Sample records for dry deciduous forest

  1. Above-ground sulfur cycling in adjacent coniferous and deciduous forest and watershed sulfur retention in the Georgia Piedmont, U.S.A.

    USGS Publications Warehouse

    Cappellato, R.; Peters, N.E.; Meyers, T.P.

    1998-01-01

    Atmospheric deposition and above-ground cycling of sulfur (S) were evaluated in adjacent deciduous and coniferous forests at the Panola Mountain Research Watershed (PMRW), Georgia U.S.A. Total atmospheric S deposition (wet plus dry) was 12.9 and 12.7 kg ha-1 yr-1 for the deciduous and coniferous forests, respectively, from October 1987 through November 1989. Dry deposition contributes more than 40% to the total atmospheric S deposition, and SO2 is the major source (~55%) of total dry S deposition. Dry deposition to these canopies is similar to regional estimates suggesting that 60-km proximity to emission sources does not noticeably impact dry deposition at PMRW. Below-canopy S fluxes (throughfall plus stemflow) in each forest are 37% higher annually in the deciduous forest than in the coniferous forest. An excess in below-canopy S flux in the deciduous forest is attributed to leaching and higher dry deposition than in the coniferous forest. Total S deposition to the forest floor by throughfall, stemflow and litterfall was 2.4 and 2.8 times higher in the deciduous and coniferous forests, respectively, than annual S growth requirement for foliage and wood. Although A deposition exceeds growth requirement, more than 95% of the total atmospheric S deposition was retained by the watershed in 1988 and 1989. The S retention at PMRW is primarily due to SO2+4 adsorption by iron oxides and hydroxides in watershed soils. The S content in while oak and loblolly pine boles have increased more than 200% in the last 20 yr, possibly reflecting increases in emissions.

  2. DRY DEPOSITION OF POLLUTANTS TO FORESTS

    EPA Science Inventory

    We report on the results of an extensive field campaign to measure dry deposition of ozone and sulfur dioxide to a sample of forest types in the United States. Measurements were made for full growing seasons over a deciduous forest in Pennsylvania and a mixed deciduous-conifer...

  3. Climatic controls of vegetation vigor in four contrasting forest types of India--evaluation from National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer datasets (1990-2000).

    PubMed

    Prasad, V Krishna; Anuradha, E; Badarinath, K V S

    2005-09-01

    Ten-day advanced very high resolution radiometer images from 1990 to 2000 were used to examine spatial patterns in the normalized difference vegetation index (NDVI) and their relationships with climatic variables for four contrasting forest types in India. The NDVI signal has been extracted from homogeneous vegetation patches and has been found to be distinct for deciduous and evergreen forest types, although the mixed-deciduous signal was close to the deciduous ones. To examine the decadal response of the satellite-measured vegetation phenology to climate variability, seven different NDVI metrics were calculated using the 11-year NDVI data. Results suggested strong spatial variability in forest NDVI metrics. Among the forest types studied, wet evergreen forests of north-east India had highest mean NDVI (0.692) followed by evergreen forests of the Western Ghats (0.529), mixed deciduous forests (0.519) and finally dry deciduous forests (0.421). The sum of NDVI (SNDVI) and the time-integrated NDVI followed a similar pattern, although the values for mixed deciduous forests were closer to those for evergreen forests of the Western Ghats. Dry deciduous forests had higher values of inter-annual range (RNDVI) and low mean NDVI, also coinciding with a high SD and thus a high coefficient of variation (CV) in NDVI (CVNDVI). SNDVI has been found to be high for wet evergreen forests of north-east India, followed by evergreen forests of the Western Ghats, mixed deciduous forests and dry deciduous forests. Further, the maximum NDVI values of wet evergreen forests of north-east India (0.624) coincided with relatively high annual total precipitation (2,238.9 mm). The time lags had a strong influence in the correlation coefficients between annual total rainfall and NDVI. The correlation coefficients were found to be comparatively high (R2=0.635) for dry deciduous forests than for evergreen forests and mixed deciduous forests, when the precipitation data with a lag of 30 days was correlated against NDVI. Using multiple regression approach models were developed for individual forest types using 16 different climatic indices. A high proportion of the temporal variance (>90%) has been accounted for by three of the precipitation parameters (maximum precipitation, precipitation of the wettest quarter and driest quarter) and two of the temperature parameters (annual mean temperature and temperature of the coldest quarter) for mixed deciduous forests. Similarly, in the case of deciduous forests, four precipitation parameters and three temperature parameters explained nearly 83.6% of the variance. These results suggest differences in the relationship between NDVI and climatic variables based upon the time of growing season, time interval and climatic indices over which they were summed. These results have implications for forest cover mapping and monitoring in tropical regions of India.

