Sample records for dry coating process

  1. Localized analysis of paint-coat drying using dynamic speckle interferometry

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, Daniel; Tebaldi, Myrian; Grumel, Eduardo; Rabal, Hector; Elmaghraby, Adel

    2018-07-01

    The paint-coating is part of several industrial processes, including the automotive industry, architectural coatings, machinery and appliances. These paint-coatings must comply with high quality standards, for this reason evaluation techniques from paint-coatings are in constant development. One important factor from the paint-coating process is the drying, as it has influence on the quality of final results. In this work we present an assessment technique based on the optical dynamic speckle interferometry, this technique allows for the temporal activity evaluation of the paint-coating drying process, providing localized information from drying. This localized information is relevant in order to address the drying homogeneity, optimal drying, and quality control. The technique relies in the definition of a new temporal history of the speckle patterns to obtain the local activity; this information is then clustered to provide a convenient indicative of different drying process stages. The experimental results presented were validated using the gravimetric drying curves

  2. Dry coating, a novel coating technology for solid pharmaceutical dosage forms.

    PubMed

    Luo, Yanfeng; Zhu, Jesse; Ma, Yingliang; Zhang, Hui

    2008-06-24

    Dry coating is a coating technology for solid pharmaceutical dosage forms derived from powder coating of metals. In this technology, powdered coating materials are directly coated onto solid dosage forms without using any solvent, and then heated and cured to form a coat. As a result, this technology can overcome such disadvantages caused by solvents in conventional liquid coating as serious air pollution, high time- and energy-consumption and expensive operation cost encountered by liquid coating. Several dry coating technologies, including plasticizer-dry-coating, electrostatic-dry-coating, heat-dry-coating and plasticizer-electrostatic-heat-dry-coating have been developed and extensively reported. This mini-review summarized the fundamental principles and coating processes of various dry coating technologies, and thoroughly analyzed their advantages and disadvantages as well as commercialization potentials.

  3. Evaluating the process parameters of the dry coating process using a 2(5-1) factorial design.

    PubMed

    Kablitz, Caroline Désirée; Urbanetz, Nora Anne

    2013-02-01

    A recent development of coating technology is dry coating, where polymer powder and liquid plasticizer are layered on the cores without using organic solvents or water. Several studies evaluating the process were introduced in literature, however, little information about the critical process parameters (CPPs) is given. Aim of the study was the investigation and optimization of CPPs with respect to one of the critical quality attributes (CQAs), the coating efficiency of the dry coating process in a rotary fluid bed. Theophylline pellets were coated with hydroxypropyl methylcellulose acetate succinate as enteric film former and triethyl citrate and acetylated monoglyceride as plasticizer. A 2(5-1) design of experiments (DOEs) was created investigating five independent process parameters namely coating temperature, curing temperature, feeding/spraying rate, air flow and rotor speed. The results were evaluated by multilinear regression using the software Modde(®) 7. It is shown, that generally, low feeding/spraying rates and low rotor speeds increase coating efficiency. High coating temperatures enhance coating efficiency, whereas medium curing temperatures have been found to be optimum in terms of coating efficiency. This study provides a scientific base for the design of efficient dry coating processes with respect to coating efficiency.

  4. A novel electrostatic dry powder coating process for pharmaceutical dosage forms: immediate release coatings for tablets.

    PubMed

    Qiao, Mingxi; Zhang, Liqiang; Ma, Yingliang; Zhu, Jesse; Chow, Kwok

    2010-10-01

    An electrostatic dry powder coating process for pharmaceutical solid dosage forms was developed for the first time by electrostatic dry powder coating in a pan coater system. Two immediate release coating compositions with Opadry® AMB and Eudragit® EPO were successfully applied using this process. A liquid plasticizer was sprayed onto the surface of the tablet cores to increase the conductivity of tablet cores to enhance particle deposition, electrical resistivity reduced from greater than 1×10(13)Ωm to less than 1×10(9)Ωm, and to lower the glass transition temperature (T(g)) of the coating polymer for film forming in the pan coater. The application of liquid plasticizer was followed by spraying charged coating particles using an electrostatic charging gun to enhance the uniform deposition on tablet surface. The coating particles were coalesced into a thin film by curing at an acceptable processing temperature as formation was confirmed by SEM micrographs. The results also show that the optimized dry powder coating process produces tablets with smooth surface, good coating uniformity and release profile that are comparable to that of the tablet cores. The data also suggest that this novel electrostatic dry powder coating technique is an alternative to aqueous- or solvent-based coating process for pharmaceutical products. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  5. Heat and mass transfer models to understand the drying mechanisms of a porous substrate.

    PubMed

    Songok, Joel; Bousfield, Douglas W; Gane, Patrick A C; Toivakka, Martti

    2016-02-01

    While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.

  6. Dry particle coating of polymer particles for tailor-made product properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blümel, C., E-mail: karl-ernst.wirth@fau.de; Schmidt, J., E-mail: karl-ernst.wirth@fau.de; Dielesen, A., E-mail: karl-ernst.wirth@fau.de

    2014-05-15

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratiomore » and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.« less

  7. A Novel Approach for Dry Powder Coating of Pellets with Ethylcellulose. Part II: Evaluation of Caffeine Release.

    PubMed

    Albertini, Beatrice; Melegari, Cecilia; Bertoni, Serena; Dolci, Luisa Stella; Passerini, Nadia

    2018-04-01

    The objective of this study was to assess the efficacy and the capability of a novel ethylcellulose-based dry-coating system to obtain prolonged and stable release profiles of caffeine-loaded pellets. Lauric and oleic acids at a suitable proportion were used to plasticize ethylcellulose. The effect of coating level, percentage of drug loading, inert core particle size, and composition of the coating formulation including the anti-sticking agent on the drug release profile were fully investigated. A coating level of 15% w/w was the maximum layered amount which could modify the drug release. The best controlled drug release was obtained by atomizing talc (2.5% w/w) together with the solid plasticizer during the dry powder-coating process. SEM pictures revealed a substantial drug re-crystallization on the pellet surface, and the release studies evidenced that caffeine diffused through the plasticized polymer acting as pore former. Therefore, the phenomenon of caffeine migration across the coating layer had a strong influence on the permeability of the coating membrane. Comparing dry powder-coated pellets to aqueous film-coated ones, drug migration happened during storage, though more sustained release profiles were obtained. The developed dry powder-coating process enabled the production of stable caffeine sustained release pellets. Surprisingly, the release properties of the dry-coated pellets were mainly influenced by the way of addition of talc into the dry powder-coating blend and by the drug nature and affinity to the coating components. It would be interesting to study the efficacy of novel coating system using a different API.

  8. Dry coating of solid dosage forms: an overview of processes and applications.

    PubMed

    Foppoli, Anastasia Anna; Maroni, Alessandra; Cerea, Matteo; Zema, Lucia; Gazzaniga, Andrea

    2017-12-01

    Dry coating techniques enable manufacturing of coated solid dosage forms with no, or very limited, use of solvents. As a result, major drawbacks associated with both organic solvents and aqueous coating systems can be overcome, such as toxicological, environmental, and safety-related issues on the one hand as well as costly drying phases and impaired product stability on the other. The considerable advantages related to solventless coating has been prompting a strong research interest in this field of pharmaceutics. In the article, processes and applications relevant to techniques intended for dry coating are analyzed and reviewed. Based on the physical state of the coat-forming agents, liquid- and solid-based techniques are distinguished. The former include hot-melt coating and coating by photocuring, while the latter encompass press coating and powder coating. Moreover, solventless techniques, such as injection molding and three-dimensional printing by fused deposition modeling, which are not purposely conceived for coating, are also discussed in that they would open new perspectives in the manufacturing of coated-like dosage forms.

  9. Cleaning By Blasting With Pellets Of Dry Ice

    NASA Technical Reports Server (NTRS)

    Fody, Jody

    1993-01-01

    Dry process strips protective surface coats from parts to be cleaned, without manual scrubbing. Does not involve use of flammable or toxic solvents. Used to remove coats from variety of materials, including plastics, ceramics, ferrous and nonferrous metals, and composites. Adds no chemical-pollution problem to problem of disposal of residue of coating material. Process consists of blasting solid carbon dioxide (dry ice) pellets at surface to be cleaned. Pellets sublime on impact and pass into atmosphere as carbon dioxide gas. Size, harness, velocity, and quantity of pellets adjusted to suit coating material and substrate.

  10. Anti-reflection coatings on large area glass sheets

    NASA Technical Reports Server (NTRS)

    Pastirik, E.

    1980-01-01

    Antireflective coatings which may be suitable for use on the covers of photovoltaic solar modules can be easily produced by a dipping process. The coatings are applied to glass by drawing sheets of glass vertically out of dilute aqueous sodium silicate solutions at a constant speed, allowing the adherent liquid film to dry, then exposing the dried film to concentrated sulfuric acid, followed by a water rinse and dry. The process produces coatings of good optical performance (96.7 percent peak transmission at 0.540 mu M wavelength) combined with excellent stain and soil resistance, and good resistance to abrasion. The process is reproduceable and easily controlled.

  11. Solvent-free dry powder coating process for low-cost manufacturing of LiNi1/3Mn1/3Co1/3O2 cathodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Al-Shroofy, Mohanad; Zhang, Qinglin; Xu, Jiagang; Chen, Tao; Kaur, Aman Preet; Cheng, Yang-Tse

    2017-06-01

    We report a solvent-free dry powder coating process for making LiNi1/3Mn1/3Co1/3O2 (NMC) positive electrodes in lithium-ion batteries. This process eliminates volatile organic compound emission and reduces thermal curing time from hours to minutes. A mixture of NMC, carbon black, and poly(vinylidene difluoride) was electrostatically sprayed onto an aluminum current collector, forming a uniformly distributed electrode with controllable thickness and porosity. Charge/discharge cycling of the dry-powder-coated electrodes in lithium-ion half cells yielded a discharge specific capacity of 155 mAh g-1 and capacity retention of 80% for more than 300 cycles when the electrodes were tested between 3.0 and 4.3 V at a rate of C/5. The long-term cycling performance and durability of dry-powder coated electrodes are similar to those made by the conventional wet slurry-based method. This solvent-free dry powder coating process is a potentially lower-cost, higher-throughput, and more environmentally friendly manufacturing process compared with the conventional wet slurry-based electrode manufacturing method.

  12. Solventless dry powder coating for sustained drug release using mechanochemical treatment based on the tri-component system of acetaminophen, carnauba wax and glidant.

    PubMed

    Hoashi, Yohei; Tozuka, Yuichi; Takeuchi, Hirofumi

    2013-02-01

    Solventless dry powder coating methods have many advantages compared to solvent-based methods: they are more economical, simpler, safer, more environmentally friendly and easier to scale up. The purpose of this study was to investigate a highly effective dry powder coating method using the mechanofusion system, a mechanochemical treatment equipped with high compressive and shearing force. Acetaminophen (AAP) and carnauba wax (CW) were selected as core particles of the model drug and coating material, respectively. Mixtures of AAP and CW with and without talc were processed using the mechanofusion system. Sustained AAP release was observed by selecting appropriate processing conditions for the rotation speed and the slit size. The dissolution rate of AAP processed with CW substantially decreased with an increase in talc content up to 40% of the amount of CW loaded. Increasing the coating amount by two-step addition of CW led to more effective coating and extended drug release. Scanning electron micrographs indicated that CW adhered and showed satisfactory coverage of the surface of AAP particles. Effective CW coating onto the AAP surface was successfully achieved by strictly controlling the processing conditions and the composition of core particles, coating material and glidant. Our mechanochemical dry powder coating method using the mechanofusion system is a simple and promising means of solventless pharmaceutical coating.

  13. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion

    PubMed Central

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-01-01

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature. PMID:27010967

  14. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-03-01

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature.

  15. Solventless pharmaceutical coating processes: a review.

    PubMed

    Bose, Sagarika; Bogner, Robin H

    2007-01-01

    Coatings are an essential part in the formulation of pharmaceutical dosage form to achieve superior aesthetic quality (e.g., color, texture, mouth feel, and taste masking), physical and chemical protection for the drugs in the dosage forms, and modification of drug release characteristics. Most film coatings are applied as aqueous- or organic-based polymer solutions. Both organic and aqueous film coating bring their own disadvantages. Solventless coating technologies can overcome many of the disadvantages associated with the use of solvents (e.g., solvent exposure, solvent disposal, and residual solvent in product) in pharmaceutical coating. Solventless processing reduces the overall cost by eliminating the tedious and expensive processes of solvent disposal/treatment. In addition, it can significantly reduce the processing time because there is no drying/evaporation step. These environment-friendly processes are performed without any heat in most cases (except hot-melt coating) and thus can provide an alternative technology to coat temperature-sensitive drugs. This review discusses and compares six solventless coating methods - compression coating, hot-melt coating, supercritical fluid spray coating, electrostatic coating, dry powder coating, and photocurable coating - that can be used to coat the pharmaceutical dosage forms.

  16. Process for Making Ceramic Mold

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    2001-01-01

    An improved process for slip casting molds that can be more economically automated and that also exhibits greater dimensional stability is disclosed. The process involves subjecting an investment pattern, preferably made from wax, to successive cycles of wet-dipping in a slurry of colloidal, silica-based binder and dry powder-coating, or stuccoing with plaster of Paris or calcium sulfate mixtures to produce a multi-layer shell over the pattern. The invention as claimed entails applying a primary and a secondary coating to the investment pattern. At least two wet-dipping on in a primary slurry and dry-stuccoing cycles provide the primary coating, and an additional two wet-dippings and dry-stuccoing cycles provide the secondary, or back-up, coating. The primary and secondary coatings produce a multi-layered shell pattern. The multi-layered shell pattern is placed in a furnace first to cure and harden, and then to vaporize the investment pattern, leaving a detailed, high precision shell mold.

  17. The effect of silica-coating by sol-gel process on resin-zirconia bonding.

    PubMed

    Lung, Christie Ying Kei; Kukk, Edwin; Matinlinna, Jukka Pekka

    2013-01-01

    The effect of silica-coating by sol-gel process on the bond strength of resin composite to zirconia was evaluated and compared against the sandblasting method. Four groups of zirconia samples were silica-coated by sol-gel process under varied reagent ratios of ethanol, water, ammonia and tetraethyl orthosilicate and for different deposition times. One control group of zirconia samples were treated with sandblasting. Within each of these five groups, one subgroup of samples was kept in dry storage while another subgroup was aged by thermocycling for 6,000 times. Besides shear bond testing, the surface topography and surface elemental composition of silica-coated zirconia samples were also examined using scanning electron microscopy and X-ray photoelectron spectroscopy. Comparison of silica coating methods revealed significant differences in bond strength among the Dry groups (p<0.001) and Thermocycled groups (p<0.001). Comparison of sol-gel deposition times also revealed significant differences in bond strength among the Dry groups (p<0.01) and Thermocycled groups (p<0.001). Highest bond strengths were obtained after 141-h deposition: Dry (7.97±3.72 MPa); Thermocycled (2.33±0.79 MPa). It was concluded that silica-coating of zirconia by sol-gel process resulted in weaker resin bonding than by sandblasting.

  18. Development and evaluation of a dimensionless mechanistic pan coating model for the prediction of coated tablet appearance.

    PubMed

    Niblett, Daniel; Porter, Stuart; Reynolds, Gavin; Morgan, Tomos; Greenamoyer, Jennifer; Hach, Ronald; Sido, Stephanie; Karan, Kapish; Gabbott, Ian

    2017-08-07

    A mathematical, mechanistic tablet film-coating model has been developed for pharmaceutical pan coating systems based on the mechanisms of atomisation, tablet bed movement and droplet drying with the main purpose of predicting tablet appearance quality. Two dimensionless quantities were used to characterise the product properties and operating parameters: the dimensionless Spray Flux (relating to area coverage of the spray droplets) and the Niblett Number (relating to the time available for drying of coating droplets). The Niblett Number is the ratio between the time a droplet needs to dry under given thermodynamic conditions and the time available for the droplet while on the surface of the tablet bed. The time available for drying on the tablet bed surface is critical for appearance quality. These two dimensionless quantities were used to select process parameters for a set of 22 coating experiments, performed over a wide range of multivariate process parameters. The dimensionless Regime Map created can be used to visualise the effect of interacting process parameters on overall tablet appearance quality and defects such as picking and logo bridging. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.

    PubMed

    Qu, Li; Morton, David A V; Zhou, Qi Tony

    2015-01-01

    Cohesive powders are problematic in the manufacturing of pharmaceutical solid dosage forms because they exhibit poor flowability, fluidization and aerosolization. These undesirable bulk properties of cohesive powders represent a fundamental challenge in the design of efficient pharmaceutical manufacturing processes. Recently, mechanical dry coating has attracted increasing attention as it can improve the bulk properties of cohesive powders in a cheaper, simpler, safer and more environment-friendly way than the existing solvent-based counterparts. In this review, mechanical dry coating techniques are outlined and their potential applications in formulation and manufacturing of pharmaceutical solid dosage forms are discussed. Reported data from the literature have shown that mechanical dry coating holds promise for the design of superior pharmaceutical solid formulations or manufacturing processes by engineering the interfaces of cohesive powders in an efficient and economical way.

  20. Functionalised particles using dry powder coating in pharmaceutical drug delivery: promises and challenges.

    PubMed

    Dahmash, Eman Z; Mohammed, Afzal R

    2015-01-01

    Production of functionalised particles using dry powder coating is a one-step, environmentally friendly process that paves the way for the development of particles with targeted properties and diverse functionalities. Applying the first principles in physical science for powders, fine guest particles can be homogeneously dispersed over the surface of larger host particles to develop functionalised particles. Multiple functionalities can be modified including: flowability, dispersibility, fluidisation, homogeneity, content uniformity and dissolution profile. The current publication seeks to understand the fundamental underpinning principles and science governing dry coating process, evaluate key technologies developed to produce functionalised particles along with outlining their advantages, limitations and applications and discusses in detail the resultant functionalities and their applications. Dry particle coating is a promising solvent-free manufacturing technology to produce particles with targeted functionalities. Progress within this area requires the development of continuous processing devices that can overcome challenges encountered with current technologies such as heat generation and particle attrition. Growth within this field requires extensive research to further understand the impact of process design and material properties on resultant functionalities.

  1. Controlled release from drug microparticles via solventless dry-polymer coating.

    PubMed

    Capece, Maxx; Barrows, Jason; Davé, Rajesh N

    2015-04-01

    A novel solvent-less dry-polymer coating process employing high-intensity vibrations avoiding the use of liquid plasticizers, solvents, binders, and heat treatments is utilized for the purpose of controlled release. The main hypothesis is that such process having highly controllable processing intensity and time may be effective for coating particularly fine particles, 100 μm and smaller via exploiting particle interactions between polymers and substrates in the dry state, while avoiding breakage yet achieving conformal coating. The method utilizes vibratory mixing to first layer micronized polymer onto active pharmaceutical ingredient (API) particles by virtue of van der Waals forces and to subsequently mechanically deform the polymer into a continuous film. As a practical example, ascorbic acid and ibuprofen microparticles, 50-500 μm, are coated with the polymers polyethylene wax or carnauba wax, a generally recognized as safe material, resulting in controlled release on the order of seconds to hours. As a novelty, models are utilized to describe the coating layer thickness and the controlled-release behavior of the API, which occurs because of a diffusion-based mechanism. Such modeling would allow the design and control of the coating process with application for the controlled release of microparticles, particularly those less than 100 μm, which are difficult to coat by conventional solvent coating methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Innovative approaches for converting a wood hydrolysate to high-quality barrier coatings.

    PubMed

    Ryberg, Yingzhi Zhu; Edlund, Ulrica; Albertsson, Ann-Christine

    2013-08-28

    An advanced approach for the efficient and controllable production of softwood hydrolysate-based coatings with excellent oxygen-barrier performance is presented. An innovative conversion of the spray-drying technique into a coating applicator process allowed for a fast and efficient coating process requiring solely aqueous solutions of softwood hydrolysate, even without additives. Compared to analogous coatings prepared by manual application, the spray-drying produced coatings were more homogeneous and smooth, and they adhered more strongly to the substrate. The addition of glyoxal to the aqueous softwood hydrolysate solutions prior to coating formation allowed for hemicellulose cross-linking, which improved both the mechanical integrity and the oxygen-barrier performance of the coatings. A real-time scanning electron microscopy imaging assessment of the tensile deformation of the coatings allowed for a deeper understanding of the ability of the coating layer itself to withstand stress as well as the coating-to-substrate adhesion.

  3. A modified dynamical model of drying process of polymer blend solution coated on a flat substrate

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2008-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication. And for example numerical simulation of the model reproduces a typical thickness profile of the polymer film formed after drying. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of numerical simulations. Then we drove nonlinear equations of drying process from the dynamical model and the fruits were reported. The subject of above studies was limited to solution having one kind of solute though the model could essentially deal with solution having some kinds of solutes. But nowadays discussion of drying process of a solution having some kinds of solutes is needed because drying process of solution having some kinds of solutes appears in many industrial scenes. Polymer blend solution is one instance. And typical resist consists of a few kinds of polymers. Then we introduced a dynamical model of drying process of polymer blend solution coated on a flat substrate and results of numerical simulations of the dynamical model. But above model was the simplest one. In this study, we modify above dynamical model of drying process of polymer blend solution adding effects that some parameters change with time as functions of some variables to it. Then we consider essence of drying process of polymer blend solution through comparison between results of numerical simulations of the modified model and those of the former model.

  4. Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading.

    PubMed

    Han, Xi; Ghoroi, Chinmay; Davé, Rajesh

    2013-02-14

    Motivated by our recent study showing improved flow and dissolution rate of the active pharmaceutical ingredient (API) powders (20 μm) produced via simultaneous micronization and surface modification through continuous fluid energy milling (FEM) process, the performance of blends and direct compacted tablets with high drug loading is examined. Performance of 50 μm API powders dry coated without micronization is also considered for comparison. Blends of micronized, non-micronized, dry coated or uncoated API powders at 30, 60 and 70% drug loading, are examined. The results show that the blends containing dry coated API powders, even micronized ones, have excellent flowability and high bulk density compared to the blends containing uncoated API, which are required for direct compaction. As the drug loading increases, the difference between dry coated and uncoated blends is more pronounced, as seen in the proposed bulk density-FFC phase map. Dry coating led to improved tablet compactibility profiles, corresponding with the improvements in blend compressibility. The most significant advantage is in tablet dissolution where for all drug loadings, the t(80) for the tablets with dry coated APIs was well under 5 min, indicating that this approach can produce nearly instant release direct compacted tablets at high drug loadings. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Differences in fundamental and functional properties of HPMC co-processed fillers prepared by fluid-bed coating and spray drying.

    PubMed

    Dong, QianQian; Zhou, MiaoMiao; Lin, Xiao; Shen, Lan; Feng, Yi

    2018-07-01

    This study aimed to develop novel co-processed tablet fillers based on the principle of particle engineering for direct compaction and to compare the characteristics of co-processed products obtained by fluid-bed coating and co-spray drying, respectively. Water-soluble mannitol and water-insoluble calcium carbonate were selected as representative fillers for this study. Hydroxypropyl methylcellulose (HPMC), serving as a surface property modifier, was distributed on the surface of primary filler particles via the two co-processing methods. Both fundamental and functional properties of the products were comparatively investigated. The results showed that functional properties of the fillers, like flowability, compactibility, and drug-loading capacity, were effectively improved by both co-processing methods. However, fluid-bed coating showed greater advantages over co-spray drying in some aspects, which was mainly attributed to the remarkable differences in some fundamental properties of co-processed powders, like particle size, surface topology, and particle structure. For example, the more irregular surface and porous structure induced by fluid-bed coating could contribute to better compaction properties and lower lubricant sensitivity due to the increasing contact area and mechanical interlocking between particles under pressure. More effective surface distribution of HPMC during fluid-bed coating was also a contributor. In addition, such a porous agglomerate structure could also reduce the separation of drug and excipients after mixing, resulting in the improvement in drug loading capacity and tablet uniformity. In summary, fluid-bed coating appears to be more promising for co-processing than spray drying in some aspects, and co-processed excipients produced by it have a great prospect for further investigations and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes

    NASA Astrophysics Data System (ADS)

    Deng, Jianxin; Yan, Pei; Wu, Ze

    2012-11-01

    MoS2 metal composite coatings have been successful used in dry turning, but its suitability for dry drilling has not been yet established. Therefore, it is necessary to study the friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes. In the present study, MoS2/Zr composite coatings are deposited on the surface of W6Mo5Cr4V2 high speed steel(HSS). Microstructural and fundamental properties of these coatings are examined. Ball-on-disc sliding wear tests on the coated discs are carried out, and the drilling performance of the coated drills is tested. Test results show that the MoS2/Zr composite coatings exhibit decreases friction coefficient to that of the uncoated HSS in sliding wear tests. Energy dispersive X-ray(EDX) analysis on the wear surface indicates that there is a transfer layer formed on the counterpart ball during sliding wear processes, which contributes to the decreasing of the friction coefficient between the sliding couple. Drilling tests indicate that the MoS2/Zr coated drills show better cutting performance compared to the uncoated HSS drills, coating delamination and abrasive are found to be the main flank and rake wear mode of the coated drills. The proposed research founds the base of the application of MoS2 metal composite coatings on dry drilling.

  7. Nonlinear dynamics that appears in the dynamical model of drying process of a polymer solution coated on a flat substrate

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2007-01-01

    We have proposed and modified the dynamical model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication and have presented the fruits through some meetings and so on. Though basic equations of the dynamical model have characteristic nonlinearity, character of the nonlinearity has not been studied enough yet. In this paper, at first, we derive nonlinear equations from the dynamical model of drying process of polymer solution. Then we introduce results of numerical simulations of the nonlinear equations and consider roles of various parameters. Some of them are indirectly concerned in strength of non-equilibriumity. Through this study, we approach essential qualities of nonlinearity in non-equilibrium process of drying process.

  8. Comprehensive process maps for synthesizing high density aluminum oxide-carbon nanotube coatings by plasma spraying for improved mechanical and wear properties

    NASA Astrophysics Data System (ADS)

    Keshri, Anup Kumar

    Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ˜27% and ˜24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.

  9. Magnetorheological materials, method for making, and applications thereof

    DOEpatents

    Shen, Rui; Yang, Hong; Shafrir, Shai N.; Miao, Chunlin; Wang, Mimi; Mici, Joni; Lambropoulos, John C.; Jacobs, Stephen D.

    2014-08-19

    A magnetorheological material comprises a magnetic particle and a ceramic material, wherein the magnetorheological material is in a dried form and further wherein a portion of the ceramic material is in the form of a nanocrystalline coating over the entire exterior surface of the magnetic particle and another portion of the ceramic material is in the form of a free nanocrystal. A magnetorheological material comprises a magnetic particle having a ceramic material coating over an external surface thereof as a result of a coating process, and a free nanocrystal of the ceramic material in the form of a residual by-product of the coating process. A sol-gel process for making a magnetorheological product comprises providing a sol of a desired ceramic coating material; combining a desired quantity of carbonyl iron (CI) particles with the sol to coat the CI particles with the ceramic coating material; creating a resulting quantity of nanocrystalline ceramic material-coated CI particles and a quantity of free nanocrystals of the ceramic material; and, drying the resulting quantity of coated CI particles and free nanocrystals to a moisture content equal to or less than 2 wt %.

  10. The Environmental Assessment and Management (TEAM) Guide: New York Supplement

    DTIC Science & Technology

    2010-03-01

    pressure-sensitive tape regardless of substance (including paper , fabric or plastic film) and related web coating processes on plastic film such as...Cartridge Filter - a replaceable cartridge filter that contains one of the following as the filter medium: paper , activated carbon, or paper and activated...associated drying or curing areas. A single coating line ends after drying or curing and before other surface coatings are applied. For any web

  11. Influence of additives on melt viscosity, surface tension, and film formation of dry powder coatings.

    PubMed

    Sauer, Dorothea; McGinity, James W

    2009-06-01

    Limited information on thermally cured dry-powder coatings used for solid dosage forms has been available in the literature. The aim of this study was to characterize the film formation process of Eudragit L 100-55 dry-powder coatings and to investigate the influence of film additives on melt viscosity and surface tension. The coating process employed no liquids and the plasticizer was combined with the polymer using hot melt extrusion. Thermoanalytical methods including differential scanning calorimetry and thermogravimetric analysis (TGA) were used to investigate the thermal properties of the dry-coating formulations. The rheological behavior of the coating formulations were characterized with the extrusion torque, and the surface energy parameters were determined from contact angle measurements. The influence of the level of triethyl citrate (TEC) as plasticizer and polyethylene glycol (PEG) 3350 in the polymer film on film formation was investigated using a digital force tester. TGA confirmed thermal stability of all coating excipients at the investigated curing conditions. Increasing TEC levels and the addition of PEG 3350 as a low melting excipient in the coating reduced the viscosity of the polymer. Plasticization of the polymer with TEC increased the surface free energy, whereas the admixture of 10% PEG 3350 did not affect the surface free energy of Eudragit L 100-55. The spreading coefficient of the polymers over two sample tablet formulations was reduced with increasing surface free energy. During the curing process, puncture strength, and elongation of powder-cast films increased. The effect of curing time on the mechanical properties was dependent on the plasticizer content. The incorporation of TEC and PEG 3350 into the Eudragit L 100-55 powder coating formulation improved film formation. Mechanical testing of powder-cast films showed an increase of both elongation and puncture strength over the curing process as criterion for polymer particle fusion, where film formation progressed faster at high plasticizer levels.

  12. Implementation of quality by design approach in manufacturing process optimization of dry granulated, immediate release, coated tablets - a case study.

    PubMed

    Teżyk, Michał; Jakubowska, Emilia; Milanowski, Bartłomiej; Lulek, Janina

    2017-10-01

    The aim of this study was to optimize the process of tablets compression and identification of film-coating critical process parameters (CPPs) affecting critical quality attributes (CQAs) using quality by design (QbD) approach. Design of experiment (DOE) and regression methods were employed to investigate hardness, disintegration time, and thickness of uncoated tablets depending on slugging and tableting compression force (CPPs). Plackett-Burman experimental design was applied to identify critical coating process parameters among selected ones that is: drying and preheating time, atomization air pressure, spray rate, air volume, inlet air temperature, and drum pressure that may influence the hardness and disintegration time of coated tablets. As a result of the research, design space was established to facilitate an in-depth understanding of existing relationship between CPPs and CQAs of intermediate product (uncoated tablets). Screening revealed that spray rate and inlet air temperature are two most important factors that affect the hardness of coated tablets. Simultaneously, none of the tested coating factors have influence on disintegration time. The observation was confirmed by conducting film coating of pilot size batches.

  13. Stress evolution in solidifying coatings

    NASA Astrophysics Data System (ADS)

    Payne, Jason Alan

    The goal of this study is to measure, in situ, and control the evolution of stress in liquid applied coatings. In past studies, the stress in a coating was determined after processing (i.e., drying or curing). However, by observing a coating during drying or curing, the effects of processing variables (e.g., temperature, relative humidity, composition, etc.) on the stress state can be better determined. To meet the project goal, two controlled environment stress measurement devices, based on a cantilever deflection measurement principle, were constructed. Stress evolution experiments were completed for a number of coating systems including: solvent-cast homopolymers, tape-cast ceramics, aqueous gelatins, and radiation-cured multifunctional acrylates. In the majority of systems studied here, the final stresses were independent of coating thickness and solution concentration. Typical stress magnitudes for solvent-cast polymers ranged from zero to 18 MPa depending upon the pure polymer glass transition temperature (Tsb{g}), the solvent volatility, and additional coating components, such as plasticizers. Similar magnitudes and dependencies were observed in tape-cast ceramic layers. Stresses in gelatin coatings reached 50 MPa (due to the high Tsb{g} of the gelatin) and were highly dependent upon drying temperature and relative humidity. In contrast to the aforementioned coatings, stress in UV-cured tri- and tetrafunctional acrylate systems showed a large thickness dependence. For these materials, stress evolution rate and magnitude increased with photoinitiator concentration and with light intensity. Somewhat unexpectedly, larger monomer functionality led to greater stresses at faster rates even though the overall conversion fell. The stress magnitude and evolution rate at any stage in the solidification process are the result of a competition between shrinkage (due to drying, curing, etc.) and stress relaxation. A firm understanding of the mechanical, the thermal, and the microstructural properties of a coating is therefore necessary to properly study stress effects. Hence, observations from dynamic mechanical analysis, indentation, infrared spectroscopy, and optical microscopy were also studied in order to correlate coating properties (mechanical, thermal, and structural) to measured stresses.

  14. Use of edible coatings to preserve quality of lightly (and slightly) processed products.

    PubMed

    Baldwin, E A; Nisperos-Carriedo, M O; Baker, R A

    1995-11-01

    Lightly processed agricultural products present a special problem to the food industry and to scientists involved in postharvest and food technology research. Light or minimal processing includes cutting, slicing, coring, peeling, trimming, or sectioning of agricultural produce. These products have an active metabolism that can result in deteriorative changes, such as increased respiration and ethylene production. If not controlled, these changes can lead to rapid senescence and general deterioration of the product. In addition, the surface water activity of cut fruits and vegetables is generally quite high, inviting microbial attack, which further reduces product stability. Methods for control of these changes are numerous and can include the use of edible coatings. Also mentioned in this review are coating of nut products, and dried, dehydrated, and freeze-dried fruits. Technically, these are not considered to be minimally processed, but many of the problems and benefits of coating these products are similar to coating lightly processed products. Generally, the potential benefits of edible coatings for processed or lightly processed produce is to stabilize the product and thereby extend product shelf life. More specifically, coatings have the potential to reduce moisture loss, restrict oxygen entrance, lower respiration, retard ethylene production, seal in flavor volatiles, and carry additives that retard discoloration and microbial growth.

  15. Fabrication of multilayered thin films via spin-assembly

    DOEpatents

    Chiarelli, Peter A.; Robinson, Jeanne M.; Casson, Joanna L.; Johal, Malkiat S.; Wang, Hsing-Lin

    2007-02-20

    An process of forming multilayer thin film heterostructures is disclosed and includes applying a solution including a first water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species onto a substrate to form a first coating layer on the substrate, drying the first coating layer on the substrate, applying a solution including a second water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species onto the substrate having the first coating layer to form a second coating layer on the first coating layer wherein the second water-soluble polymer is of a different material than the first water-soluble polymer, and drying the second coating layer on the first coating layer so as to form a bilayer structure on the substrate. Optionally, one or more additional applying and drying sequences can be repeated with a water-soluble polymer from the group of polyanionic species, polycationic species and uncharged polymer species, so that a predetermined plurality of layers are built up upon the substrate.

  16. Fluidised-bed spray-drying formulations of Candida sake CPA-1 by adding biodegradable coatings to enhance their survival under stress conditions.

    PubMed

    Carbó, Anna; Torres, Rosario; Usall, Josep; Solsona, Cristina; Teixidó, Neus

    2017-11-01

    The biocontrol agent Candida sake CPA-1 has demonstrated to be effective against several diseases on fruit. However, for application of CPA-1 under field conditions, it was necessary to mix it with a food coating to improve survival under stress conditions, as well as adherence and distribution on fruit surfaces. The objective of this study was to obtain a more competitive formulation under field conditions to be applied independently of any product. To achieve this purpose, the drying process of CPA-1 by a fluidised-bed spray-drying system together with biodegradable coatings was optimised. This approach is novel for the drying system used and the formulation obtained which was able to form a film or coating on fruit surfaces. Several substances were tested as carriers and binders, and drying temperature was optimised. The addition of protective compounds was also tested to improve survival of CPA-1 during the dehydration process. Product shelf life, biocontrol efficacy on grapes against Botrytis cinerea, and the improvement of C. sake behaviour under stress conditions were tested. The optimal temperature of drying was 55 °C and two formulations that were able to develop a coating on fruit surfaces were obtained. One of the formulations was created by using a combination of native and pregelatinised potato starch; the other formulation was obtained using maltodextrin and by adding skimmed milk and sucrose as protectant compounds. The formulated products reduced the incidence and severity of B. cinerea, and CPA-1 survival rate was increased under stress conditions of temperature and humidity.

  17. The origins of microstructure in phase inversion coatings or membranes: Snapshots of the transient from time-sectioning cryo-SEM

    NASA Astrophysics Data System (ADS)

    Prakash, Sai Sivasankaran

    2001-11-01

    Time-sectioning cryogenic scanning electron microscopy (cryo-SEM) is a unique method of visualizing how the microstructure of liquid coatings evolves during processing. Time-sectioning means rapidly freezing (nearly) identical specimens at successively later stages of the process; doing this requires that coating and drying be well controlled in the dry phase inversion process, and solvents exchange likewise in the wet phase inversion process. With control, frozen specimens are fractured, etched by limited sublimation, sputter-coated, and imaged at temperatures of ca -175°C. The coatings examined were of cellulose acetate, of high and low molecular weights, and polysulfone in mixed solvents and nonsolvents: acetone and water with cellulose acetate undergoing dry phase inversion; and tetrahydrofuran, dimethylacetamide, ethanol with polysulfone undergoing dry-wet phase inversion. All coatings, cast on silicon substrates, were initially homogeneous. The initial compositions of the high and low molecular weight cellulose acetate ternary solutions were "off-critical" and "near-critical", respectively, connoting their proximities to the critical or plait point of the phase diagram. The initial composition of the polysulfone quaternary solution was located near the binodal of the pseudo-ternary phase diagram. It appeared that as the higher molecular weight cellulose acetate coating dries, it nucleates and grows polymer-poor droplets that coalesce into a bicontinuous structure underlying a thin, dense skin. Bicontinuity of structure was verified by stereomicroscopy of the dry sample. The lower molecular weight cellulose acetate coating phase-separates, seemingly spinodally, directly into a bicontinuous structure whose polymer-rich network, stressed by frustrated in-plane shrinkage, ruptures far beneath the skin in some locales to form macrovoids. When, after partial drying, the polysulfone coating was immersed in a bath of water, a nonsolvent, it appeared to swell in thickness as it phase-separates. A dense skin, thinner than a micron, appeared to overlie a two-phase substructure that is punctuated with pear-shaped macrovoids. At early immersion times, this substructure is visibly bicontinuous or open-celled near the bath-side, and dispersion-like (droplets dispersed in a polymeric matrix) or closed-celled near the substrate-side. Moreover, in the bicontinuous regions, length-scales of the individual phases seem to increase across the coating thickness from the bath-side to the substrate-side. After prolonged immersion, the substructure, excluding the macrovoids, is entirely bicontinuous. The bicontinuity presumably results from a combination of spinodal decomposition and nucleation and growth plus coalescence. Quite strikingly, macrovoids are present exclusively in regions where phases are bicontinuous, and are absent where droplets are dispersed in the polymeric matrix. Evidence suggests that macrovoids result from an instability caused by a progressive rupture of polymer-rich links deeper and deeper beneath the skin, aggravated by stress localization in the rupturing network and a buildup of pressure in the polymer-poor phase (the pore space), as suspected by Grobe and Meyer in 1959.

  18. Application of a tablet film coating model to define a process-imposed transition boundary for robust film coating.

    PubMed

    van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall

    2018-02-01

    A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).

  19. Enhanced Physical Stability of Amorphous Drug Formulations via Dry Polymer Coating.

    PubMed

    Capece, Maxx; Davé, Rajesh

    2015-06-01

    Although amorphous solid drug formulations may be advantageous for enhancing the bioavailability of poorly soluble active pharmaceutical ingredients, they exhibit poor physical stability and undergo recrystallization. To address this limitation, this study investigates stability issues associated with amorphous solids through analysis of the crystallization behavior for acetaminophen (APAP), known as a fast crystallizer, using a modified form of the Avrami equation that kinetically models both surface and bulk crystallization. It is found that surface-enhanced crystallization, occurring faster at the free surface than in the bulk, is the major impediment to the stability of amorphous APAP. It is hypothesized that a novel use of a dry-polymer-coating process referred to as mechanical-dry-polymer-coating may be used to inhibit surface crystallization and enhance stability. The proposed process, which is examined, simultaneously mills and coats amorphous solids with polymer, while avoiding solvents or solutions, which may otherwise cause stability or crystallization issues during coating. It is shown that solid dispersions of APAP (64% loading) with a small particle size (28 μm) could be prepared and coated with the polymer, carnauba wax, in a vibratory ball mill. The resulting amorphous solid was found to have excellent stability as a result of inhibition of surface crystallization. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Final Report - Recovery Act - Development and application of processing and process control for nano-composite materials for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, Claus; Armstrong, Beth L; Maxey, L Curt

    2013-08-01

    Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able tomore » remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged pinch point test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.« less

  1. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution.

    PubMed

    He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei

    2013-01-01

    Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions.

  2. Corrosion behavior of magnetic ferrite coating prepared by plasma spraying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yi; Wei, Shicheng, E-mail: wsc33333@163.com; Tong, Hui

    Graphical abstract: The saturation magnetization (M{sub s}) of the ferrite coating is 34.417 emu/g while the M{sub s} value of the ferrite powder is 71.916 emu/g. It can be seen that plasma spray process causes deterioration of the room temperature soft magnetic properties. - Highlights: • Spinel ferrite coatings have been prepared by plasma spraying. • The coating consists of nanocrystalline grains. • The saturation magnetization of the ferrite coating is 34.417 emu/g. • Corrosion behavior of the ferrite coating was examined in NaCl solution. - Abstract: In this study, spray dried spinel ferrite powders were deposited on the surfacemore » of mild steel substrate through plasma spraying. The structure and morphological studies on the ferrite coatings were carried out using X-ray diffraction, scanning electron microscope and Raman spectroscopy. It was showed that spray dried process was an effective method to prepare thermal spraying powders. The coating showed spinel structure with a second phase of LaFeO{sub 3}. The magnetic property of the ferrite samples were measured by vibrating sample magnetometer. The saturation magnetization (M{sub s}) of the ferrite coating was 34.417 emu/g. The corrosion behavior of coating samples was examined by electrochemical impedance spectroscopy. EIS diagrams showed three corrosion processes as the coating immersed in 3.5 wt.% NaCl solution. The results suggested that plasma spraying was a promising technology for the production of magnetic ferrite coatings.« less

  3. Sustained release vancomycin-coated titanium alloy using a novel electrostatic dry powder coating technique may be a potential strategy to reduce implant-related infection.

    PubMed

    Han, Jing; Yang, Yi; Lu, Junren; Wang, Chenzhong; Xie, Youtao; Zheng, Xuebin; Yao, Zhenjun; Zhang, Chi

    2017-07-24

    In order to tackle the implant-related infection, a novel way was developed in this study to coat vancomycin particles mixed with controlled release coating materials onto the surface of titanium alloy by using an electrostatic dry powder coating technique. To characterize this sustained release antibacterial coating, surface morphology, in vitro and in vivo drug release were sequentially evaluated. In vitro cytotoxicity was tested by Cell Counting Kit-8 (CCK-8) assay and cytological changes were observed by inverted microscope. The antibacterial properties against MRSA, including a bacterial growth inhibition assay and a colony-counting test by spread plate method were performed. Results indicated that the vancomycin-coated sample was biocompatible for Human osteoblast cell line MG-63 and displayed effective antibacterial ability against MRSA. The coating film was revealed uniform by scanning electron microscopy. Both the in vitro and in vivo drug release kinetics showed an initially high release rate, followed by an extended period of sustained drug release over 7 days. These results suggest that with good biocompatibility and antibacterial ability, the sustained release antibacterial coating of titanium alloy using our novel electrostatic dry powder coating process may provide a promising candidate for the treatment of orthopedic implant-related infection.

  4. Dry rotary swaging with structured and coated tools

    NASA Astrophysics Data System (ADS)

    Herrmann, Marius; Schenck, Christian; Kuhfuss, Bernd

    2018-05-01

    Rotary swaging is a cold bulk forming process for manufacturing of complex bar and tube profiles like axles and gear shafts in the automotive industry. Conventional rotary swaging is carried out under intense use of lubricant usually based on mineral oil. Besides lubrication the lubricant fulfills necessary functions like lubrication, flushing and cooling, but generates costs for recycling, replacement and cleaning of the workpieces. Hence, the development of a dry process design is highly desirable, both under economic and ecological points of view. Therefore, it is necessary to substitute the functions of the lubricant. This was realized by the combination of newly developed a-C:H:W coating systems on the tools to minimize the friction and to avoid adhesion effects. With the application of a deterministic structure in the forging zone of the tools the friction conditions are modified to control the axial process forces. In this study infeed rotary swaging with functionalized tools was experimentally investigated. Therefore, steel and aluminum tubes were formed with and without lubricant. Different structures which were coated and uncoated were implemented in the reduction zone of the tools. The antagonistic effects of coating and structuring were characterized by measuring the axial process force and the produced workpiece quality in terms of roundness and surface roughness. Thus, the presented results allow for further developments towards a dry rotary swaging process.

  5. Enteric coated spheres produced by extrusion/spheronization provide effective gastric protection and efficient release of live therapeutic bacteria.

    PubMed

    de Barros, João M S; Lechner, Tabea; Charalampopoulos, Dimitrios; Khutoryanskiy, Vitaliy V; Edwards, Alexander D

    2015-09-30

    We present a novel but simple enteric coated sphere formulation containing probiotic bacteria (Lactobacillus casei). Oral delivery of live bacterial cells (LBC) requires live cells to survive firstly manufacturing processes and secondly GI microbicidal defenses including gastric acid. We incorporated live L. casei directly in the granulation liquid, followed by granulation, extrusion, spheronization, drying and spray coating to produce dried live probiotic spheres. A blend of MCC, calcium-crosslinked alginate, and lactose was developed that gave improved live cell survival during manufacturing, and gave excellent protection from gastric acid plus rapid release in intestinal conditions. No significant loss of viability was observed in all steps except drying, which resulted in approximately 1 log loss of viable cells. Eudragit coating was used to protect dried live cells from acid, and microcrystalline cellulose (MCC) was combined with sodium alginate to achieve efficient sphere disintegration leading to rapid and complete bacterial cell release in intestinal conditions. Viability and release of L. casei was evaluated in vitro in simulated GI conditions. Uncoated spheres gave partial acid protection, but enteric coated spheres effectively protected dried probiotic LBC from acid for 2h, and subsequently released all viable cells within 1h of transfer into simulated intestinal fluid. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  7. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.

    PubMed

    Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu

    2007-03-10

    To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

  8. Process optimization of ultrasonic spray coating of polymer films.

    PubMed

    Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer

    2013-06-11

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films.

  9. 40 CFR 60.741 - Definitions, symbols, and cross-reference tables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prepolymers to a supporting web other than paper, plastic film, metallic foil, or metal coil. Substrate means... (i) entering the emission control device, in dry standard cubic meters per hour when Method 18 or 25... coats a continuous web to produce a substrate with a polymeric coating. Should the coating process not...

  10. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution

    PubMed Central

    He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei

    2013-01-01

    Background Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Methods Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. Results The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Conclusion Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions. PMID:23983465

  11. A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Kruse, Nancy H. M. (Inventor); Fox, Robert L. (Inventor); Tran, Sang Q. (Inventor)

    1995-01-01

    A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate is disclosed. The process may be used to prepare both rigid and flexible cables and circuit boards. A substrate is provided and a polymeric solution comprising a self-bonding, soluble polymer and a solvent is applied to the substrate. Next, the polymer solution is dried to form a polymer coated substrate. The polymer coated substrate is metallized and patterned. At least one additional coating of the polymeric solution is applied to the metallized, patterned, polymer coated substrate and the steps of metallizing and patterning are repeated. Lastly, a cover coat is applied. When preparing a flexible cable and flexible circuit board, the polymer coating is removed from the substrate.

  12. Development of potential novel cushioning agents for the compaction of coated multi-particulates by co-processing micronized lactose with polymers.

    PubMed

    Lin, Xiao; Chyi, Chin Wun; Ruan, Ke-feng; Feng, Yi; Heng, Paul Wan Sia

    2011-10-01

    This work aimed to explore the potential of lactose as novel cushioning agents with suitable physicomechanical properties by micronization and co-spray drying with polymers for protecting coated multi-particulates from rupture when they are compressed into tablets. Several commercially available lactose grades, micronized lactose (ML) produced by jet milling, spray-dried ML (SML), and polymer-co-processed SMLs, were evaluated for their material characteristics and tableting properties. Hydroxypropylcellulose (HPC), hydroxypropylmethylcellulose (HPMC), and polyvinylpyrrolidone (PVP) at three different levels were evaluated as co-processed polymers for spray drying. Sugar multi-particulates layered with chlorpheniramine maleate followed by an ethylcellulose coat were tableted using various lactose types as fillers. Drug release from compacted multi-particulate tablets was used to evaluate the cushioning effect of the fillers. The results showed that the cushioning effect of lactose principally depended on its particle size. Micronization can effectively enhance the protective action of lactose. Although spray drying led to a small reduction in the cushioning effect of ML, it significantly improved the physicomechanical properties of ML. Co-spray drying with suitable polymers improved both the cushioning effect and the physicomechanical properties of SML to a certain degree. Among the three polymers studied, HPC was the most effective in terms of enhancing the cushioning effect of SML. This was achieved by reducing yield pressure, and enhancing compressibility and compactibility. The combination of micronization and co-spray drying with polymers is a promising method with which new applications for lactose can be developed. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Improvement of flow and bulk density of pharmaceutical powders using surface modification.

    PubMed

    Jallo, Laila J; Ghoroi, Chinmay; Gurumurthy, Lakxmi; Patel, Utsav; Davé, Rajesh N

    2012-02-28

    Improvement in flow and bulk density, the two most important properties that determine the ease with which pharmaceutical powders can be handled, stored and processed, is done through surface modification. A limited design of experiment was conducted to establish a standardized dry coating procedure that limits the extent of powder attrition, while providing the most consistent improvement in angle of repose (AOR). The magnetically assisted impaction coating (MAIC) was considered as a model dry-coater for pharmaceutical powders; ibuprofen, acetaminophen, and ascorbic acid. Dry coated drug powders were characterized by AOR, particle size as a function of dispersion pressure, particle size distribution, conditioned bulk density (CBD), Carr index (CI), flow function coefficient (FFC), cohesion coefficient using different instruments, including a shear cell in the Freeman FT4 powder rheometer, and Hansen flowability index. Substantial improvement was observed in all the measured properties after dry coating relative to the uncoated powders, such that each powder moved from a poorer to a better flow classification and showed improved dispersion. The material intrinsic property such as cohesion, plotted as a function of particle size, gave a trend similar to those of bulk flow properties, AOR and CI. Property improvement is also illustrated in a phase map of inverse cohesion (or FFC) as a function of bulk density, which also indicated a significant positive shift due to dry coating. It is hoped that such phase maps are useful in manufacturing decisions regarding the need for dry coating, which will allow moving from wet granulation to roller compaction or to direct compression based formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Improvement in the properties of plasma-sprayed metallic, alloy and ceramic coatings using dry-ice blasting

    NASA Astrophysics Data System (ADS)

    Dong, Shujuan; Song, Bo; Hansz, Bernard; Liao, Hanlin; Coddet, Christian

    2011-10-01

    Dry-ice blasting, as an environmental-friendly method, was introduced into atmospheric plasma spraying for improving properties of metallic, alloy and ceramic coatings. The deposited coatings were then compared with coatings plasma-sprayed using conventional air cooling in terms of microstructure, temperature, oxidation, porosity, residual stress and adhesion. It was found that a denser steel or CoNiCrAlY alloy coating with a lower content of oxide can be achieved with the application of dry-ice blasting during the plasma spraying. In addition, the adhesive strength of Al 2O 3 coating deposited with dry-ice blasting exceeded 60 MPa, which was nearly increased by 30% compared with that of the coating deposited with conventional air cooling. The improvement in properties of plasma-sprayed metallic, alloy and ceramic coatings caused by dry-ice blasting was attributed to the decrease of annulus-ringed disk like splats, the better cooling efficiency of dry-ice pellets and even the mechanical effect of dry-ice impact.

  15. CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, C.; Armstrong, B.; Maxey, C.

    2012-12-15

    Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System’s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to removemore » defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged ‘pinch point’ test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.« less

  16. Supercritical fluid technology of nanoparticle coating for new ceramic materials.

    PubMed

    Aymonier, Cyril; Elissalde, Catherine; Reveron, Helen; Weill, François; Maglione, Mario; Cansell, François

    2005-06-01

    This work highlights, for the first time, the coating of ferroelectric nanoparticles with a chemical fluid deposition process in supercritical fluids. BaTiO3 nanoparticles of about 50 nm are coated with a shell of a few nanometers of amorphous alumina and can be recovered as a dry powder for processing. The sintering of these core-shell nanoparticles gives access to a ceramic material with very interesting ferroelectric properties, in particular, dielectric losses below 1%.

  17. Microneedle Coating Techniques for Transdermal Drug Delivery

    PubMed Central

    Haj-Ahmad, Rita; Khan, Hashim; Arshad, Muhammad Sohail; Rasekh, Manoochehr; Hussain, Amjad; Walsh, Susannah; Li, Xiang; Chang, Ming-Wei; Ahmad, Zeeshan

    2015-01-01

    Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN) based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips) are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA) based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described) have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates. PMID:26556364

  18. Throughput increase by adjustment of the BARC drying time with coat track process

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nickolas L.; Long, Ryan

    2005-05-01

    Throughput of a coater module within the coater track is related to the solvent evaporation rate from the material that is being coated. Evaporation rate is controlled by the spin dynamics of the wafer and airflow dynamics over the wafer. Balancing these effects is the key to achieving very uniform coatings across a flat unpatterned wafer. As today"s coat tracks are being pushed to higher throughputs to match the scanner, the coat module throughput must be increased as well. For chemical manufacturers the evaporation rate of the material depends on the solvent used. One measure of relative evaporation rates is to compare flash points of a solvent. The lower the flash point, the quicker the solvent will evaporate. It is possible to formulate products with these volatile solvents although at a price. Shipping and manufacturing a more flammable product increase chances of fire, thereby increasing insurance premiums. Also, the end user of these chemicals will have to take extra precautions in the fab and in storage of these more flammable chemicals. An alternative coat process is possible which would allow higher throughput in a distinct coat module without sacrificing safety. A tradeoff is required for this process, that being a more complicated coat process and a higher viscosity chemical. The coat process uses the fact that evaporation rate depends on the spin dynamics of the wafer by utilizing a series of spin speeds that first would set the thickness of the material followed by a high spin speed to remove the residual solvent. This new process can yield a throughput of over 150 wafers per hour (wph) given two coat modules. The thickness uniformity of less than 2 nm (3 sigma) is still excellent, while drying times are shorter than 10 seconds to achieve the 150 wph throughput targets.

  19. Dry Sintered Metal Coating of Halloysite Nanotubes

    DOE PAGES

    Nicholson, James C.; Weisman, Jeffery A.; Boyer, Christen J.; ...

    2016-09-19

    Halloysite nanotubes (HNTs) are a naturally-occurring aluminosilicate whose dimensions measure microns in length and tens of nanometers in diameter. Bonding defects between the alumina and silica lead to net negative and positive charges on the exterior and interior lumen, respectively. HNTs have been shown to enhance the material properties of polymer matrices and enable the sustained release of loaded chemicals, drugs, and growth factors. Due to the net charges, these nanotubes can also be readily coated in layered-depositions using the HNT exterior lumen’s net negative charge as the basis for assembly. These coatings are primarily done through wet chemical processes,more » the majority of which are limited in their use of desired chemicals, due to the polarity of the halloysite. Furthermore, this restriction in the type of chemicals used often requires the use of more toxic chemicals in place of greener options, and typically necessitates the use of a significantly longer chemical process to achieve the desired coating. In this study, we show that HNTs can be coated with metal acetylacetonates—compounds primarily employed in the synthesis of nanoparticles, as metal catalysts, and as NMR shift reagents—through a dry sintering process. This method was capable of thermally decaying the metal acetylacetonate, resulting in a free positively-charged metal ion that readily bonded to the negatively-charged HNT exterior, resulting in metallic coatings forming on the HNT surface. Our coating method may enable greater deposition of coated material onto these nanotubes as required for a desired application. Moreover, the use of chemical processes using toxic chemicals is not required, thus eliminating exposure« less

  20. Internally coated air-cooled gas turbine blading

    NASA Technical Reports Server (NTRS)

    Hsu, L.; Stevens, W. G.; Stetson, A. R.

    1979-01-01

    Ten candidate modified nickel-aluminide coatings were developed using the slip pack process. These coatings contain additives such as silicon, chromium and columbium in a nickel-aluminum coating matrix with directionally solidified MAR-M200 + Hf as the substrate alloy. Following a series of screening tests which included strain tolerance, dynamic oxidation and hot corrosion testing, the Ni-19A1-1Cb (nominal composition) coating was selected for application to the internal passages of four first-stage turbine blades. Process development results indicate that a dry pack process is suitable for internal coating application resulting in 18 percent or less reduction in air flow. Coating uniformity, based on coated air-cooled blades, was within + or - 20 percent. Test results show that the presence of additives (silicon, chromium or columbium) appeared to improve significantly the ductility of the NiA1 matrix. However, the environmental resistance of these modified nickel-aluminides were generally inferior to the simple aluminides.

  1. Understanding particulate coating microstructure development

    NASA Astrophysics Data System (ADS)

    Roberts, Christine Cardinal

    How a dispersion of particulates suspended in a solvent dries into a solid coating often is more important to the final coating quality than even its composition. Essential properties like porosity, strength, gloss, particulate order, and concentration gradients are all determined by the way the particles come together as the coating dries. Cryogenic scanning electron microscopy (cryoSEM) is one of the most effective methods to directly visualize a drying coating during film formation. Using this method, the coating is frozen, arresting particulate motion and solidifying the sample so that it be imaged in an SEM. In this thesis, the microstructure development of particulate coatings was explored with several case studies. First, the effect of drying conditions was determined on the collapse of hollow latex particles, which are inexpensive whiteners for paint. Using cryoSEM, it was found that collapse occurs during the last stages of drying and is most likely to occur at high drying temperatures, humidity, and with low binder concentration. From these results, a theoretical model was proposed for the collapse of a hollow latex particle. CryoSEM was also used to verify a theoretical model for the particulate concentration gradients that may develop in a coating during drying for various evaporation, sedimentation and particulate diffusion rates. This work created a simple drying map that will allow others to predict the character of a drying coating based on easily calculable parameters. Finally, the effect of temperature on the coalescence and cracking of latex coatings was explored. A new drying regime for latex coatings was identified, where partial coalescence of particles does not prevent cracking. Silica was shown to be an environmentally friendly additive for preventing crack formation in this regime.

  2. Stress development in particulate, nano-composite and polymeric coatings

    NASA Astrophysics Data System (ADS)

    Jindal, Karan

    2009-12-01

    The main goal of this research is to study the stress, structural and mechanical property development during the drying of particulate coatings, nano-composite coatings and VOC compliant refinish clearcoats. The results obtained during this research establish the mechanism for the stress development during drying in various coating systems. Coating stress was measured using a controlled environment stress apparatus based on cantilever deflection principle. The stress evolution in alumina coatings made of 0.4 mum size alumina particles was studied and the effect of a lateral drying was investigated. The stress does not develop until the later stages of drying. A peak stress was observed during drying and the peak stress originates due to the formation of pendular rings between the particles. Silica nanocomposite coatings were fabricated from suspension of nano sized silicon dioxide particles (20 nm) and polyvinyl alcohol (PVA) polymer. The stress in silica nano-composite goes through maximum as the amount of polymer in the coating increases. The highest final stress was found to be ˜ 110MPa at a PVA content of 60 wt%. Observations from SEM, nitrogen gas adsorption, camera imaging, and nano-indentation were also studied to correlate the coatings properties during drying to measured stress. A model VOC compliant two component (2K) acrylic-polyol refinish clearcoat was prepared to study the effects of a new additive on drying, curing, rheology and stress development at room temperature. Most of the drying of the low VOC coatings occurred before appreciable (20%) crosslinking. Tensile stress developed in the same timeframe as drying and then relaxed over a longer time scale. Model low VOC coatings prepared with the additive had higher peak stresses than those without the additive. In addition, rheological data showed that the additive resulted in greater viscosity buildup during drying.

  3. Method of producing adherent metal oxide coatings on metallic surfaces

    DOEpatents

    Lane, Michael H.; Varrin, Jr., Robert D.

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  4. Evaluation of the tablets' surface flow velocities in pan coaters.

