetheless, the hypothesis that defense mutualisms consistently enhance plant diversification across lineages has not been well tested due to a lack of phenotypic and phylogenetic information. Using a global analysis, we show that the >100 vascular plant families in which species have evolved extrafloral nectaries (EFNs), sugar-secreting organs that recruit arthropod mutualists, have twofold higher diversification rates than families that lack species with EFNs. Zooming in on six distantly related plant clades, trait-dependent diversification models confirmed the tendency for lineages with EFNs to display increased rates of diversification. These results were consistent across methodological approaches. Inference using reversible-jump Markov chain Monte Carlo (MCMC) to model the placement and number of rate shifts revealed that high net diversification rates in EFN clades were driven by an increased number of positive rate shifts following EFN evolution compared with sister clades, suggesting that EFNs may be indirect facilitators of diversification. Our replicated analysis indicates that defense mutualisms put lineages on a path toward increased diversification rates within and between clades, and is concordant with the hypothesis that mutualistic interactions with animals can have an impact on deep macroevolutionary patterns and enhance plant diversity. PMID:25349406

  5. Defense mutualisms enhance plant diversification.

    PubMed

    Weber, Marjorie G; Agrawal, Anurag A

    2014-11-18

    The ability of plants to form mutualistic relationships with animal defenders has long been suspected to influence their evolutionary success, both by decreasing extinction risk and by increasing opportunity for speciation through an expanded realized niche. Nonetheless, the hypothesis that defense mutualisms consistently enhance plant diversification across lineages has not been well tested due to a lack of phenotypic and phylogenetic information. Using a global analysis, we show that the >100 vascular plant families in which species have evolved extrafloral nectaries (EFNs), sugar-secreting organs that recruit arthropod mutualists, have twofold higher diversification rates than families that lack species with EFNs. Zooming in on six distantly related plant clades, trait-dependent diversification models confirmed the tendency for lineages with EFNs to display increased rates of diversification. These results were consistent across methodological approaches. Inference using reversible-jump Markov chain Monte Carlo (MCMC) to model the placement and number of rate shifts revealed that high net diversification rates in EFN clades were driven by an increased number of positive rate shifts following EFN evolution compared with sister clades, suggesting that EFNs may be indirect facilitators of diversification. Our replicated analysis indicates that defense mutualisms put lineages on a path toward increased diversification rates within and between clades, and is concordant with the hypothesis that mutualistic interactions with animals can have an impact on deep macroevolutionary patterns and enhance plant diversity.

  6. Generation of Bayesian prediction models for OATP-mediated drug-drug interactions based on inhibition screen of OATP1B1, OATP1B1∗15 and OATP1B3.

    PubMed

    van de Steeg, E; Venhorst, J; Jansen, H T; Nooijen, I H G; DeGroot, J; Wortelboer, H M; Vlaming, M L H

    2015-04-05

    Human organic anion-transporting polypeptide 1B1 (OATP1B1) and OATP1B3 are important hepatic uptake transporters. Early assessment of OATP1B1/1B3-mediated drug-drug interactions (DDIs) is therefore important for successful drug development. A promising approach for early screening and prediction of DDIs is computational modeling. In this study we aimed to generate a rapid, single Bayesian prediction model for OATP1B1, OATP1B1∗15 and OATP1B3 inhibition. Besides our previously generated HEK-OATP1B1 and HEK-OATP1B1∗15 cells, we now generated and characterized HEK-OATP1B3 cells. Using these cell lines we investigated the inhibitory potential of 640 FDA-approved drugs from a commercial library (10μM) on the uptake of [(3)H]-estradiol-17β-d-glucuronide (1μM) by OATP1B1, OATP1B1∗15, and OATP1B3. Using a cut-off of ⩾60% inhibition, 8% and 7% of the 640 drugs were potent OATP1B1 and OATP1B1∗15 inhibitors, respectively. Only 1% of the tested drugs significantly inhibited OATP1B3, which was not sufficient for Bayesian modeling. Modeling of OATP1B1 and OATP1B1∗15 inhibition revealed that presence of conjugated systems and (hetero)cycles with acceptor/donor atoms in- or outside the ring enhance the probability of a molecule binding these transporters. The overall performance of the model for OATP1B1 and OATP1B1∗15 was ⩾80%, including evaluation with a true external test set. Our Bayesian classification model thus represents a fast, inexpensive and robust means of assessing potential binding of new chemical entities to OATP1B1 and OATP1B1∗15. As such, this model may be used to rank compounds early in the drug development process, helping to avoid adverse effects in a later stage due to inhibition of OATP1B1 and/or OATP1B1∗15. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Inhibition of crystal nucleation and growth by water-soluble polymers and its impact on the supersaturation profiles of amorphous drugs.

    PubMed

    Ozaki, Shunsuke; Kushida, Ikuo; Yamashita, Taro; Hasebe, Takashi; Shirai, Osamu; Kano, Kenji

    2013-07-01

    The impact of water-soluble polymers on drug supersaturation behavior was investigated to elucidate the role of water-soluble polymers in enhancing the supersaturation levels of amorphous pharmaceuticals. Hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (PVP), and Eudragit L-100 (Eudragit) were used as representative polymers, and griseofulvin and danazol were used as model drugs. Supersaturation profiles of amorphous drugs were measured in biorelevant dissolution tests. Crystal growth rate was measured from the decrease in dissolved drug concentration in the presence of seed crystals. Nucleation kinetics was evaluated by measuring the induction time for nucleation. All experiments were performed in the presence and absence of polymers. The degree of supersaturation of the amorphous model drugs increased with an increase in the inhibitory efficiency of polymers against crystal nucleation and growth (HPMC > PVP > Eudragit). In the presence of HPMC, the addition of seed crystals diminished the supersaturation ratio dramatically for griseofulvin and moderately for danazol. The results demonstrated that the polymers contributed to drug supersaturation by inhibiting both nucleation and growth. The effect of the polymers was drug dependent. The detailed characterization of polymers would allow selection of appropriate crystallization inhibitors and a planned quality control strategy for the development of supersaturable formulations. Copyright © 2013 Wiley Periodicals, Inc.

  8. Antihelminthic drug niclosamide inhibits CIP2A and reactivates tumor suppressor protein phosphatase 2A in non-small cell lung cancer cells.

    PubMed

    Kim, Myeong-Ok; Choe, Min Ho; Yoon, Yi Na; Ahn, Jiyeon; Yoo, Minjin; Jung, Kwan-Young; An, Sungkwan; Hwang, Sang-Gu; Oh, Jeong Su; Kim, Jae-Sung

    2017-11-15

    Protein phosphatase 2A (PP2A) is a critical tumor suppressor complex responsible for the inactivation of various oncogenes. Recently, PP2A reactivation has emerged asan anticancer strategy. Cancerous inhibitor of protein phosphatase 2A (CIP2A), an endogenous inhibitor of PP2A, is upregulated in many cancer cells, including non-small cell lung cancer (NSCLC) cells. We demonstrated that the antihelminthic drug niclosamide inhibited the expression of CIP2A and reactivated the tumor suppressor PP2A in NSCLC cells. We performed a drug-repurposing screen and identified niclosamide asa CIP2A suppressor in NSCLC cells. Niclosamide inhibited cell proliferation, colony formation, and tumor sphere formation, and induced mitochondrial dysfunction through increased mitochondrial ROS production in NSCLC cells; however, these effects were rescued by CIP2A overexpression, which indicated that the antitumor activity of niclosamide was dependent on CIP2A. We found that niclosamide increased PP2A activity through CIP2A inhibition, which reduced the phosphorylation of several oncogenic proteins. Moreover, we found that a niclosamide analog inhibited CIP2A expression and increased PP2A activity in several types of NSCLC cells. Finally, we showed that other well-known PP2A activators, including forskolin and FTY720, did not inhibit CIP2A and that their activities were not dependent on CIP2A. Collectively, our data suggested that niclosamide effectively suppressed CIP2A expression and subsequently activated PP2A in NSCLC cells. This provided strong evidence for the potential use of niclosamide asa PP2A-activating drug in the clinical treatment of NSCLC. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Evaluating the Role of Multidrug Resistance Protein 3 (MDR3) Inhibition in Predicting Drug-Induced Liver Injury Using 125 Pharmaceuticals.

    PubMed

    Aleo, Michael D; Shah, Falgun; He, Kan; Bonin, Paul D; Rodrigues, A David

    2017-05-15

    The role of bile salt export protein (BSEP) inhibition in drug-induced liver injury (DILI) has been investigated widely, while inhibition of the canalicular multidrug resistant protein 3 (MDR3) has received less attention. This transporter plays a pivotal role in secretion of phospholipids into bile and functions coordinately with BSEP to mediate the formation of bile acid-containing biliary micelles. Therefore, inhibition of MDR3 in human hepatocytes was examined across 125 drugs (70 of Most-DILI-concern and 55 of No-DILI-concern). Of these tested, 41% of Most-DILI-concern and 47% of No-DILI-concern drugs had MDR3 IC 50 values of <50 μM. A better distinction across DILI classifications occurred when systemic exposure was considered where safety margins of 50-fold had low sensitivity (0.29), but high specificity (0.96). Analysis of physical chemical property space showed that basic compounds were twice as likely to be MDR3 inhibitors as acids, neutrals, and zwitterions and that inhibitors were more likely to have polar surface area (PSA) values of <100 Å 2 and cPFLogD values between 1.5 and 5. These descriptors, with different cutoffs, also highlighted a group of compounds that shared dual potency as MDR3 and BSEP inhibitors. Nine drugs classified as Most-DILI-concern compounds (four withdrawn, four boxed warning, and one liver injury warning in their approved label) had intrinsic potency features of <20 μM in both assays, thereby reinforcing the notion that multiple inhibitory mechanisms governing bile formation (bile acid and phospholipid efflux) may confer additional risk factors that play into more severe forms of DILI as shown by others for BSEP inhibitors combined with multidrug resistance-associated protein (MRP2, MRP3, MRP4) inhibitory properties. Avoiding physical property descriptors that highlight dual BSEP and MDR3 inhibition or testing drug candidates for inhibition of multiple efflux transporters (e.g., BSEP, MDR3, and MRPs) may be an effective

  10. Chaetominine reduces MRP1-mediated drug resistance via inhibiting PI3K/Akt/Nrf2 signaling pathway in K562/Adr human leukemia cells

    SciTech Connect

    Yao, Jingyun; Wei, Xing; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai

    Drug resistance limits leukemia treatment and chaetominine, a cytotoxic alkaloid that promotes apoptosis in a K562 human leukemia cell line via the mitochondrial pathway was studied with respect to chemoresistance in a K562/Adr human resistant leukemia cell line. Cytotoxicity assays indicated that K562/Adr resistance to adriamycin (ADR) did not occur in the presence of chaetominine and that chaetominine increased chemosensitivity of K562/Adr to ADR. Data show that chaetominine enhanced ADR-induced apoptosis and intracellular ADR accumulation in K562/Adr cells. Accordingly, chaetominine induced apoptosis by upregulating ROS, pro-apoptotic Bax and downregulating anti-apoptotic Bcl-2. RT-PCR and western-blot confirmed that chaetominine suppressed highly expressedmore » MRP1 at mRNA and protein levels. But little obvious alternation of another drug transporter MDR1 mRNA was observed. Furthermore, inhibition of MRP1 by chaetominine relied on inhibiting Akt phosphorylation and nuclear Nrf2. In summary, chaetominine strongly reverses drug resistance by interfering with the PI3K/Akt/Nrf2 signaling, resulting in reduction of MRP1-mediated drug efflux and induction of Bax/Bcl-2-dependent apoptosis in an ADR-resistant K562/Adr leukemia cell line. - Highlights: • Chaetominine enhanced chemosensitivity of ADR against K562/Adr cells. • Chaetominine increased intracellular ADR levels via inhibiting MRP1. • Chaetominine induced apoptosis of K562/Adr cells through upregulation of ROS and modulation of Bax/Bcl-2. • Inhibition of MRP1 and Nrf2 by chaetominine treatment was correlative with blockade of PI3K/Akt signaling.« less

  11. Promiscuous, Multi-Target Lupane-Type Triterpenoids Inhibits Wild Type and Drug Resistant HIV-1 Replication Through the Interference With Several Targets.

    PubMed

    Bedoya, Luis M; Beltrán, Manuela; García-Pérez, Javier; Obregón-Calderón, Patricia; Callies, Oliver; Jímenez, Ignacio A; Bazzocchi, Isabel L; Alcamí, José

    2018-01-01

    Current research on antiretroviral therapy is mainly focused in the development of new formulations or combinations of drugs belonging to already known targets. However, HIV-1 infection is not cured by current therapy and thus, new approaches are needed. Bevirimat was developed by chemical modification of betulinic acid, a lupane-type pentacyclic triterpenoid (LPT), as a first-in-class HIV-1 maturation inhibitor. However, in clinical trials, bevirimat showed less activity than expected because of the presence of a natural mutation in Gag protein that conferred resistance to a high proportion of HIV-1 strains. In this work, three HIV-1 inhibitors selected from a set of previously screened LPTs were investigated for their targets in the HIV-1 replication cycle, including their maturation inhibitor effect. LPTs were found to inhibit HIV-1 infection acting as promiscuous compounds with several targets in the HIV-1 replication cycle. LPT12 inhibited HIV-1 infection mainly through reverse transcription, integration, viral transcription, viral proteins (Gag) production and maturation inhibition. LPT38 did it through integration, viral transcription or Gag production inhibition and finally, LPT42 inhibited reverse transcription, viral transcription or Gag production. The three LPTs inhibited HIV-1 infection of human primary lymphocytes and infections with protease inhibitors and bevirimat resistant HIV-1 variants with similar values of IC 50 . Therefore, we show that the LPTs tested inhibited HIV-1 infection through acting on different targets depending on their chemical structure and the activities of the different LPTs vary with slight structural alterations. For example, of the three LPTs under study, we found that only LPT12 inhibited infectivity of newly-formed viral particles, suggesting a direct action on the maturation process. Thus, the multi-target behavior gives a potential advantage to these compounds since HIV-1 resistance can be overcome by modulating more

  12. Circumvention of the multidrug-resistance protein (MRP-1) by an antitumor drug through specific inhibition of gene transcription in breast tumor cells.

    PubMed

    Mansilla, Sylvia; Rojas, Marta; Bataller, Marc; Priebe, Waldemar; Portugal, José

    2007-04-01

    Multidrug-resistance protein 1 (MRP-1) confers resistance to a number of clinically important chemotherapeutic agents. The promoter of the mrp-1 gene contains an Sp1-binding site, which we targeted using the antitumor bis-anthracycline WP631. When MCF-7/VP breast cancer cells, which overexpress MRP-1 protein, were incubated with WP631 the expression of the multidrug-resistance protein gene decreased. Conversely, doxorubicin did not alter mrp-1 gene expression. The inhibition of gene expression was followed by a decrease in the activity of the MRP-1 protein. The IC(75) for WP631 (drug concentration required to inhibit cell growth by 75%) circumvented the drug-efflux pump, without addition of resistant modifiers. After treatment with WP631, MCF-7/VP cells were committed to die after entering mitosis (mitotic catastrophe), while treatment with doxorubicin did not affect cell growth. This is the first report on an antitumor drug molecule inhibiting the mrp-1 gene directly, rather than being simply a poor substrate for the transporter-mediated efflux. However, both situations appeared to coexist, thereby a superior cytotoxic effect was attained. Ours results suggest that WP631 offers great potential for the clinical treatment of tumors displaying a multidrug-resistance phenotype.

  13. Gamma-vinyl GABA inhibits cocaine-triggered reinstatement of drug-seeking behavior in rats by a non-dopaminergic mechanism

    PubMed Central

    Peng, Xiao-Qing; Li, Xia; Gilbert, Jeremy G.; Pak, Arlene C.; Ashby, Charles R.; Brodie, Jonathan D.; Dewey, Stephen L.; Gardner, Eliot L.; Xi, Zheng-Xiong

    2008-01-01

    Relapse to drug use is a core feature of addiction. Previous studies demonstrate that γ-vinyl GABA (GVG), an irreversible GABA transaminase inhibitor, attenuates the acute rewarding effects of cocaine and other addictive drugs. We here report that systemic administration of GVG (25–300 mg/kg) dose-dependently inhibits cocaine- or sucrose-induced reinstatement of reward-seeking behavior in rats. In vivo microdialysis data indicated that the same doses of GVG dose-dependently elevate extracellular GABA levels in the nucleus accumbens (NAc). However, GVG, when administered systemically or locally into the NAc, failed to inhibit either basal or cocaine-priming enhanced NAc dopamine in either naïve rats or cocaine extinction rats. These data suggest that: (1) GVG significantly inhibits cocaine- or sucrose-triggered reinstatement of reward-seeking behavior; and (2) a GABAergic-, but not dopaminergic-, dependent mechanism may underlie the antagonism by GVG of cocaine-triggered reinstatement of drug-seeking behavior, at least with respect to GVG's action on the NAc. PMID:18063319

  14. Utilisation of the isobole methodology to study dietary peptide-drug and peptide-peptide interactive effects on dipeptidyl peptidase IV (DPP-IV) inhibition.

    PubMed

    Nongonierma, Alice B; FitzGerald, Richard J

    2015-01-01

    Inhibition of dipeptidyl peptidase-IV (DPP-IV) is used as a means to regulate post-prandial serum glucose in type 2 diabetics. The effect of drug (Sitagliptin®)/peptide and binary peptide mixtures on DPP-IV inhibition was studied using an isobole approach. Five peptides (Ile-Pro-Ile-Gln-Tyr, Trp-Lys, Trp-Pro, Trp-Arg and Trp-Leu), having DPP-IV half maximum inhibitory concentration values (IC₅₀)<60 μM and reported to act through different inhibition mechanisms, were investigated. The dose response relationship of Sitagliptin : peptide (1:0, 0:1, 1:852, 1:426 and 1:1704 on a molar basis) and binary Ile-Pro-Ile-Gln-Tyr : peptide (1:0, 0:1, 1:1, 1:2 and 2:1 on a molar basis) mixtures for DPP-IV inhibition was characterised. Isobolographic analysis showed, in most instances, an additive effect on DPP-IV inhibition. However, a synergistic effect was observed with two Sitagliptin:Ile-Pro-Ile-Gln-Tyr (1:426 and 1:852) mixtures and an antagonistic effect was seen with one Sitagliptin : Trp-Pro (1:852) mixture, and three binary peptide mixtures (Ile-Pro-Ile-Gln-Tyr : Trp-Lys (1:1 and 2:1) and Ile-Pro-Ile-Gln-Tyr:Trp-Leu (1:2)). The results show that Sitagliptin and food protein-derived peptides can interact, thereby enhancing overall DPP-IV inhibition. Combination of Sitagliptin with food protein-derived peptides may help in reducing drug dosage and possible associated side-effects.

  15. Anthelminthic drug niclosamide sensitizes the responsiveness of cervical cancer cells to paclitaxel via oxidative stress-mediated mTOR inhibition

    SciTech Connect

    Chen, Liping; Wang, Li; Shen, Haibin

    Drug repurposing represents an alternative therapeutic strategy to cancer treatment. The potent anti-cancer activities of a FDA-approved anthelminthic drug niclosamide have been demonstrated in various cancers. However, whether niclosamide is active against cervical cancer is unknown. In this study, we investigated the effects of niclosamide alone and its combination with paclitaxel in cervical cancer in vitro and in vivo. We found that niclosamide significantly inhibited proliferation and induced apoptosis of a panel of cervical cancer cell lines, regardless of their cellular origin and genetic pattern. Niclosamide also inhibited tumor growth in cervical cancer xenograft mouse model. Importantly, niclosamide significantly enhanced the responsivenessmore » of cervical cancer cell to paclitaxel. We further found that niclosamide induced mitochondrial dysfunctions via inhibiting mitochondrial respiration, complex I activity and ATP generation, which led to oxidative stress. ROS scavenge agent N-acetyl-L-cysteine (NAC) completely reversed the effects of niclosamide in increasing cellular ROS, inhibiting proliferation and inducing apoptosis, suggesting that oxidative stress induction is the mechanism of action of niclosamide in cervical cancer cells. In addition, niclosamide significantly inhibited mammalian target of rapamycin (mTOR) signaling pathway in cervical cancer cells and its inhibitory effect on mTOR is modulated by oxidative stress. Our work suggests that niclosamide is a useful addition to the treatment armamentarium for cervical cancer and induction of oxidative stress may be a potential therapeutic strategy in cervical cancer. - Highlights: • Niclosamide is active against cervical cancer cells in vitro and in vivo. • Niclosamide sensitizes cervical cancer cell response to paclitaxel. • Niclosamide induces mitochondrial dysfunction and oxidative damage. • Niclosamide inhibits mTOR signaling in an oxidative stress-dependent manner.« less

  16. [Quantitative Prediction of Drug-Drug Interaction Caused by CYP Inhibition and Induction from In Vivo Data and Its Application in Daily Clinical Practices-Proposal for the Pharmacokinetic Interaction Significance Classification System (PISCS)].

    PubMed

    Ohno, Yoshiyuki

    2018-01-01

     Drug-drug interactions (DDIs) can affect the clearance of various drugs from the body; however, these effects are difficult to sufficiently evaluate in clinical studies. This article outlines our approach to improving methods for evaluating and providing drug information relative to the effects of DDIs. In a previous study, total exposure changes to many substrate drugs of CYP caused by the co-administration of inhibitor or inducer drugs were successfully predicted using in vivo data. There are two parameters for the prediction: the contribution ratio of the enzyme to oral clearance for substrates (CR), and either the inhibition ratio for inhibitors (IR) or the increase in clearance of substrates produced by induction (IC). To apply these predictions in daily pharmacotherapy, the clinical significance of any pharmacokinetic changes must be carefully evaluated. We constructed a pharmacokinetic interaction significance classification system (PISCS) in which the clinical significance of DDIs was considered in a systematic manner, according to pharmacokinetic changes. The PISCS suggests that many current 'alert' classifications are potentially inappropriate, especially for drug combinations in which pharmacokinetics have not yet been evaluated. It is expected that PISCS would contribute to constructing a reliable system to alert pharmacists, physicians and consumers of a broad range of pharmacokinetic DDIs in order to more safely manage daily clinical practices.

  17. Dopamine D3 receptor antagonist SB-277011A inhibits methamphetamine self-administration and methamphetamine-induced reinstatement of drug-seeking in rats

    PubMed Central

    Higley, Amanda E.; Kiefer, Stephen W.; Li, Xia; Gaál, József; Xi, Zheng-Xiong; Gardner, Eliot L.

    2013-01-01

    We have previously reported that selective blockade of brain dopamine D3 receptors by SB-277011A significantly attenuates cocaine self-administration and cocaine-induced reinstatement of drug-seeking behavior. In the present study, we investigated whether SB-277011A similarly inhibits methamphetamine self-administration and methamphetamine-induced reinstatement to drug-seeking behavior. Male Long–Evans rats were allowed to intravenously self-administer methamphetamine (0.05 mg/kg/infusion) under fixed-ratio 2 (FR2) or progressive-ratio (PR) reinforcement conditions, and some rats were tested for methamphetamine-induced reinstatement of drug-seeking behavior after extinction of self-administration. The effects of SB-277011A on each of these methamphetamine-supported behaviors were then tested. Acute intraperitoneal (i.p.) administration of SB-277011A failed to alter methamphetamine self-administration under FR2 reinforcement, but significantly lowered the break-point for methamphetamine self-administration under PR reinforcement. SB-277011A also significantly inhibited methamphetamine-triggered reinstatement of extinguished drug-seeking behavior. Overall, these data show that blockade of dopamine D3 receptors by SB-277011A attenuates the rewarding and incentive motivational effects of methamphetamine in rats, supporting the development of selective dopamine D3 antagonists for the treatment of methamphetamine addiction. PMID:21466803

  18. Mutually unbiased product bases for multiple qudits

    SciTech Connect

    McNulty, Daniel; Pammer, Bogdan; Weigert, Stefan

    We investigate the interplay between mutual unbiasedness and product bases for multiple qudits of possibly different dimensions. A product state of such a system is shown to be mutually unbiased to a product basis only if each of its factors is mutually unbiased to all the states which occur in the corresponding factors of the product basis. This result implies both a tight limit on the number of mutually unbiased product bases which the system can support and a complete classification of mutually unbiased product bases for multiple qubits or qutrits. In addition, only maximally entangled states can be mutuallymore » unbiased to a maximal set of mutually unbiased product bases.« less

  19. Elucidating rifampin's inducing and inhibiting effects on glyburide pharmacokinetics and blood glucose in healthy volunteers: unmasking the differential effects of enzyme induction and transporter inhibition for a drug and its primary metabolite.

    PubMed

    Zheng, H X; Huang, Y; Frassetto, L A; Benet, L Z

    2009-01-01

    The effects of single doses of intravenous (IV) ciprofloxacin and rifampin and of multiple doses of rifampin on glyburide exposure and blood glucose levels were investigated in nine healthy volunteers. A single IV dose of rifampin significantly increased the area under the concentration-time curve (AUC) of glyburide and its metabolite. Blood glucose levels were significantly lower than those observed after dosing with glyburide alone. Multiple doses of rifampin induced an increase in liver enzyme levels, leading to a marked decrease in glyburide exposure and blood glucose levels. When IV rifampin was administered after multiple doses of rifampin, the inhibition of hepatic uptake transporters masked the induction effect; however, the relative changes in AUC for glyburide and its hydroxyl metabolite were similar to those seen under noninduced conditions. The studies reported here demonstrate how measurements of the levels of both the parent drug and its primary metabolite are useful in unmasking simultaneous drug-drug induction and inhibition effects and in characterizing enzymatic vs. transporter mechanisms.

  20. Risk Assessment Using Cytochrome P450 Time-Dependent Inhibition Assays at Single Time and Concentration in the Early Stage of Drug Discovery.

    PubMed

    Kosaka, Mai; Kosugi, Yohei; Hirabayashi, Hideki

    2017-09-01

    In this article, we proposed a risk assessment strategy for CYP3A time-dependent inhibition (TDI) during drug discovery based on a thorough retrospective study of 13 reference drugs, some of which are known to have in vitro TDI potential but have unknown clinical relevance. First, the traditional parameter k inact /K I , recommended by regulatory authorities for necessity decision making in clinical drug-drug interaction (DDI) studies, was investigated as a predictive index for clinical TDI liability. The cutoff value of 1.1 for k inact /K I , established by the Food and Drug Administration, tended to produce false-positive prediction results for clinical DDI occurrence. The value of 1.25 recommended in the European Medicines Evaluation Agency draft guideline yielded better predictions with only 1 false negative for diltiazem. Second, to enable earlier risk assessment, remaining activity, defined as the residual CYP3A activity in vitro obtained in the screening conditions, was investigated as an alternative index. As a result, the ratios of unbound C max or area under the curve to remaining activity precisely predicted clinical DDI occurrence. In conclusion, we demonstrated the predictive power of k inact /K I and remaining activity values for clinical DDIs. These findings provide insights that enable TDI risk assessment, even during drug discovery. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Circumvention of Mcl-1-dependent drug resistance by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells.

    PubMed

    Pei, Xin-Yan; Dai, Yun; Felthousen, Jessica; Chen, Shuang; Takabatake, Yukie; Zhou, Liang; Youssefian, Leena E; Sanderson, Michael W; Bodie, Wesley W; Kramer, Lora B; Orlowski, Robert Z; Grant, Steven

    2014-01-01

    The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.

  2. Circumvention of Mcl-1-Dependent Drug Resistance by Simultaneous Chk1 and MEK1/2 Inhibition in Human Multiple Myeloma Cells

    PubMed Central

    Pei, Xin-Yan; Dai, Yun; Felthousen, Jessica; Chen, Shuang; Takabatake, Yukie; Zhou, Liang; Youssefian, Leena E.; Sanderson, Michael W.; Bodie, Wesley W.; Kramer, Lora B.; Orlowski, Robert Z.; Grant, Steven

    2014-01-01

    The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM. PMID:24594907

  3. Inhibition of CRM1-mediated nuclear export of influenza A nucleoprotein and nuclear export protein as a novel target for antiviral drug development

    SciTech Connect

    Chutiwitoonchai, Nopporn; Mano, Takafumi; Kakisaka

    An anti-influenza compound, DP2392-E10 based on inhibition of the nuclear export function of the viral nucleoprotein-nuclear export signal 3 (NP-NES3) domain was successfully identified by our previous high-throughput screening system. Here, we demonstrated that DP2392-E10 exerts its antiviral effect by inhibiting replication of a broad range of influenza A subtypes. In regard to the molecular mechanism, we revealed that DP2392-E10 inhibits nuclear export of both viral NP and nuclear export protein (NEP). More specifically, in vitro pull-down assays revealed that DP2392-E10 directly binds cellular CRM1, which mediates nuclear export of NP and NEP. In silico docking suggested that DP2392-E10 bindsmore » at a region close to the HEAT9 and HEAT10 domains of CRM1. Together, these results indicate that the CRM1-mediated nuclear export function of influenza virus represents a new potential target for antiviral drug development, and also provide a core structure for a novel class of inhibitors that target this function. - Highlights: •DP2392-E10 inhibits replication of a broad range of influenza A subtypes. •DP2392-E10 inhibits nuclear exports of NP and NEP via their NP-NES3 and NEP-NES2 domains, respectively. •DP2392-E10 is predicted to directly bind CRM1 in the region near the HEAT9 and HEAT10 repeats.« less

  4. Role of mutual punishment in the snowdrift game

    NASA Astrophysics Data System (ADS)

    Yang, Han-Xin; Wang, Zhen

    2015-09-01

    The effects of punishment on cooperation have drawn increasing attention. In this paper, we propose a new mechanism of punishment, in which an individual will punish each neighbor if their strategies are different, and vice versa. We incorporate the mutual punishment into the snowdrift game. Results for well-mixed and structured populations have shown that, for no punishment or small values of punishment fine, the fraction of cooperators continuously decreases with the temptation to defect. However, for large values of punishment fine, there exists an abrupt transition point, at which the fraction of cooperators suddenly drops from 1 to 0. Compared to no punishment, mutual punishment promotes cooperation when the temptation to defect is small but inhibits cooperation when the temptation to defect is large. For weak (strong) temptation to defect, the cooperation level increases (decreases) with the punishment fine. For moderate temptation to defect, there exists an optimal value of the punishment fine that leads to the highest cooperation level.

  5. Anthelmintic drug niclosamide enhances the sensitivity of chronic myeloid leukemia cells to dasatinib through inhibiting Erk/Mnk1/eIF4E pathway

    SciTech Connect

    Liu, Zhong; Li, Yong; Lv, Cao

    Chronic myeloid leukemia (CML) responds well to BCR-ABL tyrosine kinase inhibitors (TKI), but becomes resistant to TKIs after it progresses to blast phase (BP). Here we show that niclosamide, a FDA-approved anthelmintic drug, enhances the sensitivity of BP-CML cells to dasatinib (2nd generation of BCR-ABL TKI) through inhibiting Erk/Mnk1/eIF4E signaling pathway. Niclosamide dose-dependently inhibits proliferation and induces apoptosis in a panel of CML cell lines. It also selectively targets BP-CML CD34 stem/progenitor cells through inducing apoptosis, inhibiting colony formation and self-renewal capacity while sparing normal bone marrow (NBM) counterparts. In addition, combination of niclosamide and dasatinib is synergistic in CMLmore » cell lines and BP-CML CD34 cells. Importantly, niclosamide inhibits phosphorylation of Erk, Mnk1 and eIF4E in CML cells. Overexpression of phosphomimetic but not nonphosphorylatable form of eIF4E reverses the inhibitory effects of niclosamide, suggesting that eIF4E inhibition is required for the action of niclosamide in CML. Compared to NBM, the increased levels of eIF4E and its activity in CML CD34 cells might explain the selective toxicity of niclosamide in CML versus NBM. We further show that dasatinib time-dependently induces eIF4E phosphorylation. The combination of eIF4E depletion and dasatinib results in similar effects as the combination of niclosamide and dasatinib, suggesting that niclosamide enhances dasatinib through targeting eIF4E. Our work is the first to demonstrate that niclosamide is a potential drug to overcome resistance to BCR-ABL TKI treatment in BP-CML. Our findings also suggest the therapeutic value of Erk/Mnk/eIF4E in CML treatment.« less

  6. The Complexities of Interpreting Reversible Elevated Serum Creatinine Levels in Drug Development: Does a Correlation with Inhibition of Renal Transporters Exist?

    PubMed

    Chu, Xiaoyan; Bleasby, Kelly; Chan, Grace Hoyee; Nunes, Irene; Evers, Raymond

    2016-09-01

    In humans, creatinine is formed by a multistep process in liver and muscle and eliminated via the kidney by a combination of glomerular filtration and active transport. Based on current evidence, creatinine can be taken up into renal proximal tubule cells by the basolaterally localized organic cation transporter 2 (OCT2) and the organic anion transporter 2, and effluxed into the urine by the apically localized multidrug and toxin extrusion protein 1 (MATE1) and MATE2K. Drug-induced elevation of serum creatinine (SCr) and/or reduced creatinine renal clearance is routinely used as a marker for acute kidney injury. Interpretation of elevated SCr can be complex, because such increases can be reversible and explained by inhibition of renal transporters involved in active secretion of creatinine or other secondary factors, such as diet and disease state. Distinction between these possibilities is important from a drug development perspective, as increases in SCr can result in the termination of otherwise efficacious drug candidates. In this review, we discuss the challenges associated with using creatinine as a marker for kidney damage. Furthermore, to evaluate whether reversible changes in SCr can be predicted prospectively based on in vitro transporter inhibition data, an in-depth in vitro-in vivo correlation (IVIVC) analysis was conducted for 16 drugs with in-house and literature in vitro transporter inhibition data for OCT2, MATE1, and MATE2K, as well as total and unbound maximum plasma concentration (Cmax and Cmax,u) data measured in the clinic. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis

    PubMed Central

    Hargrove, Tatiana Y.; Friggeri, Laura; Wawrzak, Zdzislaw; Qi, Aidong; Hoekstra, William J.; Schotzinger, Robert J.; York, John D.; Guengerich, F. Peter; Lepesheva, Galina I.

    2017-01-01

    With some advances in modern medicine (such as cancer chemotherapy, broad exposure to antibiotics, and immunosuppression), the incidence of opportunistic fungal pathogens such as Candida albicans has increased. Cases of drug resistance among these pathogens have become more frequent, requiring the development of new drugs and a better understanding of the targeted enzymes. Sterol 14α-demethylase (CYP51) is a cytochrome P450 enzyme required for biosynthesis of sterols in eukaryotic cells and is the major target of clinical drugs for managing fungal pathogens, but some of the CYP51 key features important for rational drug design have remained obscure. We report the catalytic properties, ligand-binding profiles, and inhibition of enzymatic activity of C. albicans CYP51 by clinical antifungal drugs that are used systemically (fluconazole, voriconazole, ketoconazole, itraconazole, and posaconazole) and topically (miconazole and clotrimazole) and by a tetrazole-based drug candidate, VT-1161 (oteseconazole: (R)-2-(2,4-difluorophenyl)-1,1-difluoro-3-(1H-tetrazol-1-yl)-1-(5-(4-(2,2,2-trifluoroethoxy)phenyl)pyridin-2-yl)propan-2-ol). Among the compounds tested, the first-line drug fluconazole was the weakest inhibitor, whereas posaconazole and VT-1161 were the strongest CYP51 inhibitors. We determined the X-ray structures of C. albicans CYP51 complexes with posaconazole and VT-1161, providing a molecular mechanism for the potencies of these drugs, including the activity of VT-1161 against Candida krusei and Candida glabrata, pathogens that are intrinsically resistant to fluconazole. Our comparative structural analysis outlines phylum-specific CYP51 features that could direct future rational development of more efficient broad-spectrum antifungals. PMID:28258218

  8. In-vitro and in-vivo inhibition of melanoma growth and metastasis by the drug combination of celecoxib and dacarbazine.