  4. Interannual variability in the extent and intensity of tropical dry forest deciduousness in the Mexican Yucatan (2000-2016): Drivers and Links to Regional Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Cuba, Nicholas Joseph

    The dry topical forests of the southern Yucatan Peninsula experience multiple natural and anthropogenic disturbances, as well as substantial interannual climate variability that can result in stark interannual differences in vegetation phenology. Dry season deciduousness is a typical response to limit tree water loss during prolonged periods of hot and dry conditions, and this behavior has both direct implications for ecosystem functioning, and the potential to indicate climate conditions when observed using remotely-sensed data. The first research paper of this dissertation advances methods to assess the accuracy of remotely-sensed measurements of canopy conditions using in-situ observations. Linear regression models show the highest correlation (R2 = 0.751) between in-situ canopy gap fraction and Landsat NDWISWIR2. MODIS time series NDWISWIR2 are created for the period March 2000-February 2011, and exhibit stronger correlation with time series of TRMM precipitation data than do MODIS EVI time series (R2= 0.48 vs. R2 = 0.43 in deciduous forest areas). The second paper examines differences between the deciduous phenology of young forest stands and older forest stands. Land-cover maps are overlaid to determine whether forested areas are greater than or less than 22 years old in 2010, and metrics related to deciduous phenology are derived from MODIS EVI2 time series in three years, 2008 to 2011. Statistical tests that compare matched pairs of young (12-22 years) and older (>22 years) forest stand age class samples are used to detect significant differences in metrics related to the intensity and timing of deciduousness. In all three years, younger forests exhibit significantly more intense deciduousness, measured as total seasonal change of EVI2 normalized by annual maximum EVI2 (p<0.001), and exhibit larger EVI2 declines at successive 32-day periods during dry season months (p<0.02), than nearby older forests that are assumed to share similar environmental conditions. explores how deciduousness influences the relationship between land-clearing and regional atmospheric conditions. Two sets of bottom-up estimates of Organic and Black Carbon (OCBC) emissions are derived from MODIS fire and land-cover data in the greater Yucatan region during the burning seasons of years 2003-2013: a control series in which estimated emissions from fires in deciduous forest and non-deciduous forest were modeled in the same way, and a "deciduous-adjusted" series in which the emissions from fires in deciduous forest were estimated to increase throughout the burn season as a result of accumulated leaf litter fuel and increasingly hot and dry understory conditions. The two sets of estimated OCBC emission were compared to top-down modeled values of OCBC from MERRA-2 global reanalysis and a comparison of residual differences measured as Mean Absolute Error (MAE) was made to determine the effect of the deciduous-adjustment on bottom-up estimates. The deciduous-adjustment is shown to decrease MAE relative to the control series for annual total estimates (31% vs. 26%), monthly average values (32% to 21%), and monthly values (39% to 34%) with respect to MERRA-2 OCBC. The largest MAE for annual total values were observed in the years 2009 to 2013, when both bottom-up series substantially underestimated MERRA-2 OCBC. This distribution of error is accounted for in part by the comparatively low amount of early dry-season rainfall during these years, increasing the rate of desiccation of fuel load, and may arise from the large increases to non-standing dead biomass resulting from the damage of category-5 Hurricane Dean in August 2007. These papers together provide a better understanding of the climate conditions and mediating environmental factors that drive the spatial and temporal variability in the intensity of deciduousness, and point toward analyzing deciduousness to reveal information about other environmental phenomena of interest with which it is correlated.

  5. Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatan Peninsula, Mexico.