    PubMed

    Dreu, Rok; Toschkoff, Gregor; Funke, Adrian; Altmeyer, Andreas; Knop, Klaus; Khinast, Johannes; Kleinebudde, Peter

    2016-09-01

    The tablet pan coating process involves various types of transverse tablet bed motions, ranging from rolling to cascading. To preserve satisfactory results in terms of coating quality after scale-up, understanding the dynamics of pan coating process should be achieved. The aim of this study was to establish a methodology of estimating translational surface velocities of the tablets in a pan coater and to assess their dependence on the drum's filling degree, the pan speed, the presence of baffles and the selected tablet properties in a dry bed system and during coating while varying the drum's filling degree and the pan speed. Experiments were conducted on the laboratory scale and on the pilot scale in side-vented pan coaters. Surface movement of biconvex two-layer tablets was assessed before, during and after the process of active coating. In order to determine the tablets' surface flow velocities, a high-speed video of the tablet surface flow was recorded via a borescope inserted into the coating drum and analysed via a cross-correlation algorithm. The obtained tablet velocity data were arranged in a linear fashion as a function of the coating drum's radius and frequency. Velocity data obtained during coating were close to those of dry tablets after coating. The filling degree had little influence on the tablet velocity profile in a coating drum with baffles but clearly affected it in a coating drum without baffles. In most but not all cases, tablets with a lower static angle of repose had tablet velocity profiles with lower slopes than tablets with higher inter-tablet friction. This particular tablet velocity response can be explained by case specific values of tablet bed's dynamic angle of repose. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Study of microtip-based extraction and purification of DNA from human samples for portable devices

    NASA Astrophysics Data System (ADS)

    Fotouhi, Gareth

    DNA sample preparation is essential for genetic analysis. However, rapid and easy-to-use methods are a major challenge to obtaining genetic information. Furthermore, DNA sample preparation technology must follow the growing need for point-of-care (POC) diagnostics. The current use of centrifuges, large robots, and laboratory-intensive protocols has to be minimized to meet the global challenge of limited access healthcare by bringing the lab to patients through POC devices. To address these challenges, a novel extraction method of genomic DNA from human samples is presented by using heat-cured polyethyleneimine-coated microtips generating a high electric field. The microtip extraction method is based on recent work using an electric field and capillary action integrated into an automated device. The main challenges to the method are: (1) to obtain a stable microtip surface for the controlled capture and release of DNA and (2) to improve the recovery of DNA from samples with a high concentration of inhibitors, such as human samples. The present study addresses these challenges by investigating the heat curing of polyethyleneimine (PEI) coated on the surface of the microtip. Heat-cured PEI-coated microtips are shown to control the capture and release of DNA. Protocols are developed for the extraction and purification of DNA from human samples. Heat-cured PEI-coated microtip methods of DNA sample preparation are used to extract genomic DNA from human samples. It is discovered through experiment that heat curing of a PEI layer on a gold-coated surface below 150°C could inhibit the signal of polymerase chain reaction (PCR). Below 150°C, the PEI layer is not completely cured and dissolved off the gold-coated surface. Dissolved PEI binds with DNA to inhibit PCR. Heat curing of a PEI layer above 150°C on a gold-coated surface prevents inhibition to PCR and gel electrophoresis. In comparison to gold-coated microtips, the 225°C-cured PEI-coated microtips improve the recovery of DNA to 45% efficiency. Furthermore, the 225°C-cured PEI-coated microtips recover more DNA than gold-coated microtips when the surface is washed. Heat-cured (225°C) PEI-coated microtips are used for the recovery of human genomic DNA from whole blood. A washing protocol is developed to remove inhibiting particles bound to the PEI-coated microtip surface after DNA extraction. From 1.25 muL of whole blood, an average of 1.83 ng of human genomic DNA is captured, purified, and released using a 225°C-cured PEI-coated microtip in less than 30 minutes. The extracted DNA is profiled by short tandem repeat analysis (STR). For forensic and medical applications, genomic DNA is extracted from dried samples using heat-cured PEI-coated microtips that are integrated into an automated device. DNA extraction from dried samples is critical for forensics. The use of dried samples in the medical field is increasing because dried samples are convenient for storage, biosafety, and contamination. The main challenge is the time required to properly extract DNA in a purified form. Typically, a 1 hour incubation period is required to complete this process. Overnight incubation is sometimes necessary. To address this challenge, a pre-extraction washing step is investigated to remove inhibiting particles from dried blood spots (DBS) before DNA is released from dried form into solution for microtip extraction. The developed protocol is expanded to extract DNA from a variety of dried samples including nasal swabs, buccal swabs, and other forensic samples. In comparison to a commercial kit, the microtip-based extraction reduced the processing time from 1.5 hours to 30 minutes or less with an equivalent concentration of extracted DNA from dried blood spots. The developed assay will benefit genetic studies on newborn screening, forensic investigation, and POC diagnostics.

  6. A novel approach to a fine particle coating using porous spherical silica as core particles.

    PubMed

    Ishida, Makoto; Uchiyama, Jumpei; Isaji, Keiko; Suzuki, Yuta; Ikematsu, Yasuyuki; Aoki, Shigeru

    2014-08-01

    Abstract The applicability of porous spherical silica (PSS) was evaluated as core particles for pharmaceutical products by comparing it with commercial core particles such as mannitol (NP-108), sucrose and microcrystalline cellulose spheres. We investigated the physical properties of core particles, such as particle size distribution, flow properties, crushing strength, plastic limit, drying rate, hygroscopic property and aggregation degree. It was found that PSS was a core particle of small particle size, low friability, high water adsorption capacity, rapid drying rate and lower occurrence of particle aggregation, although wettability is a factor to be carefully considered. The aggregation and taste-masking ability using PSS and NP-108 as core particles were evaluated at a fluidized-bed coating process. The functional coating under the excess spray rate shows different aggregation trends and dissolution profiles between PSS and NP-108; thereby, exhibiting the formation of uniform coating under the excess spray rate in the case of PSS. This expands the range of the acceptable spray feed rates to coat fine particles, and indicates the possibility of decreasing the coating time. The results obtained in this study suggested that the core particle, which has a property like that of PSS, was useful in overcoming such disadvantages as large particle size, which feels gritty in oral cavity; particle aggregation; and the long coating time of the particle coating process. These results will enable the practical fine particle coating method by increasing the range of optimum coating conditions and decreasing the coating time in fluidized bed technology.

  7. A Dry Powder Process for Preparing Uni-Tape Prepreg from Polymer Powder Coated Filamentary Towpregs

    NASA Technical Reports Server (NTRS)

    Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    1995-01-01

    A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.

  8. The effects of plasma spray parameters and atmosphere on the properties and microstructure of WC-Co coatings

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Lamy, D.; Sopkow, T.; Smuga-Otto, I.

    Wear- and corrosion-resistant coatings deposited by plasma spray process are increasingly used in severe environments in resource industries, such as oil and gas, oil sands, mining, pulp and paper, etc. While there is a large volume of literature in the area of plasma spray coatings, comparatively few papers deal with the co-relation between coating properties and microstructure as a function of plasma spray processing parameters. In this study, the effect of some plasma spray processing variables and atmosphere (air or inert gas) on the microstructure and the properties of WC-Co coatings were studied. The properties of the coatings measured include: microhardness, porosity by image analysis, wear resistance by dry sand/rubber wheel abrasion test (ASTM G 65-91) and corrosion properties by AC impedance technique. Phase analyses of the coatings were also performed by X-ray diffraction. From the above, optimized coatings were developed for oil and gas industry applications.

  9. Effects of composite surface coating and pre-drying on the properties of kabanosy dry sausage.

    PubMed

    Tyburcy, Andrzej; Kozyra, Daniel

    2010-10-01

    Coating of dry sausages with renewable materials could be an alternative to vacuum packaging. In this study kabanosy dry sausage was coated with a composite emulsion and stored for 7 or 15 days at 4-6 degrees C. Effects of different emulsion formulas (0.5 or 1% w/w of kappa-carrageenan and 5 or 10% w/w of glycerol) and pre-drying of coated sausages (at 50 degrees C for 1.5h) were investigated. Carrageenan concentration had a significant effect (P

  10. Effects of lamination and coating with drying oils on tensile and barrier properties of zein films.

    PubMed

    Rakotonirainy, A M; Padua, G W

    2001-06-01

    Zein films plasticized with oleic acid have been considered potentially useful for biodegradable packaging applications. However, moisture was found to affect their tensile and gas barrier properties. We investigated the effects of two converting processes, fusion lamination and coating with drying oils, on tensile properties and gas permeability of zein films. Zein films were laminated to 4-ply sheets in a Carver press and coated with tung oil, linseed oil, or a mixture of tung and soybean oils. Tensile properties and permeability to water vapor, oxygen, and carbon dioxide were measured according to ASTM methods. Laminated films were clearer, tougher, and more flexible, and had a smoother finish than nontreated sheets. Lamination decreased O(2) and CO(2) permeability by filling in voids and pinholes in the film structure. Coating increased tensile strength and elongation and decreased water vapor permeability. Coatings acted as a composite layer preventing crack propagation and increasing film strength. They also formed a highly hydrophobic surface that prevented film wetting.

  11. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1995-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  12. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1996-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  13. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    PubMed

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.

  14. Innovative manufacturing and materials for low cost lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Steven

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator andmore » any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability with no shrinkage at up to 220oC. This allows vacuum drying of the dry cell just before filling with the electrolyte and thereby can reduce the size of the cell assembly dry room by 50%. Once the electrode-coated separator is produced, there are many different approaches for adding the metal current collector layers and making and connecting the tabs of the cells. These approaches include: (1) laminating the electrode side of the electrode-coated separator to both sides of a metal current collector; and (2) making a full coated electrode stack by coating or depositing a current collector layer on the electrode side and then coating a second electrode layer onto the current collector. Further cost savings are available from using lower cost and/or thinner and lighter current collectors and from using a separator coating manufacturing process at widths of 1.5 meters (m) or more and at high production line speeds of up to 125 meters per minute (mpm), both of which are well above the conventional coating widths and line speeds presently used in manufacturing electrodes for lithium ion batteries.« less

  15. Development of "all natural" layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology.

    PubMed

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xia, Yan; Nieh, Mu-Ping; Luo, Yangchao

    2016-10-01

    Solid lipid nanoparticles (SLNs) have gained tremendous attraction as carriers for controlled drug delivery. Despite numerous advances in the field, one long-standing historical challenge for their practical applications remains unmet: redispersibility after drying. In this work, a novel design of SLNs using a layer-by-layer (LbL) technique was developed and the formulations were optimized by surface response methodology (Box-Behnken design). To the best of our knowledge, this is the first study reporting the fabrication of SLNs from all natural ingredients in the absence of any synthetic surfactants or coatings. The SLNs were prepared by a combined solvent-diffusion and hot homogenization method, with soy lecithin as natural emulsifier (first layer), followed by the subsequent coating with sodium caseinate (second layer) and pectin (third layer), both of which are natural food biopolymers. The adsorption of pectin coating onto caseinate was reinforced by hydrophobic and electrostatic interactions induced by a pH-driven process along with thermal treatment. The innovative nano spray drying technology was further explored to obtain ultra-fine powders of SLNs. Compared to uncoated or single-layer coated SLNs powders, which showed severe aggregation after spray drying, the well-separated particles with spherical shape and smooth surface were obtained for layer-by-layer (LbL) SLNs, which were redispersible into water without variation of dimension, shape and morphology. The SLNs were characterized by Fourier transform infrared and high-performance differential scanning calorimetry for their physical properties. The LbL-coated SLNs based on all natural ingredients have promising features for future applications as drug delivery systems, overcoming the major obstacles in conventional spray drying and redispersing SLNs-based formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. 77 FR 41337 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Control Technique...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... following definitions: Adhesion primer, aerosol coating product, air-dried coating, baked coating, dip... coatings..... 0.85 7.1. Automotive/Transportation Parts High bake coatings Flexible primer 0.46 3.8. Non....3. Interior colorcoat 0.49 4.1. Exterior colorcoat 0.55 4.6. Low bake/air dried coatings-exterior...

  17. Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites

    Treesearch

    Anju Gupta; William Simmons; Gregory T. Schueneman; Donald Hylton; Eric A. Mintz

    2017-01-01

    Improving the processability and physical properties of sustainable biobased polymers and biobased fillers is essential to preserve its biodegradability and make them suitable for different end user applications. Herein, we report the use of spray-dried lignin-coated cellulose nanocrystals (L-CNCs), a biobased filler, to modify the rheological and thermos-mechanical...

  18. Stress and structure development in polymeric coatings

    NASA Astrophysics Data System (ADS)

    Vaessen, Diane Melissa

    2002-09-01

    The main goal of this research is to measure the stress evolution in various polymer coating systems to establish the mechanisms responsible for stress development, stress relaxation, and defect formation. Investigated systems include ultraviolet (UV)-curable coatings, dense and porous coatings from polymer solutions, and latex coatings. Coating stress was measured using a controlled environment stress apparatus based on a cantilever deflection principle. For acrylate coatings, it was found that by cycling a UV-lamp on and off, keeping the total dose constant, coating stress was lowered by 60% by decreasing the cycle period. A stress minimum was also found to exist for a given dose of radiation. The lower stress is attributed to stress relaxation and/or slower reaction during dark periods. A viscoelastic stress model of this process was formulated and predicted stress values close to those observed experimentally. During drying of cellulose acetate (CA) coatings cast in acetone, final stress increased from 10 to 45 MPa as coating thickness decreased from 60 to 10 mum. This thickness dependent coating stress for a solvent-cast polymer coating is a new finding and is attributed to (1) less shrinkage in thicker coatings due to more trapped solvent (from skinning) and (2) greater amounts of polymer stress relaxation in thicker coatings. For porous CA coatings prepared by dry-cast phase separation, final in-plane stresses ranged from 20 MPa for coatings containing small pores (˜1 mum) to 5 MPa for coatings containing small pores and macrovoids (˜200 mum). For these coatings, a small amount of stress relaxation occurs due to capillary pressure relief. A stress plateau for the macrovoid-containing coating is likely caused by stress-induced rupture of the polymer-rich phase. Measured stress in pigment-free latex coatings was much lower (˜0.3 MPa) than UV-curable and solvent-cast polymer coatings and was found to increase with increasing latex glass transition temperature. Observations from infrared spectroscopy, scanning electron microscopy, camera imaging, and indentation were also studied to correlate coating properties to measured stresses. The results obtained in this thesis will lead to strategies for material selection, process optimization, and defect elimination in polymeric coatings.

  19. Cleaning process for EUV optical substrates

    DOEpatents

    Weber, Frank J.; Spiller, Eberhard A.

    1999-01-01

    A cleaning process for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.

  20. Recovery of Mo/Si multilayer coated optical substrates

    DOEpatents

    Baker, Sherry L.; Vernon, Stephen P.; Stearns, Daniel G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO.sub.2 overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  1. Recovery of Mo/Si multilayer coated optical substrates

    DOEpatents

    Baker, S.L.; Vernon, S.P.; Stearns, D.G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO{sub 2} overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates. 5 figs.

  2. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    PubMed

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Irradiation effect of low-energy ion on polyurethane nanocoating containing metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Jaya; Nigam, Subhasha; Sinha, Surbhi; Sikarwar, B. S.; Bhattacharya, Arpita

    2017-12-01

    Irradiation effect of low-energy ion beam has been investigated on nanocoating developed with silica, titania and silica-titania core-shell nanoparticles embedded in an organic binder for nanopaint application. In this work, we have taken polyurethane as a model organic binder. Silica nanoparticles have been prepared through sol-gel synthesis with a particle size of 85 nm. Titania and core-shell nanoparticles have been prepared through both sol-gel and peptization process. Particle sizes obtained were 107 nm for titania and 240 nm for core-shell nanoparticles prepared through sol-gel process and 75 nm for TiO2 and 144 nm for core-shell nanoparticles prepared through peptization process. The coating formulations were developed with the above nanoparticles individually and nanoparticle concentration was varied from 1 to 6 wt% and the best performance in terms of hydrophobicity was obtained with 4 wt % of the nanoparticles in polyurethane coating formulation. All the coating formulations prepared were applied on a glass substrate and dried at 100°C. The dry film thickness obtained was around 100 µm in each case. These films dried on glass substrate were irradiated by nitrogen and argon ion beam with energy of 26 keV at fluences of 1014 to 1016 ions/cm2. The anti-algal property of the irradiated samples was improved and hydrophobicity was reduced.

  4. 77 FR 66921 - Approval and Promulgation of Air Quality Implementation Plans; New Hampshire; Reasonably...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... each of which has limits for baked or air-dried coatings ranging from 0.275 kg to 0.420 kg VOC/l. These... coatings, have a higher limit (0.420 kg VOC/l (baked or air dried)) than the previous general coating limit, the new general use coating limit has been reduced from 0.36 kg to 0.275 kg VOC/l (baked or air dried...

  5. Verification of the modified model of the drying process of a polymer liquid film on a flat substrate by experiment (2): through more accurate experiment

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2006-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication and have presented the fruits through Photomask Japan 2002, 2003, 2004 and so on. And for example numerical simulation of the model qualitatively reappears a typical thickness profile of the polymer film formed after drying, that is, the profile that the edge of the film is thicker and just the region next to the edge's bump is thinner. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of many numerical simulations. Then we done a few kinds of experiments so as to verify the modified model and reported the initial result of them through Photomask Japan 2005. Through the initial result we could observe some results supporting the modified model. But we could not observe a characteristic region of a valley next to the edge's bump of a polymer film after drying because a shape of a solution's film coated on a substrate in the experiment was different from one in resists' coating and drying process or imagined in the modified model. In this study, we improved above difference between experiment and the model and did experiments for verification again with a shape of a solution's film coated on a substrate coincident with one imagined in the modified model and using molar concentration. As a result, some were verified more strongly and some need to be examined again. That is, we could confirm like results of last experiment that the smaller average molecular weight of Metoloses was, the larger the gradient of thickness profile of a polymer thin film was. But we could not observe a depression just inside the edge of the thin film also in this improved experiment. We may be able to enumerate the fact that not an organic solution but an aqueous solution was used in the experiment as the cause of non-formation of the depression.

  6. Pectin-honey coating as novel dehydrating bioactive agent for cut fruit: Enhancement of the functional properties of coated dried fruits.

    PubMed

    Santagata, Gabriella; Mallardo, Salvatore; Fasulo, Gabriella; Lavermicocca, Paola; Valerio, Francesca; Di Biase, Mariaelena; Di Stasio, Michele; Malinconico, Mario; Volpe, Maria Grazia

    2018-08-30

    In this paper, a novel and sustainable process for the fruit dehydration was described. Specifically, edible coatings based on pectin and honey were prepared and used as dehydrating and antimicrobial agents of cut fruit samples, in this way promoting the fruit preservation from irreversible deteriorative processes. Pectin-honey coating was tested on apple, cantaloupe melon, mango and pineapple. The analysis were performed also on uncoated dehydrated fruits (control). The coated fruit evidenced enhanced dehydration percentage, enriched polyphenol and vitamin C contents, improved antioxidant activity and volatile molecules profile. Moreover, the antimicrobial activity against Pseudomonas and Escherichia coli was assessed. Finally, morphological analysis performed on fruit fractured surface, highlighted the formation of a non-sticky and homogeneous thin layer. These outcomes suggested that the novel fruit dehydration process, performed by using pectin-honey coating, was able to both preserve the safety and quality of dehydrated fruits, and enhance their authenticity and naturalness. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effect of Carboxylmethyl Cellulose Coating and Osmotic Dehydration on Freeze Drying Kinetics of Apple Slices

    PubMed Central

    Rahimi, Jamshid; Singh, Ashutosh; Adewale, Peter Olusola; Adedeji, Akinbode A.; Ngadi, Michael O.; Raghavan, Vijaya

    2013-01-01

    The effect of different concentrations of sugar solution (hypertonic) (30%, 45% and 60% w/v) and carboxyl methyl cellulose (CMC) (0%, 1% and 2% w/v) coating on freeze drying of apple slices was studied. In total, nine treatments with respect to concentrations of hypertonic solution and coating layer were prepared to analyze their influence on the physical and chemical properties of freeze dried apple slices. It was observed that increase in the sugar solution concentration, decreased the moisture content of the apple slices significantly impacting its water activity, texture and sugar gain. Application of different concentrations of CMC coating had no significant effect on the properties of dried apple slices. A significant change was observed for color of CMC coated freeze dried apple slices pretreated with 60% sugar solution. Drying kinetics of pretreated apple slices were fitted by using two drying models, Newton’s and Page’s. Page’s model showed higher R-square and lower root mean square error (RSME) compared to Newton’s model. PMID:28239107

  8. Hydrogel Nanoparticles from Supercritical Technology for Pharmaceutical and Seismological Applications

    NASA Astrophysics Data System (ADS)

    Hemingway, Melinda Graham

    This research focuses on hydrogel nanoparticle formation using miniemulsion polymerization and supercritical carbon dioxide. Hydrogel nanopowder is produced by a novel combination of inverse miniemulsion polymerization and supercritical drying (MPSD) methods. Three drying methods of miniemulsions are examined: (1) a conventional freeze drying technique, and (2) two supercritical drying techniques: (2a) supercritical fluid injection into miniemulsions, and (2b) the polymerized miniemulsion injection into supercritical fluid. Method 2b can produce non-agglomerated hydrogel nanoparticles that are free of solvent or surfactant (Chapter 2). The optimized MPSD method was applied for producing an extended release drug formulation with mucoadhesive properties. Drug nanoparticles of mesalamine, were produced using supercritical antisolvent technology and encapsulation within two hydrogels, polyacrylamide and poly(acrylic acid-co-acrylamide). The encapsulation efficiency and release profile of drug nanoparticles is compared with commercial ground mesalamine particles. The loading efficiency is influenced by morphological compatibility (Chapter 3). The MPSD method was extended for encapsulation of zinc oxide nanoparticles for UV protection in sunscreens (Chapter 4). ZnO was incorporated into the inverse miniemulsion during polymerization. The effect of process parameters are examined on absorbency of ultraviolet light and transparency of visible light. For use of hydrogel nanoparticles in a seismological application, delayed hydration is needed. Supercritical methods extend MPSD so that a hydrophobic coating can be applied on the particle surface (Chapter 5). Multiple analysis methods and coating materials were investigated to elucidate compatibility of coating material to polyacrylamide hydrogel. Coating materials of poly(lactide), poly(sulphone), poly(vinyl acetate), poly(hydroxybutyrate), Geluice 50-13, Span 80, octadecyltrichlorosilane, and perfluorobutane sulfate (PFBS) were tested, out of which Gelucire, perfluorobutane sulfate, and poly(vinyl acetate) materials were able to provide some coating and perfluorobutane sulfate, poly(lactide), poly(vinyl acetate) delayed hydration of hydrogel particles, but not to a sufficient extent. The interactions of the different materials with the hydrogel are examined based on phenomena observed during the production processes and characterization of the particles generated. This work provides understanding into the interactions of polyacrylamide hydrogel particles both internally by encapsulation and externally by coating.

  9. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.

    PubMed

    Huang, Zhonghui; Scicolone, James V; Han, Xi; Davé, Rajesh N

    2015-01-30

    The improvements in the flow and packing of fine pharmaceutical powder blends due to dry coating of micronized acetaminophen (mAPAP, ∼11μm), a model poorly flowing drug, are quantified. Poor flow and packing density of fine excipients (∼20μm) allowed testing the hypothesis that dry coating of cohesive API may counteract poor flow and packing of fine pharmaceutical powder blends. Further, fine excipients could improve compaction and reduce segregation tendency. It was found that flow function coefficient (FFC) and bulk density enhancements for 10%, 30%, and 60% (w/w), API loading blends with dry coated API are significantly higher than those without coated silica. At the highest API loading, for which coarser excipients were also used as reference, the flow and packing of dry coated mAPAP blends were significantly increased regardless of the excipient particle size, exceeding those of a well compacting excipient, Avicel 102. In addition, tensile strength of tablets with fine excipients was significantly higher, indicating improved compactibility. These results show for the first time that dry coating of fine, cohesive API powder leads to significantly improved flow and packing of high API loading blends consisting of fine excipients, while achieving improved tablet compactibility, suggesting suitability for direct compaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Advanced Antireflection Coatings for High-Performance Solar Energy Applications

    NASA Technical Reports Server (NTRS)

    Pan, Noren

    2015-01-01

    Phase II objectives: Develop and refine antireflection coatings incorporating lanthanum titanate as an intermediate refractive index material; Investigate wet/dry thermal oxidation of aluminum containing semiconductor compounds as a means of forming a more transparent window layer with equal or better optical properties than its unoxidized form; Develop a fabrication process that allows integration of the oxidized window layer and maintains the necessary electrical properties for contacting the solar cell; Conduct an experimental demonstration of the best candidates for improved antireflection coatings.

  11. Improved properties of fine active pharmaceutical ingredient powder blends and tablets at high drug loading via dry particle coating.

    PubMed

    Kunnath, Kuriakose; Huang, Zhonghui; Chen, Liang; Zheng, Kai; Davé, Rajesh

    2018-05-30

    It has been shown that dry coating cohesive active pharmaceutical ingredients (APIs) with nano-silica can improve packing and flow of their blends, facilitating high speed direct compression tableting. This paper examines the broader scope and generality of previous work by examining three fine APIs; micronized Acetaminophen (mAPAP), coarse Acetaminophen (cAPAP) and micronized Ibuprofen (mIBU), and considers dry coating with both hydrophobic or hydrophilic nano-silica to examine the effect not only on packing density and flow of their blends, but also dissolution and tensile strength of their tablets. The impact of the excipient size on blend and tablet properties are also investigated, indicating blend flow is most improved when matching API particle size with excipient particle size. In all cases where the API is dry coated, the blend packing and flow improve, so as to suggest such high drug loaded blends could enable direct compression. Using dry coated API along with finer excipients in blends lead to improved hardness of the corresponding tablets. Interestingly, dissolution profiles show dry coated API tablets generally have faster dissolution rates, regardless of silica hydrophilicity, suggesting API powder deagglomeration via nano-silica coating plays a crucial role. The most significant conclusion is that, although there are differences in properties of blends that depend on the API, hydrophobic or hydrophilic nano-silica coating, as well as large or fine excipients, in all cases, dry coating of APIs significantly improves the possibility of using the specific blend at high drug loading in direct compression tableting. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The influence of incorporating MgO into Ni-based cermets by plasma spraying on anode microstructural and chemical stability in dry methane

    NASA Astrophysics Data System (ADS)

    Lay, E.; Metcalfe, C.; Kesler, O.

    2012-11-01

    The Solution Precursor Plasma Spray (SPPS) process was successfully used to deposit cermet coatings that exhibit fine microstructures with high surface area. MgO addition in Ni-YSZ and Ni-SDC cermets results in (Ni,Mg)O solid solution formation, and nickel particles after reduction are finer than in coatings without magnesia. The influence of MgO on the chemical stability of cermets in anodic operating conditions is discussed. It was found that a sufficient amount of magnesia addition (Ni0.9(MgO)0.1) helps to reduce carbon deposition in dry methane.

  13. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  14. Dry powder process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs

    NASA Technical Reports Server (NTRS)

    Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    1997-01-01

    A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. A material is applied to each side of the towpreg to form a sandwich. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.

  15. TiN-Coating Effects on Stainless Steel Tribological Behavior Under Dry and Lubricated Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiang; Yang, Huisheng; Pang, Xiaolu; Gao, Kewei; Tran, Hai T.; Volinsky, Alex A.

    2014-04-01

    The tribological properties of magnetron sputtered titanium nitride coating on 316L steel, sliding against Si3N4 ceramic ball under dry friction and synthetic perspiration lubrication, were investigated. The morphology of the worn surface and the elemental composition of the wear debris were examined by scanning electron microscopy and energy dispersive spectroscopy. TiN coatings and 316L stainless steel had better tribological properties under synthetic perspiration lubrication than under dry friction. Among the three tested materials (316L, 1.6 and 2.4 μm TiN coatings), 2.4 μm TiN coating exhibits the best wear resistance. The difference in wear damage of the three materials is essentially due to the wear mechanisms. For the TiN coating, the damage is attributed to abrasive wear under synthetic perspiration lubrication and the complex interactive mechanisms, including abrasive and adhesive wear, along with plastic deformation, under dry friction.

  16. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1996-07-16

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  17. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1995-09-12

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  18. The Wear Behavior of HVOF Sprayed Near-Nanostructured WC-17%Ni(80/20)Cr Coatings in Dry and Slurry Wear Conditions

    NASA Astrophysics Data System (ADS)

    Ben Mahmud, Tarek A.; Atieh, Anas M.; Khan, Tahir I.

    2017-07-01

    The ability to deposit nanostructured feedstock by using high-velocity oxygen-fuel (HVOF) spray offers potential improvements in coating hardness, wear resistance and toughness for applications in the oil sands industry. In this study, the wear behavior of a near-nanostructured coating was compared under dry and slurry abrasive wear test using an uncoated AISI-1018 low-carbon steel substrate as a reference. The coating microstructures were analyzed in the as-sprayed, dry and slurry test conditions using scanning electron microscopy, x-ray diffraction and microhardness measurements. Wear behavior of the steel and coating surfaces were assessed using a pin-on-plate wear test under various loads. The results showed that a coating could be successfully deposited using the HVOF spraying technique and with retention of the near-nanosized WC dispersion within the coating structure. The wear rate under dry test conditions was greater for the steel and coating compared to tests performed under slurry conditions. Examination of the wear tracks revealed that the wear mechanism was different for the two test conditions. Wear in the dry test condition resulted from 2-body abrasion, while 3-body abrasion dominated wear in slurry conditions. The latter showed lower wear rates due to a lubricating effect of the oil.

  19. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOEpatents

    Britten, Jerald A.

    1997-01-01

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.

  20. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOEpatents

    Britten, J.A.

    1997-08-26

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.

  1. Solubility parameters of hypromellose acetate succinate and plasticization in dry coating procedures.

    PubMed

    Klar, Fabian; Urbanetz, Nora Anne

    2016-10-01

    Solubility parameters of HPMCAS have not yet been investigated intensively. On this account, total and three-dimensional solubility parameters of HPMCAS were determined by using different experimental as well as computational methods. In addition, solubility properties of HPMCAS in a huge number of solvents were tested and a Teas plot for HPMCAS was created. The total solubility parameter of about 24 MPa(0.5) was confirmed by various procedures and compared with values of plasticizers. Twenty common pharmaceutical plasticizers were evaluated in terms of their suitability for supporting film formation of HPMCAS under dry coating conditions. Therefore, glass transition temperatures of mixtures of polymer and plasticizers were inspected and film formation of potential ones was further investigated in dry coating of pellets. Contact angles of plasticizers on HPMCAS were determined in order to give a hint of achievable coating efficiencies in dry coating, but none was found to spread on HPMCAS. A few common substances, e.g. dimethyl phthalate, glycerol monocaprylate, and polyethylene glycol 400, enabled plasticization of HPMCAS; however, only triethyl citrate and triacetin were found to be suitable for use in dry coating. Addition of acetylated monoglycerides to triacetin increased coating efficiency, which was likewise previously demonstrated for triethyl citrate.

  2. Tribological performance of quaternary CrSiCN coatings under dry and lubricated conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzo-Martin, C.; Ajayi, O.; Erdemir, A.

    This paper presents an experimental study of friction and wear performance of quaternary CrSiCN coatings deposited on a hardened H-13 steel substrate by a plasma enhanced magnetron sputtering (PEMS) technique. Friction and wear tests were conducted with a reciprocating line contact between a hardened 4370 steel roller and coated and uncoated flat specimens under dry and lubricated conditions. The effects of coating thickness (1, 3.5 and 7.5 μm) on the mechanical properties, friction and wear performance were also assessed. In dry sliding, the friction of coated surfaces was about the same as for uncoated surfaces, except for the 1-μm coating,more » which had higher friction. Friction for coated surfaces under lubricated contact was in general higher than for uncoated surfaces. There was no measurable wear on any of the coated surfaces, under either dry or lubricated conditions. However, wear was higher on the steel roller counterface sliding against the coated surfaces, with the amount of wear proportional to the mating coating thickness. The effectiveness of formulated lubricant additives was also modified by the coating, resulting in major effects on friction and wear behavior. Finally, this reduction in lubricant additive efficacy is due to the fact that the additives were designed and optimized for ferrous surfaces.« less

  3. Tribological performance of quaternary CrSiCN coatings under dry and lubricated conditions

    DOE PAGES

    Lorenzo-Martin, C.; Ajayi, O.; Erdemir, A.; ...

    2017-06-15

    This paper presents an experimental study of friction and wear performance of quaternary CrSiCN coatings deposited on a hardened H-13 steel substrate by a plasma enhanced magnetron sputtering (PEMS) technique. Friction and wear tests were conducted with a reciprocating line contact between a hardened 4370 steel roller and coated and uncoated flat specimens under dry and lubricated conditions. The effects of coating thickness (1, 3.5 and 7.5 μm) on the mechanical properties, friction and wear performance were also assessed. In dry sliding, the friction of coated surfaces was about the same as for uncoated surfaces, except for the 1-μm coating,more » which had higher friction. Friction for coated surfaces under lubricated contact was in general higher than for uncoated surfaces. There was no measurable wear on any of the coated surfaces, under either dry or lubricated conditions. However, wear was higher on the steel roller counterface sliding against the coated surfaces, with the amount of wear proportional to the mating coating thickness. The effectiveness of formulated lubricant additives was also modified by the coating, resulting in major effects on friction and wear behavior. Finally, this reduction in lubricant additive efficacy is due to the fact that the additives were designed and optimized for ferrous surfaces.« less

  4. Influence of coating material on the flowability and dissolution of dry-coated fine ibuprofen powders.

    PubMed

    Qu, Li; Zhou, Qi Tony; Denman, John A; Stewart, Peter J; Hapgood, Karen P; Morton, David A V

    2015-10-12

    This study investigates the effects of a variety of coating materials on the flowability and dissolution of dry-coated cohesive ibuprofen powders, with the ultimate aim to use these in oral dosage forms. A mechanofusion approach was employed to apply a 1% (w/w) dry coating onto ibuprofen powder with coating materials including magnesium stearate (MgSt), L-leucine, sodium stearyl fumarate (SSF) and silica-R972. No significant difference in particle size or shape was measured following mechanofusion with any material. Powder flow behaviours characterised by the Freeman FT4 system indicated coatings of MgSt, L-leucine and silica-R972 produced a notable surface modification and substantially improved flow compared to the unprocessed and SSF-mechanofused powders. ToF-SIMS provided a qualitative measure of coating extent, and indicated a near-complete layer on the drug particle surface after dry coating with MgSt or silica-R972. Of particular note, the dissolution rates of all mechanofused powders were enhanced even with a coating of a highly hydrophobic material such as magnesium stearate. This surprising increase in dissolution rate of the mechanofused powders was attributed to the lower cohesion and the reduced agglomeration after mechanical coating. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. 24. The DryingRoom in the coating mill at Lawrence, Mass. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. The Drying-Room in the coating mill at Lawrence, Mass. After the paper has received its coating from the coating-machine shown in the previous picture, it passes in a continuous web to the drying-room. Blasts of hot air coming out of galvanized ducts beneath support it for a distance of 100 feet, until it reaches the drying-chamber in the rear of the room. Here it hangs in festoons much like those of cotton cloth shown on page 219. In the picture the paper is passing from right to left. After leaving the drying-room it is wound on rolls, as shown in the next picture. (p.238.) - Champion-International Paper Company, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  6. Reflectance infrared spectroscopy for in-line monitoring of nicotine during a coating process for an oral thin film.

    PubMed

    Hammes, Florian; Hille, Thomas; Kissel, Thomas

    2014-02-01

    A process analytical method using reflectance infrared spectrometry was developed for the in-line monitoring of the amount of the active pharmaceutical ingredient (API) nicotine during a coating process for an oral thin film (OTF). In-line measurements were made using a reflectance infrared (RI) sensor positioned after the last drying zone of the coating line. Real-time spectra from the coating process were used for modelling the nicotine content. Partial least squares (PLS1) calibration models with different data pre-treatments were generated. The calibration model with the most comparable standard error of calibration (SEC) and the standard error of cross validation (SECV) was selected for an external validation run on the production coating line with an independent laminate. Good correlations could be obtained between values estimated from the reflectance infrared data and the reference HPLC test method, respectively. With in-line measurements it was possible to allow real-time adjustments during the production process to keep product specifications within predefined limits hence avoiding loss of material and batch. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Improvements in Microstructure and Wear Resistance of Plasma-Sprayed Fe-Based Amorphous Coating by Laser-Remelting

    NASA Astrophysics Data System (ADS)

    Jiang, Chaoping; Chen, Hong; Wang, Gui; Chen, Yongnan; Xing, Yazhe; Zhang, Chunhua; Dargusch, Matthew

    2017-04-01

    Amorphous coating technology is an attractive way of taking advantage of the superior properties of amorphous alloys for structural applications. However, the limited bonds between splats within the plasma-sprayed coatings result in a typically lamellar and porous coating structure. To overcome these limitations, the as-sprayed coating was treated by a laser-remelting process. The microstructure and phase composition of two coatings were analyzed using scanning electron microscopy with energy-dispersive spectroscopy, transmission electron microscopy, and x-ray diffraction. The wear resistance of the plasma-sprayed coating and laser-remelted coating was studied comparatively using a pin-on-disc wear test under dry friction conditions. It was revealed that the laser-remelted coating exhibited better wear resistance because of its defect-free and amorphous-nanocrystalline composited structure.

  8. Fabrication of a Silicon MOSFET Device with Bipolar Transistor Source,

    DTIC Science & Technology

    1980-07-01

    NEGATIVE PHOTORESIST PROCEDURE ’•J n •:• fi >. 3 u i fc- Process Coat wafer Air dry Pre bake the resist coating Expose Develop Method Time...Orange (rather broad for orange) 0.82 Salmon 0.85 Dull, light red-violet 0.86 Violet £ 0.87 Blue-violet 0.89 Blue ::’ 0.92 V Blue-green •I 0.95

  9. Novel extraction and application of okra gum as a film coating agent using theophylline as a model drug.

    PubMed

    Ogaji, Ikoni J; Hoag, Stephen W

    2014-04-01

    The purpose of this study was to investigate the effect of extraction and application of okra gum as an aqueous film coating agent. Powdered okra pods dispersed in demineralized water was heated at 80 ± 2(o)C for 30 minutes in the presence of sodium chloride. The filtrate was successively centrifuged at 4000 rpm for 30, 60, or 120 minutes and freeze dried. The samples were used as film former at different concentrations in aqueous film coating operations. Near infrared (nIR) absorption spectra, photomicrographs, and some physicochemical properties of the coated tablets were evaluated. The okra gum samples had different nIR spectra and possessed good processing and application quality due to relatively low viscosity. A six-fold concentration of this gum from the novel extraction yielded glossy theophylline tablets within a short time. A t (18) = 2.895, P < 0.005, t critical = 1.734 were obtained for the independent analysis of the hardness of core and coated theophylline tablets. A 3.0% concentration of the okra samples at a flow rate of 3 ml/min for 100 minutes showed that F = 3.798, DF = 29, P < 0.035, F critical = 3.354 in tablet hardness among samples and F = 15.632, DF = 29, P < 0.0001, F critical = 2.152 were obtained on film thickness among tablet samples during the coating and drying operation. Novel extraction process enhanced the film coating potential of okra gum by delivering more solids on the substrate at a shorter time with improved operation efficiency.

  10. Coating green slash asphalt and wax prevent drying

    Treesearch

    Harry E. Schimke; Ronald H. Dougherty

    1967-01-01

    Dry logging slash has been successfully kept dry for later burning by spraying it with asphalt and wax emulsions. The same treatments were tried on green slash. Tests made by applying SS-1 grade asphalt emulsion and a lumber wax on green slash showed that these protective coatings prevented the slash from drying satisfactorily.

  11. REAP (raster e-beam advanced process) using 50-kV raster e-beam system for sub-100-nm node mask technology

    NASA Astrophysics Data System (ADS)

    Baik, Ki-Ho; Dean, Robert L.; Mueller, Mark; Lu, Maiying; Lem, Homer Y.; Osborne, Stephen; Abboud, Frank E.

    2002-07-01

    A chemically amplified resist (CAR) process has been recognized as an approach to meet the demanding critical dimension (CD) specifications of 100nm node technology and beyond. Recently, significant effort has been devoted to optimizing CAR materials, which offer the characteristics required for next generation photomask fabrication. In this paper, a process established with a positive-tone CAR from TOK and 50kV MEBES eXara system is discussed. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. The coating process is conducted in an environment with amine concentration less than 2 ppb. A nitrogen environment is provided during plate transfer steps. Resolution using a 60nm writing grid is 90nm line and space patterns. CD linearity is maintained down to 240nm for isolated lines or spaces by applying embedded proximity effect correction (emPEC). Optimizations of post-apply bake (PAB) and post-expose bake (PEB) time, temperature, and uniformity are completed to improve adhesion, coating uniformity, and resolution. A puddle develop process is optimized to improve line edge roughness, edge slope, and resolution. Dry etch process is optimized on a TetraT system to transfer the resist image into the chrome layer with minimum etch bias.

  12. Quality of Dried Bacillus NP5 and its Effect on Growth Performance of Tilapia (Oreochromis niloticus).

    PubMed

    Utami, Diah Ayu Satyari; Widanarni; Suprayudi, M Agus

    2015-02-01

    The main things that need to be considered in the preparation of probiotics are viability during preparation and storage which are the disadvantages of the use of fresh culture probiotics. Dried probiotic can be applied through the feed, easy to be applied and has a long shelf life but application of dried probiotic in aquaculture is still not widely studied. This study aimed to evaluate the quality of dried Bacillus NP5 as the probiotic through in vitro assays and determine the best dose for the growth performance of tilapia. The treatment of in vitro assays including the production of dried probiotic without using of the coating material and dried by spray drying method (NS); freeze drying method (NF); with using of the coating material and dried by spray drying method (WS); freeze drying method (WF). The treatment which showed the best result at in vitro assays was applied for in vivo assays. The in vivo assays containing 4 treatments and 5 replicates which were control (K) and the administration of dried Bacillus NP5 Rf(R) (10(10) CFU g(-1)) in feed with dose of 0.5% (A), 1% (B) and 2% (C). The fish fed 3 times a day by at satiation for 28 days. Probiotic that encapsulated by maltodextrin and dried by spray drying method that stored in room temperature had the higher percentage product, viability after drying process and storage. The administration of 0.5% dried Bacillus NP5 showed the best growth performance in tilapia.

  13. Innovations in coating technology.

    PubMed

    Behzadi, Sharareh S; Toegel, Stefan; Viernstein, Helmut

    2008-01-01

    Despite representing one of the oldest pharmaceutical techniques, coating of dosage forms is still frequently used in pharmaceutical manufacturing. The aims of coating range from simply masking the taste or odour of drugs to the sophisticated controlling of site and rate of drug release. The high expectations for different coating technologies have required great efforts regarding the development of reproducible and controllable production processes. Basically, improvements in coating methods have focused on particle movement, spraying systems, and air and energy transport. Thereby, homogeneous distribution of coating material and increased drying efficiency should be accomplished in order to achieve high end product quality. Moreover, given the claim of the FDA to design the end product quality already during the manufacturing process (Quality by Design), the development of analytical methods for the analysis, management and control of coating processes has attracted special attention during recent years. The present review focuses on recent patents claiming improvements in pharmaceutical coating technology and intends to first familiarize the reader with the available procedures and to subsequently explain the application of different analytical tools. Aiming to structure this comprehensive field, coating technologies are primarily divided into pan and fluidized bed coating methods. Regarding pan coating procedures, pans rotating around inclined, horizontal and vertical axes are reviewed separately. On the other hand, fluidized bed technologies are subdivided into those involving fluidized and spouted beds. Then, continuous processing techniques and improvements in spraying systems are discussed in dedicated chapters. Finally, currently used analytical methods for the understanding and management of coating processes are reviewed in detail in the last section of the review.

  14. Investigation of surface finishing of carbon based coated tools for dry deep drawing of aluminium alloys

    NASA Astrophysics Data System (ADS)

    Steiner, J.; Andreas, K.; Merklein, M.

    2016-11-01

    Global trends like growing environmental awareness and demand for resource efficiency motivate an abandonment of lubricants in metal forming. However, dry forming evokes increased friction and wear. Especially, dry deep drawing of aluminum alloys leads to intensive interaction between tool and workpiece due to its high adhesion tendency. One approach to improve the tribological behavior is the application of carbon based coatings. These coatings are characterized by high wear resistance. In order to investigate the potential of carbon based coatings for dry deep drawing, friction and wear behavior of different coating compositions are evaluated in strip drawing tests. This setup is used to model the tribological conditions in the flange area of deep drawing operations. The tribological behavior of tetrahedral amorphous (ta-C) and hydrogenated amorphous carbon coatings with and without tungsten modification (a-C:H:W, a-C:H) is investigated. The influence of tool topography is analyzed by applying different surface finishing. The results show reduced friction with decreased roughness for coated tools. Besides tool topography the coating type determines the tribological conditions. Smooth tools with ta-C and a-C:H coatings reveal low friction and prevent adhesive wear. In contrast, smooth a-C:H:W coated tools only lead to slight improvement compared to rough, uncoated specimen.

  15. Simple and Rapid Immobilization of Coating Polymers on Poly(dimethyl siloxane)-glass Hybrid Microchips by a Vacuum-drying Method.

    PubMed

    Kitagawa, Fumihiko; Nakagawara, Syo; Nukatsuka, Isoshi; Hori, Yusuke; Sueyoshi, Kenji; Otsuka, Koji

    2015-01-01

    A simple and rapid vacuum-drying modification method was applied to several neutral and charged polymers to obtain coating layers for controlling electroosmotic flow (EOF) and suppressing sample adsorption on poly(dimethyl siloxane) (PDMS)-glass hybrid microchips. In the vacuum-dried poly(vinylpyrrolidone) coating, the electroosmotic mobility (μeo) was suppressed from +2.1 to +0.88 × 10(-4) cm(2)/V·s, and the relative standard deviation (RSD) of μeo was improved from 10.2 to 2.5% relative to the bare microchannel. Among several neutral polymers, poly(vinylalcohol) (PVA) and poly(dimethylacrylamide) coatings gave more suppressed and repeatable EOF with RSDs of less than 2.3%. The vacuum-drying method was also applicable to polyanions and polycations to provide accelerated and inversed EOF, respectively, with acceptable RSDs of less than 4.9%. In the microchip electrophoresis (MCE) analysis of bovine serum albumin (BSA) in the vacuum-dried and thermally-treated PVA coating channel, an almost symmetric peak of BSA was obtained, while in the native microchannel a significantly skewed peak was observed. The results demonstrated that the vacuum-dried polymer coatings were effective to control the EOF, and reduced the surface adsorption of proteins in MCE.

  16. Impact of organic coating on optical growth of ammonium sulfate particles.

    PubMed

    Robinson, Carly B; Schill, Gregory P; Zarzana, Kyle J; Tolbert, Margaret A

    2013-01-01

    Light extinction by particles in Earth's atmosphere is strongly dependent on particle size, chemical composition, hygroscopic growth properties, and particle mixing state. Here, the influence of an organic coating on particle optical growth was studied. The particle optical growth factor, fRHext, was measured using cavity ring-down aerosol extinction spectroscopy at 532 nm. The particles were composed of ammonium sulfate (AS), 1,2,6-hexanetriol, and mixed particles containing a wet or dry ammonium sulfate core and a 1,2,6-hexanetriol coating. Dry, coated particles were generated by atomization followed by drying. Wet, coated particles were formed via liquid-liquid phase separation (LLPS). LLPS was achieved by deliquescing and then drying the particles to a relative humidity (RH) between the phase separation RH and the efflorescence RH. For the LLPS particles, the fRHext at each RH was between the fRHext of ammonium sulfate and that of 1,2,6-hexanetriol. In contrast, for the mixed dry, coated particles, the fRHext was the same as 1,2,6-hexanetriol particles. At room temperature, the water uptake properties of AS coated with 1,2,6-hexanetriol are largely dictated by the phase of the AS. Thus, the total water uptake depends on the RH history of the particle and the resulting phase of AS.

  17. Mill Glaze: Myth or Reality?

    Treesearch

    Mark Knaebe

    2013-01-01

    Since the mid-1980s, a condition called “mill glaze” (also called planer’s glaze) has sometimes been blamed for the failure of a coating on smooth flat-grained siding and some other wood products. The exact cause of this problem has been a subject of controversy. Many people believe that the coating fails as a result of the planing and/or drying processes. They...

  18. Tribological Behavior of Electroless Ni-P Coatings in Various Corrosive Environments

    NASA Astrophysics Data System (ADS)

    Panja, Bikash; Das, Suman Kalyan; Sahoo, Prasanta

    2016-04-01

    The present paper deals with the study of tribological characteristics, viz. friction and wear, of electroless Ni-P coating in corrosive environments (brine, acidic and alkaline) by varying different coating process parameters as well as varying the tribological testing parameters, viz. applied load and speed. The optimized results of coating process parameters for minimum friction and wear performance of the coating are presented. Moreover, a detailed study of the tribological behavior of the coating is undertaken individually for the three corrosive environments. The results obtained are compared among each other and also with the dry condition test of the coating. It is found that the friction coefficient of Ni-P coating decreases with increase in load for all environments. In case of wear, the wear rate of Ni-P coating gradually increases with increase in load for all mediums but the same decreases after 40N in brine and alkaline mediums. However, for acidic solution, the wear rate shows a continuous increasing trend. It is observed that alkaline and brine environments are favorable from friction and wear point of view of the coating, respectively. Microstructure study of the coatings is also performed and the coating is found to be of cauliflower-like morphology. The coating also exhibits amorphous structure in as-deposited condition, which gradually turns crystalline with heat treatment.

  19. Evaluation of implants coated with recombinant human bone morphogenetic protein-2 and vacuum-dried using the critical-size supraalveolar peri-implant defect model in dogs.

    PubMed

    Decker, John F; Lee, Jaebum; Cortella, Carlo Alberto; Polimeni, Giuseppe; Rohrer, Michael D; Wozney, John M; Hall, Jan; Susin, Cristiano; Wikesjö, Ulf M E

    2010-12-01

    Endosseous implants coated with recombinant human bone morphogenetic protein-2 (rhBMP-2) in a laboratory bench setting and air-dried induce relevant bone formation but also resident bone remodeling. Thus, the objective of this study is to evaluate the effect of implants fully or partially coated with rhBMP-2 and vacuum-dried using an industrial process on local bone formation and resident bone remodeling. Twelve male adult Hound Labrador mongrel dogs were used. Critical-size, supraalveolar, peri-implant defects received titanium porous oxide surface implants coated in their most coronal aspect with rhBMP-2 (coronal-load, six animals), or by immersion of the entire implant in a rhBMP-2 solution (soak-load, six animals) for a total of 30 μg rhBMP-2 per implant. All implants were vacuum-dried. The animals were sacrificed at 8 weeks for histometric evaluation. Clinical healing was unremarkable. Bone formation was not significantly affected by the rhBMP-2 application protocol. New bone height and area averaged (± SE) 3.2 ± 0.5 versus 3.6 ± 0.3 mm, and 2.3 ± 0.5 versus 2.6 ± 0.8 mm(2) for coronal-load and soak-load implants, respectively (P >0.05). The corresponding bone density and bone-implant contact registrations averaged 46.7% ± 5.8% versus 31.6% ± 4.4%, and 28% ± 5.6% versus 36.9% ± 3.4% (P >0.05). In contrast, resident bone remodeling was significantly influenced by the rhBMP-2 application protocol. Peri-implant bone density averaged 72.2% ± 2.1% for coronal-load versus 60.6% ± 4.7% for soak-load implants (P <0.05); the corresponding bone-implant contact averaged 70.7% ± 6.1% versus 47.2% ± 6.0% (P <0.05). Local application of rhBMP-2 and vacuum-drying using industrial process seems to be a viable technology to manufacture implants that support local bone formation and osseointegration. Coronal-load implants obviate resident bone remodeling without compromising local bone formation.

  20. Preparation of Pt Nanocatalyst on Carbon Materials via a Reduction Reaction of a Pt Precursor in a Drying Process.

    PubMed

    Lee, Jae-Young; Lee, Woo-Kum; Rim, Hyung-Ryul; Joung, Gyu-Bum; Weidner, John W; Lee, Hong-Ki

    2016-06-01

    Platinum (Pt) nanocatalyst for a proton-exchange membrane fuel cell (PEMFC) was prepared on a carbon black particle or a graphite particle coated with a nafion polymer via a reduction of platinum(II) bis(acetylacetonate) denoted as Pt(acac)2 as a Pt precursor in a drying process. Sublimed Pt(acac)2 adsorbed on the nafion-coated carbon materials was reduced to Pt nanoparticles in a glass reactor at 180 degrees C of N2 atmosphere. The morphology of Pt nanoparticles on carbon materials was observed by scanning electron microscopy (SEM) and the distribution of Pt nanoparticles was done by transmission electron microscopy (TEM). The particle size was estimated by analyzing the TEM image using an image analyzer. It was found that nano-sized Pt particles were deposited on the surface of carbon materials, and the number density and the average particle size increased with increasing reduction time.

  1. 76 FR 52867 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... coating solids, as applied] Baked Air dried Coating type Kilograms Pounds per per liter gallon (lb/ kg/l... per volume of coating solids, as applied] Baked Air dried Coating type kg/l lb/gal kg/l lb/gal General....3 lb/gal was revised to 3.34 lb/gal in the Baked--``General, One Component'' and ``General, Multi...

  2. Oxidation study of coated Crofer 22 APU steel in dry oxygen

    NASA Astrophysics Data System (ADS)

    Molin, Sebastian; Chen, Ming; Hendriksen, Peter Vang

    2014-04-01

    The effect of a dual layer coating composed of a layer of a Co3O4 and a layer of a La0.85Sr0.15MnO3/Co3O4 mixture on the high temperature corrosion of the Crofer 22 APU alloy is reported. Oxidation experiments were performed in dry oxygen at three temperatures: 800 °C, 850 °C and 900 °C for periods up to 1000 h. Additionally at 850 °C a 5000 h long oxidation test was performed to evaluate longer term suitability of the proposed coating. Corrosion kinetics were evaluated by measuring mass gain during oxidation. The corrosion kinetics for the coated samples are analyzed in terms of a parabolic rate law. Microstructural features were investigated by scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffractometry. The coating is effective in reducing the corrosion rate and in ensuring long lifetime of coated alloys. The calculated activation energy for the corrosion process is around 1.8 eV. A complex Co-Mn-Cr spinel is formed caused by diffusion of Cr and Mn from the alloy into the Co3O4 coating and by additional diffusion of Mn from the LSM layer. Adding a layer of LSM/Co3O4, acting as an additional Mn source, on top of the cobalt spinel is beneficial for the improved corrosion resistance.

  3. Manufacture of Regularly Shaped Sol-Gel Pellets

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kinder, James D.

    2006-01-01

    An extrusion batch process for manufacturing regularly shaped sol-gel pellets has been devised as an improved alternative to a spray process that yields irregularly shaped pellets. The aspect ratio of regularly shaped pellets can be controlled more easily, while regularly shaped pellets pack more efficiently. In the extrusion process, a wet gel is pushed out of a mold and chopped repetitively into short, cylindrical pieces as it emerges from the mold. The pieces are collected and can be either (1) dried at ambient pressure to xerogel, (2) solvent exchanged and dried under ambient pressure to ambigels, or (3) supercritically dried to aerogel. Advantageously, the extruded pellets can be dropped directly in a cross-linking bath, where they develop a conformal polymer coating around the skeletal framework of the wet gel via reaction with the cross linker. These pellets can be dried to mechanically robust X-Aerogel.

  4. Experimental investigation on hard turning of AISI 4340 steel using cemented coated carbide insert

    NASA Astrophysics Data System (ADS)

    Pradeep Kumar, J.; Kishore, K. P.; Ranjith Kumar, M.; Saran Karthick, K. R.; Vishnu Gowtham, S.

    2018-02-01

    Hard turning is a developing technology that offers many potential advantages compared to grinding, which remains the standard finishing process for critical hardened surfaces. In this work, an attempt has been made to experimentally investigate hard turning of AISI 4340 steel under wet and dry condition using cemented coated carbide insert. Hardness of the workpiece material is tested using Brinell and Rockwell hardness testers. CNC LATHE and cemented coated carbide inserts of designation CNMG 120408 are used for conducting experimental trials. Significant cutting parameters like cutting speed, feed rate and depth of cut are considered as controllable input parameters and surface roughness (Ra), tool wear are considered as output response parameters. Design of experiments is carried out with the help of Taguchi’s L9 orthogonal array. Results of response parameters like surface roughness and tool wear under wet and dry condition are analysed. It is found that surface roughness and tool wear are higher under dry machining condition when compared to wet machining condition. Feed rate significantly influences the surface roughness followed by cutting speed. Depth of cut significantly influences the tool wear followed by cutting speed.

  5. Controllable Electrochromic Polyamide Film and Device Produced by Facile Ultrasonic Spray-coating.

    PubMed

    Liu, Huan-Shen; Chang, Wei-Chieh; Chou, Chin-Yen; Pan, Bo-Cheng; Chou, Yi-Shan; Liou, Guey-Sheng; Liu, Cheng-Liang

    2017-09-20

    Thermally stable TPA-OMe polyamide films with high transmittance modulation in response to applied potential are formed by facile ultrasonic spray-coating. Four processing conditions (Film A, Film B, Film C and Film D) through tuning both solution concentrations and deposition temperatures can be utilized for the formation of wet and dry deposited films with two film thickness intervals. The electrochromic results show that the dry deposited rough films at higher deposition temperature generally reveal a faster electrochromic response, lower charge requirements (Q) and less conspicuous color changes (smaller optical density change (ΔOD) and lightness change (ΔL*)) during the oxidation process as compared to the wet deposited smooth films at lower deposition temperature. Moreover, thicker electrochromic films from increased solution concentration exhibit more obvious changes between coloration and bleaching transition. All these four polyamide films display colorless-to-turquoise electrochromic switching with good redox stability. The large scale patterned electrochromic film and its application for assembled device (10 × 10 cm 2 in size) are also produced and reversibly operated for color changes. These represent a major solution-processing technique produced by ultrasonic spray-coating method towards scalable and cost-effective production, allowing more freedoms to facilitate the designed electrochromic devices as required.

  6. Preparation and characterization of hydroxyapatite-coated iron oxide particles by spray-drying technique.

    PubMed

    Donadel, Karina; Felisberto, Marcos D V; Laranjeira, Mauro C M

    2009-06-01

    Magnetic particles of iron oxide have been increasingly used in medical diagnosis by magnetic resonance imaging and in cancer therapies involving targeted drug delivery and magnetic hyperthermia. In this study we report the preparation and characterization of iron oxide particles coated with bioceramic hydroxyapatite by spray-drying. The iron oxide magnetic particles (IOMP) were coated with hydroxyapatite (HAp) by spray-drying using two IOMP/HAp ratios (0.7 and 3.2). The magnetic particles were characterized by way of scanning electronic microscopy, energy dispersive X-ray, X-ray diffraction, Fourier transformed infrared spectroscopy, flame atomic absorption spectrometry,vibrating sample magnetometry and particle size distribution (laser diffraction). The surface morphology of the coated samples is different from that of the iron oxide due to formation of hydroxyapatite coating. From an EDX analysis, it was verified that the surface of the coated magnetic particles is composed only of HAp, while the interior containsiron oxide and a few layers of HAp as expected. The results showed that spray-drying technique is an efficient and relatively inexpensive method for forming spherical particles with a core/shell structure.

  7. A novel in-line NIR spectroscopy application for the monitoring of tablet film coating in an industrial scale process.

    PubMed

    Möltgen, C-V; Puchert, T; Menezes, J C; Lochmann, D; Reich, G

    2012-04-15

    Film coating of tablets is a multivariate pharmaceutical unit operation. In this study an innovative in-line Fourier-Transform Near-Infrared Spectroscopy (FT-NIRS) application is described which enables real-time monitoring of a full industrial scale pan coating process of heart-shaped tablets. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film of up to approx. 28 μm on the tablet face as determined by SEM, corresponding to a weight gain of 2.26%. For a better understanding of the aqueous coating process the NIR probe was positioned inside the rotating tablet bed. Five full scale experimental runs have been performed to evaluate the impact of process variables such as pan rotation, exhaust air temperature, spray rate and pan load and elaborate robust and selective quantitative calibration models for the real-time determination of both coating growth and tablet moisture content. Principal Component (PC) score plots allowed each coating step, namely preheating, spraying and drying to be distinguished and the dominating factors and their spectral effects to be identified (e.g. temperature, moisture, coating growth, change of tablet bed density, and core/coat interactions). The distinct separation of HPMC coating growth and tablet moisture in different PCs enabled a real-time in-line monitoring of both attributes. A PLS calibration model based on Karl Fischer reference values allowed the tablet moisture trajectory to be determined throughout the entire coating process. A 1-latent variable iPLS weight gain calibration model with calibration samples from process stages dominated by the coating growth (i.e. ≥ 30% of the theoretically applied amount of coating) was sufficiently selective and accurate to predict the progress of the thin HPMC coating layer. At-line NIR Chemical Imaging (NIR-CI) in combination with PLS Discriminant Analysis (PLSDA) verified the HPMC coating growth and physical changes at the core/coat interface during the initial stages of the coating process. In addition, inter- and intra-tablet coating variability throughout the process could be assessed. These results clearly demonstrate that in-line NIRS and at-line NIR-CI can be applied as complimentary PAT tools to monitor a challenging pan coating process. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Comparative studies of thin film growth on aluminium by AFM, TEM and GDOES characterization

    NASA Astrophysics Data System (ADS)

    Qi, Jiantao; Thompson, George E.