    PubMed

    Sadhu, Satya S; Wang, Shenggang; Averineni, Ranjith K; Seefeldt, Teresa; Yang, Yang; Guan, Xiangming

    2016-12-01

    Celecoxib has been found to be effective in cancer prevention and treatment. Its combination with other chemotherapeutic agents was reported to produce synergistic/additive effects on various cancers. Dacarbazine (DTIC) is one of the most commonly used drugs in the treatment of metastatic melanoma. This investigation aimed to determine the in-vitro and in-vivo effects of the drug combination of celecoxib and DTIC on melanoma growth and metastasis. Melanoma cells B16-F10 and SK-MEL-28, and female C57BL/6 mice were used for the study. Our in-vitro data showed that significant synergistic effects were obtained when celecoxib was used together with various concentrations of DTIC. A study with B16-F10 cells using flow cytometry analysis showed that the drug combination induced significantly more apoptosis than each drug used individually. Our in-vivo results showed that the drug combination was much more effective than each drug used alone for the inhibition of both melanoma growth and metastasis in the B16-F10+C57BL/6 mouse models. For melanoma growth, the median survival rates for phosphate-buffered saline (PBS) (control), celecoxib (30 mg/kg), DTIC-1 (10 mg/kg), DTIC-2 (positive control, 50 mg/kg), and the drug combination (DTIC 10 mg/kg+celecoxib 30 mg/kg) were 6, 6.5, 7.5, 7.5, and 9 days, respectively. For melanoma metastasis, the average number of metastatic tumors in murine lungs was 53.7±10.7, 31.8±18.6, 21.2±21.7, 7.0±9.0, and 0.8±2.0 for PBS, DTIC-1, celecoxib, the drug combination, and DTIC-2. Our results warrant further investigation of the combination as an effective treatment for melanoma patients.

  9. Inhibition of p38 mitogen-activated protein kinase signaling reduces multidrug transporter activity and anti-epileptic drug resistance in refractory epileptic rats.

    PubMed

    Shao, Yiye; Wang, Cuicui; Hong, Zhen; Chen, Yinghui

    2016-03-01

    It is widely recognized that P-glycoprotein (P-gp) mediates drug resistance in refractory epilepsy. However, the molecular mechanism underlying the up-regulation of P-gp expression remains unclear. Our previous studies have demonstrated that p38 mitogen-activated protein kinase (MAPK) regulates P-gp expression in cultured K562 cells. However, a lack of in vivo research leaves unanswered questions regarding whether p38MAPK regulates P-gp expression or drug resistance in refractory epilepsy. This in vivo study examined the effects of p38MAPK on the expression of P-gp and mdr1 in the rat brain and quantified antiepileptic drug (AED) concentrations in the hippocampal extracellular fluid. In addition, the role of p38MAPK in electrical and behavioral activity in a rat epilepsy model was studied. The results indicated that p38MAPK inhibition by SB202190 reduced P-gp expression, while increasing AED concentration in the hippocampal extracellular fluid in refractory epileptic rats. SB202190 also reduced the resistance to AEDs in drug-resistant rats and significantly reduced the severity of seizure activity. These results suggest that p38MAPK could participate in drug resistance in refractory epilepsy through the regulation of P-gp. We show that the specific inhibitor of p38MAPK could down-regulate the expression of multidrug transporter (P-glycoprotein) in blood-brain barrier, increase the concentration of antiepileptic drugs in the hippocampal extracellular fluid and reduce anti-epileptic drug resistance in refractory epileptic rats. We propose that the p38MAPK signaling pathway participates in drug resistance in refractory epilepsy through the regulation of P-glycoprotein expression. © 2015 International Society for Neurochemistry.

  10. Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis.

    PubMed

    Hargrove, Tatiana Y; Friggeri, Laura; Wawrzak, Zdzislaw; Qi, Aidong; Hoekstra, William J; Schotzinger, Robert J; York, John D; Guengerich, F Peter; Lepesheva, Galina I

    2017-04-21

    With some advances in modern medicine (such as cancer chemotherapy, broad exposure to antibiotics, and immunosuppression), the incidence of opportunistic fungal pathogens such as Candida albicans has increased. Cases of drug resistance among these pathogens have become more frequent, requiring the development of new drugs and a better understanding of the targeted enzymes. Sterol 14α-demethylase (CYP51) is a cytochrome P450 enzyme required for biosynthesis of sterols in eukaryotic cells and is the major target of clinical drugs for managing fungal pathogens, but some of the CYP51 key features important for rational drug design have remained obscure. We report the catalytic properties, ligand-binding profiles, and inhibition of enzymatic activity of C. albicans CYP51 by clinical antifungal drugs that are used systemically (fluconazole, voriconazole, ketoconazole, itraconazole, and posaconazole) and topically (miconazole and clotrimazole) and by a tetrazole-based drug candidate, VT-1161 (oteseconazole: ( R )-2-(2,4-difluorophenyl)-1,1-difluoro-3-(1 H -tetrazol-1-yl)-1-(5-(4-(2,2,2-trifluoroethoxy)phenyl)pyridin-2-yl)propan-2-ol). Among the compounds tested, the first-line drug fluconazole was the weakest inhibitor, whereas posaconazole and VT-1161 were the strongest CYP51 inhibitors. We determined the X-ray structures of C. albicans CYP51 complexes with posaconazole and VT-1161, providing a molecular mechanism for the potencies of these drugs, including the activity of VT-1161 against Candida krusei and Candida glabrata , pathogens that are intrinsically resistant to fluconazole. Our comparative structural analysis outlines phylum-specific CYP51 features that could direct future rational development of more efficient broad-spectrum antifungals. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Predicting QT prolongation in humans during early drug development using hERG inhibition and an anaesthetized guinea-pig model

    PubMed Central

    Yao, X; Anderson, D L; Ross, S A; Lang, D G; Desai, B Z; Cooper, D C; Wheelan, P; McIntyre, M S; Bergquist, M L; MacKenzie, K I; Becherer, J D; Hashim, M A

    2008-01-01

    Background and purpose: Drug-induced prolongation of the QT interval can lead to torsade de pointes, a life-threatening ventricular arrhythmia. Finding appropriate assays from among the plethora of options available to predict reliably this serious adverse effect in humans remains a challenging issue for the discovery and development of drugs. The purpose of the present study was to develop and verify a reliable and relatively simple approach for assessing, during preclinical development, the propensity of drugs to prolong the QT interval in humans. Experimental approach: Sixteen marketed drugs from various pharmacological classes with a known incidence—or lack thereof—of QT prolongation in humans were examined in hERG (human ether a-go-go-related gene) patch-clamp assay and an anaesthetized guinea-pig assay for QT prolongation using specific protocols. Drug concentrations in perfusates from hERG assays and plasma samples from guinea-pigs were determined using liquid chromatography-mass spectrometry. Key results: Various pharmacological agents that inhibit hERG currents prolong the QT interval in anaesthetized guinea-pigs in a manner similar to that seen in humans and at comparable drug exposures. Several compounds not associated with QT prolongation in humans failed to prolong the QT interval in this model. Conclusions and implications: Analysis of hERG inhibitory potency in conjunction with drug exposures and QT interval measurements in anaesthetized guinea-pigs can reliably predict, during preclinical drug development, the risk of human QT prolongation. A strategy is proposed for mitigating the risk of QT prolongation of new chemical entities during early lead optimization. PMID:18587422

  12. Combined use of drugs inhibiting the renin-angiotensin system: prescribing patterns and risk of acute kidney injury in German nursing home residents.

    PubMed

    Dörks, Michael; Herget-Rosenthal, Stefan; Hoffmann, Falk; Jobski, Kathrin

    2018-01-01

    In 2012, the European Medicines Agency reviewed the safety of dual renin-angiotensin system (RAS) blockade because of potentially increased risks for inter alia acute kidney injury (AKI). Since residents of nursing homes are particularly vulnerable to adverse drug outcomes, the aims of our study were to describe RAS-inhibiting drug use in German nursing home residents and examine the risk of AKI associated with dual RAS blockade. Based on claims data, a nested case-control study within a cohort of RAS-inhibiting drug users was conducted. Using conditional logistic regression, confounder-adjusted odds ratios (aORs) and 95% confidence intervals (CI) were obtained for the risk of AKI associated with dual RAS blockade. Subgroup analyses were performed in patients with diabetes or chronic kidney disease and both comorbidities. Of all 127,227 nursing home residents, the study cohort included 64,567 (50.7%) who were treated with at least one RAS-inhibiting drug. More than three quarters of the study population were female (77.1%). Mean age was 86.0 ± 6.8 years. Most residents were treated with angiotensin-converting enzyme inhibitors (77.8%), followed by angiotensin II receptor blockers (21.6%) and aliskiren (0.2%). Annual prevalence of dual RAS blockade declined from 9.6 (95% CI 7.8-11.8) in 2010 to 4.7 (95% CI 4.0-5.4) per 1,000 users in 2014. In the overall cohort, AKI was not significantly associated with dual RAS blockade (aOR 1.99; 0.77-5.17). However, significantly increased aORs were observed when considering patients with diabetes (3.47; 1.27-9.47), chronic kidney disease (4.74; 1.24-18.13) or both (11.17; 2.65-47.15). Prescribing of drugs inhibiting the RAS is common in German nursing homes. Though the prevalence of dual RAS blockade declined, our study showed an increased risk of AKI in patients with diabetes and/or chronic kidney disease. Therefore, cautious use is warranted in these vulnerable patients.

  13. Inhibition of JAK3 and PKC via Immunosuppressive Drugs Tofacitinib and Sotrastaurin Inhibits Proliferation of Human B Lymphocytes In Vitro.

    PubMed

    Martina, M N; Ramirez Bajo, M J; Bañon-Maneus, E; Moya Rull, D; Hierro-Garcia, N; Revuelta, I; Campistol, J M; Rovira, J; Diekmann, F

    2016-11-01

    Antibody-mediated response in solid organ transplantation is critical for graft dysfunction and loss. The use of immunosuppressive agents partially inhibits the B-lymphocyte response leading to a risk of acute and chronic antibody-mediated rejection. This study evaluated the impact of JAK3 and PKC inhibitors tofacitinib (Tofa) and sotrastaurin (STN), respectively, on B-cell proliferation, apoptosis, and activation in vitro. Human B cells isolated from peripheral blood of healthy volunteers were cocultured with CD40 ligand-transfected fibroblasts as feeder cells in the presence of interleukin (IL) 2, IL-10, and IL-21. The cocultures were treated with immunosuppressants Tofa, STN, and rapamycin (as a control), to analyze the proliferation and apoptosis of B cells by means of Cyquant and flow cytometry, respectively. CD27 and IgG staining were applied to evaluate whether treatments modified the activation of B cells. Tofa and STN were able to inhibit B-cell proliferation to the same extent as rapamycin, without inducing cell apoptosis. After 6 days in coculture with feeder cells, all B cells showed CD27 memory B-cell phenotype. None of the immunosuppressive treatments modified the proportion between class-switched and non-class-switched memory B cells observed in nontreated cultures. The high predominance of CD27 + CD24 + phenotype was not modified by any immunosuppressive treatment. Our results show that Tofa and STN can suppress B-cell antibody responses to an extent similar to rapamycin, in vitro; therefore these compounds may be a useful therapy against antibody-mediated rejection in transplantation. Copyright © 2016. Published by Elsevier Inc.

  14. Bright Lights and Questions: Using Mutual Interrogation

    ERIC Educational Resources Information Center

    Adam, Aishikin; Alangui, Willy; Barton, Bill

    2010-01-01

    Mutual Interrogation is a research methodology for ethnomathematics proposed by Alangui in 2006 in an attempt to avoid the potential inequality set up when a restricted cultural practice is viewed through the lens of the near-universal and highly developed research domain of mathematics. Using three significant examples of mutual interrogation in…

  15. Parents Helping Parents: Mutual Parenting Network Handbook.

    ERIC Educational Resources Information Center

    Simkinson, Charles H.; Redmond, Robert F.

    Guidelines for mutual parenting are provided in this handbook. "Mutual parenting" means that everyone in the community shares the responsibility for the safety and well-being of the community's youngsters. Several topics are discussed in the 15 brief chapters of the handbook. Chapters 1 through 3 focus on the formation of a mutual…

  16. Economic contract theory tests models of mutualism.

    PubMed

    Weyl, E Glen; Frederickson, Megan E; Yu, Douglas W; Pierce, Naomi E

    2010-09-07

    Although mutualisms are common in all ecological communities and have played key roles in the diversification of life, our current understanding of the evolution of cooperation applies mostly to social behavior within a species. A central question is whether mutualisms persist because hosts have evolved costly punishment of cheaters. Here, we use the economic theory of employment contracts to formulate and distinguish between two mechanisms that have been proposed to prevent cheating in host-symbiont mutualisms, partner fidelity feedback (PFF) and host sanctions (HS). Under PFF, positive feedback between host fitness and symbiont fitness is sufficient to prevent cheating; in contrast, HS posits the necessity of costly punishment to maintain mutualism. A coevolutionary model of mutualism finds that HS are unlikely to evolve de novo, and published data on legume-rhizobia and yucca-moth mutualisms are consistent with PFF and not with HS. Thus, in systems considered to be textbook cases of HS, we find poor support for the theory that hosts have evolved to punish cheating symbionts; instead, we show that even horizontally transmitted mutualisms can be stabilized via PFF. PFF theory may place previously underappreciated constraints on the evolution of mutualism and explain why punishment is far from ubiquitous in nature.

  17. Economic contract theory tests models of mutualism

    PubMed Central

    Weyl, E. Glen; Frederickson, Megan E.; Yu, Douglas W.; Pierce, Naomi E.

    2010-01-01

    Although mutualisms are common in all ecological communities and have played key roles in the diversification of life, our current understanding of the evolution of cooperation applies mostly to social behavior within a species. A central question is whether mutualisms persist because hosts have evolved costly punishment of cheaters. Here, we use the economic theory of employment contracts to formulate and distinguish between two mechanisms that have been proposed to prevent cheating in host–symbiont mutualisms, partner fidelity feedback (PFF) and host sanctions (HS). Under PFF, positive feedback between host fitness and symbiont fitness is sufficient to prevent cheating; in contrast, HS posits the necessity of costly punishment to maintain mutualism. A coevolutionary model of mutualism finds that HS are unlikely to evolve de novo, and published data on legume–rhizobia and yucca–moth mutualisms are consistent with PFF and not with HS. Thus, in systems considered to be textbook cases of HS, we find poor support for the theory that hosts have evolved to punish cheating symbionts; instead, we show that even horizontally transmitted mutualisms can be stabilized via PFF. PFF theory may place previously underappreciated constraints on the evolution of mutualism and explain why punishment is far from ubiquitous in nature. PMID:20733067

  18. Application of a phenotypic drug discovery strategy to identify biological and chemical starting points for inhibition of TSLP production in lung epithelial cells

    PubMed Central

    Orellana, Adelina; García-González, Vicente; López, Rosa; Pascual-Guiral, Sonia; Lozoya, Estrella; Díaz, Julia; Casals, Daniel; Barrena, Antolín; Paris, Stephane; Andrés, Miriam; Segarra, Victor; Vilella, Dolors; Malhotra, Rajneesh; Eastwood, Paul; Planagumà, Anna; Miralpeix, Montserrat

    2018-01-01

    Thymic stromal lymphopoietin (TSLP) is a cytokine released by human lung epithelium in response to external insult. Considered as a master switch in T helper 2 lymphocyte (Th2) mediated responses, TSLP is believed to play a key role in allergic diseases including asthma. The aim of this study was to use a phenotypic approach to identify new biological and chemical starting points for inhibition of TSLP production in human bronchial epithelial cells (NHBE), with the objective of reducing Th2-mediated airway inflammation. To this end, a phenotypic screen was performed using poly I:C / IL-4 stimulated NHBE cells interrogated with a 44,974 compound library. As a result, 85 hits which downregulated TSLP protein and mRNA levels were identified and a representative subset of 7 hits was selected for further characterization. These molecules inhibited the activity of several members of the MAPK, PI3K and tyrosine kinase families and some of them have been reported as modulators of cellular phenotypic endpoints like cell-cell contacts, microtubule polymerization and caspase activation. Characterization of the biological profile of the hits suggested that mTOR could be a key activity involved in the regulation of TSLP production in NHBE cells. Among other targeted kinases, inhibition of p38 MAPK and JAK kinases showed different degrees of correlation with TSLP downregulation, while Syk kinase did not seem to be related. Overall, inhibition of TSLP production by the selected hits, rather than resulting from inhibition of single isolated targets, appeared to be due to a combination of activities with different levels of relevance. Finally, a hit expansion exercise yielded additional active compounds that could be amenable to further optimization, providing an opportunity to dissociate TSLP inhibition from other non-desired activities. This study illustrates the potential of phenotypic drug discovery to complement target based approaches by providing new chemistry and biology

  19. The enriched fraction of Vernonia cinerea L. induces apoptosis and inhibits multi-drug resistance transporters in human epithelial cancer cells.

    PubMed

    Appadath Beeran, Asmy; Maliyakkal, Naseer; Rao, Chamallamudi Mallikarjuna; Udupa, Nayanabhirama

    2014-12-02

    Vernonia cinerea Less. (VC) of the family Asteraceaes is considered as the sacred plant; 'Dasapushpam' which is ethnopharmacologically significant to the people of Kerala in India. In fact, VC has been used in the traditional system of medicine (Ayurveda) for the treatment of various ailments including cancer. Cytotoxicity of the ethanolic extract of VC (VC-ET), petroleum ether fraction (VC-PET), dichloromethane fraction (VC-DCM), n-butyl alcohol fraction (VC-BT), and rest fraction (VC-R) was evaluated in cervical carcinoma (HeLa), lung adenocarcinoma (A549), breast cancer (MCF-7), and colon carcinoma (Caco-2) cells using Sulforhodamine B (SRB) assay. The apoptotic effects of VC-DCM were assessed in cancer cells using Annexin V assay. The effects of VC-DCM on multi-drug resistance (MDR) transporters in HeLa, A549, MCF-7, and Caco-2 cells were evaluated using flow cytometry based functional assays. Similarly, drug uptake in cancer cells and sensitization of cancer cells towards chemotherapeutic drugs in the presence of VC-DCM were studied using Daunorubicin (DNR) accumulation assay and SRB assay, respectively. Cytotoxicity assay revealed that the enriched fraction of VC (VC-DCM) possessed dose-dependent cytotoxic effects in human epithelial cancer cells (HeLa, A549, MCF-7, and Caco-2). Further, treatment of cancer cells (HeLa, A549, MCF-7, and Caco-2) with VC-DCM led to a significant increase in both early and late apoptosis, indicating the induction of apoptosis. Interestingly, VC-DCM significantly inhibited functional activity of MDR transporters (ABC-B1 and ABC-G2), enhanced DNR-uptake in cancer cells, and sensitized cancer cells towards chemotherapeutic drug-mediated cytotoxicity, thus indicating the ability of VC-DCM to reverse MDR in cancer and enhance the cytotoxic effects of anticancer drugs. A methodological investigation on the anti-cancer properties of Vernonia cinerea Less. (VC) revealed that an enriched fraction of VC (VC-DCM) possessed cytotoxic

  20. The ABC7 regimen: a new approach to metastatic breast cancer using seven common drugs to inhibit epithelial-to-mesenchymal transition and augment capecitabine efficacy

    PubMed Central

    Kast, Richard E; Skuli, Nicolas; Cos, Samuel; Karpel-Massler, Georg; Shiozawa, Yusuke; Goshen, Ran; Halatsch, Marc-Eric

    2017-01-01

    Breast cancer metastatic to bone has a poor prognosis despite recent advances in our understanding of the biology of both bone and breast cancer. This article presents a new approach, the ABC7 regimen (Adjuvant for Breast Cancer treatment using seven repurposed drugs), to metastatic breast cancer. ABC7 aims to defeat aspects of epithelial-to-mesenchymal transition (EMT) that lead to dissemination of breast cancer to bone. As add-on to current standard treatment with capecitabine, ABC7 uses ancillary attributes of seven already-marketed noncancer treatment drugs to stop both the natural EMT process inherent to breast cancer and the added EMT occurring as a response to current treatment modalities. Chemotherapy, radiation, and surgery provoke EMT in cancer generally and in breast cancer specifically. ABC7 uses standard doses of capecitabine as used in treating breast cancer today. In addition, ABC7 uses 1) an older psychiatric drug, quetiapine, to block RANK signaling; 2) pirfenidone, an anti-fibrosis drug to block TGF-beta signaling; 3) rifabutin, an antibiotic to block beta-catenin signaling; 4) metformin, a first-line antidiabetic drug to stimulate AMPK and inhibit mammalian target of rapamycin, (mTOR); 5) propranolol, a beta-blocker to block beta-adrenergic signaling; 6) agomelatine, a melatonergic antidepressant to stimulate M1 and M2 melatonergic receptors; and 7) ribavirin, an antiviral drug to prevent eIF4E phosphorylation. All these block the signaling pathways – RANK, TGF-beta, mTOR, beta-adrenergic receptors, and phosphorylated eIF4E – that have been shown to trigger EMT and enhance breast cancer growth and so are worthwhile targets to inhibit. Agonism at MT1 and MT2 melatonergic receptors has been shown to inhibit both breast cancer EMT and growth. This ensemble was designed to be safe and augment capecitabine efficacy. Given the expected outcome of metastatic breast cancer as it stands today, ABC7 warrants a cautious trial. PMID:28744157

  1. Mutualisms and Population Regulation: Mechanism Matters

    PubMed Central

    Jha, Shalene; Allen, David; Liere, Heidi; Perfecto, Ivette; Vandermeer, John

    2012-01-01

    For both applied and theoretical ecological science, the mutualism between ants and their hemipteran partners is iconic. In this well-studied interaction, ants are assumed to provide hemipterans protection from natural enemies in exchange for nutritive honeydew. Despite decades of research and the potential importance in pest control, the precise mechanism producing this mutualism remains contested. By analyzing maximum likelihood parameter estimates of a hemipteran population model, we show that the mechanism of the mutualism is direct, via improved hemipteran growth rates, as opposed to the frequently assumed indirect mechanism, via harassment of the specialist parasites and predators of the hemipterans. Broadly, this study demonstrates that the management of mutualism-based ecosystem services requires a mechanistic understanding of mutualistic interactions. A consequence of this finding is the counter intuitive demonstration that preserving ant participation in the ant-hemipteran mutualism may be the best way of insuring pest control. PMID:22927978

  2. [Maintaining solidarity: is mutuality the solution?].

    PubMed

    Gevers, J K M; Ploem, M C

    2013-01-01

    Solidarity is essentially the willingness to contribute to the community and its demands, which may even involve contributing more than one is expecting to receive. Another principle is mutuality: this refers to a balance between rights and obligations or between mutual obligations. In its advisory document 'The importance of mutuality......solidarity takes work!', The Dutch Council for Public Health and Health Care underlines the importance of ensuring solidarity within the Dutch health care system, e.g. by encouraging patients to take responsibility for their own health, possibly by introducing elements of mutuality. In our contribution, we comment on the Council's advice. Although we fully agree with the overall conclusion that solidarity should be maintained within the system, we do not see how the introduction of increased mutuality will contribute to this goal.

  3. Quantitative estimation of cholinesterase-specific drug metabolism of carbamate inhibitors provided by the analysis of the area under the inhibition-time curve.

    PubMed

    Zhou, Huimin; Xiao, Qiaoling; Tan, Wen; Zhan, Yiyi; Pistolozzi, Marco

    2017-09-10

    Several molecules containing carbamate groups are metabolized by cholinesterases. This metabolism includes a time-dependent catalytic step which temporary inhibits the enzymes. In this paper we demonstrate that the analysis of the area under the inhibition versus time curve (AUIC) can be used to obtain a quantitative estimation of the amount of carbamate metabolized by the enzyme. (R)-bambuterol monocarbamate and plasma butyrylcholinesterase were used as model carbamate-cholinesterase system. The inhibition of different concentrations of the enzyme was monitored for 5h upon incubation with different concentrations of carbamate and the resulting AUICs were analyzed. The amount of carbamate metabolized could be estimated with <15% accuracy (RE%) and ≤23% precision (RSD%). Since the knowledge of the inhibition kinetics is not required for the analysis, this approach could be used to determine the amount of drug metabolized by cholinesterases in a selected compartment in which the cholinesterase is confined (e.g. in vitro solutions, tissues or body fluids), either in vitro or in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [Comparative observation on inhibition of hemozoin formation and their in vitro and in vivo anti-schistosome activity displayed by 7 antimalarial drugs].

    PubMed

    Xue, Jian; Jiang, Bin; Liu, Cong-Shan; Sun, Jun; Xiao, Shu-Hua

    2013-06-01

    To observe and compare the inhibition of hemozoin formation and the in vitro as well as in vivo antischistosomal activity induced by seven antimalarial drugs. Inhibition of hemozoin formation displayed by chloroquine phosphate, quinine hydrochloride, quinidine, mefloquine hydrochloride, pyronaridine phosphate and lumefantrine at 25 micromol/L, and artemether at 100 micromol/L was performed by assay of inhibition of beta-hematin formation in 1 mol/L sodium acetate buffers containing hematin with various pH of 4.0, 4.2, 4.4, 4.6, 4.8, and 5.0. In in vitro antischistosomal study, the medium of RPMI 1640 supplemented by 10% calf serum was used to maintain the adult Schistosoma japonicum, and the 50% and 95% lethal concentrations (LC50 and LC95) to kill the adult worms of each drug were then determined. Meanwhile, the interaction of quinine, pyronaridine and chloroquine combined with hemin against adult schistosomes was also undertaken. As to in vivo test, the efficacy of seven antimalarial drugs administered orally or intraperitoneally to mice infected with adult schistosomes was observed. In the acidic acetate-hematin solution, 25 micromol/L pyronaridine showed significant inhibition of beta-hematin formation at pH 4.4-5.0 with inhibition rates of 81.3%-97.0%. At pH 4.6, the inhibition rates of beta-hematin formation in acetate-hematin solution induced by mefloquine, chloroquine or quinine at concentration of 25 beta mol/L were 79.7%, 72.8% or 65.8%, respectively, and the beta-hematin formation was continually inhibited by these 3 antimalarial drugs at pH 4.8 and 5.0 with inhibition rates of 83.1%-90.6%, 41.9%-49.0% or 53.2-62.0%. The inhibition rates of beta-hematin formation at pH 4.6 and 4.8-5.0 induced by lumefantrine 25 micromol/L were 74.3% and 40.4%-40.5%, respectively. While under the same concentration of quinidine, 53.4% and 50.9% inhibition rates of beta-hematin formation were observed at pH 4.8 and 5.0. As to artemether, higher concentration of 100

  5. Synthesis and evaluation of hetero- and homo-dimers of ribosome-targeting antibiotics: Antimicrobial activity, in vitro inhibition of translation, and drug resistance

    PubMed Central

    Berkov-Zrihen, Yifat; Green, Keith D.; Labby, Kristin J.; Feldman, Mark; Garneau-Tsodikova, Sylvie; Fridman, Micha

    2013-01-01

    In this study, we describe the synthesis of a full set of homo- and hetero-dimers of three intact structures of different ribosome-targeting antibiotics: tobramycin, clindamycin, and chloramphenicol. Several aspects of the biological activity of the dimeric structures were evaluated including antimicrobial activity, inhibition of in vitro bacterial protein translation, and the effect of dimerization on the action of several bacterial resistance mechanisms that deactivate tobramycin and chloramphenicol. This study demonstrates that covalently linking two identical or different ribosome-targeting antibiotics may lead to (i) a broader spectrum of antimicrobial activity, (ii) improved inhibition of bacterial translation properties compared to that of the parent antibiotics, and (iii) reduction in the efficacy of some drug-modifying enzymes that confer high levels of resistance to the parent antibiotics from which the dimers were derived. PMID:23786357

  6. Lichen acids may be used as a potential drug for cancer therapy; by inhibiting mitochondrial thioredoxin reductase purified from rat lung.

    PubMed

    Ozgencli, Ilknur; Budak, Harun; Ciftci, Mehmet; Anar, Mustafa

    2018-05-24

    Thioredoxin reductase (E.C 1.6.4.5.; TrxR) is a widely distributed flavoprotein that catalyzes the NADPH-dependent reduction of thioredoxin (Trx) in many cellular events such as DNA synthesis, DNA repair, angiogenesis, antioxidative defense, and regulating apoptosis. Although TrxR is indispensible in protecting cells against oxidative stress, the overexpression of TrxR is seen in many aggressive tumors. Therefore, targeted inhibition of TrxR has been accepted as a new approach for chemotherapy. In this study, in vitro inhibition effect of the lichen acids (diffractaic, evernic, lobaric, lecanoric, and vulpinic acid) on mitochondrial TrxR purified from rat lung was investigated. It was the first time the enzyme was purified from rat lungs by using 2', 5'-ADP Sepharose 4B affinity chromatography. The purity of the enzyme was checked with SDS-PAGE. In vitro inhibition effect of the lichen acids was investigated spectrophotometrically. To emphasize the importance of the obtained data, the commercial anticancer drugs cisplatin and doxorubicin were used as positive controls. Molecular mass of the enzyme was calculated as approximately 52.4 kDa. The enzyme was purified with a 63.6% yield, 208.3 fold, and 0.5 EU/mg proteins specific activity. The IC50 values of five lichen acids were significantly lower than IC50 values of anticancer drugs. All of the lichen acids, especially lecanoric and vulpinic acid, exhibited much stronger inhibitory effect on TrxR than the anticancer drugs cisplatin and doxorubicin. These lichen acids have pharmacological potential as effective natural antioxidants, antimicrobials, and anticancer agents. . Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Evidence That P-glycoprotein Inhibitor (Elacridar)-Loaded Nanocarriers Improve Epidermal Targeting of an Anticancer Drug via Absorptive Cutaneous Transporters Inhibition.

    PubMed

    Giacone, Daniela V; Carvalho, Vanessa F M; Costa, Soraia K P; Lopes, Luciana B

    2018-02-01

    Because P-glycoprotein (P-gp) plays an absorptive role in the skin, its pharmacological inhibition represents a strategy to promote cutaneous localization of anticancer agents that serve as its substrates, improving local efficacy while reducing systemic exposure. Here, we evaluated the ability of a nanoemulsion (NE) coencapsulating a P-gp inhibitor (elacridar) with the antitumor drug paclitaxel to promote epidermal targeting. Loaded NE displayed a nanometric size (45.2 ± 4.0 nm) and negative zeta potential (-4.2 ± 0.8 mV). Elacridar improved NE ability to inhibit verapamil-induced ATPase activity of P-gp; unloaded NE-inhibited P-gp when used at a concentration of 1500 μM, while elacridar encapsulation decreased this concentration by 3-fold (p <0.05). Elacridar-loaded NE reduced paclitaxel penetration into the dermis of freshly excised mice skin and its percutaneous permeation by 1.5- and 1.7-fold (p <0.05), respectively at 6 h, whereas larger drug amounts (1.4-fold, p <0.05) were obtained in viable epidermis. Assessment of cutaneous distribution of a fluorescent paclitaxel derivative confirmed the smaller delivery into the dermis at elacridar presence. In conclusion, we have provided novel evidence that NE containing elacridar exhibited a clear potential for P-gp inhibition and enabled epidermal targeting of paclitaxel, which in turn, can potentially reduce adverse effects associated with systemic exposure to anticancer therapy. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Chronic anti-inflammatory drug therapy inhibits gel-forming mucin production in a murine xenograft model of human pseudomyxoma peritonei.

    PubMed

    Choudry, Haroon Asif; Mavanur, Arun; O'Malley, Mark E; Zeh, Herbert J; Guo, Z Sheng; Bartlett, David L

    2012-05-01

    Intraperitoneal accumulation of mucinous ascites in pseudomyxoma peritonei (PMP) promotes an inflammatory/fibrotic reaction that progresses to bowel obstruction and eventual patient demise. Cytokines and inflammation-associated transcription factor binding sites, such as glucocorticoid response elements and COX-2, regulate secretory mucin, specifically MUC2, production. We hypothesized that anti-inflammatory drugs targeting inflammation-associated pathways may reduce mucin production and subsequent disease morbidity in PMP. The effects of dexamethasone and Celebrex were assessed in mucin-secreting human colon cancer LS174T cells in vitro and murine xenograft models of LS174T and human appendiceal PMP in vivo by serial parametric measurements, MUC2 transcripts via real-time RT-PCR, and MUC2 protein expression via immunofluorescence assays. Dexamethasone significantly inhibited basal MUC2 mRNA levels in LS174T cells, inhibited mucinous tumor accumulation in an intraperitoneal PMP xenograft model, and prolonged survival in a subcutaneous LS174T xenograft model. Celebrex significantly inhibited sodium butyrate-stimulated MUC2 mRNA levels in LS174T cells and demonstrated a statistically nonsignificant trend toward reduced mucinous tumor growth and prolonged survival in the xenograft models. MUC2 protein analysis by immunofluorescence demonstrated a dual effect of dexamethasone on mucin production and tumor cell count. Inflammatory mediators are known to regulate mucin production and may promote overexpression of MUC2 by neoplastic cells with goblet cell phenotype in PMP. Anti-inflammatory drugs, dexamethasone and Celebrex, could inhibit extracellular mucin production in PMP by targeting inflammatory cascades and, therefore, may decrease compressive symptoms, increase the disease-free interval, and reduce the extent or frequency of morbid cytoreductive surgeries.

  9. Ethanol oxidation and the inhibition by drugs in human liver, stomach and small intestine: Quantitative assessment with numerical organ modeling of alcohol dehydrogenase isozymes.

    PubMed

    Chi, Yu-Chou; Lee, Shou-Lun; Lai, Ching-Long; Lee, Yung-Pin; Lee, Shiao-Pieng; Chiang, Chien-Ping; Yin, Shih-Jiun

    2016-10-25

    Alcohol dehydrogenase (ADH) is the principal enzyme responsible for metabolism of ethanol. Human ADH constitutes a complex isozyme family with striking variations in kinetic function and tissue distribution. Liver and gastrointestinal tract are the major sites for first-pass metabolism (FPM). Their relative contributions to alcohol FPM and degrees of the inhibitions by aspirin and its metabolite salicylate, acetaminophen and cimetidine remain controversial. To address this issue, mathematical organ modeling of ethanol-oxidizing activities in target tissues and that of the ethanol-drug interactions were constructed by linear combination of the corresponding numerical rate equations of tissue constituent ADH isozymes with the documented isozyme protein contents, kinetic parameters for ethanol oxidation and the drug inhibitions of ADH isozymes/allozymes that were determined in 0.1 M sodium phosphate at pH 7.5 and 25 °C containing 0.5 mM NAD(+). The organ simulations reveal that the ADH activities in mucosae of the stomach, duodenum and jejunum with ADH1C*1/*1 genotype are less than 1%, respectively, that of the ADH1B*1/*1-ADH1C*1/*1 liver at 1-200 mM ethanol, indicating that liver is major site of the FPM. The apparent hepatic KM and Vmax for ethanol oxidation are simulated to be 0.093 ± 0.019 mM and 4.0 ± 0.1 mmol/min, respectively. At 95% clearance in liver, the logarithmic average sinusoidal ethanol concentration is determined to be 0.80 mM in accordance with the flow-limited gradient perfusion model. The organ simulations indicate that higher therapeutic acetaminophen (0.5 mM) inhibits 16% of ADH1B*1/*1 hepatic ADH activity at 2-20 mM ethanol and that therapeutic salicylate (1.5 mM) inhibits 30-31% of the ADH1B*2/*2 activity, suggesting potential significant inhibitions of ethanol FPM in these allelotypes. The result provides systematic evaluations and predictions by computer simulation on potential ethanol FPM in target tissues and hepatic

  10. Structure-activity relationships amongst 4-position quinoline methanol antimalarials that inhibit the growth of drug sensitive and resistant strains of Plasmodium falciparum.

    PubMed

    Milner, Erin; McCalmont, William; Bhonsle, Jayendra; Caridha, Diana; Carroll, Dustin; Gardner, Sean; Gerena, Lucia; Gettayacamin, Montip; Lanteri, Charlotte; Luong, Thulan; Melendez, Victor; Moon, Jay; Roncal, Norma; Sousa, Jason; Tungtaeng, Anchalee; Wipf, Peter; Dow, Geoffrey

    2010-02-15

    Utilizing mefloquine as a scaffold, a next generation quinoline methanol (NGQM) library was constructed to identify early lead compounds that possess biological properties consistent with the target product profile for malaria chemoprophylaxis while reducing permeability across the blood-brain barrier. The library of 200 analogs resulted in compounds that inhibit the growth of drug sensitive and resistant strains of Plasmodium falciparum. Herein we report selected chemotypes and the emerging structure-activity relationship for this library of quinoline methanols. Published by Elsevier Ltd.