    PubMed

    de la Rosa-Manzano, Edilia; Andrade, José Luis; García-Mendoza, Ernesto; Zotz, Gerhard; Reyes-García, Casandra

    2015-12-01

    Epiphytic orchids from dry forests of Yucatán show considerable photoprotective plasticity during the dry season, which depends on leaf morphology and host tree deciduousness. Nocturnal retention of antheraxanthin and zeaxanthin was detected for the first time in epiphytic orchids. In tropical dry forests, epiphytes experience dramatic changes in light intensity: photosynthetic photon flux density may be up to an order of magnitude higher in the dry season compared to the wet season. To address the seasonal changes of xanthophyll cycle (XC) pigments and photosynthesis that occur throughout the year, leaves of five epiphytic orchid species were studied during the early dry, dry and wet seasons in a deciduous and a semi-deciduous tropical forests at two vertical strata on the host trees (3.5 and 1.5 m height). Differences in XC pigment concentrations and photosynthesis (maximum quantum efficiency of photosystem II; F v/F m) were larger among seasons than between vertical strata in both forests. Antheraxanthin and zeaxanthin retention reflected the stressful conditions of the epiphytic microhabitat, and it is described here in epiphytes for the first time. During the dry season, both XC pigment concentrations and photosystem II heat dissipation of absorbed energy increased in orchids in the deciduous forest, while F v/F m and nocturnal acidification (ΔH(+)) decreased, clearly as a response to excessive light and drought. Concentrations of XC pigments were higher than those in orchids with similar leaf shape in semi-deciduous forest. There, only Encyclia nematocaulon and Lophiaris oerstedii showed somewhat reduced F v/F m. No changes in ΔH(+) and F v/F m were detected in Cohniella ascendens throughout the year. This species, which commonly grows in forests with less open canopies, showed leaf tilting that diminished light interception. Light conditions in the uppermost parts of the canopy probably limit the distribution of epiphytic orchids and the retention of zeaxanthin can help to cope with light and drought stress in these forests during the dry season.

  6. Fast changes in seasonal forest communities due to soil moisture increase after damming.

    PubMed

    do Vale, Vagner Santiago; Schiavini, Ivan; Araújo, Glein Monteiro; Gusson, André Eduardo; Lopes, Sérgio de Faria; de Oliveira, Ana Paula; do Prado-Júnior, Jamir Afonso; Arantes, Carolina de Silvério; Dias-Neto, Olavo Custodio

    2013-12-01

    Local changes caused by dams can have drastic consequences for ecosystems, not only because they change the water regime but also the modification on lakeshore areas. Thus, this work aimed to determine the changes in soil moisture after damming, to understand the consequences of this modification on the arboreal community of dry forests, some of the most endangered systems on the planet. We studied these changes in soil moisture and the arboreal community in three dry forests in the Araguari River Basin, after two dams construction in 2005 and 2006, and the potential effects on these forests. For this, plots of 20 m x 10 m were distributed close to the impoundment margin and perpendicular to the dam margin in two deciduous dry forests and one semi-deciduous dry forest located in Southeastern Brazil, totaling 3.6 ha sampled. Besides, soil analysis were undertaken before and after impoundment at three different depths (0-10, 20-30 and 40-50 cm). A tree (minimum DBH of 4.77 cm) community inventory was made before (TO) and at two (T2) and four (T4) years after damming. Annual dynamic rates of all communities were calculated, and statistical tests were used to determine changes in soil moisture and tree communities. The analyses confirmed soil moisture increases in all forests, especially during the dry season and at sites closer to the reservoir; besides, an increase in basal area due to the fast growth of many trees was observed. The highest turnover occurred in the first two years after impoundment, mainly due to the higher tree mortality especially of those closer to the dam margin. All forests showed reductions in dynamic rates for subsequent years (T2-T4), indicating that these forests tended to stabilize after a strong initial impact. The modifications were more extensive in the deciduous forests, probably because the dry period resulted more rigorous in these forests when compared to semideciduous forest. The new shorelines created by damming increased soil moisture in the dry season, making plant growth easier. We concluded that several changes occurred in the T0-T2 period and at 0-30 m to the impoundment, mainly for the deciduous forests, where this community turned into a "riparian-deciduous forest" with large basal area in these patches. However, unlike other transitory disturbances, damming is a permanent alteration and transforms the landscape to a different scenario, probably with major long-term consequences for the environment.

  7. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests.