    2016-07-01

    In this present study, comparative studies of trivalent chromium conversion coating formation, associated with aluminium dissolution process, have been investigated using atomic force microscopy (AFM), transmission electron microscopy (TEM) and glow-discharge optical emission spectroscopy (GDOES). High-resolution electron micrographs revealed the evident and uniform coating initiation on the whole surface after conversion treatment for only 30 s, although a network of metal ridges was created by HF etching pre-treatment. In terms of conversion treatment process on electropolished aluminium, constant kinetics of coating growth, ∼0.30 ± 0.2 nm/s, were found after the prolonged conversion treatment for 600 s. The availability of electrolyte anions for coating deposition determined the growth process. Simultaneously, a proceeding process of aluminium dissolution during conversion treatment, of ∼0.11 ± 0.02 nm/s, was found for the first time, indicating constant kinetics of anodic reactions. The distinct process of aluminium consumption was assigned with loss of corrosion protection of the deposited coating material as evidenced in the electrochemical impedance spectroscopy. Based on the present data, a new mechanism of coating growth on aluminium was proposed, and it consisted of an activation period (0-30 s), a linear growth period (0.30 nm/s, up for 600 s) and limited growth period (0.17 nm/s, 600-1200 s). In addition, the air-drying post-treatment and a high-vacuum environment in the microscope revealed a coating shrinkage, especially in the coatings after conversion treatments for longer time.

  9. Effect of composition on physical properties of food powders

    NASA Astrophysics Data System (ADS)

    Szulc, Karolina; Lenart, Andrzej

    2016-04-01

    The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.

  10. Presence of electrostatically adsorbed polysaccharides improves spray drying of liposomes.

    PubMed

    Karadag, Ayse; Özçelik, Beraat; Sramek, Martin; Gibis, Monika; Kohlus, Reinhard; Weiss, Jochen

    2013-02-01

    Spray drying of liposomes with conventional wall materials such as maltodextrins often yields nonfunctional powders, that is, liposomes break down during drying and rehydration. Electrostatically coating the surface of liposomes with a charged polymer prior to spray drying may help solve this problem. Anionic lecithin liposomes (approximately 400 nm) were coated with lower (approximately 500 kDa, LMW-C) or higher (approximately 900 kDa, HMW-C) molecular weight cationic chitosan using the layer-by-layer depositing method. Low (DE20, LMW-MD) or high molecular weight (DE2, HMW-MD) maltodextrin was added as wall material to facilitate spray drying. If surfaces of liposomes (1%) were completely covered with chitosan (0.4%), no bridging or depletion flocculation would occur, and mean particle diameters would be approximately 500 nm. If maltodextrins (20%) were added to uncoated liposomes, extensive liposomal breakdown would occur making the system unsuitable for spray drying. No such aggregation or breakdown was observed when maltodextrin was added to chitosan-coated liposomes. Size changed little or even decreased slightly depending on the molecular weight of maltodextrin added. Scanning electron microscopy images of powders containing chitosan-coated liposomes revealed that their morphologies depended on the type of maltodextrin added. Powders prepared with LMW-MD contained mostly spherical particles while HMW-MD powders contained particles with concavities and dents. Upon redispersion, coated liposomes yielded back dispersions with particle size distributions similar to the original ones, except for LMW-C coated samples that had been spray dried with HMW-MD which yielded aggregates (approximately 30 μm). Results show that coating of liposomes with an absorbing polymer allows them to be spray dried with conventional maltodextrin wall materials. Liposomes have attracted considerable attention in the food and agricultural, biomedical industries for the delivery of functional components. However, maintaining their stability in aqueous dispersion represents a challenge for their commercialization. Spray drying may promise a solution to that problem. However, prior to this study spray drying of liposomes often led to the loss of structural integrity. Results of this study suggest that spray drying might be used to produce commercially feasible liposomal powders if proper combinations of adsorbing and nonadsorbing polymers are used in the liquid precursor system. © 2013 Institute of Food Technologists®

  11. Real-time measurement system for tracking birefringence, weight, thickness, and surface temperature during drying of solution cast coatings and films

    NASA Astrophysics Data System (ADS)

    Unsal, E.; Drum, J.; Yucel, O.; Nugay, I. I.; Yalcin, B.; Cakmak, M.

    2012-02-01

    This paper describes the design and performance of a new instrument to track temporal changes in physical parameters during the drying behavior of solutions, as well as curing of monomers. This real-time instrument follows in-plane and out-of-plane birefringence, weight, thickness, and surface temperature during the course of solidification of coatings and films through solvent evaporation and thermal or photocuring in a controlled atmosphere. It is specifically designed to simulate behavior of polymer solutions inside an industrial size, continuous roll-to-roll solution casting line and other coating operations where resins are subjected to ultraviolet (UV) curing from monomer precursors. Controlled processing parameters include air speed, temperature, initial cast thickness, and solute concentration, while measured parameters are thickness, weight, film temperature, in-plane and out-of-plane birefringence. In this paper, we illustrate the utility of this instrument with solution cast and dried poly (amide-imide)/DMAc (Dimethylacetamide) solution, water based black paint, and organo-modified clay/NMP (N-Methylpyrrolidone) solution. In addition, the physical changes that take place during UV photo polymerization of a monomer are tracked. This instrument is designed to be generic and it can be used for tracking any drying/swelling/solidification systems including paper, foodstuffs such as; grains, milk as well as pharmaceutical thin paste and slurries.

  12. Wear resistance of WC/Co HVOF-coatings and galvanic Cr coatings modified by diamond nanoparticles

    NASA Astrophysics Data System (ADS)

    Kandeva, M.; Grozdanova, T.; Karastoyanov, D.; Assenova, E.

    2017-02-01

    The efforts in the recent 20 years are related to search of ecological solutions in the tribotechnologies for the replacement of galvanic Cr coatings in the contact systems operating under extreme conditions: abrasion, erosion, cavitation, corrosion, shock and vibration loads. One of the solutions is in the composite coatings deposited by high velocity gas-flame process (HVOF). The present paper presents comparative study results for mechanical and tribological characteristics of galvanic Cr coatings without nanoparticles, galvanic Cr coatings modified by diamond nanoparticles NDDS of various concentration 0.6; 10; 15 и 20% obtained under three technological regimes, and composite WC-12Co coating. Comparative results about hardness, wear, wear resistance and friction coefficient are obtained for galvanic Cr-NDDS and WC-12Co coatings operating at equal friction conditions of dry friction on abrasive surface. The WC-12Co coating shows 5.4 to 7 times higher wear resistance compared to the galvanic Cr-NDDS coatings.

  13. Role of carbon nanotube dispersion in fracture toughening of plasma sprayed aluminum oxide-carbon nanotube nanocomposite coating

    NASA Astrophysics Data System (ADS)

    Balani, Kantesh

    Aluminum oxide (Al2O3, or alumina) is a conventional ceramic known for applications such as wear resistant coatings, thermal liners, heaters, crucibles, dielectric systems, etc. However applications of Al 2O3 are limited owing to its inherent brittleness. Due to its excellent mechanical properties and bending strength, carbon nanotubes (CNT) is an ideal reinforcement for Al2O3 matrix to improve its fracture toughness. The role of CNT dispersion in the fracture toughening of the plasma sprayed Al2O3-CNT nanocomposite coating is discussed in the current work. Pretreatment of powder feedstock is required for dispersing CNTs in the matrix. Four coatings namely spray dried Al2O 3 (A-SD), Al2O3 blended with 4wt.% CNT (A4C-B), composite spray dried Al2O3-4wt.% CNT (A4C-SD) and composite spray dried A1203-8wt.% CNT (A8C-SD), are synthesized by plasma spraying. Owing to extreme temperatures and velocities involved in the plasma spraying of ceramics, retention of CNTs in the resulting coatings necessitates optimizing plasma processing parameters using an inflight particle diagnostic sensor. A bimodal microstructure was obtained in the matrix that consists of fully melted and resolidified structure and solid state sintered structure. CNTs are retained both in the fully melted region and solid-state sintered regions of processed coatings. Fracture toughness of A-SD, A4C-B, A4C-SD and A8C-SD coatings was 3.22, 3.86, 4.60 and 5.04 MPa m1/2 respectively. This affirms the improvement of fracture toughness from 20% (in A4C-B coating) to 43% (in A4C-SD coating) when compared to the A-SD coating because of the CNT dispersion. Fracture toughness improvement from 43% (in A4C-SD) to 57% (in A8C-SD) coating is evinced because of the CNT content. Reinforcement by CNTs is described by its bridging, anchoring, hook formation, impact alignment, fusion with splat, and mesh formation. The Al2O3/CNT interface is critical in assisting the stress transfer and utilizing excellent mechanical properties of CNTs. Mathematical and computational modeling using ab-initio principle is applied to understand the wetting behavior at the Al2O 3/CNT interface. Contrasting storage modulus was obtained by nanoindentation (˜210, 250, 250-350 and 325-420 GPa in A-SD, A4C-B, A4C-SD, and A8C-SD coatings respectively) depicting the toughening associated with CNT content and dispersion.

  14. A deep look into the spray coating process in real-time—the crucial role of x-rays

    NASA Astrophysics Data System (ADS)

    Roth, Stephan V.

    2016-10-01

    Tailoring functional thin films and coating by rapid solvent-based processes is the basis for the fabrication of large scale high-end applications in nanotechnology. Due to solvent loss of the solution or dispersion inherent in the installation of functional thin films and multilayers the spraying and drying processes are strongly governed by non-equilibrium kinetics, often passing through transient states, until the final structure is installed. Therefore, the challenge is to observe the structural build-up during these coating processes in a spatially and time-resolved manner on multiple time and length scales, from the nanostructure to macroscopic length scales. During installation, the interaction of solid-fluid interfaces and between the different layers, the flow and evaporation themselves determine the structure of the coating. Advanced x-ray scattering methods open a powerful pathway for observing the involved processes in situ, from the spray to the coating, and allow for gaining deep insight in the nanostructuring processes. This review first provides an overview over these rapidly evolving methods, with main focus on functional coatings, organic photovoltaics and organic electronics. Secondly the role and decisive advantage of x-rays is outlined. Thirdly, focusing on spray deposition as a rapidly emerging method, recent advances in investigations of spray deposition of functional materials and devices via advanced x-ray scattering methods are presented.

  15. Space Coatings for Industry

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Ball Aerospace developed entirely new space lubrication technologies. A new family of dry lubricants emerged from Apollo, specifically designed for long life in space, together with processes for applying them to spacecraft components in microscopically thin coatings. Lubricants worked successfully on seven Orbiting Solar Observatory flights over the span of a decade and attracted attention to other contractors which became Ball customers. The company has developed several hundred variations of the original OSO technology generally designed to improve the quality and useful life of a wide range of products or improve efficiency of the industrial processes by which such products are manufactured.

  16. Powder-Coated Towpreg: Avenues to Near Net Shape Fabrication of High Performance Composites

    NASA Technical Reports Server (NTRS)

    Johnston, N. J.; Cano, R. J.; Marchello, J. M.; Sandusky, D. A.

    1995-01-01

    Near net shape parts were fabricated from powder-coated preforms. Key issues including powder loss during weaving and tow/tow friction during braiding were addressed, respectively, by fusing the powder to the fiber prior to weaving and applying a water-based gel to the towpreg prior to braiding. A 4:1 debulking of a complex 3-D woven powder-coated preform was achieved in a single step utilizing expansion rubber molding. Also, a process was developed for using powder-coated towpreg to fabricate consolidated ribbon having good dimensional integrity and low voids. Such ribbon will be required for in situ fabrication of structural components via heated head advanced tow placement. To implement process control and ensure high quality ribbon, the ribbonizer heat transfer and pulling force were modeled from fundamental principles. Most of the new ribbons were fabricated from dry polyarylene ether and polymide powders.

  17. Novel Chemical Process for Producing Chrome Coated Metal

    PubMed Central

    Pelar, Christopher; Greenaway, Karima; Zea, Hugo; Wu, Chun-Hsien

    2018-01-01

    This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM). SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed. PMID:29303977

  18. Novel Chemical Process for Producing Chrome Coated Metal.

    PubMed

    Pelar, Christopher; Greenaway, Karima; Zea, Hugo; Wu, Chun-Hsien; Luhrs, Claudia C; Phillips, Jonathan

    2018-01-05

    This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM). SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed.

  19. Commercialization of NASA PS304 Solid Lubricant Coating Enhanced by Fundamental Powder Flow Research

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2003-01-01

    The NASA Glenn Research Center has developed a patented high-temperature solid lubricant coating, designated PS304, for reducing friction and wear in bearing systems. The material used to produce the coating is initially a blend of metallic and ceramic powders that are deposited on the bearing surface by the plasma spray process. PS304 was developed to lubricate foil air bearings in Oil-Free turbomachinery, where the moving surfaces are coated with a hydrodynamic air film except at the beginning and end of an operation cycle when the air film is not present. The coating has been successful in several applications including turbochargers, land-based turbines, and industrial drying furnace conveyor components, with current development activities directed at implementation in Oil-Free aeropropulsion engines.

  20. Structural and morphological characterization of anatase TiO 2 coating on χ-Alumina scale fiber fabricated by sol-gel dip-coating method

    NASA Astrophysics Data System (ADS)

    Nguyen, Hue Thi; Miao, Lei; Tanemura, Sakae; Tanemura, Masaki; Toh, Shoichi; Kaneko, Kenji; Kawasaki, Masahiro

    2004-10-01

    Anatase TiO 2 coatings 0.4 μm thick have been successfully fabricated by sol-gel dip-coating process on χ-Al 2O 3 fibers 100 μm by 10 cm long with a surface fish-scale. This was achieved by adjustment of the sol-gel parameters such as molar ratio of the precursors in TiO 2-sols, dip-coating time, drying duration in air, heating processes and number of cyclical repetitions of the process. Two samples were prepared using two sols containing different molar ratios of precursors. XRD, TEM, EDS and SEM characterization confirmed: (1) the similarity of the growth of anatase-TiO 2 from two sols under the optimal sol-gel parameters, (2) that the coatings are composed of aggregated crystallites of 10-25 nm in diameter, (3) the good compositional uniformity of Ti in the fabricated anatase-TiO 2 crystallites, (4) a surface covering ratio of anatase-TiO 2 around the fiber of at least 90%, and (5) that there is a good adherence of the fabricated anatase-TiO 2 layer on alumina fiber as evidenced by the lack of cracking and peeling off traces around the boundary between the coating and the fiber.

  1. Utilizing a Segmented Fuel Cell to Study the Effects of Electrode Coating Irregularities on PEM Fuel Cell Initial Performance

    DOE PAGES

    Phillips, Adam; Ulsh, Michael; Porter, Jason; ...

    2017-04-27

    An understanding of the impact of coating irregularities on beginning of life polymer electrolyte fuel cell (PEMFC) performance is essential to develop and establish manufacturing tolerances for its components. Coating irregularities occurring in the fuel cell electrode can either possess acceptable process variations or potentially harmful defects. A segmented fuel cell (SFC) is employed to understand how 100% catalyst reduction irregularities ranging from 0.125 to 1 cm 2 in the cathode electrode of a 50 cm 2 sized cell impact spatial and total cell performance at dry and wet humidification conditions. Here, by analyzing the data in a differential formatmore » the local performance effects of irregularity sizes down to 0.25 cm 2 were detected in the current distribution of the cell. Slight total cell performance impacts, due to irregularity sizes of 0.5 and 1 cm 2, were observed under dry operation and high current densities.« less

  2. Utilizing a Segmented Fuel Cell to Study the Effects of Electrode Coating Irregularities on PEM Fuel Cell Initial Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Adam; Ulsh, Michael; Porter, Jason

    An understanding of the impact of coating irregularities on beginning of life polymer electrolyte fuel cell (PEMFC) performance is essential to develop and establish manufacturing tolerances for its components. Coating irregularities occurring in the fuel cell electrode can either possess acceptable process variations or potentially harmful defects. A segmented fuel cell (SFC) is employed to understand how 100% catalyst reduction irregularities ranging from 0.125 to 1 cm 2 in the cathode electrode of a 50 cm 2 sized cell impact spatial and total cell performance at dry and wet humidification conditions. Here, by analyzing the data in a differential formatmore » the local performance effects of irregularity sizes down to 0.25 cm 2 were detected in the current distribution of the cell. Slight total cell performance impacts, due to irregularity sizes of 0.5 and 1 cm 2, were observed under dry operation and high current densities.« less

  3. Application of Taguchi Method for Analyzing Factors Affecting the Performance of Coated Carbide Tool When Turning FCD700 in Dry Cutting Condition

    NASA Astrophysics Data System (ADS)

    Ghani, Jaharah A.; Mohd Rodzi, Mohd Nor Azmi; Zaki Nuawi, Mohd; Othman, Kamal; Rahman, Mohd. Nizam Ab.; Haron, Che Hassan Che; Deros, Baba Md

    2011-01-01

    Machining is one of the most important manufacturing processes in these modern industries especially for finishing an automotive component after the primary manufacturing processes such as casting and forging. In this study the turning parameters of dry cutting environment (without air, normal air and chilled air), various cutting speed, and feed rate are evaluated using a Taguchi optimization methodology. An orthogonal array L27 (313), signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these turning parameters on the performance of a coated carbide tool. The results show that the tool life is affected by the cutting speed, feed rate and cutting environment with contribution of 38%, 32% and 27% respectively. Whereas for the surface roughness, the feed rate is significantly controlled the machined surface produced by 77%, followed by the cutting environment of 19%. The cutting speed is found insignificant in controlling the machined surface produced. The study shows that the dry cutting environment factor should be considered in order to produce longer tool life as well as for obtaining a good machined surface.

  4. Spray Characteristics and Tribo-Mechanical Properties of High-Velocity Arc-Sprayed WC-W2C Iron-Based Coatings

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Hagen, L.; Kokalj, D.

    2017-10-01

    In terms of arc-sprayed coatings, the lamellar coating microstructure is mainly affected by the atomization behavior of the molten electrode tips. When using compressed air, oxide formations occur during atomization, across the particle-laden spray plume and when the molten droplets splash onto the substrate. Within the scope of this study, the potential of a high-velocity arc-spraying process due to elevated atomization gas pressures and its effect on the spray and coating characteristics was analyzed using a cast tungsten carbide (CTC)-reinforced FeCMnSi cored wire. Since the atomization behavior corresponds with the electrode phenomena, the power spectrum and the droplet formation were observed during spraying. The tribo-mechanical properties of CTC-FeCMnSi coatings were examined in dry sliding experiments and indentation tests. In addition, adhesion tests and metallographic investigations were carried out to analyze the bonding strength, cohesive behavior, and lamellar microstructure. The occurrence of oxide phases was evaluated by x-ray diffraction and electron microscopy. Moreover, the oxygen content was determined by using glow discharge optical emission spectroscopy as well as energy-dispersive x-ray spectroscopy. With respect to elevated atomization gas pressures, a dense microstructure with improved adhesion to the substrate and reduced surface roughness was observed. Dry sliding experiments revealed an advanced wear behavior of specimens, when using above average increased atomization gas pressures. Analytic methods verified the existence of oxide phases, which were generated during spraying. A significant change of the extent and type of oxides, when applying an increased flow rate of the atomization gas, cannot be observed. Besides an enhanced coating quality, the use of increased atomization gas pressure exhibited good process stability.

  5. Tribological characterization of zirconia coatings deposited on Ti6Al4V components for orthopedic applications.

    PubMed

    Berni, M; Lopomo, N; Marchiori, G; Gambardella, A; Boi, M; Bianchi, M; Visani, A; Pavan, P; Russo, A; Marcacci, M

    2016-05-01

    One of the most important issues leading to the failure of total joint arthroplasty is related to the wear of the plastic components, which are generally made of ultra high molecular weight polyethylene (UHMWPE). Therefore, the reduction of joint wear represents one of the main challenges the research in orthopedics is called to address nowadays. Surface treatments and coatings have been recognized as innovative methods to improve tribological properties, also in the orthopedic field. This work investigated the possibility to realize hard ceramic coatings on the metal component of a prosthesis, by means of Pulsed Plasma Deposition, in order to reduce friction and wear in the standard coupling against UHMWPE. Ti6Al4V substrates were coated with a 2 μm thick yttria-stabilized zirconia (YSZ) layer. The mechanical properties of the YSZ coatings were assessed by nanoindentation tests performed on flat Ti6Al4V substrates. Tribological performance was evaluated using a ball-on-disk tribometer in dry and lubricated (i.e. with fetal bovine serum) highly-stressing conditions, up to an overall distance of 10 km. Tribology was characterized in terms of coefficient of friction (CoF) and wear rate of the UHMWPE disk. After testing, specimens were analyzed through optical microscopy and SEM images, in order to check the wear degradation mechanisms. Progressive loading scratch tests were also performed in dry and wet conditions to determine the effects of the environment on the adhesion of the coating. Our results supported the beneficial effect of YSZ coating on metal components. In particular, the proposed solution significantly reduced UHMWPE wear rate and friction. At 10 km of sliding distance, a wear rate reduction of about 18% in dry configuration and of 4% in presence of serum, was obtained by the coated group compared to the uncoated group. As far as friction in dry condition is concerned, the coating allowed to maintain low CoF values until the end of the tests, with an overall difference of about 40% compared to the uncoated balls. In wet conditions, the friction values were found to be comparable between coated and uncoated materials, mainly due to a premature delamination of the coating. Scratch tests in wet showed in fact a reduction of the critical load required to a complete delamination due to a formation of blister, although no change or damage occurred at the coating during the soaking period. Although conditions of high values of contact pressure were considered, further analyses are however required to fully understand the behavior of YSZ coatings in wet environment and additional research on the deposition process will be mandatory in order to improve the coating tribological performance at long distances addressing orthopedic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling

    NASA Astrophysics Data System (ADS)

    Peters, Katharina; Raupp, Sebastian; Hummel, Helga; Bruns, Michael; Scharfer, Philip; Schabel, Wilhelm

    2016-06-01

    Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processed with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.

  7. Evaluation of quick-dry asphalt paving seal (QDAPS).

    DOT National Transportation Integrated Search

    1987-10-01

    Quick-Dry Asphalt Paving Seal (QDAPS) manufactured for Texas Refinery Corp. Fort Worth, Texas. : According to the manufacturer, the primary use for this product is "a moisture resistant preventative maintenance asphalt coating for coating and sealing...

  8. Preservation of H 2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures: Preservation of R.palustris latex coatings

    DOE PAGES

    Piskorska, M.; Soule, T.; Gosse, J. L.; ...

    2013-07-21

    To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O 2 on preservation of H 2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H 2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H 2 production activity, whereas considerable H 2 production was still detected in sucrose- and trehalose-stabilized coatings. We stored the coatings at a relative humidity level which significantly impacts themore » recovery and subsequent rates of H 2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H 2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H 2 production activity after 8 weeks of storage. Furthermore, when stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H 2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Ultimately, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.« less

  9. ASRM process development in aqueous cleaning

    NASA Technical Reports Server (NTRS)

    Swisher, Bill

    1992-01-01

    Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.

  10. System Applies Polymer Powder To Filament Tow

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.

    1993-01-01

    Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.

  11. Control of substrate oxidation in MOD cerawwwmic coating on low-activation ferritic steel with reduced-pressure atmosphere

    NASA Astrophysics Data System (ADS)

    Tanaka, Teruya; Muroga, Takeo

    2014-12-01

    An Er2O3 ceramic coating fabricated using the metal-organic decomposition (MOD) method on a Cr2O3-covered low-activation ferritic steel JLF-1 substrate was examined to improve hydrogen permeation barrier performance of the coating. The Cr2O3 layer was obtained before coating by heat treating the substrate at 700 °C under reduced pressures of <5 × 10-3 Pa and 5 Pa. The Cr2O3 layer was significantly stable even with heat treatment at 700 °C in air. This layer prevented further production of Fe2O3, which has been considered to degrade coating performance. An MOD Er2O3 coating with a smooth surface was successfully obtained on a Cr2O3-covered JLF-1 substrate by dip coating followed by drying and baking. Preprocessing to obtain a Cr2O3 layer would provide flexibility in the coating process for blanket components and ducts. Moreover, the Cr2O3 layer suppressed hydrogen permeation through the JLF-1 substrate. While further optimization of the coating fabrication process is required, it would be possible to suppress hydrogen permeation significantly by multilayers of Cr2O3 and MOD oxide ceramic.

  12. Additives for reducing the toxicity of respirable crystalline silica. SILIFE project

    NASA Astrophysics Data System (ADS)

    Monfort, Eliseo; López-Lilao, Ana; Escrig, Alberto; Jesus Ibáñez, Maria; Bonvicini, Guliana; Creutzenberg, Otto; Ziemann, Christina

    2017-10-01

    Prolonged inhalation of crystalline silica particles has long been known to cause lung inflammation and development of the granulomatous and a fibrogenic lung disease known as silicosis. The International Agency for Research on Cancer (IARC) has classified Respirable Crystalline Silica (RCS) in the form of quartz and cristobalite from occupational sources as carcinogenic for humans (category 1). In this regard, numerous studies suggest that the toxicity of quartz is conditioned by the surface chemistry of the quartz particles and by the density and abundance of silanol groups. Blocking these groups to avoid their interaction with cellular membranes would theoretically be possible in order to reduce or even to eliminate the toxic effect. In this regard, the main contribution of the presented research is the development of detoxifying processes based on coating technologies at industrial scale, since the previous studies reported on literature were carried out at lab scale. The results obtained in two European projects showed that the wet method to obtain quartz surface coatings (SILICOAT project) allows a good efficiency in inhibiting the silica toxicity, and the preliminary results obtained in an ongoing project (SILIFE) suggest that the developed dry method to coat quartz surface is also very promising. The development of both coating technologies (wet and a dry) should allow these coating technologies to be applied to a high variety of industrial activities in which quartz is processed. For this reason, a lot of end-users of quartz powders will be potentially benefited from a reduced risk associated to the exposure to RCS.

  13. Quality by Design approach for studying the impact of formulation and process variables on product quality of oral disintegrating films.

    PubMed

    Mazumder, Sonal; Pavurala, Naresh; Manda, Prashanth; Xu, Xiaoming; Cruz, Celia N; Krishnaiah, Yellela S R

    2017-07-15

    The present investigation was carried out to understand the impact of formulation and process variables on the quality of oral disintegrating films (ODF) using Quality by Design (QbD) approach. Lamotrigine (LMT) was used as a model drug. Formulation variable was plasticizer to film former ratio and process variables were drying temperature, air flow rate in the drying chamber, drying time and wet coat thickness of the film. A Definitive Screening Design of Experiments (DoE) was used to identify and classify the critical formulation and process variables impacting critical quality attributes (CQA). A total of 14 laboratory-scale DoE formulations were prepared and evaluated for mechanical properties (%elongation at break, yield stress, Young's modulus, folding endurance) and other CQA (dry thickness, disintegration time, dissolution rate, moisture content, moisture uptake, drug assay and drug content uniformity). The main factors affecting mechanical properties were plasticizer to film former ratio and drying temperature. Dissolution rate was found to be sensitive to air flow rate during drying and plasticizer to film former ratio. Data were analyzed for elucidating interactions between different variables, rank ordering the critical materials attributes (CMA) and critical process parameters (CPP), and for providing a predictive model for the process. Results suggested that plasticizer to film former ratio and process controls on drying are critical to manufacture LMT ODF with the desired CQA. Published by Elsevier B.V.

  14. Thin Film Coating with Highly Dispersible Barium Titanate-Polyvinylpyrrolidone Nanoparticles.

    PubMed

    Li, Jinhui; Inukai, Koji; Takahashi, Yosuke; Tsuruta, Akihiro; Shin, Woosuck

    2018-05-01

    Thin BaTiO₃ (BT) coating layers are required in various multilayer ceramic technologies, and fine nanosized BT particles with good dispersion in solution are essential for this coating process. In this work, cubic and tetragonal phase monodispersed BT nanoparticles—which were referred to as LBT and HBT-PVP coated on their surface by polyvinylpyrrolidone (PVP) polymer—were prepared by low temperature synthesis (LTS) and hydrothermal method (HT) at 80 and 230 °C, respectively. They were applied for the thin film coating on polyethylene terephthalate (PET) and Si wafer substrates by a simple bar coating. The thickness of BT, LBT-PVP, and HBT-PVP films prepared by their 5 wt % coating agent on Si are around 268, 308, and 263 nm, and their surface roughness are 104.6, 91.6, and 56.1 nm, respectively. The optical transmittance of BT, LBT-PVP, and HBT-PVP films on PET are 55, 66, and 73% at 550 nm wavelength and the haze values are 34.89, 24.70, and 20.53% respectively. The mechanism of dispersant adsorbed on the BT surface for densification of thin film during the drying process of the film was discussed.

  15. Thin Film Coating with Highly Dispersible Barium Titanate-Polyvinylpyrrolidone Nanoparticles

    PubMed Central

    Li, Jinhui; Inukai, Koji; Takahashi, Yosuke; Tsuruta, Akihiro; Shin, Woosuck

    2018-01-01

    Thin BaTiO3 (BT) coating layers are required in various multilayer ceramic technologies, and fine nanosized BT particles with good dispersion in solution are essential for this coating process. In this work, cubic and tetragonal phase monodispersed BT nanoparticles—which were referred to as LBT and HBT-PVP coated on their surface by polyvinylpyrrolidone (PVP) polymer—were prepared by low temperature synthesis (LTS) and hydrothermal method (HT) at 80 and 230 °C, respectively. They were applied for the thin film coating on polyethylene terephthalate (PET) and Si wafer substrates by a simple bar coating. The thickness of BT, LBT-PVP, and HBT-PVP films prepared by their 5 wt % coating agent on Si are around 268, 308, and 263 nm, and their surface roughness are 104.6, 91.6, and 56.1 nm, respectively. The optical transmittance of BT, LBT-PVP, and HBT-PVP films on PET are 55, 66, and 73% at 550 nm wavelength and the haze values are 34.89, 24.70, and 20.53% respectively. The mechanism of dispersant adsorbed on the BT surface for densification of thin film during the drying process of the film was discussed. PMID:29724007

  16. Imaging wet granules with different flow patterns by electrical capacitance tomography and microwave tomography

    NASA Astrophysics Data System (ADS)

    Wang, H. G.; Zhang, J. L.; Ramli, M. F.; Mao, M. X.; Ye, J. M.; Yang, W. Q.; Wu, Z. P.

    2016-11-01

    The moisture content of granules in fluidised bed drying, granulation and coating processes can typically be between 1%~25%, resulting in the change of permittivity and conductivity during the processes. Electrical capacitance tomography (ECT) has been used for this purpose, but has a limit because too much water can cause a problem in capacitance measurement. Considering that microwave tomography (MWT) has a wide range of frequency (1~2.5 GHz) and can be used to measure materials with high permittivity and conductivity, the objective of this research is to combine ECT and MWT together to investigate the solids concentration with different moisture content and different flow patterns. The measurement results show that both ECT and MWT are functions of moisture content as well as flow patterns, and their measurements are complementary to each other. This is the first time that these two tomography modalities have been combined together and applied to image the complex solids distribution. The obtained information may be used for the process control of fluidised bed drying, granulation and coating to improve operation efficiency.

  17. Preservation of H2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures

    PubMed Central

    Piskorska, M; Soule, T; Gosse, J L; Milliken, C; Flickinger, M C; Smith, G W; Yeager, C M

    2013-01-01

    Summary To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O2 on preservation of H2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H2 production activity, whereas considerable H2 production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H2 production activity after 8 weeks of storage. When stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state. PMID:23331993

  18. Study of controlled-release floating tablets of dipyridamole using the dry-coated method.

    PubMed

    Chen, Kai; Wen, Haoyang; Yang, Feifei; Yu, Yibin; Gai, Xiumei; Wang, Haiying; Li, Pingfei; Pan, Weisan; Yang, Xinggang

    2018-01-01

    Dipyridamole (DIP), having a short biological half-life, has a narrow absorption window and is primarily absorbed in the stomach. So, the purpose of this study was to prepare controlled-release floating (CRF) tablets of dipyridamole by the dry-coated method. The influence of agents with different viscosity, hydroxypropylmethylcellulose (HPMC) and polyvinylpyrollidon K30 (PVP K30) in the core tablet and low-viscosity HPMC and PVP K30 in the coating layer on drug release, were investigated. Then, a study with a three-factor, three-level orthogonal experimental design was used to optimize the formulation of the CRF tablets. After data processing, the optimized formulation was found to be: 80 mg HPMC K4M in the core tablet, 80 mg HPMC E15 in core tablet and 40 mg PVP K30 in the coating layer. Moreover, an in vitro buoyancy study showed that the optimized formulation had an excellent floating ability and could immediately float without a lag time and this lasted more than 12 h. Furthermore, an in vivo gamma scintigraphic study showed that the gastric residence time of the CRF tablet was about 8 h.

  19. Stability of dry coated solid dosage forms.

    PubMed

    Kablitz, Caroline Désirée; Urbanetz, Nora Anne

    2009-01-01

    The dry coating process was evaluated in terms of storage stability investigating drug release and agglomeration tendency of the different coated oral dosage forms; hydroxypropyl methylcellulose acetate succinate (HPMCAS) was used with triethylcitrate (TEC) as plasticizer and acetylated monoglyceride (Myvacet) as wetting agent. Talc or colloidal silicon dioxide (Aerosil) was used as anti-tacking agents. In contrast to coating formulations consisting of HPMCAS and Myvacet all formulations containing TEC showed enteric resistance and no agglomeration tendency after preparation. After storage at 10% RH +/- 5% enteric resistance is increased slightly. This increase is more pronounced at 60% RH +/- 5%. The formulations without anti-tacking agents showed higher drug releases after 12 and 24 months due to the damage of the film's integrity during sample preparation caused by the high tackiness of the film. Tackiness is not affected by storing if samples are stored at low relative humidity. At high relative humidity tackiness increases upon storage especially for formulations without anti-tacking agents. The sieving results of the agglomeration measurements after storage can be confirmed by ring shear measurements performed immediately after preparation and approved to be a tool, which is able to predict the agglomeration during storage.

  20. Sheath-Core Graphite/Silk Fiber Made by Dry-Meyer-Rod-Coating for Wearable Strain Sensors.

    PubMed

    Zhang, Mingchao; Wang, Chunya; Wang, Qi; Jian, Muqiang; Zhang, Yingying

    2016-08-17

    Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors, because of their high flexibility and electrical conductivity. However, the fabrication processes for nanomaterials and the subsequent strain sensors are generally complicated and are manufactured at high cost. In this work, we developed a facile dry-Meyer-rod-coating process to fabricate sheath-core-structured single-fiber strain sensors using ultrafine graphite flakes as the sheath and silk fibers as the core by virtue of their flexibility, high production, and low cost. The fabricated strain sensor exhibits a high sensitivity with a gauge factor of 14.5 within wide workable strain range up to 15%, and outstanding stability (up to 3000 cycles). The single-fiber-based strain sensors could be attached to a human body to detect joint motions or easily integrated into the multidirectional strain sensor for monitoring multiaxial strain, showing great potential applications as wearable strain sensors.

  1. 78 FR 31459 - Approval and Promulgation of Air Quality Implementation Plans; Connecticut; Reasonably Available...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... (baked or air dried) ranging from 0.275 kg to 0.420 kg VOC/l, consistent with the limits recommended in... categories, pretreatment coatings and metallic coatings, have a higher limit (0.420 kg VOC/l baked or air... to 0.275 kg VOC/l baked or air dried. As noted by Connecticut, general use coatings are applied more...

  2. Can lipid nanoparticles improve intestinal absorption?

    PubMed

    Mendes, M; Soares, H T; Arnaut, L G; Sousa, J J; Pais, A A C C; Vitorino, C

    2016-12-30

    Lipid nanoparticles and their multiple designs have been considered appealing nanocarrier systems. Bringing the benefits of these nanosystems together with conventional coating technology clearly results in product differentiation. This work aimed at developing an innovative solid dosage form for oral administration based on tableting nanostructured lipid carriers (NLC), coated with conventional polymer agents. NLC dispersions co-encapsulating olanzapine and simvastatin (Combo-NLC) were produced by high pressure homogenization, and evaluated in terms of scalability, drying procedure, tableting and performance from in vitro release, cytotoxicity and intestinal permeability stand points. Factorial design indicated that the scaling-up of the NLC production is clearly feasible. Spray-drying was the method selected to obtain dry particles, not only because it consists of a single step procedure, but also because it facilitates the coating process of NLC with different polymers. Modified NLC formulations with the polymers allowed obtaining distinct release mechanisms, comprising immediate, delayed and prolonged release. Sureteric:Combo-NLC provided a low cytotoxicity profile, along with a ca. 12-fold OL/3-fold SV higher intestinal permeability, compared to those obtained with commercial tablets. Such findings can be ascribed to drug protection and control over release promoted by NLC, supporting them as a versatile platform able to be modified according to the intended needs. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Plasma-sprayed self-lubricating coatings

    NASA Technical Reports Server (NTRS)

    Nakamura, H. H.; Logan, W. R.; Harada, Y.

    1982-01-01

    One of the most important criterion for acceptable commercial application of a multiple phase composition is uniformity and reproducibility. This means that the performance characteristics of the coat - e.g., its lubricating properties, bond strength to the substrate, and thermal properties - can be readily predicted to give a desired performance. The improvement of uniformity and reproducibility of the coats, the oxidation behavior at three temperature ranges, the effect of bond coat and the effect of preheat treatment as measured by adhesive strength tests, coating examination procedures, and physical property measurements were studied. The following modifications improved the uniformity and reproducibility: (1) changes and closer control in the particle size range of the raw materials used, (2) increasing the binder content from 3.2% to 4.1% (dried weight), and (3) analytical processing procedures using step by step checking to assure consistency.

  4. Preliminary Study of Water Repellent Properties of Red Pepper Seed Oil

    NASA Astrophysics Data System (ADS)

    Kurniawan, F.; Madurani, K. A.; Wahyulis, N. C.

    2017-03-01

    The water-repellent properties of red pepper seed oil (capsicol) have been studied. The oil was coated on the glass surface by spray technique. Water repellent properties were performed by measuring the contact angle of water droplets. The measurement was conducted by varying the drying time of the oil coating at room temperature. The optimum contact angle of the droplets on the glass with capsicol coating is 46.77°, which can be achieved in 30 min of drying time. It also obtained the smallest diameter of the droplets (0.47 cm). The longer drying time decrease the contact angles and increases the diameter. The results were compared with the bare glass and commercial water repellent. The contact angle of the droplets on the glass surface with capsicol coating is higher than bare glass, but lower than glass with commercial water repellent coating. It means that capsicol has the water-repellent properties.

  5. Tantalum coatings for inertial confinement fusion dry wall designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, L.H.; Green, L.

    1996-12-31

    The coating on a dry first wall inertial confinement fusion reactor must survive the target explosion and be ductile, inexpensive, and compatible with the materials in the target, i.e. have a high atomic number Z. Calculations indicate that tantalum is the best choice for the coating material. As a test of this design 1 mm tantalum coatings were plasma sprayed onto ferrite steel tubes. They were then subjected to 100 heating-cooling cycles which simulated the stressful thermal cycling which would be encountered during five years of plant startups and shutdowns. The coatings were undamaged and continued to bond well tomore » the steel. Furthermore, chemical reactions should not degrade tantalum coatings.« less

  6. 25. Paper ready for the calender presses. This picture shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Paper ready for the calender presses. This picture shows the paper after it has been coated and dried, as shown on page 238, and it being rolled at the end of the coating-machine. It is now ready to be sent to the big presses which calender it (or iron it, as popular pariance would have it). The pictures on pages 238 and 239 show a continuous process over a single machine; but on account of the length of teh machine, the process is illustrated in sections. (p.239.) - Champion-International Paper Company, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  7. Coating of peanuts with edible whey protein film containing alpha-tocopherol and ascorbyl palmitate.

    PubMed

    Han, J H; Hwang, H-M; Min, S; Krochta, J M

    2008-10-01

    Physical properties of whey protein isolate (WPI) coating solution incorporating ascorbic palmitate (AP) and alpha-tocopherol (tocopherol) were characterized, and the antioxidant activity of dried WPI coatings against lipid oxidation in roasted peanuts were investigated. The AP and tocopherol were mixed into a 10% (w/w) WPI solution containing 6.7% glycerol. Process 1 (P1) blended an AP and tocopherol mixture directly into the WPI solution using a high-speed homogenizer. Process 2 (P2) used ethanol as a solvent for dissolving AP and tocopherol into the WPI solution. The viscosity and turbidity of the WPI coating solution showed the Newtonian fluid behavior, and 0.25% of critical concentration of AP in WPI solution rheology. After peanuts were coated with WPI solutions, color changes of peanuts were measured during 16 wk of storage at 25 degrees C, and the oxidation of peanuts was determined by hexanal analysis using solid-phase micro-extraction samplers and GC-MS. Regardless of the presence of antioxidants in the coating layer, the formation of hexanal from the oxidation of peanut lipids was reduced by WPI coatings, which indicates WPI coatings protected the peanuts from oxygen permeation and oxidation. However, the incorporation of antioxidants in the WPI coating layer did not show a significant difference in hexanal production from that of WPI coating treatment without incorporation of antioxidants.

  8. Formulation and process design for a solid dosage form containing a spray-dried amorphous dispersion of ibipinabant.

    PubMed

    Leane, Michael M; Sinclair, Wayne; Qian, Feng; Haddadin, Raja; Brown, Alan; Tobyn, Mike; Dennis, Andrew B

    2013-01-01

    Amorphous forms of poorly soluble drugs are more frequently being incorporated into solid dispersions for administration and extensive research has led to a reasonable understanding of how these dispersions, although still kinetically unstable, improve stability relative to the pure amorphous form. There remains however a paucity of literature describing the effects on such solid dispersions of subsequent processing into solid dosage forms such as tablets. This paper addresses this area by looking at the effects of the addition of common excipients and different manufacturing routes on the stability of a spray-dried dispersion (SDD) of the cannabinoid CB-1 antagonist, ibipinabant. A marked difference in physical stability of tablets was seen with the different fillers with microcrystalline cellulose (MCC) giving the best stability profile. It was found that minimising the number of compression steps led to improved formulation stability with a direct compression process giving the best results. Increased levels of crystallinity were seen in coated tablets most likely due to the exposure of the amorphous matrix to moisture and heat during the coating process. DSIMS analysis of the SDD particles indicated increased levels of polymer on the surface.

  9. Forward impact extrusion of surface textured steel blanks using coated tooling

    NASA Astrophysics Data System (ADS)

    Hild, Rafael; Feuerhack, Andreas; Trauth, Daniel; Arghavani, Mostafa; Kruppe, Nathan C.; Brögelmann, Tobias; Bobzin, Kirsten; Klocke, Fritz

    2017-10-01

    A method to enable dry metal forming by the means of a self-lubricating coating and surface textures was researched using an innovative Pin-On-Cylinder-Tribometer. The experimental analysis was complemented by a numerical model of the complex contact conditions between coated tools and the surface textured specimen at the micro-level. Based on the results, the explanation of the tribological interactions between surface textured specimens and the tool in dry full forward extrusion is the objective of this work. Therefore, experimental dry extrusion tests were performed using a tool system. The extruded specimens were evaluated regarding their geometry as well as by the required punch force. Thereby, the effectiveness and the feasibility of dry metal forming on the example of full forward extrusion was evaluated. Thus, one more step towards the technical realization of dry metal forming of low alloy steels under industrial conditions was realized.

  10. Dry-spray deposition of TiO2 for a flexible dye-sensitized solar cell (DSSC) using a nanoparticle deposition system (NPDS).

    PubMed

    Kim, Min-Saeng; Chun, Doo-Man; Choi, Jung-Oh; Lee, Jong-Cheon; Kim, Yang Hee; Kim, Kwang-Su; Lee, Caroline Sunyong; Ahn, Sung-Hoon

    2012-04-01

    TiO2 powders were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates for application to the photoelectrode of a dye-sensitized solar cell (DSSC). In the conventional DSSC manufacturing process, a semiconductor oxide such as TiO2 powder requires a sintering process at higher temperature than the glass transition temperature (T(g)) of polymers, and thus utilization of flexible polymer substrates in DSSC research has been constrained. To overcome this restriction related to sintering, we used a nanoparticle deposition system (NPDS) that could produce a thin coating layer through a dry-spray method under atmospheric pressure at room temperature. The powder was sprayed through a slit-type nozzle having a 0.4 x 10 mm2 rectangular outlet. In order to determine the deposited TiO2 thickness, five kinds of TiO2 layered specimens were prepared, where the specimens have single and double layer structures. Deposited powders on the ITO coated PET substrates were observed using FE-SEM and a scan profiler The thicker TiO2 photoelectrode with a DSSC having a double layer structure showed higher energy efficiency than the single layer case. The highest fabricated flexible DSSC displayed a short circuit current density J(sc) = 1.99 mA cm(-2), open circuit voltage V(oc) = 0.71 V, and energy efficiency eta = 0.94%. These results demonstrate the possibility of utilizing the dry-spray method to fabricate a TiO2 layer on flexible polymer substrates at room temperature under atmospheric pressure.

  11. Heat treated twin wire arc spray AISI 420 coatings under dry and wet abrasive wear

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; González, M. A.; Monjardín, H. R.; Jimenez, O.; Flores, M.; Ibarra, J.

    2017-11-01

    The influence of applying two different heat treatments such as: deep cryogenic and tempering on dry/wet abrasive wear resistance of twin wire arc spray martensitic AISI 420 coatings was evaluated by using a modified rubber wheel type test apparatus. A load dependency was observed on the abrasive wear rate behavior of both; dry and wet tests. Three body (rolling) and two body (sliding) wear mechanisms were identified in dry conditions, prevailing rolling at lower and higher loads. However, at higher loads, more presence of grooving and pits formation was observed. Coatings tempered at 205 °C/1 h displayed better wear resistance than cryogenic treated ones. A change in wear mechanism between dry and wet conditions was observed; two body wear mechanism predominated respect to three body. In both; dry and wet conditions the microstructure (several inter-splat oxides) as well as strain and residual stress promotes brittle material removal which was more evident in cryogenic and as-sprayed samples during dry test and at higher loads in wet conditions.

  12. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Katharina; Raupp, Sebastian, E-mail: sebastian.raupp@kit.edu; Scharfer, Philip

    2016-06-15

    Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N’-Di(1-naphthyl)-N,N’-diphenyl-(1,1’-biphenyl)-4,4’-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processedmore » with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.« less

  13. Electrochromic TiO2 Thin Film Prepared by Dip-Coating Technique

    NASA Astrophysics Data System (ADS)

    Suriani, S.; Kamisah, M. M.

    2002-12-01

    Titanium dioxide (TiO2) thin films were prepared by using sol-gel dip coating technique. The coating solutions were prepared by reacting titanium isopropoxide as precursors and ethanol as solvent. The films were formed on transparent ITO-coated glass by a dip coating technique and final dried at various temperatures up to 600 °C for 30 minutes. The films were characterized with the UV-Vis-NIR Spectrometer, Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD). XRD results show that the films dried at 600 °C form anatase structure. From the spectroscopic studies, the sample shows electrochromic property.

  14. Optimisation of a sol-gel synthesis route for the preparation of MgF2 particles for a large scale coating process.

    PubMed

    Scheurell, K; Noack, J; König, R; Hegmann, J; Jahn, R; Hofmann, Th; Löbmann, P; Lintner, B; Garcia-Juan, P; Eicher, J; Kemnitz, E

    2015-12-07

    A synthesis route for the preparation of optically transparent magnesium fluoride sols using magnesium acetate tetrahydrate as precursor is described. The obtained magnesium fluoride sols are stable for several months and can be applied for antireflective coatings on glass substrates. Reaction parameters in the course of sol synthesis are described in detail. Thus, properties of the precursor materials play a crucial role in the formation of the desired magnesium fluoride nanoparticles, this is drying the precursor has to be performed under defined mild conditions, re-solvation of the dried precursor has to be avoided and addition of water to the final sol-system has to be controlled strictly. Important properties of the magnesium fluoride sols like viscosity, particle size distribution, and structural information are presented as well.

  15. Chitosan-caseinate bilayer coatings for paper packaging materials.

    PubMed

    Khwaldia, Khaoula; Basta, Altaf H; Aloui, Hajer; El-Saied, Houssni

    2014-01-01

    Papers coated with caseinate and caseinate/chitosan bilayer films were developed. Caseinate, chitosan and caseinate/chitosan films were preliminary characterized by FTIR spectroscopy and thermal stability analyses. The effects of coating weight, caseinate concentration (7%, 10%, and 12%, w/w), and coating application methods (single layer and bilayer) on the physical and mechanical properties of coated papers were studied. Increasing the concentration of caseinate led to a decrease in water vapor permeability (WVP) of the resulting coated paper sheets. Chitosan significantly (p<0.05) increased the elongation at break (%E) of coated paper. However, the application of chitosan as a second layer on wet or dry caseinate films did not significantly affect (p>0.05) the tensile strength (TS) of coated paper. The greatest reduction in paper WVP is achieved by addition of a chitosan layer to the dried preformed caseinate-coated paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP

    DOE PAGES

    Wood, David L.; Quass, Jeffrey D.; Li, Jianlin; ...

    2017-05-16

    Processing lithium-ion battery (LIB) electrode dispersions with water as the solvent during primary drying offers many advantages over N-methylpyrrolidone (NMP). An in-depth analysis of the comparative drying costs of LIB electrodes is discussed for both NMP- and water-based dispersion processing in terms of battery pack $/kWh. Electrode coating manufacturing and capital equipment cost savings are compared for water vs. conventional NMP organic solvent processing. A major finding of this work is that the total electrode manufacturing costs, whether water- or NMP-based, contribute about 8–9% of the total pack cost. However, it was found that up to a 2 × reductionmore » in electrode processing (drying and solvent recovery) cost can be expected along with a $3–6 M savings in associated plant capital equipment (for a plant producing 100,000 10-kWh Plug-in Hybrid Electric Vehicle (PHEV) batteries) using water as the electrode solvent. This paper shows a different perspective in that the most important benefits of aqueous electrode processing actually revolve around capital equipment savings and environmental stewardship and not processing cost savings.« less

  17. Manufacturing Solid Dosage Forms from Bulk Liquids Using the Fluid-bed Drying Technology.

    PubMed

    Qi, Jianping; Lu, Y I; Wu, Wei

    2015-01-01

    Solid dosage forms are better than liquid dosage forms in many ways, such as improved physical and chemical stability, ease of storage and transportation, improved handling properties, and patient compliance. Therefore, it is required to transform dosage forms of liquid origins into solid dosage forms. The functional approaches are to absorb the liquids by solid excipients or through drying. The conventional drying technologies for this purpose include drying by heating, vacuum-, freeze- and spray-drying, etc. Among these drying technologies, fluidbed drying emerges as a new technology that possesses unique advantages. Fluid-bed drying or coating is highly efficient in solvent removal, can be performed at relatively low temperatures, and is a one-step process to manufacture formulations in pellet forms. In this article, the status of the art of manufacturing solid dosage forms from bulk liquids by fluid-bed drying technology was reviewed emphasizing on its application in solid dispersion, inclusion complexes, self-microemulsifying systems, and various nanoscale drug delivery systems.

  18. Protection of moisture-sensitive drugs with aqueous polymer coatings: importance of coating and curing conditions.

    PubMed

    Bley, O; Siepmann, J; Bodmeier, R

    2009-08-13

    The aim of this study was to better understand the importance of coating and curing conditions of moisture-protective polymer coatings. Tablets containing freeze-dried garlic powder were coated with aqueous solutions/dispersions of hydroxypropyl methylcellulose (HPMC), poly(vinyl alcohol), ethyl cellulose and poly(methacrylate-methylmethacrylates). The water content of the tablets during coating and during storage at different temperatures and relative humidities (RH) was determined gravimetrically. In addition, changes in the allicin (active ingredient in garlic powder) content were monitored. During the coating process, the water uptake was below 2.7% and no drug degradation was detectable. Thermally induced drug degradation occurred only at temperatures above the coating temperatures. Different polymer coatings effectively decreased the rate, but not the extent of water uptake during open storage at room temperature and 75% RH. Tablets coated with poly(vinyl alcohol) and poly(methacrylate-methylmethacrylates) showed the lowest moisture uptake rates (0.49 and 0.57%/d, respectively). Curing at elevated temperature after coating did not improve the moisture-protective ability of the polymeric films, but reduced the water content of the tablets. Drug stability was significantly improved with tablets coated with poly(vinyl alcohol) and poly(methacrylate-methylmethacrylates).

  19. Silica coating of PbS quantum dots and their position control using a nanohole on Si substrate

    NASA Astrophysics Data System (ADS)

    Mukai, Kohki; Okumura, Isao; Nishizaki, Yuta; Yamashita, Shuzo; Niwa, Keisuke

    2018-04-01

    We succeeded in controlling the apparent size of a colloidal PbS quantum dot (QD) in the range of 20 to 140 nm by coating with silica and trapping the coated QDs in a nanohole prepared by scanning probe microscope lithography. Photoluminescence intensity was improved by controlling the process of adding the silica source material of tetraethoxysilane for the coating. Nanoholes of different sizes were formed on a single substrate by scanning probe oxidation with the combination of SF6 dry etching and KOH wet etching. QDs having an arbitrary energy structure can be arranged at an arbitrary position on the semiconductor substrate using this technique, which will aid in the fabrication of future nanosize solid devices such as quantum information circuits.

  20. Fiber Bragg grating sensor to monitor stress kinetics in drying process of commercial latex paints.

    PubMed

    de Lourenço, Ivo; Possetti, Gustavo R C; Muller, Marcia; Fabris, José L

    2010-01-01

    In this paper, we report a study about the application of packaged fiber Bragg gratings used as strain sensors to monitor the stress kinetics during the drying process of commercial latex paints. Three stages of drying with distinct mechanical deformation and temporal behaviors were identified for the samples, with mechanical deformation from 15 μm to 21 μm in the longitudinal film dimension on time intervals from 370 to 600 minutes. Drying time tests based on human sense technique described by the Brazilian Technical Standards NBR 9558 were also done. The results obtained shows that human sense technique has a limited perception of the drying process and that the optical measurement system proposed can be used to characterize correctly the dry-through stage of paint. The influence of solvent (water) addition in the drying process was also investigated. The paint was diluted with four parts paint and one part water (80% paint), and one part paint and one part water (50% paint). It was observed that the increase of the water ratio mixed into the paint decreases both the mechanical deformation magnitude and the paint dry-through time. Contraction of 5.2 μm and 10.4 μm were measured for concentrations of 50% and 80% of paint in the mixture, respectively. For both diluted paints the dry-through time was approximately 170 minutes less than undiluted paint. The optical technique proposed in this work can contribute to the development of new standards to specify the drying time of paint coatings.

  1. Fiber Bragg Grating Sensor to Monitor Stress Kinetics in Drying Process of Commercial Latex Paints

    PubMed Central

    de Lourenço, Ivo; Possetti, Gustavo R. C.; Muller, Marcia; Fabris, José L.

    2010-01-01

    In this paper, we report a study about the application of packaged fiber Bragg gratings used as strain sensors to monitor the stress kinetics during the drying process of commercial latex paints. Three stages of drying with distinct mechanical deformation and temporal behaviors were identified for the samples, with mechanical deformation from 15 μm to 21 μm in the longitudinal film dimension on time intervals from 370 to 600 minutes. Drying time tests based on human sense technique described by the Brazilian Technical Standards NBR 9558 were also done. The results obtained shows that human sense technique has a limited perception of the drying process and that the optical measurement system proposed can be used to characterize correctly the dry-through stage of paint. The influence of solvent (water) addition in the drying process was also investigated. The paint was diluted with four parts paint and one part water (80% paint), and one part paint and one part water (50% paint). It was observed that the increase of the water ratio mixed into the paint decreases both the mechanical deformation magnitude and the paint dry-through time. Contraction of 5.2 μm and 10.4 μm were measured for concentrations of 50% and 80% of paint in the mixture, respectively. For both diluted paints the dry-through time was approximately 170 minutes less than undiluted paint. The optical technique proposed in this work can contribute to the development of new standards to specify the drying time of paint coatings. PMID:22399906

  2. Fabrication and testing of large size nickel-zinc cells

    NASA Technical Reports Server (NTRS)

    Klein, M.

    1977-01-01

    The design and construction of nickel zinc cells, containing sintered nickel electrodes and asbestos coated inorganic separator materials, were outlined. Negative electrodes were prepared by a dry pressing process while various inter-separators were utilized on the positive electrodes, consisting of non-woven nylon, non-woven polypropylene, and asbestos.

  3. Bonded Lubricants

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Another spinoff to the food processing industry involves a dry lubricant developed by General Magnaplate Corp. of Linden, N.J. Used in such spacecraft as Apollo, Skylab and Viking, the lubricant is a coating bonded to metal surfaces providing permanent lubrication and corrosion resistance. The coating lengthens equipment life and permits machinery to be operated at greater speed, thus increasing productivity and reducing costs. Bonded lubricants are used in scores of commercia1 applications. They have proved particularly valuable to food processing firms because, while increasing production efficiency, they also help meet the stringent USDA sanitation codes for food-handling equipment. For example, a cookie manufacturer plagued production interruptions because sticky batter was clogging the cookie molds had the brass molds coated to solve the problem. Similarly, a pasta producer faced USDA action on a sanitation violation because dough was clinging to an automatic ravioli-forming machine; use of the anti-stick coating on the steel forming plates solved the dual problem of sanitation deficiency and production line downtime.

  4. Grazing-Angle Fourier Transform Infrared Spectroscopy for Surface Cleanliness Verification

    DTIC Science & Technology

    2003-03-01

    coating. 34 North Island personnel were also interested in using the portable FTIR instrument to detect a trivalent chromium conversion coating on... trivalent chromium coating on aluminum panels. 35 Following the successful field-test at NADEP North Island in December 2000, a second demonstration of...contaminated, the panels were allowed to dry under a fume hood to evaporate the solvent. They were then placed in a desiccator for final drying. This

  5. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding.

    PubMed

    Zhuang, Qiaoqiao; Zhang, Peilei; Li, Mingchuan; Yan, Hua; Yu, Zhishui; Lu, Qinghua

    2017-10-30

    The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti₂Ni and Ti₅Si₃ phases exist in all coatings, and some samples have TiSi₂ phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness)) and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti₂Ni and reinforcement phases of Ti₅Si₃ and TiSi₂, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO₂, Al₂O₃ and SiO₂. Phases Ti₂Ni, Ti₅Si₃, TiSi₂ and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding.

  6. Comparison of Several Different Sputtered Molybdenum Disulfide Coatings for Use in Space Applications

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Siebert, Mark

    2002-01-01

    Tribology experiments on different types of sputtered molybdenum disulfide (MoS2) coatings (obtained from different vendors) using accelerated testing techniques were conducted. The purpose was to determine which would be the best coating for use with auxiliary journal bearings for spacecraft energy storage flywheels. Experiments were conducted in moist air (50% relative humidity) and in dry air (<100 PPM water vapor content) on a Pin-on-Disk Tribometer to determine how well the coatings would perform in air. Experiments were also conducted on a Block-on-Ring Tribometer in dry nitrogen (<100 PPM water vapor) to simulate how well the coatings would perform in vacuum. Friction, counterface wear, coating wear, endurance life and surface morphology were investigated.

  7. Effects of nano-LaF3 on the friction and wear behaviors of PTFE-based bonded solid lubricating coatings under different lubrication conditions

    NASA Astrophysics Data System (ADS)

    Jia, Yulong; Wan, Hongqi; Chen, Lei; Zhou, Huidi; Chen, Jianmin

    2016-09-01

    Influence of nanometer lanthanum fluoride (nano-LaF3) on the tribological behaviors of polytetrafluoroethylene (PTFE) bonded solid lubricating coatings were investigated using a ring-on-block friction-wear tester under dry friction and RP-3 jet fuel lubrication conditions. The worn surfaces and transfer films formed on the counterpart steel rings were observed by scanning electron microscope (SEM) and optical microscope (OM), respectively. The microstructures of the nano-LaF3 modified coatings and the distribution states of nano-LaF3 were studied by field-emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM), respectively. The results show that incorporation of nano-LaF3 improves the microhardness and the friction-reduced and anti-wear abilities of PTFE bonded solid lubricating coatings. The wear life of the modified coating is about 6 times longer than that of the coating without nano-LaF3 filler at a relatively low applied load (200 N) and rotary speed (1000 rev/min) under dry friction condition. The friction coefficient and wear life of the modified coating decrease with increase of applied load under dry friction, but the friction coefficient has hardly any variation and wear life decreases under RP-3 jet fuel lubrication condition. In addition, the friction coefficient of the modified coating reduces with the rotary speed increasing under dry sliding but has little change under RP-3 lubrication, the wear life increases firstly and then decreases. The results indicated that the wear failure mechanism is dominated by applied load, which plays an important role in guidance of application of nano-LaF3 modified PTFE bonded coating under different working environment.