  11. Polypharmacology in HIV inhibition: can a drug with simultaneous action against two relevant targets be an alternative to combination therapy?

    PubMed

    de Castro, Sonia; Camarasa, María-José

    2018-04-25

    HIV infection still has a serious health and socio-economical impact and is one of the primary causes of morbidity and mortality all over the world. HIV infection and the AIDS pandemic are still matters of great concern, especially in less developed countries where the access to highly active antiretroviral therapy (HAART) is limited. Patient compliance is another serious drawback. Nowadays, HAART is the treatment of choice although it is not the panacea. Despite the fact that it suppresses viral replication at undetectable viral loads and prevents progression of HIV infection into AIDS HAART has several pitfalls, namely, long-term side-effects, drug resistance development, emergence of drug-resistant viruses, low compliance and the intolerance of some patients to these drugs. Moreover, another serious health concern is the event of co-infection with more than one pathogen at the same time (e.g. HIV and HCV, HBV, herpes viruses, etc). Currently, the multi-target drug approach has become an exciting strategy to address complex diseases and overcome drug resistance development. Such multifunctional molecules combine in their structure pharmacophores that may simultaneously interfere with multiple targets and their use may eventually be more safe and efficacious than that involving a mixture of separate molecules because of avoidance or delay of drug resistance, lower incidence of unwanted drug-drug interactions and improved compliance. In this review we focus on multifunctional molecules with dual activity against different targets of the HIV life cycle or able to block replication, not only of HIV but also of other viruses that are often co-pathogens of HIV. The different approaches are documented by selected examples. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  12. Novel tablet formulation of amorphous candesartan cilexetil solid dispersions involving P-gp inhibition for optimal drug delivery: in vitro and in vivo evaluation.

    PubMed

    Surampalli, Gurunath; Nanjwade, Basavaraj K; Patil, P A; Chilla, Rakesh

    2016-09-01

    The aim of this study was to develop a novel tablet formulation of amorphous candesartan cilexetil (CAN) solid dispersion involving effective P-gp inhibition for optimal drug delivery by direct compression (DC) method. To accomplish DC, formulation blends were evaluated for micromeritic properties. The Carr index, Hausner ratio, flow rate and cotangent of the angle α were determined. The tablets with and without naringin prepared by DC technique were evaluated for average weight, hardness, disintegration time and friability assessments. The drug release profiles were determined to study the dissolution kinetics. In vivo pharmacokinetic studies were conducted in rabbits. Accelerated stability studies were performed for tablets at 40 ± 2 °C/75% RH ± 5% for 6 months. FTIR studies confirmed no discoloration, liquefaction and physical interaction between naringin and drug. The results indicated that tablets prepared from naringin presented a dramatic release (82%) in 30 min with a similarity factor (76.18), which is most likely due to the amorphous nature of drug and the higher micromeritic properties of blends. Our findings noticed 1.7-fold increase in oral bioavailability of tablet prepared from naringin with mean C max and AUC 0-12 h values as 35.81 ± 0.13 μg/mL and 0.14 ± 0.09 μg h/mL, respectively. The tablets with and without naringin prepared by DC technique were physically and chemically stable under accelerated stability conditions upon storage for 6 months. These results are attractive for further development of an oral tablet formulation of CAN through P-gp inhibition using naringin, a natural flavonoid as a pharmaceutical excipient.

  13. The evolution of plant-insect mutualisms.

    PubMed

    Bronstein, Judith L; Alarcón, Ruben; Geber, Monica

    2006-01-01

    Mutualisms (cooperative interactions between species) have had a central role in the generation and maintenance of life on earth. Insects and plants are involved in diverse forms of mutualism. Here we review evolutionary features of three prominent insect-plant mutualisms: pollination, protection and seed dispersal. We focus on addressing five central phenomena: evolutionary origins and maintenance of mutualism; the evolution of mutualistic traits; the evolution of specialization and generalization; coevolutionary processes; and the existence of cheating. Several features uniting very diverse insect-plant mutualisms are identified and their evolutionary implications are discussed: the involvement of one mobile and one sedentary partner; natural selection on plant rewards; the existence of a continuum from specialization to generalization; and the ubiquity of cheating, particularly on the part of insects. Plant-insect mutualisms have apparently both arisen and been lost repeatedly. Many adaptive hypotheses have been proposed to explain these transitions, and it is unlikely that any one of them dominates across interactions differing so widely in natural history. Evolutionary theory has a potentially important, but as yet largely unfilled, role to play in explaining the origins, maintenance, breakdown and evolution of insect-plant mutualisms.

  14. Quantitative Analysis of Complex Drug-Drug Interactions Between Repaglinide and Cyclosporin A/Gemfibrozil Using Physiologically Based Pharmacokinetic Models With In Vitro Transporter/Enzyme Inhibition Data.

    PubMed

    Kim, Soo-Jin; Toshimoto, Kota; Yao, Yoshiaki; Yoshikado, Takashi; Sugiyama, Yuichi

    2017-09-01

    Quantitative analysis of transporter- and enzyme-mediated complex drug-drug interactions (DDIs) is challenging. Repaglinide (RPG) is transported into the liver by OATP1B1 and then is metabolized by CYP2C8 and CYP3A4. The purpose of this study was to describe the complex DDIs of RPG quantitatively based on unified physiologically based pharmacokinetic (PBPK) models using in vitro K i values for OATP1B1, CYP3A4, and CYP2C8. Cyclosporin A (CsA) or gemfibrozil (GEM) increased the blood concentrations of RPG. The time profiles of RPG and the inhibitors were analyzed by PBPK models, considering the inhibition of OATP1B1 and CYP3A4 by CsA or OATP1B1 inhibition by GEM and its glucuronide and the mechanism-based inhibition of CYP2C8 by GEM glucuronide. RPG-CsA interaction was closely predicted using a reported in vitro K i,OATP1B1 value in the presence of CsA preincubation. RPG-GEM interaction was underestimated compared with observed data, but the simulation was improved with the increase of f m,CYP2C8 . These results based on in vitro K i values for transport and metabolism suggest the possibility of a bottom-up approach with in vitro inhibition data for the prediction of complex DDIs using unified PBPK models and in vitro f m value of a substrate for multiple enzymes should be considered carefully for the prediction. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform

    PubMed Central

    Theron, A.; Roth, R. L.; Hoppe, H.; Parkinson, C.; van der Westhuyzen, C. W.; Stoychev, S.; Wiid, I.; Pietersen, R. D.; Baker, B.

    2017-01-01

    Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is controlled by up to four regulatory mechanisms, including adenylylation of some or all of the twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine synthetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase. Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine synthetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuberculosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macrophage assay. PMID:28972974

  16. Amperozide, a putative anti-psychotic drug: Uptake inhibition and release of dopamine in vitro in the rat brain

    SciTech Connect

    Eriksson, E.

    1990-01-01

    The effects of amperozide (a diphenylbutylpiperazinecarboxamide derivative) on the uptake and release of {sup 3}H-dopamine in vitro were investigated. Amperozide inhibited the amphetamine-stimulated release of dopamine from perfused rat striatal tissue in a dose-dependent manner. With 1 and 10 {mu}m amperozide there was significant inhibition of the amphetamine-stimulated release of dopamine, to 44 and 36 % of control. In contrast, 10 {mu}M amperozide significantly strengthened the electrically stimulated release of dopamine from perfused striatal slices. Amperozide 1-10 {mu}M had no significant effect on the potassium-stimulated release of dopamine, 10 {mu}M amperozide also slightly increased the basal release of {sup 3}H-dopaminemore » from perfused striatal tissue. These effects on various types of release are similar to those reported for uptake inhibitors. The uptake of dopamine in striatal tissue was inhibited by amperozide with IC{sub 50} values of 18 {mu}M for uptake in chopped tissue and 1.0 {mu}M for uptake in synaptosomes. Amperozide also inhibited the uptake of serotonin in synaptosomes from frontal cortex, IC{sub 50} = 0.32 {mu}M and the uptake of noradrenaline in cortical synaptosomes, IC{sub 50} = 0.78 {mu}M.« less

  17. Memory Disrupting Effects of Nonmuscle Myosin II Inhibition Depend on the Class of Abused Drug and Brain Region

    ERIC Educational Resources Information Center

    Briggs, Sherri B.; Blouin, Ashley M.; Young, Erica J.; Rumbaugh, Gavin; Miller, Courtney A.

    2017-01-01

    Depolymerizing actin in the amygdala through nonmuscle myosin II inhibition (NMIIi) produces a selective, lasting, and retrieval-independent disruption of the storage of methamphetamine-associated memories. Here we report a similar disruption of memories associated with amphetamine, but not cocaine or morphine, by NMIIi. Reconsolidation appeared…

  18. S-Adenosylmethionine Prevents Mallory Denk Body Formation in Drug-Primed Mice by Inhibiting the Epigenetic Memory

    PubMed Central

    Li, Jun; Bardag-Gorce, Fawzia; Dedes, Jennifer; French, Barbara Alan; Amidi, Fataneh; Oliva, Joan; French, Samuel William

    2010-01-01

    In previous studies, microarray analysis of livers from mice fed diethyl-1,4-dihydro-2,4,6-trimethyl-3,5-pyridine decarboxylate (DDC) for 10 weeks followed by 1 month of drug withdrawal (drug-primed mice) and then 7 days of drug refeeding showed an increase in the expression of numerous genes referred to here as the molecular cellular memory. This memory predisposes the liver to Mallory Denk body formation in response to drug refeeding. In the current study, drug-primed mice were refed DDC with or without a daily dose of S-adenosylmethionine (SAMe; 4 g/kg of body weight). The livers were studied for evidence of oxidative stress and changes in gene expression with microarray analysis. SAMe prevented Mallory Denk body formation in vivo. The molecular cellular memory induced by DDC refeeding lasted for 4 months after drug withdrawal and was not manifest when SAMe was added to the diet in the in vivo experiment. Liver cells from drug-primed mice spontaneously formed Mallory Denk bodies in primary tissue cultures. SAMe prevented Mallory Denk bodies when it was added to the culture medium. Conclusion SAMe treatment prevented Mallory Denk body formation in vivo and in vitro by preventing the expression of a molecular cellular memory induced by prior DDC feeding. No evidence for the involvement of oxidative stress in induction of the memory was found. The molecular memory included the up-regulation of the expression of genes associated with the development of liver cell preneoplasia. PMID:18098314

  19. Reconsolidation and extinction are dissociable and mutually exclusive processes: behavioral and molecular evidence.

    PubMed

    Merlo, Emiliano; Milton, Amy L; Goozée, Zara Y; Theobald, David E; Everitt, Barry J

    2014-02-12

    Memory persistence is critically influenced by retrieval. In rats, a single presentation of a conditioned fear stimulus induces memory reconsolidation and fear memory persistence, while repeated fear cue presentations result in loss of fear through extinction. These two opposite behavioral outcomes are operationally linked by the number of cue presentations at memory retrieval. However, the behavioral properties and mechanistic determinants of the transition have not yet been explored; in particular, whether reconsolidation and extinction processes coexist or are mutually exclusive, depending on the exposure to non-reinforced retrieval events. We characterized both behaviorally and molecularly the transition from reconsolidation to extinction of conditioned fear and showed that an increase in calcineurin (CaN) in the basolateral amygdala (BLA) supports the shift from fear maintenance to fear inhibition. Gradually increasing the extent of retrieval induces a gradual decrease in freezing responses to the conditioned stimulus and a gradual increase in amygdala CaN level. This newly synthesized CaN is required for the extinction, but not the reconsolidation, of conditioned fear. During the transition from reconsolidation to extinction, we have revealed an insensitive state of the fear memory where NMDA-type glutamate receptor agonist and antagonist drugs are unable either to modulate CaN levels in the BLA or alter the reconsolidation or extinction processes. Together, our data indicate both that reconsolidation and extinction are mutually exclusive processes and also reveal the presence of a transitional, or "limbo," state of the original memory between these two alternative outcomes of fear memory retrieval, when neither process is engaged.

  20. Generalized mutual information and Tsirelson's bound

    NASA Astrophysics Data System (ADS)

    Wakakuwa, Eyuri; Murao, Mio

    2014-12-01

    We introduce a generalization of the quantum mutual information between a classical system and a quantum system into the mutual information between a classical system and a system described by general probabilistic theories. We apply this generalized mutual information (GMI) to a derivation of Tsirelson's bound from information causality, and prove that Tsirelson's bound can be derived from the chain rule of the GMI. By using the GMI, we formulate the "no-supersignalling condition" (NSS), that the assistance of correlations does not enhance the capability of classical communication. We prove that NSS is never violated in any no-signalling theory.

  1. Generalized mutual information and Tsirelson's bound

    SciTech Connect

    Wakakuwa, Eyuri; Murao, Mio

    2014-12-04

    We introduce a generalization of the quantum mutual information between a classical system and a quantum system into the mutual information between a classical system and a system described by general probabilistic theories. We apply this generalized mutual information (GMI) to a derivation of Tsirelson's bound from information causality, and prove that Tsirelson's bound can be derived from the chain rule of the GMI. By using the GMI, we formulate the 'no-supersignalling condition' (NSS), that the assistance of correlations does not enhance the capability of classical communication. We prove that NSS is never violated in any no-signalling theory.

  2. Permutation auto-mutual information of electroencephalogram in anesthesia

    NASA Astrophysics Data System (ADS)

    Liang, Zhenhu; Wang, Yinghua; Ouyang, Gaoxiang; Voss, Logan J.; Sleigh, Jamie W.; Li, Xiaoli

    2013-04-01

    Objective. The dynamic change of brain activity in anesthesia is an interesting topic for clinical doctors and drug designers. To explore the dynamical features of brain activity in anesthesia, a permutation auto-mutual information (PAMI) method is proposed to measure the information coupling of electroencephalogram (EEG) time series obtained in anesthesia. Approach. The PAMI is developed and applied on EEG data collected from 19 patients under sevoflurane anesthesia. The results are compared with the traditional auto-mutual information (AMI), SynchFastSlow (SFS, derived from the BIS index), permutation entropy (PE), composite PE (CPE), response entropy (RE) and state entropy (SE). Performance of all indices is assessed by pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability. Main results. The PK/PD modeling and prediction probability analysis show that the PAMI index correlates closely with the anesthetic effect. The coefficient of determination R2 between PAMI values and the sevoflurane effect site concentrations, and the prediction probability Pk are higher in comparison with other indices. The information coupling in EEG series can be applied to indicate the effect of the anesthetic drug sevoflurane on the brain activity as well as other indices. The PAMI of the EEG signals is suggested as a new index to track drug concentration change. Significance. The PAMI is a useful index for analyzing the EEG dynamics during general anesthesia.

  3. Enzastaurin inhibits ABCB1-mediated drug efflux independently of effects on protein kinase C signalling and the cellular p53 status.

    PubMed

    Michaelis, Martin; Rothweiler, Florian; Löschmann, Nadine; Sharifi, Mohsen; Ghafourian, Taravat; Cinatl, Jindrich

    2015-07-10

    The PKCβ inhibitor enzastaurin was tested in parental neuroblastoma and rhabdomyosarcoma cell lines, their vincristine-resistant sub-lines, primary neuroblastoma cells, ABCB1-transduced, ABCG2-transduced, and p53-depleted cells. Enzastaurin IC50s ranged from 3.3 to 9.5 μM in cell lines and primary cells independently of the ABCB1, ABCG2, or p53 status. Enzastaurin 0.3125 μM interfered with ABCB1-mediated drug transport. PKCα and PKCβ may phosphorylate and activate ABCB1 under the control of p53. However, enzastaurin exerted similar effects on ABCB1 in the presence or absence of functional p53. Also, enzastaurin inhibited PKC signalling only in concentrations ≥ 1.25 μM. The investigated cell lines did not express PKCβ. PKCα depletion reduced PKC signalling but did not affect ABCB1 activity. Intracellular levels of the fluorescent ABCB1 substrate rhodamine 123 rapidly decreased after wash-out of extracellular enzastaurin, and enzastaurin induced ABCB1 ATPase activity resembling the ABCB1 substrate verapamil. Computational docking experiments detected a direct interaction of enzastaurin and ABCB1. These data suggest that enzastaurin directly interferes with ABCB1 function. Enzastaurin further inhibited ABCG2-mediated drug transport but by a different mechanism since it reduced ABCG2 ATPase activity. These findings are important for the further development of therapies combining enzastaurin with ABC transporter substrates.

  4. Inhibition of mTOR/eIF4E by anti-viral drug ribavirin effectively enhances the effects of paclitaxel in oral tongue squamous cell carcinoma

    SciTech Connect

    Dai, Dehua; Chen, Hujie; Tang, Jing

    Upregulation of eIF4E is associated with poor clinical outcome in many human cancers and represents a potential therapeutic target. However, the function of eIF4E remains unknown in oral tongue squamous cell carcinoma (OTSCC). In this work, we show that ribavirin, an anti-viral drug, effectively augments sensitivity of OTSCC cells to paclitaxel via inhibiting mTOR/eIF4E signaling pathway. Ribavirin dose-dependently inhibits proliferation and induces apoptosis in SCC-9 and CAL27 cells. Combination of ribavirin and paclitaxel are more effective in inhibiting proliferation and inducing apoptosis in OTSCC cells. Importantly, the in vivo efficacy of ribavirin and its synergism with paclitaxel is confirmed by two independentmore » OTSCC xenograft mouse models. Mechanistically, ribavirin significantly decreases mTOR/eIF4E signaling pathway in OTSCC cells via suppressing phosphorylation of Akt, mTOR, 4EBP1 and eIF4E. Overexpression of the phosphor-mimetic form of eIF4E (eIF4E S209D) but not the nonphosphorylatable form (eIF4E S209A) reverses the effects of ribavirin, confirming that eIF4E inhibition is the mechanism of action of ribavirin in OTSCC cells. In addition, eIF4E depletion significantly enhances the anti-proliferative and pro-apoptotic effects of paclitaxel, demonstrating the critical role of eIF4E in OTSCC cell response to paclitaxel. Our work is the first to demonstrate the efficacy of ribavirin as a single agent and synergism as combination with paclitaxel in OTSCC in vitro and in vivo. Our findings also demonstrate the therapeutic value of inhibiting eIF4E in OTSCC treatment. - Highlights: • Ribavirin effectively targets OTSCC in vitro and in vivo. • Ribavirin acts synergistically with paclitaxel in OTSCC cells. • Ribavirin inhibits Akt/mTOR/eIF4E signaling in OTSCC. • eIF4E inhibition sensitizes OTSCC cell response to paclitaxel.« less

  5. Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A.

    PubMed

    Grover, Abhinav; Agrawal, Vibhuti; Shandilya, Ashutosh; Bisaria, Virendra S; Sundar, Durai

    2011-01-01

    Herpes Simplex Virus 1 and 2 causes several infections in humans including cold sores and encephalitis. Previous antiviral studies on herpes viruses have focussed on developing nucleoside analogues that can inhibit viral polymerase and terminate the replicating viral DNA. However, these drugs bear an intrinsic non-specificity as they can also inhibit cellular polymerase apart from the viral one. The present study is an attempt to elucidate the action mechanism of naturally occurring withaferin A in inhibiting viral DNA polymerase, thus providing an evidence for its development as a novel anti-herpetic drug. Withaferin A was found to bind very similarly to that of the previously reported 4-oxo-DHQ inhibitor. Withaferin A was observed binding to the residues Gln 617, Gln 618, Asn 815 and Tyr 818, all of which are crucial to the proper functioning of the polymerase. A comparison of the conformation obtained from docking and the molecular dynamics simulations shows that substantial changes in the binding conformations have occurred. These results indicate that the initial receptor-ligand interaction observed after docking can be limited due to the receptor rigid docking algorithm and that the conformations and interactions observed after simulation runs are more energetically favoured. We have performed docking and molecular dynamics simulation studies to elucidate the binding mechanism of prospective herbal drug withaferin A onto the structure of DNA polymerase of Herpes simplex virus. Our docking simulations results give high binding affinity of the ligand to the receptor. Long de novo MD simulations for 10 ns performed allowed us to evaluate the dynamic behaviour of the system studied and corroborate the docking results, as well as identify key residues in the enzyme-inhibitor interactions. The present MD simulations support the hypothesis that withaferin A is a potential ligand to target/inhibit DNA polymerase of the Herpes simplex virus. Results of these studies

  6. Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A

    PubMed Central

    2011-01-01

    Background Herpes Simplex Virus 1 and 2 causes several infections in humans including cold sores and encephalitis. Previous antiviral studies on herpes viruses have focussed on developing nucleoside analogues that can inhibit viral polymerase and terminate the replicating viral DNA. However, these drugs bear an intrinsic non-specificity as they can also inhibit cellular polymerase apart from the viral one. The present study is an attempt to elucidate the action mechanism of naturally occurring withaferin A in inhibiting viral DNA polymerase, thus providing an evidence for its development as a novel anti-herpetic drug. Results Withaferin A was found to bind very similarly to that of the previously reported 4-oxo-DHQ inhibitor. Withaferin A was observed binding to the residues Gln 617, Gln 618, Asn 815 and Tyr 818, all of which are crucial to the proper functioning of the polymerase. A comparison of the conformation obtained from docking and the molecular dynamics simulations shows that substantial changes in the binding conformations have occurred. These results indicate that the initial receptor-ligand interaction observed after docking can be limited due to the receptor rigid docking algorithm and that the conformations and interactions observed after simulation runs are more energetically favoured. Conclusions We have performed docking and molecular dynamics simulation studies to elucidate the binding mechanism of prospective herbal drug withaferin A onto the structure of DNA polymerase of Herpes simplex virus. Our docking simulations results give high binding affinity of the ligand to the receptor. Long de novo MD simulations for 10 ns performed allowed us to evaluate the dynamic behaviour of the system studied and corroborate the docking results, as well as identify key residues in the enzyme-inhibitor interactions. The present MD simulations support the hypothesis that withaferin A is a potential ligand to target/inhibit DNA polymerase of the Herpes simplex

  7. Inhibition of CRM1-mediated nuclear export of influenza A nucleoprotein and nuclear export protein as a novel target for antiviral drug development.

    PubMed

    Chutiwitoonchai, Nopporn; Mano, Takafumi; Kakisaka, Michinori; Sato, Hirotaka; Kondoh, Yasumitsu; Osada, Hiroyuki; Kotani, Osamu; Yokoyama, Masaru; Sato, Hironori; Aida, Yoko

    2017-07-01

    An anti-influenza compound, DP2392-E10 based on inhibition of the nuclear export function of the viral nucleoprotein-nuclear export signal 3 (NP-NES3) domain was successfully identified by our previous high-throughput screening system. Here, we demonstrated that DP2392-E10 exerts its antiviral effect by inhibiting replication of a broad range of influenza A subtypes. In regard to the molecular mechanism, we revealed that DP2392-E10 inhibits nuclear export of both viral NP and nuclear export protein (NEP). More specifically, in vitro pull-down assays revealed that DP2392-E10 directly binds cellular CRM1, which mediates nuclear export of NP and NEP. In silico docking suggested that DP2392-E10 binds at a region close to the HEAT9 and HEAT10 domains of CRM1. Together, these results indicate that the CRM1-mediated nuclear export function of influenza virus represents a new potential target for antiviral drug development, and also provide a core structure for a novel class of inhibitors that target this function. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Electrophysiological effects of Drugs Known to Affect Acetylcholinesterase and Its Inhibition on Neural Mechanisms of Rat Septal Nuclei, in vitro

    DTIC Science & Technology

    1986-11-30

    from a DLSN neuron 9 Figure 3 Effects of pyridostigmine and carbachol on DLSN neuron 10 Figure 4 Effect of pyridostigmine on synaptic responses of...pyridostiqmine and carbachol on DLSN neurons Our initial studies have been aimed at determining whether pyridostigmine alters spontaneous and/or synaptic... carbachol (10 M), which was chosen for its similarities with respect to degree of hyperpolarization, inhibition, onset and duration to the comparable

  9. IP-FCM measures physiologic protein-protein interactions modulated by signal transduction and small-molecule drug inhibition.

    PubMed

    Smith, Stephen E P; Bida, Anya T; Davis, Tessa R; Sicotte, Hugues; Patterson, Steven E; Gil, Diana; Schrum, Adam G

    2012-01-01

    Protein-protein interactions (PPI) mediate the formation of intermolecular networks that control biological signaling. For this reason, PPIs are of outstanding interest in pharmacology, as they display high specificity and may represent a vast pool of potentially druggable targets. However, the study of physiologic PPIs can be limited by conventional assays that often have large sample requirements and relatively low sensitivity. Here, we build on a novel method, immunoprecipitation detected by flow cytometry (IP-FCM), to assess PPI modulation during either signal transduction or pharmacologic inhibition by two different classes of small-molecule compounds. First, we showed that IP-FCM can detect statistically significant differences in samples possessing a defined PPI change as low as 10%. This sensitivity allowed IP-FCM to detect a PPI that increases transiently during T cell signaling, the antigen-inducible interaction between ZAP70 and the T cell antigen receptor (TCR)/CD3 complex. In contrast, IP-FCM detected no ZAP70 recruitment when T cells were stimulated with antigen in the presence of the src-family kinase inhibitor, PP2. Further, we tested whether IP-FCM possessed sufficient sensitivity to detect the effect of a second, rare class of compounds called SMIPPI (small-molecule inhibitor of PPI). We found that the first-generation non-optimized SMIPPI, Ro-26-4550, inhibited the IL-2:CD25 interaction detected by IP-FCM. This inhibition was detectable using either a recombinant CD25-Fc chimera or physiologic full-length CD25 captured from T cell lysates. Thus, we demonstrate that IP-FCM is a sensitive tool for measuring physiologic PPIs that are modulated by signal transduction and pharmacologic inhibition.

  10. Inhibition of recombinant Ca(v)3.1 (alpha(1G)) T-type calcium channels by the antipsychotic drug clozapine.

    PubMed

    Choi, Kee-Hyun; Rhim, Hyewhon

    2010-01-25

    Low voltage-activated T-type calcium channels are involved in the regulation of the neuronal excitability, and could be subject to many antipsychotic drugs. The effects of clozapine, an atypical antipsychotic drug, on recombinant Ca(v)3.1 T-type calcium channels heterologously expressed in human embryonic kidney 293 cells were examined using whole-cell patch-clamp recordings. At a standard holding potential of -100 mV, clozapine inhibited Ca(v)3.1 currents with an IC(50) value of 23.7+/-1.3 microM in a use-dependent manner. However, 10 microM clozapine inhibited more than 50% of the Ca(v)3.1 currents in recordings at a more physiologically relevant holding potential of -75 mV. Clozapine caused a significant hyperpolarizing shift in the steady-state inactivation curve of the Ca(v)3.1 channels, which is presumably the main mechanism accounting for the inhibition of the Ca(v)3.1 currents. In addition, clozapine slowed Ca(v)3.1 deactivation and inactivation kinetics but not activation kinetics. Clozapine-induced changes in deactivation and inactivation rates of the Ca(v)3.1 channel gating would likely facilitate calcium influx via Ca(v)3.1 T-type calcium channels. Thus, clozapine may exert its therapeutic and/or side effects by altering cell's excitability and firing properties through actions on T-type calcium channels.

  11. Development of a New Class of Drugs to Inhibit All Forms of Androgen Receptor in Castration Resistant Prostate Cancers

    DTIC Science & Technology

    2016-10-01

    previous rat ARdbd-DNA crystals and may represent a new crystal form. Key outcome 2: We have carried out followup crystallization screening...to VPC-14449 as a model drug to assist on other related projects. 1. Tam, K., Dalal, K., Hsing, M., Cheng, C.W., Chiang , Y.T., Sharma, A., Peacock

  12. Role of the Strength of Drug-Polymer Interactions on the Molecular Mobility and Crystallization Inhibition in Ketoconazole Solid Dispersions.

    PubMed

    Mistry, Pinal; Mohapatra, Sarat; Gopinath, Tata; Vogt, Frederick G; Suryanarayanan, Raj

    2015-09-08

    The effects of specific drug-polymer interactions (ionic or hydrogen-bonding) on the molecular mobility of model amorphous solid dispersions (ASDs) were investigated. ASDs of ketoconazole (KTZ), a weakly basic drug, with each of poly(acrylic acid) (PAA), poly(2-hydroxyethyl methacrylate) (PHEMA), and polyvinylpyrrolidone (PVP) were prepared. Drug-polymer interactions in the ASDs were evaluated by infrared and solid-state NMR, the molecular mobility quantified by dielectric spectroscopy, and crystallization onset monitored by differential scanning calorimetry (DSC) and variable temperature X-ray diffractometry (VTXRD). KTZ likely exhibited ionic interactions with PAA, hydrogen-bonding with PHEMA, and weaker dipole-dipole interactions with PVP. On the basis of dielectric spectroscopy, the α-relaxation times of the ASDs followed the order: PAA > PHEMA > PVP. In addition, the presence of ionic interactions also translated to a dramatic and disproportionate decrease in mobility as a function of polymer concentration. On the basis of both DSC and VTXRD, an increase in strength of interaction translated to higher crystallization onset temperature and a decrease in extent of crystallization. Stronger drug-polymer interactions, by reducing the molecular mobility, can potentially delay the crystallization onset temperature as well as crystallization extent.

  13. Drug-Mediated Intracellular Donation of Nitric Oxide Potently Inhibits 5-Lipoxygenase: A Possible Key to Future Antileukotriene Therapy.

    PubMed

    Roos, Jessica; Peters, Marcus; Maucher, Isabelle V; Kühn, Benjamin; Fettel, Jasmin; Hellmuth, Nadine; Brat, Camilla; Sommer, Benita; Urbschat, Anja; Piesche, Matthias; Vogel, Anja; Proschak, Ewgenij; Blöcher, René; Buscató, Estella; Häfner, Ann-Kathrin; Matrone, Carmela; Werz, Oliver; Heidler, Juliana; Wittig, Ilka; Angioni, Carlo; Geisslinger, Gerd; Parnham, Michael J; Zacharowski, Kai; Steinhilber, Dieter; Maier, Thorsten J

    2018-05-10

    5-Lipoxygenase (5-LO) is the key enzyme of leukotriene (LT) biosynthesis and is critically involved in a number of inflammatory diseases such as arthritis, gout, bronchial asthma, atherosclerosis, and cancer. Because 5-LO contains critical nucleophilic amino acids, which are sensitive to electrophilic modifications, we determined the consequences of a drug-mediated intracellular release of nitric oxide (NO) on 5-LO product formation by human granulocytes and on 5-LO-dependent pulmonary inflammation in vivo. Clinically relevant concentrations of NO-releasing nonsteroidal anti-inflammatory drugs and other agents releasing NO intracellularly suppress 5-LO product synthesis in isolated human granulocytes via direct S-nitrosylation of 5-LO at the catalytically important cysteines 416 and 418. Furthermore, suppression of 5-LO product formation was observed in ionophore-stimulated human whole blood and in an animal model of pulmonary inflammation. Here, we report for the first time that drugs releasing NO intracellularly are efficient 5-LO inhibitors in vitro and in vivo at least equivalent to approved 5-LO inhibitors. Our findings provide a novel mechanistic strategy for the development of a new class of drugs suppressing LT biosynthesis by site-directed nitrosylation. The results may also help to better understand the well-recognized anti-inflammatory clinically relevant actions of NO-releasing drugs. Furthermore, our study describes in detail a novel molecular mode of action of NO. Rebound Track: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Angel Lanas, Hartmut Kühn, Joan Clària, Orina Belton. Antioxid. Redox Signal. 28, 1265-1285.

  14. Identification of a novel drug lead that inhibits HCV infection and cell-to-cell transmission by targeting the HCV E2 glycoprotein.

    PubMed

    Al Olaby, Reem R; Cocquerel, Laurence; Zemla, Adam; Saas, Laure; Dubuisson, Jean; Vielmetter, Jost; Marcotrigiano, Joseph; Khan, Abdul Ghafoor; Vences Catalan, Felipe; Perryman, Alexander L; Freundlich, Joel S; Forli, Stefano; Levy, Shoshana; Balhorn, Rod; Azzazy, Hassan M

    2014-01-01

    Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2's interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421-645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. Surface plasmon resonance detection was used to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50's ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment.

  15. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway.

    PubMed

    Ye, Bai-Liang; Zheng, Ru; Ruan, Xiao-Jiao; Zheng, Zhi-Hai; Cai, Hua-Jie

    2018-01-01

    Nano-particles have been widely used in target-specific drug delivery system and showed advantages in cancers treatment. This study aims to evaluate the effect of chitosan coated doxorubicin nano-particles drug delivery system in liver cancer. The chitosan nano-particles were prepared by using the ionic gelation method. The characterizations of the nano-particles were determined by transmission electron microscopy. The cytotoxicity was detected by MTT assay, and the endocytosis, cell apoptosis and cell cycle were examined by flow cytometry. The protein level was analyzed with western blot. The dual luciferase reporter assay was performed to assess the interaction between p53 and the promoter of PRC1, and chromatin immune-precipitation was used to verify the binding between them. The FA-CS-DOX nano-particles were irregular and spherical particles around 30-40 nm, with uniform size and no adhesion. No significant difference was noted in doxorubicin release rate between CS-DOX and FA-CS-DOX. FA-CS-DOX nano-particles showed stronger cytotoxicity than CS-DOX. FA-CS-DOX nano-particles promoted the apoptosis and arrested cell cycle at G2/M phase, and they up-regulated p53. FA-CS-DOX nano-particles inhibited cell survival through p53/PRC1 pathway. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer by promoting apoptosis and arresting cell cycle at G2/M phase through p53/PRC1 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Inhibition of OCT2, MATE1 and MATE2-K as a possible mechanism of drug interaction between pazopanib and cisplatin.

    PubMed

    Sauzay, C; White-Koning, M; Hennebelle, I; Deluche, T; Delmas, C; Imbs, D C; Chatelut, E; Thomas, F

    2016-08-01

    We hypothesized that pazopanib is an inhibitor of cisplatin renal transporters OCT2, MATE1 and MATE2-K based on previous studies demonstrating an interaction between tyrosine kinase inhibitors and these transporters. Because several combinations of targeted therapies and cytotoxics are currently in development for cancer treatment, such an interaction is worth investigating. Experiments on HEK293 cells stably transfected to express OCT2, MATE1, MATE2-K or an empty vector (EV) were conducted. The inhibitory effect of pazopanib on these transporters was measured using the uptake of fluorescent substrate ASP+ and cisplatin in the different cell lines. The effect of pazopanib on cisplatin-induced cytotoxicity was also evaluated. A decrease of ASP+ uptake was observed in OCT2-HEK, MATE1-HEK and MATE2K-HEK cell lines after addition of pazopanib at increasing concentrations. Pazopanib inhibited cisplatin specific uptake in OCT2-HEK, MATE1-HEK and MATE2K-HEK lines. Cytotoxicity experiments showed that co-incubation of cisplatin with pazopanib multiplied up to 2.7, 2.4 and 1.6 times the EC50 values of cisplatin in OCT2-HEK, MATE1-HEK and MATE2K-HEK cell lines respectively, reaching about the same values as in EV-HEK cells. To conclude, pazopanib inhibits OCT2, MATE1 and MATE2-K, which are involved in cisplatin secretion into urine. The combination of these two drugs may lead to an interaction and increase the cisplatin-induced systemic toxicity. Given the wide variability of plasma pazopanib concentrations observed in vivo, the interaction may occur in a clinical setting, particularly in overexposed patients. The existence of a drug-drug interaction should be investigated when pazopanib is associated with a substrate of these transporters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Disparate effects of non-steroidal anti-inflammatory drugs on apoptosis in guinea-pig gastric mucous cells: inhibition of basal apoptosis by diclofenac

    PubMed Central

    Ashton, Miranda; Hanson, Peter J

    2002-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in gastrointestinal cancer cell lines. Similar actions on normal gastric epithelial cells could contribute to NSAID gastropathy. The present work therefore compared the actions of diclofenac, ibuprofen, indomethacin, and the cyclo-oxygenase-2 selective inhibitor, NS-398, on a primary culture of guinea-pig gastric mucous epithelial cells. Cell number was assessed by staining with crystal violet. Apoptotic activity was determined by condensation and fragmentation of nuclei and by assay of caspase-3-like activity. Necrosis was evaluated from release of cellular enzymes. Ibuprofen (250 μM for 24 h) promoted cell loss, and apoptosis, under both basal conditions and when apoptosis was increased by 25 μM N-Hexanoyl-D-sphingosine (C6-ceramide). Diclofenac (250 μM for 24 h) reduced the proportion of apoptotic nuclei from 5.2 to 2.1%, and caused inhibition of caspase-3-like activity, without causing necrosis under basal conditions. No such reduction in apoptotic activity was evident in the presence of 25 μM C6-ceramide. The inhibitory effect of diclofenac on basal caspase-3-like activity was also exhibited by the structurally similar mefenamic and flufenamic acids (1–250 μM), but not by niflumic acid. Inhibition of superoxide production by the cells increased caspase-3-like activity, but the inhibitory action of diclofenac on caspase activity remained. Diclofenac did not affect superoxide production. Diclofenac inhibited caspase-3-like activity in cell homogenates and also inhibited human recombinant caspase-3. In conclusion, NSAIDs vary in their effect on apoptotic activity in a primary culture of guinea-pig gastric mucous epithelial cells, and the inhibitory effect of diclofenac on basal apoptosis could involve an action on caspase activity. PMID:11815376

  18. Tryptamine-gallic acid hybrid prevents non-steroidal anti-inflammatory drug-induced gastropathy: correction of mitochondrial dysfunction and inhibition of apoptosis in gastric mucosal cells.