    PubMed

    Poorter, Lourens

    2009-03-01

    Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found in forests under different climatic control. Here, adult leaf and metamer traits were measured for 39 tree species from a tropical moist semi-evergreen forest (1580 mm rain yr(-1)) and 41 species from a dry deciduous forest (1160 mm yr(-1)) in Bolivia. Twenty-six functional traits were measured and related to species regeneration light requirements.Adult leaf traits were clearly associated with shade tolerance. Different, rather than stronger, shade adaptations were found for moist compared with dry forest species. Shade adaptations exclusively found in the evergreen moist forest were related to tough and persistent leaves, and shade adaptations in the dry deciduous forest were related to high light interception and water use.These results suggest that, for forests differing in rainfall seasonality, there is a shift in the relative importance of functional leaf traits and performance trade-offs that control light partitioning. In the moist evergreen forest leaf traits underlying the growth-survival trade-off are important, whereas in the seasonally deciduous forest leaf traits underlying the growth trade-off between low and high light might become important.

  8. OZONE AND SULFUR DIOXIDE DRY DEPOSITION TO FORESTS: OBSERVATIONS AND MODEL EVALUATION

    EPA Science Inventory

    Fluxes and deposition velocities of O3 and SO2 were measured over both a deciduous and a mixed coniferous-deciduous forest for full growing seasons. Fluxes and deposition velocities of O3 were measured over a coniferous forest for a month. Mean deposition velocities of 0.35 t...

  9. Spatial patterning of fuels and fire hazard across a central U.S. deciduous forest region

    Treesearch

    Michael C. Stambaugh; Daniel C. Dey; Richard P. Guyette; Hong S. He; Joseph M. Marschall

    2011-01-01

    Information describing spatial and temporal variability of forest fuel conditions is essential to assessing overall fire hazard and risk. Limited information exists describing spatial characteristics of fuels in the eastern deciduous forest region, particularly in dry oak-dominated regions that historically burned relatively frequently. From an extensive fuels survey...

  10. Drought Stress Response of Dry Forest Trees of the Brazilian Caatinga

    NASA Astrophysics Data System (ADS)

    Menezes, R.; Worbes, M.

    2015-12-01

    Martin Worbes and Romulo Menezes In the frame of the "Tropi-Dry" network we studied drought response strategies of six tree species in a Caatinga forest at the Fazenda Tamandua near Patos in Paraiba, NE Brazil. We selected the tree species as representatives of the different phenological ecotypes: evergreen, deciduous and stem succulent. The deciduous group comprised N-fixing as well as non N-fixing Leguminosae. Over an entire vegetation period (dry and wet-season) we monitored their phenological behaviour, photosynthesis rates, stomata conductance and water potential, measured if leaves were present and we estimated seasonal variations in stable carbon and N15 content of the leaves. The major results are: Evergreen species (e.g. Capparis) may compensate low carbon-fixing rates in the wet season with a much longer vegetation period as the deciduous species. Stem succulents (Jatropha) do not fulfill the expectations of being high productive species under drought stress conditions, while the N-fixing Mimosa performed in particular at the end and the beginning of the dry period better than the rest of the investigated species. In general the results may help to understand different strategies of tree species in respect to extended dry periods of at least six months as in our study area and their role in carbon sequestration of tropical dry forests. The variety of observed strategies may contribute to the resilience of the ecosystem tropical dry forests.

  11. High density of tree-cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient.

    PubMed

    Vázquez, Leopoldo; Renton, Katherine

    2015-01-01

    It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.

  12. High Density of Tree-Cavities and Snags in Tropical Dry Forest of Western Mexico Raises Questions for a Latitudinal Gradient

    PubMed Central

    Vázquez, Leopoldo; Renton, Katherine

    2015-01-01

    It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters. PMID:25615612

  13. SRTM-DEM and Landsat ETM+ data for mapping tropical dry forest cover and biodiversity assessment in Nicaragua

    Treesearch

    S.E. Sesnie; S.E. Hagell; S.M. Otterstrom; C.L. Chambers; B.G. Dickson

    2008-01-01

    Tropical dry and deciduous forest comprises as much as 42% of the world’s tropical forests, but has received far less attention than forest in wet tropical areas. Land use change threatens to greatly reduce the extent of dry forest that is known to contain high levels of plant and animal diversity. Forest fragmentation may further endanger arboreal mammals that play...