  8. Visualizing tissue molecular structure of a black type of canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way.

    PubMed

    Yu, Peiqiang

    2013-02-20

    Heat-related processing of cereal grains, legume seeds, and oil seeds could be used to improve nutrient availability in ruminants. However, different types of processing may have a different impact on intrinsic structure of tissues. To date, there is little research on structure changes after processing within intact tissues. The synchrotron-based molecular imaging technique enables us to detect inherent structure change on a molecular level. The objective of this study was to visualize tissue of black-type canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way using the synchrotron imaging technique. The results showed that the chemical images of protein amides were obtained through the imaging technique for the raw, wet, and dry heated black type of canola seed tissues. It seems that different types of processing have a different impact on the protein spectral profile in the black type of canola tissues. Wet heating had a greater impact on the protein α-helix to β-sheet ratio than dry heating. Both dry and wet heating resulted in different patterns in amide I, the second derivative, and FSD spectra. However, the exact differences in the tissue images are relatively difficult to be obtained through visual comparison. Future studies should focus on (1) comparing the response and sensitivity of canola seeds to various processing methods between the yellow-type and black-type of canola seeds; (2) developing a sensitive method to compare the image difference between tissues and between treatments; (3) developing a method to link images to nutrient digestion, and (4) revealing how structure changes affect nutrient absorption in humans and animals.

  9. Séchage d'un enduit pigmenté avec application à l'étude d'une couche papetière

    NASA Astrophysics Data System (ADS)

    Bernada, P.; Bruneau, D.

    1996-07-01

    Paper color coating drying is investigated from several experimental view points which include drying kinetics and time evolution of moisture content profiles, pore size distribution in the dried coating, and natural binder (starch) distribution in the dried coating. A study of the effects of drying conditions on those experimental parameters is carried out. Furthermore, gelification and consolidation characteristic moisture contents of the coating are determined using a graphical approach. Le séchage d'un enduit pigmenté à l'usage d'une couche papetière est absorbé sous diverts aspects : cinétiques de séchage et évolution temporelle des profils de teneur en eau, profils de répartition de la taille des pores dans la couche séchée, et répartition finale d'un liant hydrophile de la sauce de couchage (amidon). Les conséquences des conditions de séchage sur ces paramètres expérimentaux sont mises en évidence. De plus, les teneurs en eau caractéristiques de gélification et consolidation de la sauce de couchage sont obtenues par une approche graphique.

  10. Tribological Behavior of IN718 Superalloy Coating Fabricated by Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Zhang, Yaocheng; Pan, Qiyong; Yang, Li; Li, Ruifeng; Dai, Jun

    2017-12-01

    The tribological behavior of laser manufactured IN718 superalloy coating are investigated with different applied loads, sliding speeds and lubricating mediums. The wear resistance of laser manufactured IN718 coating is increased by heat treatment due to higher microhardness and homogeneous brittle phase distribution. The principal factors for the wear rate are applied load and lubricating medium. The worn surface of laser manufactured IN718 coating consists of the grooves, crack, wear debris and material delamination generated by the fatigue wear associated with adhesive wear and abrasive wear. The friction coefficients are influenced by the tribological noise decrescence by the tribo-oxidant and the liquid lubricant. The real contact temperature between coating sample and frictional counterpart is higher than the solid-solution temperature of IN718 superalloy, and the effect of surface contact temperature on the orientational microstructure and wear resistance for dry friction and wet friction process is indistinct.

  11. Nano-coating of beta-galactosidase onto the surface of lactose by using an ultrasound-assisted technique.

    PubMed

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki; Veski, Peep; Yliruusi, Jouko

    2010-06-01

    We nano-coated powdered lactose particles with the enzyme beta-galactosidase using an ultrasound-assisted technique. Atomization of the enzyme solution did not change its activity. The amount of surface-attached beta-galactosidase was measured through its enzymatic reaction product D-galactose using a standardized method. A near-linear increase was obtained in the thickness of the enzyme coat as the treatment proceeded. Interestingly, lactose, which is a substrate for beta-galactosidase, did not undergo enzymatic degradation during processing and remained unchanged for at least 1 month. Stability of protein-coated lactose was due to the absence of water within the powder, as it was dry after the treatment procedure. In conclusion, we were able to attach the polypeptide to the core particles and determine precisely the coating efficiency of the surface-treated powder using a simple approach.

  12. Optimization of the Automated Spray Layer-by-Layer Technique for Thin Film Deposition

    DTIC Science & Technology

    2010-06-01

    pieces. All silicon was cleaned with ethanol and Milli-Q water to hydroxylate the surface. Quartz Crystal Microbalance Si02 coated sensors (Q-sense...was deposited onto a SiO2 coated QCM crystal using the automated dipping process described earlier. Once the film was deposited, it was dried over...night, and then placed in the QCM -D device. An additional layer of PAH was deposited onto the crystal in the QCM -D chamber at a flow rate of 1pL/minute

  13. Enabling aqueous processing for crack-free thick electrodes

    DOE PAGES

    Du, Zhijia; Rollag, K. M.; Li, J.; ...

    2017-04-14

    Aqueous processing of thick electrodes for Li-ion cells promises to increase energy density due to increased volume fraction of active materials, and to reduce cost due to the elimination of the toxic solvents. Here in this paper this work reports the processing and characterization of aqueous processed electrodes with high areal loading and associated full pouch cell performance. Cracking of the electrode coatings becomes a critical issue for aqueous processing of the positive electrode as areal loading increases above 20–25 mg/cm 2 (~4 mAh/cm 2). Crack initiation and propagation, which was observed during drying via optical microscopy, is related tomore » the build-up of capillary pressure during the drying process. The surface tension of water was reduced by the addition of isopropyl alcohol (IPA), which led to improved wettability and decreased capillary pressure during drying. The critical thickness (areal loading) without cracking increased gradually with increasing IPA content. The electrochemical performance was evaluated in pouch cells. Electrodes processed with water/IPA (80/20 wt%) mixture exhibited good structural integrity with good rate performance and cycling performance.« less

  14. Solution-processed copper-nickel nanowire anodes for organic solar cells

    NASA Astrophysics Data System (ADS)

    Stewart, Ian E.; Rathmell, Aaron R.; Yan, Liang; Ye, Shengrong; Flowers, Patrick F.; You, Wei; Wiley, Benjamin J.

    2014-05-01

    This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%.This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01024h

  15. Fabrication process for polymer PLC platforms with V-grooves for passive alignment

    NASA Astrophysics Data System (ADS)

    Park, Suntak; Lee, Jong-Moo; Ahn, Joon Tae; Baek, Yong-Soon

    2005-12-01

    A method for polymer planar lightwave circuit (PLC) devices fabricated on a substrate with V-grooves is developed for passive alignment of an optical fiber to a polymer waveguide. In order to minimize thickness nonuniformity of polymer layers caused by the V-grooves, dry film resist (DFR) is used. The V-grooves are covered with the DFR before the polymer layers are spin-coated on the substrate. The DFR prevents the polymer from being filled in the V-grooves as well as from being spin-coated nonuniformly on the substrate. This process provides a simple and cost-effective fabrication method of polymer PLCs or platforms for passive alignment.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, James C.; Weisman, Jeffery A.; Boyer, Christen J.

    Halloysite nanotubes (HNTs) are a naturally-occurring aluminosilicate whose dimensions measure microns in length and tens of nanometers in diameter. Bonding defects between the alumina and silica lead to net negative and positive charges on the exterior and interior lumen, respectively. HNTs have been shown to enhance the material properties of polymer matrices and enable the sustained release of loaded chemicals, drugs, and growth factors. Due to the net charges, these nanotubes can also be readily coated in layered-depositions using the HNT exterior lumen’s net negative charge as the basis for assembly. These coatings are primarily done through wet chemical processes,more » the majority of which are limited in their use of desired chemicals, due to the polarity of the halloysite. Furthermore, this restriction in the type of chemicals used often requires the use of more toxic chemicals in place of greener options, and typically necessitates the use of a significantly longer chemical process to achieve the desired coating. In this study, we show that HNTs can be coated with metal acetylacetonates—compounds primarily employed in the synthesis of nanoparticles, as metal catalysts, and as NMR shift reagents—through a dry sintering process. This method was capable of thermally decaying the metal acetylacetonate, resulting in a free positively-charged metal ion that readily bonded to the negatively-charged HNT exterior, resulting in metallic coatings forming on the HNT surface. Our coating method may enable greater deposition of coated material onto these nanotubes as required for a desired application. Moreover, the use of chemical processes using toxic chemicals is not required, thus eliminating exposure« less

  17. Antimicrobial paper based on a soy protein isolate or modified starch coating including carvacrol and cinnamaldehyde.

    PubMed

    Arfa, Afef Ben; Preziosi-Belloy, Laurence; Chalier, Pascale; Gontard, Nathalie

    2007-03-21

    Soy protein isolates (SPI) and octenyl-succinate (OSA) modified starch were used as paper coating and inclusion matrices of two antimicrobial compounds: cinnamaldehyde and carvacrol. Antimicrobial compound losses from the coated papers were evaluated after the coating and drying process, and the two matrices demonstrated retention ability that depended on the compound nature and concentration. Whereas carvacrol losses ranged between 12 and 45%, cinnamaldehyde losses varied from 43 to 76%. The losses were always higher from OSA-starch-coated papers than from SPI-coated papers. During storage in accelerated conditions, at 30 degrees C and 60% relative humidity, carvacrol retention from coated papers was found to be similar whatever the coating matrices and the carvacrol rate. In contrast, the retention from SPI-coated papers was particularly high for the cinnamaldehyde concentration of 30% (w/w) compared to the lowest (10% w/w) or highest concentration (60% w/w). Compared to carvacrol, faster release was observed, particurlarly when OSA-starch was used. The antimicrobial properties of the coated papers were shown against Escherichia coli and Botrytis cinerea and explained by favorable conditions of total release of the antimicrobial agents.

  18. Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing

    NASA Astrophysics Data System (ADS)

    Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; Dees, Dennis W.

    2016-08-01

    Successful deployment of electric vehicles requires maturity of the manufacturing process to reduce the cost of the lithium ion battery (LIB) pack. Drying the coated cathode layer and subsequent recovery of the solvent for recycle is a vital step in the lithium ion battery manufacturing plant and offers significant potential for cost reduction. A spreadsheet model of the drying and recovery of the solvent, is used to study the energy demand of this step and its contribution towards the cost of the battery pack. The base case scenario indicates that the drying and recovery process imposes an energy demand of ∼10 kWh per kg of the solvent n-methyl pyrrolidone (NMP), and is almost 45 times the heat needed to vaporize the NMP. For a plant producing 100 K battery packs per year for 10 kWh plug-in hybrid vehicles (PHEV), the energy demand is ∼5900 kW and the process contributes 107 or 3.4% to the cost of the battery pack. The cost of drying and recovery is equivalent to 1.12 per kg of NMP recovered, saving 2.08 per kg in replacement purchase.

  19. Recent developments in turning hardened steels - A review

    NASA Astrophysics Data System (ADS)

    Sivaraman, V.; Prakash, S.

    2017-05-01

    Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.

  20. Application of SEM and EDX in studying biomineralization in plant tissues.

    PubMed

    He, Honghua; Kirilak, Yaowanuj

    2014-01-01

    This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.

  1. 40 CFR 63.4964 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation are applied within the capture system; coating solvent flash-off and coating, curing, and drying... parts enter the open shop environment when being moved between a spray booth and a curing oven. (b... from the beginning to the end of production, which includes surface preparation activities and drying...

  2. Durability of an inorganic polymer concrete coating

    NASA Astrophysics Data System (ADS)

    Wasserman, Kenneth

    The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.

  3. Adhesion of epoxy primer to hydrotalcite conversion coated AA2024

    NASA Astrophysics Data System (ADS)

    Leggat, Robert Benton, III

    Hydrotalcite-based (HT) conversion coatings are being developed as an environmentally benign alternative to chromate conversion coatings (CCC). Accelerated exposure tests were conducted on epoxy primed, HT-modified AA2024 to gauge service performance. HT-based conversion coatings did not perform as well as the CCC when used with an epoxy primer. The current HT chemistries are optimized for stand-alone corrosion protection, however additional research into the primer/HT interactions is necessary before they can be implemented within a coating scheme. The relative contribution of mechanical and physico-chemical interactions in controlling adhesion has been investigated in this study. Practical adhesion tests were used to assess the dry and wet bond strength of epoxy primer on HT coatings using the pull-off tensile strength (POTS) as the figure of merit. The practical adhesion of HT coated samples generally fell between that observed for the CCC and bare AA2024. Laboratory testing was done to assess the physical and chemical properties of HT coatings. Contact angle measurements were performed using powders representative of different HT chemistries to evaluate the dispersive and acid-base character of the surface. The wet POTS correlated with the electrodynamic (dipole + dispersive) parameter of the surface tension. The HT surfaces were found to be predominantly basic. Given the basicity of epoxy, these results indicate that increasing the acidic character of HT coatings may increase the adhesion performance. This was supported by electrokinetic measurements in which the dry POTS was found to increase with decreasing conversion coating iso-electric point. The correlations with the dry and wet state adhesion are interpreted as indicating that dry state adhesion is optimized by minimizing unfavorable polar interactions between the basic epoxy and HT interfaces. Wet state adhesion, where polar interactions are disrupted, is dictated by non-polar bonding. FTIR spectroscopy suggested that covalent between HT coatings and epoxy primers may occur, but could not definitively indicate so. Present results suggest that the limited chemical interactions, as governed by substrate wetting and acid-base interactions between the epoxy and HT, have minimized the possible mechanical interactions between the resin and the conversion coating.

  4. Development and application of a dry ultramicrotomy technique for the preparation of galvanneal sheet coatings.

    PubMed

    Barreto, M P; Veillette, R; L'Espérance, G

    1995-07-01

    The formability of galvanneal steel sheets used in the automotive industry is influenced by the presence and distribution of brittle and difficult to distinguish Zn-Fe intermetallics in the coating. Characterization of these intermetallics requires a high spatial resolution technique such as analytical transmission electron microscopy (ATEM). Sample preparation by ion milling is impossible due to iron redeposition, and traditional ultramicrotomy using water affects the coating chemistry. A technique based on dry ultramicrotomy has therefore been developed. To optimize the technique, different parameters (knife angle, cutting medium, thickness setting on the ultramicrotome, cutting speed) have been investigated for the preparation of galvanneal coatings and pure A1 sections. Results show that dry cutting does not affect the coating chemistry but shortens the life of the knife. Knife quality (cleanliness, sharpness and absence of defects) is a major factor to obtain good dry sections. The best results for the more ductile pure A1 are obtained with a 35 degrees knife whilst for the harder galvanneal coating it is recommended to use a 55 degrees knife. These results suggest that the sectioning mechanism for the harder material involves more a cleavage-fracture mechanism whilst a greater amount of shear is involved when sectioning relatively ductile A1. The optimum parameters for sectioning galvanneal coatings are established and results obtained by parallel electron energy loss spectrum imaging and energy dispersive X-ray spectrometry in the TEM are given. This study shows that with a good control of all the sectioning parameters it is possible to obtain good sections repeatedly and rapidly.

  5. Formulation and process strategies to minimize coat damage for compaction of coated pellets in a rotary tablet press: A mechanistic view.

    PubMed

    Xu, Min; Heng, Paul Wan Sia; Liew, Celine Valeria

    2016-02-29

    Compaction of multiple-unit pellet system (MUPS) tablets has been extensively studied in the past few decades but with marginal success. This study aims to investigate the formulation and process strategies for minimizing pellet coat damage caused by compaction and elucidate the mechanism of damage sustained during the preparation of MUPS tablets in a rotary tablet press. Blends containing ethylcellulose-coated pellets and cushioning agent (spray dried aggregates of micronized lactose and mannitol), were compacted into MUPS tablets in a rotary tablet press. The effects of compaction pressure and dwell time on the physicomechanical properties of resultant MUPS tablets and extent of pellet coat damage were systematically examined. The coated pellets from various locations at the axial and radial peripheral surfaces and core of the MUPS tablets were excavated and assessed for their coat damage individually. Interestingly, for a MUPS tablet formulation which consolidates by plastic deformation, the tablet mechanical strength could be enhanced without exacerbating pellet coat damage by extending the dwell time in the compaction cycle during rotary tableting. However, the increase in compaction pressure led to faster drug release rate. The location of the coated pellets in the MUPS tablet also contributed to the extent of their coat damage, possibly due to uneven force distribution within the compact. To ensure viability of pellet coat integrity, the formation of a continuous percolating network of cushioning agent is critical and the applied compaction pressure should be less than the pellet crushing strength. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Influence of polymer coating morphology on microsensor response

    NASA Astrophysics Data System (ADS)

    Levit, Natalia; Pestov, Dmitry; Tepper, Gary C.

    2004-03-01

    Nanoscale polymeric coatings are used in a variety of sensor systems. The influence of polymer coating morphology on sensor response was investigated and it was determined that coating morphology plays a particularly important role in transducers based on optical or acoustic resonance such as surface acoustic wave (SAW) or surface plasmon resonance (SPR) devices. Nanoscale polymeric coatings were deposited onto a number of miniature devices using a "solvent-free" deposition technique known as Rapid Expansion of Supercritical Solutions (RESS). In RESS, the supercritical solvent goes into the vapor phase upon fast depressurization and separates from the polymer. Therefore, dry polymer particles are deposited from the gas phase. The average diameter of RESS precipitates is about two orders of magnitude smaller than the minimum droplet size achievable by the air-brush method. For rubbery polymers, such as PIB and PDMS, the nanoscale solute droplets produced by RESS agglomerate on the surface forming a highly-uniform continuous nanoscale film. For glassy and crstalline polymers, the RESS droplets produce uniform particulate coatings exhibiting high surface-to-volume ratio. The coating morphology can be changed by controlling the RESS processing conditions.

  7. Controlled Deposition and Performance Optimization of Perovskite Solar Cells Using Ultrasonic Spray-Coating of Photoactive Layers.

    PubMed

    Chang, Wei-Chieh; Lan, Ding-Hung; Lee, Kun-Mu; Wang, Xiao-Feng; Liu, Cheng-Liang

    2017-04-10

    This study investigated a new film-deposition technique, ultrasonic spray-coating, for use in the production of a photoactive layer of perovskite solar cells. Stable atomization and facile fabrication of perovskite thin films by ultrasonic spray-coating were achieved in a one-step method through manipulating the ink formulation (e.g., solution concentration, precursor composition, and mixing solvent ratio) and the drying kinetics (e.g., post-annealing temperature). The performance of the perovskite solar cells was mainly influenced by the intrinsic film morphology and crystalline orientation of the deposited perovskite layer. By suitable optimization of the spreading and drying conditions of the ink, ultrasonic spray-coated perovskite photovoltaic devices were obtained with a maximum power conversion efficiency of 11.30 %, a fill factor of 73.6 %, a short-circuit current of 19.7 mA cm -1 , and an open-circuit voltage of 0.78 V, respectively. Notably, the average power efficiency reached above 10 %, attributed to the large flower-like perovskite crystal with orientation along the (1 1 2)/(2 0 0) and (2 2 4)/(4 0 0) directions. Thus, the ultrasonic spray-coating method for perovskite photoactive layers, combining advantages of good photovoltaic performance results and benefits from cost and processing, has the potential for large-scale commercial production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structure and properties of a duplex coating combining micro-arc oxidation and baking layer on AZ91D Mg alloy

    NASA Astrophysics Data System (ADS)

    Cui, Xue-Jun; Li, Ming-Tian; Yang, Rui-Song; Yu, Zu-Xiao

    2016-02-01

    A duplex coating (called MAOB coating) was fabricated on AZ91D Mg alloy by combining the process of micro-arc oxidation (MAO) with baking coating (B-coating). The structure, composition, corrosion resistance, and tribological behaviour of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical and long-term immersion test, and ball-on-disc friction test. The results show that a dense 92 μm thick B-coating was tightly deposited onto the MAO-coated Mg alloy and exhibited a good mechanical interlock along the rough interface. Compared with the MAO-coated sample, the corrosion current density of the MAOB-coated Mg alloy decreased by two or three orders of magnitude and no corrosion phenomenon was observed during a long-term immersion test of about 500 h (severe corrosion pits were found for MAO-treated samples after about 168 h of immersion). The frictional coefficient values of the MAOB coating were similar to those of the MAO coating using dry sliding tests, while the B-coating on the MAO-coated surface significantly improved the wear resistance of the AZ91D Mg alloy. All of these results indicate that a B-coating can be used to further protect Mg alloys from corrosion and wear by providing a thick, dense barrier.

  9. 40 CFR 63.4165 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system; coating solvent flash-off and coating, curing, and drying occurs within the capture system and... when being moved between a spray booth and a curing oven. (b) If the capture system does not meet both... surface preparation activities and drying or curing time. (c) Liquid-to-uncaptured-gas protocol using a...

  10. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  11. Preparation of Water-Repellent Glass by Sol-Gel Process Using Perfluoroalkylsilane and Tetraethoxysilane.

    PubMed

    Jeong, Hye-Jeong; Kim, Dong-Kwon; Lee, Soo-Bok; Kwon, Soo-Han; Kadono, Kohei

    2001-03-01

    Coating films on glass substrate were prepared by sol-gel process using alkoxide solutions containing perfluoroalkylsilane (PFAS) and tetraethoxysilane (TEOS). The physical properties of the coating films were characterized by SEM, FT-IR, and XRD. And their surface properties were investigated by measuring contact angles and atomic compositions. Transparent coating films with smooth surface and uniform thickness could be obtained. The contact angles of the coating films for water and methylene iodide are extremely high, at 118 degrees and 97 degrees, respectively, and their surface free energies are about 9.7 dyn/cm. It was found that the water-repellent glass prepared is very hydrophobic and exhibits excellent water-repellency. Hydrophobic perfluoroalkyl groups are preferentially enriched to the outermost layer at the coating film-air interface, and two layers probably exist in the coating film. The upper layer oriented toward the air is composed of mainly perfluoroalkyl groups originating from PFAS, and the lower layer is composed of mainly -OSiO- groups originating from TEOS. The heat treatment after drying step cannot influence the surface enrichment of the perfluoroalkyl group. The hydrolysis reaction should be more completely done before the dip coating step to obtain lower surface free energy. The burning temperature should be less than 300 degrees C because the perfluoroalkyl group begins to decompose from this temperature. Copyright 2001 Academic Press.

  12. Control of PbI2 nucleation and crystallization: towards efficient perovskite solar cells based on vapor-assisted solution process

    NASA Astrophysics Data System (ADS)

    Yang, Chongqiu; Peng, Yanke; Simon, Terrence; Cui, Tianhong

    2018-04-01

    Perovskite solar cells (PSC) have outstanding potential to be low-cost, high-efficiency photovoltaic devices. The PSC can be fabricated by numerous techniques; however, the power conversion efficiency (PCE) for the two-step-processed PSC falls behind that of the one-step method. In this work, we investigate the effects of relative humidity (RH) and dry air flow on the lead iodide (PbI2) solution deposition process. We conclude that the quality of the PbI2 film is critical to the development of the perovskite film and the performance of the PSC device. Low RH and dry air flow used during the PbI2 spin coating procedure can increase supersaturation concentration to form denser PbI2 nuclei and a more suitable PbI2 film. Moreover, airflow-assisted PbI2 drying and thermal annealing steps can smooth transformation from the nucleation stage to the crystallization stage.

  13. Method for long-term preservation of thin-layer polyacrylamide gels by producing a gelatine coating.

    PubMed

    Hofmann, K

    1991-02-01

    Thin-layer polyacrylamide gels can be preserved and stored for unlimited periods by covering them with a gelatine coating. The method is inexpensive and simple. After air-drying, the gel is immersed in an aqueous 10% solution of highly viscous gelatine between 55 and 60 degrees C. The coated gel is dried by hanging it in air. The method was checked successfully with gels of different thicknesses (0.15-0.50 mm) and after using different staining methods, e.g., with silver, Coomassie Brilliant Blue and pseudoperoxidase.

  14. Microstructure and wear properties of laser clad Ti2Ni3Si/Ni3Ti multiphase intermetallic coatings

    NASA Astrophysics Data System (ADS)

    Wang, H. M.; Tang, H. B.; Cai, L. X.; Cao, F.; Zhang, L. Y.; Yu, R. L.

    2005-05-01

    Wear resistant Ti2Ni3Si/Ni3Ti multiphase intermetallic coatings with a microstructure consisting of Ti2Ni3Si primary dendrites and interdendritic Ti2Ni3Si/Ni3Ti eutectic were fabricated on a substrate of 0.2% C plain carbon steel by a laser cladding process with Ti-Ni-Si alloy powders. The Ti2Ni3Si/Ni3Ti coatings have excellent wear resistance and a low coefficient of friction under metallic dry sliding wear test conditions with hardened 0.45% C carbon steel as the silide-mating counterpart. The excellent tribological properties of the coating are attributed to the high hardness, strong covalent-dominant atomic bonds of the ternary metal silicide Ti2Ni3Si and to the high yield strength and strong yield anomaly of the intermetallic compound Ni3Ti.

  15. Whey protein solution coating for fat-uptake reduction in deep-fried chicken breast strips.

    PubMed

    Dragich, Ann M; Krochta, John M

    2010-01-01

    This study investigated the use of whey protein, as an additional coating, in combination with basic, well-described predust, batter, and breading ingredients, for fat-uptake reduction in fried chicken. Chicken breasts were cut into strips (1 x 5 x 10 cm) and coated with wheat flour (WF) as a predust, dipped in batter, coated with WF as a breading, then dipped in 10% denatured whey protein isolate (DWPI) aqueous solution (wet basis). A WF-batter-WF treatment with no DWPI solution dip was included as a control. Coated chicken strips were deep-fried at 160 degrees C for 5 min. A Soxhlet-type extraction was performed to determine the fat content of the meat fraction of fried samples, the coating fraction of fried samples, raw chicken, and raw coating ingredients. The WF-batter-WF-10% DWPI solution had significantly lower fat uptake than the WF-batter-WF control, by 30.67% (dry basis). This article describes applied research involving fat reduction in coated deep-fried chicken. The methods used in this article were intended to achieve maximized fat reduction while maintaining a simple procedure applicable to actual food processing lines.

  16. Mullite and Mullite/ZrO2-7wt.%Y2O3 Powders for Thermal Spraying of Environmental Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Garcia, E.; Mesquita-Guimarães, J.; Miranzo, P.; Osendi, M. I.; Wang, Y.; Lima, R. S.; Moreau, C.

    2010-01-01

    Mullite and mullite/ZrO2-7wt.%Y2O3 coatings could be thought among the main protective layers for environment barrier coatings (EBCs) to protect Si-based substrates in future gas turbine engines. Considering that feedstock of the compound powder is not commercially available, two powder processing routes Spray Drying (SD) and Flame Spheroidization (FS) were implemented for both types of powders. For each method the particle size, the morphology, and microstructure of the powder particles was determined. In addition, the effect of the heat treatment on the powder crystallinity and microstructure of FS powders was also investigated. To evaluate their suitability as feedstock materials, the powders were plasma sprayed and their in-flight particle characteristics monitored for coatings production. The powder morphology was correlated to the in-flight particle characteristics and splat morphology to gain insight about into the influence of powder characteristics on the coating formation.

  17. Crystal coating via spray drying to improve powder tabletability.

    PubMed

    Vanhoorne, V; Peeters, E; Van Snick, B; Remon, J P; Vervaet, C

    2014-11-01

    A continuous crystal coating method was developed to improve both flowability and tabletability of powders. The method includes the introduction of solid, dry particles into an atomized spray during spray drying in order to coat and agglomerate individual particles. Paracetamol was used as a model drug as it exhibits poor flowability and high capping tendency upon compaction. The particle size enlargement and flowability were evaluated by the mean median particle size and flow index of the resulting powders. The crystal coating coprocessing method was successful for the production of powders containing 75% paracetamol with excellent tableting properties. However, the extent of agglomeration achieved during coprocessing was limited. Tablets compressed on a rotary tablet press in manual mode showed excellent compression properties without capping tendency. A formulation with 75% paracetamol, 5% PVP and 20% amorphous lactose yielded a tensile strength of 1.9 MPa at a compression pressure of 288 MPa. The friability of tablets compressed at 188 MPa was only 0.6%. The excellent tabletability of this formulation was attributed to the coating of paracetamol crystals with amorphous lactose and PVP through coprocessing and the presence of brittle and plastic components in the formulation. The coprocessing method was also successfully applied for the production of directly compressible lactose showing improved tensile strength and friability in comparison to a spray dried direct compression lactose grade.

  18. To Investigate the Absorption, Dynamic Contact Angle and Printability Effects of Synthetic Zeolite Pigments in an Inkjet Receptive Coating

    NASA Astrophysics Data System (ADS)

    Jalindre, Swaraj Sunil

    Ink absorption performance in inkjet receptive coatings containing synthetic zeolite pigments was studied. Coating pigment pore and particle size distribution are the key parameters that influence in modifying media surface properties, thus affecting the rate of ink penetration and drying time (Scholkopf, et al. 2004). The primary objective of this study was: (1) to investigate the synthetic zeolite pigment effects on inkjet ink absorption, dynamic contact angle and printability, and (2) to evaluate these novel synthetic zeolite pigments in replacing the fumed silica pigments in conventional inkjet receptive coatings. In this research study, single pigment coating formulations (in equal P:B ratio) were prepared using microporous synthetic zeolite pigments (5A, Organophilic and 13X) and polyvinyl alcohol (PVOH) binder. The laboratory-coated samples were characterized for absorption, air permeance, roughness, drying time, wettability and print fidelity. Based on the rheological data, it was found that the synthetic zeolite formulated coatings depicted a Newtonian flow behavior at low shear; while the industry accepted fumed silica based coatings displayed a characteristically high pseudoplastic flow behavior. Our coated samples generated using microporous synthetic zeolite pigments produced low absorption, reduced wettability and accelerated ink drying characteristics. These characteristics were caused due to the synthetic zeolite pigments, which resulted in relatively closed surface structure coated samples. The research suggested that no single selected synthetic zeolite coating performed better than the conventional fumed silica based coatings. Experimental data also showed that there was no apparent relationship between synthetic zeolite pigment pore sizes and inkjet ink absorption. For future research, above coated samples should be evaluated for pore size distribution using Mercury Porosimeter, which quantifies surface porosity of coated samples. This presented approach can be easily used for investigating other such microporous coating pigments in formulating inkjet receptive coating. The research findings will benefit the coating formulators, engineers and material science students, in understanding the absorption characteristics of selected synthetic zeolite pigments thereby encouraging them in identifying other such alternative pigments in conventional inkjet receptive coatings.

  19. Efficacy of dry-ice blasting in preventive maintenance of auto robotic assemblies

    NASA Astrophysics Data System (ADS)

    Baluch, Nazim; Mohtar, Shahimi; Abdullah, Che Sobry

    2016-08-01

    Welding robots are extensively applied in the automotive assemblies and `Spot Welding' is the most common welding application found in the auto stamping assembly manufacturing. Every manufacturing process is subject to variations - with resistance welding, these include; part fit up, part thickness variations, misaligned electrodes, variations in coating materials or thickness, sealers, weld force variations, shunting, machine tooling degradation; and slag and spatter damage. All welding gun tips undergo wear; an elemental part of the process. Though adaptive resistance welding control automatically compensates to keep production and quality up to the levels needed as gun tips undergo wear so that the welds remain reliable; the system cannot compensate for deterioration caused by the slag and spatter on the part holding fixtures, sensors, and gun tips. To cleanse welding robots of slag and spatter, dry-ice blasting has proven to be an effective remedy. This paper describes Spot welding process, analyses the slag and spatter formation during robotic welding of stamping assemblies, and concludes that the dry ice blasting process's utility in cleansing of welding robots in auto stamping plant operations is paramount and exigent.

  20. Inorganic dual-layer microporous supported membranes

    DOEpatents

    Brinker, C. Jeffrey; Tsai, Chung-Yi; Lu, Yungfeng

    2003-03-25

    The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

  1. Optimising the in vitro and in vivo performance of oral cocrystal formulations via spray coating.

    PubMed

    Serrano, Dolores R; Walsh, David; O'Connell, Peter; Mugheirbi, Naila A; Worku, Zelalem Ayenew; Bolas-Fernandez, Francisco; Galiana, Carolina; Dea-Ayuela, Maria Auxiliadora; Healy, Anne Marie

    2018-03-01

    Engineering of pharmaceutical cocrystals is an advantageous alternative to salt formation for improving the aqueous solubility of hydrophobic drugs. Although, spray drying is a well-established scale-up technique in the production of cocrystals, several issues can arise such as sublimation or stickiness due to low glass transition temperatures of some organic molecules, making the process very challenging. Even though, fluidised bed spray coating has been successfully employed in the production of amorphous drug-coated particles, to the best of our knowledge, it has never been employed in the production of cocrystals. The feasibility of this technique was proven using three model cocrystals: sulfadimidine (SDM)/4-aminosalicylic acid (4ASA), sulfadimidine/nicotinic acid (NA) and ibuprofen (IBU)/ nicotinamide (NAM). Design of experiments were performed to understand the critical formulation and process parameters that determine the formation of either cocrystal or coamorphous systems for SDM/4ASA. The amount and type of binder played a key role in the overall solid state and in vitro performance characteristics of the cocrystals. The optimal balance between high loading efficiencies and high degree of crystallinity was achieved only when a binder: cocrystal weight ratio of 5:95 or 10:90 was used. The cocrystal coated beads showed an improved in vitro-in vivo performance characterised by: (i) no tendency to aggregate in aqueous media compared to spray dried formulations, (ii) enhanced in vitro activity (1.8-fold greater) against S. aureus, (iii) larger oral absorption and bioavailability (2.2-fold higher C max ), (iv) greater flow properties and (v) improved chemical stability than cocrystals produced by other methods derived from the morphology and solid nature of the starter cores. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding

    PubMed Central

    Zhuang, Qiaoqiao; Zhang, Peilei; Li, Mingchuan; Yan, Hua; Yu, Zhishui; Lu, Qinghua

    2017-01-01

    The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti2Ni and Ti5Si3 phases exist in all coatings, and some samples have TiSi2 phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness)) and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti2Ni and reinforcement phases of Ti5Si3 and TiSi2, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO2, Al2O3 and SiO2. Phases Ti2Ni, Ti5Si3, TiSi2 and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding. PMID:29084174

  3. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides.

    PubMed

    Finkenstadt, Victoria L; Côté, Gregory L; Willett, J L

    2011-06-01

    Corrosion of metals is a serious and challenging problem faced worldwide by industry. Purified Leuconostoc mesenteroides exopolysaccharide (EPS) coatings, cast from aqueous solution, inhibited the corrosion of low-carbon steel as determined by electrochemical impedance spectroscopy (EIS). There were two different corrosion behaviors exhibited when EPS films from different strains were cast onto the steel. One EPS coating reacted immediately with the steel substrate to form an iron (III) oxide layer ("rust") during the drying process while another did not. The samples that did not flash corrode had higher corrosion inhibition and formed an iron (II) passivation layer during EIS testing that persisted after the cells were disassembled. Corrosion inhibition was strain-specific as polysaccharides with similar structure did not have the same corrosion potential.

  4. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology.

    PubMed

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-09-10

    In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies.

    PubMed

    Gültekin-Özgüven, Mine; Karadağ, Ayşe; Duman, Şeyma; Özkal, Burak; Özçelik, Beraat

    2016-06-15

    Fine-disperse anionic liposomes containing black mulberry (Morus nigra) extract (BME) were prepared by high pressure homogenization at 25,000 psi. Primary liposomes were coated with cationic chitosan (0.4, w/v%) using the layer-by-layer depositing method and mixed with maltodextrin (MD) (20, w/v%) prior to spray drying. After that, spray dried liposomal powders containing BME were added to chocolates with alkalization degrees (pH 4.5, 6, 7.5) at conching temperatures of 40 °C, 60 °C, and 80 °C. The results showed that, compared to spray dried extract, chitosan coated liposomal powders provided better protection of anthocyanin content in both increased temperature and pH. In addition, encapsulation in liposomes enhanced in vitro bioaccessability of anthocyanins. Chocolate was fortified with encapsulated anthocyanins maximum 76.8% depending on conching temperature and pH. Copyright © 2016. Published by Elsevier Ltd.

  6. Effect of barium-coated halloysite nanotube addition on the cytocompatibility, mechanical and contrast properties of poly(methyl methacrylate) cement.

    PubMed

    Jammalamadaka, Uday; Tappa, Karthik; Weisman, Jeffery A; Nicholson, James Connor; Mills, David K

    2017-01-01

    Halloysite nanotubes (HNTs) were investigated as a platform for tunable nanoparticle composition and enhanced opacity in poly(methyl methacrylate) (PMMA) bone cement. Halloysite has been widely used to increase the mechanical properties of various polymer matrices, in stark contrast to other fillers such as barium sulfate that provide opacity but also decrease mechanical strength. The present work describes a dry deposition method for successively fabricating barium sulfate nanoparticles onto the exterior surface of HNTs. A sintering process was used to coat the HNTs in barium sulfate. Barium sulfate-coated HNTs were then added to PMMA bone cement and the samples were tested for mechanical strength and tailored opacity correlated with the fabrication ratio and the amount of barium sulfate-coated HNTs added. The potential cytotoxic effect of barium-coated HNTs in PMMA cement was also tested on osteosarcoma cells. Barium-coated HNTs were found to be completely cytocompatible, and cell proliferation was not inhibited after exposure to the barium-coated HNTs embedded in PMMA cement. We demonstrate a simple method for the creation of barium-coated nanoparticles that imparted improved contrast and material properties to native PMMA. An easy and efficient method for coating clay nanotubes offers the potential for enhanced imaging by radiologists or orthopedic surgeons.

  7. Oxidation-Resistant Coating For Bipolar Lead/Acid Battery

    NASA Technical Reports Server (NTRS)

    Bolstad, James J.

    1993-01-01

    Cathode side of bipolar substrate coated with nonoxidizable conductive layer. Coating prepared as water slurry of aqueous dispersion of polyethylene copolymer plus such conductive fillers as tin oxide, titanium, tantalum, or tungsten oxide. Applied easily to substrate of polyethylene carbon plastic. As slurry dries, conductive, oxidation-resistant coating forms on positive side of substrate.

  8. Investigation of Friction and Wear Properties of Electroless Ni-P-Cu Coating Under Dry Condition

    NASA Astrophysics Data System (ADS)

    Duari, Santanu; Mukhopadhyay, Arkadeb; Barman, Tapan Kr.; Sahoo, Prasanta

    This study presents the deposition and tribological characterization of electroless Ni-P-Cu coatings deposited on AISI 1040 steel specimens. After deposition, coatings are heat treated at 500∘C for 1h. Surface morphology study of the coatings reveals its typical cauliflower like appearance. Composition study of the coatings using energy dispersive X-ray analysis indicates that the deposit lies in the high phosphorus range. The coatings undergo crystallization on heat treatment. A significant improvement in microhardness of the coatings is also observed on heat treatment due to the precipitation of hard crystalline phases. The heat-treated coatings are subjected to sliding wear tests on a pin-on-disc type tribo-tester under dry condition by varying the applied normal load, sliding speed and sliding duration. The coefficient of friction (COF) increases with an increase in the applied normal load while it decreases with an increase in the sliding speed. The wear depth on the other hand increases with an increase in applied normal load as well as sliding speed. The worn surface morphology mainly indicates fracture of the nodules.

  9. Electrochemical performance of Li-rich oxide composite material coated with Li0.75La0.42TiO3 ionic conductor

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Liao, Pin-Ci; Wu, Yi-Shiuan; Lue, Shingjiang Jessie

    2017-03-01

    Li-rich (spray-dried (SP)-Li1.2Ni0.2Mn0.60O2) composite materials were prepared via two-step ball-mill and spray dry methods by using LiOH, α-MnO2, β-Ni(OH)2 raw materials. Two raw materials of α-MnO2 nanowires and microsphere β-Ni(OH)2 were synthesized by a hydrothermal process. In addition, Li0.75La0.42TiO3 (LLTO) fast ionic conductor was coated on SP-Li1.2Ni0.2Mn0.60O2 composite via a sol-gel method. The properties of the LLTO-coated SP-Li1.2Ni0.2Mn0.60O2 composites were determined by X-ray diffraction, scanning electron microscopy, micro-Raman, XPS, and the AC impedance method. The discharge capacities of 1 wt.%-LLTO-coated SP-Li1.2Ni0.2Mn0.60O2 composites were 256, 250, 231, 200, 158, and 114 mAh g-1 at rates of 0.1, 0.2, 0.5, 1, 3, and 5C, respectively, in the voltage range 2.0-4.8 V. The 1 wt.%-LLTO-coated Li-rich oxide composite showed the discharge capacities of up to 256 mAh g-1 in the first cycle at 0.1C. After 30 cycles, the discharge capacity of 244 mAh g-1 was obtained, which showed the capacity retention of 95.4%.

  10. A novel process for production of spherical PBT powders and their processing behavior during laser beam melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Jochen, E-mail: jochen.schmidt@fau.de; Sachs, Marius; Fanselow, Stephanie

    2016-03-09

    Additive manufacturing processes like laser beam melting of polymers are established for production of prototypes and individualized parts. The transfer to other areas of application and to serial production is currently hindered by the limited availability of polymer powders with good processability. Within this contribution a novel process route for the production of spherical polymer micron-sized particles of good flowability has been established and applied to produce polybutylene terephthalate (PBT) powders. Moreover, the applicability of the PBT powders in selective laser beam melting and the dependencies of process parameters on device properties will be outlined. First, polymer micro particles aremore » produced by a novel wet grinding method. To improve the flowability the produced particles the particle shape is optimized by rounding in a heated downer reactor. A further improvement of flowability of the cohesive spherical PBT particles is realized by dry coating. An improvement of flowability by a factor of about 5 is achieved by subsequent rounding of the comminution product and dry-coating as proven by tensile strength measurements of the powders. The produced PBT powders were characterized with respect to their processability. Therefore thermal, rheological, optical and bulk properties were analyzed. Based on these investigations a range of processing parameters was derived. Parameter studies on thin layers, produced in a selective laser melting system, were conducted. Hence appropriate parameters for processing the PBT powders by laser beam melting, like building chamber temperature, scan speed and laser power have been identified.« less

  11. Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Ling; Hu, Yong; Zhang, Xiaoping; Liu, Jiequn; Zhu, Xing; Zhong, Shengkui

    2018-01-01

    Hollow sphere structure Na2MnPO4F/C composite is synthesized through spray drying, following in-situ pyrolytic carbon coating process. XRD results indicate that the well crystallized composite can be successfully synthesized, and no other impurity phases are detected. SEM and TEM results reveal that the Na2MnPO4F/C samples show intact hollow spherical architecture, and the hollow spherical shells with an average thickness of 150 nm-250 nm are composed of nanosized primary particles. Furthermore, the amorphous carbon layer is uniformly coated on the surface of the hollow sphere, and the nanosized Na2MnPO4F particles are well embedded in the carbon networks. Consequently, the hollow sphere structure Na2MnPO4F/C shows enhanced electrochemical performance. Especially, it is the first time that the obvious potential platforms (∼3.6 V) are observed during the charge and discharge process at room temperature.

  12. Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage

    NASA Astrophysics Data System (ADS)

    Prakash, Sai S.; Brinker, C. Jeffrey; Hurd, Alan J.; Rao, Sudeep M.

    1995-03-01

    HIGHLY porous inorganic films have potential applications as dielectric materials, reflective and anti-reflective coatings, flat-panel displays, sensors, catalyst supports and super-insulating architectural glazings1-3. Aerogels4 are the most highly porous solids known, and can now be prepared from inorganic5 and organic6,7 precursors with volume-fraction porosities of up to 99.9% (ref. 8). Aerogels are normally prepared by supercritical extraction of the pore fluid from a wet gel1, which prevents the network collapse that is otherwise induced by capillary forces. But supercritical processing is expensive, hazardous and incompatible with the processing requirements of many potential applications,thus severely restricting the commercial exploitation of aerogels. Here we describe a means of preparing aerogels by a simple dip-coating method at ambient pressure without the need for supercriti-cal extraction. We add surface groups to the inorganic gel which make drying shrinkage reversible9: as the solvent is withdrawn, the gel springs back to a porous state. We can generate aerogel films with 98.5% porosity using this approach. We anticipate that it will greatly expand the commercial applications of these materials.

  13. Stability of whole inactivated influenza virus vaccine during coating onto metal microneedles

    PubMed Central

    Choi, Hyo-Jick; Bondy, Brian J.; Yoo, Dae-Goon; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2012-01-01

    Immunization using a microneedle patch coated with vaccine offers the promise of simplified vaccination logistics and increased vaccine immunogenicity. This study examined the stability of influenza vaccine during the microneedle coating process, with a focus on the role of coating formulation excipients. Thick, uniform coatings were obtained using coating formulations containing a viscosity enhancer and surfactant, but these formulations retained little functional vaccine hemagglutinin (HA) activity after coating. Vaccine coating in a trehalose-only formulation retained about 40 – 50% of vaccine activity, which is a significant improvement. The partial viral activity loss observed in the trehalose-only formulation was hypothesized to come from osmotic pressure-induced vaccine destabilization. We found that inclusion of a viscosity enhancer, carboxymethyl cellulose, overcame this effect and retained full vaccine activity on both washed and plasma-cleaned titanium surfaces. The addition of polymeric surfactant, Lutrol® micro 68, to the trehalose formulation generated phase transformations of the vaccine coating, such as crystallization and phase separation, which was correlated to additional vaccine activity loss, especially when coating on hydrophilic, plasma-cleaned titanium. Again, the addition of a viscosity enhancer suppressed the surfactant-induced phase transformations during drying, which was confirmed by in vivo assessment of antibody response and survival rate after immunization in mice. We conclude that trehalose and a viscosity enhancer are beneficial coating excipients, but the inclusion of surfactant is detrimental to vaccine stability. PMID:23246470

  14. Nanocomposite tribological coatings with "chameleon" surface adaptation

    NASA Astrophysics Data System (ADS)

    Voevodin, A. A.; Fitz, T. A.; Hu, J. J.; Zabinski, J. S.

    2002-07-01

    Nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These smart coatings have been dubbed "chameleon" because, analogous to a chameleon changing its skin color to avoid predators, the coating changes its "skin" chemistry and structure to avoid wear. The concept was originally developed using WC, diamondlike carbon, and WS2 material combination for adaptation to a humid/dry environment cycling. In order to address temperature variation, nanocomposite coatings made of yttria-stabilized zirconia (YSZ) in a gold matrix were developed with encapsulated nanosized reservoirs of MoS2 and diamondlike carbon (DLC). Coatings were produced using a combination of laser ablation and magnetron sputtering. They were characterized by x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive spectroscopy, and micro-Raman spectroscopy. Results were correlated with mechanical and tribological characterization. Coating hardness was evaluated using nanoindentation, while coating adhesion and toughness were estimated using scratch and Vickers indentation tests. Friction and wear endurance measurements of YSZ/Au/MoS2/DLC coatings against steel and Si3N4 balls were performed at room temperature in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500 degC in air. Depending on the environment, coating friction surface changed its chemistry and structure between (i) graphitic carbon for sliding in humid air [coating friction coefficients (c.o.f. 0.10-0.15)], (ii) hexagonal MoS2 for sliding in dry N2 and vacuum (c.o.f. 0.02-0.05), and (iii) metallic Au for sliding in air at 500 degC (c.o.f. 0.10-0.20). The unique coating skin adaptation realized with YSZ/Au/MoS2/DLC and WC/DLC/WS composites proves a universal applicability of the chameleon design concept. copyright 2002 American Vacuum Society.

  15. Reactive polymer coatings: A robust platform towards sophisticated surface engineering for biotechnology

    NASA Astrophysics Data System (ADS)

    Chen, Hsien-Yeh

    Functionalized poly(p-xylylenes) or so-called reactive polymers can be synthesized via chemical vapor deposition (CVD) polymerization. The resulting ultra-thin coatings are pinhole-free and can be conformally deposited to a wide range of substrates and materials. More importantly, the equipped functional groups can served as anchoring sites for tailoring the surface properties, making these reactive coatings a robust platform that can deal with sophisticated challenges faced in biointerfaces. In this work presented herein, surface coatings presenting various functional groups were prepared by CVD process. Such surfaces include aldehyde-functionalized coating to precisely immobilize saccharide molecules onto well-defined areas and alkyne-functionalized coating to click azide-modified molecules via Huisgen 1,3-dipolar cycloaddition reaction. Moreover, CVD copolymerization has been conducted to prepare multifunctional coatings and their specific functions were demonstrated by the immobilization of biotin and NHS-ester molecules. By using a photodefinable coating, polyethylene oxides were immobilized onto a wide range of substrates through photo-immobilization. Spatially controlled protein resistant properties were characterized by selective adsorption of fibrinogen and bovine serum albumin as model systems. Alternatively, surface initiator coatings were used for polymer graftings of polyethylene glycol) methyl ether methacrylate, and the resultant protein- and cell- resistant properties were characterized by adsorption of kinesin motor proteins, fibrinogen, and murine fibroblasts (NIH3T3). Accessibility of reactive coatings within confined microgeometries was systematically studied, and the preparation of homogeneous polymer thin films within the inner surface of microchannels was demonstrated. Moreover, these advanced coatings were applied to develop a dry adhesion process for microfluidic devices. This process provides (i) excellent bonding strength, (ii) extended storage time prior to bonding, and (iii) well-defined surface functionalities for subsequent surface modifications. Finally, we have also prepared surface microstructures and surface patterns using reactive coatings via photopatterning, projection lithography, supramolecular nanostamping (SuNS), and vapor-assisted micropatterning in replica structures (VAMPIR). These patterning techniques can be complimentarily used and provide access to precisely confined microenvironments on flat and curved geometries. Reactive coatings provide a technology platform that creates active, long-term control and may lead to improved mimicry of biological systems for effective bio-functional modifications.

  16. In-situ phosphatizing coatings for aerospace, OEM and coil coating applications

    NASA Astrophysics Data System (ADS)

    Neuder, Heather Aurelia

    The current metal coating process is a multi-step process. The surface is cleaned, primered, dried and then painted. The process is labor intensive and time consuming. The wash primer is a conversion coating, which prepares metal surface for better paint adhesion. The wash primers currently used often contain hexavalent chromium (Cr6+), which seals the pores in the conversion coating. The presence of hexavalent chromium, a known carcinogen, and volatile organic compounds (VOCs) make waste disposal expensive and pose dangers to workers. The novel technique of in-situ phosphatizing coating (ISPC) is a single-step, chrome-free alternative to the present coating practice. Formulation of an ISPC involves predispersal of an in-situ phosphatizing reagent (ISPR) into the paint system to form a stable formulation. The ISPR reacts with the metal surface and bonds with the paint film simultaneously, which eliminates the need for a conversion coating. In acid catalyzed paint systems, such as polyester-melamine paints, the ISPR also catalyzes cross-linking reactions between the melamine and the polyester polyols. ISPCs are formulated using commercially available coating systems including: polyester-melamine, two-component epoxy, polyurethane and high-hydroxy content polyester-melamine coil coating. The ISPCs are applied to metal substrates and their performances are evaluated using electrochemical, thermal and standard American Society for Testing and Materials (ASTM) testing methods. In addition, ISPCs were designed and formulated based on: (1) phosphate chemistry, (2) polymer chemistry, (3) sol-gel chemistry, and (4) the ion-exchange principle. Organo-functionalized silanes, which serve as excellent coupling and dispersion agents, are incorporated into the optimized ISPC formula and evaluated using standard ASTM testing methods and electrochemical spectroscopy. Also, an ion-exchange pigment, which leads to better adhesion by forming a mixed metal silicate surface, is dispersed into an ISPC and the performance of the final coating formulation is evaluated. Successful ISPCs formulated for multiple coating systems exhibited excellent adhesion, hardness and gloss, which supports their suitability as a chrome-free, single-step alternative for aerospace, original equipment manufacturing (OEM) and coil coating applications.

  17. Improved fire-resistant coatings

    NASA Technical Reports Server (NTRS)

    Hutt, J. B.; Stuart, J. W.

    1971-01-01

    Water-base coatings containing potassium silicate show improvement in areas of quick air-drying, crack, craze, and abrasion resistance, adherence, and leach resistance. Coatings are useful as thermal-barrier layers in furnaces, and as general purpose fire resistant surfaces where vapor impermeability is not a requirement.

  18. An effective and novel pore sealing agent to enhance the corrosion resistance performance of Al coating in artificial ocean water

    NASA Astrophysics Data System (ADS)

    Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.

    2017-02-01

    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance.

  19. An effective and novel pore sealing agent to enhance the corrosion resistance performance of Al coating in artificial ocean water

    PubMed Central

    Lee, Han-Seung; Singh, Jitendra Kumar; Ismail, Mohamed A.

    2017-01-01

    A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NH4H2PO4: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film. The corrosion resistance of Al coating and treated samples have been evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic techniques with exposure periods in artificial ocean water. Electrochemical techniques, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) indicated that phosphate ion would have been retarding corrosion of Al coating effectively. The formation of AHP (Ammonium Aluminum Hydrogen Phosphate Hydrate: NH4)3Al5H6(PO4)8.18H2O) on Al coating surface after treatment with AP is nano sized, crystalline and uniformly deposited but after exposure them in artificial ocean water, they form AHPH (Aluminum hydroxide phosphate hydrate Al3(PO4)2(OH)3(H2O)5) that is very protective, adherent, uniform and plate like morphology of corrosion products. The AHPH is sparingly soluble and adherent to surface and imparted improved corrosion resistance. PMID:28157233

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piskorska, M.; Soule, T.; Gosse, J. L.

    To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O 2 on preservation of H 2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H 2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H 2 production activity, whereas considerable H 2 production was still detected in sucrose- and trehalose-stabilized coatings. We stored the coatings at a relative humidity level which significantly impacts themore » recovery and subsequent rates of H 2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H 2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H 2 production activity after 8 weeks of storage. Furthermore, when stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H 2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Ultimately, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piskorska, M.; Soule, T.; Gosse, J. L.

    To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O 2 on preservation of H 2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H 2 production activity, whereas considerable H 2 production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impactmore » on the recovery and subsequent rates of H 2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H 2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H 2 production activity after 8 weeks of storage. In conWhen stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H 2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.« less

  2. Inorganic-organic nanocomposites for optical coatings

    NASA Astrophysics Data System (ADS)

    Schmidt, Helmut K.; Krug, Herbert; Sepeur-Zeitz, Bernhard; Geiter, Elisabeth

    1997-10-01

    The fabrication of nanoparticles by the sol-gel process and their use in polymeric or sol-gel-derived inorganic-organic composite matrices opens up interesting possibilities for designing new optical materials. Two different routes have been chosen for preparing optical nanocomposites: The first is the so-called 'in situ route,' where the nanoparticles are synthesized in a liquid mixture from Zr-alkoxides in a polymerizable system and diffractive gratings were produced by embossing uncured film. The second is the 'separate' preparation route, where a sterically stabilized dry nanoboehmite powder was completely redispersed in an epoxy group-containing matrix and hard coatings with optical quality on polycarbonate were prepared.

  3. Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma.

    PubMed

    Baba, Kamal; Bulou, Simon; Choquet, Patrick; Boscher, Nicolas D

    2017-04-19

    Due to the undeniable industrial advantages of low-temperature atmospheric-pressure plasma processes, such as low cost, low temperature, easy implementation, and in-line process capabilities, they have become the most promising next-generation candidate system for replacing thermal chemical vapor deposition or wet chemical processes for the deposition of functional coatings. In the work detailed in this article, photocatalytic anatase TiO 2 thin films were deposited at a low temperature on polymer optical fibers using an atmospheric-pressure plasma process. This method overcomes the challenge of forming crystalline transition metal oxide coatings on polymer substrates by using a dry and up-scalable method. The careful selection of the plasma source and the titanium precursor, i.e., titanium ethoxide with a short alkoxy group, allowed the deposition of well-adherent, dense, and crystalline TiO 2 coatings at low substrate temperature. Raman and XRD investigations showed that the addition of oxygen to the precursor's carrier gas resulted in a further increase of the film's crystallinity. Furthermore, the films deposited in the presence of oxygen exhibited a better photocatalytic activity toward methylene blue degradation assumedly due to their higher amount of photoactive {101} facets.

  4. Sol–gel method as a way of carbonyl iron powder surface modification for interaction improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Małecki, P., E-mail: pawel.malecki@pwr.edu.pl; Kolman, K.; Pigłowski, J.

    2015-03-15

    This article presents a method for modification of carbonyl iron particles’ surface (CIP), (d{sub 50}=4–9 µm) by silica coatings obtained using the sol–gel method. Reaction parameters were determined to obtain dry magnetic powder with homogeneous silica coatings without further processing and without any by-product in the solid or liquid phase. This approach is new among the commonly used methods of silica coating of iron particles. No attempt has been made to cover a carbonyl iron surface by silica in a waste-free method, up to date. In the current work two different silica core/shell structures were made by the sol–gel process,more » based on different silica precursors: tetraethoxy-silane (TEOS) and tetramethoxy-silane (TMOS). The dependence between the synthesis procedure and thickness of silica shell covering carbonyl iron particles has been described. Surface morphology of the modified magnetic particles and the coating thickness were characterized with the use of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Determination of the physicochemical structure of the obtained materials was performed by the energy-dispersive X-ray spectroscope (EDS), and the infrared technique (IR). The surface composition was analyzed using X-ray photoelectron spectroscopy (XPS). Additionally, distribution of particle size was measured using light microscopy. The new, efficient process of covering micro-size CIP with a nanometric silica layer was shown. Results of a performed analysis confirm the effectiveness of the presented method. - Highlights: • Proper covering CIP by sol–gel silica layer avoids agglomeration. • A new solid waste-free method of CIP coating is proposed. • Examination of the properties of modified CIP in depends on washing process. • Coatings on CIP particles doesn’t change the magnetic properties of particles.« less

  5. ETV Program Report: Coatings for Wastewater Collection ...

    EPA Pesticide Factsheets

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and Technology (CIGMAT) Laboratory at the University of Houston. Testing was conducted over a period of six months to evaluate the coating’s (1) chemical resistance and (2) bonding strength for infrastructure applications. For chemical resistance, coated concrete and clay bricks with holidays (holes created in the coating) were used to evaluate the chemical resistance of the coating/substrate bond under a corrosive environment. Twenty coated concrete (dry and wet) and 20 coated clay brick (dry and wet) specimens were exposed to DI water and sulfuric acid solution (pH=1), and the specimens were visually inspected and weight changes measured. Evaluation of the coating-to-substrate bonding strength was determined using two modified ASTM test methods – one to determine bond strength of the coating with two specimens sandwiched together using the coating, and the second to determine the bond strength by applying a tensile load to the coating applied to specimens of each substrate. Forty-eight bonding tests were performed over the six month evaluation. The tests resulted in the following conclusions about Standard Cement’s SEC 4553 coating: • After the six-month chemi

  6. NITRIC ACID PICKLING PROCESS

    DOEpatents

    Boller, E.R.; Eubank, L.D.

    1958-08-19

    An improved process is described for the treatment of metallic uranium surfaces preparatory to being given hot dip coatings. The process consists in first pickling the uraniunn surInce with aqueous 50% to 70% nitric acid, at 60 to 70 deg C, for about 5 minutes, rinsing the acid solution from the uranium article, promptly drying and then passing it through a molten alkali-metal halide flux consisting of 42% LiCl, 53% KCla and 5% NaCl into a molten metal bath consisting of 85 parts by weight of zinc and 15 parts by weight of aluminum

  7. DEVELOPMENT OF A NO-VOC/NO-HAP WOOD FURNITURE COATINGS SYSTEM

    EPA Science Inventory

    The report gives results of the development and demonstration of a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating system. The performance characteristics of the new coating system are excellent in terms of adhesion, drying time, gloss, ...

  8. Functional Multi-Nanolayer Coatings of Amorphous Carbon/Tungsten Carbide with Exceptional Mechanical Durability and Corrosion Resistance.

    PubMed

    Nemati, Narguess; Bozorg, Mansoor; Penkov, Oleksiy V; Shin, Dong-Gap; Sadighzadeh, Asghar; Kim, Dae-Eun

    2017-09-06

    A novel functional multilayer coating with periodically stacked nanolayers of amorphous carbon (a:C)/tungsten carbide (WC) and an adhesion layer of chromium (Cr) was deposited on 304 stainless steel using a dual magnetron sputtering technique. Through process optimization, highly densified coatings with high elasticity and shear modulus, excellent wear resistance, and minimal susceptibility to corrosive and caustic media could be acquired. The structural and mechanical properties of the optimized coatings were studied in detail using a variety of analytical techniques. Furthermore, finite element method simulations indicated that the stress generated due to contact against a steel ball was distributed well within the coating, which allowed the stresses to be lower than the yield threshold of the coating. Thus, an ultralow wear rate of ∼10 -12 mm 3 /N mm could be achieved in dry sliding conditions under relatively high Hertzian contact pressures of ∼0.4-0.9 GPa. The amorphous and pinhole-free structure of the individual layers, sufficient number of pairs, and the relatively dense stacked layers resulted in significant polarization resistance (Z″ = 5.5 × 10 6 Ω cm 2 ) and increased the corrosion resistance of the coating by 10-fold compared to that of recently reported corrosion-resistant coatings.