    PubMed

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd Shameel; Sarkar, Souvik; Kumar, Rahul; Halder, Kamal Krishna; Debnath, Mita Chatterjee; Adhikari, Susanta; Bandyopadhyay, Uday

    2012-01-27

    We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O(2)(·-)) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled ((99m)Tc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy.

  19. Blocking α4β2 and α7 nicotinic acetylcholine receptors inhibits the reinstatement of morphine-induced CPP by drug priming in mice.

    PubMed

    Feng, Bin; Xing, Jiang-hao; Jia, Dong; Liu, Shui-bing; Guo, Hong-ju; Li, Xiao-qiang; He, Xiao-sheng; Zhao, Ming-gao

    2011-06-20

    Investigating the interaction between nicotinic and opioid receptors is of great interest for both basic mechanistic and clinical reasons. Morphine and nicotine, two common drugs of abuse, share several behavioral and rewarding properties. However, little is known about the subtypes of nicotinic acetylcholine receptors (nAChR) in the reinstatement of morphine-induced conditioned place preference (CPP). In this study, we found that a non-specific nAChR agonist, nicotine (0.5mg/kg), had no effects on the reinstatement of morphine-induced CPP. However, we found that pretreatment with specific α(4)β(2) and α(7) nAChR subtype antagonists, dihydroxy-β-erithroidine (DHβE, 5mg/kg) and methyllycaconitine (MLA, 4 mg/kg), 20 min prior to administration of morphine, inhibited the reinstatement of morphine-induced CPP by drug priming in mice. Furthermore, depression of the reinstatement of morphine-induced CPP by a single DHβE or MLA treatment lasted at least three days later when the reinstatement was induced by morphine priming. The data suggest that specific nAChR subtypes, i.e., α(4)β(2) and α(7), may contribute to the reinstatement of morphine-induced CPP by drug priming in mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Drug-polymer interactions at water-crystal interfaces and implications for crystallization inhibition: molecular dynamics simulations of amphiphilic block copolymer interactions with tolazamide crystals.

    PubMed

    Gao, Yi; Olsen, Kenneth W

    2015-07-01

    A diblock copolymer, poly(ethylene glycol)-block-poly(lactic acid) (PEG-b-PLA), modulates the crystal growth of tolazamide (TLZ), resulting in a crystal morphology change from needles to plates in aqueous media. To understand this crystal surface drug-polymer interaction, we conducted molecular dynamics simulations on crystal surfaces of TLZ in water containing PEG-b-PLA. A 130-ns simulation of the polymer in a large water box was run before initiating 50 ns simulations with each of the crystal surfaces. The simulations demonstrated differentiated drug-polymer interactions that are consistent with experimental studies. Interaction of PEG-b-PLA with the (001) face occurred more rapidly (≤10 ns) and strongly (total interaction energy of -121.1 kJ/mol/monomer) than that with the (010) face (∼35 ns, -85.4 kJ/mol/monomer). There was little interaction with the (100) face. Hydrophobic and van der Waals (VDW) interactions were the dominant forces, accounting for more than 90% of total interaction energies. It suggests that polymers capable of forming strong hydrophobic and VDW interactions might be more effective in inhibiting crystallization of poorly water-soluble and hydrophobic drugs in aqueous media (such as gastrointestinal fluid) than those with hydrogen-bonding capacities. Such in-depth analysis and understanding facilitate the rational selection of polymers in designing supersaturation-based enabling formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Type 5 17β-Hydroxysteroid Dehydrogenase/Prostaglandin F Synthase (AKR1C3): Role In Breast Cancer and Inhibition by Nonsteroidal Antiinflammatory Drug Analogs

    PubMed Central

    Byrns, Michael C.; Penning, Trevor M.

    2011-01-01

    Aldo-keto reductase (AKR) 1C3 catalyzes the NADPH dependent reduction of Δ4-androstene-3,17-dione to yield testosterone, reduction of estrone to yield 17β-estradiol and reduction of progesterone to yield 20α-hydroxyprogesterone. In addition, it functions as a prostaglandin (PG) F synthase and reduces PGH2 to PGF2α and PGD2 to 11β-PGF2. Immunohistochemistry showed that AKR1C3 is over expressed in invasive ductal carcinoma of the breast. Retroviral expression of AKR1C3 in MCF-7 breast carcinoma cells shows that each of the assigned reactions occur in a breast cell microenvironment. Steroid and prostaglandin conversions were monitored by radiochromatography. Prostaglandin conversion was validated by a second method using HPLC coupled to APCI-MRM/MS. The combined effect of the AKR1C3 catalyzed 17- and 20-ketosteroid reductions will be to increase the 17β-estradiol : progesterone ratio in the breast. In addition, formation of PGF2 epimers would activate F prostanoid receptors and deprive PPARγ of its putative anti-proliferative PGJ2 ligands. Thus, AKR1C3 is a source of proliferative signals and a potential therapeutic target for hormone dependent and independent breast cancer. Two strategies for AKR1C3 inhibition based on non-steroidal anti-inflammatory drugs were developed. The first strategy uses the Ullmann coupling reaction to generate N-phenylanthranilate derivatives that inhibit AKR1C enzymes without affecting PGH2 synthase (PGHS) 1 or PGHS-2. The second strategy exploits the selective inhibition of AKR1C3 by indomethacin, which did not inhibit highly related AKR1C1 or AKR1C2. Using known structure activity relationships for the inhibition of PGHS-1 and PGHS-2 by indole acetic acids we obtained N-(4-chlorobenzoyl)-melatonin as a specific AKR1C3 inhibitor (KI = 6.0 μM) that does not inhibit PGHS-1, PGHS-2, AKR1C1, or AKR1C2. Both strategies are informed by crystal structures of ternary AKR1C3•NADP+•NSAID complexes. The identification of NSAID analogs as

  2. Studying a Drug-like, RNA-Focused Small Molecule Library Identifies Compounds That Inhibit RNA Toxicity in Myotonic Dystrophy.

    PubMed

    Rzuczek, Suzanne G; Southern, Mark R; Disney, Matthew D

    2015-12-18

    There are many RNA targets in the transcriptome to which small molecule chemical probes and lead therapeutics are desired. However, identifying compounds that bind and modulate RNA function in cellulo is difficult. Although rational design approaches have been developed, they are still in their infancies and leave many RNAs "undruggable". In an effort to develop a small molecule library that is biased for binding RNA, we computationally identified "drug-like" compounds from screening collections that have favorable properties for binding RNA and for suitability as lead drugs. As proof-of-concept, this collection was screened for binding to and modulating the cellular dysfunction of the expanded repeating RNA (r(CUG)(exp)) that causes myotonic dystrophy type 1. Hit compounds bind the target in cellulo, as determined by the target identification approach Competitive Chemical Cross-Linking and Isolation by Pull-down (C-ChemCLIP), and selectively improve several disease-associated defects. The best compounds identified from our 320-member library are more potent in cellulo than compounds identified by high-throughput screening (HTS) campaigns against this RNA. Furthermore, the compound collection has a higher hit rate (9% compared to 0.01-3%), and the bioactive compounds identified are not charged; thus, RNA can be "drugged" with compounds that have favorable pharmacological properties. Finally, this RNA-focused small molecule library may serve as a useful starting point to identify lead "drug-like" chemical probes that affect the biological (dys)function of other RNA targets by direct target engagement.

  3. Inhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases.

    PubMed

    Hussain, Tahir; Yogavel, Manickam; Sharma, Amit

    2015-04-01

    Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes that couple cognate tRNAs with amino acids to transmit genomic information for protein translation. The Plasmodium falciparum nuclear genome encodes two P. falciparum methionyl-tRNA synthetases (PfMRS), termed PfMRS(cyt) and PfMRS(api). Phylogenetic analyses revealed that the two proteins are of primitive origin and are related to heterokonts (PfMRS(cyt)) or proteobacteria/primitive bacteria (PfMRS(api)). We show that PfMRS(cyt) localizes in parasite cytoplasm, while PfMRS(api) localizes to apicoplasts in asexual stages of malaria parasites. Two known bacterial MRS inhibitors, REP3123 and REP8839, hampered Plasmodium growth very effectively in the early and late stages of parasite development. Small-molecule drug-like libraries were screened against modeled PfMRS structures, and several "hit" compounds showed significant effects on parasite growth. We then tested the effects of the hit compounds on protein translation by labeling nascent proteins with (35)S-labeled cysteine and methionine. Three of the tested compounds reduced protein synthesis and also blocked parasite growth progression from the ring stage to the trophozoite stage. Drug docking studies suggested distinct modes of binding for the three compounds, compared with the enzyme product methionyl adenylate. Therefore, this study provides new targets (PfMRSs) and hit compounds that can be explored for development as antimalarial drugs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Glutaminase-Deficient Mice Display Hippocampal Hypoactivity, Insensitivity to Pro-Psychotic Drugs and Potentiated Latent Inhibition: Relevance to Schizophrenia

    PubMed Central

    Gaisler-Salomon, Inna; Miller, Gretchen M; Chuhma, Nao; Lee, Sooyeon; Zhang, Hong; Ghoddoussi, Farhad; Lewandowski, Nicole; Fairhurst, Stephen; Wang, Yvonne; Conjard-Duplany, Agnès; Masson, Justine; Balsam, Peter; Hen, René; Arancio, Ottavio; Galloway, Matthew P; Moore, Holly M; Small, Scott A; Rayport, Stephen

    2009-01-01

    Dysregulated glutamatergic neurotransmission has been strongly implicated in the pathophysiology of schizophrenia (SCZ). Recently, presynaptic modulation of glutamate transmission has been shown to have therapeutic promise. We asked whether genetic knockdown of glutaminase (gene GLS1) to reduce glutamatergic transmission presynaptically by slowing the recycling of glutamine to glutamate, would produce a phenotype relevant to SCZ and its treatment. GLS1 heterozygous (GLS1 het) mice showed about a 50% global reduction in glutaminase activity, and a modest reduction in glutamate levels in brain regions relevant to SCZ pathophysiology, but displayed neither general behavioral abnormalities nor SCZ-associated phenotypes. Functional imaging, measuring regional cerebral blood volume, showed hippocampal hypometabolism mainly in the CA1 subregion and subiculum, the inverse of recent clinical imaging findings in prodromal and SCZ patients. GLS1 het mice were less sensitive to the behavioral stimulating effects of amphetamine, showed a reduction in amphetamine-induced striatal dopamine release and in ketamine-induced frontal cortical activation, suggesting that GLS1 het mice are resistant to the effects of these pro-psychotic challenges. Moreover, GLS1 het mice showed clozapine-like potentiation of latent inhibition, suggesting that reduction in glutaminase has antipsychotic-like properties. These observations provide further support for the pivotal role of altered glutamatergic synaptic transmission in the pathophysiology of SCZ, and suggest that presynaptic modulation of the glutamine–glutamate pathway through glutaminase inhibition may provide a new direction for the pharmacotherapy of SCZ. PMID:19516252

  5. Glutaminase-deficient mice display hippocampal hypoactivity, insensitivity to pro-psychotic drugs and potentiated latent inhibition: relevance to schizophrenia.

    PubMed

    Gaisler-Salomon, Inna; Miller, Gretchen M; Chuhma, Nao; Lee, Sooyeon; Zhang, Hong; Ghoddoussi, Farhad; Lewandowski, Nicole; Fairhurst, Stephen; Wang, Yvonne; Conjard-Duplany, Agnès; Masson, Justine; Balsam, Peter; Hen, René; Arancio, Ottavio; Galloway, Matthew P; Moore, Holly M; Small, Scott A; Rayport, Stephen

    2009-09-01

    Dysregulated glutamatergic neurotransmission has been strongly implicated in the pathophysiology of schizophrenia (SCZ). Recently, presynaptic modulation of glutamate transmission has been shown to have therapeutic promise. We asked whether genetic knockdown of glutaminase (gene GLS1) to reduce glutamatergic transmission presynaptically by slowing the recycling of glutamine to glutamate, would produce a phenotype relevant to SCZ and its treatment. GLS1 heterozygous (GLS1 het) mice showed about a 50% global reduction in glutaminase activity, and a modest reduction in glutamate levels in brain regions relevant to SCZ pathophysiology, but displayed neither general behavioral abnormalities nor SCZ-associated phenotypes. Functional imaging, measuring regional cerebral blood volume, showed hippocampal hypometabolism mainly in the CA1 subregion and subiculum, the inverse of recent clinical imaging findings in prodromal and SCZ patients. GLS1 het mice were less sensitive to the behavioral stimulating effects of amphetamine, showed a reduction in amphetamine-induced striatal dopamine release and in ketamine-induced frontal cortical activation, suggesting that GLS1 het mice are resistant to the effects of these pro-psychotic challenges. Moreover, GLS1 het mice showed clozapine-like potentiation of latent inhibition, suggesting that reduction in glutaminase has antipsychotic-like properties. These observations provide further support for the pivotal role of altered glutamatergic synaptic transmission in the pathophysiology of SCZ, and suggest that presynaptic modulation of the glutamine-glutamate pathway through glutaminase inhibition may provide a new direction for the pharmacotherapy of SCZ.

  6. Inhibition by 6-mercaptopurine of purine phosphoribosyltransferases from Ehrlich ascites-tumour cells that are resistant to this drug

    PubMed Central

    Atkinson, M. R.; Murray, A. W.

    1965-01-01

    1. A strain of Ehrlich ascites-tumour cells that showed little inhibition of growth in the presence of 6-mercaptopurine accumulated less than 5% as much 6-thioinosine 5′-phosphate in vivo, in the presence of 6-mercaptopurine, as did the sensitive strain from which it was derived. 2. Specific activities of the phosphoribosyltransferases that convert adenine, guanine, hypoxanthine and 6-mercaptopurine into AMP, GMP, IMP and 6-thioinosine 5′-phosphate were similar in extracts of the resistant and the sensitive cells. 3. As found previously with sensitive cells, 6-mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase and hypoxanthine phosphoribosyltransferase from the resistant cells and does not inhibit the adenine phosphoribosyltransferase from these cells. Michaelis constants and inhibitor constants of the purine phosphoribosyltransferases from resistant cells did not differ significantly from those measured with the corresponding enzymes from sensitive cells. 4. Resistance to 6-mercaptopurine in this case is probably not due to qualitative or quantitative changes in these transferases. PMID:14342251

  7. Benzodiazepine Scaffold as Drug-like Molecular Simplification of FR235222: A Chemical Tool for Exploring HDAC Inhibition.

    PubMed

    Randino, Rosario; Moronese, Ilaria; Cini, Elena; Bizzarro, Valentina; Persico, Marco; Grimaldi, Manuela; Scrima, Mario; D'Ursi, Anna Maria; Novellino, Ettore; Sobarzo-Sanchez, Eduardo; Rastrelli, Luca; Fattorusso, Caterina; Petrella, Antonello; Rodriquez, Manuela; Taddei, Maurizio

    2017-01-01

    Synthesis, computational study and biological evaluation of peptidomimetic analogues of FR235222 (3), a natural immunosuppressant and HDAC inhibitor, have been reported. These new compounds, bearing α-hydroxyketone moiety, as more stable zinc binding group (ZBG), were evaluated in vitro as HDAC inhibitors against the human HDACs isoforms 1-9 and in cellular antiproliferative assays on U937 human leukemia cell line. The 1,4-benzodiazepin-2,5-dione (BDZ), capping group and the natural ZBG, (S,R)-2-amino-9-hydroxy-8-oxodecanoic acid (Ahoda), were evaluated in order to probe HDAC inhibition and/or paralogue selectivity. Some of the new derivatives showed an interesting activity against a number of HDAC isozymes. The observed activity profile was rationalized by a computational assisted SAR study, in order to understand how the BDZ classes interact with the enzyme into the catalytic pocket. Despite its poor solubility, compound 17b showed significant antiproliferative profile and HDAC inhibition activity. In order to assess how the solubility issue could have affected the biological outcome, bioassay conditions were reproduced and quantification of precipitated particulate material was evaluated by turbidimetric and NMR studies together with physicochemical descriptors prediction. Thus, BDZ 17b has been chosen to be promising lead compounds for further optimization, in order to elucidate molecule- enzyme surface recognition.

  8. Inhibition of Growth and Metastasis of Ovarian Carcinoma by Administering a Drug Capable of Interfering with Vascular Endothelial Growth Factor Activity

    PubMed Central

    Mu, Jie; Abe, Yoshiko; Tsutsui, Tateki; Yamamoto, Norihiko; Tai, Xu‐Guang; Niwa, Ohtsura; Tsujimura, Takahiro; Sato, Bunzo; Terano, Hiroshi; Hamaoka, Toshiyuki

    1996-01-01

    The present study investigates the relationship between in vivo growth/metastasis of tumor cells and their capacity to produce the vascular endothelial growth factor (VEGF), as well as the regulation of tumor growth/metastasis using an angiogenesis‐inhibitory drug. Two cloned tumor cell lines designated OV‐LM and OV‐HM were isolated from a murine ovarian carcinoma OV2944. OV‐LM and OV‐HM cells grew in cultures at comparable rates. However, when transplanted s.c. into syngeneic mice, OV‐HM exhibited a faster growth rate and a much higher incidence of metastasis to lymph nodes and lung. Histologically, intense neovascularization was detected in sections of OV‐HM but not of OV‐LM tumor. OV‐HM and OV‐LM tumor cells obtained from in vitro cultures expressed high and low levels of VEGF mRNA, respectively. A difference in VEGF mRNA expression was much more clearly observed between RNAs prepared from fresh OV‐HM and OV‐LM tumor masses: RNA from OV‐HM contained larger amounts of VEGF mRNA, whereas RNA from OV‐LM exhibited only marginal levels of VEGF mRNA. An angiogenesis‐inhibitory drug, FR118487 inhibited the VEGF‐mediated in vitro growth of endothelial cells but did not affect the expression in vitro of VEGF mRNA by OV‐HM tumor cells. Intraperitoneal injections of FR118487 into mice bearing OV‐HM tumors resulted in: (i) a subsequent growth inhibition of primary tumors; (ii) a marked decrease in neovascularization inside tumor masses expressing comparable levels of VEGF mRNA to those detected in control OV‐HM masses; and (iii) almost complete inhibition of metastasis to lymph nodes and lung. These results indicate that growth/metastasis of tumor cells correlates with their VEGF‐producing capacity and that an angiogenesis inhibitor, FR118487, inhibits tumor growth and metastasis through mechanism(s) including the suppression of VEGF function in vivo. PMID:8878460

  9. Cytisine inhibits the protective activity of various classical and novel antiepileptic drugs against 6 Hz-induced psychomotor seizures in mice.

    PubMed

    Tutka, Piotr; Kondrat-Wróbel, Maria W; Zaluska, Katarzyna; Żółkowska, Dorota; Florek-Łuszczki, Magdalena; Łuszczki, Jarogniew J

    2017-01-01

    Cytisine (CYT) is a partial agonist of brain α4β2 nicotinic acetylcholine receptors widely used in Central/Eastern Europe for smoking cessation. This study evaluated the effect of CYT on the ability of classical and novel antiepileptic drugs to prevent seizures evoked by the 6-Hz test, a model of psychomotor seizures in mice thought as a model of drug-resistant seizures. CYT administered intraperitoneally (i.p.) in a dose of 2 mg kg -1 significantly inhibited the anticonvulsant activity of lacosamide, levetiracetam, and pregabalin, increasing their median effective doses 50 (ED 50 ) values from 6.88 to 10.52 mg kg -1 (P < 0.05) for lacosamide, from 22.08 to 38.26 mg kg -1 (P < 0.05) for levetiracetam, and from 40.48 to 64.61 mg kg -1 (P < 0.01) for pregabalin, respectively. There were no significant changes in total brain concentrations of lacosamide, levetiracetam, and pregabalin following CYT i.p. administration. CYT administered in a dose of 2 mg kg -1 failed to change the protective action of clobazam, clonazepam, phenobarbital, tiagabine, and valproate in the 6-Hz test. Neither CYT (2 mg kg -1 ) alone nor its combination with the anticonvulsant drugs (at their ED 50 values from the 6-Hz test) affected motor coordination; skeletal muscular strength and long-term memory, as determined in the chimney; and grip strength and passive avoidance tests, respectively. CYT-evoked alterations in the protection provided by some antiepileptic drugs against seizures can be of serious concern for epileptic smokers, who might demonstrate therapeutic failure to lacosamide, levetiracetam, and pregabalin, resulting in possible breakthrough seizure attacks.

  10. Inhibition of the cancer-associated TASK 3 channels by magnetically induced thermal release of Tetrandrine from a polymeric drug carrier.

    PubMed

    Shi, Chen; Thum, Carolin; Zhang, Qian; Tu, Wei; Pelaz, Beatriz; Parak, Wolfgang J; Zhang, Yu; Schneider, Marc

    2016-09-10

    Two-pore domain (K2P) potassium channels have recently attracted growing interest in the field of cancer research. These channels play an important role in cancer biology specifically for cancer progression, including proliferation, migration, and apoptosis, which makes them an attractive target for novel cancer therapies. Here, we examined the effect of Tetrandrine (Tet), a natural compound known as a channel modulator, which is associated with anticancer activities, as potential drug in this regard. Xenopus oocyte with overexpression of K2P 9.1 (TASK 3) channels has been chosen as model system for this purpose. In order to release Tet and trigger the channels we developed a polymeric magnetic delivery system: Tetrandrine-Magnetite co-loaded poly (lactic-co-glycolic) acid particles. The embedded iron oxide magnetite (Fe3O4) nanoparticles (NPs) allow to inductively heat the particles by applying a high frequency alternating magnetic field, and thus trigger the release of the co-encapsulated Tet. As a proof of concept the nanoparticulate drug delivery system was heated by raising the suspension's temperature proving the temperature dependent release behaviour. Both heating approaches were then successfully applied for measuring the TASK 3 channels current in response to the released drug. It was found that the released Tet amount is sufficient to inhibit the TASK 3 channels in a dose dependent manner. Thus, such a stimulus responsive drug delivery system holds great promise as a novel approach for the treatment of various cancer types such as for the interaction with the two-pore domain potassium channels K2P 9.1. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effects of cannabinoid drugs on the deficit of prepulse inhibition of startle in an animal model of schizophrenia: the SHR strain.

    PubMed

    Levin, Raquel; Peres, Fernanda F; Almeida, Valéria; Calzavara, Mariana B; Zuardi, Antonio W; Hallak, Jaime E C; Crippa, José Alexandre S; Abílio, Vanessa C

    2014-01-01

    Clinical and neurobiological findings suggest that the cannabinoids and the endocannabinoid system may be implicated in the pathophysiology and treatment of schizophrenia. We described that the spontaneously hypertensive rats (SHR) strain presents a schizophrenia behavioral phenotype that is specifically attenuated by antipsychotic drugs, and potentiated by proschizophrenia manipulations. Based on these findings, we have suggested this strain as an animal model of schizophrenia. The aim of this study was to evaluate the effects of cannabinoid drugs on the deficit of prepulse inhibition (PPI) of startle, the main paradigm used to study sensorimotor gating impairment related to schizophrenia, presented by the SHR strain. The following drugs were used: (1) WIN55212,2 (cannabinoid agonist), (2) rimonabant (CB1 antagonist), (3) AM404 (anandamide uptake inhibitor), and (4) cannabidiol (CBD; indirect CB1/CB2 receptor antagonist, among other effects). Wistar rats (WRs) and SHRs were treated with vehicle (VEH) or different doses of WIN55212 (0.3, 1, or 3 mg/kg), rimonabant (0.75, 1.5, or 3 mg/kg), AM404 (1, 5, or 10 mg/kg), or CBD (15, 30, or 60 mg/kg). VEH-treated SHRs showed a decreased PPI when compared to WRs. This PPI deficit was reversed by 1 mg/kg WIN and 30 mg/kg CBD. Conversely, 0.75 mg/kg rimonabant decreased PPI in SHR strain, whereas AM404 did not modify it. Our results reinforce the role of the endocannabinoid system in the sensorimotor gating impairment related to schizophrenia, and point to cannabinoid drugs as potential therapeutic strategies.

  12. Anti-corrosion activities of apen-class inhibitive drug on aluminium alloy in simulated chloride environment

    NASA Astrophysics Data System (ADS)

    Fayomi, O. S. I.; Anawe, PAL; Ayoola, A. A.; Joseph, O. O.

    2018-05-01

    In this study, aluminium material normally used in the underlie ship was immersed in simulated sodium chloride environment and its degradation properties was evaluated. Investigation of corrosion rate and mass weight loss through gravimetric tests measurements showed that less mass loss was recorded for tests in sodium chloride with 3-(2'-chloro-6' fluorophenyl) and lowest corrosion rate values were found at 10%. On the other hand, the mass loss deteriorated in all 3-(2'-chloro-6' fluorophenyl) with less uniform corrosion. The existence of chloride dissolved the interfacial surface layer resulting into pit initiation and growth. It is found that corrosion degradation of aluminum is dependent on chloride and inhibitive concentration.

  13. Novel Imidazoline Antimicrobial Scaffold That Inhibits DNA Replication with Activity against Mycobacteria and Drug Resistant Gram-Positive Cocci

    PubMed Central

    2015-01-01

    Bacterial antimicrobial resistance is an escalating public health threat, yet the current antimicrobial pipeline remains alarmingly depleted, making the development of new antimicrobials an urgent need. Here, we identify a novel, potent, imidazoline antimicrobial compound, SKI-356313, with bactericidal activity against Mycobacterium tuberculosis and Gram-positive cocci, including vancomycin-resistant Enterococcus faecium (VRE) and methicillin-resistant Staphylococcus aureus (MRSA). SKI-356313 is active in murine models of Streptococcus pneumoniae and MRSA infection and is potently bactericidal for both replicating and nonreplicating M. tuberculosis. Using a combination of genetics, whole genome sequencing, and a novel target ID approach using real time imaging of core macromolecular biosynthesis, we show that SKI-356313 inhibits DNA replication and displaces the replisome from the bacterial nucleoid. These results identify a new antimicrobial scaffold with a novel mechanism of action and potential therapeutic utility against nonreplicating M. tuberculosis and antibiotic resistant Gram-positive cocci. PMID:25222597

  14. Green drugs in the fight against Anisakis simplex-larvicidal activity and acetylcholinesterase inhibition of Origanum compactum essential oil.

    PubMed

    López, Víctor; Cascella, María; Benelli, Giovanni; Maggi, Filippo; Gómez-Rincón, Carlota

    2018-03-01

    Anisakiasis is a fish-borne parasitic disease caused by the consumption of raw or undercooked fish, as well as cephalopods, contaminated by third instar larvae (L3) of species belonging to the genus Anisakis (Anisakidae). Origanum compactum is a small herbaceous aromatic plant endemic to Spain and Morocco. In Morocco, the plant is used under infusion to treat heart diseases and intestinal pains or as preservative for foodstuffs. This is the first time that the O. compactum essential oil is tested against the parasitic nematode Anisakis simplex. The phytochemical analysis by GC-MS revealed carvacrol (50.3%) and thymol (14.8%) as the major oil constituents. The essential oil and its major constituents carvacrol and thymol were tested against A. simplex L3 larvae isolated from blue whiting fish (Micromesistius poutassou). A. simplex mortality (%) after 24 and 48 h of treatment at 1 μl/ml was 100%, with a low LD 50 compared with other essential oils and extracts, and the penetration in the agar assay was also reduced, if compared with control wells. The oil, as well as its major constituents, demonstrated a dose-dependent larvicidal activity. Inhibition of the enzyme acetylcholinesterase through a colorimetric assay in 96-well plates was used to elucidate the pharmacological mechanism as this enzyme plays a key role in nematodes neuromuscular function. Interestingly, O. compactum essential oil, carvacrol and thymol inhibited the enzyme, confirming that this could be one of the mechanisms involved in the anthelmintic activity. To the best of our knowledge, this is the first time that O. compactum essential oil is reported as a larvicidal agent against A. simplex L3 larvae.

  15. 3-Amino 1,8-naphthalimide, a structural analog of the anti-cholera drug virstatin inhibits chemically-biased swimming and swarming motility in vibrios

    PubMed Central

    Wang, Hongxia; Silva, Anisia J.; Benitez, Jorge A.

    2017-01-01

    A screen for inhibitors of Vibrio cholerae motility identified the compound 3-amino 1,8-naphthalimide (3-A18NI), a structural analog of the cholera drug virstatin. Similar to virstatin, 3-A18NI diminished cholera toxin production. In contrast, 3-A18NI impeded swimming and/or swarming motility of V. cholerae and V. parahemolyticus suggesting that it could target the chemotaxis pathway shared by the polar and lateral flagellar system of vibrios. 3-A18NI did not inhibit the expression of V. cholerae major flagellin FlaA or the assembly of its polar flagellum. Finally, 3-A18NI enhanced V. cholerae colonization mimicking the phenotype of chemotaxis mutants that exhibit counterclockwise-biased flagellum rotation. PMID:28392408

  16. 3-Amino 1,8-naphthalimide, a structural analog of the anti-cholera drug virstatin inhibits chemically-biased swimming and swarming motility in vibrios.

    PubMed

    Wang, Hongxia; Silva, Anisia J; Benitez, Jorge A

    2017-06-01

    A screen for inhibitors of Vibrio cholerae motility identified the compound 3-amino 1,8-naphthalimide (3-A18NI), a structural analog of the cholera drug virstatin. Similar to virstatin, 3-A18NI diminished cholera toxin production. In contrast, 3-A18NI impeded swimming and/or swarming motility of V. cholerae and V. parahemolyticus suggesting that it could target the chemotaxis pathway shared by the polar and lateral flagellar system of vibrios. 3-A18NI did not inhibit the expression of V. cholerae major flagellin FlaA or the assembly of its polar flagellum. Finally, 3-A18NI enhanced V. cholerae colonization mimicking the phenotype of chemotaxis mutants that exhibit counterclockwise-biased flagellum rotation. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Inhibition of prostaglandin biosynthesis as the mechanism of analgesia of aspirin-like drugs in the dog knee joint.

    PubMed

    Moncada, S; Ferreira, S H; Vane, J R

    1975-04-01

    A method has been developed to measure the analgesic action of aspirin-like drugs in knee joints of anaesthetized dogs. Bradykinin, injected into the joint cavity, induced a reflex rise in blood pressure which was dose-dependent; this was used as a measure of nociceptive activity. The joint cavity became more sensitive to bradykinin as the experiment proceeded, or when a low concentration of prostaglandin E1 or E2 was infused locally. The increase in sensitivity with time was prevented by local injection of aspirin or indomethacin, but that induced by exogenous prostaglandin infusion was not. Injections of carrageenin into dog knee joints increased the prostaglandin E2 content of synovial fluid by up to 160 ng per joint; indomethacin prevented this increase. These experiments support our previous conclusion that local biosynthesis of a prostaglandin (induced by mild trauma) sensitizes pain receptors to mechanical or chemical stimuli. Aspirin-like drugs are analgesic because they prevent prostaglandin biosynthesis, thereby preventing this sensitization.

  18. Vinpocetine inhibits glutamate release induced by the convulsive agent 4-aminopyridine more potently than several antiepileptic drugs.

    PubMed

    Sitges, M; Sanchez-Tafolla, B M; Chiu, L M; Aldana, B I; Guarneros, A

    2011-10-01

    4-Aminopyridine (4-AP) is a convulsing agent that in vivo preferentially releases Glu, the most important excitatory amino acid neurotransmitter in the brain. Here the ionic dependence of 4-AP-induced Glu release and the effects of several of the most common antiepileptic drugs (AEDs) and of the new potential AED, vinpocetine on 4-AP-induced Glu release were characterized in hippocampus isolated nerve endings pre-loaded with labelled Glu ([3H]Glu). 4-AP-induced [3H]Glu release was composed by a tetrodotoxin (TTX) sensitive and external Ca2+ dependent fraction and a TTX insensitive fraction that was sensitive to the excitatory amino acid transporter inhibitor, TBOA. The AEDs: carbamazepine, phenytoin, lamotrigine and oxcarbazepine at the highest dose tested only reduced [3H]Glu release to 4-AP between 50-60%, and topiramate was ineffective. Vinpocetine at a much lower concentration than the above AEDs, abolished [3H]Glu release to 4-AP. We conclude that the decrease in [3H]Glu release linked to the direct blockade of presynaptic Na+ channels, may importantly contribute to the anticonvulsant actions of all the drugs tested here (except topiramate); and that the significantly greater vinpocetine effect in magnitude and potency on [3H]Glu release when excitability is exacerbated like during seizures, may involve the increase additionally exerted by vinpocetine in some K+ channels permeability. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds.

    PubMed

    Ngo, Trieu-Du; Tran, Thanh-Dao; Le, Minh-Tri; Thai, Khac-Minh

    2016-11-01

    The human P-glycoprotein (P-gp) efflux pump is of great interest for medicinal chemists because of its important role in multidrug resistance (MDR). Because of the high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of this transmembrane protein, ligand-based, and structure-based approaches which were machine learning, homology modeling, and molecular docking were combined for this study. In ligand-based approach, individual two-dimensional quantitative structure-activity relationship models were developed using different machine learning algorithms and subsequently combined into the Ensemble model which showed good performance on both the diverse training set and the validation sets. The applicability domain and the prediction quality of the developed models were also judged using the state-of-the-art methods and tools. In our structure-based approach, the P-gp structure and its binding region were predicted for a docking study to determine possible interactions between the ligands and the receptor. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening using prediction models and molecular docking in an attempt to restore cancer cell sensitivity to cytotoxic drugs.

  20. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition.

    PubMed

    Zheng, Hailin; Gal, Shunit; Weiner, Lev M; Bar-Am, Orit; Warshawsky, Abraham; Fridkin, Mati; Youdim, Moussa B H

    2005-10-01

    Iron-dependent oxidative stress, elevated levels of iron and of monoamine oxidase (MAO)-B activity, and depletion of antioxidants in the brain may be major pathogenic factors in Parkinson's disease, Alzheimer's disease and related neurodegenerative diseases. Accordingly, iron chelators, antioxidants and MAO-B inhibitors have shown efficacy in a variety of cellular and animal models of CNS injury. In searching for novel antioxidant iron chelators with potential MAO-B inhibitory activity, a series of new iron chelators has been designed, synthesized and investigated. In this study, the novel chelators were further examined for their activity as antioxidants, MAO-B inhibitors and neuroprotective agents in vitro. Three of the selected chelators (M30, HLA20 and M32) were the most effective in inhibiting iron-dependent lipid peroxidation in rat brain homogenates with IC50 values (12-16 microM), which is comparable with that of desferal, a prototype iron chelator that is not has orally active. Their antioxidant activities were further confirmed using electron paramagnetic resonance spectroscopy. In PC12 cell culture, the three novel chelators at 0.1 microM were able to attenuate cell death induced by serum deprivation and by 6-hydroxydopamine. M30 possessing propargyl, the MAO inhibitory moiety of the anti-Parkinson drug rasagiline, displayed greater neuroprotective potency than that of rasagiline. In addition, in vitro, M30 was a highly potent non-selective MAO-A and MAO-B inhibitor (IC50 < 0.1 microM). However, HLA20 was more selective for MAO-B but had poor MAO inhibition, with an IC50 value of 64.2 microM. The data suggest that M30 and HLA20 might serve as leads in developing drugs with multifunctional activities for the treatment of various neurodegenerative disorders.