  14. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest

    PubMed Central

    Fu, Pei-Li; Jiang, Yan-Juan; Wang, Ai-Ying; Brodribb, Tim J.; Zhang, Jiao-Lin; Zhu, Shi-Dan; Cao, Kun-Fang

    2012-01-01

    Background and Aims The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems. Methods A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure–volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations. Key Results It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (Dh) and higher mass-based photosynthetic rate (Am); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π0) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, Am, and dry season π0. Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, Dh, as well as dry season π0. Both wood density and leaf density were closely correlated with leaf water-stress tolerance and Am. Conclusions The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves. PMID:22585930

  15. Short dry spells in the wet season increase mortality of tropical pioneer seedlings.

    PubMed

    Engelbrecht, Bettina M J; Dalling, James W; Pearson, Timothy R H; Wolf, Robert L; Gálvez, David A; Koehler, Tobias; Tyree, Melvin T; Kursar, Thomas A

    2006-06-01

    Variation in plant species performance in response to water availability offers a potential axis for temporal and spatial habitat partitioning and may therefore affect community composition in tropical forests. We hypothesized that short dry spells during the wet season are a significant source of mortality for the newly emerging seedlings of pioneer species that recruit in treefall gaps in tropical forests. An analysis of a 49-year rainfall record for three forests across a rainfall gradient in central Panama confirmed that dry spells of > or = 10 days during the wet season occur on average once a year in a deciduous forest, and once every other year in a semi-deciduous moist and an evergreen wet forest. The effect of wet season dry spells on the recruitment of pioneers was investigated by comparing seedling survival in rain-protected dry plots and irrigated control plots in four large artificially created treefall gaps in a semi-deciduous tropical forest. In rain-protected plots surface soil layers dried rapidly, leading to a strong gradient in water potential within the upper 10 cm of soil. Seedling survival for six pioneer species was significantly lower in rain-protected than in irrigated control plots after only 4 days. The strength of the irrigation effect differed among species, and first became apparent 3-10 days after treatments started. Root allocation patterns were significantly, or marginally significantly, different between species and between two groups of larger and smaller seeded species. However, they were not correlated with seedling drought sensitivity, suggesting allocation is not a key trait for drought sensitivity in pioneer seedlings. Our data provide strong evidence that short dry spells in the wet season differentially affect seedling survivorship of pioneer species, and may therefore have important implications to seedling demography and community dynamics.

  16. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence.

    PubMed

    Hasselquist, Niles J; Allen, Michael F; Santiago, Louis S

    2010-12-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (Ψ(L)) relative to late-seral trees (-1.01 ± 0.14 and -0.54 ± 0.07 MPa, respectively). Although Ψ(L) did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ(18)O values relative to drought-deciduous trees (-2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar (18)O (∆(18)O(l)) and (13)C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season.

  17. Nationwide classification of forest types of India using remote sensing and GIS.

    PubMed

    Reddy, C Sudhakar; Jha, C S; Diwakar, P G; Dadhwal, V K

    2015-12-01

    India, a mega-diverse country, possesses a wide range of climate and vegetation types along with a varied topography. The present study has classified forest types of India based on multi-season IRS Resourcesat-2 Advanced Wide Field Sensor (AWiFS) data. The study has characterized 29 land use/land cover classes including 14 forest types and seven scrub types. Hybrid classification approach has been used for the classification of forest types. The classification of vegetation has been carried out based on the ecological rule bases followed by Champion and Seth's (1968) scheme of forest types in India. The present classification scheme has been compared with the available global and national level land cover products. The natural vegetation cover was estimated to be 29.36% of total geographical area of India. The predominant forest types of India are tropical dry deciduous and tropical moist deciduous. Of the total forest cover, tropical dry deciduous forests occupy an area of 2,17,713 km(2) (34.80%) followed by 2,07,649 km(2) (33.19%) under tropical moist deciduous forests, 48,295 km(2) (7.72%) under tropical semi-evergreen forests and 47,192 km(2) (7.54%) under tropical wet evergreen forests. The study has brought out a comprehensive vegetation cover and forest type maps based on inputs critical in defining the various categories of vegetation and forest types. This spatially explicit database will be highly useful for the studies related to changes in various forest types, carbon stocks, climate-vegetation modeling and biogeochemical cycles.