  9. Polymer Infiltration Studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1991-01-01

    Progress was made on the preparation of carbon fiber composites using advanced polymer resins. Processes reported include powder towpreg process, weaving towpreg made from dry powder prepreg, composite from powder coated towpreg, and toughening of polyimide resin (PMR) composites by semi-interpenetrating networks. Several important areas of polymer infiltration into fiber bundles will be researched. Preparation to towpreg for textile preform weaving and braiding and for automated tow placement is a major goal, as are the continued development of prepregging technology and the various aspects of composite part fabrication.

  10. Process of making solar cell module

    DOEpatents

    Packer, M.; Coyle, P.J.

    1981-03-09

    A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.

  11. Anti-reflective and anti-soiling coatings with self-cleaning properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, Vinod; Brophy, Brenor L.

    Disclosed herein is a coated glass element including a glass component and a coating adhered to the glass component through siloxane linkages, the coating having at least one of an anti-reflective property, a high abrasion resistance property and a hydrophobic property, wherein the coating comprises a dried gel formed from at least one hydrolyzed alkoxysilane-based sol and at least one hydrolyzed organosilane-based sol.

  12. Inexpensive Method for Coating the Interior of Silica Growth Ampoules with Pyrolytic Boron Nitride

    NASA Technical Reports Server (NTRS)

    Wang, Jianbin; Regel, Liya L.; Wilcox, William R.

    2003-01-01

    An inexpensive method was developed for coating the interior of silica ampoules with hexagonal boron nitride. An aqueous solution of boric acid was used to coat the ampoule prior to drying in a vacuum at 200 C. This coating was converted to transparent boron nitride by heating in ammonia at 1000 C. Coated ampoules were used to achieve detached solidification of indium antimonide on earth.

  13. A technique for thick polymer coating of inertial-confinement-fusion targets

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Feng, I.-A.; Wang, T. G.; Kim, H.-G.

    1983-01-01

    A technique to coat a stalk-mounted inertial-confinement fusion (ICF) target with a thick polymer layer has been successfully demonstrated. The polymer solution is first atomized, allowed to coalesce into a droplet, and positioned in a stable acoustic levitating field. The stalk-mounted ICF target is then moved into the acoustic field by manipulating a 3-D positioner to penetrate the surface membrane of the droplet, thus immersing the target in the levitated coating solution. The target inside the droplet is maintained at the center of the levitated liquid using the 3-D positional information provided by two orthogonally placed TV cameras until the drying process is completed. The basic components of the experimental apparatus, including an acoustic levitator, liquid sample deployment device, image acquisition instrumentation, and 3-D positioner, are briefly described.

  14. Reduced Zeta potential through use of cationic adhesion promoter for improved resist process performance and minimizing material consumption

    NASA Astrophysics Data System (ADS)

    Hodgson, Lorna; Thompson, Andrew

    2012-03-01

    This paper presents the results of a non-HMDS (non-silane) adhesion promoter that was used to reduce the zeta potential for very thin (proprietary) polymer on silicon. By reducing the zeta potential, as measured by the minimum sample required to fully coat a wafer, the amount of polymer required to coat silicon substrates was significantly reduced in the manufacture of X-ray windows used for high transmission of low-energy X-rays. Moreover, this approach used aqueous based adhesion promoter described as a cationic surface active agent that has been shown to improve adhesion of photoresists (positive, negative, epoxy [SU8], e-beam and dry film). As well as reducing the amount of polymer required to coat substrates, this aqueous adhesion promoter is nonhazardous, and contains non-volatile solvents.

  15. Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials.

    PubMed

    Hu, Qin; Li, Jinjun; Qiao, Shizhang; Hao, Zhengping; Tian, Hua; Ma, Chunyan; He, Chi

    2009-05-30

    Hybrid materials of silicalite-1 (Sil-1)-coated SBA-15 particles (MSs) have been successfully synthesized by crystallization process under hydrothermal conditions. These MSs materials were characterized by X-ray diffraction, nitrogen adsorption/desorption and TEM techniques, which illustrated that the silicalite-1-coated SBA-15 particles were successfully prepared and had large pore volume and hierarchical pore size distribution. Further experimental studies indicated that longer crystallization time under basic condition caused the mesostructure of SBA-15 materials to collapse destructively and higher calcination temperature tended to disrupt the long-range mesoscopic order while they had little influence on the phase of microcrystalline silicalite-1 zeolite. The resultant MSs materials were investigated by estimating dynamic adsorption capacity under dry and wet conditions to evaluate their adsorptive and hydrophobic properties. The hydrophobicity index (HI) value followed the sequence of silicalite-1>MSs>SBA-15, which revealed that the SBA-15 particles coated with the silicalite-1 seeds enhanced the surface hydrophobicity, and also were consistent with FTIR results. Our studies show that MSs materials combined the advantages of the ordered mesoporous material (high adsorptive capacity, large pore volume) and silicalite-1 zeolite (super-hydrophobic property, high hydrothermal stability), and the presence of micropores directly led to an increase in the dynamic adsorption capacity of benzene under dry and wet conditions.

  16. Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Bitsch, Boris; Gallasch, Tobias; Schroeder, Melanie; Börner, Markus; Winter, Martin; Willenbacher, Norbert

    2016-10-01

    We introduce a novel formulation concept to prepare high capacity graphite electrodes for lithium ion batteries. The concept is based on the capillary suspension phenomenon: graphite and conductive agent are dispersed in an aqueous binder solution and the organic solvent octanol is added as immiscible, secondary fluid providing the formation of a sample-spanning network resulting in unique stability and coating properties. No additional processing steps compared to conventional slurry preparation are required. The resulting ultra-thick electrodes comprise mass loadings of about 16.5 mg cm-2, uniform layer thickness, and superior edge contours. The adjustment of mechanical energy input ensures uniform distribution of the conductive agent and sufficient electronic conductivity of the final dry composite electrode. The resulting pore structure is due to the stable network provided by the secondary fluid which evaporates residue-free during drying. Constant current-constant potential (CC-CP) cycling clearly indicates that the corresponding microstructure significantly improves the kinetics of reversible Li+ (de-) intercalation. A double layer electrode combining a conventionally prepared layer coated directly onto the Cu current collector with an upper layer stabilized with octanol was prepared applying wet-on-wet coating. CC-CP cycling data confirms that staged porosity within the electrode cross section results in superior electrochemical performance.

  17. Application of a novel 3-fluid nozzle spray drying process for the microencapsulation of therapeutic agents using incompatible drug-polymer solutions.

    PubMed

    Sunderland, Tara; Kelly, John G; Ramtoola, Zebunnissa

    2015-04-01

    The aim of this study was to evaluate a novel 3-fluid concentric nozzle (3-N) spray drying process for the microencapsulation of omeprazole sodium (OME) using Eudragit L100 (EL100). Feed solutions containing OME and/or EL100 in ethanol were assessed visually for OME stability. Addition of OME solution to EL100 solution resulted in precipitation of OME followed by degradation of OME reflected by a colour change from colourless to purple and brown. This was related to the low pH of 2.8 of the EL100 solution at which OME is unstable. Precipitation and progressive discoloration of the 2-fluid nozzle (2-N) feed solution was observed over the spray drying time course. In contrast, 3-N solutions of EL100 or OME in ethanol were stable over the spray drying period. Microparticles prepared using either nozzle showed similar characteristics and outer morphology however the internal morphology was different. DSC showed a homogenous matrix of drug and polymer for 2-N microparticles while 3-N microparticles had defined drug and polymer regions distributed as core and coat. The results of this study demonstrate that the novel 3-N spray drying process can allow the microencapsulation of a drug using an incompatible polymer and maintain the drug and polymer in separate regions of the microparticles.

  18. 3D plasmonic nanobowl platform for the study of exosomes in solution

    NASA Astrophysics Data System (ADS)

    Lee, Changwon; Carney, Randy P.; Hazari, Sidhartha; Smith, Zachary J.; Knudson, Alisha; Robertson, Christopher S.; Lam, Kit S.; Wachsmann-Hogiu, Sebastian

    2015-05-01

    Thin silver film coated nanobowl Surface Enhanced Raman Spectroscopy (SERS) substrates are used to capture exosomes in solution for SERS measurements that can provide biochemical analysis of intact and ruptured exosomes. Exosomes derived via Total Exosome Isolation Reagent (TEIR) as well as ultracentrifugation (UC) from the SKOV3 cell line were analyzed. Spectra of exosomes derived via TEIR are dominated by a signal characteristic for the TEIR kit that needs to be subtracted for all measurements. Differences in SERS spectra recorded at different times during the drying of the exosome solution are statistically analyzed with Principal Component Analysis (PCA). At the beginning of the drying process, SERS spectra of exosomes exhibit peaks characteristic for both lipids and proteins. Later on during the drying process, new SERS peaks develop, suggesting that the initially intact exosome ruptures over time. This time-dependent evolution of SERS peaks enables analysis of exosomal membrane contents and the contents inside the exosomes.

  19. Preparation of cellulose based microspheres by combining spray coagulating with spray drying.

    PubMed

    Wang, Qiao; Fu, Aiping; Li, Hongliang; Liu, Jingquan; Guo, Peizhi; Zhao, Xiu Song; Xia, Lin Hua

    2014-10-13

    Porous microspheres of regenerated cellulose with size in range of 1-2 μm and composite microspheres of chitosan coated cellulose with size of 1-3 μm were obtained through a two-step spray-assisted approach. The spray coagulating process must combine with a spray drying step to guarantee the formation of stable microspheres of cellulose. This approach exhibits the following two main virtues. First, the preparation was performed using aqueous solution of cellulose as precursor in the absence of organic solvent and surfactant; Second, neither crosslinking agent nor separated crosslinking process was required for formation of stable microspheres. Moreover, the spray drying step also provided us with the chance to encapsulate guests into the resultant cellulose microspheres. The potential application of the cellulose microspheres acting as drug delivery vector has been studied in two PBS (phosphate-buffered saline) solution with pH values at 4.0 and 7.4 to mimic the environments of stomach and intestine, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Granulometric characterization of airborne particulate release during spray application of nanoparticle-doped coatings

    NASA Astrophysics Data System (ADS)

    Göhler, Daniel; Stintz, Michael

    2014-08-01

    Airborne particle release during the spray application of coatings was analyzed in the nanometre and micrometre size range. In order to represent realistic conditions of domestic and handcraft use, the spray application was performed using two types of commercial propellant spray cans and a manual gravity spray gun. Four different types of coatings doped with three kinds of metal-oxide tracer nanoparticle additives (TNPA) were analyzed. Depending on the used coating and the kind of spray unit, particulate release numbers between 5 × 108 and 3 × 1010 particles per gram ejection mass were determined in the dried spray aerosols. The nanoparticulate fraction amounted values between 10 and 60 no%. The comparison between nanoparticle-doped coatings with non-doped ones showed no TNPA-attributed differences in both the macroscopic spray process characteristics and the particle release numbers. SEM, TEM and EDX-analyzes showed that the spray aerosols were composed of particles made up solely from matrix material and sheathed pigments, fillers and TNPAs. Isolated ZnO- or Fe2O3-TNPAs could not be observed.

  1. Comparison of Electromagnetic and Marangoni Forces on Thin Coatings during Rapid Heating Process

    NASA Astrophysics Data System (ADS)

    Steinberg, T.; Opitz, T.; Rybakov, A.; Baake, E.

    2018-05-01

    The present paper is dedicated to the investigation of Marangoni and Lorentz forces in a rapid heating process. During the melting of aluminum-silicon (AlSi) layer on the bor-manganese steel 22MnB5, the liquid AlSi is shifting from the middle to the side and leaves dry spots on the steel due to a combination of both forces. In order to solve this process design issue, the impact of each force in the process will be evaluated. Evaluation is carried out using experimental data and numerical simulation.

  2. GOMA 6.0 :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunk, Peter Randall; Rao, Rekha Ranjana; Chen, Ken S

    Goma 6.0 is a finite element program which excels in analyses of multiphysical processes, particularly those involving the major branches of mechanics (viz. fluid/solid mechanics, energy transport and chemical species transport). Goma is based on a full-Newton-coupled algorithm which allows for simultaneous solution of the governing principles, making the code ideally suited for problems involving closely coupled bulk mechanics and interfacial phenomena. Example applications include, but are not limited to, coating and polymer processing flows, super-alloy processing, welding/soldering, electrochemical processes, and solid-network or solution film drying. This document serves as a users guide and reference.

  3. Recent developments in plasma spray processes for applications in energy technology

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.

    2017-03-01

    This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.

  4. Smart Nanocomposite Coatings with Chameleon Surface Adaptation in Tribological Applications

    NASA Astrophysics Data System (ADS)

    Voevodin, A. A.; Zabinski, J. S.

    Smart nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These coatings have been dubbed "chameleon" because of their ability to change their surface chemistry and structure to avoid wear. The first "chameleon" coatings were made of WC, WS2, and DLC; these coatings provided superior mechanical toughness and performance in dry/humid environmental cycling. In order to address temperature variation, the second generation of "chameleon" coatings were made of yttria stabilized zirconia (YSZ) in a gold matrix with encapsulated nano-sized reservoirs of MoS2 and DLC. High temperature lubrication with low melting point glassy ceramic phases was also explored. All coatings were produced using a combination of laser ablation and magnetron sputtering. They were thoroughly characterized by various analytical, mechanical, and tribological methods. Coating toughness was remarkably enhanced by activation of a grain boundary sliding mechanism. Friction and wear endurance measurements were performed in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500-600 °C in air. Unique friction and wear performance in environmental cycling was demonstrated.

  5. Cold Spray Coating of Submicronic Ceramic Particles on Poly(vinyl alcohol) in Dry and Hydrogel States

    NASA Astrophysics Data System (ADS)

    Moreau, David; Borit, François; Corté, Laurent; Guipont, Vincent

    2017-06-01

    We report an approach using cold spray technology to coat poly(vinyl alcohol) (PVA) in polymer and hydrogel states with hydroxyapatite (HA). Using porous aggregated HA powder, we hypothesized that fragmentation of the powder upon cold spray could lead to formation of a ceramic coating on the surface of the PVA substrate. However, direct spraying of this powder led to complete destruction of the swollen PVA hydrogel substrate. As an alternative, HA coatings were successfully produced by spraying onto dry PVA substrates prior to swelling in water. Dense homogeneous HA coatings composed of submicron particles were obtained using rather low-energy spraying parameters (temperature 200-250 °C, pressure 1-3 MPa). Coated PVA substrates could swell in water without removal of the ceramic layer to form HA-coated hydrogels. Microscopic observations and in situ measurements were used to explain how local heating and impact of sprayed aggregates induced surface roughening and strong binding of HA particles to the molten PVA substrate. Such an approach could lead to design of ceramic coatings whose roughness and crystallinity can be finely adjusted to improve interfacing with biological tissues.

  6. Dip coating of sol-gels

    NASA Astrophysics Data System (ADS)

    Schunk, P. R.; Hurd, A. J.; Brinker, C. J.

    Dip coating is the primary means of depositing sol-gel films for precision optical coatings. Sols are typically multicomponent systems consisting of an inorganic phase dispersed in a solvent mixture, with each component differing in volatility and surface tension. This, together with slow coating speeds (less than 1cm/s), makes analysis of the coating process complicated; unlike most high-speed coating methods, solvent evaporation, evolving rheology, and surface tension gradients alter significantly the fluid mechanics of the deposition stage. These phenomena were studied with computer-aided predictions of the flow and species transport fields. The underlying theory involves mass, momentum, and species transport on a domain of unknown shape, with models and constitutive equations for vapor-liquid equilibria and surface tension. Due accounting is made for the unknown position of the free surface, which locates according to the capillary hydrodynamic forces and solvent loss by evaporation. Predictions of the effects of mass transfer, hydrodynamics, and surface tension gradients on final film thickness are compared with ellipsometry measurements of film thickness on a laboratory pilot coater. Although quantitative agreement is still lacking, both experiment and theory reveal that the film profile near the drying line takes on a parabolic shape.

  7. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    NASA Astrophysics Data System (ADS)

    Amanov, Auezhan; Pyun, Young-Sik

    2016-07-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  8. Investigation of the potential for direct compaction of a fine ibuprofen powder dry-coated with magnesium stearate.

    PubMed

    Qu, Li; Zhou, Qi Tony; Gengenbach, Thomas; Denman, John A; Stewart, Peter J; Hapgood, Karen P; Gamlen, Michael; Morton, David A V

    2015-05-01

    Intensive dry powder coating (mechanofusion) with tablet lubricants has previously been shown to give substantial powder flow improvement. This study explores whether the mechanofusion of magnesium stearate (MgSt), on a fine drug powder can substantially improve flow, without preventing the powder from being directly compacted into tablets. A fine ibuprofen powder, which is both cohesive and possesses a low-melting point, was dry coated via mechanofusion with between 0.1% and 5% (w/w) MgSt. Traditional low-shear blending was also employed as a comparison. No significant difference in particle size or shape was measured following mechanofusion. For the low-shear blended powders, only marginal improvement in flowability was obtained. However, after mechanofusion, substantial improvements in the flow properties were demonstrated. Both XPS and ToF-SIMS demonstrated high degrees of a nano-scale coating coverage of MgSt on the particle surfaces from optimized mechanofusion. The study showed that robust tablets were produced from the selected mechanofused powders, at high-dose concentration and tablet tensile strength was further optimized via addition of a Polyvinylpyrrolidone (PVP) binder (10% w/w). The tablets with the mechanofused powder (with or without PVP) also exhibited significantly lower ejection stress than those made of the raw powder, demonstrating good lubrication. Surprisingly, the release rate of drug from the tablets made with the mechanofused powder was not retarded. This is the first study to demonstrate such a single-step dry coating of model drug with MgSt, with promising flow improvement, flow-aid and lubrication effects, tabletability and also non-inhibited dissolution rate.

  9. 40 CFR 59.412 - Incorporations by reference.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Organic Coatings at Room Temperature, incorporation by reference approved for § 59.401, Quick-dry enamel... Test Method for Chemical Resistance of Coatings Used in Light-Water Nuclear Power Plants, incorporation...

  10. 40 CFR 59.412 - Incorporations by reference.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Organic Coatings at Room Temperature, incorporation by reference approved for § 59.401, Quick-dry enamel... Test Method for Chemical Resistance of Coatings Used in Light-Water Nuclear Power Plants, incorporation...

  11. Filling of High-Concentration Monoclonal Antibody Formulations into Pre-filled Syringes: Investigating Formulation-Nozzle Interactions To Minimize Nozzle Clogging.

    PubMed

    Shieu, Wendy; Stauch, Oliver B; Maa, Yuh-Fun

    2015-01-01

    Syringe filling of high-concentration/viscosity monoclonal antibody formulations is a complex process that is not fully understood. This study, which builds on a previous investigation that used a bench-top syringe filling unit to examine formulation drying at the filling nozzle tip and subsequent nozzle clogging, further explores the impact of formulation-nozzle material interactions on formulation drying and nozzle clogging. Syringe-filling nozzles made of glass, stainless steel, or plastic (polypropylene, silicone, and Teflon®), which represent a full range of materials with hydrophilic and hydrophobic properties as quantified by contact angle measurements, were used to fill liquids of different viscosity, including a high-concentration monoclonal antibody formulation. Compared with hydrophilic nozzles, hydrophobic nozzles offered two unique features that discouraged formulation drying and nozzle clogging: (1) the liquid formulation is more likely to be withdrawn into the hydrophobic nozzle under the same suck-back conditions, and (2) the residual liquid film left on the nozzle wall when using high suck-back settings settles to form a liquid plug away from the hydrophobic nozzle tip. Making the tip of the nozzle hydrophobic (silicone-coating on glass and Teflon-coating stainless steel) could achieve the same suck-back performance as plastic nozzles. This study demonstrated that using hydrophobic nozzles are most effective in reducing the risk of nozzle clogging by drying of high-concentration monoclonal antibody formulation during extended nozzle idle time in a large-scale filling facility and environment. Syringe filling is a well-established manufacturing process and has been implemented by numerous contract manufacturing organizations and biopharmaceutical companies. However, its technical details and associated critical process parameters are rarely published. Information on high-concentration/viscosity formulation filling is particularly lacking. This study is the continuation of a previous investigation with a focus on understanding the impact of nozzle material on the suck-back function of liquid formulations. The findings identified the most critical parameter-nozzle material hydrophobicity-in alleviating formulation drying at the nozzle tip and eventually limiting the occurrence of nozzle clogging during the filling process. The outcomes of this study will benefit scientists and engineers who develop pre-filled syringe products by providing a better understanding of high-concentration formulation filling principles and challenges. © PDA, Inc. 2015.

  12. Selective dry etching of silicon containing anti-reflective coating

    NASA Astrophysics Data System (ADS)

    Sridhar, Shyam; Nolan, Andrew; Wang, Li; Karakas, Erdinc; Voronin, Sergey; Biolsi, Peter; Ranjan, Alok

    2018-03-01

    Multi-layer patterning schemes involve the use of Silicon containing Anti-Reflective Coating (SiARC) films for their anti-reflective properties. Patterning transfer completion requires complete and selective removal of SiARC which is very difficult due to its high silicon content (>40%). Typically, SiARC removal is accomplished through a non-selective etch during the pattern transfer process using fluorine containing plasmas, or an ex-situ wet etch process using hydrofluoric acid is employed to remove the residual SiARC, post pattern transfer. Using a non-selective etch may result in profile distortion or wiggling, due to distortion of the underlying organic layer. The drawbacks of using wet etch process for SiARC removal are increased overall processing time and the need for additional equipment. Many applications may involve patterning of active structures in a poly-Si layer with an underlying oxide stopping layer. In such applications, SiARC removal selective to oxide using a wet process may prove futile. Removing SiARC selectively to SiO2 using a dry etch process is also challenging, due to similarity in the nature of chemical bonds (Si - O) in the two materials. In this work, we present highly selective etching of SiARC, in a plasma driven by a surface wave radial line slot antenna. The first step in the process involves an in-situ modification of the SiARC layer in O2 plasma followed by selective etching in a NF3/H2 plasma. Surface treatment in O2 plasma resulted in enhanced etching of the SiARC layer. For the right processing conditions, in-situ NF3/H2 dry etch process demonstrated selectivity values greater than 15:1 with respect to SiO2. The etching chemistry, however, was sensitive to NF3:H2 gas ratio. For dilute NF3 in H2, no SiARC etching was observed. Presumably, this is due to the deposition of ammonium fluorosilicate layer that occurs for dilute NF3/H2 plasmas. Additionally, challenges involved in selective SiARC removal (selective to SiO2, organic and Si layers) post pattern transfer, in a multi-layer structure will be discussed.

  13. How much surface coating of hydrophobic azithromycin is sufficient to prevent moisture-induced decrease in aerosolisation of hygroscopic colistin powder?

    PubMed Central

    Zhou, Qi (Tony); Loh, Zhi Hui; Yu, Jiaqi; Sun, Si-ping; Gengenbach, Thomas; Denman, John A.; Li, Jian; Chan, Hak-Kim

    2017-01-01

    Aerosolisation performance of hygroscopic particles of colistin could be compromised at elevated humidity due to increased capillary forces. Co-spray drying colistin with a hydrophobic drug is known to provide a protective coating on the composite particle surfaces against moisture-induced reduction in aerosolisation performance; however, the effects of component ratio on surface coating quality and powder aerosolisation at elevated relative humidities are unknown. In this study, we have systematically examined the effects of mass ratio of hydrophobic azithromycin on surface coating quality and aerosolisation performance of the co-spray dried composite particles. Four combination formulations with varying drug ratios were prepared by co-spray drying drug solutions. Both of the drugs in each combination formulation had similar in vitro deposition profiles, suggesting that each composite particle comprise two drugs in the designed mass ratio, which is supported by XPS and ToF-SIMS data. XPS and ToF-SIMS measurements also revealed that 50 % by weight (or 35 % by molecular fraction) of azithromycin in the formulation provided a near-complete coating of 96.5 % (molar fraction) on the composite particle surface, which is sufficient to prevent moisture-induced reduction in FPFrecovered and FPFemitted. Higher azithromycin content did not increase coating coverage, while contents of azithromycin lower than 20 %w/w did not totally prevent the negative effects of humidity on aerosolisation performance. This study has highlighted that a critical amount of azithromycin is required to sufficiently coat the colistin particles for short-term protection against moisture. PMID:27255350

  14. Effects of Fiber Coatings on Tensile Properties of Hi-Nicalon SiC/RBSN Tow Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Hull, David R.

    1997-01-01

    Uncoated Hi-Nicalon silicon carbide (SiC) fiber tows and those coated with a single surface layer of pyrolytic boron nitride (PBN), double layers of PBN/Si-rich PBN, and boron nitride (BN)/SiC coatings deposited by chemical vapor deposition (CVD) method were infiltrated with silicon slurry and then exposed to N2, for 4 hr at 1200 and 1400 C. Room temperature ultimate tensile fracture loads and microstructural characterization of uncoated and CVD coated Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride (RBSN) tow composites were measured to select suitable interface coating(s) stable under RBSN processing conditions. Results indicate that room temperature ultimate fracture loads of the uncoated Hi-Nicalon SiC/RBSN tow composites nitrided at both temperatures were significantly lower than those of the uncoated Hi-Nicalon tows without slurry infiltration. In contrast, all CVD coated Hi-Nicalon SiC/RBSN tow composites retained a greater fraction of the dry tow fracture load after nitridation at 1200 C, but degraded significantly after nitridation at 1400 C. Reaction between metal impurities (Fe and Ni) present in the attrition milled silicon powder and uncoated regions of SiC fibers appears to be the probable cause for fiber degradation.

  15. Drop Impact of Viscous Suspensions on Solid Surfaces

    NASA Astrophysics Data System (ADS)

    Bolleddula, Daniel; Aliseda, Alberto

    2009-11-01

    Droplet impact is a well studied subject with over a century of progress. Most studies are motivated by applications such as inkjet printing, agriculture spraying, or printed circuit boards. Pharmaceutically relevant fluids provide an experimental set that has received little attention. Medicinal tablets are coated by the impaction of micron sized droplets of aqueous suspensions and subsequently dried for various purposes such as brand recognition, mask unpleasant taste, or functionality. We will present a systematic study of micron sized drop impact of Newtonian and Non-Newtonian fluids used in pharmaceutical coating processes. In our experiments we extend the range of Ohnesorge numbers, O(1), of previous studies on surfaces of varying wettability and roughness.

  16. In situ assembly in confined spaces of coated particle scaffolds as thermal underfills with extraordinary thermal conductivity.

    PubMed

    Hong, Guo; Schutzius, Thomas M; Zimmermann, Severin; Burg, Brian R; Zürcher, Jonas; Brunschwiler, Thomas; Tagliabue, Giulia; Michel, Bruno; Poulikakos, Dimos

    2015-01-14

    In situ assembly of high thermal conductivity materials in severely confined spaces is an important problem bringing with it scientific challenges but also significant application relevance. Here we present a simple, affordable, and reproducible methodology for synthesizing such materials, composed of hierarchical diamond micro/nanoparticle scaffolds and an ethylenediamine coating. An important feature of the assembly process is the utilization of ethylenediamine as an immobilizing agent to secure the integrity of the microparticle scaffolds during and after each processing step. After other liquid components employed in the scaffolds assembly dry out, the immobilization agent solidifies forming a stable coated particle scaffold structure. Nanoparticles tend to concentrate in the shell and neck regions between adjacent microparticles. The interface between core and shell, along with the concentrated neck regions of nanoparticles, significantly enhance the thermal conductivity, making such materials an excellent candidate as thermal underfills in the electronics industry, where efficient heat removal is a major stumbling block toward increasing packing density. We show that the presented structures exhibit nearly 1 order of magnitude improvement in thermal conductivity, enhanced temperature uniformity, and reduced processing time compared to commercially available products for electronics cooling, which underpins their potential utility.

  17. Development of Impregnated Agglomerate Pelletization (IAP) process for fabrication of (Th,U)O 2 mixed oxide pellets

    NASA Astrophysics Data System (ADS)

    Khot, P. M.; Nehete, Y. G.; Fulzele, A. K.; Baghra, Chetan; Mishra, A. K.; Afzal, Mohd.; Panakkal, J. P.; Kamath, H. S.

    2012-01-01

    Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th, 233U)O 2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO 2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O 2 pellets. In this study, fabrication of (Th,U)O 2 mixed oxide pellets containing 3-5 wt.% UO 2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.

  18. Development of a special purpose spacecraft interior coating, phase 1

    NASA Technical Reports Server (NTRS)

    Bartoszek, E. J.; Nannelli, P.

    1975-01-01

    Coating formulations were developed consisting of latex blends of fluorocarbon polymers, acrylic resins, stabilizers, modifiers, other additives, and a variety of inorganic pigments. Suitable latex primers were also developed from an acrylic latex base. The formulations dried to touch in about one hour and were fully dry in about twenty-four hours under normal room temperature and humidity conditions. The resulting coatings displayed good optical and mechanical properties, including excellent bonding to (pre-treated) substrates. In addition, the preferred compositions were found to be self-extinguishing when applied to nonflammable substrates and could meet the offgassing requirements specified by NASA for the intended application. Improvements are needed in abrasion resistance and hardness.

  19. 40 CFR 63.11173 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of aerospace vehicles that involves the coating of components that normally require the use of an... coatings on aerospace vehicles that contain fillers that adversely affect atomization with HVLP spray guns; or to the application of coatings on aerospace vehicles that normally have a dried film thickness of...

  20. 40 CFR 63.11173 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of aerospace vehicles that involves the coating of components that normally require the use of an... coatings on aerospace vehicles that contain fillers that adversely affect atomization with HVLP spray guns; or to the application of coatings on aerospace vehicles that normally have a dried film thickness of...

  1. 40 CFR 63.11173 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of aerospace vehicles that involves the coating of components that normally require the use of an... coatings on aerospace vehicles that contain fillers that adversely affect atomization with HVLP spray guns; or to the application of coatings on aerospace vehicles that normally have a dried film thickness of...

  2. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    2002-01-01

    A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  3. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    1999-01-01

    A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  4. Aqueous vinylidene fluoride polymer coating composition

    NASA Technical Reports Server (NTRS)

    Bartoszek, Edward J. (Inventor); Christofas, Alkis (Inventor)

    1978-01-01

    A water-based coating composition which may be air dried to form durable, fire resistant coatings includes dispersed vinylidene fluoride polymer particles, emulsified liquid epoxy resin and a dissolved emulsifying agent for said epoxy resin which agent is also capable of rapidly curing the epoxy resin upon removal of the water from the composition.

  5. Super-hydrophobic Silver-Doped TiO2 @ Polycarbonate Coatings Created on Various Material Substrates with Visible-Light Photocatalysis for Self-Cleaning Contaminant Degradation.

    PubMed

    Li, Zhengjian; Sun, Zongzhao; Duan, Zhiqiang; Li, Rui; Yang, Yanli; Wang, Jingyi; Lv, Xiaoxia; Qi, Wei; Wang, Hua

    2017-02-20

    In the present work, a facile and efficient fabrication method has been developed for creating super-hydrophobic coatings of silver-doped TiO 2 @polycarbonate (TiO 2 (Ag)@PC) on the substrates of different materials with photocatalytic self-cleaning performances simply by the "dipping and drying" process. The substrates were first patterned with glue and then deposited with the dopamine-capped TiO 2 (Ag)@PC (DA-TiO 2 (Ag)@PC) nanocomposites, followed by the further etching with dimethylbenzene. The so prepared super-hydrophobic E-DA-TiO 2 (Ag)@PC coatings could present the lotus leaf-like porous architectures, high adhesion stability, and especially the visible-light photocatalysis for organic contaminant degradation, thus promising the wide outdoor and indoor applications like water proofing, metal erosion protection, and surface self-cleaning.

  6. Space Environmentally Durable Polyimides and Copolyimides

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Hergenrother, Paul M. (Inventor); Watson, Kent A. (Inventor); Thompson, Craig M. (Inventor)

    2006-01-01

    Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic &anhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides. The polyimide materials can be processed into various material forms such as thin films, fibers, foams, threads, adhesive film, coatings, dry powders, and fiber coated prepreg, and uses include thin film membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation (MLI) blanket materials.

  7. Space Environmentally Durable Polyimides and Copolyimides

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor); Watson, Kent A. (Inventor); Thompson, Craig M. (Inventor)

    2005-01-01

    Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic dianhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides The polyimide materials can be processed into various material forms such as thin films, fibers, foams, threads, adhesive film, coatings, dry powders, and fiber coated prepreg, and uses include thin film membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation (MLI) blanket materials.

  8. Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation

    NASA Astrophysics Data System (ADS)

    Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-01

    Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.

  9. Changes in chemical composition of frozen coated fish products during deep-frying.

    PubMed

    Pérez-Palacios, Trinidad; Petisca, Catarina; Casal, Susana; Ferreira, Isabel M P L V O

    2014-03-01

    This work evaluates the influence of deep-frying coated fish products on total fat, fatty acid (FA) and amino acid profile, and on the formation of volatile compounds, with special attention on furan and its derivatives due to their potential harmful characteristics. As expected, deep-frying in sunflower oil increased linoleic acid content, but total fat amount increased only by 2% on a dry basis. Eicosapentanoic and docosahexanoic acids were preserved while γ- and α-linoleic acids were oxidised. Deep-frying also induces proteolysis, releasing free AA, and the formation of volatile compounds, particularly aldehydes and ketones arising from polyunsaturated FA. In addition, high quantities of furanic compounds, particularly furan and furfuryl alcohol, are generated during deep-frying coated fish. The breaded crust formed could contribute simultaneously for the low uptake of fat, preservation of long chain n-3 FA, and for the high amounts of furanic compounds formed during the deep-frying process.

  10. Process for producing a high emittance coating and resulting article

    NASA Technical Reports Server (NTRS)

    Le, Huong G. (Inventor); O'Brien, Dudley L. (Inventor)

    1993-01-01

    Process for anodizing aluminum or its alloys to obtain a surface particularly having high infrared emittance by anodizing an aluminum or aluminum alloy substrate surface in an aqueous sulfuric acid solution at elevated temperature and by a step-wise current density procedure, followed by sealing the resulting anodized surface. In a preferred embodiment the aluminum or aluminum alloy substrate is first alkaline cleaned and then chemically brightened in an acid bath The resulting cleaned substrate is anodized in a 15% by weight sulfuric acid bath maintained at a temperature of 30.degree. C. Anodizing is carried out by a step-wise current density procedure at 19 amperes per square ft. (ASF) for 20 minutes, 15 ASF for 20 minutes and 10 ASF for 20 minutes. After anodizing the sample is sealed by immersion in water at 200.degree. F. and then air dried. The resulting coating has a high infrared emissivity of about 0.92 and a solar absorptivity of about 0.2, for a 5657 aluminum alloy, and a relatively thick anodic coating of about 1 mil.

  11. Orodispersible films: Product transfer from lab-scale to continuous manufacturing.

    PubMed

    Thabet, Yasmin; Breitkreutz, Joerg

    2018-01-15

    Orodispersible films have been described as new beneficial dosage forms for special patient populations. Due to various production settings, different requirements on film formulations are required for non- continuous and continuous manufacturing. In this study, a continuous coating machine was qualified in regards of the process conditions for film compositions and their effects on the formed films. To investigate differences between both manufacturing processes, various film formulations of hydrochlorothiazide and hydroxypropylcellulose (HPC) or hydroxypropylmethycellulose (HPMC) as film formers were produced and the resulting films were characterized. The qualification of the continuously operating coating machine reveals no uniform heat distribution during drying. Coating solutions for continuous manufacturing should provide at least a dynamic viscosity of 1 Pa*s (wet film thickness of 500 μm, velocity of 15.9 cm/min). HPC films contain higher residuals of ethanol or acetone in bench-scale than in continuous production mode. Continuous production lead to lower drug content of the films. All continuously produced films disintegrate within less than 30 s. There are observed significant effects of the production process on the film characteristics. When transferring film manufacturing from lab-scale to continuous mode, film compositions, processing conditions and suitable characterization methods have to be carefully selected and adopted. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purandare, Yashodhan, E-mail: Y.Purandare@shu.ac.uk; Ehiasarian, Arutiun; Hovsepian, Papken

    Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +}more » rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.« less

  13. Corrosion protection of steel by thin coatings of starch-oil dry lubricants

    USDA-ARS?s Scientific Manuscript database

    Corrosion of materials is one of the most serious and challenging problems faced worldwide by industry. Dry lubricants reduce friction between two metal surfaces. This research investigated the inhibition of corrosive behavior a dry lubricant formulation consisting of jet-cooked corn starch and soyb...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, Kenneth; Zhao, Hui; Parkinson, Dilworth Y.

    The internal structure of a porous electrode strongly influences battery performance. Understanding the dynamics of electrode slurry drying could aid in engineering electrodes with desired properties. For instance, one might monitor the dynamic, spatially-varying thickness near the edge of a slurry coating, as it should lead to non-uniform thickness of the dried film. This work examines the dynamic behavior of drying slurry drops consisting of SiO x and carbon black particles in a solution of carboxymethylcellulose and deionized water, as an experimental model of drying behavior near the edge of a slurry coating. An X-ray radiography-based procedure is developed tomore » calculate the evolving spatial distribution of active material particles from images of the drying slurry drops. To the authors’ knowledge, this study is the first to use radiography to investigate battery slurry drying, as well as the first to determine particle distributions from radiography images of drying suspensions. The dynamic results are consistent with tomography reconstructions of the static, fully-dried films. It is found that active material particles can rapidly become non-uniformly distributed within the drops. Heating can promote distribution uniformity, but seemingly must be applied very soon after slurry deposition. Higher slurry viscosity is found to strongly restrain particle redistribution.« less

  15. Demonstration of no-VOC/no-HAP wood furniture coating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, E.W.; Guan, R.; McCrillis, R.C.

    1997-12-31

    The United States Environmental Protection Agency has contracted with AeroVironment Environmental Services, Inc. and its subcontractor, Adhesive Coating Co., to develop and demonstrate a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating system. The objectives of this project are to develop a new wood coating system that is sufficiently mature for demonstration and to develop a technology transfer plan to get the product into public use. The performance characteristics of this new coating system are excellent in terms of adhesion, drying times, gloss, hardness, mar resistance, level of solvents, and stain resistance. Workshops will be held to providemore » detailed information to wood furniture manufacturers on what is required to change to the new coating system. Topics such as spray gun selection, spray techniques, coating repair procedures, drying times and procedures, and spray equipment cleaning materials and techniques will be presented. A cost analysis, including costs of materials, capital outlay, and labor will be conducted comparing costs to finish furniture with the new system to systems currently used. Film performance, coating materials cost per unit production, productivity, manufacturing changes, and emission levels will be compared in the workshops, based on data gathered during the in-plant, full scale demonstrations.« less

  16. Physicochemical properties of film-coated melt-extruded pellets.

    PubMed

    Young, Chistopher R; Crowley, Michael; Dietzsch, Caroline; McGinity, James W

    2007-02-01

    The purpose of this study was to investigate the physicochemical properties of poly(ethylene oxide) (PEO) and guaifenesin containing beads prepared by a melt-extrusion process and film-coated with a methacrylic acid copolymer. Solubility parameter calculations, thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), modulated differential scanning calorimetry (MDSC), X-ray powder diffraction (XRPD) and high performance liquid chromatography (HPLC) were used to determine drug/polymer miscibility and/or the thermal processibility of the systems. Powder blends of guaifenesin, PEO and functional excipients were processed using a melt-extrusion and spheronization technique and then film-coated in a fluidized bed apparatus. Solubility parameter calculations were used to predict miscibility between PEO and guaifenesin, and miscibility was confirmed by SEM and observation of a single melting point for extruded drug/polymer blends during MDSC investigations. The drug was stable following melt-extrusion as determined by TGA and HPLC; however, drug release rate from pellets decreased upon storage in sealed HDPE containers with silica desiccants at 40 degrees C/75% RH. The weight loss on drying, porosity and tortuosity determinations were not influenced by storage. Recrystallization of guaifenesin and PEO was confirmed by SEM and XRPD. Additionally, the pellets exhibited a change in adhesion behaviour during dissolution testing. The addition of ethylcellulose to the extruded powder blend decreased and stabilized the drug release rate from the thermally processed pellets. The current study also demonstrated film-coating to be an efficient process for providing melt-extruded beads with pH-dependent drug release properties that were stable upon storage at accelerated conditions.

  17. Effect of whey protein isolate-pullulan edible coatings on the quality and shelf life of freshly roasted and freeze-dried Chinese chestnut.

    PubMed

    Gounga, M E; Xu, S-Y; Wang, Z; Yang, W G

    2008-05-01

    Harvested chestnut is characterized by a short shelf life, exposing many Chinese producers to a storage problem as product losses are very high. The objective of this study was to develop a suitable technology to extend the shelf life of harvested chestnut fruits for commercial use. The effect of whey protein isolate-pullulan (WPI-Pul) coating on fresh-roasted chestnuts (FRC) and roasted freeze-dried chestnut (RFDC) quality and shelf life was studied under 2 different storage temperature (4 and 20 degrees C) conditions. Coatings were formed directly onto the surface of the fruits by dipping them into a film solution. SEM micrographs showed homogeneous WPI-Pul to cover the whole surface of chestnut with good adherence and perfect integrity. Moisture loss or gain, fruit quality, and shelf life were evaluated by weight loss or gain, surface color development, and visible decay during the storage period of 15 to 120 d at 4 and 20 degrees C, respectively. WPI-Pul coating had a low, yet significant effect on reducing moisture loss and decay incidence of FRC, hence delaying changes in their external color. The results were satisfactory when the coating was done with freeze-drying at low temperature storage, thus improving the quality and increasing the shelf life. This provides an alternative strategy to minimize the significant losses in harvested chestnut.

  18. Enzyme-modified starch as an oil delivery system for bake-only chicken nuggets.

    PubMed

    Purcell, Sarah; Wang, Ya-Jane; Seo, Han-Seok

    2014-05-01

    This study investigated the effects of enzyme modification on starch as an effective oil delivery system for bake-only chicken nuggets. Various native starches were hydrolyzed by amyloglucosidase to a hydrolysis degree of 20% to 25% and plated with 50% (w/w, starch dry basis) with canola oil to create a starch-oil matrix. This matrix was then blended into a dry ingredient blend for batter and breader components. Nuggets were prepared by coated with predust, hydrated batter, and breader, and the coated nuggets were steam-baked until fully cooked and then frozen until texture and sensory analyses. The enzyme-modified starches showed a significant decrease in pasting viscosities for all starch types. For textural properties of nuggets, no clear relationship was found between peak force and starch source or amylose content. Sensory attributes related to fried foods (for example, crispness and mouth-coating) did not significantly differ between bake-only nuggets formulated using the enzyme-modified starches and the partially fried and baked ones. The present findings suggest that enzyme-modified starches can deliver sufficient quantity of oil to create sensory attributes similar to those of partially fried chicken nuggets. Further study is needed to optimize the coating formulation of bake-only chicken nugget to become close to the fried one in sensory aspects. The food industry has become increasingly focused on healthier items. Frying imparts several critical and desirable product functionalities, such as developing texture and color, and providing mouth-feel and flavor. The food industry has yet to duplicate all of the unique characteristics of fried chicken nuggets with a baking process. This study investigated the application of enzyme-modified starch as an oil delivery system in bake-only chicken nugget formulation in attempts to provide characteristics of fried items. This information is useful to improve the nutritional value of fried food by eliminating the frying process while preserving the desired characteristics of fried products. © 2014 Institute of Food Technologists®

  19. An evaluation of surface properties and frictional forces generated from Al-Mo-Ni coating on piston ring

    NASA Astrophysics Data System (ADS)

    Karamış, M. B.; Yıldızlı, K.; Çakırer, H.

    2004-05-01

    Surface properties of the Al-Mo-Ni coating plasma sprayed on the piston ring material and the frictional forces obtained by testing carried out under different loads, temperatures and frictional conditions were evaluated. Al-Mo-Ni composite material was deposited on the AISI 440C test steel using plasma spraying method. The coated and uncoated samples were tested by being exposed to frictional testing under dry and lubricated conditions. Test temperatures of 25, 100, 200, and 300 °C and loads of 83, 100, 200, and 300 N were applied during the tests in order to obtain the frictional response of the coating under conditions similar to real piston ring/cylinder friction conditions. Gray cast iron was used as a counterface material. All the tests were carried out with a constant sliding speed of 1 m/s. The properties of the coating were determined by using EDX and SEM analyses. Hardness distribution on the cross-section of the coating was also determined. In addition, the variations of the surface roughness after testing with test temperatures and loads under dry and lubricated conditions were recorded versus sliding distance. It was determined that the surface roughness increased with increasing loads. It increased with temperature up to 200 °C and then decreased at 300 °C under dry test conditions. Under lubricated conditions, the roughness decreased under the loads of 100 N and then increased. The roughness decreased at 200 °C but below and above this point it increased with the test temperature. Frictional forces observed under dry and lubricated test conditions increased with load at running-in period of the sliding. The steady-state period was then established with the sliding distance as a normal situation. However, the frictional forces were generally lower at a higher test temperature than those at a lower test temperature. Surprisingly, the test temperature of 200 °C was a critical point for frictional forces and surface roughness.

  20. Application of dry elixir system to oriental traditional medicine: taste masking of peonjahwan by coated dry elixir.

    PubMed

    Choi, H G; Kim, C K

    2000-02-01

    Peonjahwan, an oriental traditional medicine composed of crude herbal drugs and animal tissues is bitter and poorly water-soluble. To mask the bitterness of peonjahwan and enhance the release of bilirubin, one of the crude active ingredients of peonjahwan, peonja dry elixir (PDE), was prepared using a spray-dryer after extracting the crude materials in ethanol-water solution. Coated peonja dry elixir (CPDE) was then prepared by coating the PDE with Eudragit acrylic resin. Panel assessed bitterness and release test of bilirubin from PDE and CPDE were carried out and compared with peonjahwan alone. PDE was found to have little effect upon the reduction of the bitterness of peonjahwan. However, the bitterness of CPDE was found to reduce to 1/4 of that of peonjahwan due to the encapsulation of crude active ingredients by the dextrin and Eudragit shell (P<0.05). The release rate of bilirubin from PDE and CPDE for 60 min increased about 3.5- and 2.5- fold, respectively, compared to peonjahwan at pH 1.2. It is concluded that CPDE, which masked the bitterness of peonjahwan and enhanced the release of bilirubin, is a preferable delivery system for peonjahwan.

  1. How Much Surface Coating of Hydrophobic Azithromycin Is Sufficient to Prevent Moisture-Induced Decrease in Aerosolisation of Hygroscopic Amorphous Colistin Powder?

    PubMed

    Zhou, Qi Tony; Loh, Zhi Hui; Yu, Jiaqi; Sun, Si-Ping; Gengenbach, Thomas; Denman, John A; Li, Jian; Chan, Hak-Kim

    2016-09-01

    Aerosolisation performance of hygroscopic particles of colistin could be compromised at elevated humidity due to increased capillary forces. Co-spray drying colistin with a hydrophobic drug is known to provide a protective coating on the composite particle surfaces against moisture-induced reduction in aerosolisation performance; however, the effects of component ratio on surface coating quality and powder aerosolisation at elevated relative humidities are unknown. In this study, we have systematically examined the effects of mass ratio of hydrophobic azithromycin on surface coating quality and aerosolisation performance of the co-spray dried composite particles. Four combination formulations with varying drug ratios were prepared by co-spray drying drug solutions. Both of the drugs in each combination formulation had similar in vitro deposition profiles, suggesting that each composite particle comprises two drugs in the designed mass ratio, which is supported by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) data. XPS and ToF-SIMS measurements also revealed that 50% by weight (or 35% by molecular fraction) of azithromycin in the formulation provided a near complete coating of 96.5% (molar fraction) on the composite particle surface, which is sufficient to prevent moisture-induced reduction in fine particle fraction (FPF)recovered and FPFemitted. Higher azithromycin content did not increase coating coverage, while contents of azithromycin lower than 20% w/w did not totally prevent the negative effects of humidity on aerosolisation performance. This study has highlighted that a critical amount of azithromycin is required to sufficiently coat the colistin particles for short-term protection against moisture.

  2. Drying paint: from micro-scale dynamics to mechanical instabilities

    NASA Astrophysics Data System (ADS)

    Goehring, Lucas; Li, Joaquim; Kiatkirakajorn, Pree-Cha

    2017-04-01

    Charged colloidal dispersions make up the basis of a broad range of industrial and commercial products, from paints to coatings and additives in cosmetics. During drying, an initially liquid dispersion of such particles is slowly concentrated into a solid, displaying a range of mechanical instabilities in response to highly variable internal pressures. Here we summarize the current appreciation of this process by pairing an advection-diffusion model of particle motion with a Poisson-Boltzmann cell model of inter-particle interactions, to predict the concentration gradients in a drying colloidal film. We then test these predictions with osmotic compression experiments on colloidal silica, and small-angle X-ray scattering experiments on silica dispersions drying in Hele-Shaw cells. Finally, we use the details of the microscopic physics at play in these dispersions to explore how two macroscopic mechanical instabilities-shear-banding and fracture-can be controlled. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

  3. Electrodeposited silk coatings for functionalized implant applications

    NASA Astrophysics Data System (ADS)

    Elia, Roberto

    The mechanical and morphological properties of titanium as well as its biocompatibility and osteoinductive characteristics have made it the material of choice for dental implant systems. Although the success rate of titanium implants exceeds 90% in healthy individuals, a large subset of the population has one or more risk factors that inhibit implant integration. Treatments and coatings have been developed to improve clinical outcomes via introduction of appropriate surface topography, texture and roughness or incorporation of bioactive molecules. It is essential that the coatings and associated deposition techniques are controllable and reproducible. Currently, methods of depositing functional coatings are dictated by numerous parameters (temperature, particle size distribution, pH and voltage), which result in variable coating thickness, strength, porosity and weight, and hinder or preclude biomolecule incorporation. Silk is a highly versatile protein with a unique combination of mechanical and physical properties, including tunable degradation, biocompatibility, drug stabilizing capabilities and mechanical properties. Most recently an electrogelation technique was developed which allows for the deposition of gels which dry seamlessly over the contoured topography of the conductive substrate. In this work we examine the potential use of silk electrogels as mechanically robust implant coatings capable of sequestering and releasing therapeutic agents. Electrodeposition of silk electrogels formed in uniform electric fields was characterized with respect to field intensity and deposition time. Gel formation kinetics were used to derive functions which allowed for the prediction of coating deposition over a range of process and solution parameters. Silk electrogel growth orientation was shown to be influenced by the applied electric field. Coatings were reproducible and tunable via intrinsic silk solution properties and extrinsic process parameters. Adhesion was modulated over a 10-fold range and implant insertion into bone mimics demonstrated that the coatings were able to withstand delamination forces experienced during these mock implantations. Antibiotic release from coated implant studs inhibited bacterial growth and dexamethasone release was shown to stimulate calcium deposition in mesenchymal stem cells.

  4. Nd:YOV4 laser surface texturing on DLC coating: Effect on morphology, adhesion, and dry wear behavior

    NASA Astrophysics Data System (ADS)

    Surfaro, Maria; Giorleo, Luca; Montesano, Lorenzo; Allegri, Gabriele; Ceretti, Elisabetta; La Vecchia, Giovina Marina

    2018-05-01

    The surface of structural components is usually subjected to higher stresses, greater wear or fatigue damage, and more direct environmental exposure than the inner parts. For this reason, the interest to improve superficial properties of items is constantly increasing in different fields as automotive, electronic, biomedical, etc. Different approaches can be used to achieve this goal: case hardening by means of superficial heat treatments like carburizing or nitriding, deposition of thin or thick coatings, roughness modification, etc. Between the available technologies to modify components surface, Laser Surface Texturing (LST) has already been recognized in the last decade as a process, which improves the tribological properties of various parts. Based on these considerations the aim of the present research work was to realize a controlled laser texture on a Diamond-like Carbon (DLC) thin coating (about 3 µm thick) without damaging both the coating itself and the substrate. In particular, the effect of laser process parameters as marking speed and loop cycle were investigated in terms of texture features modifications. Both qualitative and quantitative analyses of the texture were executed by using a scanning electron microscope and a laser probe system to select the proper laser parameters. Moreover, the effect of the selected texture on the DLC nanohardness, adhesion and wear behavior was pointed out.

  5. Synthesis of novel reactive N-halamine precursors and application in antimicrobial cellulose

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiming; Ma, Kaikai; Du, Jinmei; Li, Rong; Ren, Xuehong; Huang, T. S.

    2014-01-01

    2,4,6-Trichloro-s-triazine has been used as one of the important linkers of reactive dyes for textiles such as cellulosic fibers. N-Halamine precursors could be bonded to a triazine-based linker by the chloride displacement reaction, and the synthesized compounds could attach to cotton fabrics by covalent bonds through a reactive dyeing process. In this study, two novel antimicrobial N-halamine precursors, 2,2,6,6-tetramethyl-4-piperidinol-s-trizine (TMPT) and 4-(4-(2,2,6,6-tetramethyl-4-piperidinol)-6-chloro-1,3,5-triazinylamino)-benzenesulfonate (BTMPT), were synthesized and used to coat cotton fabrics. The synthesized s-triazine-based N-halamine precursors react with cellulose to produce biocidal cellulosic fibers upon exposure to diluted household bleach. The coated fabrics were characterized by FT-IR and SEM. The chlorinated treated cotton swatches demonstrated excellent antimicrobial properties against S. aureus (Gram-positive) and E. coli O157:H7 (Gram-negative) with short contact times. Washing test and UVA light test showed that chlorinated BTMPT-coated cotton fabrics were more stable than TMPT-coated cotton fabrics. Compared to the traditional pad-dry-cure technique to produce antimicrobial textiles, the novel process in this study has advantages of saving energy and maintaining tensile strength of fabrics.

  6. 40 CFR 60.311 - Definitions and symbols.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the meaning in the Act and in subpart A of this part. Bake oven means a device which uses heat to dry... area means the portion of a surface coating operation between the coating application area and bake...

  7. 40 CFR 60.311 - Definitions and symbols.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the meaning in the Act and in subpart A of this part. Bake oven means a device which uses heat to dry... area means the portion of a surface coating operation between the coating application area and bake...

  8. 40 CFR 60.311 - Definitions and symbols.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the meaning in the Act and in subpart A of this part. Bake oven means a device which uses heat to dry... area means the portion of a surface coating operation between the coating application area and bake...

  9. 40 CFR 60.311 - Definitions and symbols.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the meaning in the Act and in subpart A of this part. Bake oven means a device which uses heat to dry... area means the portion of a surface coating operation between the coating application area and bake...

  10. 40 CFR 60.311 - Definitions and symbols.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the meaning in the Act and in subpart A of this part. Bake oven means a device which uses heat to dry... area means the portion of a surface coating operation between the coating application area and bake...

  11. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    NASA Astrophysics Data System (ADS)

    Fleutot, Benoit; Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie

    2017-04-01

    Li4Ti5O12 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li3PO4 coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li3PO4 coated Li4Ti5O12 is improved at high C-rate by the surface modification (improvement of 30 mAh g-1 at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  12. Tribological Properties of Ti(Al,O)/Al2O3 Composite Coating by Thermal Spraying

    NASA Astrophysics Data System (ADS)

    Salman, Asma; Gabbitas, Brian; Cao, Peng; Zhang, Deliang

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity air fuel (HVAF) thermally sprayed wear resistant Ti(Al,O)/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting and dummy blocks aluminium extrusion. A feedstock of Ti(Al,O)/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity air-fuel (HVAF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The wear resistance of the coating was investigated by a tribometer using a spherical ended alumina pin as a counter body under dry and lubricating conditions. The results showed that composite coating has lower wear rate at high temperature than at room temperature without using lubricant. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  13. Effect of pre-drying treatments on solution-coated organic thin films for active-matrix organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shin, Dongkyun; Hong, Ki-Young; Park, Jongwoon

    2017-12-01

    Due to capillary rise, organic thin films fabricated by solution coating exhibit the concave thickness profile. It is found that the thickness and emission uniformities within pixels vary depending sensitively on the pre-drying treatment that has been done before hard bake. We investigate its effect on the film quality by varying the temperature, time, pressure, fluid flow-related solute concentration, and evaporation-related solvent. To this end, we carry out spin coatings of a non-aqueous poly(N-vinylcarbazole) (PVK) for a hole transporting blanket layer. With a low-boiling-point (BP) organic solvent, the pre-drying makes no significant impact on the thickness profiles. With a high-BP organic solvent, the PVK films pre-dried in a vacuum for a sufficient time exhibit very uniform light emission in the central region, but non-emission phenomenon near the perimeter of pixels. It is addressed that such a non-emission phenomenon can be suppressed to some extent by decreasing the vacuum pressure. However, the rapid evaporation by heat conduction during the pre-drying degrades the thickness uniformity due to a rapid microflow of solute from the edge to the center. No further enhancement in the thickness uniformity is obtained by varying the solute concentration and using a mixture of low- and high-BP solvents.

  14. Evaluation of 3D-Printed Polycaprolactone Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma for Bone Regeneration.

    PubMed

    Li, Junda; Chen, Meilin; Wei, Xiaoying; Hao, Yishan; Wang, Jinming

    2017-07-19

    Three-dimensional printing is one of the most promising techniques for the manufacturing of scaffolds for bone tissue engineering. However, a pure scaffold is limited by its biological properties. Platelet-rich plasma (PRP) has been shown to have the potential to improve the osteogenic effect. In this study, we improved the biological properties of scaffolds by coating 3D-printed polycaprolactone (PCL) scaffolds with freeze-dried and traditionally prepared PRP, and we evaluated these scaffolds through in vitro and in vivo experiments. In vitro, we evaluated the interaction between dental pulp stem cells (DPSCs) and the scaffolds by measuring cell proliferation, alkaline phosphatase (ALP) activity, and osteogenic differentiation. The results showed that freeze-dried PRP significantly enhanced ALP activity and the mRNA expression levels of osteogenic genes (ALP, RUNX2 (runt-related gene-2), OCN (osteocalcin), OPN (osteopontin)) of DPSCs ( p < 0.05). In vivo, 5 mm calvarial defects were created, and the PRP-PCL scaffolds were implanted. The data showed that compared with traditional PRP-PCL scaffolds or bare PCL scaffolds, the freeze-dried PRP-PCL scaffolds induced significantly greater bone formation ( p < 0.05). All these data suggest that coating 3D-printed PCL scaffolds with freeze-dried PRP can promote greater osteogenic differentiation of DPSCs and induce more bone formation, which may have great potential in future clinical applications.

  15. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials.

    PubMed

    Ballesteros, Lina F; Ramirez, Monica J; Orrego, Carlos E; Teixeira, José A; Mussatto, Solange I

    2017-12-15

    Freeze-drying and spray-drying techniques were evaluated for encapsulation of phenolic compounds (PC) extracted from spent coffee grounds. Additionally, the use of maltodextrin, gum arabic and a mixture of these components (ratio 1:1) as wall material to retain the PC and preserve their antioxidant activity was also assessed. The contents of PC and flavonoids (FLA), as well as the antioxidant activity of the encapsulated samples were determined in order to verify the efficiency of each studied condition. Additional analyses for characterization of the samples were also performed. Both the technique and the coating material greatly influenced the encapsulation of antioxidant PC. The best results were achieved when PC were encapsulated by freeze-drying using maltodextrin as wall material. Under these conditions, the amount of PC and FLA retained in the encapsulated sample corresponded to 62% and 73%, respectively, and 73-86% of the antioxidant activity present in the original extract was preserved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Note: Influence of rinsing and drying routines on growth of multilayer thin films using automated deposition system.

    PubMed

    Gamboa, Daniel; Priolo, Morgan A; Ham, Aaron; Grunlan, Jaime C

    2010-03-01

    A versatile, high speed robot for layer-by-layer deposition of multifunctional thin films, which integrates concepts from previous dipping systems, has been designed with dramatic improvements in software, positioning, rinsing, drying, and waste removal. This system exploits the electrostatic interaction of oppositely charged species to deposit nanolayers (1-10 nm thick) from water onto the surface of a substrate. Dip times and number of deposited layers are adjustable through a graphical user interface. In between dips the system spray rinses and dries the substrate by positioning it in the two-tiered rinse-dry station. This feature significantly reduces processing time and provides the flexibility to choose from four different procedures for rinsing and drying. Assemblies of natural montmorillonite clay and polyethylenimine are deposited onto 175 microm poly(ethylene terephthalate) film to demonstrate the utility of this automated deposition system. By altering the type of rinse-dry procedure, these clay-based assemblies are shown to exhibit variations in film thickness and oxygen transmission rate. This type of system reproducibly deposits films containing 20 or more layers and may also be useful for other types of coatings that make use of dipping.