  1. In vitro characterization of sarizotan metabolism: hepatic clearance, identification and characterization of metabolites, drug-metabolizing enzyme identification, and evaluation of cytochrome p450 inhibition.

    PubMed

    Gallemann, Dieter; Wimmer, Elmar; Höfer, Constance C; Freisleben, Achim; Fluck, Markus; Ladstetter, Bernhard; Dolgos, Hugues

    2010-06-01

    In vitro biotransformation studies of sarizotan using human liver microsomes (HLM) showed aromatic and aliphatic monohydroxylation and dealkylation. Recombinant cytochromes P450 (P450) together with P450-selective inhibitors in HLM/hepatocyte cultures were used to evaluate the relative contribution of different P450s and revealed major involvement of CYP3A4, CYP2C9, CYP2C8, and CYP1A2 in sarizotan metabolism. The apparent K(m, u) and V(max) of sarizotan clearance, as investigated in HLM, were 9 microM and 3280 pmol/mg/min, predicting in vivo hepatic clearance of 0.94 l/h, which indicates that sarizotan is a low-clearance compound in humans and suggests nonsaturable metabolism at the targeted plasma concentration (< or =1 microM). This finding is confirmed by the reported human clearance (CL/F of 3.6-4.4 l/h) and by the dose-linear area under the curve increase observed with doses up to 25 mg. The inhibitory effect of sarizotan toward six major P450s was evaluated using P450-specific marker reactions in pooled HLM. K(i, u) values of sarizotan against CYP2C8, CYP2C19, and CYP3A4 were >10 microM, whereas those against CYP2D6 and CYP1A2 were 0.43 and 8.7 microM, respectively. Based on the estimates of sarizotan concentrations at the enzyme active sites, no clinically significant drug-drug interactions (DDIs) due to P450 inhibition are expected. This result has been confirmed in human DDI studies in which no inhibition of five major P450s was observed in terms of marker metabolite formation.

  2. Inhibition of GTPase Rac1 in endothelium by 6-mercaptopurine results in immunosuppression in nonimmune cells: new target for an old drug.

    PubMed

    Marinković, Goran; Kroon, Jeffrey; Hoogenboezem, Mark; Hoeben, Kees A; Ruiter, Matthijs S; Kurakula, Kondababu; Otermin Rubio, Iker; Vos, Mariska; de Vries, Carlie J M; van Buul, Jaap D; de Waard, Vivian

    2014-05-01

    Azathioprine and its metabolite 6-mercaptopurine (6-MP) are well established immunosuppressive drugs. Common understanding of their immunosuppressive properties is largely limited to immune cells. However, in this study, the mechanism underlying the protective role of 6-MP in endothelial cell activation is investigated. Because 6-MP and its derivative 6-thioguanosine-5'-triphosphate (6-T-GTP) were shown to block activation of GTPase Rac1 in T lymphocytes, we focused on Rac1-mediated processes in endothelial cells. Indeed, 6-MP and 6-T-GTP decreased Rac1 activation in endothelial cells. As a result, the compounds inhibited TNF-α-induced downstream signaling via JNK and reduced activation of transcription factors c-Jun, activating transcription factor-2 and, in addition, NF κ-light-chain-enhancer of activated B cells (NF-κB), which led to decreased transcription of proinflammatory cytokines. Moreover, 6-MP and 6-T-GTP selectively decreased TNF-α-induced VCAM-1 but not ICAM-1 protein levels. Rac1-mediated generation of cell membrane protrusions, which form docking structures to capture leukocytes, also was reduced by 6-MP/6-T-GTP. Consequently, leukocyte transmigration was inhibited after 6-MP/6-T-GTP treatment. These data underscore the anti-inflammatory effect of 6-MP and 6-T-GTP on endothelial cells by blocking Rac1 activation. Our data provide mechanistic insight that supports development of novel Rac1-specific therapeutic approaches against chronic inflammatory diseases.

  3. High-Content Screening in hPSC-Neural Progenitors Identifies Drug Candidates that Inhibit Zika Virus Infection in Fetal-like Organoids and Adult Brain.

    PubMed

    Zhou, Ting; Tan, Lei; Cederquist, Gustav Y; Fan, Yujie; Hartley, Brigham J; Mukherjee, Suranjit; Tomishima, Mark; Brennand, Kristen J; Zhang, Qisheng; Schwartz, Robert E; Evans, Todd; Studer, Lorenz; Chen, Shuibing

    2017-08-03

    Zika virus (ZIKV) infects fetal and adult human brain and is associated with serious neurological complications. To date, no therapeutic treatment is available to treat ZIKV-infected patients. We performed a high-content chemical screen using human pluripotent stem cell-derived cortical neural progenitor cells (hNPCs) and found that hippeastrine hydrobromide (HH) and amodiaquine dihydrochloride dihydrate (AQ) can inhibit ZIKV infection in hNPCs. Further validation showed that HH also rescues ZIKV-induced growth and differentiation defects in hNPCs and human fetal-like forebrain organoids. Finally, HH and AQ inhibit ZIKV infection in adult mouse brain in vivo. Strikingly, HH suppresses viral propagation when administered to adult mice with active ZIKV infection, highlighting its therapeutic potential. Our approach highlights the power of stem cell-based screens and validation in human forebrain organoids and mouse models in identifying drug candidates for treating ZIKV infection and related neurological complications in fetal and adult patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Comparative homology model building and docking evaluation for RNA III inhibiting peptide of Multi drug resistant Staphylococcus aureus strain MRSA252.

    PubMed

    Mevada, Vishal; Patel, Rajesh; Patel, Bhoomi; Chaudhari, Rajesh

    2018-04-01

    Since last several years, infection caused by Staphylococcus aureus is challenging to cure using conventional antibiotics. The organism is a Gram-positive bacterial pathogen that can cause serious diseases not only in humans but also in animals, such as various skin infections, pneumonia, endocarditis and toxin shock syndrome. This bacterium causes such diseases by producing macromolecules such as hemolysins, enterotoxins, proteases and toxic shock syndrome toxin (TSST-1). This organism had developed the multidrug resistance by acquiring MEC-A gene. This account for made organism to come into the category of Superbug. Several studies showed that, the toxin production is induced by AIP and RAP via the phosphorylation of TRAP. TRAP is a 21 kDa protein and was believed to be associated with the membrane via SvrA Phosphoamino acid analysis revealed that TRAP is histidine phosphorylated in a signal transduction pathway that is activated by RAP. The inhibition of TRAP could be done by RIP (RNAIII-inhibiting peptide). The structure for RIP is still undiscovered to be used as inhibitor. Present work has been carried out to get the structural insight with various online and offline homology modeling techniques such as SWISS-MODEL, MODBASE, GENO3D, CPHmodels and I-TASSER for getting unknown structural information target of RNAIII-activating protein from Staphylococcus aureus strain MRSA252 origin for their future exploration as a target in drug discovery process against MRSA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Holographic mutual information of two disjoint spheres

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Fan, Zhong-Ying; Li, Wen-Ming; Zhang, Cheng-Yong

    2018-04-01

    We study quantum corrections to holographic mutual information for two disjoint spheres at a large separation by using the operator product expansion of the twist field. In the large separation limit, the holographic mutual information is vanishing at the semiclassical order, but receive quantum corrections from the fluctuations. We show that the leading contributions from the quantum fluctuations take universal forms as suggested from the boundary CFT. We find the universal behavior for the scalar, the vector, the tensor and the fermionic fields by treating these fields as free fields propagating in the fixed background and by using the 1 /n prescription. In particular, for the fields with gauge symmetries, including the massless vector boson and massless graviton, we find that the gauge parts in the propagators play an indispensable role in reading the leading order corrections to the bulk mutual information.

  6. Mutual information and spontaneous symmetry breaking

    NASA Astrophysics Data System (ADS)

    Hamma, A.; Giampaolo, S. M.; Illuminati, F.

    2016-01-01

    We show that the metastable, symmetry-breaking ground states of quantum many-body Hamiltonians have vanishing quantum mutual information between macroscopically separated regions and are thus the most classical ones among all possible quantum ground states. This statement is obvious only when the symmetry-breaking ground states are simple product states, e.g., at the factorization point. On the other hand, symmetry-breaking states are in general entangled along the entire ordered phase, and to show that they actually feature the least macroscopic correlations compared to their symmetric superpositions is highly nontrivial. We prove this result in general, by considering the quantum mutual information based on the two-Rényi entanglement entropy and using a locality result stemming from quasiadiabatic continuation. Moreover, in the paradigmatic case of the exactly solvable one-dimensional quantum X Y model, we further verify the general result by considering also the quantum mutual information based on the von Neumann entanglement entropy.

  7. Multiparty quantum mutual information: An alternative definition

    NASA Astrophysics Data System (ADS)

    Kumar, Asutosh

    2017-07-01

    Mutual information is the reciprocal information that is common to or shared by two or more parties. Quantum mutual information for bipartite quantum systems is non-negative, and bears the interpretation of total correlation between the two subsystems. This may, however, no longer be true for three or more party quantum systems. In this paper, we propose an alternative definition of multipartite information, taking into account the shared information between two and more parties. It is non-negative, observes monotonicity under partial trace as well as completely positive maps, and equals the multipartite information measure in literature for pure states. We then define multiparty quantum discord, and give some examples. Interestingly, we observe that quantum discord increases when a measurement is performed on a large number of subsystems. Consequently, the symmetric quantum discord, which involves a measurement on all parties, reveals the maximal quantumness. This raises a question on the interpretation of measured mutual information as a classical correlation.

  8. Mutual Information Rate and Bounds for It

    PubMed Central

    Baptista, Murilo S.; Rubinger, Rero M.; Viana, Emilson R.; Sartorelli, José C.; Parlitz, Ulrich; Grebogi, Celso

    2012-01-01

    The amount of information exchanged per unit of time between two nodes in a dynamical network or between two data sets is a powerful concept for analysing complex systems. This quantity, known as the mutual information rate (MIR), is calculated from the mutual information, which is rigorously defined only for random systems. Moreover, the definition of mutual information is based on probabilities of significant events. This work offers a simple alternative way to calculate the MIR in dynamical (deterministic) networks or between two time series (not fully deterministic), and to calculate its upper and lower bounds without having to calculate probabilities, but rather in terms of well known and well defined quantities in dynamical systems. As possible applications of our bounds, we study the relationship between synchronisation and the exchange of information in a system of two coupled maps and in experimental networks of coupled oscillators. PMID:23112809

  9. Nonsteroidal anti-inflammatory drugs (NSAID) sparing effects of glucosamine hydrochloride through N-glycosylation inhibition; strategy to rescue stomach from NSAID damage.

    PubMed

    Park, S H; Hong, H; Han, Y M; Kangwan, N; Kim, S J; Kim, E H; Hahm, K B

    2013-04-01

    Gastrointestinal or cardiovascular complications limit nonsteroidal anti-inflammatory drugs (NSAID) prescription. Glucosamine hydrochloride (GS-HCl) alternatively chosen, but debates still exist in its clinical efficiency. COX-2 instability through inhibiting COX-2 N-glycosylation of GS-HCl raised the possibility of NSAID sparing effect. Study was done to determine whether combination treatment of glucosamine and NSAID contributes to gastric safety through NSAID sparing effect. IEC-6 cells were stimulated with TNF-α and compared the expressions of inflammatory mediators after indomethacin alone or combination of indomethacin and GS-HCl by Western blotting and RT-PCR. C57BL/6 mice injected with type II collagen to induce arthritis were treated with indomethacin alone or combination of reduced dose of indomethacin and GS-HCl after 3 weeks. TNF-α increased the expression of COX-2, iNOS and inflammatory cytokines, but GS-HCl significantly attenuated TNF-α-induced COX-2 expression. Decreased COX-2 after GS-HCl was caused by N-glycosylation inhibition as much as tunicamycin. Combination of reduced dose of indomethacin and GS-HCl significantly reduced the expressions of ICAM-1, VCAM-1, IL-8, IL-1β, MMP-2, MMP-7, MMP-9, and MMP-11 mRNA as well as NF-κB activation better than high dose indomethacin alone. These NSAID sparing effect of GS-HCl was further proven in collagen-induced arthritis model. Combination of GS-HCl and 2.5 mg/kg indomethacin showed significant protection from gastric damages as well as efficacious anti-arthritic effect. Taken together, COX-2 N-glycosylation inhibition by GS-HCl led to indomethacin sparing effects, based on which combination of GS-HCl and reduced dose of NSAID can provide the strategy to secure stomach from NSAID-induced gastric damage as well as excellent anti-arthritic effects.

  10. Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy.

    PubMed

    Jing, Lijia; Qu, Haijing; Wu, Dongqi; Zhu, Chaojian; Yang, Yongbo; Jin, Xing; Zheng, Jian; Shi, Xiangsheng; Yan, Xiufeng; Wang, Yang

    2018-01-01

    Multidrug resistance (MDR) poses a great challenge to cancer therapy. It is difficult to inhibit the growth of MDR cancer due to its chemoresistance. Furthermore, MDR cancers are more likely to metastasize, causing a high mortality among cancer patients. In this study, a nanomedicine RGD-NPVs@MNPs/DOX was developed by encapsulating melanin nanoparticles (MNPs) and doxorubicin (DOX) inside RGD peptide (c(RGDyC))-modified nanoscale platelet vesicles (RGD-NPVs) to efficiently inhibit the growth and metastasis of drug-resistant tumors via a cancer cells and tumor vasculature dual-targeting strategy. Methods: The in vitro immune evasion potential and the targeting performance of RGD-NPVs@MNPs/DOX were examined using RAW264.7, HUVECs, MDA-MB-231 and MDA-MB-231/ADR cells lines. We also evaluated the pharmacokinetic behavior and the in vivo therapeutic performance of RGD-NPVs@MNPs/DOX using a MDA-MB-231/ADR tumor-bearing nude mouse model. Results: By taking advantage of the self-recognizing property of the platelet membrane and the conjugated RGD peptides, RGD-NPVs@MNPs/DOX was found to evade immune clearance and target the αvβ3 integrin on tumor vasculature and resistant breast tumor cells. Under irradiation with a NIR laser, RGD-NPVs@MNPs/DOX produced a multipronged effect, including reversal of cancer MDR, efficient killing of resistant cells by chemo-photothermal therapy, elimination of tumor vasculature for blocking metastasis, and long-lasting inhibition of the expressions of VEGF, MMP2 and MMP9 within the tumor. Conclusion: This versatile nanomedicine of RGD-NPVs@MNPs/DOX integrating unique biomimetic properties, excellent targeting performance, and comprehensive therapeutic strategies in one formulation might bring opportunities to MDR cancer therapy.

  11. Group Differences in the Mutual Gaze of Chimpanzees (Pan Troglodytes)

    ERIC Educational Resources Information Center

    Bard, Kim A.; Myowa-Yamakoshi, Masako; Tomonaga, Masaki; Tanaka, Masayuki; Costall, Alan; Matsuzawa, Tetsuro

    2005-01-01

    A comparative developmental framework was used to determine whether mutual gaze is unique to humans and, if not, whether common mechanisms support the development of mutual gaze in chimpanzees and humans. Mother-infant chimpanzees engaged in approximately 17 instances of mutual gaze per hour. Mutual gaze occurred in positive, nonagonistic…

  12. Impact of Mutual Mentoring on Research

    NASA Astrophysics Data System (ADS)

    Whitten, Barbara; Blaha, Cynthia; Bug, Amy; Cox, Anne; Fritz, Linda

    2011-03-01

    In this talk we discuss one of the impacts of an NSF ADVANCE sponsored horizontal, mutual mentoring alliance. Our cohort of five women physicists at liberal arts colleges has found that mutual mentoring has had a profound impact on many aspects of our professional lives. In this talk we will give some specific ways that we have supported and helped to expand each other's research. For some new areas of research were opened, for others new focus was brought to existing areas, and still others found acceptance for where they were.

  13. 26 CFR 1.831-3 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, mutual...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... premium deposits not required for losses, expenses or reserves is returned or credited to the policyholder..., and mutual fire or flood insurance companies operating on the basis of premium deposits; taxable years... operating on the basis of premium deposits; taxable years beginning after December 31, 1962. (a) All...

  14. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    NASA Astrophysics Data System (ADS)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-04-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20-40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.

  15. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    PubMed Central

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  16. Two specific drugs, BMS-345541 and purvalanol A induce apoptosis of HTLV-1 infected cells through inhibition of the NF-kappaB and cell cycle pathways.

    PubMed

    Agbottah, Emmanuel; Yeh, Wen-I; Berro, Reem; Klase, Zachary; Pedati, Caitlin; Kehn-Hall, Kyleen; Wu, Weilin; Kashanchi, Fatah

    2008-06-10

    Human T-cell leukemia virus type-1 (HTLV-1) induces adult T-cell leukemia/lymphoma (ATL/L), a fatal lymphoproliferative disorder, and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic progressive disease of the central nervous system after a long period of latent infection. Although the mechanism of transformation and leukemogenesis is not fully elucidated, there is evidence to suggest that the viral oncoprotein Tax plays a crucial role in these processes through the regulation of several pathways including NF-kappaB and the cell cycle pathways. The observation that NF-kappaB, which is strongly induced by Tax, is indispensable for the maintenance of the malignant phenotype of HTLV-1 by regulating the expression of various genes involved in cell cycle regulation and inhibition of apoptosis provides a possible molecular target for these infected cells. To develop potential new therapeutic strategies for HTLV-1 infected cells, in this present study, we initially screened a battery of NF-kappaB and CDK inhibitors (total of 35 compounds) to examine their effects on the growth and survival of infected T-cell lines. Two drugs namely BMS-345541 and Purvalanol A exhibited higher levels of growth inhibition and apoptosis in infected cell as compared to uninfected cells. BMS-345541 inhibited IKKbeta kinase activity from HTLV-1 infected cells with an IC50 (the 50% of inhibitory concentration) value of 50 nM compared to 500 nM from control cells as measured by in vitro kinase assays. The effects of Purvalanol A were associated with suppression of CDK2/cyclin E complex activity as previously shown by us. Combination of both BMS-345541 and Purvalanol A showed a reduced level of HTLV-1 p19 Gag production in cell culture. The apparent apoptosis in these infected cells were associated with increased caspase-3 activity and PARP cleavage. The potent and selective apoptotic effects of these drugs suggest that both BMS-345541 and Purvalanol A, which target

  17. 14-3-3ε Boosts Bleomycin-induced DNA Damage Response by Inhibiting the Drug-Resistant Activity of MVP

    PubMed Central

    Tang, Siwei; Bai, Chen; Yang, Pengyuan; Chen, Xian

    2013-01-01

    Major vault protein (MVP) is the predominant constituent of the vault particle, the largest known ribonuclear protein complex. Although emerging evidences have been establishing the links between MVP (vault) and multidrug resistance (MDR), little is known regarding exactly how the MDR activity of MVP is modulated during cellular response to drug-induced DNA damage (DDR). Bleomycin (BLM), an anti-cancer drug, induces DNA double-stranded breaks (DSBs) and consequently triggers the cellular DDR. Due to its physiological implications in hepatocellular carcinoma (HCC) and cell fate decision, 14-3-3ε was chosen as the pathway-specific bait protein to identify the critical target(s) responsible for HCC MDR. By using LC-MS/MS-based proteomic approach, MVP was first identified in the BLM-induced 14-3-3ε interactome formed in HCC cells. Biological characterization revealed that MVP possesses specific activity to promote the resistance to the BLM-induced DDR. On the other hand, 14-3-3ε enhances BLM-induced DDR by interacting with MVP. Mechanistic investigation further revealed that 14-3-3ε, in a phosphorylation-dependent manner, binds to the phosphorylated sites at both Thr52 and Ser864 of the monomer of MVP. Consequently, the phosphorylation-dependent binding between 14-3-3ε and MVP inhibits the drug-resistant activity of MVP for an enhanced DDR to BLM treatment. Our findings provide an insight into the mechanism underlying how the BLM-induced interaction between 14-3-3ε and MVP modulates MDR, implicating novel strategy to overcome the chemotherapeutic resistance through interfering specific protein-protein interactions. PMID:23590642

  18. [Overexpression of Keap1 inhibits the cell proliferation and metastasis and overcomes the drug resistance in human lung cancer A549 cells].

    PubMed

    Weng, X; Yan, Y Y; Tong, Y H; Fan, Y; Zeng, J M; Wang, L L; Lin, N M

    2016-06-23

    To investigate the effect of Keap1-Nrf2 pathway on cell proliferation, metastasis and drug resistance of human lung cancer A549 cell line. A549-Keap1 cell line, constantly expressing wild type Keap1, was established by lentiviral transfection. Real-time RT-PCR and western blot were used to determine the expression of Nrf2 and its target gene in A549 cells. Sulforhodamine B (SRB) assay, flow cytometry, colony formation assay, transwell assay, and cell wound-healing assay were performed to explore the effect of wild type Keap1 expression on the proliferation, invasion, migration and drug resistance of A549 cells. Over-expressed Keap1 decreased the expression of Nrf2 protein and the mRNA level of its downstream target genes and inhibited the ability of cell proliferation and clone formation of A549 cells. Keap1 overexpression induced G0/G1 phase arrest. The percentage of A549-Keap1 cells in G0/G1 phase was significantly higher than that of A549-GFP cells (80.2±5.9)% vs. (67.1±0.9%)(P<0.05). Compared with the invasive A549-Keap1 cells (156.33±17.37), the number of invasive A549-GFP cells was significantly higher (306.67±22.19) in a high power field. Keap1 overexpression significantly enhanced the sensitivity of A549 cells to carboplatin and gemcitabine (P<0.01). The IC50s of carboplatin in A549-Keap1 and A549-GFP cells were (52.1±3.3) μmol/L and (107.8±12.9) μmol/L, respectively. The IC50s of gemcitabine in A549-Keap1 and A549-GFP cells were (6.8±1.2) μmol/L and (9.9±0.5) μmol/L, respectively. Keap1 overexpression significantly inhibits the expression of Nrf2 and its downstream target genes, suppresses tumor cell proliferation and metastasis, and enhances the sensitivity of A549 cells to anticancer drugs.

  19. Identification of a Novel Drug Lead That Inhibits HCV Infection and Cell-to-Cell Transmission by Targeting the HCV E2 Glycoprotein

    DOE PAGES

    Al Olaby, Reem R.; Cocquerel, Laurence; Zemla, Adam; ...

    2014-10-30

    We report that Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2’smore » interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421–645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. We used surface plasmon resonance detection to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50’s ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment.« less

  20. Identification of a Novel Drug Lead That Inhibits HCV Infection and Cell-to-Cell Transmission by Targeting the HCV E2 Glycoprotein

    PubMed Central

    Al Olaby, Reem R.; Cocquerel, Laurence; Zemla, Adam; Saas, Laure; Dubuisson, Jean; Vielmetter, Jost; Marcotrigiano, Joseph; Khan, Abdul Ghafoor; Catalan, Felipe Vences; Perryman, Alexander L.; Freundlich, Joel S.; Forli, Stefano; Levy, Shoshana; Balhorn, Rod; Azzazy, Hassan M.

    2014-01-01

    Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2’s interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421–645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. Surface plasmon resonance detection was used to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50’s ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment. PMID:25357246

  1. Identification of a Novel Drug Lead That Inhibits HCV Infection and Cell-to-Cell Transmission by Targeting the HCV E2 Glycoprotein

    SciTech Connect

    Al Olaby, Reem R.; Cocquerel, Laurence; Zemla, Adam

    We report that Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2’smore » interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421–645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. We used surface plasmon resonance detection to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50’s ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment.« less

  2. Sulforaphane inhibits growth of human breast cancer cells and augments the therapeutic index of the chemotherapeutic drug, gemcitabine.

    PubMed

    Hussain, Arif; Mohsin, Javeria; Prabhu, Sathyen Alwin; Begum, Salema; Nusri, Qurrat El-Ain; Harish, Geetganga; Javed, Elham; Khan, Munawwar Ali; Sharma, Chhavi

    2013-01-01

    Phytochemicals are among the natural chemopreventive agents with most potential for delaying, blocking or reversing the initiation and promotional events of carcinogenesis. They therefore offer cancer treatment strategies to reduce cancer related death. One such promising chemopreventive agent which has attracted considerable attention is sulforaphane (SFN), which exhibits anti-cancer, anti-diabetic, and anti-microbial properties. The present study was undertaken to assess effect of SFN alone and in combination with a chemotherapeutic agent, gemcitabine, on the proliferative potential of MCF-7 cells by cell viability assay and authenticated the results by nuclear morphological examination. Further we analyzed the modulation of expression of Bcl-2 and COX-2 on treatment of these cells with SFN by RT-PCR. SFN showed cytotoxic effects on MCF-7 cells in a dose- and time-dependent manner via an apoptotic mode of cell death. In addition, a combinational treatment of SFN and gemcitabine on MCF-7 cells resulted in growth inhibition in a synergistic manner with a combination index (CI) <1. Notably, SFN was found to significantly downregulate the expression of Bcl-2, an anti-apoptotic gene, and COX-2, a gene involved in inflammation, in a time-dependent manner. These results indicate that SFN induces apoptosis and anti-inflammatory effects on MCF-7 cells via downregulation of Bcl-2 and COX-2 respectively. The combination of SFN and gemcitabine may potentiate the efficacy of gemcitabine and minimize the toxicity to normal cells. Taken together, SFN may be a potent anti-cancer agent for breast cancer treatment.

  3. SIRT1 activation by methylene blue, a repurposed drug, leads to AMPK-mediated inhibition of steatosis and steatohepatitis.

    PubMed

    Shin, Seo Young; Kim, Tae Hyun; Wu, Hongmin; Choi, Young Hee; Kim, Sang Geon

    2014-03-15

    Sirtuins maintain energy balance. Particularly, sirtuin 1 (SIRT1) activation mimics calorie restriction and nutrient utilization. However, no medications are available for the up-regulation of SIRT1. Methylene blue (MB) had been in clinical trials for the treatment of neurological diseases. This study investigated the effect of MB on sirtuin expression in association with the treatment of steatosis and steatohepatitis, and explored the underlying basis. The effects of MB on mitochondrial function, molecular markers, pharmacokinetics, and histopathology were assessed using hepatocyte and/or mouse models. Immunoblotting, PCR and reporter assays were done for molecular experiments. After oral administration, MB was well distributed in the liver. MB treatment increased NAD(+)/NADH ratio in hepatocytes. Of the major forms, MB treatment up-regulated SIRT1, and thereby decreased PGC-1α acetylation. Consistently, hepatic mitochondrial DNA contents and oxygen consumption rates were enhanced. MB treatment also notably activated AMPK, CPT-1 and PPARα: the AMPK activation relied on SIRT1. Activation of LXRα and the induction of SREBP-1c and its target genes by T0901317 were diminished by MB. In addition, MB treatment antagonized the ability of palmitate to acetylate PGC-1α, and increase SERBP-1c, FAS, and ACC levels. In mice fed on a high-fat diet for 8 weeks, MB treatment inhibited excessive hepatic fat accumulation and steatohepatitis. The ability of MB to activate SIRT1 promotes mitochondrial biogenesis and oxygen consumption and activates AMPK, contributing to anti-lipogenesis in the liver. Our results provide new information on the potential use of MB for the treatment of steatosis and steatohepatitis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Structure–activity relationships study of mTOR kinase inhibition using QSAR and structure-based drug design approaches

    PubMed Central

    Lakhlili, Wiame; Yasri, Abdelaziz; Ibrahimi, Azeddine

    2016-01-01

    The discovery of clinically relevant inhibitors of mammalian target of rapamycin (mTOR) for anticancer therapy has proved to be a challenging task. The quantitative structure–activity relationship (QSAR) approach is a very useful and widespread technique for ligand-based drug design, which can be used to identify novel and potent mTOR inhibitors. In this study, we performed two-dimensional QSAR tests, and molecular docking validation tests of a series of mTOR ATP-competitive inhibitors to elucidate their structural properties associated with their activity. The QSAR tests were performed using partial least square method with a correlation coefficient of r2=0.799 and a cross-validation of q2=0.714. The chemical library screening was done by associating ligand-based to structure-based approach using the three-dimensional structure of mTOR developed by homology modeling. We were able to select 22 compounds from two databases as inhibitors of the mTOR kinase active site. We believe that the method and applications highlighted in this study will help future efforts toward the design of selective ATP-competitive inhibitors. PMID:27980424

  5. Inhibition of PI3K suppresses propagation of drug-tolerant cancer cell subpopulations enriched by 5-fluorouracil.

    PubMed

    Ishida, Kaoru; Ito, Chie; Ohmori, Yukimi; Kume, Kohei; Sato, Kei A; Koizumi, Yuka; Konta, Akari; Iwaya, Takeshi; Nukatsuka, Mamoru; Kobunai, Takashi; Takechi, Teiji; Nishizuka, Satoshi S

    2017-05-23

    Drug-tolerant cancer cell subpopulations are responsible for relapse after chemotherapy. By continuously exposing the gastric cancer cell line MKN45 to 5-FU for >100 passages, we established a 5-fluorouracil (5-FU)-tolerant line, MKN45/5FU. Orthotopic xenografts of MKN45/5FU cells in the stomach of nude mice revealed that these cells had a high potential to metastasize to sites such as the liver. Levels of phosphorylated phosphatidylinositide 3-kinase (PI3K) increased both in 5-FU-tolerant subpopulations according to the 5-FU dose, and in gastric submucosal orthotopic xenografts of MKN45/5FU cells. Sequential administration of 5-FU and a PI3K inhibitor, GDC-0941, targeted the downstream ribosomal S6 kinase phosphorylation to significantly suppress 5-FU-tolerant subpopulations and tumor propagation of orthotopic MKN45/5FU xenografts. These results suggest that administration of 5-FU followed by GDC-0941 may suppress disease relapse after 5-FU-based gastric cancer chemotherapy.

  6. Empowering Public Welfare Workers through Mutual Support.

    ERIC Educational Resources Information Center

    Sherman, Wendy Ruth; Wenocur, Stanley

    1983-01-01

    Examines the organizational binds facing social workers concerned with the provision of services to clients in times of fiscal restraint. Suggests a mutual support group as a step toward empowerment. Workers may shift from a support group to a coalition for action as change agents within institutional settings. (JAC)

  7. Mutual Group Hypnosis: A Social Interaction Analysis.

    ERIC Educational Resources Information Center

    Sanders, Shirley

    Mutual Group Hypnosis is discussed in terms of its similarity to group dynamics in general and in terms of its similarity to a social interaction program (Role Modeling) designed to foster the expression of warmth and acceptance among group members. Hypnosis also fosters a regression to prelogical thought processes in the service of the ego. Group…

  8. 76 FR 36625 - Mutual Holding Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision Mutual Holding Company AGENCY: Office of Thrift Supervision (OTS), Treasury. ACTION: Notice and request for comment. SUMMARY: The proposed... Collection Comments, Chief Counsel's Office, Office of Thrift Supervision, 1700 G Street, NW., Washington, DC...

  9. Competition as a mechanism structuring mutualisms

    Treesearch

    Robert J. Warren; Itamar Giladi; Mark A. Bradford

    2014-01-01

    Summary 1. Hutchinsonian niche theory posits that organisms have fundamental abiotic resource requirements from which they are limited by competition. Organisms also have fundamental biotic requirements, such as mutualists, for which they also might compete. 2. We test this idea with a widespread ant–plant mutualism. Ant-mediated seed dispersal (myrmecochory) in...

  10. Virgin coconut oil supplementation attenuates acute chemotherapy hepatotoxicity induced by anticancer drug methotrexate via inhibition of oxidative stress in rats.

    PubMed

    Famurewa, Ademola C; Ufebe, Odomero G; Egedigwe, Chima A; Nwankwo, Onyebuchi E; Obaje, Godwin S

    2017-03-01

    The emerging health benefit of virgin coconut oil (VCO) has been associated with its potent natural antioxidants; however, the antioxidant and hepatoprotective effect of VCO against methotrexate-induced liver damage and oxidative stress remains unexplored. The study explored the antioxidant and hepatoprotective effects of VCO against oxidative stress and liver damage induced by anticancer drug methotrexate (MTX) in rats. Liver damage was induced in Wistar rats pretreated with dietary supplementation of VCO (5% and 15%) by intraperitoneal administration of MTX (20mg/kg bw) on day 10 only. After 12days of treatment, assays for serum liver biomarkers (aminotransferases), alkaline phosphatase, albumin and total protein as well as hepatic content of malondialdehyde, reduced glutathione and antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) were carried out. Liver was used to examine histopathological changes. MTX administration induced significant increase in serum liver enzymes along with marked decrease in albumin and total protein compared to control group. Hepatic activities of antioxidant enzymes were significantly decreased, while malondialdehyde increased significantly. Treatment with VCO supplemented diet prior to MTX administration attenuated MTX-induced liver injury and oxidative stress evidenced by significant improvements in serum liver markers, hepatic antioxidant enzymes and malondialdehyde comparable to control group. Histopathological alterations were prevented and correlated well with the biochemical indices. The study suggests antioxidant and hepatoprotective effects of VCO supplementation against hepatotoxicity and oxidative damage via improving antioxidant defense system in rats. Our findings may have beneficial application in the management of hepatotoxicity associated with MTX cancer chemotherapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni.

    PubMed

    Hoffman, Paul S; Sisson, Gary; Croxen, Matthew A; Welch, Kevin; Harman, W Dean; Cremades, Nunilo; Morash, Michael G

    2007-03-01

    Nitazoxanide (NTZ) exhibits broad-spectrum activity against anaerobic bacteria and parasites and the ulcer-causing pathogen Helicobacter pylori. Here we show that NTZ is a noncompetitive inhibitor (K(i), 2 to 10 microM) of the pyruvate:ferredoxin/flavodoxin oxidoreductases (PFORs) of Trichomonas vaginalis, Entamoeba histolytica, Giardia intestinalis, Clostridium difficile, Clostridium perfringens, H. pylori, and Campylobacter jejuni and is weakly active against the pyruvate dehydrogenase of Escherichia coli. To further mechanistic studies, the PFOR operon of H. pylori was cloned and overexpressed in E. coli, and the multisubunit complex was purified by ion-exchange chromatography. Pyruvate-dependent PFOR activity with NTZ, as measured by a decrease in absorbance at 418 nm (spectral shift from 418 to 351 nm), unlike the reduction of viologen dyes, did not result in the accumulation of products (acetyl coenzyme A and CO(2)) and pyruvate was not consumed in the reaction. NTZ did not displace the thiamine pyrophosphate (TPP) cofactor of PFOR, and the 351-nm absorbing form of NTZ was inactive. Optical scans and (1)H nuclear magnetic resonance analyses determined that the spectral shift (A(418) to A(351)) of NTZ was due to protonation of the anion (NTZ(-)) of the 2-amino group of the thiazole ring which could be generated with the pure compound under acidic solutions (pK(a) = 6.18). We propose that NTZ(-) intercepts PFOR at an early step in the formation of the lactyl-TPP transition intermediate, resulting in the reversal of pyruvate binding prior to decarboxylation and in coordination with proton transfer to NTZ. Thus, NTZ might be the first example of an antimicrobial that targets the "activated cofactor" of an enzymatic reaction rather than its substrate or catalytic sites, a novel mechanism that may escape mutation-based drug resistance.

  12. An assessment of the potential of protopine to inhibit microsomal drug metabolising enzymes and prevent chemical-induced hepatotoxicity in rodents.

    PubMed

    Janbaz, K H; Saeed, S A; Gilani, A H

    1998-09-01

    The potential of protopine to inhibit microsomal drug metabolising enzymes (MDM E) and prevent paracetamol- and CCl4-induced hepatotoxicity was studied in rats. Paracetamol at the dose of 640 mg kg-1 produced hepatic damage in rats as manifested by the rise in serum levels of aspartate transaminase (AST) and alanine transaminase (ALT) to 972+/-186 and 624+/-131 IU (mean+/-sem; n=10), respectively, compared to respective control values of 101+/-29 and 64+/-18 IU. Pretreatment of rats with protopine (11 mg kg-1, orally twice daily for 2 days) lowered significantly the respective serum AST and ALT levels (P<0.05) to 289+/-52 and 178+/-43 IU. The hepatotoxic dose of CCl4 (1.5 ml kg-1; orally) raised serum AST and ALT levels to 543+/-89 and 387+/-69 IU (mean+/-sem; n=10), respectively, compared to respective control values of 98+/-28 and 56+/-17 IU. The same dose of protopine (11 mg kg-1) was able to prevent significantly (P<0.05), the CCl4-induced rise in serum enzymes and the estimated values of AST and ALT were 168+/-36 and 93+/-28 IU, respectively. Protopine caused prolongation (P<0.05) in pentobarbital (55 mg kg-1)-induced sleep as well as potentiated strychnine-induced toxicity in rats, suggestive of an inhibitory effect on MDME. These results indicate that protopine exhibits anti-hepatotoxic action which may be mediated through inhibition of MDME. Copyright 1998 The Italian Pharmacological Society

  13. MiR-214 inhibits cell migration, invasion and promotes the drug sensitivity in human cervical cancer by targeting FOXM1.