  18. Diverse patterns of stored water use among saplings in seasonally dry tropical forests.

    PubMed

    Wolfe, Brett T; Kursar, Thomas A

    2015-12-01

    Tree species in seasonally dry tropical forests likely vary in their drought-survival mechanisms. Drought-deciduousness, which reduces water loss, and low wood density, which may permit dependence on stored water, are considered key traits. For saplings of six species at two distinct sites, we studied these and two associated traits: the seasonal amount of water released per stem volume ("water released") and the hydraulic capacitance of the stem (C). Two deciduous species with low stem density, Cavanillesia platanifolia and Bursera simaruba, had high C and high dry-season stem water potential (Ψ(stem)), but differed in dry-season water released. C. platanifolia did not use stored water during the dry season whereas B. simaruba, in a drier forest, released stored water. In both, water released was highest while flushing leaves, suggesting that stored water supports leaf flushing. In contrast, two deciduous species with intermediate stem density, Annona hayesii and Genipa americana, had intermediate C, low dry-season Ψ(stem), and high seasonal change in water released. Meanwhile, two evergreen species with intermediate stem density, Cojoba rufescens and Astronium graveolens, had relatively low C, low dry-season Ψ(stem), and intermediate seasonal change in water released. Thus, at least three, distinct stored-water-use strategies were observed. Additionally, bark relative water content (RWC) decreased along with Ψ(stem) during the dry season while xylem RWC did not change, suggesting that bark-stored water buffers Ψ(stem) seasonally. Together these results suggest that seasonal use of stored water and change in Ψ(stem) are associated with functional groups that are characterized by combinations of deciduousness and stem density.

  19. Resource partitioning by evergreen and deciduous species in a tropical dry forest.

    PubMed

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin

    2017-02-01

    Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.

  20. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    PubMed

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  1. 21 CFR 184.1333 - Gum ghatti.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the bark of Anogeissus latifolia, a large tree found in the dry deciduous forests of India and Ceylon... percent). (3) Loss on drying. Not more than 14 percent dried at 105 °C for 5 hours. (4) Identification...

  2. Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region

    NASA Astrophysics Data System (ADS)

    Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.

    2014-06-01

    The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability, using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp: r2 = 0.63, n = 30 plots; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall inputs were generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry being more recalcitrant to decay.

  3. Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region

    NASA Astrophysics Data System (ADS)

    Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.

    2014-09-01

    The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp.: r2 = 0.63, n = 30; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall input was generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry season being more recalcitrant to decay.

  4. Energy content in dried leaf litter of some oaks and mixed mesophytic species that replace oaks

    Treesearch

    Aaron D. Stottlemeyer; G. Geoff Wang; Patrick H. Brose; Thomas A. Waldrop

    2010-01-01

    Mixed-mesophytic hardwood tree species are replacing upland oaks in vast areas of the Eastern United States deciduous forest. Some researchers have suggested that the leaf litter of mixed-mesophytic, oak replacement species renders forests less flammable where forest managers wish to restore a natural fire regime. We performed chemical analyses on dried leaf litter...

  5. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence

    PubMed Central

    Allen, Michael F.; Santiago, Louis S.

    2010-01-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (ΨL) relative to late-seral trees (−1.01 ± 0.14 and −0.54 ± 0.07 MPa, respectively). Although ΨL did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ18O values relative to drought-deciduous trees (−2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar 18O (∆18Ol) and 13C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season. PMID:20658152

  6. Variation in throughfall deposition across a deciduous beech (Fagus sylvatica L.) forest edge in Flanders.

    PubMed

    Devlaeminck, Rebecca; De Schrijver, An; Hermy, Martin

    2005-01-20

    Throughfall deposition and canopy exchange of acidifying and eutrophying compounds and major base cations were studied by means of throughfall analysis in a deciduous beech (Fagus sylvatica L.) forest edge in Belgium over a period of 1 year. Throughfall fluxes of Cl(-), NH(4)(+) and Na(+) were significantly elevated at the forest edge compared to the forest interior. As no edge effect on throughfall water volume could be detected, the observed edge enhancement effects were mainly due to dry deposition and canopy exchange patterns. Indeed, there was an elevated dry deposition of Cl(-), Na(+), K(+), Ca(2+) and Mg(2+) up to 50 m from the field/forest border. Within the forest, throughfall and dry deposition of SO(4)(2-) were highly variable and no significant differences were observed between the forest edge and the forest interior. Leaching of K(+) and Ca(2+) was reduced in the forest edge up to a distance of 30 m from the border. The measured nitrogen and acidic depositions far exceeded the current Flemish critical loads with respect to the protection of biodiversity in forests, especially at the forest edge. This points to an urgent need for controlling emissions as well as the need to consider the elevated deposition load in forest edges when calculating the critical loads in forests.