  17. Effects of RTV coating on the electrical performance of polymer insulator under lightning impulse voltage condition.

    PubMed

    Jamaludin, Farah Adilah; Ab-Kadir, Mohd Zainal Abidin; Izadi, Mahdi; Azis, Norhafiz; Jasni, Jasronita; Abd-Rahman, Muhammad Syahmi

    2017-01-01

    Located near the equator, Malaysia is a country with one of the highest lightning densities in the world. Lightning contributes to 70% of the power outages in Malaysia and affects power equipment, automated network systems, causes data losses and monetary losses in the nation. Therefore, consideration of insulator evaluation under lightning impulses can be crucial to evaluate and attempt to overcome this issue. This paper presents a new approach to increase the electrical performance of polymer insulators using a Room Temperature Vulcanisation (RTV) coating. The evaluation involves three different settings of polymer insulator, namely uncoated, RTV type 1, and RTV type 2 upper surface coatings. All the insulators were tested under three different conditions as dry, clean wet and salty under different impulse polarities using the even-rising test method. The voltage breakdown for each test was recorded. From the experiment, it was found that the effectiveness of the RTV coating application became apparent when tested under salty or polluted conditions. It increased the voltage withstand capabilities of the polymer insulator up to 50% from the basic uncoated insulator. Under dry and clean conditions, the RTV coating provided just a slight increase of the breakdown voltage. The increase in voltage breakdown capability decreased the probability of surface discharge and dry band arcing that could cause degradation of the polymeric material housing. The RTV type 1 coating was found to be more effective when performing under a lightning impulse. The findings might help the utility companies improve the performance of their insulators in order to increase power system reliability.

  18. Effects of RTV coating on the electrical performance of polymer insulator under lightning impulse voltage condition

    PubMed Central

    Jamaludin, Farah Adilah; Ab-Kadir, Mohd Zainal Abidin; Izadi, Mahdi; Azis, Norhafiz; Jasni, Jasronita; Abd-Rahman, Muhammad Syahmi

    2017-01-01

    Located near the equator, Malaysia is a country with one of the highest lightning densities in the world. Lightning contributes to 70% of the power outages in Malaysia and affects power equipment, automated network systems, causes data losses and monetary losses in the nation. Therefore, consideration of insulator evaluation under lightning impulses can be crucial to evaluate and attempt to overcome this issue. This paper presents a new approach to increase the electrical performance of polymer insulators using a Room Temperature Vulcanisation (RTV) coating. The evaluation involves three different settings of polymer insulator, namely uncoated, RTV type 1, and RTV type 2 upper surface coatings. All the insulators were tested under three different conditions as dry, clean wet and salty under different impulse polarities using the even-rising test method. The voltage breakdown for each test was recorded. From the experiment, it was found that the effectiveness of the RTV coating application became apparent when tested under salty or polluted conditions. It increased the voltage withstand capabilities of the polymer insulator up to 50% from the basic uncoated insulator. Under dry and clean conditions, the RTV coating provided just a slight increase of the breakdown voltage. The increase in voltage breakdown capability decreased the probability of surface discharge and dry band arcing that could cause degradation of the polymeric material housing. The RTV type 1 coating was found to be more effective when performing under a lightning impulse. The findings might help the utility companies improve the performance of their insulators in order to increase power system reliability. PMID:29136025

  19. Thermal Spray Deposition, Phase Stability and Mechanical Properties of La2Zr2O7/LaAlO3 Coatings

    NASA Astrophysics Data System (ADS)

    Lozano-Mandujano, D.; Poblano-Salas, C. A.; Ruiz-Luna, H.; Esparza-Esparza, B.; Giraldo-Betancur, A. L.; Alvarado-Orozco, J. M.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.

    2017-08-01

    This paper deals with the deposition of La2Zr2O7 (LZO) and LaAlO3 (LAO) mixtures by air plasma spray (APS). The raw material for thermal spray, single phase LZO and LAO in a 70:30 mol.% ratio mixture was prepared from commercial metallic oxides by high-energy ball milling (HEBM) and high-temperature solid-state reaction. The HEBM synthesis route, followed by a spray-drying process, successfully produced spherical agglomerates with adequate size distribution and powder-flow properties for feeding an APS system. The as-sprayed coating consisted mainly of a crystalline LZO matrix and partially crystalline LAO, which resulted from the high cooling rate experienced by the molten particles as they impact the substrate. The coatings were annealed at 1100 °C to promote recrystallization of the LAO phase. The reduced elastic modulus and hardness, measured by nanoindentation, increased from 124.1 to 174.7 GPa and from 11.3 to 14.4 GPa, respectively, after the annealing treatment. These values are higher than those reported for YSZ coatings; however, the fracture toughness ( K IC) of the annealed coating was only 1.04 MPa m0.5.

  20. A Novel Seeding Method of Interfacial Polymerization-Assisted Dip Coating for the Preparation of Zeolite NaA Membranes on Ceramic Hollow Fiber Supports.

    PubMed

    Cao, Yue; Wang, Ming; Xu, Zhen-Liang; Ma, Xiao-Hua; Xue, Shuang-Mei

    2016-09-28

    A novel seeding method combining interfacial polymerization (IP) technique with dip-coating operation was designed for directly coating nanosized NaA seed crystals (150 nm) onto the micrometer-sized α-Al2O3 hollow fiber support, in which the polyamide (PA) produced by IP acted as an effective medium to freeze and fix seed crystals at the proper position so that the controlled seed layer could be accomplished. While a coating suspension with only 0.5 wt % seed content was used, a very thin seed layer with high quality and good adhesion was achieved through dip coating twice without drying between, and the whole seeding process was operated at ambient conditions. The resulting zeolite NaA membranes not only exhibited high pervaporation (PV) performance with an average separation factor above 10000 and flux nearly 9.0 kg/m(2)·h in dehydration of 90 wt % ethanol aqueous solution at 348 K but also demonstrated great reproducibility by testing more than eight batches of zeolite membranes. In addition, this seeding strategy could be readily extended to the preparation of other supported zeolite membranes for a wide range of separation applications.

  1. Protective Coating For Laser Drilling Of Silicon

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1988-01-01

    Sodium silicate prevents spattered silicon from fusing with surrounding material. Sodium silicate solution applied to wafer by dipping and draining or by spinning; application by spraying also works. When dried in oven, solution leaves thin coating of sodium silicate glass.

  2. Dust input in the formation of rock varnish from the Dry Valleys (Antarctica)

    NASA Astrophysics Data System (ADS)

    Zerboni, A.; Guglielmin, M.

    2017-12-01

    Rock varnish is a glossy, yellowish to dark brown coating that covers geomorphically stable, aerially exposed rock surfaces and landforms in warm and cold arid lands. In warm deserts, rock varnish consists of clay minerals, Mn-Fe oxides/hydroxides, and Si+alkalis dust; it occasionally containis sulphates, phosphates, and organic remains. In Antarctica, rock varnish developed on a variety of bedrocks and has been described being mostly formed of Si, Al, Fe, and sulphates, suggesting a double process in its formation, including biomineralization alternated to dust accretion. We investigated rock coatings developed on sandstones outcropping in the Dry Valleys of Antarctica and most of the samples highlithed an extremely complex varnish structure, alternating tihn layer of different chemical compostion. Optical microscope evidenced the occurrence of highly birefringent minerals, occasionally thinly laminated and consisitng of Si and Al-rich minerals (clays). These are interlayered by few micron-thick dark lenses and continous layers. The latter are well evident under the scanning electron microscope and chemical analysis confirmed that they consist of different kinds of sulphates; jarosite is the most represented species, but gypsum crystals were also found. Fe-rich hypocoatings and intergranula crusts were also detected, sometimes preserving the shape of the hyphae they have replaced. Moreover, small weathering pits on sandstone surface display the occurrence of an amorphous, dark Mn/Fe-rich rock varnish. The formation of rock varnish in the Dry Valleys is a complex process, which required the accretion of airborne dust of variable composition and subsequent recrystallization of some constituent, possibly promoted by microorganisms. In particualr, the formation of sulphates seems to preserve the memory of S-rich dust produced by volcanic eruptions. On the contrary, the formation of Mn-rich varnish should be in relation with the occurrence of higher environmental humidity within weathering pits. Rock varnish in the Dry Valleys represents a potential tool to reconstruct past water availability and changes in the aeolian fallout.

  3. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hong You

    2010-08-31

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  4. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou

    2002-01-01

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  5. Total etch technique and cavity isolation.

    PubMed

    Fusayama, T

    1992-01-01

    In the total etch technique for chemically adhesive composite restorations, the phosphoric acid penetrates only 10 microns or less into the vital dentin with the dentinal tubules being filled with the odontoblast processes. The acid is completely removed by subsequent air-water jet spray washing. The tubule apertures are perfectly sealed by the protective bonding agent layer with the resin tags adhering to the tubule walls and the resin-impregnated dentin surface. Isolation of the cavity from moisture contamination is required for only less than a few seconds after drying the etched cavity until the bonding agent coating and after this coating until the composite resin placement. Such a short time for isolation is quite easy even without a rubber dam when a trained assistant is cooperating.

  6. Pentosanpolysulfate coating of silicone reduces encrustation.

    PubMed

    Zupkas, P; Parsons, C L; Percival, C; Monga, M

    2000-08-01

    A significant problem associated with catheterization in the urinary tract is the encrustation of the catheter materials. One approach to reducing encrustation is to alter the surface properties of the catheters. We evaluated the effectiveness of coating with pentosanpolysulfate (PPS), a semisynthetic polysaccharide similar to heparin, in reducing encrustation and the foreign-body inflammatory response to silicone stents in the bladders of male New Zealand White rabbits. Sixteen rabbits were divided into three groups to receive placement in their bladders of uncoated (N = 7), PPS-coated (N = 7), or sham matrix-processed silicone rings (N = 2) via open cystotomy. After 50 days of maintenance on normal food and water, all rabbits were sacrificed, and the air-dried, unfixed silicone ring surfaces were examined by scanning electron microscopy. Bladders and remaining silicone rings were removed and preserved separately. Silicone rings, cleaned of all encrustation, were stained with toluidene blue to determine the presence or absence of PPS coating on the surface. Histologic examination revealed normal tissue in bladder sections exposed to coated silicone rings and an inflammatory response in sections from bladders having uncoated silicone rings. Coating with PPS was associated with an eightfold reduction in the amount of encrustation of silicone and a marked reduction in the inflammatory response of the bladder wall to the foreign body. A PPS coating may be useful in reducing the encrustation of long-term indwelling silicone stents or catheters in the human urinary tract.

  7. Sol gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Stoch, A.; Jastrzebski, W.; Długoń, E.; Lejda, W.; Trybalska, B.; Stoch, G. J.; Adamczyk, A.

    2005-06-01

    Titanium has been used for many medical and dental applications; however, its joining to a living bone is not satisfactorily good or the implant integration with bone tissue takes several months.The aim of this work is to produce hydroxyapatite (HAP) coatings on titanium and its alloy for facilitating and shortening the processes towards osseointegration. HAP coatings were obtained by sol-gel method with sol solutions prepared from calcium nitrate tetrahydrate and triammonium phosphate trihydrate as the calcium and phosphorous sources. Two types of gelatine were added to the sol: agar-agar or animals gelatine. Both were found to enhance the formation and stability of amorphous HAP using soluble salts as the sources of calcium and phosphate. HAP coatings were deposited from HAP-GEL sol using dip-withdrawal technique, then the plates were dried and annealed at temperatures 460-750 °C. FTIR spectroscopy and XRD analysis were used to study the phase composition of phosphate coatings. Morphology and chemical analysis of HAP layers was performed using a scanning electron microscope equipped with an energy dispersive X-ray analyser (SEM+EDX). The biological activity of sol-gel phosphate coatings was observed during thermostatic held in simulated body fluid (SBF). It was found that chemical composition and structure of HAP coatings depends on pH and final thermal treatment of the layer.

  8. Dry etching of chrome for photomasks for 100-nm technology using chemically amplified resist

    NASA Astrophysics Data System (ADS)

    Mueller, Mark; Komarov, Serguie; Baik, Ki-Ho

    2002-07-01

    Photo mask etching for the 100nm technology node places new requirements on dry etching processes. As the minimum-size features on the mask, such as assist bars and optical proximity correction (OPC) patterns, shrink down to 100nm, it is necessary to produce etch CD biases of below 20nm in order to reproduce minimum resist features into chrome with good pattern fidelity. In addition, vertical profiles are necessary. In previous generations of photomask technology, footing and sidewall profile slope were tolerated, since this dry etch profile was an improvement from wet etching. However, as feature sizes shrink, it is extremely important to select etch processes which do not generate a foot, because this will affect etch linearity and also limit the smallest etched feature size. Chemically amplified resist (CAR) from TOK is patterned with a 50keV MEBES eXara e-beam writer, allowing for patterning of small features with vertical resist profiles. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. Chrome etch process development has been performed using Design of Experiments to optimize parameters such as sidewall profile, etch CD bias, etch CD linearity for varying sizes of line/space patterns, etch CD linearity for varying sizes of isolated lines and spaces, loading effects, and application to contact etching.

  9. Plasma-Sprayed Titania and Alumina Coatings Obtained from Feedstocks Prepared by Heterocoagulation with 1 wt.% Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Jambagi, Sudhakar C.; Agarwal, Anish; Sarkar, Nilmoni; Bandyopadhyay, P. P.

    2018-05-01

    Properties of plasma-sprayed ceramic coatings can be improved significantly by reinforcing such coatings with carbon nanotube (CNT). However, it is difficult to disperse CNT in the plasma spray feedstock owing to its tendency to form agglomerate. A colloidal processing technique, namely heterocoagulation, is effective in bringing about unbundling of CNT, followed by its homogeneous dispersion in the ceramic powder. This report deals with the mixing of micro-sized crushed titania and agglomerated alumina powders with CNT using the heterocoagulation technique. Heterocoagulation of titania was attempted with both cationic and anionic surfactants, and the latter was found to be more effective. Mixing of the oxides and carbon nanotube was also accomplished in a ball mill either in a dry condition or in alcohol, and powders thus obtained were compared with the heterocoagulated powder. The heterocoagulated powder has shown a more homogeneous dispersion of CNT in the oxide. The coatings produced from the heterocoagulated powder demonstrated improvement in hardness, porosity, indentation fracture toughness and elastic modulus. This is attributed to CNT reinforcement.

  10. Fundamentals of sol-gel dip-coating

    NASA Astrophysics Data System (ADS)

    Brinker, C. Jeffrey; Hurd, Alan J.

    1994-07-01

    During the process of dip-coating, the substrate is withdrawn from the sol at a constant rate. After several seconds, the process becomes steady. The entrained film thins by evaporation of solvent and gravitational draining. Because the shape of the depositing film remains constant with respect to the reservoir surface, it is possible to use analytical methods such as ellipsometry and fluorescence spectroscopy to characterize the depositing film in situ. The microstructure and properties of the film depend on the size and structure of the inorganic sol species, the magnitude of the capillary pressure exerted during drying, and the relative rates of condensation and drying. By controlling these parameters, it is possible to vary the porosity of the film over a wide range. Pendant l'opération de " dip-coating ", le substrat est retiré du sol à vitesse constante. La couche s'amincit du fait de l'évaporation du solvant et de l'écoulement gravitationnel. Après plusieurs secondes, le processus atteint un régime stationnaire. Le profil du film déposé reste alors constant par rapport à la surface du sol. On peut le caractériser in situ par des méthodes optiques telles que l'ellipsométrie et la spectroscopie de fluorescence. La texture et les propriétés de la couche dépendent de la taille et de la structure (par exemple de la dimension fractale) des espèces en solution, de l'importance de la tension capillaire pendant le séchage, et des cinétiques de condensation. En contrôlant ces paramètres, on peut faire varier la porosité de la couche dans une large gamme.

  11. Method for making nanoporous hydrophobic coatings

    DOEpatents

    Fan, Hongyou; Sun, Zaicheng

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  12. Improved corrosion control by coating in the splash zone and subsea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John, R.C.; VanHooff, W.

    1989-01-01

    The splash zone around offshore structures is without doubt one of nature's most hostile and corrosive environments. Apart from the wave impacts, plentiful supplies of oxygen, lack of cathodic protection, and the salt spray that continually wets and then dries upon objects, the region is difficult and sometimes dangerous to access. This article reviews the performance of two new offshore repair coatings recently installed on North Sea and Gulf of Mexico installations. The first coating, a reinforced heat-shrinkable sleeve, is designed to be installed over properly cleaned and dried steel surfaces. Suitable conditions for the application of this coating existmore » during low tide and calm weather when certain exposed sections of the splash zone are accessible. Alternatively, by using a special remote-controlled cofferdam chamber to create an artificial local environment, subsea coating application can proceed under ideal conditions. Cofferdam chamber installations are diver-free and can be made throughout the entire splash zone, even during rough weather. When a remote-controlled cofferdam is not available and repairs are needed in subsea or wet areas, diver assistance is usually required. The second coating system, a gel-based, diver-applied tape, has been developed specifically for such applications.« less

  13. Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS): A rapid test for enteric coating thickness and integrity of controlled release pellet formulations.

    PubMed

    Alfarsi, Anas; Dillon, Amy; McSweeney, Seán; Krüse, Jacob; Griffin, Brendan; Devine, Ken; Sherry, Patricia; Henken, Stephan; Fitzpatrick, Stephen; Fitzpatrick, Dara

    2018-06-10

    There are no rapid dissolution based tests for determining coating thickness, integrity and drug concentration in controlled release pellets either during production or post-production. The manufacture of pellets requires several coating steps depending on the formulation. The sub-coating and enteric coating steps typically take up to six hours each followed by additional drying steps. Post production regulatory dissolution testing also takes up to six hours to determine if the batch can be released for commercial sale. The thickness of the enteric coating is a key factor that determines the release rate of the drug in the gastro-intestinal tract. Also, the amount of drug per unit mass decreases with increasing thickness of the enteric coating. In this study, the coating process is tracked from start to finish on an hourly basis by taking samples of pellets during production and testing those using BARDS (Broadband Acoustic Resonance Dissolution Spectroscopy). BARDS offers a rapid approach to characterising enteric coatings with measurements based on reproducible changes in the compressibility of a solvent due to the evolution of air during dissolution. This is monitored acoustically via associated changes in the frequency of induced acoustic resonances. A steady state acoustic lag time is associated with the disintegration of the enteric coatings in basic solution. This lag time is pH dependent and is indicative of the rate at which the coating layer dissolves. BARDS represents a possible future surrogate test for conventional USP dissolution testing as its data correlates directly with the thickness of the enteric coating, its integrity and also with the drug loading as validated by HPLC. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Effect of Nano-Si3N4 Additives and Plasma Treatment on the Dry Sliding Wear Behavior of Plasma Sprayed Al2O3-8YSZ Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Gou, Junfeng; Zhang, Jian; Zhang, Qiwen; Wang, You; Wang, Chaohui

    2017-04-01

    In this paper, the effect of nano-Si3N4 additives and plasma treatment on the wear behavior of Al2O3-8YSZ ceramic coatings was studied. Nano-Al2O3, nano-8YSZ (8 wt.% Y2O3-stabilized ZrO2) and nano-Si3N4 powders were used as raw materials to fabricate four types of sprayable feedstocks. Plasma treatment was used to improve the properties of the feedstocks. The surface morphologies of the ceramic coatings were observed. The mechanical properties of the ceramic coatings were measured. The dry sliding wear behavior of the Al2O3-8YSZ coatings with and without Si3N4 additives was studied. Nano-Si3N4 additives and plasma treatment can improve the morphologies of the coatings by prohibiting the initiation of micro-cracks and reducing the unmelted particles. The hardness and bonding strength of AZSP (Al2O3-18 wt.% 8YSZ-10 wt.% Si3N4-plasma treatment) coating increased by 79.2 and 44% compared to those of AZ (Al2O3-20 wt.% 8YSZ) coating. The porosity of AZSP coating decreased by 85.4% compared to that of AZ coating. The wear test results showed that the addition of nano-Si3N4 and plasma treatment could improve the wear resistance of Al2O3-8YSZ coatings.

  15. Electrode Slurry Particle Density Mapping Using X-ray Radiography

    DOE PAGES

    Higa, Kenneth; Zhao, Hui; Parkinson, Dilworth Y.; ...

    2017-01-05

    The internal structure of a porous electrode strongly influences battery performance. Understanding the dynamics of electrode slurry drying could aid in engineering electrodes with desired properties. For instance, one might monitor the dynamic, spatially-varying thickness near the edge of a slurry coating, as it should lead to non-uniform thickness of the dried film. This work examines the dynamic behavior of drying slurry drops consisting of SiO x and carbon black particles in a solution of carboxymethylcellulose and deionized water, as an experimental model of drying behavior near the edge of a slurry coating. An X-ray radiography-based procedure is developed tomore » calculate the evolving spatial distribution of active material particles from images of the drying slurry drops. To the authors’ knowledge, this study is the first to use radiography to investigate battery slurry drying, as well as the first to determine particle distributions from radiography images of drying suspensions. The dynamic results are consistent with tomography reconstructions of the static, fully-dried films. It is found that active material particles can rapidly become non-uniformly distributed within the drops. Heating can promote distribution uniformity, but seemingly must be applied very soon after slurry deposition. Higher slurry viscosity is found to strongly restrain particle redistribution.« less

  16. Coated Aerogel Beads

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  17. Ultraviolet (UV)-Curable Coatings for Department of Defense (DoD) Applications

    DTIC Science & Technology

    2009-09-01

    complete) Task II – Demonstration/Validation • Make final selection of coatings for dem/val (in-progress) • Conduct lab testing and optimization (in...away; target rating of 4B or 5B Strippability Chemical Strippers Removal of the coating to the substrate Dry Media (blasting) Removal of the coating...stakeholders and ESTCP • Selected vendors to conduct final reformulation and submit for testing to JTP at the CTIO • Purchase portable lamp system

  18. Method for applying a high-temperature bond coat on a metal substrate, and related compositions and articles

    DOEpatents

    Hasz, Wayne Charles; Sangeeta, D

    2006-04-18

    A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.

  19. Method for applying a high-temperature bond coat on a metal substrate, and related compositions and articles

    DOEpatents

    Hasz, Wayne Charles; Sangeeta, D

    2002-01-01

    A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.

  20. 23. In the CoatingRoom. This picture shows the rolls of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. In the Coating-Room. This picture shows the rolls of paper made on the machine shown on page 237, just starting on the coating-machines. The paper passes through a bath of coating material; then through felt-covered rolls; then between vibrating brushes, which lay in the coating material evenly and smoothly on the paper. It then passes outh at the left into the drying-room (see following illustration). (p.238.) - Champion-International Paper Company, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  1. Effect of Antiadherents on the Physical and Drug Release Properties of Acrylic Polymeric Films.

    PubMed

    Ammar, Hussein O; Ghorab, Mamdouh M; Felton, Linda A; Gad, Shadeed; Fouly, Aya A

    2016-06-01

    Antiadherents are used to decrease tackiness of a polymer coating during both processing and subsequent storage. Despite being a common excipient in coating formulae, antiadherents may affect mechanical properties of the coating film as well as drug release from film-coated tablets, but how could addition of antiadherents affect these properties and to what extent and is there a relation between the physical characteristics of the tablet coat and the drug release mechanisms? The aim of this study was to evaluate physical characteristics of films containing different amounts of the antiadherents talc, glyceryl monostearate, and PlasACRYL(TM) T20. Eudragit RL30D and Eudragit RS30D as sustained release polymers and Eudragit FS30D as a delayed release material were used. Polymer films were characterized by tensile testing, differential scanning calorimetry (DSC), microscopic examination, and water content as calculated from loss on drying. The effect of antiadherents on in vitro drug release for the model acetylsalicylic acid tablets coated with Eudragit FS30D was also determined. Increasing talc concentration was found to decrease the ability of the polymer films to resist mechanical stress. In contrast, glyceryl monostearate (GMS) and PlasACRYL produced more elastic films. Talc at concentrations higher than 25% caused negative effects, which make 25% concentration recommended to be used with acrylic polymers. All antiadherents delayed the drug release at all coating levels; hence, different tailoring of drug release may be achieved by adjusting antiadherent concentration with coating level.

  2. Reactive Fabrication and Effect of NbC on Microstructure and Tribological Properties of CrS Co-Based Self-Lubricating Coatings by Laser Cladding.

    PubMed

    Fang, Liuyang; Yan, Hua; Yao, Yansong; Zhang, Peilei; Gao, Qiushi; Qin, Yang

    2017-12-28

    The CrS/NbC Co-based self-lubricating composite coatings were successfully fabricated on Cr12MoV steel surface by laser clad Stellite 6, WS₂, and NbC mixed powders. The phase composition, microstructure, and tribological properties of the coatings ware investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS), as well as dry sliding wear testing. Based on the experimental results, it was found reactions between WS₂ and Co-based alloy powder had occurred, which generated solid-lubricant phase CrS, and NbC play a key role in improving CrS nuclear and refining microstructure of Co-based composite coating during laser cladding processing. The coatings were mainly composed of γ-Co, CrS, NbC, Cr 23 C₆, and CoC x . Due to the distribution of the relatively hard phase of NbC and the solid lubricating phase CrS, the coatings had better wear resistance. Moreover, the suitable balance of CrS and NbC was favorable for further decreasing the friction and improving the stability of the contact surfaces between the WC ball and the coatings. The microhardness, friction coefficient, and wear rate of the coating 4 (Clad powders composed of 60 wt % Stellite 6, 30 wt % NbC and 10 wt % WS₂) were 587.3 HV 0.5 , 0.426, and 5.61 × 10 -5 mm³/N·m, respectively.

  3. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  4. Novel Photovoltaic Nanocomposites Based on Single-Molecule Optoelectronics on Functionalized Carbon Nanotubes Percolated Networks and the Polymer Chain Conformation Effect

    DTIC Science & Technology

    2009-12-07

    intensity increase that may go as high as 20 fold. Almost identical behavior was observed in the dewetting processes induced by solvent vapor...conjugated polymer coating thickness and material systems were explored. 87 Experimental Section MWCNT acid treatment The MWCNT which was...deionized (DI) water by filtration until the solution become neutral, and then dried in the oven with 80. MWCNT grafting 2-(3-thienylethanol

  5. Comparison on mechanical properties of single layered and bilayered chitosan-gelatin coated porous hydroxyapatite scaffold prepared through freeze drying method

    NASA Astrophysics Data System (ADS)

    Effendi, M. D.; Gustiono, D.; Lukmana; Ayu, D.; Kurniawati, F.

    2017-02-01

    Biopolymer coated porous hydroxyapatite (HA) scaffolds were prepared for tissue engineering trough freeze drying method and impregnation. in this study, to mimic the mineral and organic component of natural bone, synthetic hydroxapatite (HA) scaffolds coated by polymer were prepared. Highly porous Hap scaffolds, fabricated by synthetic HA impregnation method on polyurethane foam, were coated with polymer coating solution, consisting of chitosan, Gelatin, and bilayered chitosan-gelatin prepared by aging and impregnating technique. For the purpose of comparison, The bare scaffolds without polymer coating layer were investigated. The Bare scaffolds were highly porous and interconnected with a pore size of around 150 µm-714 µm, has porosity at around 67,7% -85,7%, and has mechanical strength at around 0.06 Mpa - 0.071 Mpa, which is suitable for osteoblast cell Proliferation. Chitosan coated porous HA scaffold and gelatin coated porous HA scaffold had mechanical strength at around 0.81-0.85 Mpa, and 1.32-1.34 Mpa, respectively, with weight ratio of biopolymer and Hap was around 18%-22%. To compare these results, the coating on the bare scaffold with gelatin and chitosan had been conducted. Based on the result of FTIR, it could be concluded that coating procedure applied on porous hydroxy apatite (HA) coated by gelatin, chitosan coated HA scaffold, and bilayered Gelatin-chitosan coated porous HA scaffold, confirming that for allsampleshad no significant chemical effect on the coating structure. The compressive strength of bilayered Gelatin-chitosan coated HA scaffold had middle values between the rest, at around 1,06-1.2 Mpa for the samples at the same weight ratio of biopolymer: HA (around 18% - 22%). These results also confirming that coating by gelatin on porous hydroxyapatite was highest compresive strength and can be applied to improve mechanical properties of porous hydroxyapatite bare scaffold

  6. Pre-release plastic packaging of MEMS and IMEMS devices

    DOEpatents

    Peterson, Kenneth A.; Conley, William R.

    2002-01-01

    A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.

  7. Dry-Coated Live Viral Vector Vaccines Delivered by Nanopatch Microprojections Retain Long-Term Thermostability and Induce Transgene-Specific T Cell Responses in Mice

    PubMed Central

    Pearson, Frances E.; McNeilly, Celia L.; Crichton, Michael L.; Primiero, Clare A.; Yukiko, Sally R.; Fernando, Germain J. P.; Chen, Xianfeng; Gilbert, Sarah C.; Hill, Adrian V. S.; Kendall, Mark A. F.

    2013-01-01

    The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara – two vectors under evaluation for the delivery of malaria antigens to humans – were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8+ T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates. PMID:23874462

  8. Dry-coated live viral vector vaccines delivered by nanopatch microprojections retain long-term thermostability and induce transgene-specific T cell responses in mice.

    PubMed

    Pearson, Frances E; McNeilly, Celia L; Crichton, Michael L; Primiero, Clare A; Yukiko, Sally R; Fernando, Germain J P; Chen, Xianfeng; Gilbert, Sarah C; Hill, Adrian V S; Kendall, Mark A F

    2013-01-01

    The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara--two vectors under evaluation for the delivery of malaria antigens to humans--were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8(+) T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates.

  9. Antisoiling Coatings for Solar-Energy Devices

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Willis, P.

    1986-01-01

    Fluorocarbons resist formation of adherent deposits. Promising coating materials reduce soiling of solar photovoltaic modules and possibly solar thermal collectors. Contaminating layers of various degrees of adherence form on surfaces of devices, partially blocking incident solar energy, reducing output power. Loose soil deposits during dry periods but washed off by rain. New coatings help prevent formation of more-adherent, chemically and physically bonded layers rain alone cannot wash away.

  10. Preparation of MgF2-SiO2 thin films with a low refractive index by a solgel process.

    PubMed

    Ishizawa, Hitoshi; Niisaka, Shunsuke; Murata, Tsuyoshi; Tanaka, Akira

    2008-05-01

    Porous MgF(2)-SiO(2) thin films consisting of MgF(2) particles connected by an amorphous SiO(2) binder are prepared by a solgel process. The films have a low refractive index of 1.26, sufficient strength to withstand wiping by a cloth, and a high environmental resistance. The refractive index of the film can be controlled by changing the processing conditions. Films can be uniformly formed on curved substrates and at relatively low temperatures, such as 100 degrees C. The low refractive index of the film, which cannot be achieved by conventional dry processes, is effective in improving the performance of antireflective coatings.

  11. Tribochemical Competition within a MoS2/Ti Dry Lubricated Macroscale Contact in Ultrahigh Vacuum: A Time-of-Flight Secondary Ion Mass Spectrometry Investigation.

    PubMed

    Colas, Guillaume; Saulot, Aurélien; Philippon, David; Berthier, Yves; Léonard, Didier

    2018-06-13

    Controlling and predicting the tribological behavior of dry lubricants is a necessity to ensure low friction, long life, and low particle generation. Understanding the tribochemistry of the materials as a function of the environment is of primary interest as synergistic effects exist between the mechanics, the physicochemistry, and the thermodynamics within a contact. However, in most studies the role of the coating internal contaminants in the process is often discarded to the benefit of a more common approach in which the performances of the materials are compared as a function of different atmospheric pressure environments. The study focuses on the understanding of the tribochemical processes occurring between the materials and their internal contaminants inside an AISI440C contact lubricated by a MoS 2 /Ti coating. Time-of-flight secondary ion mass spectrometry is used to study at the molecular level, the material before and after friction. Friction tests with different durations are performed in ultrahigh vacuum at the macroscale to stay relevant to the real application (space). The adsorption/desorption of gaseous species during friction is monitored by mass spectrometry to ensure reliable study of the tribochemical processes inside the contact. The study shows that a competition exists between the Ti- and MoS 2 -based materials to create the appropriate lubricating materials via (i) recrystallization of MoS 2 materials with creation of a MoS x O y material via reactions with internal contaminants (presumably H 2 O), (ii) reaction of Ti-based materials with internal contaminants (mostly H 2 O and N 2 ). The biphasic material created is highly similar to the one created in both humid air and dry N 2 environments and providing low friction and low particle generation. However, the process is incomplete. The study thus brings insight into the possibility of controlling friction via a rational inclusion of reactants in a form of contaminants to control the tribochemical processes governing the low friction and long life.

  12. COATING URANIUM FROM CARBONYLS

    DOEpatents

    Gurinsky, D.H.; Storrs, S.S.

    1959-07-14

    Methods are described for making adherent corrosion resistant coatings on uranium metal. According to the invention, the uranium metal is heated in the presence of an organometallic compound such as the carbonyls of nickel, molybdenum, chromium, niobium, and tungsten at a temperature sufficient to decompose the metal carbonyl and dry plate the resultant free metal on the surface of the uranium metal body. The metal coated body is then further heated at a higher temperature to thermally diffuse the coating metal within the uranium bcdy.

  13. Sealed glass coating of high temperature ceramic superconductors

    DOEpatents

    Wu, W.; Chu, C.Y.; Goretta, K.C.; Routbort, J.L.

    1995-05-02

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor is disclosed. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor. 8 figs.

  14. Sealed glass coating of high temperature ceramic superconductors

    DOEpatents

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  15. Fast-Acting Rubber-To-Coated-Aluminum Adhesive

    NASA Technical Reports Server (NTRS)

    Comer, Dawn A.; Novak, Howard; Vazquez, Mark

    1991-01-01

    Cyanoacrylate adhesive used to join rubber to coated aluminum easier to apply and more effective. One-part material applied in single coat to aluminum treated previously with epoxy primer and top coat. Parts mated as soon as adhesive applied; no drying necessary. Sets in 5 minutes. Optionally, accelerator brushed onto aluminum to reduce setting time to 30 seconds. Clamping parts together unnecessary. Adhesive comes in four formulations, all based on ethyl cyanoacrylate with various amounts of ethylene copolymer rubber, poly(methyl methacrylate), silicon dioxide, hydroquinone, and phthalic anhydride.

  16. HIGH TEMPERATURE REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-10-21

    An improved foundry mold coating for use with graphite molds used in the casting of uranium is presented. The refractory mold coating serves to keep the molten uranium from contact with graphite of the mold and thus prevents carbon pickup by the molten metal. The refractory coating is made by dry mixing certain specific amounts of aluminum oxide, bentonite, Tennessee ball clay, and a soluble silicate salt. Water is then added to the mixture and the suspension thus formed is applied by spraying onto the mold.

  17. How Does a Liquid Wet a Solid? Hydrodynamics of Dynamic Contact Angles

    NASA Technical Reports Server (NTRS)

    Rame, Enrique

    2001-01-01

    A contact line is defined at the intersection of a solid surface with the interface between two immiscible fluids. When one fluid displaces another immiscible fluid along a solid surface, the process is called dynamic wetting and a "moving" contact line (one whose position relative to the solid changes in time) often appears. The physics of dynamic wetting controls such natural and industrial processes as spraying of paints and insecticides, dishwashing, film formation and rupture in the eye and in the alveoli, application of coatings, printing, drying and imbibition of fibrous materials, oil recovery from porous rocks, and microfluidics.

  18. Thin Crystal Film Polarizer for Display Application

    NASA Astrophysics Data System (ADS)

    Paukshto, Michael

    2003-03-01

    Optiva Inc. has pioneered the development of nano-thin crystalline film (TCF) optical coatings for use in information displays and other applications. TCF is a material based on water-based dichroic dye solutions. Disk-like dye molecules aggregate in a ``plane-to-plane" manner; this self-assembly results in formation of highly anisometric rod-like stacks. These stacks have an aspect ratio of approximately 200:1. At a certain threshold of dye concentration, a nematic ordering of the rod-like stacks appears. Such a system acquires polarizing properties according to the following mechanism. Flow-induced alignment is known to occur in the lyotropic systems in a shear flow. In our case, the material undergoes shear alignment while being coated onto a glass or plastic substrate. In the coated thin film, the long molecular stacks are oriented in the flow direction parallel to the flow direction and substrate plane. The planes of the dye molecules are perpendicular to the substrate plane with the optical transition oscillators lying in the molecule plane. After the coating, as the thin film dries, crystallization occurs due to water evaporation. In a dry film, the molecular planes maintain their orthogonal orientation with respect to the substrate surface. TCF is known to possess properties of an E-mode polarizer. TCF technology has now migrated out of the R stage into manufacturing and is currently being incorporated into new display products. This presentation will provide an overview of TCF technology. The first part of the presentation will describe material structure, optical properties and characterization, material processing and associated coating equipment. This will be followed by a presentation on optical modeling and simulation of display performance with TCF components. Comparisons of display performance will be made for exemplar configurations of a variety of LCDs, including TN, STN and AMLCD designs in both transmissive and reflective modes.

  19. Efflorescence of ammonium sulfate and coated ammonium sulfate particles: evidence for surface nucleation.

    PubMed

    Ciobanu, V Gabriela; Marcolli, Claudia; Krieger, Ulrich K; Zuend, Andreas; Peter, Thomas

    2010-09-09

    Using optical microscopy, we investigated the efflorescence of ammonium sulfate (AS) in aqueous AS and in aqueous 1:1 and 8:1 (by dry weight) poly(ethylene glycol)-400 (PEG-400)/AS particles deposited on a hydrophobically coated slide. Aqueous PEG-400/AS particles exposed to decreasing relative humidity (RH) exhibit a liquid-liquid phase separation below approximately 90% RH with the PEG-400-rich phase surrounding the aqueous AS inner phase. Pure aqueous AS particles effloresced in the RH range from 36.3% to 43.7%, in agreement with literature data (31-48% RH). In contrast, aqueous 1:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 7.2 to 19.2 mum effloresced between 26.8% and 33.9% RH and aqueous 8:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 1.8 to 7.3 mum between 24.3% and 29.3% RH. Such low efflorescence relative humidity (ERH) values have never been reached before for AS particles of this size range. We show that these unprecedented low ERHs of AS in PEG-400/AS particles could not possibly be explained by the presence of low amounts of PEG-400 in the aqueous AS phase, by a potential inhibition of water evaporation via anomalously slow diffusion through the PEG coating, or by different time scales between various experimental techniques. High-speed photography of the efflorescence process allowed the development of the AS crystallization fronts within the particles to be monitored with millisecond time resolution. The nucleation sites were inferred from the initial crystal growth sites. Analysis of the probability distribution of initial sites of 31 and 19 efflorescence events for pure AS and 1:1 (by dry weight) PEG-400/AS particles, respectively, showed that the particle volume can be excluded as the preferred nucleation site in the case of pure AS particles. For aqueous 1:1 (by dry weight) PEG-400/AS particles preferential AS nucleation in the PEG phase and at the PEG/AS/substrate contact line can be excluded. On the basis of this probability analysis of efflorescence events together with the AS ERH values of pure aqueous AS and aqueous PEG-400/AS particles aforementioned, we suggest that in pure aqueous AS particles nucleation starts at the surface of the particles and attribute the lower ERH values observed for aqueous PEG-400/AS particles to the suppression of the surface-induced nucleation process. Our results suggest that surface-induced nucleation is likely to also occur during the efflorescence of atmospheric AS aerosol particles, possibly constituting the dominating nucleation pathway.

  20. 16 CFR 1303.3 - Exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PAINT AND CERTAIN CONSUMER PRODUCTS BEARING LEAD-CONTAINING PAINT § 1303.3 Exemptions. (a) The... signal word is required) and the following statement: “Contains Lead. Dried Film of This Paint May Be... coatings. (3) Graphic art coatings (i.e., products marketed solely for application on billboards, road...

  1. 16 CFR 1303.3 - Exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PAINT AND CERTAIN CONSUMER PRODUCTS BEARING LEAD-CONTAINING PAINT § 1303.3 Exemptions. (a) The... signal word is required) and the following statement: “Contains Lead. Dried Film of This Paint May Be... coatings. (3) Graphic art coatings (i.e., products marketed solely for application on billboards, road...

  2. 16 CFR 1303.3 - Exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PAINT AND CERTAIN CONSUMER PRODUCTS BEARING LEAD-CONTAINING PAINT § 1303.3 Exemptions. (a) The... signal word is required) and the following statement: “Contains Lead. Dried Film of This Paint May Be... coatings. (3) Graphic art coatings (i.e., products marketed solely for application on billboards, road...

  3. 16 CFR 1303.3 - Exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... PAINT AND CERTAIN CONSUMER PRODUCTS BEARING LEAD-CONTAINING PAINT § 1303.3 Exemptions. (a) The... signal word is required) and the following statement: “Contains Lead. Dried Film of This Paint May Be... coatings. (3) Graphic art coatings (i.e., products marketed solely for application on billboards, road...

  4. Wear resistance of hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Martinez, MA; Abenojar, J.; Pantoja, M.; López de Armentia, S.

    2017-05-01

    Nature has been an inspiration source to develop artificial hydrophobic surfaces. During the latest years the development of hydrophobic surfaces has been widely researched due to their numerous ranges of industrial applications. Industrially the use of hydrophobic surfaces is being highly demanded. This is why many companies develop hydrophobic products to repel water, in order to be used as coatings. Moreover, these coating should have the appropriated mechanical properties and wear resistance. In this work wear study of a hydrophobic coating on glass is carried out. Hydrophobic product used was Sika Crystal Dry by Sika S.A.U. (Alcobendas, Spain). This product is currently used on car windshield. To calculate wear resistance, pin-on-disk tests were carried out in dry and water conditions. The test parameters were rate, load and sliding distance, which were fixed to 60 rpm, 5 N and 1000 m respectively. A chamois was used as pin. It allows to simulate a real use. The friction coefficient and loss weight were compared to determinate coating resistance

  5. In situ formation of titanium carbide using titanium and carbon-nanotube powders by laser cladding

    NASA Astrophysics Data System (ADS)

    Savalani, M. M.; Ng, C. C.; Li, Q. H.; Man, H. C.

    2012-01-01

    Titanium metal matrix composite coatings are considered to be important candidates for high wear resistance applications. In this study, TiC reinforced Ti matrix composite layers were fabricated by laser cladding with 5, 10, 15 and 20 wt% carbon-nanotube. The effects of the carbon-nanotube content on phase composition, microstructure, micro-hardness and dry sliding wear resistance of the coating were studied. Microstructural observation using scanning electron microscopy showed that the coatings consisted of a matrix of alpha-titanium phases and the reinforcement phase of titanium carbide in the form of fine dendrites, indicating that titanium carbide was synthesized by the in situ reaction during laser irradiation. Additionally, measurements on the micro-hardness and dry sliding wear resistance of the coatings indicated that the mechanical properties were affected by the amount of carbon-nanotube in the starting precursor materials and were enhanced by increasing the carbon-nanotube content. Results indicated that the composite layers exhibit high hardness and excellent wear resistance.

  6. Synergistic effects of guanidine-grafted CMC on enhancing antimicrobial activity and dry strength of paper.

    PubMed

    Liu, Kai; Xu, Yaoguang; Lin, Xinxing; Chen, Lihui; Huang, Liulian; Cao, Shilin; Li, Jian

    2014-09-22

    In order to improve the strength property and antimicrobial activity of paper simultaneously, we prepared a novel multifunctional agent based on carboxymethyl cellulose (CMC) by a simple two-stage method. The first stage was the oxidation of CMC to obtain the dialdehyde CMC (DCMC), and the second stage was the graft of guanidine hydrochloride (GH) onto DCMC to obtain DCMC-GH polymer. The strength property and antimicrobial activity of DCMC-GH-coated copy paper have been studied by the tensile test and inhibition zone method, respectively. The results showed that the dry strength index could increase about 20% after the paper was coated with DCMC-GH. The coating of DCMC-GH on paper also resulted in excellent antimicrobial activities against Escherichia coli and Staphylococcus aureus, and the inhibition zone became larger as the GH content grafted on DCMC increased. The novel DCMC-GH polymer would be a multifunctional coating agent for food packaging paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Methods and apparatus for coating particulate material

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2012-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  8. Methods for Coating Particulate Material

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2013-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  9. Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China.

    PubMed

    Zhong, Zhuangmin; Sha, Qing'e; Zheng, Junyu; Yuan, Zibing; Gao, Zongjiang; Ou, Jiamin; Zheng, Zhuoyun; Li, Cheng; Huang, Zhijiong

    2017-04-01

    Accurate depiction of VOCs emission characteristics is essential for the formulation of VOCs control strategies. As one of the continuous efforts in improving VOCs emission characterization in the Pearl River Delta (PRD) region, this study targeted on surface coating industry, the most important VOCs emission sources in the PRD. Sectors in analysis included shipbuilding coating, wood furniture coating, metal surface coating, plastic surface coating, automobile coating and fabric surface coating. Sector-based field measurement was conducted to characterize VOCs emission factors and source profiles in the PRD. It was found that the raw material-based VOCs emission factors for these six sectors ranged from 0.34 to 0.58kg VOCs per kg of raw materials (kg·kg -1 ) while the emission factors based on the production yield varied from 0.59kg to 13.72t VOCs for each production manufactured. VOCs emission factors of surface coating industry were therefore preferably calculated based on raw materials with low uncertainties. Source profiles differed greatly among different sectors. Aromatic was the largest group for shipbuilding coating, wood furniture coating, metal surface coating and automobile coating while the oxygenated VOCs (OVOCs) were the most abundant in the plastic and fabric surface coating sectors. The major species of aromatic VOCs in each of these six sectors were similar, mainly toluene and m/p-xylene, while the OVOCs varied among the different sectors. VOCs profiles in the three processes of auto industry, i.e., auto coating, auto drying and auto repairing, also showed large variations. The major species in these sectors in the PRD were similar with other places but the proportions of individual compounds were different. Some special components were also detected in the PRD region. This study highlighted the importance of updating local source profiles in a comprehensive and timely manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard

    2017-01-01

    Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aproticmore » solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.« less

  11. Rapid and nondestructive method for evaluation of embryo culture media using drop coating deposition Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Zufang; Sun, Yan; Wang, Jing; Du, Shengrong; Li, Yongzeng; Lin, Juqiang; Feng, Shangyuan; Lei, Jinping; Lin, Hongxin; Chen, Rong; Zeng, Haishan

    2013-12-01

    In this study, a rapid and simple method which combines drop coating deposition and Raman spectroscopy (DCDR) was developed to characterize the dry embryo culture media (ECM) droplet. We demonstrated that Raman spectra obtained from the droplet edge presented useful and characteristic signatures for protein and amino acids assessment. Using a different analytical method, scanning electron microscopy coupled with energy dispersive X-ray analysis, we further confirmed that Na, K, and Cl were mainly detected in the central area of the dry ECM droplet while sulphur, an indicative of the presence of macromolecules such as proteins, was mainly found at the periphery of the droplet. In addition, to reduce sample preparation time, different temperatures for drying the droplets were tested. The results showed that drying temperature at 50°C can effectively reduce the sample preparation time to 6 min (as compared to 50 min for drying at room temperature, ˜25°C) without inducing thermal damage to the proteins. This work demonstrated that DCDR has potential for rapid and reliable metabolomic profiling of ECM in clinical applications.

  12. Low Hysteresis Carbon Nanotube Transistors Constructed via a General Dry-Laminating Encapsulation Method on Diverse Surfaces.

    PubMed

    Yang, Yi; Wang, Zhongwu; Xu, Zeyang; Wu, Kunjie; Yu, Xiaoqin; Chen, Xiaosong; Meng, Yancheng; Li, Hongwei; Qiu, Song; Jin, Hehua; Li, Liqiang; Li, Qingwen

    2017-04-26

    Electrical hysteresis in carbon nanotube thin-film transistor (CNTTFT) due to surface adsorption of H 2 O/O 2 is a severe obstacle for practical applications. The conventional encapsulation methods based on vacuum-deposited inorganic materials or wet-coated organic materials have some limitations. In this work, we develop a general and highly efficient dry-laminating encapsulation method to reduce the hysteresis of CNTTFTs, which may simultaneously realize the construction and encapsulation of CNTTFT. Furthermore, by virtue of dry procedure and wide compatibility of PMMA, this method is suitable for the construction of CNTTFT on diverse surface including both inorganic and organic dielectric materials. Significantly, the dry-encapsulated CNTTFT exhibits very low or even negligible hysteresis with good repeatability and air stability, which is greatly superior to the nonencapsulated and wet-encapsulated CNTTFT with spin-coated PMMA. The dry-laminating encapsulation strategy, a kind of technological innovation, resolves a significant problem of CNTTFT and therefore will be promising in facile transferring and packaging the CNT films for high-performance optoelectronic devices.

  13. Comparative study of two negative CAR resists: EN-024M and NEB 31

    NASA Astrophysics Data System (ADS)

    Baik, Ki-Ho; Dean, Robert; Lem, Homer Y.; Osborne, Stephen P.; Mueller, Mark A.; Cole, Damon M.

    2004-08-01

    In this paper, two negative-tone chemically amplified resists (CAR) are evaluated. The methodology and results are compared and discussed. The resists include EN-024M from TOK, and NEB 31 from Sumitomo. Both resists show high contrast, good dry etch selectivity, and high environmental stability. EN-024M showed good coating uniformity while NEB31 showed a coating uniformity problem. This was a round "dimple" approximately one centimeter in diameter of different thickness and density at the center of the plate. We addressed the "dimple" coating problem as described in the paper. Optimum PAB and PEB temperatures and nominal to maximum doses for isolated features were determined by running a matrix of PAB and PEB temperatures along with a dose series. We evaluated the process and compared the lithographic performance in terms of dose sensitivity, dose and bake latitude, resolution, resist profile, OPC (Optical Proximity Correction) pattern fidelity, CD uniformity, environmental stability, Line Edge Roughness (LER) and etching bias and resistance.

  14. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1993-01-01

    During the past three months, significant progress has been made on the preparation of carbon fiber composites using advanced polymer resins. The results are set forth in recent reports and publications, and will be presented at forthcoming national and international meetings. Current and ongoing research activities reported herein include: textile composites from powder-coated towpreg; role of surface coating in braiding; prepregger hot sled operation; ribbonizing powder-impregenated towpreg; textile composites from powder-coated towpreg; role of bulk factor powder curtain prepreg process advanced tow placement (ATP) open-section part warpage control. During the coming months research will be directed toward further development of the new powder curtain prepregging method and on ways to customize dry powder towpreg for textile and robotic applications in aircraft part fabrication. Studies of multi-tow powder prepregging and ribbon preparation will be conducted in conjunction with continued development of prepregging technology and the various aspects of composite part fabrication using customized towpreg. Also, during the period ahead work will continue on the analysis of the performance of the new solution prepregger.

  15. Formation and prevention of fractures in sol-gel-derived thin films.

    PubMed

    Kappert, Emiel J; Pavlenko, Denys; Malzbender, Jürgen; Nijmeijer, Arian; Benes, Nieck E; Tsai, Peichun Amy

    2015-02-07

    Sol-gel-derived thin films play an important role as the functional coatings for various applications that require crack-free films to fully function. However, the fast drying process of a standard sol-gel coating often induces mechanical stresses, which may fracture the thin films. An experimental study on the crack formation in sol-gel-derived silica and organosilica ultrathin (submicron) films is presented. The relationships among the crack density, inter-crack spacing, and film thickness were investigated by combining direct micrograph analysis with spectroscopic ellipsometry. It is found that silica thin films are more prone to fracturing than organosilica films and have a critical film thickness of 300 nm, above which the film fractures. In contrast, the organosilica films can be formed without cracks in the experimentally explored regime of film thickness up to at least 1250 nm. These results confirm that ultrathin organosilica coatings are a robust silica substitute for a wide range of applications.

  16. The Effect of Pigment Volume Concentration on Film Formation and the Mechanical Properties of Coatings Based on Water-Dispersion Paint and Varnish Materials

    NASA Astrophysics Data System (ADS)

    Kasyanenko, I. M.; Kramarenko, V. Yu.

    2018-01-01

    The effect of pigment volume concentration (PVC) on the film formation process and properties of coatings based on the water dispersion of an Acronal 290D styrene-acrylate copolymer and a pigment/filler system used for paint materials in construction was investigated. An analysis of the results obtained is performed within the framework of the concept of the critical PVC. It is shown that the initiation and development of internal stresses occurs the faster, the higher the PVC, but the position of the maximum or the inflection point of the internal stress-drying time curve complies with a universal value of the solid volume content in the compositions. It is found that the internal stresses and Young's modulus of coatings are characterized by an extreme concentration relation that, for the reduced elastic modulus, can be described by a system of equations based on the Halpin-Tsai equation.

  17. Salivary contamination during bonding procedures with a one-bottle adhesive system.

    PubMed

    Fritz, U B; Finger, W J; Stean, H

    1998-09-01

    The effect of salivary contamination of enamel and dentin on bonding efficacy of an experimental one-bottle resin adhesive was investigated. The adhesive was a light-curing urethane dimethacrylate/hydroxyethyl methacrylate/4-methacryloxyethyl trimellitate anhydride mixture dissolved in acetone. Evaluation parameters were shear bond strength and marginal gap width in a dental cavity. Apart from a control group without contamination (group 1), etched enamel and dentin were (2) contaminated with saliva and air dried; (3) contaminated, rinsed, and blot dried; (4) coated with adhesive, contaminated, rinsed, and blot dried; (5) coated with adhesive, light cured, contaminated, rinsed, and air dried; or (6) treated as in group 5, with additional adhesive application after air drying. There was no negative effect in groups 3 and 4, compared with control. Air drying after salivary contamination (group 2) resulted in low shear bond strengths and wide marginal gaps. Contamination of the cured adhesive layer (groups 5 and 6) had no adverse effect on enamel shear bond strengths, but resulted in 50% reduced dentin shear bond strengths and wide marginal gaps. The one-bottle adhesive system is relatively insensitive to salivary contamination, provided that the contamination occurs prior to light curing of the adhesive and is carefully rinsed and blot dried. Salivary contact after adhesive curing must be avoided.

  18. Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Iftikhar; Zhang, Pu

    For this Vehicle Technologies Incubator/Energy Storage R&D topic, Lambda Technologies teamed with Navitas Systems and proposed a new advanced drying process that promised a 5X reduction in electrode drying time and significant reduction in the cost of large format lithium batteries used in PEV's. The operating principle of the proposed process was to use penetrating radiant energy source Variable Frequency Microwaves (VFM), that are selectively absorbed by the polar water or solvent molecules instantly in the entire volume of the electrode. The solvent molecules are thus driven out of the electrode thickness making the process more efficient and much fastermore » than convective drying method. To evaluate the Advanced Drying Process (ADP) a hybrid prototype system utilizing VFM and hot air flow was designed and fabricated. While VFM drives the solvent out of the electrode thickness, the hot air flow exhausts the solvent vapors out of the chamber. The drying results from this prototype were very encouraging. For water based anodes there is a 5X drying advantage (time & length of oven) in using ADP over standard drying system and for the NMP based cathodes the reduction in drying time has 3X benefit. For energy savings the power consumption measurements were performed to ADP prototype and compared with the convection standard drying oven. The data collected demonstrated over 40% saving in power consumption with ADP as compared to the convection drying systems. The energy savings are one of the operational cost benefits possible with ADP. To further speed up the drying process, the ADP prototype was explored as a booster module before the convection oven and for the electrode material being evaluated it was possible to increase the drying speed by a factor of 4, which could not be accomplished with the standard dryer without surface defects and cracks. The instantaneous penetration of microwave in the entire slurry thickness showed a major advantage in rapid drying of the electrode materials. For the existing electrode materials, the material analysis and cell characterization data from ADP dried electrodes showed equivalent (or slightly better) performance. However, for high loading and thicker electrode materials (for high energy densities) the ADP advantages are more prominent. There was less binder migration, the resistance was lower hence the current capacities and retention of the battery cells were higher. The success of the project has enabled credible communications with commercial end users as well as battery coating line integrators. Goal is to scale ADP up for high volume manufacturing of Li-ion battery electrodes. The implementation of ADP in high volume manufacturing will reduce a high cost production step to bring the overall price of Li-ion batteries down. This will ultimately have a positive impact on the public by making electric and hybrid vehicles more affordable.« less

  19. Improved Small-Particle Powders for Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao, N.; Miller, Robert A.; Leissler, George W.

    2005-01-01

    Improved small-particle powders and powder-processing conditions have been developed for use in plasma spray deposition of thermal-barrier and environmental barrier coatings. Heretofore, plasma-sprayed coatings have typically ranged in thickness from 125 to 1,800 micrometers. As explained below, the improved powders make it possible to ensure complete coverage of substrates at unprecedently small thicknesses of the order of 25 micrometers. Plasma spraying involves feeding a powder into a hot, high-velocity plasma jet. The individual powder particles melt in the plasma jet as they are propelled towards a substrate, upon which they splat to build up a coating. In some cases, multiple coating layers are required. The size range of the powder particles necessarily dictates the minimum thickness of a coating layer needed to obtain uniform or complete coverage. Heretofore, powder particle sizes have typically ranged from 40 to 70 micrometers; as a result, the minimum thickness of a coating layer for complete coverage has been about 75 micrometers. In some applications, thinner coatings or thinner coating layers are desirable. In principle, one can reduce the minimum complete-coverage thickness of a layer by using smaller powder particles. However, until now, when powder particle sizes have been reduced, the powders have exhibited a tendency to cake, clogging powder feeder mechanisms and feed lines. Hence, the main problem is one of synthesizing smaller-particle powders having desirable flow properties. The problem is solved by use of a process that begins with a spray-drying subprocess to produce spherical powder particles having diameters of less than 30 micrometers. (Spherical-particle powders have the best flow properties.) The powder is then passed several times through a commercial sifter with a mesh to separate particles having diameters less than 15 micrometers. The resulting fine, flowable powder is passed through a commercial fluidized bed powder feeder into a plasma spray jet.

  20. Liquid Galvanic Coatings for Protection of Imbedded Metals

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis G. (Inventor); Curran, Joseph J. (Inventor)

    2003-01-01

    Coating compositions and methods of their use are described herein for the reduction of corrosion in imbedded metal structures. The coatings are applied as liquids to an external surface of a substrate in which the metal structures are imbedded. The coatings are subsequently allowed to dry. The liquid applied coatings provide galvanic protection to the imbedded metal structures. Continued protection can be maintained with periodic reapplication of the coating compositions, as necessary, to maintain electrical continuity. Because the coatings may be applied using methods similar to standard paints, and because the coatings are applied to external surfaces of the substrates in which the metal structures are imbedded, the corresponding corrosion protection may be easily maintained. The coating compositions are particularly useful in the protection of metal-reinforced concrete.

  1. The development of an SC1 removable si-anti-reflective-coating

    NASA Astrophysics Data System (ADS)

    Yamada, Shintaro; Ke, Iou-Sheng; Cutler, Charlotte; Cui, Li; LaBeaume, Paul; Greene, Daniel; Popere, Bhooshan; Sullivan, Chris; Leonard, JoAnne; Coley, Suzanne; Wong, Sabrina; Ongayi, Owendi; Cameron, Jim; Clark, Michael B.; Fitzgibbons, Thomas C.

    2018-03-01

    A trilayer stack of spin-on-carbon (SOC), silicon anti-reflective coating (SiARC) and photoresist (PR) is often used to enable high resolution implant layers for integrated circuit manufacturing. Damage to substrates from SiARC removal using dry etching or aqueous hydrogen fluoride has increased the demand for innovative SiARC materials for implant lithography process. Wet strippable SiARCs (WS-SiARCs) capable of stripping under mild conditions such as SC1 (ammonium hydroxide/hydrogen peroxide/water) while maintaining key performance metrics of standard SiARCs is highly desirable. Minimizing the formation of Si-O-Si linkages by introducing organic crosslink sites was effective to impart SC1 solubility particularly after O2 dry etching. Incorporation of acidic groups onto the crosslinking site further improved SC1 solubility. A new siloxane polymer architecture that has SC1 active functionality in the polymer backbone was developed to further enhance SC1 solubility. A new SiARC formulation based on the new siloxane polymer achieved equivalent lithographic performances to a classic SiARC and SC1 strip rate >240Å/min under a relatively low concentration SC1 condition such as ammonium hydroxide/hydrogen peroxide/water=1/1/40.

  2. Protective Coating

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Inorganic Coatings, Inc.'s K-Zinc 531 protective coating is water-based non-toxic, non-flammable and has no organic emissions. High ratio silicate formula bonds to steel, and in 30 minutes, creates a very hard ceramic finish with superior adhesion and abrasion resistance. Improved technology allows application over a minimal commercial sandblast, fast drying in high humidity conditions and compatibility with both solvent and water-based topcoats. Coating is easy to apply and provides long term protection with a single application. Zinc rich coating with water-based potassium silicate binder offers cost advantages in materials, labor hours per application, and fewer applications over a given time span.