    PubMed

    Wang, Jian-Mei; Ju, Bao-Hui; Pan, Cai-Jun; Gu, Yan; Li, Meng-Qi; Sun, Li; Xu, Yan-Ying; Yin, Li-Rong

    2017-01-01

    MicroRNAs (miRNAs) play key roles in progression of cervical cancer. In the present study, we investigated the role of miR-214 in the process of migration, invasion and drug sensitivity to cisplatin in cervical cancer. We detected the differential expression of miR-214 in 19 cases cervical cancer tissues and normal tissues as well as 4 cervical cancer cells and one normal cervical cells by Real-time PCR. Then, wound healing assay, transwell invasion assay and MTT were used to detect the effects of migration, invasion and sensitivity to cisplatin of cervical cancer when miR-214 was overexpressed. Western blot, immunofluorescence and Flow Cytometry were used to detect the mechanism of migration, invasion and sensitivity to cisplatin. Next, bioinformatics analysis was used to find the target of miR-214. Through the luciferase reporter assay, Real-time PCR and western blot, we confirmed the binding relationship of miR-214 and FOXM1. In cervical cancer tissues, the expression of FOXM1 was detected by western blot and Immunohistochemistry. We also knocked down FOXM1 in cervical cancer cells, wound healing assay, transwell invasion assay and MTT were performed to detect the migration, invasion and sensitivity to cisplatin abilities of FOXM1. Western blot and Flow Cytometry were used to detect the mechanism of migration, invasion and sensitivity to cisplatin by FOXM1. Finally, we performed rescue expriments to confirm the function relationship between miR-214 and FOXM1. 1. Our results showed that miR-214 was frequently downregulated in tumor tissues and cancer cells especially in CIN III and cervical cancer stages. 2. Overexpression of miR-214 significantly inhibited migration and invasion of cervical cancer cells and prompted the sensitivity to cisplatin. 3. FOXM1 was identified as a target of miR-214 and down-regulated by miR-214. 4. Knocking down FOXM1 could inhibited migration and invasion of cervical cancer cells and prompted the sensitivity to cisplatin. 5. FOXM1 was

  14. (Mutual Security Mutual Affluence) Negative Factors = Sustained Stability: A Framework for Establishing Stability Between Like States

    DTIC Science & Technology

    2017-03-31

    160-163. 2 The Concept of Mutually Assured Destruction (MAD) dates back to the post-WWFI em and the Cold War where the United States and Soviet Unions...United States. Following its defeat in W\\VH, Japan was in shambles. The bombing campaigns left nine million Japanese homeless and three million more...the United States, the Charlie Hebdo attacks in Paris in 2015, and the bombings in Istanbul in 2016. Michael Bamier, “From Mutual Assistance to

  15. Drug-Induced Inhibition of Angiotensin Converting Enzyme and Dipeptidyl Peptidase 4 Results in Nearly Therapy Resistant Bradykinin Induced Angioedema: A Case Report

    PubMed Central

    Hahn, Janina; Trainotti, Susanne; Hoffmann, Thomas K.; Greve, Jens

    2017-01-01

    Patient: Female, 83 Final Diagnosis: Angioedema Symptoms: Edema Medication: Ramipril Clinical Procedure: — Specialty: Otolaryngology Objective: Unusual clinical course Background: Bradykinin is an underestimated mediator of angioedema. One subgroup of bradykinin induced angioedema is angioedema triggered by treatment with angiotensin converting enzyme (ACE) inhibitors. Due to its localization in the head and neck region and its unpredictable course, it is a possibly life-threatening condition. There is not an officially approved treatment for ACE inhibitor induced angioedema. Case Report: We present a case of an 83-year-old woman, who presented to our ENT department because of acute swelling of the tongue. On admission, there was no pharyngeal or laryngeal edema and no dyspnea. Treatment with glucocorticoids and antihistamines had no response. The patient had ramipril as regular medication, so we assumed ACE inhibitor induced angioedema and treated consequently with C1-inhibitor (human) 1,500 IU. Nevertheless, swelling was progressive and required intubation. Even after the second specific treatment with icatibant, her angioedema subsided extremely slowly. The patient also had regular treatment with saxagliptin, a dipeptidyl peptidase 4 inhibitor, so we assumed that the simultaneous inhibition of two bradykinin degrading enzymes led to a treatment-refractory course of angioedema. Conclusions: General awareness for bradykinin induced angioedema due to regular medication is limited. Our case demonstrated the importance of improving awareness and knowledge about this side effect. We need a better understanding of the pathomechanism to aid in more precise clinical diagnosis. Securing the patient’s airway as well as administration of an officially approved therapy is of utmost importance. As the number of patients simultaneously treated with antihypertensive and antidiabetic drugs is likely to increase, the incidence of bradykinin mediated drug induced angioedema is

  16. Nebulization of Cyclic Arginine-Glycine-(D)-Aspartic Acid-Peptide Grafted and Drug Encapsulated Liposomes for Inhibition of Acute Lung Injury.

    PubMed

    Desu, Hari R; Thoma, Laura A; Wood, George C

    2018-03-13

    Acute lung injury (ALI) is a fatal syndrome in critically ill patients. It is characterized by lung edema and inflammation. Numerous pro-inflammatory mediators are released into alveoli. Among them, interleukin-1beta (IL-1β) causes an increase in solute permeability across the alveolar-capillary barrier leading to edema. It activates key effector cells (alveolar epithelial and endothelial cells) releasing inflammatory chemokines and cytokines. The purpose of the study was to demonstrate that nebulized liposomes inhibit ALI in vivo. In vivo ALI model was simulated through intra-tracheal instillation of IL-1β solution (100 μg/mL in PBS, pH 7.2, 200 μL) in male Sprague-Dawley rats. Various formulations were tested in ALI induced rats. These formulations include plain liposomes (PL), methylprednisolone sodium succinate solution (MPS solution), cRGD-peptide grafted liposomes (L cRGD ) and methylprednisolone sodium succinate encapsulated and cRGD-peptide grafted liposomes (MPS-L cRGD ). Formulations were nebulized in vivo in rats using micro-pump nebulizer. Liposome formulations exhibited higher levels of drug concentration in lungs. The physicochemical parameters demonstrated that the liposome formulations were stable. On the basis of aerodynamic droplet-size, nebulized formulations were estimated to deposit in different regions of respiratory tract, especially alveolar region, Among the formulations, MPS-L cRGD caused significant reduction of edema, neutrophil infiltration and inflammation biochemical marker levels. From the results, it can be inferred that nebulization of targeted liposomes had facilitated spatial and temporal modulation of drug delivery resulting in alleviation of ALI.

  17. Differential effects of antipsychotic and propsychotic drugs on prepulse inhibition and locomotor activity in Roman high- (RHA) and low-avoidance (RLA) rats

    PubMed Central

    Oliveras, Ignasi; Sánchez-González, Ana; Sampedro-Viana, Daniel; Piludu, Maria Antonietta; Río-Alamos, Cristóbal; Giorgi, Osvaldo; Corda, Maria G.; Aznar, Susana; González-Maeso, Javier; Gerbolés, Cristina; Blázquez, Gloria; Cañete, Toni; Tobeña, Adolf

    2017-01-01

    Rationale Animal models with predictive and construct validity are necessary for developing novel and efficient therapeutics for psychiatric disorders. Objectives We have carried out a pharmacological characterization of the Roman high-(RHA-I) and low-avoidance (RLA-I) rat strains with different acutely administered propsychotic (DOI, MK-801) and antipsychotic drugs (haloperidol, clozapine), as well as apomorphine, on prepulse inhibition (PPI) of startle and locomotor activity (activity cages). Results RHA-I rats display a consistent deficit of PPI compared with RLA-I rats. The typical antipsychotic haloperidol (dopamine D2 receptor antagonist) reversed the PPI deficit characteristic of RHA-I rats (in particular at 65 and 70 dB prepulse intensities) and reduced locomotion in both strains. The atypical antipsychotic clozapine (serotonin/dopamine receptor antagonist) did not affect PPI in either strain, but decreased locomotion in a dose-dependent manner in both rat strains. The mixed dopamine D1/D2 agonist, apomorphine, at the dose of 0.05 mg/kg, decreased PPI in RHA-I, but not RLA-I rats. The hallucinogen drug DOI (5-HT2A agonist; 0.1–1.0 mg/kg) disrupted PPI in RLA-I rats in a dose-dependent manner at the 70 dB prepulse intensity, while in RHA-Irats, only the 0.5 mg/kg dose impaired PPI at the 80 dB prepulse intensity. DOI slightly decreased locomotion in both strains. Finally, clozapine attenuated the PPI impairment induced by the NMDA receptor antagonist MK-801 only in RLA-I rats. Conclusions These results add experimental evidence to the view that RHA-I rats represent a model with predictive and construct validity of some dopamine and 5-HT2A receptor-related features of schizophrenia. PMID:28154892

  18. [Pharmaco-economics: a point of view of the mutualities].

    PubMed

    Legrand, D; Simon, I

    1998-05-01

    In Belgium, the mutualities are responsible for their budgets. They are playing an important role in drug pricing and reimbursement procedures. This document aims at explaining our line of arguments for a critical evaluation and the place for a pharmacoeconomic evaluation in the Belgian social security system. The available economic data for each molecule or pathology are essential but insufficient. Economic evaluations could help to reveal the costs and benefits of different uses of medical therapies and could thereby enhance the resources allocation in a health care system. But this science is still in its infancy, and in practice, the methodological quality of this kind of study is often weak. Furthermore it is not easy to transfer those evaluations to the Belgian reimburse systems. The clinical efficacy and the transparency is price setting should remain the two most important criterions to build reimbursement rules in order to ensure right price, rational use of medicine and accessibility for all.

  19. Hardware device binding and mutual authentication

    DOEpatents

    Hamlet, Jason R; Pierson, Lyndon G

    2014-03-04

    Detection and deterrence of device tampering and subversion by substitution may be achieved by including a cryptographic unit within a computing device for binding multiple hardware devices and mutually authenticating the devices. The cryptographic unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a binding PUF value. The cryptographic unit uses the binding PUF value during an enrollment phase and subsequent authentication phases. During a subsequent authentication phase, the cryptographic unit uses the binding PUF values of the multiple hardware devices to generate a challenge to send to the other device, and to verify a challenge received from the other device to mutually authenticate the hardware devices.

  20. Mutual synchronization of weakly coupled gyrotrons

    SciTech Connect

    Rozental, R. M.; Glyavin, M. Yu.; Sergeev, A. S.

    2015-09-15

    The processes of synchronization of two weakly coupled gyrotrons are studied within the framework of non-stationary equations with non-fixed longitudinal field structure. With the allowance for a small difference of the free oscillation frequencies of the gyrotrons, we found a certain range of parameters where mutual synchronization is possible while a high electronic efficiency is remained. It is also shown that synchronization regimes can be realized even under random fluctuations of the parameters of the electron beams.

  1. Mutual Coupling Analysis for Conformal Microstrip Antennas.

    DTIC Science & Technology

    1984-12-01

    6 0.001/ko, and the infinite integral is terminated at k 150 ko . 28*,-J ." . .. C. MUTUAL COUPLING ANALYSIS In this section, the moment method ...fact that it does provide an attractive alternative to the Green’s function method on which the analysis in later sections is based. In the present...by the moment method , the chosen set of expansion dipole modes plays a very important role. The efficiency as well as accuracy of the analysis depend

  2. Combating isolation: Building mutual mentoring networks

    NASA Astrophysics Data System (ADS)

    Cox, Anne J.

    2015-12-01

    Women physicists can often feel isolated at work. Support from a grant through the ADVANCE program of the National Science Foundation (U.S. government funding) created mutual mentoring networks aimed at combating isolation specifically for women faculty at undergraduate-only institutions. This paper will discuss the organization of one such network, what contributed to its success, some of the outcomes, and how it might be implemented in other contexts.

  3. A multi-center preclinical study of gadoxetate DCE-MRI in rats as a biomarker of drug induced inhibition of liver transporter function

    PubMed Central

    Lenhard, Stephen C.; Yerby, Brittany; Forsgren, Mikael F.; Liachenko, Serguei; Johansson, Edvin; Pilling, Mark A.; Peterson, Richard A.; Yang, Xi; Williams, Dominic P.; Ungersma, Sharon E.; Morgan, Ryan E.; Brouwer, Kim L. R.; Jucker, Beat M.; Hockings, Paul D.

    2018-01-01

    Drug-induced liver injury (DILI) is a leading cause of acute liver failure and transplantation. DILI can be the result of impaired hepatobiliary transporters, with altered bile formation, flow, and subsequent cholestasis. We used gadoxetate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), combined with pharmacokinetic modelling, to measure hepatobiliary transporter function in vivo in rats. The sensitivity and robustness of the method was tested by evaluating the effect of a clinical dose of the antibiotic rifampicin in four different preclinical imaging centers. The mean gadoxetate uptake rate constant for the vehicle groups at all centers was 39.3 +/- 3.4 s-1 (n = 23) and 11.7 +/- 1.3 s-1 (n = 20) for the rifampicin groups. The mean gadoxetate efflux rate constant for the vehicle groups was 1.53 +/- 0.08 s-1 (n = 23) and for the rifampicin treated groups was 0.94 +/- 0.08 s-1 (n = 20). Both the uptake and excretion transporters of gadoxetate were statistically significantly inhibited by the clinical dose of rifampicin at all centers and the size of this treatment group effect was consistent across the centers. Gadoxetate is a clinically approved MRI contrast agent, so this method is readily transferable to the clinic. Conclusion: Rate constants of gadoxetate uptake and excretion are sensitive and robust biomarkers to detect early changes in hepatobiliary transporter function in vivo in rats prior to established biomarkers of liver toxicity. PMID:29771932

  4. Inhibition of membrane type-1 matrix metalloproteinase by cancer drugs interferes with the homing of diabetogenic T cells into the pancreas.

    PubMed

    Savinov, Alexei Y; Rozanov, Dmitri V; Golubkov, Vladislav S; Wong, F Susan; Strongin, Alex Y

    2005-07-29

    We have discovered that clinically tested inhibitors of matrix metalloproteinases can control the functional activity of T cell membrane type-1 matrix metalloproteinase (MT1-MMP) and the onset of disease in a rodent model of type 1 diabetes in non-obese diabetic mice. We determined that MT1-MMP proteolysis of the T cell surface CD44 adhesion receptor affects the homing of T cells into the pancreas. We also determined that both the induction of the intrinsic T cell MT1-MMP activity and the shedding of cellular CD44 follow the adhesion of insulin-specific, CD8-positive, Kd-restricted T cells to the matrix. Conversely, inhibition of these events by AG3340 (a potent hydroxamate inhibitor that was widely used in clinical trials in cancer patents) impedes the transmigration of diabetogenic T cells into the pancreas and protects non-obese diabetic mice from diabetes onset. Overall, our studies have divulged a previously unknown function of MT1-MMP and identified a promising novel drug target in type I diabetes.

  5. A putative G-quadruplex structure in the proximal promoter of vegfr-2 has implications for drug design to inhibit tumor angiogenesis.

    PubMed

    Liu, Yaping; Lan, Wenxian; Wang, Chunxi; Cao, Chunyang

    2018-04-17

    Tumor angiogenesis is mainly regulated by vascular endothelial growth factor (VEGF), produced by cancer cells. It is active on the endothelium via VEGF receptor 2 (VEGFR-2). G-quadruplexes are DNA secondary structures formed by guanine-rich sequences, for example, within gene promoters where they may contribute to transcriptional activity. The proximal promoter of vegfr-2 contains a G-quadruplex, which has been suggested to interact with small molecules that inhibit VEGFR-2 expression and thereby tumor angiogenesis. However, its structure is not known. Here, we determined its NMR solution structure, which is composed of three stacked G-tetrads containing three syn guanines. The first guanine (G1) is positioned within the central G-tetrad. We also observed that a noncanonical, V-shaped loop spans three G-tetrad planes, including no bridging nucleotides. A long and diagonal loop, which includes six nucleotides, connects reversal double chains. With a melting temperature of 54.51°C, the scaffold of this quadruplex is stabilized by one G-tetrad plane stacking with one nonstandard base pair, G3-C8, whose bases interact with each other through only one hydrogen bond. In summary, the NMR solution structure of the G-quadruplex in the proximal promoter region of the VEGFR-2 gene reported here has uncovered its key features as a potential anticancer drug target. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Nonrigid mammogram registration using mutual information

    NASA Astrophysics Data System (ADS)

    Wirth, Michael A.; Narhan, Jay; Gray, Derek W. S.

    2002-05-01

    Of the papers dealing with the task of mammogram registration, the majority deal with the task by matching corresponding control-points derived from anatomical landmark points. One of the caveats encountered when using pure point-matching techniques is their reliance on accurately extracted anatomical features-points. This paper proposes an innovative approach to matching mammograms which combines the use of a similarity-measure and a point-based spatial transformation. Mutual information is a cost-function used to determine the degree of similarity between the two mammograms. An initial rigid registration is performed to remove global differences and bring the mammograms into approximate alignment. The mammograms are then subdivided into smaller regions and each of the corresponding subimages is matched independently using mutual information. The centroids of each of the matched subimages are then used as corresponding control-point pairs in association with the Thin-Plate Spline radial basis function. The resulting spatial transformation generates a nonrigid match of the mammograms. The technique is illustrated by matching mammograms from the MIAS mammogram database. An experimental comparison is made between mutual information incorporating purely rigid behavior, and that incorporating a more nonrigid behavior. The effectiveness of the registration process is evaluated using image differences.

  7. 26 CFR 1.1502-42 - Mutual savings banks, etc.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 12 2011-04-01 2011-04-01 false Mutual savings banks, etc. 1.1502-42 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Special Taxes and Taxpayers § 1.1502-42 Mutual savings banks, etc. (a) In general. This section applies to mutual s avings banks and other institutions described in section...

  8. 26 CFR 1.1502-42 - Mutual savings banks, etc.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 12 2010-04-01 2010-04-01 false Mutual savings banks, etc. 1.1502-42 Section 1... (CONTINUED) INCOME TAXES Special Taxes and Taxpayers § 1.1502-42 Mutual savings banks, etc. (a) In general. This section applies to mutual s avings banks and other institutions described in section 593(a). (b...

  9. 77 FR 48566 - The Hartford Mutual Funds, Inc., et al.;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ...] The Hartford Mutual Funds, Inc., et al.; Notice of Application August 8, 2012. AGENCY: Securities and... to invest in certain financial instruments. Applicants: The Hartford Mutual Funds, Inc., The Hartford Mutual Funds II, Inc., Hartford Series Fund, Inc., Hartford HLS Series Fund II, Inc., Hartford Variable...

  10. 12 CFR 239.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 4 2012-01-01 2012-01-01 false Mutual holding company reorganizations. 239.3 Section 239.3 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED) MUTUAL HOLDING COMPANIES (REGULATION MM) Mutual Holding Companies § 239.3...

  11. 12 CFR 239.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 4 2014-01-01 2014-01-01 false Mutual holding company reorganizations. 239.3 Section 239.3 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED) MUTUAL HOLDING COMPANIES (REGULATION MM) Mutual Holding Companies § 239.3...

  12. 12 CFR 239.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Mutual holding company reorganizations. 239.3 Section 239.3 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED) MUTUAL HOLDING COMPANIES (REGULATION MM) Mutual Holding Companies § 239.3...

  13. 26 CFR 1.831-1 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 8 2014-04-01 2014-04-01 false Tax on insurance companies (other than life or mutual), mutual marine insurance companies, and mutual fire insurance companies issuing perpetual... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Other Insurance Companies § 1.831-1 Tax on...

  14. 26 CFR 1.831-1 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Tax on insurance companies (other than life or mutual), mutual marine insurance companies, and mutual fire insurance companies issuing perpetual... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Other Insurance Companies § 1.831-1 Tax on insurance...

  15. 26 CFR 1.831-1 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 8 2013-04-01 2013-04-01 false Tax on insurance companies (other than life or mutual), mutual marine insurance companies, and mutual fire insurance companies issuing perpetual... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Other Insurance Companies § 1.831-1 Tax on...

  16. 26 CFR 1.831-1 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 8 2011-04-01 2011-04-01 false Tax on insurance companies (other than life or mutual), mutual marine insurance companies, and mutual fire insurance companies issuing perpetual... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Other Insurance Companies § 1.831-1 Tax on...

  17. 26 CFR 1.831-1 - Tax on insurance companies (other than life or mutual), mutual marine insurance companies, and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 8 2012-04-01 2012-04-01 false Tax on insurance companies (other than life or mutual), mutual marine insurance companies, and mutual fire insurance companies issuing perpetual... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Other Insurance Companies § 1.831-1 Tax on...

  18. A New Class III Antiarrhythmic Drug Niferidil Prolongs Action Potentials in Guinea Pig Atrial Myocardium via Inhibition of Rapid Delayed Rectifier.

    PubMed

    Abramochkin, Denis V; Kuzmin, Vladislav S; Rosenshtraukh, Leonid V

    2017-12-01

    A new class III antiarrhythmic drug niferidil (RG-2) has been introduced as a highly effective therapy for cases of persistent atrial fibrillation, but ionic mechanisms of its action are poorly understood. In the present study, the effects of niferidil on action potential (AP) waveform and potassium currents responsible for AP repolarization were investigated in guinea pig atrial myocardium. APs were recorded with sharp glass microelectrodes in multicellular atrial preparations. Whole-cell patch-clamp technique was used to measure K + currents in isolated myocytes. In multicellular atrial preparations, 10 -8  M niferidil effectively prolonged APs by 15.2 ± 2.8% at 90% repolarization level. However, even the highest tested concentrations, 10 -6  M and 10 -5  M failed to prolong APs more than 32.5% of control duration. The estimated concentration of niferedil for half-maximal AP prolongation was 1.13 × 10 -8  M. Among the potassium currents responsible for AP repolarization phase, I K1 was found to be almost insensitive to niferidil. However, another inward rectifier, I KACh , was effectively suppressed by micromolar concentrations of niferidil with IC 50  = 9.2 × 10 -6  M. I KATP was much less sensitive to the drug with IC 50  = 2.26 × 10 -4  M. The slow component of delayed rectifier, I Ks , also demonstrated low sensitivity to niferidil-the highest used concentration, 10 -4  M, decreased peak I Ks density to 46.2 ± 5.5% of control. Unlike I Ks , the rapid component of delayed rectifier, I Kr , appeared to be extremely sensitive to niferidil. The IC 50 was 1.26 × 10 -9  M. I Kr measured in ventricular myocytes was found to be less sensitive to niferidil with IC 50  = 3.82 × 10 -8  M. Niferidil prolongs APs in guinea pig atrial myocardium via inhibition of I Kr .

  19. Identity theory and personality theory: mutual relevance.

    PubMed

    Stryker, Sheldon

    2007-12-01

    Some personality psychologists have found a structural symbolic interactionist frame and identity theory relevant to their work. This frame and theory, developed in sociology, are first reviewed. Emphasized in the review are a multiple identity conception of self, identities as internalized expectations derived from roles embedded in organized networks of social interaction, and a view of social structures as facilitators in bringing people into networks or constraints in keeping them out, subsequently, attention turns to a discussion of the mutual relevance of structural symbolic interactionism/identity theory and personality theory, looking to extensions of the current literature on these topics.

  20. Creating a culture of mutual respect.

    PubMed

    Kaplan, Kathryn; Mestel, Pamela; Feldman, David L

    2010-04-01

    The Joint Commission mandates that hospitals seeking accreditation have a process to define and address disruptive behavior. Leaders at Maimonides Medical Center, Brooklyn, New York, took the initiative to create a code of mutual respect that not only requires respectful behavior, but also encourages sensitivity and awareness to the causes of frustration that often lead to inappropriate behavior. Steps to implementing the code included selecting code advocates, setting up a system for mediating disputes, tracking and addressing operational system issues, providing training for personnel, developing a formal accountability process, and measuring the results. Copyright 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  1. Overcoming resistance to molecularly targeted anticancer therapies: Rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies.

    PubMed

    Tortora, Giampaolo; Bianco, Roberto; Daniele, Gennaro; Ciardiello, Fortunato; McCubrey, James A; Ricciardi, Maria Rosaria; Ciuffreda, Ludovica; Cognetti, Francesco; Tafuri, Agostino; Milella, Michele

    2007-06-01

    Accumulating evidence suggests that cancer can be envisioned as a "signaling disease", in which alterations in the cellular genome affect the expression and/or function of oncogenes and tumour suppressor genes. This ultimately disrupts the physiologic transmission of biochemical signals that normally regulate cell growth, differentiation and programmed cell death (apoptosis). From a clinical standpoint, signal transduction inhibition as a therapeutic strategy for human malignancies has recently achieved remarkable success. However, as additional drugs move forward into the clinical arena, intrinsic and acquired resistance to "targeted" agents becomes an issue for their clinical utility. One way to overcome resistance to targeted agents is to identify genetic and epigenetic aberrations underlying sensitivity/resistance, thus enabling the selection of patients that will most likely benefit from a specific therapy. Since resistance often ensues as a result of the concomitant activation of multiple, often overlapping, signaling pathways, another possibility is to interfere with multiple, cross-talking pathways involved in growth and survival control in a rational, mechanism-based, fashion. These concepts may be usefully applied, among others, to agents that target two major signal transduction pathways: the one initiated by epidermal growth factor receptor (EGFR) signaling and the one converging on mitogen-activated protein kinase (MAPK) activation. Here, we review the molecular mechanisms of sensitivity/resistance to EGFR inhibitors, as well as the rationale for combining them with other targeted agents, in an attempt to overcome resistance. In the second part of the paper, we review MAPK-targeted agents, focusing on their therapeutic potential in haematologic malignancies, and examine the prospects for combinations of MAPK inhibitors with cytotoxic agents or other signal transduction-targeted agents to obtain synergistic anti-tumour effects.

  2. Overcoming resistance to molecularly targeted anticancer therapies: rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies

    PubMed Central

    Tortora, Giampaolo; Bianco, Roberto; Daniele, Gennaro; Ciardiello, Fortunato; McCubrey, James A; Ricciardi, Maria Rosaria; Ciuffreda, Ludovica; Cognetti, Francesco; Tafuri, Agostino; Milella, Michele

    2007-01-01

    Accumulating evidence suggests that cancer can be envisioned as a “signaling disease”, in which alterations in the cellular genome affect the expression and/or function of oncogenes and tumour suppressor genes. This ultimately disrupts the physiologic transmission of biochemical signals that normally regulate cell growth, differentiation and programmed cell death (apoptosis). From a clinical standpoint, signal transduction inhibition as a therapeutic strategy for human malignancies has recently achieved remarkable success. However, as additional drugs move forward into the clinical arena, intrinsic and acquired resistance to “targeted” agents becomes an issue for their clinical utility. One way to overcome resistance to targeted agents is to identify genetic and epigenetic aberrations underlying sensitivity/resistance, thus enabling the selection of patients that will most likely benefit from a specific therapy. Since resistance often ensues as a result of the concomitant activation of multiple, often overlapping, signaling pathways, another possibility is to interfere with multiple, cross-talking pathways involved in growth and survival control in a rational, mechanism-based, fashion. These concepts may be usefully applied, among others, to agents that target two major signal transduction pathways: the one initiated by epidermal growth factor receptor (EGFR) signaling and the one converging on mitogen-activated protein kinase (MAPK) activation. Here we review the molecular mechanisms of sensitivity/resistance to EGFR inhibitors, as well as the rationale for combining them with other targeted agents, in an attempt to overcome resistance. In the second part of the paper, we review MAPK-targeted agents, focusing on their therapeutic potential in hematologic malignancies, and examine the prospects for combinations of MAPK inhibitors with cytotoxic agents or other signal transduction-targeted agents to obtain synergistic anti-tumour effects. PMID:17482503

  3. The Novel Anticancer Drug Hydroxytriolein Inhibits Lung Cancer Cell Proliferation via a Protein Kinase Cα- and Extracellular Signal-Regulated Kinase 1/2-Dependent Mechanism.

    PubMed

    Guardiola-Serrano, Francisca; Beteta-Göbel, Roberto; Rodríguez-Lorca, Raquel; Ibarguren, Maitane; López, David J; Terés, Silvia; Alvarez, Rafael; Alonso-Sande, María; Busquets, Xavier; Escribá, Pablo V

    2015-08-01

    Membrane lipid therapy is a novel approach to rationally design or discover therapeutic molecules that target membrane lipids. This strategy has been used to design synthetic fatty acid analogs that are currently under study in clinical trials for the treatment of cancer. In this context, and with the aim of controlling tumor cell growth, we have designed and synthesized a hydroxylated analog of triolein, hydroxytriolein (HTO). Both triolein and HTO regulate the biophysical properties of model membranes, and they inhibit the growth of non-small-cell lung cancer (NSCLC) cell lines in vitro. The molecular mechanism underlying the antiproliferative effect of HTO involves regulation of the lipid membrane structure, protein kinase C-α and extracellular signal-regulated kinase activation, the production of reactive oxygen species, and autophagy. In vivo studies on a mouse model of NSCLC showed that HTO, but not triolein, impairs tumor growth, which could be associated with the relative resistance of HTO to enzymatic degradation. The data presented explain in part why olive oil (whose main component is the triacylglycerol triolein) is preventive but not therapeutic, and they demonstrate a potent effect of HTO against cancer. HTO shows a good safety profile, it can be administered orally, and it does not induce nontumor cell (fibroblast) death in vitro or side effects in mice, reflecting its specificity for cancer cells. For these reasons, HTO is a good candidate as a drug to combat cancer that acts by regulating lipid structure and function in the cancer cell membrane. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  4. A multivariate extension of mutual information for growing neural networks.

    PubMed

    Ball, Kenneth R; Grant, Christopher; Mundy, William R; Shafer, Timothy J

    2017-11-01

    Recordings of neural network activity in vitro are increasingly being used to assess the development of neural network activity and the effects of drugs, chemicals and disease states on neural network function. The high-content nature of the data derived from such recordings can be used to infer effects of compounds or disease states on a variety of important neural functions, including network synchrony. Historically, synchrony of networks in vitro has been assessed either by determination of correlation coefficients (e.g. Pearson's correlation), by statistics estimated from cross-correlation histograms between pairs of active electrodes, and/or by pairwise mutual information and related measures. The present study examines the application of Normalized Multiinformation (NMI) as a scalar measure of shared information content in a multivariate network that is robust with respect to changes in network size. Theoretical simulations are designed to investigate NMI as a measure of complexity and synchrony in a developing network relative to several alternative approaches. The NMI approach is applied to these simulations and also to data collected during exposure of in vitro neural networks to neuroactive compounds during the first 12 days in vitro, and compared to other common measures, including correlation coefficients and mean firing rates of neurons. NMI is shown to be more sensitive to developmental effects than first order synchronous and nonsynchronous measures of network complexity. Finally, NMI is a scalar measure of global (rather than pairwise) mutual information in a multivariate network, and hence relies on less assumptions for cross-network comparisons than historical approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Methylenedioxy designer drugs: mass spectrometric characterization of their glutathione conjugates by means of liquid chromatography-high-resolution mass spectrometry/mass spectrometry and studies on their glutathionyl transferase inhibition potency.

    PubMed

    Meyer, Markus R; Richter, Lilian H J; Maurer, Hans H

    2014-04-25

    Methylenedioxy designer drugs of abuse such as 3,4-methylenedioxymethamphetamine (MDMA) can be selectively toxic to serotonergic neurons and glutathione (GSH) adducts have been implicated in its neurotoxicity. The catecholic demethylenyl metabolites of MDMA, 3,4-dihydroxymethamphetamine and 3,4-dihydroxyamphetamine, are metabolically oxidized to the corresponding ortho-quinones, which are highly reactive intermediates. These intermediates can then be conjugated with GSH preventing cellular damage. Furthermore, glutathionyl transferase (GST) activity was described to be irreversibly inhibited by the catechols dopamine, α-methyldopa and their GSH conjugates. Therefore, the aims of the present work were the detection and characterization of GSH conjugates of ten methylenedioxy drugs of abuse and their phase I metabolites as well as to assess their inhibition potency on GST activity. The substrates were incubated using human placental GST with or without preincubation by cytochrome P450 enzymes preparations. GST inhibition was tested using chlorodinitrobenzene GSH conjugation as marker reaction. GSH conjugates were analyzed and characterized using LC-high-resolution-MS/MS. For confirmation of postulated fragmentation patterns, formation of GSH conjugates of selected deuterated analogs (deuterated analogue approach, DAA) of the investigated drugs was explored. For the methylenedioxy amphetamines the following steps could be identified: conjugation of the parent compounds at position 2, 5, 6, of the demethylenyl metabolites at position 2 and 5, and of the further deaminated demethylenyl metabolites at position 2. For the β-keto-phenylalkylamine and pyrrolidinophenone, conjugation of the demethylenyl metabolites and of the deaminated demethylenyl metabolites at position 2 could be identified. The DAA allowed the differentiation of the 2 and 5/6 isomers by confirmation of the postulated mass spectral fragments. Finally, the tested drugs and phase I metabolites showed no

  6. Growth-independent cross-feeding modifies boundaries for coexistence in a bacterial mutualism.

    PubMed

    McCully, Alexandra L; LaSarre, Breah; McKinlay, James B

    2017-09-01

    Nutrient cross-feeding can stabilize microbial mutualisms, including those important for carbon cycling in nutrient-limited anaerobic environments. It remains poorly understood how nutrient limitation within natural environments impacts mutualist growth, cross-feeding levels and ultimately mutualism dynamics. We examined the effects of nutrient limitation within a mutualism using theoretical and experimental approaches with a synthetic anaerobic coculture pairing fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris. In this coculture, E. coli and R. palustris resemble an anaerobic food web by cross-feeding essential carbon (organic acids) and nitrogen (ammonium) respectively. Organic acid cross-feeding stemming from E. coli fermentation can continue in a growth-independent manner during nitrogen limitation, while ammonium cross-feeding by R. palustris is growth-dependent. When ammonium cross-feeding was limited, coculture trends changed yet coexistence persisted under both homogenous and heterogenous conditions. Theoretical modelling indicated that growth-independent fermentation was crucial to sustain cooperative growth under conditions of low nutrient exchange. In contrast to stabilization at most cell densities, growth-independent fermentation inhibited mutualistic growth when the E. coli cell density was adequately high relative to that of R. palustris. Thus, growth-independent fermentation can conditionally stabilize or destabilize a mutualism, indicating the potential importance of growth-independent metabolism for nutrient-limited mutualistic communities. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Mutual benefits in academic-service partnership: An integrative review.

    PubMed

    Sadeghnezhad, Maliheh; Heshmati Nabavi, Fatemeh; Najafi, Fereshteh; Kareshki, Hossein; Esmaily, Habibollah

    2018-05-30

    Academic and service institutions involve with many challenges. Partnership programs are a golden opportunity to achieve mutual benefits to overcome these challenges. Identifying mutual benefits is the cornerstone of forming a successful partnership and guarantee to its continuity. There are definitions and instances of mutual benefits in the literature related to partnership programs, but there is no coherent evidence and clear picture of these benefits. This study is conducted to identify mutual benefits in academic-service partnership by analyzing the definitions and instances of it in the literature. An integrative review of key papers regarding mutual benefits in academic-service partnership was undertaken. This review was guided by the framework described by Whittemore and Knafl. Search of the following databases was conducted: MEDLINE, ERIC, Google Scholar, Emerald Insight and Science Direct. The search terms were mutual benefits, mutual gains, mutual interest, mutual expectations, mutual goals, mutual demand, partnership, collaboration, academic-service partnership and academic service collaboration. Cooper's five-stage integrative review method was used. Quality evaluation of articles was conducted. Data were abstracted from included articles. The analysis was conducted based on the qualitative content analysis of the literature suggested by Zhang and Wildemuth. 28 articles were included in this review. Mutual benefits are described in four categories include: synergy in training and empowerment of human resources, education improvement, access to shared resources, facilitate production and application of beneficial knowledge into practice. Mutual benefits in the academic-service partnership include a range of goals, interests, expectations, and needs of partner organizations that is achievable and measurable through joint planning and collaboration. We suggest academic and service policymakers to consider these benefits in the planning and evaluating

  8. Social inhibition modulates the effect of negative emotions on cardiac prognosis following percutaneous coronary intervention in the drug-eluting stent era.