  3. Method of identifying defective particle coatings

    DOEpatents

    Cohen, Mark E.; Whiting, Carlton D.

    1986-01-01

    A method for identifying coated particles having defective coatings desig to retain therewithin a build-up of gaseous materials including: (a) Pulling a vacuum on the particles; (b) Backfilling the particles at atmospheric pressure with a liquid capable of wetting the exterior surface of the coated particles, said liquid being a compound which includes an element having an atomic number higher than the highest atomic number of any element in the composition which forms the exterior surface of the particle coating; (c) Drying the particles; and (d) Radiographing the particles. By television monitoring, examination of the radiographs is substantially enhanced.

  4. Experimental study of viscoelastic in the prevention of corneal endothelial desiccation injury from vitreal fluid-air exchange.

    PubMed

    Cekiç, Osman; Ohji, Masahito; Zheng, Yuping; Hayashi, Atsushi; Kusaka, Shunji; Tano, Yasuo

    2003-05-01

    To evaluate the usefulness of viscoelastic in protecting the corneal endothelium from desiccation injury associated with fluid-air exchange in a rabbit model. Experimental study. Rabbit eyes undergoing pars plana lensectomy and vitrectomy were insufflated with either dry or humidified air for 20 minutes following introduction of either Opegan (sodium hyaluronate 1.0%; Santen, Osaka, Japan) or Viscoat (sodium hyaluronate 3%-chondroitin sulfate 4%; Alcon, Tokyo, Japan) into the anterior chamber. In two other groups of rabbit eyes, the same procedure was performed without using any viscoelastic agent. Corneas obtained from rabbits undergoing surgery were compared with corneas obtained from rabbits not undergoing surgery. Potential alterations in the corneal endothelium were investigated by scanning electron microscopy, by Phalloidin-FITC staining of actin and by in vitro measurements of corneal permeability for carboxyfluorescein using a diffusion chamber. Scanning electron microscopy displayed less distortion of corneal endothelium with Opegan and Viscoat compared with the dry air-only exposed corneas. Using humidified air in Opegan and Viscoat coated corneas maintained the normal actin cytoskeleton during fluid-air exchange. Paracellular leakage was much less with Opegan and Viscoat use following infusion of dry air comparing to that of dry air-only group (P =.026 and P =.041). The difference was much more striking following humidified air infusion in Opegan or Viscoat coated corneas comparing to dry air-only infused corneas (P <.002 and P <.002). Coating of rabbit corneal endothelium with Opegan or Viscoat before fluid-air exchange largely prevents dry air damage to the endothelium. Infusion of humidified air further protects corneal endothelium during fluid-air exchange in aphakic rabbit eyes.

  5. The application of polyethylene glycol (PEG) to electron microscopy

    PubMed Central

    1980-01-01

    The cytoplasm of cells from a variety of tissues has been viewed in sections (0.25-1 micrometers) devoid of any embedding resin. Glutaraldehyde- and osmium tetroxide-fixed tissues were infiltrated and embedded in a water-miscible wax, polyethylene glycol (PEG), and subsequently sectioned on dry glass or diamond knives. The PEG matrix was removed and the sections were placed on Formvarcarbon-polylysine- coated grids, dehydrated, dried by the critical-point method, and observed in either the high- or low-voltage electron microscope. Stereoscopic views of cells devoid of embedding resin present an image of cell utrastructure unobscured by electron-scattering resins similar to the image of whole, unembedded critical-point-dried or freeze-dried cultured cells observed by transmission electron microscopy. All organelles, including the cytoskeletal structures, are identified and appear not to have been damaged during processing, although membrane components appear somewhat less distinct. The absence of an embedding matrix eliminates the need for additional staining to increase contrast, unlike the situation with specimens embedded in standard electron-scattering resins. The PEG technique thus appears to be a valuable adjunct to conventional methods for ultrastructural analysis. PMID:7400222

  6. The application of polyethylene glycol (PEG) to electron microscopy.

    PubMed

    Wolosewick, J J

    1980-08-01

    The cytoplasm of cells from a variety of tissues has been viewed in sections (0.25-1 micrometers) devoid of any embedding resin. Glutaraldehyde- and osmium tetroxide-fixed tissues were infiltrated and embedded in a water-miscible wax, polyethylene glycol (PEG), and subsequently sectioned on dry glass or diamond knives. The PEG matrix was removed and the sections were placed on Formvarcarbon-polylysine-coated grids, dehydrated, dried by the critical-point method, and observed in either the high- or low-voltage electron microscope. Stereoscopic views of cells devoid of embedding resin present an image of cell utrastructure unobscured by electron-scattering resins similar to the image of whole, unembedded critical-point-dried or freeze-dried cultured cells observed by transmission electron microscopy. All organelles, including the cytoskeletal structures, are identified and appear not to have been damaged during processing, although membrane components appear somewhat less distinct. The absence of an embedding matrix eliminates the need for additional staining to increase contrast, unlike the situation with specimens embedded in standard electron-scattering resins. The PEG technique thus appears to be a valuable adjunct to conventional methods for ultrastructural analysis.

  7. Coated microneedle arrays for transcutaneous delivery of live virus vaccines

    PubMed Central

    Vrdoljak, Anto; McGrath, Marie G.; Carey, John B.; Draper, Simon J.; Hill, Adrian V.S.; O’Mahony, Conor; Crean, Abina M.; Moore, Anne C.

    2016-01-01

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8+ T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. PMID:22245683

  8. Coated microneedle arrays for transcutaneous delivery of live virus vaccines.

    PubMed

    Vrdoljak, Anto; McGrath, Marie G; Carey, John B; Draper, Simon J; Hill, Adrian V S; O'Mahony, Conor; Crean, Abina M; Moore, Anne C

    2012-04-10

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8(+) T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles.

    NASA Astrophysics Data System (ADS)

    Jadhav, Pavandatta M.; Reddy, Narala Suresh Kumar

    2018-04-01

    Wear mechanism takes predominant role in reducing the tool life during machining of Titanium alloy. Challenges of wear mechanisms such as variation in chip, high pressure loads and spring back are responsible for tool wear. In addition, many tool materials are inapt for machining due to low thermal conductivity and volume specific heat of these materials results in high cutting temperature during machining. To confront this issue Electrostatic Spray Coating (ESC) coating technique is utilized to enhance the tool life to an acceptable level. The Yttria Stabilized Zirconia (YSZ) acts as a thermal barrier coating having high thermal expansion coefficient and thermal shock resistance. This investigation focuses on the influence of YSZ nanocoating on the tungsten carbide tool material and improve the machinability of Ti-6Al-4V alloy. YSZ nano powder was coated on the tungsten carbide pin by using ESC technique. The coatings have been tested for wear and friction behavior by using a pin-on-disc tribological tester. The dry sliding wear test was performed on Titanium alloy (Ti-6Al-4V) disc and YSZ coated tungsten carbide (pin) at ambient atmosphere. The performance parameters like wear rate and temperature rise were considered upon performing the dry sliding test on Ti-6Al-4V alloy disc. The performance parameters were calculated by using coefficient of friction and frictional force values which were obtained from the pin on disc test. Substantial resistance to wear was achieved by the coating.

  10. Improvement of food packaging related properties in whey protein isolate‑based nanocomposite films and coatings by addition of montmorillonite nanoplatelets

    NASA Astrophysics Data System (ADS)

    Schmid, Markus; Merzbacher, Sarah; Brzoska, Nicola; Müller, Kerstin; Jesdinszki, Marius

    2017-11-01

    In the present study the effects of the addition of montmorillonite (MMT) nanoplatelets on whey protein isolate (WPI)-based nanocomposite films and coatings were investigated. The main objective was the development of WPI-based MMT-nanocomposites with enhanced barrier and mechanical properties. WPI-based nanocomposite cast-films and coatings were prepared by dispersing 0 % (reference sample), 3 %, 6 %, 9 % (w/w protein) MMT, or, depending on the protein concentration, also 12 % and 15 % (w/w protein) MMT into native WPI-based dispersions, followed by subsequent denaturation during the drying and curing process. The natural MMT nanofillers could be randomly dispersed into film-forming WPI-based nanodispersions, displaying good compatibility with the hydrophilic biopolymer matrix. As a result, by addition of 15 % (w/w protein) MMT into 10 % (w/w dispersion) WPI-based cast-films or coatings, the oxygen permeability (OP) was reduced by 91 % for glycerol-plasticized and 84 % for sorbitol-plasticized coatings, water vapor transmission rate (WVTR) was reduced by 58 % for sorbitol-plasticized cast-films. Due to the addition of MMT- nanofillers the Young’s modulus and tensile strength improved by 315 % and 129 %, respectively, whereas elongation at break declined by 77 % for glycerol-plasticized cast-films. In addition, comparison of plasticizer type revealed that sorbitol-plasticized cast-films were generally stiffer and stronger, but less flexible compared glycerol-plasticized cast-films. Viscosity measurements demonstrated good processability and suitability for up-scaled industrial processes of native WPI-based nanocomposite dispersions, even at high nanofiller-loadings. These results suggest that the addition of natural MMT- nanofillers into native WPI-based matrices to form nanocomposite films and coatings holds great potential to replace well-established, fossil-based packaging materials for at least certain applications such as oxygen barriers as part of multilayer flexible packaging films.

  11. Application of EIS and SECM Studies for Investigation of Anticorrosion Properties of Epoxy Coatings Containing Zinc Oxide Nanoparticles on Mild Steel in 3.5% NaCl Solution

    NASA Astrophysics Data System (ADS)

    Raj, X. Joseph

    2017-07-01

    The effect of corrosion protection performance of epoxy coatings containing ZnO nanoparticle on mild steel in 3.5% NaCl solution was analyzed using scanning electrochemical microscopy and electrochemical impedance spectroscopy (EIS). Line profile and topographic image analysis were measured by applying -0.70 and +0.60 V as the tip potential for the cathodic and anodic reactions, respectively. The tip current at -0.70 V for the epoxy-coated sample with ZnO nanoparticles decreased rapidly, which is due to cathodic reduction in dissolved oxygen. The EIS measurements were taken in 3.5% NaCl after wet and dry cyclic corrosion test. The increase in the film resistance ( R f) and charge transfer resistance ( R ct) values was confirmed by the addition of ZnO nanoparticles in the epoxy coating. SEM/EDX analysis showed that complex oxide layer of zinc was enriched in corrosion products at a scratched area of the coated steel after corrosion testing. FIB-TEM analysis confirmed the presence of the nanoscale complex oxide layer of Zn in the rust of the steel that had a beneficial effect on the corrosion resistance of coated steel by forming protective corrosion products in the wet/dry cyclic test.

  12. Influence of the multilayer coating obtained by the HVOF method on behavior of the steel barrier at dynamic loading

    NASA Astrophysics Data System (ADS)

    Radchenko, Pavel; Radchenko, Andrey; Batuev, Stanislav

    2013-06-01

    The high velocity (supersonic) oxy-fuel (HVOF) thermal spray technology is a rather recent addition to family of thermal spray processes. This technique is considered most modern of technologies of spraying. The increase in velocity of the particles at lower temperatures allowed reducing level of oxidation of the particles and to increase the density of a powder coating. In HVOF dry dusting applicators of the first and second generations was used the cylindrical nozzle, whereas in the third generation expanding Laval nozzles are used. This method allows the velocity of a gas flow to exceed to 2000 m/sec, and the velocities of the powder particles 800 m/sec. Recently many results on elastic and strength properties of the multilayer coatings obtained by supersonic flame spraying method are received. But the main part of works on research of the coating obtained by the HVOF method is devoted to research of their stress-strain state at static loadings. In this work the behavior of the steel barrier with the multilayer coating applied by HVOF is researched, at dynamic loading of projectile structure at different velocities of interaction. The problem was solved numerically within Lagrangian approach, a finite element method with the use of the explicit finite difference scheme of G. Johnson.

  13. Optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated carbide cutting tool

    NASA Astrophysics Data System (ADS)

    Durga Prasada Rao, V.; Harsha, N.; Raghu Ram, N. S.; Navya Geethika, V.

    2018-02-01

    In this work, turning was performed to optimize the surface finish or roughness (Ra) of stainless steel 304 with uncoated and coated carbide tools under dry conditions. The carbide tools were coated with Titanium Aluminium Nitride (TiAlN) nano coating using Physical Vapour Deposition (PVD) method. The machining parameters, viz., cutting speed, depth of cut and feed rate which show major impact on Ra are considered during turning. The experiments are designed as per Taguchi orthogonal array and machining process is done accordingly. Then second-order regression equations have been developed on the basis of experimental results for Ra in terms of machining parameters used. Regarding the effect of machining parameters, an upward trend is observed in Ra with respect to feed rate, and as cutting speed increases the Ra value increased slightly due to chatter and vibrations. The adequacy of response variable (Ra) is tested by conducting additional experiments. The predicted Ra values are found to be a close match of their corresponding experimental values of uncoated and coated tools. The corresponding average % errors are found to be within the acceptable limits. Then the surface roughness equations of uncoated and coated tools are set as the objectives of optimization problem and are solved by using Differential Evolution (DE) algorithm. Also the tool lives of uncoated and coated tools are predicted by using Taylor’s tool life equation.

  14. Bond strength determination of hydroxyapatite coatings on Ti-6Al-4V substrates using the LAser Shock Adhesion Test (LASAT).

    PubMed

    Guipont, Vincent; Jeandin, Michel; Bansard, Sebastien; Khor, Khiam Aik; Nivard, Mariette; Berthe, Laurent; Cuq-Lelandais, Jean-Paul; Boustie, Michel

    2010-12-15

    An adhesion test procedure applied to plasma-sprayed hydroxyapatite (HA) coatings to measure the "LASAT threshold" (LAser Shock Adhesion test) is described. The good repeatability and minimal discrepancy of the laser-driven adhesion test data were ascertained for conventional plasma sprayed HA coatings. As a further demonstration, the procedure was applied to HA coatings with diverse characteristics on the ceramic/metal interface. Different preheating and grit blasting conditions and the presence of a thick plasma-sprayed Ti sublayer or a thin TiO(2) layer prepared by oxidation were investigated through LASAT. It was assessed that a rough surface can significantly improve the coating's bond strength. However, it was also demonstrated that a thin TiO(2) layer on a smooth Ti-6Al-4V substrate can have a major influence on adhesion as well. Preheating up to 270°C just prior to the first HA spraying pass had no effect on the adhesion strength. Further development of the procedure was done to achieve an in situ LASAT with in vitro conditions applied on HA coatings. To that end, different crystalline HA contents were soaked in simulated body fluid (SBF). Beyond the demonstration of the capability of this laser-driven adhesion test devoted to HA coatings in dry or liquid environment, the present study provided empirical information on pertinent processing characteristics that could strengthen or weaken the HA/Ti-6Al-4V bond. Copyright © 2010 Wiley Periodicals, Inc.

  15. Pharmaceutical approaches to preparing pelletized dosage forms using the extrusion-spheronization process.

    PubMed

    Trivedi, Namrata R; Rajan, Maria Gerald; Johnson, James R; Shukla, Atul J

    2007-01-01

    Pelletized dosage forms date back to the 1950s, when the first product was introduced to the market. Since then, these dosage forms have gained considerable popularity because of their distinct advantages, such as ease of capsule filling because of better flow properties of the spherical pellets; enhancement of drug dissolution; ease of coating; sustained, controlled, or site-specific delivery of the drug from coated pellets; uniform packing; even distribution in the GI tract; and less GI irritation. Pelletized dosage forms can be prepared by a number of techniques, including drug layering on nonpareil sugar or microcrystalline cellulose beads, spray drying, spray congealing, rotogranulation, hot-melt extrusion, and spheronization of low melting materials or extrusion-spheronization of a wet mass. This review discusses recent developments in the pharmaceutical approaches that have been used to prepare pelletized dosage forms using the extrusion-spheronization process over the last decade. The review is divided into three parts: the first part discusses the extrusion-spheronization process, the second part discusses the effect of varying formulation and process parameters on the properties of the pellets, and the last part discusses the different approaches that have been used to prepare pelletized dosage forms using the extrusion-spheronization process.

  16. Evaluation of a Portable Laser Depainting System

    DTIC Science & Technology

    2009-02-05

    processes: February 5, 2009 3 Army Corrosion Summit, 2009 Clearwater Beach, FL plastic media and coating residueDry Media Pressure Blasting wheat starch...146-1 1.270 cm 146-2 1.905 cm 146 Removal of Corrosion Products Lightly Rusted Panel: Fe/O = 0.72 Fe/O = 2.73 21 BEFORE AFTER Heavily Rusted Panel: Fe...corrosion products from 1018 carbon steel. Most of the corrosion product layer was removed in case of lightly rusted surfaces, while only the top corrosion

  17. Lyophilisation and concentration of chitosan/siRNA polyplexes: Influence of buffer composition, oligonucleotide sequence, and hyaluronic acid coating.

    PubMed

    Veilleux, Daniel; Gopalakrishna Panicker, Rajesh Krishnan; Chevrier, Anik; Biniecki, Kristof; Lavertu, Marc; Buschmann, Michael D

    2018-02-15

    Chitosan (CS)/siRNA polyplexes have great therapeutic potential for treating multiple diseases by gene silencing. However, clinical application of this technology requires the development of concentrated, hemocompatible, pH neutral formulations for safe and efficient administration. In this study we evaluate physicochemical properties of chitosan polyplexes in various buffers at increasing ionic strengths, to identify conditions for freeze-drying and rehydration at higher doses of uncoated or hyaluronic acid (HA)-coated polyplexes while maintaining physiological compatibility. Optimized formulations are used to evaluate the impact of the siRNA/oligonucleotide sequence on polyplex physicochemical properties, and to measure their in vitro silencing efficiency, cytotoxicity, and hemocompatibility. Specific oligonucleotide sequences influence polyplex physical properties at low N:P ratios, as well as their stability during freeze-drying. Nanoparticles display greater stability for oligodeoxynucleotides ODN vs siRNA; AT-rich vs GC-rich; and overhangs vs blunt ends. Using this knowledge, various CS/siRNA polyplexes are prepared with and without HA coating, freeze-dried and rehydrated at increased concentrations using reduced rehydration volumes. These polyplexes are non-cytotoxic and preserve silencing activity even after rehydration to 20-fold their initial concentration, while HA-coated polyplexes at pH∼7 also displayed increased hemocompatibility. These concentrated formulations represent a critical step towards clinical development of chitosan-based oligonucleotide intravenous delivery systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Development of Cotton Fabrics with Durable UV Protective and Self-cleaning Property by Deposition of Low TiO2 Levels through Sol-gel Process.

    PubMed

    Mishra, Anu; Butola, Bhupendra Singh

    2018-01-19

    In this article, the deposition of TiO 2 on cotton fabric using sol-gel technique has been described. Various process routes (pad-dry-cure, pad-dry-hydrothermal and pad-dry-solvothermal) were examined to impart a stable coating of TiO 2 on fabric. The role of precursor concentration, process temperature and time of treatment were studied to aim at a wash durable, UV protective and self-cleaning property in the treated fabric. EDX and ICP-MS techniques were used to examine the add-on percentage of TiO 2 on cotton fabrics treated via different routes. It has been found that the TiO 2 remains largely amorphous and nondurable if it is given a short thermal treatment. To convert the deposited TiO 2 to its anatase crystal form, a prolonged hydrothermal treatment for at least 3 h needs to be given. TiO 2 deposition levels of less than 0.1% were found to be effective in imparting reasonable degree of UV protection and self-cleaning property to the cotton fabric. The self-cleaning ability of the treated fabric against coffee stain was also studied and was found to be related to the process route and the deposition levels of TiO 2 . © 2018 The American Society of Photobiology.

  19. Bioactive Coating with Two-Layer Hierarchy of Relief Obtained by Sol-Gel Method with Shock Drying and Osteoblast Response of Its Structure.

    PubMed

    Zemtsova, Elena G; Arbenin, Andrei Y; Yudintceva, Natalia M; Valiev, Ruslan Z; Orekhov, Evgeniy V; Smirnov, Vladimir M

    2017-10-13

    In this work, we analyze the efficiency of the modification of the implant surface. This modification was reached by the formation of a two-level relief hierarchy by means of a sol-gel approach that included dip coating with subsequent shock drying. Using this method, we fabricated a nanoporous layer with micron-sized defects on the nanotitanium surface. The present work continues an earlier study by our group, wherein the effect of osteoblast-like cell adhesion acceleration was found. In the present paper, we give the results of more detailed evaluation of coating efficiency. Specifically, cytological analysis was performed that included the study of the marker levels of osteoblast-like cell differentiation. We found a significant increase in the activity of alkaline phosphatase at the initial incubation stage. This is very important for implantation, since such an effect assists the decrease in the induction time of implant engraftment. Moreover, osteopontin expression remains high for long expositions. This indicates a prolonged osteogenic effect in the coating. The results suggest the acceleration of the pre-implant area mineralization and, correspondingly, the potential use of the developed coatings for bone implantation.

  20. Effects of thermally induced denaturation on technological-functional properties of whey protein isolate-based films.

    PubMed

    Schmid, M; Krimmel, B; Grupa, U; Noller, K

    2014-09-01

    This study examined how and to what extent the degree of denaturation affected the technological-functional properties of whey protein isolate (WPI)-based coatings. It was observed that denaturation affected the material properties of WPI-coated films significantly. Surface energy decreased by approximately 20% compared with native coatings. Because the surface energy of a coating should be lower than that of the substrate, this might result in enhanced wettability characteristics between WPI-based solution and substrate surface. Water vapor barrier properties increased by about 35% and oxygen barrier properties increased by approximately 33%. However, significant differences were mainly observed between coatings made of fully native WPI and ones with a degree of denaturation of 25%. Higher degrees of denaturation did not lead to further improvement of material properties. This observation offers cost-saving potential: a major share of denatured whey proteins may be replaced by fully native ones that are not exposed to energy-intensive heat treatment. Furthermore, native WPI solutions can be produced with higher dry matter content without gelatinizing. Hence, less moisture has to be removed through drying, resulting in reduced energy consumption. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Bioactive Coating with Two-Layer Hierarchy of Relief Obtained by Sol-Gel Method with Shock Drying and Osteoblast Response of Its Structure

    PubMed Central

    Zemtsova, Elena G.; Arbenin, Andrei Y.; Valiev, Ruslan Z.; Orekhov, Evgeniy V.; Smirnov, Vladimir M.

    2017-01-01

    In this work, we analyze the efficiency of the modification of the implant surface. This modification was reached by the formation of a two-level relief hierarchy by means of a sol-gel approach that included dip coating with subsequent shock drying. Using this method, we fabricated a nanoporous layer with micron-sized defects on the nanotitanium surface. The present work continues an earlier study by our group, wherein the effect of osteoblast-like cell adhesion acceleration was found. In the present paper, we give the results of more detailed evaluation of coating efficiency. Specifically, cytological analysis was performed that included the study of the marker levels of osteoblast-like cell differentiation. We found a significant increase in the activity of alkaline phosphatase at the initial incubation stage. This is very important for implantation, since such an effect assists the decrease in the induction time of implant engraftment. Moreover, osteopontin expression remains high for long expositions. This indicates a prolonged osteogenic effect in the coating. The results suggest the acceleration of the pre-implant area mineralization and, correspondingly, the potential use of the developed coatings for bone implantation. PMID:29027930

  2. Tribological performance of an H-DLC coating prepared by PECVD

    NASA Astrophysics Data System (ADS)

    Solis, J.; Zhao, H.; Wang, C.; Verduzco, J. A.; Bueno, A. S.; Neville, A.

    2016-10-01

    Carbon-based coatings are of wide interest due to their application in machine elements subjected to continuous contact where fluid lubricant films are not permitted. This paper describes the tribological performance under dry conditions of duplex layered H-DLC coating sequentially deposited by microwave excited plasma enhanced chemical vapour deposition on AISI 52100 steel. The architecture of the coating comprised Cr, WC, and DLC (a-C:H) with a total thickness of 2.8 μm and compressive residual stress very close to 1 GPa. Surface hardness was approximately 22 GPa and its reduced elastic modulus around 180 GPa. Scratch tests indicated a well adhered coating achieving a critical load of 80 N. The effect of normal load on the friction and wear behaviours were investigated with steel pins sliding against the actual coating under dry conditions at room temperature (20 ± 2 °C) and 35-50% RH. The results show that coefficient of friction of the coating decreased from 0.21 to 0.13 values with the increase in the applied loads (10-50 N). Specific wear rates of the surface coating also decrease with the increase in the same range of applied loads. Maximum and minimum values were 14 × 10-8 and 5.5 × 10-8 mm-3/N m, respectively. Through Raman spectroscopy and electron microscopy it was confirmed the carbon-carbon contact, due to the tribolayer formation on the wear scars of the coating and pin. In order to further corroborate the experimental observations regarding the graphitisation behaviour, the existing mathematical relationships to determine the graphitisation temperature of the coating/steel contact as well as the flash temperature were used.

  3. Reactive Fabrication and Effect of NbC on Microstructure and Tribological Properties of CrS Co-Based Self-Lubricating Coatings by Laser Cladding

    PubMed Central

    Fang, Liuyang; Yan, Hua; Yao, Yansong; Zhang, Peilei; Gao, Qiushi; Qin, Yang

    2017-01-01

    The CrS/NbC Co-based self-lubricating composite coatings were successfully fabricated on Cr12MoV steel surface by laser clad Stellite 6, WS2, and NbC mixed powders. The phase composition, microstructure, and tribological properties of the coatings ware investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS), as well as dry sliding wear testing. Based on the experimental results, it was found reactions between WS2 and Co-based alloy powder had occurred, which generated solid-lubricant phase CrS, and NbC play a key role in improving CrS nuclear and refining microstructure of Co-based composite coating during laser cladding processing. The coatings were mainly composed of γ-Co, CrS, NbC, Cr23C6, and CoCx. Due to the distribution of the relatively hard phase of NbC and the solid lubricating phase CrS, the coatings had better wear resistance. Moreover, the suitable balance of CrS and NbC was favorable for further decreasing the friction and improving the stability of the contact surfaces between the WC ball and the coatings. The microhardness, friction coefficient, and wear rate of the coating 4 (Clad powders composed of 60 wt % Stellite 6, 30 wt % NbC and 10 wt % WS2) were 587.3 HV0.5, 0.426, and 5.61 × 10−5 mm3/N·m, respectively. PMID:29283411

  4. Practical Shipbuilding Standards for Surface Preparation and Coatings

    DTIC Science & Technology

    1979-07-01

    strong solvent and apply over last coat of epoxy within 48 hours. *Minimum Dry Film Thickness 12.0 SAFETY AND POLUTION CONTROL 12.5 Safety solvents shall...Owner Inspec ion (3) QA/QC Dept. Inspectors. (4) Craft Inspectors (5) Craft Supervision Inspection Only (6) QA/QC Dept. Audit Only (7) Are

  5. Livestock air treatment using PVA-coated powdered activated carbon biofilter

    USDA-ARS?s Scientific Manuscript database

    The efficacy of polyvinyl alcohol (PVA) biofilters was studied using bench-scale biofilters and air from aerobically-treated swine manure. The PVA-coated powdered activated carbon particles showed excellent properties as a biofiltration medium: water holding capacity of 1.39 g H2O/g-dry PVA; wet por...

  6. 16 CFR § 1303.3 - Exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-CONTAINING PAINT AND CERTAIN CONSUMER PRODUCTS BEARING LEAD-CONTAINING PAINT § 1303.3 Exemptions. (a) The... signal word is required) and the following statement: “Contains Lead. Dried Film of This Paint May Be... coatings. (3) Graphic art coatings (i.e., products marketed solely for application on billboards, road...

  7. Particulate contamination from siliconized rubber closures for freeze drying.

    PubMed

    Gebhardt, U; Grumbridge, N A; Knoch, A

    1996-01-01

    It can be shown that siliconized closures for freeze drying may cause the opalescence and turbidity observed in freeze-dried products after reconstitution. Closures of different rubber composition show different intensities of turbidity when treated identically with the same quantity and type of silicone oil. Clear solutions are obtained after reconstitution if ETFE-coated closures are used instead of siliconized closures. Samples stored at 4 degrees C for up to 6 months show no change in the intensity of turbidity, while the turbidity of samples manufactured with siliconized closures and stored at higher temperatures increase with time. Samples with ETFE-coated closures show clear solutions when stored at 25 degrees C and 37 degrees C for up to 6 months and at 45 degrees C for 3 months. After 6 months only a very weak opalescence could be observed in these samples.

  8. Stresses in sulfuric acid anodized coatings on aluminum

    NASA Technical Reports Server (NTRS)

    Alwitt, R. S.; Xu, J.; Mcclung, R. C.

    1993-01-01

    Stresses in porous anodic alumina coatings have been measured for specimens stabilized in air at different temperatures and humidities. In ambient atmosphere the stress is tensile after anodic oxidation and is compressive after sealing. Exposure to dry atmosphere causes the stress to change to strongly tensile, up to 110 MPa. The stress increase is proportional to the loss of water from the coating. These changes are reversible with changes in humidity. Similar reversible effects occur upon moderate temperature changes. The biaxial modulus of the coating is about 100 GPa.

  9. Evaluation Report of the Double Wall Air Inflated MUST Shelter Made from Three Dimensional Fabric

    DTIC Science & Technology

    1975-10-22

    II Natick laboratory Test Results on Spray Coated 3-D Woven Fabric iWST Shelter Casing Material ......... 29 11 3-D Casing Fabric D1mensions, as Woven...of yarns shoi . be achieved before spraying. 3.1.3 The casing surface should be inspected afhir each of the first several spray coats for pinholes in...Coated Fabric Casing Material After two days of drying time, a three-foot-wide portion was cut off from one end of a sprayed casing . Part of this coated

  10. Ultrathin Hydrophobic Coatings Obtained on Polyethylene Terephthalate Materials in Supercritical Carbon Dioxide with Co-Solvents

    NASA Astrophysics Data System (ADS)

    Kumeeva, T. Yu.; Prorokova, N. P.

    2018-02-01

    The surface properties of ultradisperse polytetrafluoroethylene coatings on polyethylene terephthalate materials modified in a supercritical carbon dioxide medium with co-solvent additions (aliphatic alcohols) were analyzed. An atomic force microscopy study revealed the peculiarities of the morphology of the hydrophobic coatings formed in the presence of co-solvents. The contribution of the co-solvents to the formation of the surface layer with a low surface energy was evaluated from the surface energy components of the modified polyester material. The stability of the coatings against dry friction was analyzed.

  11. Method of applying a cerium diffusion coating to a metallic alloy

    DOEpatents

    Jablonski, Paul D [Salem, OR; Alman, David E [Benton, OR

    2009-06-30

    A method of applying a cerium diffusion coating to a preferred nickel base alloy substrate has been discovered. A cerium oxide paste containing a halide activator is applied to the polished substrate and then dried. The workpiece is heated in a non-oxidizing atmosphere to diffuse cerium into the substrate. After cooling, any remaining cerium oxide is removed. The resulting cerium diffusion coating on the nickel base substrate demonstrates improved resistance to oxidation. Cerium coated alloys are particularly useful as components in a solid oxide fuel cell (SOFC).

  12. 'Fagiolo a Formella', an Italian lima bean ecotype: biochemical and nutritional characterisation of dry and processed seeds.

    PubMed

    Piergiovanni, Angela R; Sparvoli, Francesca; Zaccardelli, Massimo

    2012-08-30

    An ecotype of the lima bean, named 'fagiolo a Formella', which, to the best of our knowledge, is the only example of an Italian lima bean (Phaseolus lunatus L.) ecotype, is cultivated in the Campania region of southern Italy. Physical, nutritional and processing traits of dry seeds were evaluated for two consecutive growing seasons (2009 and 2010). The canning quality was also investigated, but only for the harvest of 2010. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total seed proteins allowed the attribution of 'fagiolo a Formella' to the Mesoamerican gene pool and Sieva morphotype. Seeds have a trapezoid shape, white coat and 100-seed weight greater than 42 g. Yield, protein, trypsin inhibitor and phytic acid values were found comparable with those reported for lima bean varieties cultivated in sub-tropical areas. Moreover, we found that this ecotype is devoid of lectin. The good adaptation to growing environment is indicated by the fact that 'fagiolo a Formella' seed quality is comparable to that of lima beans grown in America. Overall the canning quality was found satisfactory and canning significantly destroys the main anti-nutritional compounds present in dry seeds. Copyright © 2012 Society of Chemical Industry.

  13. Particle-based Nano-Antennas at the Vis-NIR regime

    DTIC Science & Technology

    2013-11-01

    PSS (poly(3,4-ethylenedioxythiophene) :poly(styrene sulfonate) is then spin coated and dried at 110oC to form a 50nm buffer layer partially covering...dominant effect is that during the spin coating of the 50nm PEDOT buffer a residual very thin layer coated also the top 50nm part of the Au disks...antennas, capacitive versus conductive coupling, on-demand design (termed ‘popcorn’ antennas), broadband plasmonic metamaterials, and light

  14. A Purchasing Agent’s Guide to Buying Paints and Coatings

    DTIC Science & Technology

    1993-03-01

    taken to topside systems , where an inorganic zinc silicate is often used as the corrosion preventa- tive primer. then topcoats such as alkyds , vinyls...interior coaling systems or as topcoats for exterior applications. Alkyd coatings are economical and easy to apply. They do, however, operate as a barrier...combined with alkyd technology to produce a hybrid coating which embodies some of the desirable quali- ties of both. These include reduced drying times

  15. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  16. Protection of dried probiotic bacteria from bile using bile adsorbent resins.

    PubMed

    Mahbubani, Krishnaa T; Slater, Nigel K H; Edwards, Alexander D

    2014-01-25

    Enteric coated oral tablets or capsules can deliver dried live cells directly into the intestine. Previously, we found that a live attenuated bacterial vaccine acquired sensitivity to intestinal bile when dried, raising the possibility that although gastric acid can be bypassed, significant loss of viability might occur on release from an enteric coated oral formulations. Here we demonstrate that some food-grade lyophilised preparations of Lactobacillus casei and Lactobacillus salivarius also show temporary bile sensitivity that can be rapidly reversed by rehydration. To protect dried bacterial cells from temporary bile sensitivity, we propose using bile acid adsorbing resins, such as cholestyramine, which are bile acid binding agents, historically used to lower cholesterol levels. Vcaps™ HPMC capsules alone provided up to 830-fold protection from bile. The inclusion of 50% w/w cholestyramine in Vcaps™ HPMC capsules resulted in release of up to 1700-fold more live Lactobacillus casei into simulated intestinal fluid containing 1% bile, when compared to dried cells added directly to bile. We conclude that delivery of dried live probiotic organisms to the intestine may be improved by providing protection from bile by addition of bile adsorbing resins and the use of HPMC capsules. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Development of a magnetic system for the treatment of Helicobacter pylori infections

    NASA Astrophysics Data System (ADS)

    Silva, Érica L.; Carvalho, Juliana F.; Pontes, Thales R. F.; Oliveira, Elquio E.; Francelino, Bárbara L.; Medeiros, Aldo C.; do Egito, E. Sócrates T.; Araujo, José H.; Carriço, Artur S.

    2009-05-01

    We report a study to develop a magnetic system for local delivery of amoxicillin. Magnetite microparticles produced by coprecipitation were coated with a solution of amoxicillin and Eudragit ®S100 by spray drying. Scanning electron microscopy, optical microscopy, X-ray powder diffraction and vibrating sample magnetometry revealed that the particles were superparamagnetic, with an average diameter of 17.2 μm, and an initial susceptibility controllable by the magnetite content in the suspension feeding the sprayer. Our results suggest a possible way to treat Helicobacter pylori infections, using an oral drug delivery system, and open prospects to coat magnetic microparticles by spray drying for biomedical applications.

  18. Wear-Resistant, Self-Lubricating Surfaces of Diamond Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1995-01-01

    In humid air and dry nitrogen, as-deposited, fine-grain diamond films and polished, coarse-grain diamond films have low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6) mm(exp 3)/N-m). In an ultrahigh vacuum (10(exp -7) Pa), however, they have high steady-state coefficients of friction (greater than 0.6) and high wear rates (greater than or equal to 10(exp -4) mm(exp 3)/N-m). Therefore, the use of as-deposited, fine-grain and polished, coarse-grain diamond films as wear-resistant, self-lubricating coatings must be limited to normal air or gaseous environments such as dry nitrogen. On the other hand, carbon-ion-implanted, fine-grain diamond films and nitrogen-ion-implanted, coarse-grain diamond films have low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6) mm(exp 3)/N-m) in all three environments. These films can be effectively used as wear-resistant, self-lubricating coatings in an ultrahigh vacuum as well as in normal air and dry nitrogen.

  19. Corrosion protection of steel by thin coatings of starch-oil dry lubricants

    USDA-ARS?s Scientific Manuscript database

    Corrosion of materials is one of the most serious and challenging problems faced 3 worldwide by industry. This research investigated the inhibition of corrosive behavior a 4 dry lubricant formulation consisting of jet-cooked corn starch and soybean oil on SAE 5 1010 steel. Electrochemical Impedance ...

  20. Thermodynamics between RAP/RAS and virgin aggregates during asphalt concrete production : a literature review.

    DOT National Transportation Integrated Search

    2015-09-01

    In hot-mix asphalt (HMA) plants, virgin aggregates are heated and dried separately before being mixed with : RAP/RAS and virgin asphalt binder. RAP/RAS materials are not heated or dried directly by a burner to avoid : burning of aged binder coating o...

  1. Lubrication by Diamond and Diamondlike Carbon Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1997-01-01

    Regardless of environment (ultrahigh vacuum, humid air, dry nitrogen, or water), ion-beam-deposited diamondlike carbon (DLC) and nitrogen-ion-implanted, chemical-vapor-deposited (CVD) diamond films had low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6)cu mm/N(dot)m). These films can be used as effective wear-resistant, self-lubricating coatings regardless of environment. On the other hand, as-deposited, fine-grain CVD diamond films; polished, coarse-grain CVD diamond films; and polished and then fluorinated, coarse-grain CVD diamond films can be used as effective wear-resistant, self-lubricating coatings in humid air, in dry nitrogen, and in water, but they had a high coefficient of friction and a high wear rate in ultrahigh vacuum. The polished, coarse-grain CVD diamond film revealed an extremely low wear rate, far less than 10(exp 10) cu mm/N(dot)m, in water.

  2. Oven rack having integral lubricious, dry porcelain surface

    DOEpatents

    Ambrose, Jeffrey A; Mackiewicz-Ludtka, Gail; Sikka, Vinod K; Qu, Jun

    2014-06-03

    A lubricious glass-coated metal cooking article capable of withstanding repeated heating and cooling between room temperature and at least 500.degree. F. without chipping or cracking the glass coating, wherein the glass coating includes about 0.1 to about 20% by weight of a homogeneously distributed dry refractory lubricant material having a particle size less than about 200 .mu.m. The lubricant material is selected from the group consisting of carbon; graphite; boron nitride; cubic boron nitride; molybdenum (FV) sulfide; molybdenum sulfide; molybdenum (IV) selenide; molybdenum selenide, tungsten (IV) sulfide; tungsten disulfide; tungsten sulfide; silicon nitride (Si.sub.3N.sub.4); TiN; TiC; TiCN; TiO.sub.2; TiAlN; CrN; SiC; diamond-like carbon; tungsten carbide (WC); zirconium oxide (ZrO.sub.2); zirconium oxide and 0.1 to 40 weight % aluminum oxide; alumina-zirconia; antimony; antimony oxide; antimony trioxide; and mixtures thereof.

  3. Drying of fiber webs

    DOEpatents

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloan, J.M.; Pergantis, C.G.

    Organic and organo-metallic coatings are presently being applied over bare copper as an approach to improve the co-planarity of circuit boards. Conformal organic solderability preservative coatings (OSP) are environmentally and economically advantageous over the more commonly used lead based coatings. Problems arise in assessing the solderability of the bare copper and the integrity of the organic coating. Specular reflectance Fourier transform infrared spectroscopy (FT-IR) was utilized to monitor and evaluate the formation of Cu oxides occurring on copper substrates used in the manufacturing of electronic circuit boards. Previous studies reported the utility of this technique. By measuring the oxide andmore » protective coating characteristics of these surfaces, their solderability performance can rapidly be evaluated in a manufacturing environment. OSP coated test specimens were subjected to hot-dry and hot-wet environmental conditions using MIL-STD-202F and MIL-STD-883E as guides. The resultant FT-IR spectra provided clear evidence for the formation of various Cu oxides at the Cu/OSP interface over exposure time, for the samples subjected to the hot-dry environment. IR spectral bands consistent with O-Cu-O and Cu{sub 2}O{sub 2} formation appear, while very minimal deterioration to the OSP coating was observed. The appearance of the Cu oxide layers grew steadily with increased environmental exposure. Specimens subjected to the hot-wet conditions showed no significant signs of deterioration. The IR data can be directly correlated to solderability performance as evaluated by wet balance testing.« less

  5. 40 CFR 60.493 - Performance test and compliance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalent or alternative method. The owner or operator shall determine from company records the volume of... estimate the volume of coating used at each facility by using the average dry weight of coating, number of... acceptable to the Administrator. (i) Calculate the volume-weighted average of the total mass of VOC per...

  6. Assessment of the Microbial Control Measures for the Temperature and Humidity Control Subsystem Condensing Heat Exchanger of the International Space Station

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Steele, John W.; Marsh, Robert W.; Callahan, David M.; VonJouanne, Roger G.

    1999-01-01

    In August 1997 NASA/ Marshall Space Flight Center (MSFC) began a test with the objective of monitoring the growth of microorganisms on material simulating the surface of the International Space Station (ISS) Temperature and Humidity Control (THC) Condensing Heat Exchanger (CHX). The test addressed the concerns of potential uncontrolled microbial growth on the surface of the THC CHX subsystem. For this study, humidity condensate from a closed manned environment was used as a direct challenge to the surfaces of six cascades in a test set-up. The condensate was collected using a Shuttle-type CHX within the MSFC End-Use Equipment Testing Facility. Panels in four of the six cascades tested were coated with the ISS CHX silver impregnated hydrophilic coating. The remainder two cascade panels were coated with the hydrophilic coating without the antimicrobial component, silver. Results of the fourteen-month study are discussed in this paper. The effects on the microbial population when drying vs. not-drying the simulated THC CHX surface are also discussed.

  7. Microencapsulation of anthocyanin-rich black soybean coat extract by spray drying using maltodextrin, gum Arabic and skimmed milk powder.

    PubMed

    Kalušević, Ana; Lević, Steva; Čalija, Bojan; Pantić, Milena; Belović, Miona; Pavlović, Vladimir; Bugarski, Branko; Milić, Jela; Žilić, Slađana; Nedović, Viktor

    2017-08-01

    Black soybean coat is insufficiently valorised food production waste rich in anthocyanins. The goal of the study was to examine physicochemical properties of spray dried extract of black soybean coat in regard to carrier materials: maltodextrin, gum Arabic, and skimmed milk powder. Maltodextrin and gum Arabic-based microparticles were spherical and non-porous while skimmed milk powder-based were irregularly shaped. Low water activity of microparticles (0.31-0.33), good powders characteristics, high solubility (80.3-94.3%) and encapsulation yields (63.7-77.0%) were determined. All microparticles exhibited significant antioxidant capacity (243-386 μmolTE/g), good colour stability after three months of storage and antimicrobial activity. High content of total anthocyanins, with cyanidin-3-glucoside as predominant, were achieved. In vitro release of anthocyanins from microparticles was sustained, particularly from gum Arabic-based. These findings suggest that proposed simple eco-friendly extraction and microencapsulation procedures could serve as valuable tools for valorisation and conversion of black soybean coat into highly functional and stable food colourant.

  8. Phycocyanin stability in microcapsules processed by spray drying method using different inlet temperature

    NASA Astrophysics Data System (ADS)

    Purnamayati, L.; Dewi, EN; Kurniasih, R. A.

    2018-02-01

    Phycocyanin is natural blue colorant which easily damages by heat. The inlet temperature of spray dryer is an important parameter representing the feature of the microcapsules.The aim of this study was to investigate the phycocyanin stability of microcapsules made from Spirulina sp with maltodextrin and κ-Carrageenan as the coating material, processed by spray drying method in different inlet temperature. Microcapsules were processed in three various inlet temperaturei.e. 90°C, 110°C, and 130°C, respectively. The results indicated that phycocyanin microcapsule with 90°C of inlet temperature produced the highest moisture content, phycocyanin concentration and encapsulation efficiency of 3,5%, 1,729% and 29,623%, respectively. On the other hand, the highest encapsulation yield was produced by 130°C of theinlet temperature of 29,48% and not significantly different with 110°C. The results of Scanning Electron Microscopy (SEM) showed that phycocyanin microcapsules with 110°C of inlet temperature produced the most rounded shape. To sum up, 110°C was the best inlet temperature to phycocyanin microencapsulation by the spray dryer.

  9. Flow coating apparatus and method of coating

    DOEpatents

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  10. Process for making a noble metal on tin oxide catalyst

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Davis, Patricia (Inventor); Miller, Irvin M. (Inventor)

    1989-01-01

    A quantity of reagent grade tin metal or compound, chloride-free, and high-surface-area silica spheres are placed in deionized water, followed by deaerating the mixture by boiling and adding an oxidizing agent, such as nitric acid. The nitric acid oxidizes the tin to metastannic acid which coats the spheres because the acid is absorbed on the substrate. The metastannic acid becomes tin oxide upon drying and calcining. The tin-oxide coated silica spheres are then placed in water and boiled. A chloride-free precious metal compound in aqueous solution is then added to the mixture containing the spheres, and the precious metal compound is reduced to a precious metal by use of a suitable reducing agent such as formic acid. Very beneficial results were obtained using the precious metal compound tetraammine platinum(II) hydroxide.

  11. Improvement in Microstructure Performance of the NiCrBSi Reinforced Coating on TA15 Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Peng, Li

    2012-10-01

    This work is based on the dry sliding wear of NiCrBSi reinforced coating deposited on TA15 titanium alloy using the laser cladding technique, the parameters of which were such as to provide almost crack-free coatings with minimum dilution and very low porosity. SEM results indicated that a laser clad coating with metallurgical joint to the substrate was formed. Compared with TA15 substrate, an improvement of the micro-hardness and wear resistance was observed for this composite coating. Rare earth oxide Y2O3 was beneficial in producing of the amorphous phases in laser clad coating. With addition of Y2O3, more amorphous alloys were produced, which increased the micro-hardness and wear resistance of the coating.

  12. Demonstration of Smart Fluorescent and Self-Healing Coatings for Severely Corrosive Environments at Vehicle Wash Facilities

    DTIC Science & Technology

    2009-08-01

    as well as pipe and tank exteriors providing early detection of coating erosion, cracks , and intercoat blistering. A fluorescing coating used ERDC...poor with widespread areas of peeling and cracking on the exterior siding. Areas of exposed galvanizing were rusting. Structural steel elements...and application of TT-P-86 Type 2 red lead paint and red and white colored alkyd enamel topcoats. The average dry film thickness on the exterior

  13. Preparation and tribological behavior of Ni-graphene composite coating under room temperature

    NASA Astrophysics Data System (ADS)

    Chen, Juanjuan; Li, Jianliang; Xiong, Dangsheng; He, Yong; Ji, Yujuan; Qin, Yongkun

    2016-01-01

    In this paper, Ni-graphene composite coatings with different graphene addition amounts were prepared on 45 steel disk by using dipulse composite electrodeposition technology. Meanwhile, the influence of plating time, bath temperature and load on friction and wear of the coating was studied. The tribological behavior of composite coating was tested against a Si3N4 ceramic ball under dry condition. Cross-sectional morphologies showed that Ni-graphene coating was successfully coated on the substrate with an average thickness of 85 ± 5 μm. XRD analysis concluded that with the increase of addition amount of graphene, the average crystallite size of coating decreased. EDS analyses and Raman spectra proved the presence of graphene. Friction coefficient of composite coating decreased with the increase of graphene addition amounts, while the hardness increased. Meanwhile, the wear resistance of composite coating improved. The optimum experimental conditions were obtained.

  14. Remanufacture of Zirconium-Based Conversion Coatings on the Surface of Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Jin, Guo; Song, Jiahui; Cui, Xiufang; Cai, Zhaobing

    2017-04-01

    Brush plating provides an effective method for creating a coating on substrates of various shapes. A corroded zirconium-based conversion coating was removed from the surface of a magnesium alloy and then replaced with new coatings prepared via brush plating. The structure and composition of the remanufactured coating were determined via x-ray photoelectron spectroscopy, x-ray diffraction, and Fourier transform infrared spectroscopy. The results revealed that the coatings consist of oxide, fluoride, and tannin-related organics. The composition of the coatings varied with the voltage. Furthermore, as revealed via potentiodynamic polarization spectroscopy, these coatings yielded a significant increase in the corrosion resistance of the magnesium alloy. The friction coefficient remained constant for almost 300s during wear resistance measurements performed under a 1-N load and dry sliding conditions, indicating that the remanufactured coatings provide effective inhibition to corrosion.

  15. Fumed metallic oxides and conventional pigments for glossy inkjet paper

    NASA Astrophysics Data System (ADS)

    Lee, Hyunkook

    Product development activity in the area of inkjet printing papers has accelerated greatly to meet the rapidly growing market for inkjet papers. Advancements in inkjet printing technology have also placed new demands on the paper substrate due to faster printing rates, greater resolution through increased drop volumes, and colorants added to the ink. To meet these requirements, papermakers are turning to pigmented size press formulations or pigmented coating systems. For inkjet coating applications, both the internal porosity of the pigment particles as well as the packing porosity of the coating affect print quality and dry time. Pores between the pigment particles allow for rapid diffusion of ink fluids into the coating structure, while also providing capacity for ink fluid uptake. Past research has shown the presence of coating cracks to increase the microroughness of the papers, consequently reducing the gloss of the silica/polyvinyl alcohol based coating colors. Coating cracks were not observed, at the same level of magnification, in the scanning electron microscopy images of alumina/polyvinyl alcohol coated papers. Studies are therefore needed to understand the influence of coating cracking on the microroughening of silica/polyvinyl alcohol based coatings and consequences to coating and ink gloss. Since micro roughening is known to be linked to shrinkage of the coating layer, studies are needed to determine if composite pigments can be formulated, which would enable the coating solids of the formulations to be increased to minimize the shrinkage of coating layer during drying. Coating solids greater than 55% solids are needed to reduce the difference between application solids and the coating's immobilization solids point in order to reduce shrinkage. The aim of this research was to address the above mentioned needed studies. Studies were performed to understand the influence of particle packing on gloss and ink jet print quality. Composite pigment structures were built using well-characterized pigments to determine the influence of particle size and particle size distribution on coating application solids, coatings immobilization solids on coating gloss and print attributes. This research consists of five articles which have all been accepted for publication: (1) Influence of Pigment Particles on the Gloss and Printability of Inkjet Coated Papers, (2) Influence of Silica and Alumina Oxide Pigments on Coating Structure and Print Quality of Inkjet Papers, (3) Production of a Single Coated Glossy Inkjet Paper Using Conventional Coating and Calendering Methods, (4) Influence of Pigment Particle Size and Packing Volume on the Printability of Glossy Inkjet Paper Coatings-Part I, and (5) Influence of Pigment Selection on Printability of Glossy Inkjet Paper Coatings-Part II.

  16. Effects of working gas pressure on zirconium dioxide thin film prepared by pulsed plasma deposition: roughness, wettability, friction and wear characteristics.

    PubMed

    Berni, M; Marchiori, G; Gambardella, A; Boi, M; Bianchi, M; Russo, A; Visani, A; Marcacci, M; Pavan, P G; Lopomo, N F

    2017-08-01

    In joint arthroplasty one of the main issues related to the failure of prosthetic implants is due to the wear of the ultra-high molecular weight polyethylene (UHMWPE) component. Surface treatments and coatings have been recognized as enhancing methods, able to improve the tribological properties of the implants. Therefore, the main objective of this work was to investigate the possibility to fabricate yttria-stabilized zirconia (YSZ) coatings on a metal (AISI 316-L) substrate by means of Pulsed Electron Deposition, in order to improve the tribological behavior of the polymer-metal coupling, by reducing the initial wear of the UHMWPE component. In order to optimize the coating characteristics, the effects of working gas pressure on both its morphological and tribological properties were analyzed. Morphological characterization of the films was evaluated by Atomic Force Microscopy (AFM). Coating wettability was also estimated by contact angle (CA) measurement. Tribological performance (coupling friction and wear of UHMWPE) was evaluated by using a ball-on-disc tribometer during highly-stressing tests in dry and lubricated (i.e. NaCl and serum) conditions; friction and wear were specifically evaluated at the initial sliding distances - to highlight the main effect of coating morphology - and after 100m - where the influence of the intrinsic materials properties prevails. AFM analysis highlighted that the working pressure heavily affected the morphological characteristics of the realized films. The wettability of the coating at the highest and lowest deposition pressures (CA ~ 60°, closed to substrate value) decreased for intermediate pressures, reaching a maximum CA of ~ 90°. Regarding tribological tests, a strong correlation was found in the initial steps between friction coefficient and wettability, which decreased as the distance increased. Concerning UHMWPE wear associated to coated counterpart, at 100m a reduction rate of about 7% in dry, 12% in NaCl and 5% in presence of serum was obtained compared to the uncoated counterpart. Differently from what highlighted for friction, no correlation was found between wear rate and morphological parameters. These findings, in agreement with literature, underlined the effect of the deposition pressure on the morphological properties, but suggested that physical characteristics are influenced too. Further research on the deposition process will be required in order to improve the tribological performance of the coating at long distances, addressing - above all - orthopedic applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Deposition and micro electrical discharge machining of CVD-diamond layers incorporated with silicon

    NASA Astrophysics Data System (ADS)

    Kühn, R.; Berger, T.; Prieske, M.; Börner, R.; Hackert-Oschätzchen, M.; Zeidler, H.; Schubert, A.

    2017-10-01

    In metal forming, lubricants have to be used to prevent corrosion or to reduce friction and tool wear. From an economical and ecological point of view, the aim is to avoid the usage of lubricants. For dry deep drawing of aluminum sheets it is intended to apply locally micro-structured wear-resistant carbon based coatings onto steel tools. One type of these coatings are diamond layers prepared by chemical vapor deposition (CVD). Due to the high strength of diamond, milling processes are unsuitable for micro-structuring of these layers. In contrast to this, micro electrical discharge machining (micro EDM) is a suitable process for micro-structuring CVD-diamond layers. Due to its non-contact nature and its process principle of ablating material by melting and evaporating, it is independent of the hardness, brittleness or toughness of the workpiece material. In this study the deposition and micro electrical discharge machining of silicon incorporated CVD-diamond (Si-CVD-diamond) layers were presented. For this, 10 µm thick layers were deposited on molybdenum plates by a laser-induced plasma CVD process (LaPlas-CVD). For the characterization of the coatings RAMAN- and EDX-analyses were conducted. Experiments in EDM were carried out with a tungsten carbide tool electrode with a diameter of 90 µm to investigate the micro-structuring of Si-CVD-diamond. The impact of voltage, discharge energy and tool polarity on process speed and resulting erosion geometry were analyzed. The results show that micro EDM is a suitable technology for micro-structuring of silicon incorporated CVD-diamond layers.

  18. Mechanism of adaptability for the nano-structured TiAlCrSiYN-based hard physical vapor deposition coatings under extreme frictional conditions

    NASA Astrophysics Data System (ADS)

    Fox-Rabinovich, G. S.; Endrino, J. L.; Aguirre, M. H.; Beake, B. D.; Veldhuis, S. C.; Kovalev, A. I.; Gershman, I. S.; Yamamoto, K.; Losset, Y.; Wainstein, D. L.; Rashkovskiy, A.

    2012-03-01

    Recently, a family of hard mono- and multilayer TiAlCrSiYN-based coatings have been introduced that exhibit adaptive behavior under extreme tribological conditions (in particular during dry ultrahigh speed machining of hardened tool steels). The major feature of these coatings is the formation of the tribo-films on the friction surface which possess high protective ability under operating temperatures of 1000 °C and above. These tribo-films are generated as a result of a self-organization process during friction. But the mechanism how these films affect adaptability of the hard coating is still an open question. The major mechanism proposed in this paper is associated with a strong gradient of temperatures within the layer of nano-scaled tribo-films. This trend was outlined by the performed thermodynamic analysis of friction phenomena combined with the developing of a numerical model of heat transfer within cutting zone based on the finite element method. The results of the theoretical studies show that the major physical-chemical processes during cutting are mostly concentrated within a layer of the tribo-films. This nano-tribological phenomenon produces beneficial heat distribution at the chip/tool interface which controls the tool life and wear behavior.Results of x-ray photoelectron spectroscopy studies indicate enhanced formation of protective sapphire- and mullite-like tribo-films on the friction surface of the multilayer TiAlCrSiYN/TiAlCrN coating. Comprehensive investigations of the structure and phase transformation within the coating layer under operation have been performed, using high resolution transmission electron microscopy, synchrotron radiation technique: x-ray absorption near-edge structure and XRD methods.The data obtained show that the tribo-films efficiently perform their thermal barrier functions preventing heat to penetrate into the body of coated cutting tool. Due to this the surface damaging process as well as non-beneficial phase transformation (formation of AlN hex phase) drastically diminishes within the layer of the adaptive coating. Micro-mechanical properties measurements performed at room and elevated temperatures show that the hardness of the multilayer TiAlCrSiYN/TiAlCrN coating appears stable to 500 °C and then drops a little at 600 °C but still remains high. It means that if the surface tribo-films can reduce actual temperature down to this level the coating underneath is able to efficiently withstand heavy loads under operation.

  19. SMIF capability at Intel Mask Operation improves yield

    NASA Astrophysics Data System (ADS)

    Dam, Thuc H.; Pekny, Matt; Millino, Jim; Luu, Gibson; Melwani, Nitesh; Venkatramani, Aparna; Tavassoli, Malahat

    2003-08-01

    At Intel Mask Operations (IMO), Standard Mechanical Interface (SMIF) processing has been employed to reduce environmental particle contamination from manual handling-related activities. SMIF handling entailed the utilization of automated robotic transfers of photoblanks/reticles between SMIF pods, whereas conventional handling utilized manual pick transfers of masks between SMIF pods with intermediate storage in Toppan compacts. The SMIF-enabling units in IMO's process line included: (1) coater, (2) exposure, (3) developer, (4) dry etcher, and (5) inspection. Each unit is equipped with automated I/O port, environmentally enclosed processing chamber, and SMIF pods. Yield metrics were utilized to demonstrate the effectiveness and advantages of SMIF processing compared to manual processing. The areas focused in this paper were blank resist coating, binary front-end reticle processing and 2nd level PSM reticle processing. Results obtained from the investigation showed yield improvements in these areas.

  20. Design and evaluation of a dry coated drug delivery system with floating-pulsatile release.

    PubMed

    Zou, Hao; Jiang, Xuetao; Kong, Lingshan; Gao, Shen

    2008-01-01

    The objective of this work was to develop and evaluate a floating-pulsatile drug delivery system intended for chronopharmacotherapy. Floating-pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. To overcome limitations of various approaches for imparting buoyancy, we generated the system which consisted of three different parts, a core tablet, containing the active ingredient, an erodible outer shell and a top cover buoyant layer. The dry coated tablet consists in a drug-containing core, coated by a hydrophilic erodible polymer which is responsible for a lag phase in the onset of pulsatile release. The buoyant layer, prepared with Methocel K4M, Carbopol 934P and sodium bicarbonate, provides buoyancy to increase the retention of the oral dosage form in the stomach. The effect of the hydrophilic erodible polymer characteristics on the lag time and drug release was investigated. Developed formulations were evaluated for their buoyancy, dissolution and pharmacokinetic, as well gamma-scintigraphically. The results showed that a certain lag time before the drug released generally due to the erosion of the dry coated layer. Floating time was controlled by the quantity and composition of the buoyant layer. Both pharmacokinetic and gamma-scintigraphic data point out the capability of the system of prolonged residence of the tablets in the stomach and releasing drugs after a programmed lag time. (c) 2007 Wiley-Liss, Inc.

  1. Seed reserve composition and mobilization during germination and early seedling establishment of Cereus jamacaru D.C. ssp. jamacaru (Cactaceae).

    PubMed

    Alencar, Nara L M; Innecco, Renato; Gomes-Filho, Enéas; Gallão, Maria Izabel; Alvarez-Pizarro, Juan C; Prisco, José T; Oliveira, Alexandre B De

    2012-09-01

    Cereus jamacaru, a Cactaceae found throughout northeast Brazil, is widely used as cattle food and as an ornamental and medicinal plant. However, there has been little information about the physiological and biochemical aspects involved in its germination. The aim of this study was to investigate its reserve mobilization during germination and early seedling growth. For this, C. jamacaru seeds were germinated in a growth chamber and collected at 0, 2, 4, 5, 6, 8 and 12 days after imbibition for morphological and biochemical analyses. Dry seeds had wrinkled seed coats and large, curved embryos. Lipids were the most abundant reserve, comprising approximately 55% and 65% of the dry mass for cotyledons and the hypocotylradicle axis, respectively. Soluble sugars and starch were the minor reserves, corresponding to approximately 2.2% of the cotyledons' dry mass, although their levels showed significant changes during germination. Soluble proteins corresponded to 40% of the cotyledons' dry mass, which was reduced by 81% at the final period of germination compared to dry seeds. C. jamacaru seed can be classified as an oil seed due to its high lipid content. Moreover, lipids were the main reserve mobilized during germination because their levels were strongly reduced after seed germination, while proteins were the second most utilized reserve in this process.

  2. Wear of Selected Oxide Ceramics and Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Sayir, A.; Farmer, S. C.

    2005-01-01

    The use of oxide ceramics and coatings for moving mechanical components operating in high-temperature, oxidizing environments creates a need to define the tribological performance and durability of these materials. Results of research focusing on the wear behavior and properties of Al2O3/ZrO2 (Y2O3) eutectics and coatings under dry sliding conditions are discussed. The importance of microstructure and composition on wear properties of directionally solidified oxide eutectics is illustrated. Wear data of selected oxide-, nitride-, and carbide-based ceramics and coatings are given for temperatures up to 973K in air.

  3. 40 CFR 63.3965 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; coating solvent flash-off, curing, and drying occurs within the capture system; and the removal or... spray booth and a curing oven. (b) Measuring capture efficiency. If the capture system does not meet... surface preparation activities and drying and curing time. (c) Liquid-to-uncaptured-gas protocol using a...

  4. Dry elixir formulations of dexibuprofen for controlled release and enhanced oral bioavailability.

    PubMed

    Kim, Seo-Ryung; Kim, Jin-Ki; Park, Jeong-Sook; Kim, Chong-Kook

    2011-02-14

    The objective of this study was to achieve an optimal formulation of dexibuprofen dry elixir (DDE) for the improvement of dissolution rate and bioavailability. To control the release rate of dexibuprofen, Eudragit(®) RS was employed on the surface of DDE resulting in coated dexibuprofen dry elixir (CDDE). Physicochemical properties of DDE and CDDE such as particle size, SEM, DSC, and contents of dexibuprofen and ethanol were characterized. Pharmacokinetic parameters of dexibuprofen were evaluated in the rats after oral administration. The DDE and CDDE were spherical particles of 12 and 19 μm, respectively. The dexibuprofen and ethanol contents in the DDE were dependent on the amount of dextrin and maintained for 90 days. The dissolution rate and bioavailability of dexibuprofen loaded in dry elixir were increased compared with those of dexibuprofen powder. Moreover, coating DDE with Eudragit(®) RS retarded the dissolution rate of dexibuprofen from DDE without reducing the bioavailability. Our results suggest that CDDE may be potential oral dosage forms to control the release and to improve the bioavailability of poorly water-soluble dexibuprofen. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads

    PubMed Central

    Badge, Ila; Stark, Alyssa Y.; Paoloni, Eva L.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2014-01-01

    An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70–90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties. PMID:25323067

  6. The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads

    NASA Astrophysics Data System (ADS)

    Badge, Ila; Stark, Alyssa Y.; Paoloni, Eva L.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2014-10-01

    An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70-90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties.

  7. Polyvinyl alcohol coating of polystyrene inertial confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Annamalai, P.; Lee, M. C.; Crawley, R. L.; Downs, R. L.

    1985-01-01

    An inertial confinement fusion (ICF) target made of polystyrene is first levitated in an acoustic field. The surface of the target is then etched using an appropriate solution (e.g., cyclohexane) to enhance the wetting characteristics. A specially prepared polyvinyl alcohol solution is atomized using an acoustic atomizer and deposited on the surface of the target. The solution is air dried to form a thin coating (2 microns) on the target (outside diameter of about 350-850 microns). Thicker coatings are obtained by repeated applications of the coating solutions. Preliminary results indicate that uniform coatings may be achievable on the targets with a background surface smoothness in the order of 1000 A.

  8. Investigation of Application Parameters and Testing of Rain Erosion Coatings.

    DTIC Science & Technology

    1980-03-13

    temperature for 7-9 days. The adhesive peel specimens were completed by applying a piece of the 12.1 oz/yd2 canvas reinforcing strap into the (still wet) last...coating layer of the rain erosion material. The canvas was smoothed and brought into intimate contact with the rain erosion material and allowed 4-6...hours to dry. An eighteen hour overnight cure was allowed for excess solvents to escape through the last layers of the coating material and canvas . Two

  9. Effect of water on critical and subcritical fracture properties of Woodford shale

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofeng; Eichhubl, Peter; Olson, Jon E.

    2017-04-01

    Subcritical fracture behavior of shales under aqueous conditions is poorly characterized despite increased relevance to oil and gas resource development and seal integrity in waste disposal and subsurface carbon sequestration. We measured subcritical fracture properties of Woodford shale in ambient air, dry CO2 gas, and deionized water by using the double-torsion method. Compared to tests in ambient air, the presence of water reduces fracture toughness by 50%, subcritical index by 77%, and shear modulus by 27% and increases inelastic deformation. Comparison between test specimens coated with a hydrophobic agent and uncoated specimens demonstrates that the interaction of water with the bulk rock results in the reduction of fracture toughness and enhanced plastic effects, while water-rock interaction limited to the vicinity of the propagating fracture tip by a hydrophobic specimen coating lowers subcritical index and increases fracture velocity. The observed deviation of a rate-dependent subcritical index from the power law K-V relations for coated specimens tested in water is attributed to a time-dependent weakening process resulting from the interaction between water and clays in the vicinity of the fracture tip.

  10. Nano-cones for broadband light coupling to high index substrates

    NASA Astrophysics Data System (ADS)

    Buencuerpo, J.; Torné, L.; Álvaro, R.; Llorens, J. M.; Dotor, M. L.; Ripalda, J. M.

    2016-12-01

    The moth-eye structure has been proposed several times as an antireflective coating to replace the standard optical thin films. Here, we experimentally demonstrate the feasibility of a dielectric moth-eye structure as an antireflective coating for high-index substrates, like GaAs. The fabricated photonic crystal has Si3N4 cones in a square lattice, sitting on top of a TiO2 index matching layer. This structure attains 1.4% of reflectance power losses in the operation spectral range of GaAs solar cells (440-870 nm), a 12.5% relative reduction of reflection power losses in comparison with a standard bilayer. The work presented here considers a fabrication process based on laser interference lithography and dry etching, which are compatible with solar cell devices. The experimental results are consistent with scattering matrix simulations of the fabricated structures. In a broader spectral range (400-1800 nm), the simulation estimates that the nanostructure also significantly outperforms the standard bilayer coating (3.1% vs. 4.5% reflection losses), a result of interest for multijunction tandem solar cells.

  11. Weavability of dry polymer powder towpreg

    NASA Technical Reports Server (NTRS)

    Hugh, Maylene K.; Marchello, Joseph M.; Maiden, Janice R.; Johnston, Norman J.

    1993-01-01

    Carbon fiber yarns (3k, 6k, 12k) were impregnated with LARC (tm) thermoplastic polyimide dry powder. Parameters for weaving these yarns were established. Eight-harness satin fabrics were successfully woven from each of the three classes of yarns and consolidated into test specimens to determine mechanical properties. It was observed that for optimum results warp yarns should have flexural rigidities between 10,000 and 100,000 mg-cm. Tow handling minimization, low tensioning, and tow bundle twisting were used to reduce fiber breakage, the separation of filaments, and tow-to-tow abrasion. No apparent effect of tow size or twist was observed on either tension or compression modulus. However, fiber damage and processing costs favor the use of 12k yarn bundles versus 3k or 6k yarn bundles in the weaving of powder-coated towpreg.

  12. Effect of Particle Hardness on the Penetration Behavior of Fabrics Intercalated with Dry Particles and Concentrated Particle-Fluid Suspensions

    DTIC Science & Technology

    2009-11-03

    uniform appearance, while PMMA- and SiO2-coated fabrics without PEG appeared streaky with a whitened or slightly chalky appearance. If placed in...coatings. One complicating factor in determining the role of STF rheology is that the extremely high surface area of the fabric could cause microscale

  13. Characterization of chitosan edible films obtained with various polymer concentrations and drying temperatures.

    PubMed

    Homez-Jara, Angie; Daza, Luis Daniel; Aguirre, Diana Marcela; Muñoz, José Aldemar; Solanilla, José Fernando; Váquiro, Henry Alexander

    2018-07-01

    Chitosan is a promising material that could be used for the development of edible coatings and films on an industrial level because of its film-forming, biodegradable, non-toxic, and antimicrobial characteristics. The aim of this work was to evaluate the effect of the polymer concentration (0.5%, 1.0%, and 1.5%) and drying temperature (2°C, 25°C, and 40°C) on the physicochemical, mechanical, and thermal properties of chitosan edible films. Chitosan edible films were successfully produced using various processing conditions. The use of lower drying temperatures had a positive effect on certain properties of the films, such as the moisture content (MC), solubility (S), water vapor permeability (WVP), and optical properties. However, the use of greater drying temperatures (40°C), combined with a higher chitosan concentration, enhanced certain properties of the films, such as the tensile strength (TS), swelling power (SP), and greenness value, while diminishing their luminosity. The chitosan films developed in this study showed many desirable characteristics, which may enable their future use as packaging for food products. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues

    PubMed Central

    Ignjatović, Nenad; Wu, Victoria; Ajduković, Zorica; Mihajilov-Krstev, Tatjana; Uskoković, Vuk; Uskoković, Dragan

    2016-01-01

    Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area. PMID:26706541

  15. Twenty-First Century Research Needs in Electrostatic Processes Applied to Industry and Medicine

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Sims, R. A.; Biris, A. S.; Srirama, P. K.; Saini, D.; Yurteri, C. U.; Trigwell, S.; De, S.; Sharma, R.

    2005-01-01

    From the early century Nobel Prize winning (1923) experiments with charged oil droplets, resulting in the discovery of the elementary electronic charge by Robert Millikan, to the early 21st century Nobel Prize (2002) awarded to John Fenn for his invention of electrospray ionization mass spectroscopy and its applications to proteomics, electrostatic processes have been successfully applied to many areas of industry and medicine. Generation, transport, deposition, separation, analysis, and control of charged particles involved in the four states of matter: solid, liquid, gas, and plasma are of interest in many industrial and biomedical processes. In this paper, we briefly discuss some of the applications and research needs involving charged particles in industrial and medical applications including: (1) Generation and deposition of unipolarly charged dry powder without the presence of ions or excessive ozone, (2) Control of tribocharging process for consistent and reliable charging, (3) Thin film (less than 25 micrometers) powder coating and Powder coating on insulative surfaces, (4) Fluidization and dispersion of fine powders, (5) Mitigation of Mars dust, (6) Effect of particle charge on the lung deposition of inhaled medical aerosols, (7) Nanoparticle deposition, and (8) Plasma/Corona discharge processes. A brief discussion on the measurements of charged particles and suggestions for research needs are also included.

  16. Corrosion resistance of Zn-Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31

    NASA Astrophysics Data System (ADS)

    Zeng, Rong-Chang; Li, Xiao-Ting; Liu, Zhen-Guo; Zhang, Fen; Li, Shuo-Qi; Cui, Hong-Zhi

    2015-12-01

    A Zn-Al layered double hydroxide (ZnAl-LDH) coating consisted of uniform hexagonal nano-plates was firstly synthesized by co-precipitation and hydrothermal treatment on the AZ31 alloy, and then a poly(lactic acid) (PLA) coating was sealed on the top layer of the ZnAl-LDH coating using vacuum freeze-drying. The characteristics of the ZnAl-LDH/PLA composite coatings were investigated by means of XRD, SEM, FTIR and EDS. The corrosion resistance of the coatings was assessed by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the ZnAl-LDH coating contained a compact inner layer and a porous outer layer, and the PLA coating with a strong adhesion to the porous outer layer can prolong the service life of the ZnAl-LDH coating. The excellent corrosion resistance of this composite coating can be attributable to its barrier function, ion-exchange and self-healing ability.

  17. Nanocrystalline coating design for extreme applications based on the concept of complex adaptive behavior

    NASA Astrophysics Data System (ADS)

    Fox-Rabinovich, G. S.; Veldhuis, S. C.; Dosbaeva, G. K.; Yamamoto, K.; Kovalev, A. I.; Wainstein, D. L.; Gershman, I. S.; Shuster, L. S.; Beake, B. D.

    2008-04-01

    The development of effective hard coatings for high performance dry machining, which is associated with high stress/temperatures during friction, is a major challenge. Newly developed synergistically alloyed nanocrystalline adaptive Ti0.2Al0.55Cr0.2Si0.03Y0.02N plasma vapor deposited hard coatings exhibit excellent tool life under conditions of high performance dry machining of hardened steel, especially under severe and extreme cutting conditions. The coating is capable of sustaining cutting speeds as high as 600 m/min. Comprehensive investigation of the microstructure and properties of the coating was performed. The structure of the coating before and after service has been characterized by high resolution transmission electron microscopy. Micromechanical characteristics of the coating have been investigated at elevated temperatures. Oxidation resistance of the coating has been studied by using thermogravimetry within a temperature range of 25-1100 °C in air. The coefficient of friction of the coatings was studied within a temperature range of 25-1200 °C. To determine the causes of excellent tool life and improved wear behavior of the TiAlCrSiYN coatings, its surface structure characteristics after service have been investigated by using x-ray photoelectron spectroscopy and extended energy-loss fine spectroscopy. One of the major features of this coating is the dynamic formation of the protective tribo-oxide films (dissipative structures) on the surface during friction with a sapphire and mullite crystal structure. Aluminum- and silicon-rich tribofilms with dangling bonds form on the surface as well. These tribofilms act in synergy and protect the surface so efficiently that it is able to sustain extreme operating conditions. Moreover, the Ti0.2Al0.55Cr0.2Si0.03Y0.02N coating possesses some features of a complex adaptive behavior because it has a number of improved characteristics (tribological adaptability, ultrafine nanocrystalline structure, hot hardness and plasticity, and oxidation stability) that work synergistically as a whole. Due to the complex adaptive behavior, this coating represents a higher ordered system that has an ability to achieve unattainable wear resistance under strongly intensifying and extreme tribological conditions.

  18. Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size.

    PubMed

    Azad, Mohammad; Moreno, Jacqueline; Bilgili, Ecevit; Davé, Rajesh

    2016-11-20

    Formation of core-shell nanocomposites of Fenofibrate and Itraconazole, model poorly water soluble drugs, via fluidized bed (FB) coating of their well-stabilized high drug loaded nanosuspensions is investigated. Specifically, the extent of dissolution enhancement, when fine carrier particles (sub-50μm) as opposed to the traditional large carrier particles (>300μm) are used, is examined. This allows testing the hypothesis that greatly increased carrier surface area and more importantly, thinner shell for finer carriers at the same drug loading can significantly increase the dissolution rate when spray-coated nanosuspensions are well-stabilized. Fine sub-50μm lactose (GranuLac ® 200) carrier particles were made fluidizable via dry coating with nano-silica, enabling decreased cohesion, fluidization and subsequent nanosuspension coating. For both drugs, 30% drug loaded suspensions were prepared via wet-stirred media milling using hydroxypropyl methyl cellulose and sodium dodecyl sulfate as stabilizers. The stabilizer concentrations were varied to affect the milled particle size and prepare a stable nanosuspension. The suspensions were FB coated onto hydrophilic nano-silica (M-5P) dry coated sub-50μm lactose (GranuLac ® 200) carrier particles or larger carrier particles of median size >300μm (PrismaLac ® 40). The resulting finer composite powders (sub-100μm) based on GranuLac ® 200 were freely flowing, had high bulk density, and had much faster, immediate dissolution of the poorly water-soluble drugs, in particular for Itraconazole. This is attributed to a much higher specific surface area of the carrier and corresponding thinner coating layer for fine carriers as opposed to those for large carrier particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Non-noble metal based metallization systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1983-01-01

    The results of efforts to produce a nonsilver metallization system for silicon photovoltaic cells are given. The system uses a metallization system based on molybdenum, tin, and titanium hydride. The initial work in this system was done using the MIDFILM process. The MIDFILM process attains a line resolution comparable to photoresist methods with a process related to screen printing. The surface to be processed is first coated with a thin layer of photopolymer material. Upon exposure to ultraviolet light through a suitable mask, the polymer in the non-pattern area crosslinks and becomes hard. The unexposed pattern areas remain tacky. The conductor material is then applied in the form of a dry mixture of metal which adheres to the tacky pattern area. The assemblage is then fired to ash the photopolymer and sinter the conductor powder.

  20. Altering the rate of glucose release from starch-based foods by spray-drying with an extract from barley.

    PubMed

    Razzaq, Hussam A A; Sutton, Kevin H; Motoi, Lidia

    2013-08-30

    Health outcomes associated with sustained elevated blood glucose may be better managed by limiting glucose availability for uptake. Glucose release from consumed starch may be altered using various methods, but many are not suitable for high-carbohydrate foods. This study describes an approach to protect starch granules, while generally maintaining their physical characteristics, with an extract from barley using spray-drying. The use of the extract resulted in the coating of the starch granules with a film-like material composed of β-glucans and proteins. This coincided with a reduction in starch digestion and a significant increase in the indigestible (resistant) starch component. Substitution of the starch component in a model snack bar by the coated starch was also associated with lowering starch digestion in the bar. The barley extract provides a physical barrier that may limit the exposure of starch to the digestive enzymes and water, with a consequent reduction in starch digestion and the rate of glucose release. It is possible, therefore, to produce wheat starch with lower digestibility and glucose release rate that may be used as a healthier substitute in high-carbohydrate foods by coating the granules with polymers extracted from barley cereals through spray-drying. © 2013 Society of Chemical Industry.

  1. Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles.

    PubMed

    Sim, Kyoung Mi; Kim, Kyung Hwan; Hwang, Gi Byoung; Seo, SungChul; Bae, Gwi-Nam; Jung, Jae Hee

    2014-09-15

    Activated carbon fiber (ACF) filters have a wide range of applications, including air purification, dehumidification, and water purification, due to their large specific surface area, high adsorption capacity and rate, and specific surface reactivity. However, when airborne microorganisms such as bacteria and fungi adhere to the carbon substrate, ACF filters can become a source of microbial contamination, and their filter efficacy declines. Antimicrobial treatments are a promising means of preventing ACF bio-contamination. In this study, we demonstrate the use of Sophora flavescens in antimicrobial nanoparticles coated onto ACF filters. The particles were prepared using an aerosol process consisting of nebulization-thermal drying and particle deposition. The extract from S. flavescens is an effective, natural antimicrobial agent that exhibits antibacterial activity against various pathogens. The efficiency of Staphylococcus epidermidis inactivation increased with the concentration of S. flavescens nanoparticles in the ACF filter coating. The gas adsorption efficiency of the coated antimicrobial ACF filters was also evaluated using toluene. The toluene-removal capacity of the ACF filters remained unchanged while the antimicrobial activity was over 90% for some nanoparticle concentrations. Our results provide a scientific basis for controlling both bioaerosol and gaseous pollutants using antimicrobial ACF filters coated with S. flavescens nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Highly-transparent multi-layered spin-coated silk fibroin film

    NASA Astrophysics Data System (ADS)

    Wasapinyokul, Kamol; Kaewpirom, Supranee; Chuwongin, Santhad; Boonsang, Siridech

    2017-10-01

    In this study, the silk fibroin films with different numbers of layers were fabricated by the spin-coating method and their optical transmittances were observed. The process to synthesise the silk fibroin solution was explained - starting from the silk cocoon until the silk-fibroin solution, approximately 7.5% concentration wt/vol, was obtained. The solution was spin-coated onto clean glass substrates to fabricate samples. Totally 10 samples with different numbers of layers, from 1 to 5 layers, were obtained. All samples can be separated into two groups: those left dried at room temperature after spin-coating and those heated at 60°C. They were then measured for their transmittance over the visible-to-near-infrared region. All samples exhibited the high transmittance where the values were at 95% and 98%, for the samples at room temperature and those at 60°C, respectively. This was believed to be due to the heating effect that caused the silk fibroin to arrange itself after being heated, hence the higher transmittance. These high transmittances were maintained regardless of the number of layers and length of heating time. Results from this study could be used to fabricate a silk fibroin film with high optical transmittance and adjustable other properties.

  3. Bonding of Resin Cement to Zirconia with High Pressure Primer Coating

    PubMed Central

    Wang, Ying-jie; Jiao, Kai; Liu, Yan; Zhou, Wei; Shen, Li-juan; Fang, Ming; Li, Meng; Zhang, Xiang; Tay, Franklin R.; Chen, Ji-hua

    2014-01-01

    Objectives To investigate the effect of air-drying pressure during ceramic primer coating on zirconia/resin bonding and the surface characteristics of the primed zirconia. Methods Two ceramic primers (Clearfil Ceramic Primer, CCP, Kuraray Medical Inc. and Z-Prime Plus, ZPP, Bisco Inc.) were applied on the surface of air-abraded zirconia (Katana zirconia, Noritake) and dried at 4 different air pressures (0.1–0.4 MPa). The primed zirconia ceramic specimens were bonded with a resin-based luting agent (SA Luting Cement, Kuraray). Micro-shear bond strengths of the bonded specimens were tested after 3 days of water storage or 5,000× thermocycling (n = 12). Failure modes of the fractured specimens were examined with scanning electron miscopy. The effects of air pressure on the thickness of the primer layers and the surface roughness (Sa) of primed zirconia were evaluated using spectroscopic ellipsometry (n = 6), optical profilometry and environmental scanning electron microscopy (ESEM) (n = 6), respectively. Results Clearfil Ceramic Primer air-dried at 0.3 and 0.4 MPa, yielding significantly higher µSBS than gentle air-drying subgroups (p<0.05). Compared to vigorous drying conditions, Z-Prime Plus air-dried at 0.2 MPa exhibited significantly higher µSBS (p<0.05). Increasing air-drying pressure reduced the film thickness for both primers. Profilometry measurements and ESEM showed rougher surfaces in the high pressure subgroups of CCP and intermediate pressure subgroup of ZPP. Conclusion Air-drying pressure influences resin/zirconia bond strength and durability significantly. Higher air-drying pressure (0.3-0.4 MPa) for CCP and intermediate pressure (0.2 MPa) for ZPP are recommended to produce strong, durable bonds between resin cement and zirconia ceramics. PMID:24992678

  4. Thin sol-gel-derived silica coatings on dental pure titanium casting.

    PubMed

    Yoshida, K; Kamada, K; Sato, K; Hatada, R; Baba, K; Atsuta, M

    1999-01-01

    The sol-gel dipping process, in which liquid silicon alkoxide is transformed into a solid silicon-oxygen network, can produce a thin film coating of silica (SiO(2)). The features of this method are high homogeneity and purity of the thin SiO(2) film and a low sinter temperature, which are important in the preparation of coating films that can protect metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface properties of dental pure titanium casting coated with a thin SiO(2) or SiO(2)/F-hybrid film by the sol-gel dipping process. The metal specimens were pretreated by dipping in isopropylalcohol solution containing 10 wt% 3-aminopropyl trimethoxysilane and treated by dipping in the silica precursor solution for 5 min, withdrawal at a speed of 2 mm/min, air-drying for 20 min at room temperature, heating at 120 degrees C for 20 min, and then storing at room temperature. Both SiO(2) and SiO(2)/F films bonded strongly (above 55 MPa) to pure titanium substrate by a tensile test. SiO(2(-)) and SiO(2)/F-coated specimens immersed in 1 wt% of lactic acid solution for two weeks showed significantly less release of titanium ions (30. 5 ppb/cm(2) and 9.5 ppb/cm(2), respectively) from the substrate than noncoated specimens (235.2 ppb/cm(2)). Hydrophobilization of SiO(2(-)) and SiO(2)/F-coated surfaces resulted in significant increases of contact angle of water (81.6 degrees and 105.7 degrees, respectively) compared with noncoated metal specimens (62.1 degrees ). The formation of both thin SiO(2) and SiO(2)/F-hybrid films by the sol-gel dipping process on the surface of dental pure titanium casting may be useful clinically in enhancing the bond strength of dental resin cements to titanium, preventing titanium ions release from the substrate, and reducing the accumulation of dental plaque attaching to intraoral dental restorations. Copyright 1999 John Wiley & Sons, Inc.

  5. Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials

    NASA Astrophysics Data System (ADS)

    De Nicola, Francesco; Hines, Peter; De Crescenzi, Maurizio; Motta, Nunzio

    2017-07-01

    Ultrablack metamaterials are artificial materials able to harvest all the incident light regardless of wavelength, angle, or polarization. Here, we show the ultrablack properties of randomly aligned hierarchical carbon nanotube arrays with thicknesses below 200 nm. The thin coatings are realized by solution processing and dry-transfer deposition on different substrates. The hierarchical surface morphology of the coatings is biomimetic and provides a large effective area that improves the film optical absorption. Also, such a morphology is responsible for the moth-eye effect, which leads to the omnidirectional and polarization-independent suppression of optical reflection. The films exhibit an emissivity up to 99.36% typical of an ideal black body, resulting in the thinnest ultrablack metamaterial ever reported. Such a material may be exploited for thermal, optical, and optoelectronic devices such as heat sinks, optical shields, solar cells, light and thermal sensors, and light-emitting diodes.

  6. Diamond and diamondlike carbon as wear-resistant, self-lubricating coatings for silicon nitride

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1995-01-01

    Recent work on the friction and wear properties of as-deposited fine-grain diamond, polished coarse-grain diamond, and as-deposited diamondlike carbon (DLC) films in humid air at a relative humidity of approximately 40 percent and in dry nitrogen is reviewed. Two types of chemical vapor deposition (CVD) processes are used to deposit diamond films on silicon nitride (Si3N4) substrates: microwave-plasma and hot-filament. Ion beams are used to deposit DLC films of Si3N4 substrates. The diamond and DLC films in sliding contact with hemispherical bare Si3N4 pins have low steady-state coefficients of friction (less than 0.2) and low wear rates (less than 10(exp -7) mm(exp 2)/N-m), and thus, can be used effectively as wear-resistant, self-lubricating coatings for Si3N4 in the aforementioned two environments.

  7. Towards an integrated system for bio-energy: hydrogen production by Escherichia coli and use of palladium-coated waste cells for electricity generation in a fuel cell.

    PubMed

    Orozco, R L; Redwood, M D; Yong, P; Caldelari, I; Sargent, F; Macaskie, L E

    2010-12-01

    Escherichia coli strains MC4100 (parent) and a mutant strain derived from this (IC007) were evaluated for their ability to produce H(2) and organic acids (OAs) via fermentation. Following growth, each strain was coated with Pd(0) via bioreduction of Pd(II). Dried, sintered Pd-biomaterials ('Bio-Pd') were tested as anodes in a proton exchange membrane (PEM) fuel cell for their ability to generate electricity from H(2). Both strains produced hydrogen and OAs but 'palladised' cells of strain IC007 (Bio-Pd(IC007)) produced ~threefold more power as compared to Bio-Pd(MC4100) (56 and 18 mW respectively). The power output used, for comparison, commercial Pd(0) powder and Bio-Pd made from Desulfovibrio desulfuricans, was ~100 mW. The implications of these findings for an integrated energy generating process are discussed.

  8. Fertilizer application equipment for bareroot and container nurseries

    Treesearch

    John W. Bartok

    2002-01-01

    Fertilizer application equipment can apply chemicals in dry or liquid form or as manure. The appropriate equipment will place the material at the desired rate in the desired location. In bareroot nurseries, fertilizer is usually applied dry in granulated pellets or coated form. Where in plentiful supply, animal manure may be used, both for nutrients and organic matter...

  9. Dry Lubricant Smooths the Way for Space Travel, Industry

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Reviving industry standards for coating parts in tungsten disulfide, a dry lubricant developed for the Mariner space probes managed by the Jet Propulsion Laboratory in the 1960s and '70s, Applied Tungstenite, a relatively new Temecula, California-based company, has found a client base in the mushrooming commercial space industry, as well as other manufacturers.

  10. 40 CFR 63.3544 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system, and coating solvent flash-off, curing, and drying occurs within the capture system. For example, the criterion is not met if parts enter the open shop environment when being moved between a spray... time required for a single part to go from the beginning to the end of production, and includes drying...

  11. 40 CFR 63.4765 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... coating, curing, and drying occurs within the capture system; and the removal or evaporation of cleaning... criterion is not met if parts enter the open shop environment when being moved between a spray booth and a... activities and drying or curing time. (c) Liquid-to-uncaptured-gas protocol using a temporary total enclosure...

  12. Fine structures and ion images on fresh frozen dried ultrathin sections by transmission electron and scanning ion microscopy

    NASA Astrophysics Data System (ADS)

    Takaya, K.; Okabe, M.; Sawataishi, M.; Takashima, H.; Yoshida, T.

    2003-01-01

    Ion microscopy (IM) of air-dried or freeze-dried cryostat and semi-thin cryosections has provided ion images of elements and organic substances in wide areas of the tissue. For reproducible ion images by a shorter time of exposure to the primary ion beam, fresh frozen dried ultrathin sections were prepared by freezing the tissue in propane chilled with liquid nitrogen, cryocut at 60 nm, mounted on grids and silicon wafer pieces, and freeze-dried. Rat Cowper gland and sciatic nerve, bone marrow of the rat administered of lithium carbonate, tree frog and African toad spleen and buffy coat of atopic dermatitis patients were examined. Fine structures and ion images of the corresponding areas in the same or neighboring sections were observed by transmission electron microscopy (TEM) followed by sector type and time-of-flight type IM. Cells in the buffy coat contained larger amounts of potassium and magnesium while plasma had larger amounts of sodium and calcium. However, in the tissues, lithium, sodium, magnesium, calcium and potassium were distributed in the cell and calcium showed a granular appearance. A granular cell of the tree frog spleen contained sodium and potassium over the cell and magnesium and calcium were confined to granules.

  13. Deposition pattern and tracer particle motion of evaporating multi-component sessile droplets.

    PubMed

    Amjad, Muhammad; Yang, Yang; Raza, Ghulam; Gao, Hui; Zhang, Jun; Zhou, Leping; Du, Xiaoze; Wen, Dongsheng

    2017-11-15

    The understanding of near-wall motion, evaporation behavior and dry pattern of sessile nanofluid droplets is fundamental to a wide range of applications such as painting, spray drying, thin film coating, fuel injection and inkjet printing. However, a deep insight into the heat transfer, fluid flow, near-wall particle velocity and their effects on the resulting dry patterns is still much needed to take the full advantage of these nano-sized particles in the droplet. This work investigates the effect of direct absorptive silicon/silver (Si/Ag) hybrid nanofluids via two experiments. The first experiment identifies the motion of tracer particles near the triple line of a sessile nanofluid droplet on a super-hydrophilic substrate under ambient conditions by the multilayer nanoparticle image velocimetry (MnPIV) technique. The second experiment reveals the effect of light-sensitive Si/Ag composite nanoparticles on the droplet evaporation rate and subsequent drying patterns under different radiation intensities. The results show that the presence of nanoparticle in a very small proportion significantly affects the motion of tracer particles, leading to different drying patterns and evaporation rates, which can be very important for the applications such as spray coating and inkjet printing. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Application of spherical silicate to prepare solid dispersion dosage forms with aqueous polymers.

    PubMed

    Nagane, Kentaro; Kimura, Susumu; Ukai, Koji; Takahashi, Chisato; Ogawa, Noriko; Yamamoto, Hiromitsu

    2015-09-30

    The objective of this study is to prepare and characterize solid dispersions of nifedipine (NP) using porous spherical silicate micro beads (MB) that were approximately 100 μm in diameter with vinylpyrrolidone/vinyl acetate copolymer (PVP/VA) and a Wurster-type fluidized bed granulator. Compared with previously reported solid dispersion using only MB, the supersaturation of NP dissolved from the proposed system of MB and PVP/VA was maintained during dissolution tests. The proposed system produced a solid dispersion product coated on MB, and morphology was maintained after the coating process to prepare solid dispersion; therefore, the powder characteristics, such as flowability of the proposed solid dispersion product, was tremendously preferable to that of the conventional spray-dried solid dispersions of NP with PVP/VA, expecting to make the consequent manufacturing processes easy for development. Another advantage in the terms of manufacturing is its simple process to prepare solid dispersion by spraying the drug and polymer that were dissolved in an organic solvent onto a MB in a Wurster-type fluidized bed granulator, thus, simplifying the optimization and scale-up with ease. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. An electro-conductive organic coating for scanning electron microscopy (déjà vu)

    NASA Astrophysics Data System (ADS)

    Burnett, Bryan R.

    2014-09-01

    An organic compound, originally marketed as an antistatic, can form an extremely thin electro-conductive coating upon drying. A scanning electron microscope (SEM) application for this compound was first explored in the late 1960s. A coating of this compound eliminates the need for carbon or gold coating in some applications. It is well suited for the viewing of fabric samples and associated gunshot residue (GSR) in the SEM and makes it possible to quickly analyze fabric bullet wipe and bore wipe GSR. Fabric samples can also be examined for GSR from intermediate-range shots to estimate muzzle-target distances. Scanning

  16. Physiological effects of seed coat darkening in Cowpea bean (Vigna unguiculata L. Walp): aging and water uptake

    USDA-ARS?s Scientific Manuscript database

    Cowpea bean (Vigna unguiculata L. Walp) is an important annual food crop in Northeast Brazil. Dry storage of these seeds leads to a slow and uneven darkening of the seed coat. The mixture of seed colors creates an unacceptable product for consumers. The aim of this study was to determine the kineti...

  17. Cyromazine seed treatments to control onion maggot, Delia antiqua, on green onions.

    PubMed

    Yildirim, Erol; Hoy, Casey W

    2003-10-01

    Cyromazine seed treatments were evaluated for onion maggot control in green onion crops. The more tolerant to organophosphates of two populations of onion maggots was chosen for further research, based on the results of adult assays in a Potter spray tower. In the laboratory, first-instar mortality was compared between film-coated seed treatment and soil drench treatment. The LC50 for the film-coated seed treatment was approximately one fourth that of the soil drench treatment. In choice assays, no significant difference was observed between the number of eggs deposited on seedlings grown from film-coated seeds with cyromazine and film-coated seeds without cyromazine. Field studies demonstrated that all rates of cyromazine seed treatment resulted in protection of onion plants from onion maggot damage. Green onions may not require as high a rate of cyromazine for control of onion maggots as the rate established for use in dry onions for two reasons: the seeding rate is much higher for green onions resulting in more AI/ha for a given amount of AI/kg of seed, and a given percentage of stand loss is more difficult to detect in green onions than in dry onions.

  18. Microstructure and wear resistance of Ti-Cu-N composite coating prepared via laser cladding/laser nitriding technology on Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Yang, Yuling; Cao, Shiyin; Zhang, Shuai; Xu, Chuan; Qin, Gaowu

    2017-07-01

    Ti-Cu-N coatings with three different Cu contents on Ti-6Al-4V alloy (TC4) were obtained via laser cladding together with laser nitriding (LC/LN) technology. Phase constituents, microstructure, microhardness, and wear resistance of the coatings were investigated. The evolution of the coefficients of friction for the three coatings was measured under dry sliding conditions as a function of the revolutions until the coating failure. The results show that the coatings are mainly composed of TiN, CuTi3 and some TiO6 phases dispersed in the matrix. A good metallurgical bonding between the coating and substrate has been successfully obtained. The prepared Ti-Cu-N composite coatings almost doubly enhance the microhardness of the TC4 alloy and reduce the friction down to 1/4-1/2 of the TC4 alloy, and thus significantly improve the wear resistance. The coefficient of friction depends on the Cu content in the coating.

  19. Investigation of the flow structure in thin polymer films using 3D µPTV enhanced by GPU

    NASA Astrophysics Data System (ADS)

    Cavadini, Philipp; Weinhold, Hannes; Tönsmann, Max; Chilingaryan, Suren; Kopmann, Andreas; Lewkowicz, Alexander; Miao, Chuan; Scharfer, Philip; Schabel, Wilhelm

    2018-04-01

    To understand the effects of inhomogeneous drying on the quality of polymer coatings, an experimental setup to resolve the occurring flow field throughout the drying film has been developed. Deconvolution microscopy is used to analyze the flow field in 3D and time. Since the dimension of the spatial component in the direction of the line-of-sight is limited compared to the lateral components, a multi-focal approach is used. Here, the beam of light is equally distributed on up to five cameras using cubic beam splitters. Adding a meniscus lens between each pair of camera and beam splitter and setting different distances between each camera and its meniscus lens creates multi-focality and allows one to increase the depth of the observed volume. Resolving the spatial component in the line-of-sight direction is based on analyzing the point spread function. The analysis of the PSF is computational expensive and introduces a high complexity compared to traditional particle image velocimetry approaches. A new algorithm tailored to the parallel computing architecture of recent graphics processing units has been developed. The algorithm is able to process typical images in less than a second and has further potential to realize online analysis in the future. As a prove of principle, the flow fields occurring in thin polymer solutions drying at ambient conditions and at boundary conditions that force inhomogeneous drying are presented.

  20. Drying of fiber webs

    DOEpatents

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  1. Design, experimental and economic evaluation of a commercial-type solar dryer for production of high-quality hay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arinze, E.A.; Sokhansanj, S.; Schoenau, G.J.

    1998-03-01

    Design features, development, experimental functional performance and economic evaluation of an energy efficient solar energy dryer for commercial production of high-quality hay and processed forage products are presented. The solar hay dryer consists of an improved solar collector with selective coated aluminum absorber plate and spaced fins, and a drying shed connected to the collector by an insulated duct and having a perforated metal grate floor, swing-away plywood frames and polyethylene curtains for effectively sealing the hay stack, and a crawl space below the floor where a 3-hp in-line centrifugal fan is housed for air circulation by suction. In latemore » August and in early September, 1996, 160 small rectangular bales of alfalfa hay with about 25% bromegrass were successfully dried from 33% initial moisture content to 13%, and from 25% to 11% moisture in 4 and 3 days, respectively, under average weather conditions in Saskatoon, Saskatchewan, Canada. With about 18 m{sup 3}/min per tonne airflow, 10--15 C temperature rise above ambient was obtained during peak bright sunshine hours. Relatively high daily average collector efficiency of 76%, high drying effectiveness, drying uniformity, uniform air distribution and tight sealing of the stack were achieved which resulted in an attractive green color of hay, no mold growth on hay, and an overall system drying efficiency of about 79%. Compared to a conventional natural gas drying system or field-drying method, the payback period on extra investment costs recovered through drying cost savings of $3/t to $6/t or through over two times higher prices for high-quality hay produced by the solar drying system may be just one or two years, respectively.« less

  2. An investigation of material properties and tribological performance of magnetron sputtered thin film coatings

    NASA Astrophysics Data System (ADS)

    Singh, Harpal

    This dissertation is divided into two categories based upon lubrication functionality and its application. The categories are: Dry film lubrication and Fluid film lubrication with thin film coatings. Thin film coatings examined in this work were deposited using closed field unbalanced magnetron sputtering and RF-DC coupled magnetron sputtering systems. In Dry/Solid film lubrication, the mechanical, structural and tribological properties of two Molybdenum disulphide (MoS2) based coatings are examined and evaluated. Among the two coatings, one coating is doped with Ti (Ti-MoS2) and the other is a combination of metal, lubricant and oxide (Sb2O3/Au - MoS2). These coatings are known to provide low friction in vacuum environments. The goal of this work was to evaluate friction and wear performance of MoS2 doped coatings in unidirectional and reciprocating sliding contact under different environmental conditions. Sliding contact results showed friction and wear dependence on temperature and humidity. The formation and removal of transfer films and the recrystallization and reorientation of basal layers on the steel counterface was observed as the mechanism for low friction. Structural analysis revealed a relationship between the microstructural properties and tribological performance. It was also observed that the addition of dopants (Ti, Au, Sb 2O3) improved the mechanical properties as compared to pure MoS2 coatings. Further, the rolling contact performance of the coatings was measured on a five ball on rod tribometer and a Thrust bearing tribometer under vacuum and air environments. The rolling contact experiments indicated that life of the rolling components depend on the amount of material present between the contacts. Fluid film lubrication with thin film coatings investigates the possibilities to improve the performance and durability of tribological components when oils and thin films are synergistically coupled. In this work, the ability of a Diamond Like Carbon coating to increase the durability of contacting surfaces under boundary lubrication were studied. The performance of highly hydrogenated Diamond Like Carbon (DLC) was evaluated in a mixed sliding and rolling contact. Experimental results show significant improvement in fatigue life of steel specimens after coating with a highly hydrogenated Diamond Like Carbon coating. The improved fatigue life is attributed to the coating microstructure and the mechanical properties.

  3. Durable superhydrophobic paper enabled by surface sizing of starch-based composite films

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Zhu, Penghui; Kuang, Yudi; Liu, Yu; Lin, Donghan; Peng, Congxing; Wen, Zhicheng; Fang, Zhiqiang

    2017-07-01

    Superhydrophobic paper with remarkable durability is of considerable interest for its practical applications. In this study, a scalable, inexpensive, and universal surface sizing technique was implemented to prepare superhydrophobic paper with enhanced durability. A thin layer of starch-based composite, acting as a bio-binder, was first coated onto the paper surface by a sophisticated manufacturing technique called surface sizing, immediately followed by a spray coating of hexamethyl disilazane treated silica nanoparticles (HMDS-SiNPs) dispersed in ethanol on the surface of the wet starch-coated sheet, and the dual layers dried at the same time. Consequently, durable superhydrophobic paper with bi-layer structure was obtained after air drying. The as-prepared superhydrophobic paper not only exhibited a self-cleaning behavior, but also presented an enhanced durability against scratching, bending/deformation, as well as moisture. The universal surface sizing of starch-based composites may pave the way for the up-scaled and cost-effective production of durable superhydrophobic paper.

  4. Metal nanoparticles in DBS card materials modification

    NASA Astrophysics Data System (ADS)

    Metelkin, A.; Frolov, G.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    In the recent years the method of collecting and storing Dried Blood Spots (DBS) on special cellulose membrane (paper) has gained wide popularity. But possible damage of biosamples caused by microorganisms in case of their incomplete drying is a disadvantage of the method. It can be overcome by treating sample-collection membranes with colloidal solutions of metal nanoparticles, having antibacterial effect. The team studied antibacterial properties of nonwoven material samples with various coatings (alcohol sols of copper, aluminium, iron, titanium, silver and vanadium nanoparticles). Colloidal solutions of nanoparticles were obtained by means of electroerosion method with further low-temperature plasma condensation. Antibacterial activity of fiberglass and cellulose membrane samples with nanoparticle coatings was studied using B. cereus and plaque bacteria cultures. It was revealed that nanostructured coatings can suppress bacterial activity; in addition they can diffuse from the membrane surface into medium which leads to widening the areas of inhibiting testing cultures’ growth. Thus, membrane materials treatment with alcohol-sols of metal nanoparticles can be seen as promising for conferring antibacterial properties to DBS carriers.

  5. The influence of Cr and Al pack cementation on low carbon steel to improve oxidation resistance

    NASA Astrophysics Data System (ADS)

    Prasetya, Didik; Sugiarti, Eni; Destyorini, Fredina; Thosin, Kemas Ahmad Zaini

    2012-06-01

    Pack chromizing and aluminizing has been widely used for many years to improve hot temperature oxidation and corrosion resistance of metals. The coating process involves packing the steel in a powder mixture which contain aluminum and chromium source, and inert filler (usually alumina), and halide activator NH4Cl. Al and Cr were deposited onto carbon steel by pack cementation process using elemental Al and Cr powder as Al and Cr source, whereas NiCo alloys codeposited by electrodeposition. The position of Al and Cr could be under or over Ni-Co alloys deposited. Pack cementation was heated on dry inert gas at temperature 800 °C about 5 hours and 20 minute for Cr and Al respectively. Al and Cr was successfully deposited. Laying down effect of Al and Cr onto carbon steel whether up and down toward NiCo alloys coating have affected to oxidation resistance. The pack aluminizing as top layer given best resitance to restrain excessive oxide scale, in contrast pack chromizing reveal bad oxidation resistance, moreover occured spallation on layer.

  6. Surface characterization of colloidal-sol gel derived biphasic HA/FA coatings.

    PubMed

    Cheng, Kui; Zhang, Sam; Weng, Wenjian

    2007-10-01

    Hydroxyapatite (HA) powders are ultrasonically dispersed in the precursor of fluoridated hydroxyapatite (FHA) or fluorapatite (FA) to form a "colloidal sol". HA/FA biphasic coatings are prepared on Ti6Al4V substrate via dip coating, 150 degrees C drying and 600 degrees C firing. The coatings show homogenous distribution of HA particles in the FA matrix. The relative phase proportion can be tailored by the amount of HA in the colloidal sol. The surfaces of the coatings consist of two kinds of distinct domains: HA and FA, resulting in a compositionally heterogeneous surface. The biphasic coating surface becomes increasingly rougher with HA powders, from around 200 nm of pure FA to 400-600 nm in Ra of biphasic coatings. The rougher biphasic HA/FA surfaces with chemically controllable domains will favor cell attachment, apatite layer deposition and necessary dissolution in clinical applications.

  7. The effects of grooming on a copper ablative coating: a six year study.

    PubMed

    Tribou, Melissa; Swain, Geoffrey

    2017-07-01

    More than 90% of US Navy Ships are coated with copper ablative paint. These ships may spend long periods of time pier-side, which makes them vulnerable to fouling. Hull grooming has been proposed as a means of maintaining the coatings in an operational condition. This study investigated the effect of grooming on a copper ablative coating exposed statically for six years. Grooming was performed weekly or monthly with controls left ungroomed. The fouling community was visually assessed, dry film thickness measurements were taken to monitor coating loss, and the copper leaching rates were measured. It was found that weekly and monthly groomed surfaces reduced fouling, and the ungroomed surfaces became fully fouled. Coating loss was similar for weekly, monthly and ungroomed surfaces. The results suggest that grooming is a viable method for maintaining copper ablative coatings in a fouling-free condition without adverse increases in the total copper output.

  8. High-temperature frictional wear behavior of MCrAlY-based coatings deposited by atmosphere plasma spraying

    NASA Astrophysics Data System (ADS)

    Tao, Chong; Wang, Lei; Song, Xiu

    2017-02-01

    Al2O3-Cr2O3/NiCoCrAlYTa coatings were prepared via atmosphere plasma spraying (APS). The microstructure and phase composition of the coatings were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser confocal scanning microscopy (LSCM), and transmission electron microscopy (TEM). The dry frictional wear behavior of the coatings at 500°C in static air was investigated and compared with that of 0Cr25Ni20 steel. The results show that the coatings comprise the slatted layers of oxide phases, unmelted particles, and pores. The hot abrasive resistance of the coatings is enhanced compared to that of 0Cr25Ni20, and their mass loss is approximately one-fifteenth that of 0Cr25Ni20 steel. The main wear failure mechanisms of the coatings are abrasive wear, fatigue wear, and adhesive wear.

  9. Brush seal shaft wear resistant coatings

    NASA Astrophysics Data System (ADS)

    Howe, Harold

    1995-03-01

    Brush seals suffer from high wear, which reduces their effectiveness. This work sought to reduce brush seal wear by identifying and testing several industry standard coatings. One of the coatings was developed for this work. It was a co-sprayed PSZ with boron-nitride added for a high temperature dry lubricant. Other coatings tested were a PSZ, chrome carbide and a bare rotor. Testing of these coatings included thermal shocking, tensile testing and wear/coefficient of friction testing. Wear testing consisted of applying a coating to a rotor and then running a sample tuft of SiC ceramic fiber against the coating. Surface speeds at point of contact were slightly over 1000 ft/sec. Rotor wear was noted, as well as coefficient of friction data. Results from the testing indicates that the oxide ceramic coatings cannot withstand the given set of conditions. Carbide coatings will not work because of the need for a metallic binder, which oxidizes in the high heat produced by friction. All work indicated a need for a coating that has a lubricant contained within itself and the coating must be resistant to an oxidizing environment.

  10. Chloride-induced corrosion mechanism and rate of enamel- and epoxy-coated deformed steel bars embedded in mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Fujian; Chen, Genda; Brow, Richard K.

    The chloride-induced corrosion mechanisms of uncoated, pure enamel (PE)-coated, mixed enamel (ME)-coated, double enamel (DE)-coated, and fusion bonded epoxy (FBE)-coated deformed steel bars embedded in mortar cylinders are investigated in 3.5 wt.% NaCl solution and compared through electrochemical tests and visual inspection. Corrosion initiated after 29 or 61 days of tests in all uncoated and enamel-coated steel bars, and after 244 days of tests in some FBE-coated steel bars. In active stage, DE- and FBE-coated steel bars are subjected to the highest and lowest corrosion rates, respectively. The uncoated and ME-coated steel bars revealed relatively uniform corrosion while the PE-,more » DE-, and FBE-coated steel bars experienced pitting corrosion around damaged coating areas. Due to the combined effect of ion diffusion and capillary suction, wet–dry cyclic immersion caused more severe corrosion than continuous immersion. Both exposure conditions affected the corrosion rate more significantly than the water–cement ratio in mortar design.« less

  11. Gelatin Nano-coating for Inhibiting Surface Crystallization of Amorphous Drugs.

    PubMed

    Teerakapibal, Rattavut; Gui, Yue; Yu, Lian

    2018-01-05

    Inhibit the fast surface crystallization of amorphous drugs with gelatin nano-coatings. The free surface of amorphous films of indomethacin or nifedipine was coated by a gelatin solution (type A or B) and dried. The coating's effect on surface crystallization was evaluated. Coating thickness was estimated from mass change after coating. For indomethacin (weak acid, pK a  = 4.5), a gelatin coating of either type deposited at pH 5 and 10 inhibited its fast surface crystal growth. The coating thickness was 20 ± 10 nm. A gelatin coating deposited at pH 3, however, provided no protective effect. These results suggest that an effective gelatin coating does not require that the drug and the polymer have opposite charges. The ineffective pH 3 coating might reflect the poor wetting of indomethacin's neutral, hydrophobic surface by the coating solution. For nifedipine (weak base, pK a  = 2.6), a gelatin coating of either type deposited at pH 5 inhibited its fast surface crystal growth. Gelatin nano-coatings can be conveniently applied to amorphous drugs from solution to inhibit fast surface crystallization. Unlike strong polyelectrolyte coatings, a protective gelatin coating does not require strict pairing of opposite charges. This could make gelatin coating a versatile, pharmaceutically acceptable coating for stabilizing amorphous drugs.

  12. Hierarchical opal grating films prepared by slide coating of colloidal dispersions in binary liquid media.

    PubMed

    Lee, Wonmok; Kim, Seulgi; Kim, Seulki; Kim, Jin-Ho; Lee, Hyunjung

    2015-02-15

    There are active researches on well ordered opal films due to their possible applications to various photonic devices. A recently developed slide coating method is capable of rapid fabrication of large area opal films from aqueous colloidal dispersion. In the current study, the slide coating of polystyrene colloidal dispersions in water/i-propanol (IPA) binary media is investigated. Under high IPA content in a dispersing medium, resulting opal film showed a deterioration of long range order, as well as a decreased film thickness due to dilution effect. From the binary liquid, the dried opal films exhibited the unprecedented topological groove patterns with varying periodic distances as a function of alcohol contents in the media. The groove patterns were consisted of the hierarchical structures of the terraced opal layers with periodic thickness variations. The origin of the groove patterns was attributed to a shear-induced periodic instability of colloidal concentration within a thin channel during the coating process which was directly converted to a groove patterns in a resulting opal film due to rapid evaporation of liquid. The groove periods of opal films were in the range of 50-500 μm, and the thickness differences between peak and valley of the groove were significantly large enough to be optically distinguishable, such that the coated films can be utilized as the optical grating film to disperse infra-red light. Utilizing a lowered hydrophilicity of water/IPA dispersant, an opal film could be successfully coated on a flexible Mylar film without significant dewetting problem. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Biomechanical, biochemical, and morphological mechanisms of heat shock-mediated germination in Carica papaya seed

    PubMed Central

    Webster, Rachel E.; Waterworth, Wanda M.; Stuppy, Wolfgang; West, Christopher E.; Ennos, Roland; Bray, Clifford M.; Pritchard, Hugh W.

    2016-01-01

    Carica papaya (papaya) seed germinate readily fresh from the fruit, but desiccation induces a dormant state. Dormancy can be released by exposure of the hydrated seed to a pulse of elevated temperature, typical of that encountered in its tropical habitat. Carica papaya is one of only a few species known to germinate in response to heat shock (HS) and we know little of the mechanisms that control germination in tropical ecosystems. Here we investigate the mechanisms that mediate HS-induced stimulation of germination in pre-dried and re-imbibed papaya seed. Exogenous gibberellic acid (GA3 ≥250 µM) overcame the requirement for HS to initiate germination. However, HS did not sensitise seeds to GA3, indicative that it may act independently of GA biosynthesis. Seed coat removal also overcame desiccation-imposed dormancy, indicative that resistance to radicle emergence is coat-imposed. Morphological and biomechanical studies identified that neither desiccation nor HS alter the physical structure or the mechanical strength of the seed coat. However, cycloheximide prevented both seed coat weakening and germination, implicating a requirement for de novo protein synthesis in both processes. The germination antagonist abscisic acid prevented radicle emergence but had no effect on papaya seed coat weakening. Desiccation therefore appears to reduce embryo growth potential, which is reversed by HS, without physically altering the mechanical properties of the seed coat. The ability to germinate in response to a HS may confer a competitive advantage to C. papaya, an opportunistic pioneer species, through detection of canopy removal in tropical forests. PMID:27811004

  14. The stability of BMP loaded polyelectrolyte multilayer coatings on titanium

    PubMed Central

    Guillot, R.; Gilde, F.; Becquart, P.; Sailhan, F.; Lapeyrere, A.; Logeart-Avramoglou, D.; Picart, C.

    2014-01-01

    Immobilization of bone morphogenetic proteins (BMP) onto material surfaces is a promising, but still challenging, strategy for achieving dependable and consistent osseointegration of long-term metal implants. In the present study, we have developed an osteoinductive coating of a porous titanium implant using biomimetic polyelectrolyte multilayer (PEM) films loaded with BMP-2. The amount of BMP-2 loaded in these films was tuned -over a large range - depending on the cross-linking extent of the film and of the BMP-2 initial concentration. The air-dried PEM films were stable for at least one year of storage at 4°C. In addition, they resisted exposure to γ-irradiation at clinically approved doses. The preservation of the growth factor bioactivity upon long-term storage and sterilization were evaluated both in vitro (using C2C12 cells) and in vivo (in a rat ectopic model) for the perspective of industrial and clinical development. BMP-2 loaded in dried PEM films exhibited shelf-life stability over one year. However, their bioactivity in vitro decreased from 50 to 80% after irradiation depending on the γ-irradiation dose. Remarkably, the in vivo studies showed that the osteoinductive potential of BMP-2 contained in PEM-coated Ti implants was fully preserved after air-drying of the implants and sterilization at 25 kGy. Film drying or irradiation did not affect the amount of new bone tissue formation. This “off-the-shelf” novel technology of functionalized implants opens promising applications in prosthetic and tissue engineering fields. PMID:23642539

  15. An Application of X-Ray Fluorescence as Process Analytical Technology (PAT) to Monitor Particle Coating Processes.

    PubMed

    Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka

    2018-06-01

    An attempt to apply X-Ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.

  16. Methyl Centralite Coated M10 Propellant for the 25-mm Bushmaster Gun Projectiles

    DTIC Science & Technology

    1984-09-01

    orisinator. servces y th U.S. Gvernent 4di I:THE INFORMATION CONTAINED HEREIN SMALL BE USED FOR GOVERNMENT PURPOSES ONLY ______Unclassified SECURITY CLASS...bomb DpiDt versus P t-aces of Lots 42 RAD-PE-559-15 compared with lots RAD-PE-S59-ll, 16, and 17 and Swiss lot P-2078. 1! ] y .,,narison of Lot RAD-PE...further remove ether and improve coating gradient , 28 to 48 hour water dry time to remove practically all of the coating acquired alcohol, and a

  17. Chemical plating method of preparing radiation source material

    DOEpatents

    Smith, P.K.; Huntoon, R.T.; Mosley, W.C. Jr.

    1973-12-11

    A uniform dispersion of a radioisotope within a noble metal matrix is provided by chemically plating a noble metal coating onto particles including a dissociable compound of the mdioisotope. A suspension of the dissociable compound in a chemically reductive solution is prepared and noble metal cations added to produce the noble metal coatings. The coated particles are filtered, dried and heated to calcine the dissociable compound to a refractory powder. The powder can be encapsulated in measured portions or consolidated and shaped into an elongated form for easy apportionnnent as radiation source material. (Official Gazette)

  18. Synthesis and characterization of nanocrystalline forsterite coated poly(L-lactide-co-β-malic acid) scaffolds for bone tissue engineering applications.

    PubMed

    Mozafari, M; Gholipourmalekabadi, M; Chauhan, N P S; Jalali, N; Asgari, S; Caicedoa, J C; Hamlekhan, A; Urbanska, A M

    2015-05-01

    In this research, after synthesizing poly(L-lactide-co-β-malic acid) (PLMA) copolymer, hybrid particles of ice and nanocrystalline forsterite (NF) as coating carriers were used to prepare NF-coated PLMA scaffolds. The porous NF-coated scaffolds were directly fabricated by a combined technique using porogen leaching and freeze-drying methods. The obtained results indicate that the scaffolds were structurally porous with NF particles on their surfaces. When compared to the uncoated scaffolds, the NF coating improved both mechanical properties as well as enhanced bioactivity of the scaffolds. In addition, in vitro biological response of the rat bone marrow stromal cells indicated that NF significantly increased the biocompatibility of NF-coated scaffolds compared with PLMA. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Influence of humidity on CO2 gas sensors based on polyetherimide polymer film

    NASA Astrophysics Data System (ADS)

    Kang, Ting; Xie, Guangzhong; Zhou, Yong; Xie, Tao; Tai, Huiling

    2014-09-01

    Quartz Crystal Microbalance (QCM) coated with polyetherimide (PEI) by spin coating method was applied for carbon dioxide (CO2) gas detection at room temperature in this study. The experiments were performed in dry and humid air atmospheres, and the results revealed that the prepared CO2 sensor in moisture circumstance exhibited a larger sensing response than that at dry condition. An enhanced sensing response took place for CO2 detection with the existence of water molecules. The effect of different humidity on QCM sensor performances was investigated as well in this paper. A curve, which displayed a proportional relationship between sensing response and water vapor concentration, was obtained. Moreover, the relevant sensing mechanisms were investigated.

  20. The effect of surface demineralization of cortical bone allograft on the properties of recombinant adeno-associated virus coatings.

    PubMed

    Yazici, Cemal; Yanoso, Laura; Xie, Chao; Reynolds, David G; Samulski, R Jude; Samulski, Jade; Yannariello-Brown, Judith; Gertzman, Arthur A; Zhang, Xinping; Awad, Hani A; Schwarz, Edward M

    2008-10-01

    Freeze-dried recombinant adeno-associated virus (rAAV) coated structural allografts have emerged as an approach to engender necrotic cortical bone with host factors that will persist for weeks following surgery to facilitate revascularization, osteointegration, and remodeling. However, one major limitation is the nonporous cortical surface that prohibits uniform distribution of the rAAV coating prior to freeze-drying. To overcome this we have developed a demineralization method to increase surface absorbance while retaining the structural integrity of the allograft. Demineralized bone wafers (DBW) made from human femoral allograft rings demonstrated a significant 21.1% (73.6+/-3.9% versus 52.5+/-2.6%; p<0.001) increase in percent surface area coating versus mineralized controls. Co-incubation of rAAV-luciferase (rAAV-Luc) coated DBW with a monolayer of C3H10T1/2 cells in culture led to peak luciferase levels that were not significantly different from soluble rAAV-Luc controls (p>0.05), although the peaks occurred at 60h and 12h, respectively. To assess the transduction efficiency of rAAV-Luc coated DBW in vivo, we first performed a dose response with allografts containing 10(7), 10(9) or 10(10) particles that were surgically implanted into the quadriceps of mice, and assayed by in vivo bioluminescence imaging (BLI) on days 1, 3, 5, 7, 10, 14, and 21. The results demonstrated a dose response in which the DBW coated with 10(10) rAAV-Luc particles achieved peak gene expression levels on day 3, which persisted until day 21, and was significantly greater than the 10(7) dose throughout this time period (p<0.01). A direct comparison of mineralized versus DBW coated with 10(10) rAAV-Luc particles failed to demonstrate any significant differences in transduction kinetics or efficiency in vivo. Thus, surface demineralization of human cortical bone allograft increases its absorbance for uniform rAAV coating, without affecting vector transduction efficiency.

Top