    PubMed

    Denollet, Johan; Pedersen, Susanne S; Ong, Andrew T L; Erdman, Ruud A M; Serruys, Patrick W; van Domburg, Ron T

    2006-01-01

    Negative emotions have an adverse effect on cardiac prognosis. We investigated whether social inhibition (inhibited self-expression in social interaction) modulates the effect of negative emotions on clinical outcome following percutaneous coronary intervention (PCI). Eight hundred and seventy-five consecutive patients from the RESEARCH registry (Erasmus Medical Centre, Rotterdam) completed depression, anxiety, negativity (negative emotions in general), and social inhibition scales 6 months following PCI. The endpoint was major adverse cardiac event (MACE-death, myocardial infarction, coronary artery bypass graft (CABG), or PCI) at 9 months following assessment. There were 100 MACE; patients who were high in both negativity and inhibition were at increased risk of MACE (38/254=15%) when compared with high negativity/low inhibition patients (13/136=10%; P=0.018). Depression (P=0.23) or anxiety (P=0.63) did not explain away this moderating effect of inhibition. High negativity/high inhibition (HR=1.92, 95%CI 1.22-3.01, P=0.005) and previous CABG (HR=1.90, 95%CI 1.04-3.47, P=0.038) were independent predictors of MACE. Patients with high negativity but low inhibition were not at increased risk (P=0.76). High negativity/high inhibition also independently predicted death/MI (n=20) as a more specific endpoint (HR=5.85, P=0.001). The interaction effect of social inhibition and negative emotions, rather than negative emotions per se, predicted poor clinical outcome following PCI. Social inhibition should not be overlooked as a modulating factor.

  9. Quantum corrections to holographic mutual information

    DOE PAGES

    Agon, Cesar A.; Faulkner, Thomas

    2016-08-22

    We compute the leading contribution to the mutual information (MI) of two disjoint spheres in the large distance regime for arbitrary conformal field theories (CFT) in any dimension. This is achieved by refining the operator product expansion method introduced by Cardy [1]. For CFTs with holographic duals the leading contribution to the MI at long distances comes from bulk quantum corrections to the Ryu-Takayanagi area formula. According to the FLM proposal [2] this equals the bulk MI between the two disjoint regions spanned by the boundary spheres and their corresponding minimal area surfaces. We compute this quantum correction and providemore » in this way a non-trivial check of the FLM proposal.« less

  10. Propagating Resource Constraints Using Mutual Exclusion Reasoning

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Sanchez, Romeo; Do, Minh B.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    One of the most recent techniques for propagating resource constraints in Constraint Based scheduling is Energy Constraint. This technique focuses in precedence based scheduling, where precedence relations are taken into account rather than the absolute position of activities. Although, this particular technique proved to be efficient on discrete unary resources, it provides only loose bounds for jobs using discrete multi-capacity resources. In this paper we show how mutual exclusion reasoning can be used to propagate time bounds for activities using discrete resources. We show that our technique based on critical path analysis and mutex reasoning is just as effective on unary resources, and also shows that it is more effective on multi-capacity resources, through both examples and empirical study.

  11. Mutual Contextualization in Tripartite Graphs of Folksonomies

    NASA Astrophysics Data System (ADS)

    Yeung, Ching-Man Au; Gibbins, Nicholas; Shadbolt, Nigel

    The use of tags to describe Web resources in a collaborative manner has experienced rising popularity among Web users in recent years. The product of such activity is given the name folksonomy, which can be considered as a scheme of organizing information in the users' own way. This research work attempts to analyze tripartite graphs - graphs involving users, tags and resources - of folksonomies and discuss how these elements acquire their semantics through their associations with other elements, a process we call mutual contextualization. By studying such process, we try to identify solutions to problems such as tag disambiguation, retrieving documents of similar topics and discovering communities of users. This paper describes the basis of the research work, mentions work done so far and outlines future plans.

  12. Mutual information-based facial expression recognition

    NASA Astrophysics Data System (ADS)

    Hazar, Mliki; Hammami, Mohamed; Hanêne, Ben-Abdallah

    2013-12-01

    This paper introduces a novel low-computation discriminative regions representation for expression analysis task. The proposed approach relies on interesting studies in psychology which show that most of the descriptive and responsible regions for facial expression are located around some face parts. The contributions of this work lie in the proposition of new approach which supports automatic facial expression recognition based on automatic regions selection. The regions selection step aims to select the descriptive regions responsible or facial expression and was performed using Mutual Information (MI) technique. For facial feature extraction, we have applied Local Binary Patterns Pattern (LBP) on Gradient image to encode salient micro-patterns of facial expressions. Experimental studies have shown that using discriminative regions provide better results than using the whole face regions whilst reducing features vector dimension.

  13. Mutual Information between Discrete Variables with Many Categories using Recursive Adaptive Partitioning

    PubMed Central

    Seok, Junhee; Seon Kang, Yeong

    2015-01-01

    Mutual information, a general measure of the relatedness between two random variables, has been actively used in the analysis of biomedical data. The mutual information between two discrete variables is conventionally calculated by their joint probabilities estimated from the frequency of observed samples in each combination of variable categories. However, this conventional approach is no longer efficient for discrete variables with many categories, which can be easily found in large-scale biomedical data such as diagnosis codes, drug compounds, and genotypes. Here, we propose a method to provide stable estimations for the mutual information between discrete variables with many categories. Simulation studies showed that the proposed method reduced the estimation errors by 45 folds and improved the correlation coefficients with true values by 99 folds, compared with the conventional calculation of mutual information. The proposed method was also demonstrated through a case study for diagnostic data in electronic health records. This method is expected to be useful in the analysis of various biomedical data with discrete variables. PMID:26046461

  14. A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition.

    PubMed

    Ilari, Andrea; Baiocco, Paola; Messori, Luigi; Fiorillo, Annarita; Boffi, Alberto; Gramiccia, Marina; Di Muccio, Trentina; Colotti, Gianni

    2012-02-01

    Auranofin is a gold(I)-containing drug in clinical use as an antiarthritic agent. Recent studies showed that auranofin manifests interesting antiparasitic actions very likely arising from inhibition of parasitic enzymes involved in the control of the redox metabolism. Trypanothione reductase is a key enzyme of Leishmania infantum polyamine-dependent redox metabolism, and a validated target for antileishmanial drugs. As trypanothione reductase contains a dithiol motif at its active site and gold(I) compounds are known to be highly thiophilic, we explored whether auranofin might behave as an effective enzyme inhibitor and as a potential antileishmanial agent. Notably, enzymatic assays revealed that auranofin causes indeed a pronounced enzyme inhibition. To gain a deeper insight into the molecular basis of enzyme inhibition, crystals of the auranofin-bound enzyme, in the presence of NADPH, were prepared, and the X-ray crystal structure of the auranofin-trypanothione reductase-NADPH complex was solved at 3.5 Å resolution. In spite of the rather low resolution, these data were of sufficient quality as to identify the presence of the gold center and of the thiosugar of auranofin, and to locate them within the overall protein structure. Gold binds to the two active site cysteine residues of TR, i.e. Cys52 and Cys57, while the thiosugar moiety of auranofin binds to the trypanothione binding site; thus auranofin appears to inhibit TR through a dual mechanism. Auranofin kills the promastigote stage of L. infantum at micromolar concentration; these findings will contribute to the design of new drugs against leishmaniasis.

  15. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer.

    PubMed

    Miller-Kleinhenz, Jasmine; Guo, Xiangxue; Qian, Weiping; Zhou, Hongyu; Bozeman, Erica N; Zhu, Lei; Ji, Xin; Wang, Y Andrew; Styblo, Toncred; O'Regan, Ruth; Mao, Hui; Yang, Lily

    2018-01-01

    Heterogeneous tumor cells, high incidence of tumor recurrence, and decrease in overall survival are the major challenges for the treatment of chemo-resistant breast cancer. Results of our study showed differential chemotherapeutic responses among breast cancer patient derived xenograft (PDX) tumors established from the same patients. All doxorubicin (Dox)-resistant tumors expressed higher levels of cancer stem-like cell biomarkers, including CD44, Wnt and its receptor LRP5/6, relative to Dox-sensitive tumors. To effectively treat resistant tumors, we developed an ultra-small magnetic iron oxide nanoparticle (IONP) drug carrier conjugated with peptides that are dually targeted to Wnt/LRP5/6 and urokinase plasminogen activator receptor (uPAR). Our results showed that simultaneous binding to LRP5/6 and uPAR by the dual receptor targeted IONPs was required to inhibit breast cancer cell invasion. Molecular analysis revealed that the dual receptor targeted IONPs significantly inhibited Wnt/β-catenin signaling and cancer stem-like phenotype of tumor cells, with marked reduction of Wnt ligand, CD44 and uPAR. Systemic administration of the dual targeted IONPs led to nanoparticle-drug delivery into PDX tumors, resulting in stronger tumor growth inhibition compared to non-targeted or single-targeted IONP-Dox in a human breast cancer PDX model. Therefore, co-targeting Wnt/LRP and uPAR using IONP drug carriers is a promising therapeutic approach for effective drug delivery to chemo-resistant breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Expression of pleiotrophin, an important regulator of cell migration, is inhibited in intestinal epithelial cells by treatment with non-steroidal anti-inflammatory drugs

    USDA-ARS?s Scientific Manuscript database

    Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used drugs for the suppression of inflammation and pain. However, the analgesic properties of NSAIDs are also associated with significant negative side effects, most notably in the gastrointestinal (GI) tract. Increasingly, evi...

  17. Contribution of either YY1 or BclXL-induced inhibition by the NO-donor DETANONOate in the reversal of drug resistance, both in vitro and in vivo. YY1 and BclXL are overexpressed in prostate cancer.

    PubMed

    Huerta-Yepez, Sara; Baritaki, Stavroula; Baay-Guzman, Guillermina; Hernandez-Luna, Marco A; Hernandez-Cueto, Angeles; Vega, Mario I; Bonavida, Benjamin

    2013-02-28

    Nitric oxide (NO) donors have been shown to activate or inhibit constitutively-activated survival/anti-apoptotic pathways, such as NF-κB, in cancer cells. We report here that treatment of drug-resistant human prostate carcinoma cell lines with high levels (500-1000 μM) of the NO-donor DETANONOate sensitized the resistant tumor cells to apoptosis by CDDP and the combination was synergistic. We hypothesized that DETANONOate inhibits previously identified NF-κB-regulated resistant factors such as Yin Yang 1 (YY1) and Bcl-2/BclXL. Lysates from tumor cells treated with DETANONOate showed inhibition of YY1 and BclXL expressions. Transfection with either YY1 or BclXL siRNA resulted in the inhibition of both YY1 and BclXL expressions and sensitized the cells to CDDP apoptosis. Mice bearing PC-3 tumor xenografts and treated with the combination of DETANONOate and CDDP resulted in significant inhibition of tumor growth; treatment with single agent alone did not have any effect on tumor growth. Analysis of patients TMA tissues with prostatic cancer revealed higher expression of both YY1 and BclXL as a function of tumor grades and their levels were directly correlated. Thus, both YY1 and BclXL are potential prognostic biomarkers. Overall, the above findings suggest that one mechanism of DETANONOate-induced sensitization of resistant tumor cells to CDDP correlated with the inhibition of NF-κB and its targets YY1 and BclXL. The examination of the combination of NO donors and cytotoxic therapy in the treatment of resistant prostate cancer may be warranted. Published by Elsevier Inc.

  18. Novel ciprofloxacin hybrids using biology oriented drug synthesis (BIODS) approach: Anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis, topoisomerase II inhibition, and antibacterial activity.

    PubMed

    Kassab, Asmaa E; Gedawy, Ehab M

    2018-04-25

    As we are interested in synthetizing biologically active leads with dual anticancer and antibacterial activity, we adopted biology oriented drug synthesis (BIODS) strategy to synthesize a series of novel ciprofloxacin (CP) hybrids. The National Cancer Institute (USA) selected seventeen newly synthesized compounds for anticancer evaluation against 59 different human tumor cell lines. Five compounds 3e, 3f, 3h, 3o and 3p were further studied through determination of IC 50 values against the most sensitive cancer cell lines. In vitro results showed that the five compounds exhibited potent anticancer activity against test cell lines in nanomolar to micromolar range, with IC 50 values between 0.72 and 4.92 μM, which was 9 to1.5 folds more potent than doxorubicin. In this study, two promising potent anticancer CP hybrids, 3f and 3o, were identified. The anti-proliferative activity of these compounds appears to correlate well with their ability to inhibit Topo II (IC 50  = 0.58 and 0.86 μM). It is worth mentioning that compound 3f was 6 folds more potent than doxorubicin, 5 folds more potent than amsacrine and 1.5 folds more potent than etoposide. At the same time, compound 3o showed 4 folds more inhibitory activity against Topo II than doxorubicin, 3 folds more potent than amsacrine and almost equipotent activity to etoposide. Activation of damage response pathway of the DNA leads to cell cycle arrest at G2/M phase, accumulation of cells in pre-G1 phase and annexin-V and propidium iodide staining, indicating that cell death proceeds through an apoptotic mechanism. Moreover, compounds 3f and 3o showed potent pro-apoptotic effect through induction of the intrinsic mitochondrial pathway of apoptosis. This mechanistic pathway was confirmed by a significant increase in the level of active caspase-3 compared to control. This observation may indicate that both CP hybrids can chelate with zinc, a powerful inhibitor of procaspase-3 enzymatic activity, so procaspase-3

  19. Calcium and ROS: A mutual interplay

    PubMed Central

    Görlach, Agnes; Bertram, Katharina; Hudecova, Sona; Krizanova, Olga

    2015-01-01

    Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca2+ signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. PMID:26296072

  20. Friendly Home and Inhabitants' Morality: Mutual Relationships.

    PubMed

    Nartova-Bochaver, Sofya K; Kuznetsova, Valeriya B

    2017-01-01

    The study is aimed at investigating the connection between the friendliness of the home environment and the moral motives' level. The friendliness of the home environment includes two aspects: the number of functions provided by home (functionality) and the congruence of these functions with inhabitants' needs (relevance). The theoretical framework of the study was formed by research and ideas emphasizing the interplay between people and their environments. We hypothesized that the friendliness of the home environment and inhabitants' moral motives would have a reciprocal relationship: the friendlier the home the higher the inhabitants' moral motives' level, and, vice versa, the higher the person's moral motives' level the more positive home image. The respondents were 550 students (25% male). The Home Environment Functionality Questionnaire, the Home Environment Relevance Questionnaire, and the Moral Motivation Model Scale were used. As expected, it was found that the friendliness of the home environment and the inhabitants' moral motives are in reciprocal synergetic relationships. Relevance formed more nuanced correlation patterns with moral motives than functionality did. Functionality predicted moral motives poorly whereas moral motives predicted functionality strongly. Finally, relevance and moral motives were found to be in mutual relationships whereas the perceived functionality was predicted by moral motives only.

  1. Economic game theory for mutualism and cooperation.

    PubMed

    Archetti, Marco; Scheuring, István; Hoffman, Moshe; Frederickson, Megan E; Pierce, Naomi E; Yu, Douglas W

    2011-12-01

    We review recent work at the interface of economic game theory and evolutionary biology that provides new insights into the evolution of partner choice, host sanctions, partner fidelity feedback and public goods. (1) The theory of games with asymmetrical information shows that the right incentives allow hosts to screen-out parasites and screen-in mutualists, explaining successful partner choice in the absence of signalling. Applications range from ant-plants to microbiomes. (2) Contract theory distinguishes two longstanding but weakly differentiated explanations of host response to defectors: host sanctions and partner fidelity feedback. Host traits that selectively punish misbehaving symbionts are parsimoniously interpreted as pre-adaptations. Yucca-moth and legume-rhizobia mutualisms are argued to be examples of partner fidelity feedback. (3) The theory of public goods shows that cooperation in multi-player interactions can evolve in the absence of assortment, in one-shot social dilemmas among non-kin. Applications include alarm calls in vertebrates and exoenzymes in microbes. 2011 Blackwell Publishing Ltd/CNRS.

  2. Friendly Home and Inhabitants' Morality: Mutual Relationships

    PubMed Central

    Nartova-Bochaver, Sofya K.; Kuznetsova, Valeriya B.

    2018-01-01

    The study is aimed at investigating the connection between the friendliness of the home environment and the moral motives' level. The friendliness of the home environment includes two aspects: the number of functions provided by home (functionality) and the congruence of these functions with inhabitants' needs (relevance). The theoretical framework of the study was formed by research and ideas emphasizing the interplay between people and their environments. We hypothesized that the friendliness of the home environment and inhabitants' moral motives would have a reciprocal relationship: the friendlier the home the higher the inhabitants' moral motives' level, and, vice versa, the higher the person's moral motives' level the more positive home image. The respondents were 550 students (25% male). The Home Environment Functionality Questionnaire, the Home Environment Relevance Questionnaire, and the Moral Motivation Model Scale were used. As expected, it was found that the friendliness of the home environment and the inhabitants' moral motives are in reciprocal synergetic relationships. Relevance formed more nuanced correlation patterns with moral motives than functionality did. Functionality predicted moral motives poorly whereas moral motives predicted functionality strongly. Finally, relevance and moral motives were found to be in mutual relationships whereas the perceived functionality was predicted by moral motives only. PMID:29375450

  3. Management of mutual health organizations in Ghana.

    PubMed

    Baltussen, R; Bruce, E; Rhodes, G; Narh-Bana, S A; Agyepong, I

    2006-05-01

    Mutual Health Organizations (MHO) emerged in Ghana in the mid-1990s. The organizational structure and financial management of private and public MHO hold important lessons for the development of national health insurance in Ghana, but there is little evidence to date on their features. This paper aims at filling this data gap, and at making recommendations to Ghanaian authorities on how to stimulate the success of MHO. Survey among 45 private and public MHO in Ghana in 2004-2005, asking questions on their structure, financial management and financial position. Private MHO had more autonomy in setting premiums and benefit packages, and had higher community participation in meetings than public MHO. MHO in general had few measures in place to control moral hazard and reduce adverse selection, but more measures to control fraud and prevent cost escalation. The vast majority of schemes were managed by formally trained and paid staff. The financial results varied considerably. Ghanaian authorities regulate the newly established public MHO, but may do good by leaving them a certain level of autonomy in decision-making and secure community participation. The financial management of MHO is suboptimal, which indicates the need for technical assistance.

  4. 12 CFR 563.74 - Mutual capital certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... otherwise be required by applicable law. (e) Filing requirements. The application for issuance of mutual... of filing of the application are in accordance with the provisions of this section. (b) Eligibility... mutual capital certificates; (E) Action is sought to be authorized which would increase the number of a...

  5. FAST TRACK COMMUNICATION: Affine constellations without mutually unbiased counterparts

    NASA Astrophysics Data System (ADS)

    Weigert, Stefan; Durt, Thomas

    2010-10-01

    It has been conjectured that a complete set of mutually unbiased bases in a space of dimension d exists if and only if there is an affine plane of order d. We introduce affine constellations and compare their existence properties with those of mutually unbiased constellations. The observed discrepancies make a deeper relation between the two existence problems unlikely.

  6. 7 CFR 550.13 - Mutuality of interest.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Mutuality of interest. 550.13 Section 550.13 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT.... Mutual interest exists when both parties benefit in the same qualitative way from the objectives of the...

  7. 7 CFR 550.13 - Mutuality of interest.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Mutuality of interest. 550.13 Section 550.13 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT.... Mutual interest exists when both parties benefit in the same qualitative way from the objectives of the...

  8. 7 CFR 550.13 - Mutuality of interest.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Mutuality of interest. 550.13 Section 550.13 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT.... Mutual interest exists when both parties benefit in the same qualitative way from the objectives of the...

  9. 7 CFR 550.13 - Mutuality of interest.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Mutuality of interest. 550.13 Section 550.13 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT.... Mutual interest exists when both parties benefit in the same qualitative way from the objectives of the...

  10. Mutuality, Self-Silencing, and Disordered Eating in College Women

    ERIC Educational Resources Information Center

    Wechsler, Lisa S.; Riggs, Shelley A.; Stabb, Sally D.; Marshall, David M.

    2006-01-01

    The current study examined patterns of association among mutuality, self-silencing, and disordered eating in an ethnically diverse sample of college women (N = 149). Partner mutuality and overall self-silencing were negatively correlated and together were associated with six disordered eating indices. All four self-silencing subscales were…

  11. 47 CFR 90.165 - Procedures for mutually exclusive applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... 90.165 Section 90.165 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Governing Facilities Used to Provide Commercial Mobile Radio Services § 90.165 Procedures for mutually exclusive applications. Mutually exclusive commercial mobile radio service applications are processed in...

  12. 76 FR 20459 - Mutual to Stock Conversion Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision Mutual to Stock Conversion Application... collection. Title of Proposal: Mutual to Stock Conversion Application. OMB Number: 1550-0014. Form Numbers... furnished in the application in order to determine the safety and soundness of the proposed stock conversion...

  13. 76 FR 35084 - Mutual to Stock Conversion Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision Mutual to Stock Conversion Application... invite comments on the following information collection. Title of Proposal: Mutual to Stock Conversion... and soundness of the proposed stock conversion. The purpose of the information collection is to...

  14. 7 CFR 550.13 - Mutuality of interest.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Mutuality of interest. 550.13 Section 550.13 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT.... Mutual interest exists when both parties benefit in the same qualitative way from the objectives of the...

  15. The Development of Mutuality in Natural Small Groups.

    ERIC Educational Resources Information Center

    Baker, Paul Morgan

    1983-01-01

    Describes factors affecting the development of mutuality of attraction in natural small groups, and tests the hypothesis of the acquaintance process in 41 female residents of three floors of a university dormitory over the course of a year. Two floors showed definite increases in dyadic mutuality over time. (JAC)

  16. 47 CFR 22.131 - Procedures for mutually exclusive applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES PUBLIC MOBILE SERVICES Licensing Requirements and Procedures Applications and Notifications § 22... procedures in this section for processing mutually exclusive applications in the Public Mobile Services... 47 Telecommunication 2 2010-10-01 2010-10-01 false Procedures for mutually exclusive applications...

  17. Cooperation in Academic Negotiations: A Guide to Mutual Gains Bargaining.

    ERIC Educational Resources Information Center

    Birnbaum, Robert; And Others

    A guide to mutual gains bargaining (MGB) is presented for faculty union leaders and college administrators, as well as school systems. MGB is based on applied behavioral sciences concepts and the use of bargaining teams and emphasizes problem-solving and improving communications and campus relationships. Two different uses of the mutual gains…

  18. Mutual Intelligibility between Closely Related Languages in Europe

    ERIC Educational Resources Information Center

    Gooskens, Charlotte; van Heuven, Vincent J.; Golubovic, Jelena; Schüppert, Anja; Swarte, Femke; Voigt, Stefanie

    2018-01-01

    By means of a large-scale web-based investigation, we established the degree of mutual intelligibility of 16 closely related spoken languages within the Germanic, Slavic and Romance language families in Europe. We first present the results of a selection of 1833 listeners representing the mutual intelligibility between young, educated Europeans…

  19. Reducing Deviance Through Youths' Mutual Aid Group Dynamics.

    PubMed

    Cheung, Chau-kiu; Ngai, Steven Sek-yum

    2016-01-01

    The mutual aid group, as supported by the social worker, emerges to play a vital role in helping group members reduce their deviance or behavioral problem. However, how the collaboration of the group and social worker accomplishes the reduction has remained uncharted. Based on social capital theory, mutual aid and cohesion within the group and social workers' specific aid for the group are likely responsible for the reduction. The test of such hypotheses relies on a two-wave panel survey of the members of 60 mutual aid groups who had deviant behavioral problems, located in Hong Kong, China. These groups had 241 youths completing both initial and 1-year follow-up surveys. Results manifested the direct or unconditional contributions of mutual aid, group cohesion, and social workers' specific aid to reducing deviance. Hence, social workers can enhance the effectiveness of the mutual aid group in reducing youths' deviance. © The Author(s) 2014.

  20. Mutual proximity graphs for improved reachability in music recommendation.

    PubMed

    Flexer, Arthur; Stevens, Jeff

    2018-01-01

    This paper is concerned with the impact of hubness, a general problem of machine learning in high-dimensional spaces, on a real-world music recommendation system based on visualisation of a k-nearest neighbour (knn) graph. Due to a problem of measuring distances in high dimensions, hub objects are recommended over and over again while anti-hubs are nonexistent in recommendation lists, resulting in poor reachability of the music catalogue. We present mutual proximity graphs, which are an alternative to knn and mutual knn graphs, and are able to avoid hub vertices having abnormally high connectivity. We show that mutual proximity graphs yield much better graph connectivity resulting in improved reachability compared to knn graphs, mutual knn graphs and mutual knn graphs enhanced with minimum spanning trees, while simultaneously reducing the negative effects of hubness.

  1. Mutual proximity graphs for improved reachability in music recommendation

    PubMed Central

    Flexer, Arthur; Stevens, Jeff

    2018-01-01

    This paper is concerned with the impact of hubness, a general problem of machine learning in high-dimensional spaces, on a real-world music recommendation system based on visualisation of a k-nearest neighbour (knn) graph. Due to a problem of measuring distances in high dimensions, hub objects are recommended over and over again while anti-hubs are nonexistent in recommendation lists, resulting in poor reachability of the music catalogue. We present mutual proximity graphs, which are an alternative to knn and mutual knn graphs, and are able to avoid hub vertices having abnormally high connectivity. We show that mutual proximity graphs yield much better graph connectivity resulting in improved reachability compared to knn graphs, mutual knn graphs and mutual knn graphs enhanced with minimum spanning trees, while simultaneously reducing the negative effects of hubness. PMID:29348779

  2. Propylisopropylacetic acid (PIA), a constitutional isomer of valproic acid, uncompetitively inhibits arachidonic acid acylation by rat acyl-CoA synthetase 4: a potential drug for bipolar disorder

    PubMed Central

    Modi, Hiren R.; Basselin, Mireille; Taha, Ameer Y.; Li, Lei O.; Coleman, Rosalind A.; Bialer, Meir; Rapoport, Stanley I.

    2013-01-01

    Background Mood stabilizers used for treating bipolar disorder (BD) selectively downregulate arachidonic acid (AA) turnover (deacylation-reacylation) in brain phospholipids, when given chronically to rats. In vitro studies suggest that one of these, valproic acid (VPA), which is teratogenic, reduces AA turnover by inhibiting the brain acyl-CoA synthetase (Acsl)-4 mediated acylation of AA to AA-CoA. We tested whether non-teratogenic VPA analogues might also inhibit Acsl-4 catalyzed acylation, and thus have potential anti-BD action. Methods Rat Acsl4-flag protein was expressed in E. coli, and the ability of three VPA analogues, propylisopropylacetic acid (PIA), propylisopropylacetamide (PID) and N-methyl-2,2,3,3-tetramethylcyclopropanecarboxamide (MTMCD), and of sodium butyrate, to inhibit conversion of AA to AA-CoA by Acsl4 was quantified using Michaelis-Menten kinetics. Results Acsl4-mediated conversion of AA to AA-CoA in vitro was inhibited uncompetitively by PIA, with a Ki of 11.4 mM compared to a published Ki of 25 mM for VPA, while PID, MTMCD and sodium butyrate had no inhibitory effect. Conclusions PIA's ability to inhibit conversion of AA to AA-CoA by Acsl4 in vitro suggests that, like VPA, PIA may reduce AA turnover in brain phospholipids in unanesthetized rats, and if so, may be effective as a non-teratogenic mood stabilizer in BD patients. PMID:23354024

  3. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  4. 12 CFR 575.12 - Conversion or liquidation of mutual holding companies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Conversion or liquidation of mutual holding... MUTUAL HOLDING COMPANIES § 575.12 Conversion or liquidation of mutual holding companies. (a) Conversion... stock issued by the parent mutual holding company in connection with the conversion of the parent mutual...

  5. Mutually orthogonal Latin squares from the inner products of vectors in mutually unbiased bases

    NASA Astrophysics Data System (ADS)

    Hall, Joanne L.; Rao, Asha

    2010-04-01

    Mutually unbiased bases (MUBs) are important in quantum information theory. While constructions of complete sets of d + 1 MUBs in {\\bb C}^d are known when d is a prime power, it is unknown if such complete sets exist in non-prime power dimensions. It has been conjectured that complete sets of MUBs only exist in {\\bb C}^d if a maximal set of mutually orthogonal Latin squares (MOLS) of side length d also exists. There are several constructions (Roy and Scott 2007 J. Math. Phys. 48 072110; Paterek, Dakić and Brukner 2009 Phys. Rev. A 79 012109) of complete sets of MUBs from specific types of MOLS, which use Galois fields to construct the vectors of the MUBs. In this paper, two known constructions of MUBs (Alltop 1980 IEEE Trans. Inf. Theory 26 350-354 Wootters and Fields 1989 Ann. Phys. 191 363-381), both of which use polynomials over a Galois field, are used to construct complete sets of MOLS in the odd prime case. The MOLS come from the inner products of pairs of vectors in the MUBs.

  6. Reconnection Dynamics and Mutual Friction in Quantum Turbulence

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Baggaley, Andrew W.

    2015-07-01

    We investigate the behaviour of the mutual friction force in finite temperature quantum turbulence in He, paying particular attention to the role of quantized vortex reconnections. Through the use of the vortex filament model, we produce three experimentally relevant types of vortex tangles in steady-state conditions, and examine through statistical analysis, how local properties of the tangle influence the mutual friction force. Finally, by monitoring reconnection events, we present evidence to indicate that vortex reconnections are the dominant mechanism for producing areas of high curvature and velocity leading to regions of high mutual friction, particularly for homogeneous and isotropic vortex tangles.

  7. Mutually unbiased bases and semi-definite programming

    NASA Astrophysics Data System (ADS)

    Brierley, Stephen; Weigert, Stefan

    2010-11-01

    A complex Hilbert space of dimension six supports at least three but not more than seven mutually unbiased bases. Two computer-aided analytical methods to tighten these bounds are reviewed, based on a discretization of parameter space and on Gröbner bases. A third algorithmic approach is presented: the non-existence of more than three mutually unbiased bases in composite dimensions can be decided by a global optimization method known as semidefinite programming. The method is used to confirm that the spectral matrix cannot be part of a complete set of seven mutually unbiased bases in dimension six.

  8. Mutual Coupling and Compensation in FMCW MIMO Radar Systems

    NASA Astrophysics Data System (ADS)

    Schmid, Christian M.; Feger, Reinhard; Wagner, Christoph; Stelzer, Andreas

    2011-09-01

    This paper deals with mutual coupling, its effects and the compensation thereof in frequency-modulated continuous-wave (FMCW) multiple-input multiple-output (MIMO) array radar systems. Starting with a signal model we introduce mutual coupling and its primary sources in FMCW MIMO systems. We also give a worst-case boundary of the effects that mutual coupling can have on the side lobe level of an array. A method of dealing with and compensating for these effects is covered in this paper and verified by measurements from a 77-GHz FMCW radar system.

  9. Spatial Mutual Information Based Hyperspectral Band Selection for Classification

    PubMed Central

    2015-01-01

    The amount of information involved in hyperspectral imaging is large. Hyperspectral band selection is a popular method for reducing dimensionality. Several information based measures such as mutual information have been proposed to reduce information redundancy among spectral bands. Unfortunately, mutual information does not take into account the spatial dependency between adjacent pixels in images thus reducing its robustness as a similarity measure. In this paper, we propose a new band selection method based on spatial mutual information. As validation criteria, a supervised classification method using support vector machine (SVM) is used. Experimental results of the classification of hyperspectral datasets show that the proposed method can achieve more accurate results. PMID:25918742

  10. Cooperation for Better Inhibiting.

    PubMed

    Novoa, Eva Maria; Ribas de Pouplana, Lluís

    2015-06-18

    Cladosporin is an antimalarial drug that acts as an ATP-mimetic to selectively inhibit Plasmodium lysyl-tRNA synthetase. Using multiple crystal structures, Fang et al. (2015) reveal in this issue of Chemistry & Biology the fascinating mechanism responsible for cladosporin selectivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Incorporation of sodium channel blocking and free radical scavenging activities into a single drug, AM-36, results in profound inhibition of neuronal apoptosis.

    PubMed

    Callaway, J K; Beart, P M; Jarrott, B; Giardina, S F

    2001-04-01

    AM-36 is a novel neuroprotective agent incorporating both antioxidant and Na(+) channel blocking actions. In cerebral ischaemia, loss of cellular ion homeostasis due to Na(+) channel activation, together with increased reactive oxygen species (ROS) production, are thought to contribute to neuronal death. Since neuronal death in the penumbra of the ischaemic lesion is suggested to occur by apoptosis, we investigated the ability of AM-36, antioxidants and Na(+) channel antagonists to inhibit toxicity induced by the neurotoxin, veratridine in cultured cerebellar granule cells (CGC's). Veratridine (10 - 300 microM) concentration-dependently reduced cell viability of cultured CGC's. Under the experimental conditions employed, cell death induced by veratridine (100 microM) possessed the characteristics of apoptosis as assessed by morphology, TUNEL staining and DNA laddering on agarose gels. Neurotoxicity and apoptosis induced by veratridine (100 microM) were inhibited to a maximum of 50% by the antioxidants, U74500A (0.1 - 10 microM) and U83836E (0.03 - 10 microM), and to a maximum of 30% by the Na(+) channel blocker, dibucaine (0.1 - 100 microM). In contrast, AM-36 (0.01 - 10 microM) completely inhibited veratridine-induced toxicity ( IC(50) 1.7 (1.5 - 1.9) microM, 95% confidence intervals (CI) in parentheses) and concentration-dependently inhibited apoptosis. These findings suggest veratridine-induced toxicity and apoptosis are partially mediated by generation of ROS. AM-36, which combines both Na(+) channel blocking and antioxidant activity, provided superior neuroprotection compared with agents possessing only one of these actions. This bifunctional profile of activity may underlie the potent neuroprotective effects of AM-36 recently found in a stroke model in conscious rats.

  12. Incorporation of sodium channel blocking and free radical scavenging activities into a single drug, AM-36, results in profound inhibition of neuronal apoptosis

    PubMed Central

    Callaway, Jennifer K; Beart, Philip M; Jarrott, Bevyn; Giardina, Sarah F

    2001-01-01

    AM-36 is a novel neuroprotective agent incorporating both antioxidant and Na+ channel blocking actions. In cerebral ischaemia, loss of cellular ion homeostasis due to Na+ channel activation, together with increased reactive oxygen species (ROS) production, are thought to contribute to neuronal death. Since neuronal death in the penumbra of the ischaemic lesion is suggested to occur by apoptosis, we investigated the ability of AM-36, antioxidants and Na+ channel antagonists to inhibit toxicity induced by the neurotoxin, veratridine in cultured cerebellar granule cells (CGC's).Veratridine (10 – 300 μM) concentration-dependently reduced cell viability of cultured CGC's. Under the experimental conditions employed, cell death induced by veratridine (100 μM) possessed the characteristics of apoptosis as assessed by morphology, TUNEL staining and DNA laddering on agarose gels.Neurotoxicity and apoptosis induced by veratridine (100 μM) were inhibited to a maximum of 50% by the antioxidants, U74500A (0.1 – 10 μM) and U83836E (0.03 – 10 μM), and to a maximum of 30% by the Na+ channel blocker, dibucaine (0.1 – 100 μM). In contrast, AM-36 (0.01 – 10 μM) completely inhibited veratridine-induced toxicity (IC50 1.7 (1.5 – 1.9) μM, 95% confidence intervals (CI) in parentheses) and concentration-dependently inhibited apoptosis.These findings suggest veratridine-induced toxicity and apoptosis are partially mediated by generation of ROS. AM-36, which combines both Na+ channel blocking and antioxidant activity, provided superior neuroprotection compared with agents possessing only one of these actions. This bifunctional profile of activity may underlie the potent neuroprotective effects of AM-36 recently found in a stroke model in conscious rats. PMID:11309240

  13. Virtual Dual inhibition of COX-2 / 5-LOX enzymes based on binding properties of alpha-amyrins, the anti-inflammatory compound as a promising anti-cancer drug.

    PubMed

    Ranjbar, Mohammad Mehdi; Assadolahi, Vahideh; Yazdani, Mohsen; Nikaein, Donya; Rashidieh, Behnam

    2016-01-01

    Hydro-alcoholic fruit extract of Cordia myxa was considerably effective on curing acute inflammation in mouse model. Previous studies suggested significant anti-inflammatory activities as well as potential anticancer agent of α-amyrins in seeds. Inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipooxygenase (5-LOX) is significant in cancer prevention and therapeutics although this inhibition with chemo-drugs has its own side-effects. It is shown that these enzymes pathways are related to several cancers including colon, breast and lung cancer. This study was conducted based on Cordia species' α-amyrins as a safer natural anti-cancer compound for inhibition of COX-2 and 5-LOX enzymes by molecular docking. The X-ray crystal structure of COX2 / 5-LOX enzymes and α-amyrins was retrieved and energetically minimized respectively. The binding site and surface of enzymes were detected. Docking studies were performed by AutoDock 4.2 using Lamarckian genetic algorithm (LGA). Finally drug likeness, molecular pharmacokinetic properties and toxicity of α-amyrins was calculated. Molecular Docking revealed hydrogen and hydrophobic interactions between α-amyrins with both active sites of COX-2 and 5-LOX enzymes. Interestingly, it covalently bonded to Fe cofactor of 5-LOX enzyme and chelated this molecule. Base on binding energies (∆G) α-amyrin has more inhibitory effects on 5-LOX (-10.45 Kcal/mol) than COX-2 (-8.02 Kcal/mol). Analysis of molecular pharmacokinetic parameters suggested that α-amyrins complied with most sets of Lipinski's rules, and so it could be a suitable ligand for docking studies. Eventually, bioactivity score showed α-amyrins possess considerable biological activities as nuclear receptor, enzyme inhibitor, GPCR and protease inhibitor ligand. These results clearly demonstrate that α-amyrins could act as potential highly selective COX-/5-LOX inhibitor. Also, it is a safe compound in comparison with classical non-steroidal anti-inflammatory drugs (NSAIDs

  14. Virtual Dual inhibition of COX-2 / 5-LOX enzymes based on binding properties of alpha-amyrins, the anti-inflammatory compound as a promising anti-cancer drug

    PubMed Central

    Ranjbar, Mohammad Mehdi; Assadolahi, Vahideh; Yazdani, Mohsen; Nikaein, Donya; Rashidieh, Behnam

    2016-01-01

    Hydro-alcoholic fruit extract of Cordia myxa was considerably effective on curing acute inflammation in mouse model. Previous studies suggested significant anti-inflammatory activities as well as potential anticancer agent of α-amyrins in seeds. Inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipooxygenase (5-LOX) is significant in cancer prevention and therapeutics although this inhibition with chemo-drugs has its own side-effects. It is shown that these enzymes pathways are related to several cancers including colon, breast and lung cancer. This study was conducted based on Cordia species' α-amyrins as a safer natural anti-cancer compound for inhibition of COX-2 and 5-LOX enzymes by molecular docking. The X-ray crystal structure of COX2 / 5-LOX enzymes and α-amyrins was retrieved and energetically minimized respectively. The binding site and surface of enzymes were detected. Docking studies were performed by AutoDock 4.2 using Lamarckian genetic algorithm (LGA). Finally drug likeness, molecular pharmacokinetic properties and toxicity of α-amyrins was calculated. Molecular Docking revealed hydrogen and hydrophobic interactions between α-amyrins with both active sites of COX-2 and 5-LOX enzymes. Interestingly, it covalently bonded to Fe cofactor of 5-LOX enzyme and chelated this molecule. Base on binding energies (∆G) α-amyrin has more inhibitory effects on 5-LOX (-10.45 Kcal/mol) than COX-2 (-8.02 Kcal/mol). Analysis of molecular pharmacokinetic parameters suggested that α-amyrins complied with most sets of Lipinski's rules, and so it could be a suitable ligand for docking studies. Eventually, bioactivity score showed α-amyrins possess considerable biological activities as nuclear receptor, enzyme inhibitor, GPCR and protease inhibitor ligand. These results clearly demonstrate that α-amyrins could act as potential highly selective COX-/5-LOX inhibitor. Also, it is a safe compound in comparison with classical non-steroidal anti-inflammatory drugs (NSAIDs

  15. Evaluation of the light scattering and the turbidity microtiter plate-based methods for the detection of the excipient-mediated drug precipitation inhibition.

    PubMed

    Petruševska, Marija; Urleb, Uroš; Peternel, Luka

    2013-11-01

    The excipient-mediated precipitation inhibition is classically determined by the quantification of the dissolved compound in the solution. In this study, two alternative approaches were evaluated, one is the light scattering (nephelometer) and other is the turbidity (plate reader) microtiter plate-based methods which are based on the quantification of the compound precipitate. Following the optimization of the nephelometer settings (beam focus, laser gain) and the experimental conditions, the screening of 23 excipients on the precipitation inhibition of poorly soluble fenofibrate and dipyridamole was performed. The light scattering method resulted in excellent correlation (r>0.91) between the calculated precipitation inhibitor parameters (PIPs) and the precipitation inhibition index (PI(classical)) obtained by the classical approach for fenofibrate and dipyridamole. Among the evaluated PIPs AUC100 (nephelometer) resulted in only four false positives and lack of false negatives. In the case of the turbidity-based method a good correlation of the PI(classical) was obtained for the PIP maximal optical density (OD(max), r=0.91), however, only for fenofibrate. In the case of the OD(max) (plate reader) five false positives and two false negatives were identified. In conclusion, the light scattering-based method outperformed the turbidity-based one and could be reliably used for identification of novel precipitation inhibitors. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Graviola: A Novel Promising Natural-Derived Drug That Inhibits Tumorigenicity and Metastasis of Pancreatic Cancer Cells In Vitro and In Vivo Through Altering Cell Metabolism

    PubMed Central

    Torres, María P.; Rachagani, Satyanarayana; Purohit, Vinee; Pandey, Poomy; Joshi, Suhasini; Moore, Erik D.; Johansson, Sonny L.; Singh, Pankaj K.; Ganti, Apar K.; Batra, Surinder K.

    2012-01-01

    Pancreatic tumors are resistant to conventional chemotherapies. The present study was aimed at evaluating the potential of a novel plant-derived product as a therapeutic agent for pancreatic cancer (PC). The effects of an extract from the tropical tree Annona Muricata, commonly known as Graviola, was evaluated for cytotoxicity, cell metabolism, cancer-associated protein/gene expression, tumorigenicity, and metastatic properties of PC cells. Our experiments revealed that Graviola induced necrosis of PC cells by inhibiting cellular metabolism. The expression of molecules related to hypoxia and glycolysis in PC cells (i.e. HIF-1α, NF-κB, GLUT1, GLUT4, HKII, and LDHA) were downregulated in the presence of the extract. In vitro functional assays further confirmed the inhibition of tumorigenic properties of PC cells. Overall, the compounds that are naturally present in a Graviola extract inhibited multiple signaling pathways that regulate metabolism, cell cycle, survival, and metastatic properties in PC cells. Collectively, alterations in these parameters led to a decrease in tumorigenicity and metastasis of orthotopically implanted pancreatic tumors, indicating promising characteristics of the natural product against this lethal disease. PMID:22475682

  17. Anion inhibition profiles of the γ-carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei responsible of melioidosis and highly drug resistant to common antibiotics.

    PubMed

    Del Prete, Sonia; Vullo, Daniela; Di Fonzo, Pietro; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2017-01-15

    Burkholderia pseudomallei is a Gram-negative saprophytic bacterium responsible of melioidosis, an endemic disease of tropical and sub-tropical regions of the world. A recombinant γ-CA (BpsγCA) identified in the genome of this bacterium was cloned and purified. Its catalytic activity and anion inhibition profiles were investigated. The enzyme was an efficient catalyst for the CO 2 hydration showing a k cat of 5.3×10 5 s -1 and k cat /K m of 2.5×10 7 M -1 ×s -1 . The best BpsγCA inhibitors were sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid, which showed K I in the range of 49-83μM (these inhibitors showed millimolar inhibition constant against hCA II), followed by diethyldithiocarbamate, selenate, tellurate, perrhenate, selenocyanate, trithiocarbonate, tetraborato, pyrophosphate, stannate, carbonate, bicarbonate, azide, cyanide, thiocyanate and cyanate with K I s in the range of 0.55-9.1mM. In our laboratories, work is in progress to resolve the X-ray crystal structures of BpsγCA, which may allow the development of small molecule inhibitors with desired properties for targeting and inhibiting specifically the bacterial over the human CAs, considering the fact that B. pseudomallei is involved in a serious bacterial disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Using an in Silico Approach to Teach 3D Pharmacodynamics of the Drug-Target Interaction Process Focusing on Selective COX2 Inhibition by Celecoxib

    ERIC Educational Resources Information Center

    Tavares, Maurício T.; Primi, Marina C.; Silva, Nuno A. T. F.; Carvalho, Camila F.; Cunha, Micael R.; Parise-Filho, Roberto

    2017-01-01

    Teaching the molecular aspects of drug-target interactions and selectivity is not always an easy task. In this context, the use of alternative and engaging approaches could help pharmacy and chemistry students better understand this important topic of medicinal chemistry. Herein a 4 h practical exercise that uses freely available software as a…

  19. Public-channel cryptography based on mutual chaos pass filters.

    PubMed

    Klein, Einat; Gross, Noam; Kopelowitz, Evi; Rosenbluh, Michael; Khaykovich, Lev; Kinzel, Wolfgang; Kanter, Ido

    2006-10-01

    We study the mutual coupling of chaotic lasers and observe both experimentally and in numeric simulations that there exists a regime of parameters for which two mutually coupled chaotic lasers establish isochronal synchronization, while a third laser coupled unidirectionally to one of the pair does not synchronize. We then propose a cryptographic scheme, based on the advantage of mutual coupling over unidirectional coupling, where all the parameters of the system are public knowledge. We numerically demonstrate that in such a scheme the two communicating lasers can add a message signal (compressed binary message) to the transmitted coupling signal and recover the message in both directions with high fidelity by using a mutual chaos pass filter procedure. An attacker, however, fails to recover an errorless message even if he amplifies the coupling signal.

  20. 76 FR 71437 - Mutual Savings Association Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-17

    ... the public interest in order for the OCC to study the needs of and challenges facing mutual savings... for their time, but are eligible for reimbursement of travel expenses in accordance with applicable...

  1. Nonlinear pattern analysis of ventricular premature beats by mutual information

    NASA Technical Reports Server (NTRS)

    Osaka, M.; Saitoh, H.; Yokoshima, T.; Kishida, H.; Hayakawa, H.; Cohen, R. J.

    1997-01-01

    The frequency of ventricular premature beats (VPBs) has been related to the risk of mortality. However, little is known about the temporal pattern of occurrence of VPBs and its relationship to autonomic activity. Hence, we applied a general correlation measure, mutual information, to quantify how VPBs are generated over time. We also used mutual information to determine the correlation between VPB production and heart rate in order to evaluate effects of autonomic activity on VPB production. We examined twenty subjects with more than 3000 VPBs/day and simulated random time series of VPB occurrence. We found that mutual information values could be used to characterize quantitatively the temporal patterns of VPB generation. Our data suggest that VPB production is not random and VPBs generated with a higher value of mutual information may be more greatly affected by autonomic activity.

  2. Enhanced mutual capture of colored solitons by matched modulator

    NASA Astrophysics Data System (ADS)

    Feigenbaum, Eyal; Orenstein, Meir

    2004-08-01

    The mutual capture of two colored solitons is enhanced by a modulator, to a level which enables its practical exploitation, e.g., for a read- write mechanism in a soliton buffer. The enhanced capture was analyzed using closed form particle-like soliton perturbation, and verified by numerical simulations. Optimal modulator frequency and modulation depth are obtained. This mutual capture can be utilized for all-optical soliton logic and memory.

  3. Benefit and cost curves for typical pollination mutualisms.

    PubMed

    Morris, William F; Vázquez, Diego P; Chacoff, Natacha P

    2010-05-01

    Mutualisms provide benefits to interacting species, but they also involve costs. If costs come to exceed benefits as population density or the frequency of encounters between species increases, the interaction will no longer be mutualistic. Thus curves that represent benefits and costs as functions of interaction frequency are important tools for predicting when a mutualism will tip over into antagonism. Currently, most of what we know about benefit and cost curves in pollination mutualisms comes from highly specialized pollinating seed-consumer mutualisms, such as the yucca moth-yucca interaction. There, benefits to female reproduction saturate as the number of visits to a flower increases (because the amount of pollen needed to fertilize all the flower's ovules is finite), but costs continue to increase (because pollinator offspring consume developing seeds), leading to a peak in seed production at an intermediate number of visits. But for most plant-pollinator mutualisms, costs to the plant are more subtle than consumption of seeds, and how such costs scale with interaction frequency remains largely unknown. Here, we present reasonable benefit and cost curves that are appropriate for typical pollinator-plant interactions, and we show how they can result in a wide diversity of relationships between net benefit (benefit minus cost) and interaction frequency. We then use maximum-likelihood methods to fit net-benefit curves to measures of female reproductive success for three typical pollination mutualisms from two continents, and for each system we chose the most parsimonious model using information-criterion statistics. We discuss the implications of the shape of the net-benefit curve for the ecology and evolution of plant-pollinator mutualisms, as well as the challenges that lie ahead for disentangling the underlying benefit and cost curves for typical pollination mutualisms.

  4. Modelling nutritional mutualisms: challenges and opportunities for data integration.

    PubMed

    Clark, Teresa J; Friel, Colleen A; Grman, Emily; Shachar-Hill, Yair; Friesen, Maren L

    2017-09-01

    Nutritional mutualisms are ancient, widespread, and profoundly influential in biological communities and ecosystems. Although much is known about these interactions, comprehensive answers to fundamental questions, such as how resource availability and structured interactions influence mutualism persistence, are still lacking. Mathematical modelling of nutritional mutualisms has great potential to facilitate the search for comprehensive answers to these and other fundamental questions by connecting the physiological and genomic underpinnings of mutualisms with ecological and evolutionary processes. In particular, when integrated with empirical data, models enable understanding of underlying mechanisms and generalisation of principles beyond the particulars of a given system. Here, we demonstrate how mathematical models can be integrated with data to address questions of mutualism persistence at four biological scales: cell, individual, population, and community. We highlight select studies where data has been or could be integrated with models to either inform model structure or test model predictions. We also point out opportunities to increase model rigour through tighter integration with data, and describe areas in which data is urgently needed. We focus on plant-microbe systems, for which a wealth of empirical data is available, but the principles and approaches can be generally applied to any nutritional mutualism. © 2017 John Wiley & Sons Ltd/CNRS.

  5. Mutual information against correlations in binary communication channels.

    PubMed

    Pregowska, Agnieszka; Szczepanski, Janusz; Wajnryb, Eligiusz

    2015-05-19

    Explaining how the brain processing is so fast remains an open problem (van Hemmen JL, Sejnowski T., 2004). Thus, the analysis of neural transmission (Shannon CE, Weaver W., 1963) processes basically focuses on searching for effective encoding and decoding schemes. According to the Shannon fundamental theorem, mutual information plays a crucial role in characterizing the efficiency of communication channels. It is well known that this efficiency is determined by the channel capacity that is already the maximal mutual information between input and output signals. On the other hand, intuitively speaking, when input and output signals are more correlated, the transmission should be more efficient. A natural question arises about the relation between mutual information and correlation. We analyze the relation between these quantities using the binary representation of signals, which is the most common approach taken in studying neuronal processes of the brain. We present binary communication channels for which mutual information and correlation coefficients behave differently both quantitatively and qualitatively. Despite this difference in behavior, we show that the noncorrelation of binary signals implies their independence, in contrast to the case for general types of signals. Our research shows that the mutual information cannot be replaced by sheer correlations. Our results indicate that neuronal encoding has more complicated nature which cannot be captured by straightforward correlations between input and output signals once the mutual information takes into account the structure and patterns of the signals.

  6. Mutuality and the social regulation of neural threat responding

    PubMed Central

    Coan, James A.; Kasle, Shelley; Jackson, Alice; Schaefer, Hillary S.; Davidson, Richard J.

    2014-01-01

    Recent studies have shown that the presence of a caring relational partner can attenuate neural responses to threat. Here we report reanalyzed data from Coan, Schaefer, and Davidson (2006), investigating the role of relational mutuality in the neural response to threat. Mutuality reflects the degree to which couple members show mutual interest in the sharing of internal feelings, thoughts, aspirations, and joys – a vital form of responsiveness in attachment relationships. We predicted that wives who were high (versus low) in perceived mutuality, and who attended the study session with their husbands, would show reduced neural threat reactivity in response to mild electric shocks. We also explored whether this effect would depend on physical contact (handholding). As predicted, we observed that higher mutuality scores corresponded with decreased neural threat responding in the right dorsolateral prefrontal cortex and supplementary motor cortex. These effects were independent of hand-holding condition. These findings suggest that higher perceived mutuality corresponds with decreased self-regulatory effort and attenuated preparatory motor activity in response to threat cues, even in the absence of direct physical contact with social resources. PMID:23547803

  7. Interactions of Monoamine Oxidases with the Antiepileptic Drug Zonisamide: Specificity of Inhibition and Structure of the Human Monoamine oxidase B Complex

    PubMed Central

    Binda, Claudia; Aldeco, Milagros; Mattevi, Andrea; Edmondson, Dale E.

    2010-01-01

    The binding of zonisamide to purified, recombinant monoamine oxidases (MAOs) has been investigated. It is a competitive inhibitor of human MAO B (Ki = 3.1 ± 0.3 μM), of rat MAO B (Ki = 2.9 ± 0.5 μM), and of zebrafish MAO (Ki = 30.8 ± 5.3 μM). No inhibition is observed with purified human or rat MAO A. The 1.8 Å structure of the MAO B complex demonstrates that it binds within the substrate cavity. PMID:21175212

  8. Inhibition of lactation.

    PubMed

    Llewellyn-Jones, D

    1975-01-01

    The mechanism and hormonal regulation of lactation is explained and illustrated with a schematic representation. Circulating estrogen above a critical amount seems to be the inhibitory factor controlling lactation during pregnancy. Once delivery occurs, the level of estrogen falls, that of prolactin rises, and lactation begins. Nonsuckling can be used to inhibit lactation. Estrogens can also be used to inhibit lactation more quickly and with less pain. The reported association between estrogens and puerperal thromboembolism cannot be considered conclusive due to defects in the reporting studies. There is no reason not to use estrogens in lactation inhibition except for women over 35 who experienced a surgical delivery. Alternative therapy is available for these women. The recently-developed drug, brom-ergocryptine, may replace other methods of lactation inhibition.

  9. Multitarget drug design strategy in Alzheimer's disease: focus on cholinergic transmission and amyloid-β aggregation.

    PubMed

    Simoni, Elena; Bartolini, Manuela; Abu, Izuddin F; Blockley, Alix; Gotti, Cecilia; Bottegoni, Giovanni; Caporaso, Roberta; Bergamini, Christian; Andrisano, Vincenza; Cavalli, Andrea; Mellor, Ian R; Minarini, Anna; Rosini, Michela

    2017-06-01

    Alzheimer pathogenesis has been associated with a network of processes working simultaneously and synergistically. Over time, much interest has been focused on cholinergic transmission and its mutual interconnections with other active players of the disease. Besides the cholinesterase mainstay, the multifaceted interplay between nicotinic receptors and amyloid is actually considered to have a central role in neuroprotection. Thus, the multitarget drug-design strategy has emerged as a chance to face the disease network. By exploiting the multitarget approach, hybrid compounds have been synthesized and studied in vitro and in silico toward selected targets of the cholinergic and amyloidogenic pathways. The new molecules were able to target the cholinergic system, by joining direct nicotinic receptor stimulation to acetylcholinesterase inhibition, and to inhibit amyloid-β aggregation. The compounds emerged as a suitable starting point for a further optimization process.

  10. The inhibition of nicotine-evoked relaxation of the guinea-pig isolated basilar artery by some analgesic drugs and progesterone

    PubMed Central

    Rhodes, Keith F; Buckingham, Julia C; Kennard, Christopher

    1999-01-01

    The purpose of this study was to investigate the mechanism of nicotine-evoked relaxation of the guinea-pig isolated basilar artery and to study the effects of drugs associated with the aetiology or treatment of migraine on the nicotine response. The guinea-pig isolated basilar artery, pre-contracted with prostaglandin F2α (PGF2α), in the presence of atropine (3 μM) and guanethidine (3 μM), relaxed on addition of nicotine (0.1 mM) in approximately 50% of preparations. The responses to nicotine were of short duration and blocked in preparations pre-treated for 10 min with capsaicin (1 μM) and are therefore probably a consequence of the stimulation of trigeminal C fibre terminals. Responses to nicotine were reduced in the presence of 5-carboxamidotryptamine, 5-hydroxytryptamine and sumatriptan in that order of potency. This is consistent with a 5-HT1 receptor mechanism. These agonists evoked small additional contractions in vessels pre-contracted with PGF2α. Indomethacin (0.3–10 μM), aspirin (10–30 μM), and nitro-L-arginine methyl ester (L-NAME, 0.1 mM) reduced nicotine-evoked relaxation of the basilar artery, suggesting the involvement of both nitric oxide and cyclo-oxygenase products in this response. Progesterone (1 μM) markedly reduced the response to nicotine, a possible reflection of the ion channel blocking activity of high concentrations of this compound. The guinea-pig basilar artery is a preparation in which the effects of drugs on responses to stimulation of trigeminal nerve terminals can be studied in vitro and may thus be of interest in assessing the actions of drugs used in treatment of headache. PMID:10193781

  11. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities.

    PubMed

    Li, Xue-Qing; Andersson, Tommy B; Ahlström, Marie; Weidolf, Lars

    2004-08-01

    The human clearance of proton pump inhibitors (PPIs) of the substituted benzimidazole class is conducted primarily by the hepatic cytochrome P450 (P450) system. To compare the potency and specificity of the currently used PPIs (i.e., omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole) as inhibitors of four cytochrome P450 enzymes (CYP2C9, 2C19, 2D6, and 3A4), we performed in vitro studies using human liver microsomal preparations and recombinant CYP2C19. Sample analysis was done using selected reaction monitoring liquid chromatography/tandem mass spectometry. With several systems for CYP2C19 activity (two marker reactions, S-mephenytoin 4'-hydroxylation and R-omeprazole 5-hydroxylation, tested in either human liver microsomes or recombinant CYP2C19), the five PPIs showed competitive inhibition of CYP2C19 activity with K(i) of 0.4 to 1.5 microM for lansoprazole, 2 to 6 microM for omeprazole, approximately 8 microM for esomeprazole, 14 to 69 microM for pantoprazole, and 17 to 21 microM for rabeprazole. Pantoprazole was a competitive inhibitor of both CYP2C9-catalyzed diclofenac 4'-hydroxylation and CYP3A4-catalyzed midazolam 1'-hydroxylation (K(i) of 6 and 22 microM, respectively), which were at least 2 times more potent than the other PPIs. All PPIs were poor inhibitors of CYP2D6-mediated bufuralol 1'-hydroxylation with IC(50) > 200 microM. The inhibitory potency of a nonenzymatically formed product of rabeprazole, rabeprazole thioether, was also investigated and showed potent, competitive inhibition with K(i) values of 6 microM for CYP2C9, 2 to 8 microM for CYP2C19, 12 microM for CYP2D6, and 15 microM for CYP3A4. The inhibitory potency of R-omeprazole on the four studied P450 enzymes was also studied and showed higher inhibitory potency than its S-isomer on CYP2C9 and 2C19 activities. Our data suggest that, although the inhibitory profiles of the five studied PPIs were similar, lansoprazole and pantoprazole are the most potent in vitro inhibitors

  12. Zen and the brain: mutually illuminating topics.

    PubMed

    Austin, James H

    2013-10-24

    Zen Buddhist meditative practices emphasize the long-term, mindful training of attention and awareness during one's ordinary daily-life activities, the shedding of egocentric behaviors, and the skillful application of one's innate compassionate resources of insight-wisdom toward others and oneself. This review focuses on how such a comprehensive approach to training the brain could relate to a distinctive flavor of Zen: its emphasis on direct experience, with special reference to those major acute states of awakening that create deep transformations of consciousness and behavior. In Japanese, these advanced states are called kensho and satori. Ten key concepts are reviewed. They begin by distinguishing between the concentrative and receptive forms of meditation, noticing the complementary ways that they each train our normal "top-down" and "bottom-up" modes of attentive processing. Additional concepts distinguish between our two major processing pathways. The self-centered, egocentric frame of reference processes information in relation to our body (our soma) or to our mental functions (our psyche). The other-centered frame of reference processes information anonymously. Its prefix, allo- simply means "other" in Greek. Subsequent concepts consider how these useful Greek words-ego/allo, soma/psyche-correlate with the normal functional anatomy of important thalamo ↔ cortical connections. A plausible model then envisions how a triggering stimulus that captures attention could prompt the reticular nucleus to release GABA; how its selective inhibition of the dorsal thalamus could then block both our higher somatic and psychic cortical functions; so as to: (a) delete the maladaptive aspects of selfhood, while also (b) releasing the direct, all-inclusive, globally-unified experience of other. Two final concepts consider how the long-term meditative training of intuitive functions relates to certain kinds of word-free spatial tasks that involve insightful creative

  13. Zen and the brain: mutually illuminating topics

    PubMed Central

    Austin, James H.

    2013-01-01

    Zen Buddhist meditative practices emphasize the long-term, mindful training of attention and awareness during one's ordinary daily-life activities, the shedding of egocentric behaviors, and the skillful application of one's innate compassionate resources of insight-wisdom toward others and oneself. This review focuses on how such a comprehensive approach to training the brain could relate to a distinctive flavor of Zen: its emphasis on direct experience, with special reference to those major acute states of awakening that create deep transformations of consciousness and behavior. In Japanese, these advanced states are called kensho and satori. Ten key concepts are reviewed. They begin by distinguishing between the concentrative and receptive forms of meditation, noticing the complementary ways that they each train our normal “top–down” and “bottom–up” modes of attentive processing. Additional concepts distinguish between our two major processing pathways. The self-centered, egocentric frame of reference processes information in relation to our body (our soma) or to our mental functions (our psyche). The other-centered frame of reference processes information anonymously. Its prefix, allo- simply means “other” in Greek. Subsequent concepts consider how these useful Greek words—ego/allo, soma/psyche—correlate with the normal functional anatomy of important thalamo ↔ cortical connections. A plausible model then envisions how a triggering stimulus that captures attention could prompt the reticular nucleus to release GABA; how its selective inhibition of the dorsal thalamus could then block both our higher somatic and psychic cortical functions; so as to: (a) delete the maladaptive aspects of selfhood, while also (b) releasing the direct, all-inclusive, globally-unified experience of other. Two final concepts consider how the long-term meditative training of intuitive functions relates to certain kinds of word-free spatial tasks that involve

  14. [Drugs inhibiting parathyroid hormone (PTH) secretion by control of the calcium receptor (calcimimetics)--effect on the set point of calcium-regulated PTH secretion].

    PubMed

    Nagano, Nobuo

    2005-01-01

    Calcimimetics are positive allosteric modulators that activate the parathyroid calcium receptor (CaR) and thereby immediately suppress parathyroid hormone (PTH) secretion. Preclinical studies have demonstrated that calcimimetics inhibit PTH secretion and parathyroid gland hyperplasia and ameliorates bone qualities in rats with chronic renal insufficiency. Clinical trials with cinacalcet hydrochloride, a calcimimetic compound, have shown that calcimimetics possess lowering effects not only on serum PTH levels but also on serum phosphorus levels in dialysis patients with secondary hyperparathyroidism (2HPT). Thus, calcimimetics have considerable potential as an innovative medical approach to manage 2HPT. In this review, the similarities are extrapolated between the pharmacological effect of calcimimetics on the set point of Ca-regulated PTH secretion and clinical observations in affected subjects with activating CaR mutations.

  15. Nicotinamide pharmacokinetics in humans: effect of gastric acid inhibition, comparison of rectal vs oral administration and the use of saliva for drug monitoring.

    PubMed Central

    Stratford, M. R.; Dennis, M. F.; Hoskin, P.; Phillips, H.; Hodgkiss, R. J.; Rojas, A.

    1996-01-01

    The effect of inhibiting gastric acid secretion on nicotinamide pharmacokinetics was studied in five volunteers with the intent of reducing the large variations observed previously in the time to and magnitude of peak plasma concentrations. Plasma levels were determined using a standard high-performance liquid chromatography (HPLC) method after an oral dose of 3 g of nicotinamide either alone or preceded by pretreatment with omeprazole. Suppression of gastric acid production had no significant effect on the rate of uptake or on the peak levels achieved. To bypass gastric acidity, the rectal route was also assessed using a suppository in four volunteers and one patient undergoing radiotherapy. Absorption was slow and variable and much lower plasma levels were observed than after oral dosing. Thus, no improvement in the pharmacokinetics of nicotinamide was observed using either of these two approaches. Parallel estimations were made using a novel and non-invasive method for monitoring nicotinamide pharmacokinetics in saliva. A large and variable fraction of the total amount of nicotinamide-related material in saliva was found to be nicotinic acid, a metabolite not normally found in human plasma. This conversion was inhibited by the use of a chlorhexidine mouthwash, indicating that the oral flora was responsible for its production. The time to peak levels of nicotinamide or of nicotinamide plus nicotinic acid in saliva correlated well with that in plasma. However, peak concentrations for nicotinamide alone were significantly lower than in plasma, and very variable, whereas for nicotinamide plus nicotinic acid saliva levels were 20-30% higher, but more consistent. Although there are some practical difficulties in quantitatively handling saliva, the method is very useful for monitoring nicotinamide pharmacokinetics and for assessment of compliance with nicotinamide treatment. PMID:8679452

  16. Enhanced growth inhibition of prostate cancer in vitro and in vivo by a recombinant adenovirus-mediated dual-aptamer modified drug delivery system.

    PubMed

    Jing, Pei; Cao, Shousong; Xiao, Shuangli; Zhang, Xiaoqin; Ke, Siyun; Ke, Famin; Yu, Xin; Wang, Li; Wang, Shurong; Luo, Yuling; Zhong, Zhirong

    2016-12-28

    The peptide aptamer DUP-1 targets prostate-specific membrane antigen (PSMA)-negative cells, while the RNA aptamer A10-3.2 targets PSMA-positive prostate cancer cells. Moreover, the tumor-suppressor gene phosphatase and tensin homolog (PTEN) and the chemotherapeutic agent doxorubicin (DOX) effectively inhibit prostate cancer, and a recombinant adenovirus (Ad5) mediates high gene transfer efficiency. Here, we design a dual-aptamer modified tumor targeting gene and DOX delivery system mediated by recombinant adenovirus (A10-3.2(DOX)/DUP-1-PEG-Ad5, ADDP-Ad5). DUP-1 and A10-3.2 are connected to the adenovirus through polyethylene glycol (PEG), PTEN is integrated into Ad5, and DOX is embedded into the double chain of aptamer A10-3.2. The PEG-modification rate of Ad5 is 98.70 ± 2.43%. The DUP-1 and A10-3.2 modified products yield 80.40 ± 1.36% and 82.20 ± 2.14%, respectively. The uptake of ADDP-Ad5 and the expression of the reporter gene are enhanced by the system in PSMA-positive LNCaP and PSMA-negative PC3 human prostate cancer cells. ADDP-Ad5 significantly inhibits the cell growth of both LNCaP and PC3 cells. More importantly, ADDP-Ad5 is active in vivo against LNCaP and PC3 tumor xenografts and exhibits no significant toxicity to the mice. Therefore, ADDP-Ad5 may have clinical potential in prostate cancer therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. A 2-amino quinoline, 5-(3-(2-(7-chloroquinolin-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid, interacts with PfMDR1 and inhibits its drug transport in Plasmodium falciparum.

    PubMed

    Edaye, Sonia; Reiling, Sarah J; Leimanis, Mara L; Wunderlich, Juliane; Rohrbach, Petra; Georges, Elias

    2014-06-01

    Malaria is a major disease in the tropics where chemotherapy remains the main mode of treatment and as such the rise and spread of drug-resistant malaria can lead to human tragedy. Two membrane transport proteins, PfMDR1 (Plasmodium falciparum multidrug resistance protein 1) and PfCRT (P. falciparum chloroquine resistance transporter), have been shown to cause resistance to several antimalarials. Both PfMDR1 and PfCRT are localized to the digestive vacuolar membrane and appear to regulate the transport of drugs and physiological metabolites. In this study we have used MK571, a 2-amino quinoline, to explore its interaction with PfMDR1 and PfCRT in chloroquine-sensitive and -resistant strains of P. falciparum. Our results show that chloroquine-resistant strains (e.g., K1, Dd2, and 7G8) are consistently more sensitive to MK571 than chloroquine-sensitive strains (e.g., 3D7, 106/1 and D10). This association, however, was not maintained with the chloroquine-resistant strain FCB which IC50 value was similar to chloroquine-sensitive strains. Moreover, the susceptibility of chloroquine-sensitive and -resistant strains to MK571 does not correlate with mutated PfCRT, nor is it reversible with verapamil; but correlates with mutations in PfMDR1. Furthermore, MK571 appears to target the parasite's digestive vacuole (DV), as demonstrated by the ability of MK571 to: (1) block the accumulation of the fluorescent dye Fluo-4 AM, a PfMDR1 substrate, into the digestive vacuole; (2) reduce the transvacuolar pH gradient; and (3) inhibit the formation of β-hematin in vitro. Moreover, the presence of non-toxic concentrations of MK571 sensitized both chloroquine-sensitive and -resistant parasites to mefloquine and halofantrine, likely by competing against PfMDR1-mediated sequestering of the drugs into the DV compartment and away from the drugs' cytosolic targets. Our data, nevertheless, found only a minimal decrease in MK571 IC50 value in FCB parasite which second pfmdr1 copy was

  18. The anti-androgen drug dutasteride renders triple negative breast cancer cells more sensitive to chemotherapy via inhibition of HIF-1α-/VEGF-signaling.

    PubMed

    von Wahlde, Marie-Kristin; Hülsewig, Carolin; Ruckert, Christian; Götte, Martin; Kiesel, Ludwig; Bernemann, Christof

    2015-02-01

    Triple negative breast cancer (TNBC) is characterized by lack of expression of both estrogen and progesterone receptor as well as lack of amplification of HER2. Patients with TNBC carry an unfavorable prognosis compared to other breast cancer subtypes given that endocrine or HER2 targeted therapies are not effective, rendering chemotherapy the sole effective treatment option to date. Therefore, there is a high demand for additional novel treatment options. We previously published a list of genes showing both higher gene expression rates in TNBC and, in addition, are known to encode targets of non-oncologic drugs. SRD5A1, which encodes the type-1 isoform of the steroid-5alpha-reductase, which is involved in androgen metabolism, was found to be one of these genes. Dutasteride is a dual blocker of both the type-1 and type-2 isoform of SRD5A1 and is indicated in the treatment of benign prostate hyperplasia. Treatment of TNBC cell lines with dutasteride was associated with a dose-dependent decrease in cell viability, altered protein expression of VEGF and HIF-1α and increased chemosensitivity. Our results demonstrate that the SRD5A1-corresponding anti-androgenic drug dutasteride might act as a combinatorial therapeutic option besides standard chemotherapy in highly aggressive TNBC.

  19. Combination of Suboptimal Doses of Inhibitors Targeting Different Domains of LtrMDR1 Efficiently Overcomes Resistance of Leishmania spp. to Miltefosine by Inhibiting Drug Efflux

    PubMed Central

    Pérez-Victoria, José M.; Cortés-Selva, Fernando; Parodi-Talice, Adriana; Bavchvarov, Boris I.; Pérez-Victoria, F. Javier; Muñoz-Martínez, Francisco; Maitrejean, Mathias; Costi, M. Paola; Barron, Denis; Di Pietro, Attilio; Castanys, Santiago; Gamarro, Francisco

    2006-01-01

    Miltefosine (hexadecylphosphocholine) is the first orally active drug<