  7. Seasonal variations of gas exchange and water relations in deciduous and evergreen trees in monsoonal dry forests of Thailand.

    PubMed

    Ishida, Atsushi; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Sasrisang, Amornrat; Kaewpakasit, Kanokwan; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Gamo, Minoru; Diloksumpun, Sapit; Puangchit, Ladawan; Ishizuka, Moriyoshi

    2010-08-01

    This study compared leaf gas exchange, leaf hydraulic conductance, twig hydraulic conductivity and leaf osmotic potential at full turgor between two drought-deciduous trees, Vitex peduncularis Wall. and Xylia xylocarpa (Roxb.) W. Theob., and two evergreen trees, Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels, at the uppermost canopies in tropical dry forests in Thailand. The aims were to examine (i) whether leaf and twig hydraulic properties differ in relation to leaf phenology and (ii) whether xylem cavitation is a determinant of leaf shedding during the dry season. The variations in almost all hydraulic traits were more dependent on species than on leaf phenology. Evergreen Hopea exhibited the lowest leaf-area-specific twig hydraulic conductivity (leaf-area-specific K(twig)), lamina hydraulic conductance (K(lamina)) and leaf osmotic potential at full turgor (Ψ(o)) among species, whereas evergreen Syzygium exhibited the highest leaf-area-specific K(twig), K(lamina) and Ψ(o). Deciduous Xylia had the highest sapwood-area-specific K(twig), along with the lowest Huber value (sapwood area/leaf area). More negative osmotic Ψ(o) and leaf osmotic adjustment during the dry season were found in deciduous Vitex and evergreen Hopea, accompanied by low sapwood-area-specific K(twig). Regarding seasonal changes in hydraulics, no remarkable decrease in K(lamina) and K(twig) was found during the dry season in any species. Results suggest that leaf shedding during the dry season is not always associated with extensive xylem cavitation.

  8. How competitive is drought deciduousness in tropical forests? A combined eco-hydrological and eco-evolutionary approach

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Dralle, David; Feng, Xue; Thompson, Sally; Manzoni, Stefano

    2017-06-01

    Drought-deciduous and evergreen species are both common in tropical forests, where there is the need to cope with water shortages during periodic dry spells and over the course of the dry season. Which phenological strategy is favored depends on the long-term balance of carbon costs and gains that leaf phenology imposes as a result of the alternation of wet and dry seasons and the unpredictability of rainfall events. This study integrates a stochastic eco-hydrological framework with key plant economy traits to derive the long-term average annual net carbon gain of trees exhibiting different phenological strategies in tropical forests. The average net carbon gain is used as a measure of fitness to assess which phenological strategies are more productive and more evolutionarily stable (i.e. not prone to invasion by species with a different strategy). The evergreen strategy results in a higher net carbon gain and more evolutionarily stable communities with increasing wet season lengths. Reductions in the length of the wet season or the total rainfall, as predicted under climate change scenarios, should promote a shift towards more drought-deciduous communities, with ensuing implications for ecosystem functioning.

  9. Carbohydrate storage and light requirements of tropical moist and dry forest tree species.

    PubMed

    Poorter, Lourens; Kitajima, Kaoru

    2007-04-01

    In many plant communities, there is a negative interspecific correlation between relative growth rates and survival of juveniles. This negative correlation is most likely caused by a trade-off between carbon allocation to growth vs. allocation to defense and storage. Nonstructural carbohydrates (NSC) stored in stems allow plants to overcome periods of stress and should enhance survival. In order to assess how species differ in carbohydrate storage in relation to juvenile light requirements, growth, and survival, we quantified NSC concentrations and pool sizes in sapling stems of 85 woody species in moist semi-evergreen and dry deciduous tropical forests in the rainy season in Bolivia. Moist forest species averaged higher NSC concentrations than dry forest species. Carbohydrate concentrations and pool sizes decreased with the light requirements of juveniles of the species in the moist forest but not in the dry forest. Combined, these results suggest that storage is especially important for species that regenerate in persistently shady habitats, as in the understory of moist evergreen forests. For moist forest species, sapling survival rates increased with NSC concentrations and pool sizes while growth rates declined with the NSC concentrations and pool sizes. No relationships were found for dry forest species. Carbon allocation to storage contributes to the growth-survival trade-off through its positive effect on survival. And, a continuum in carbon storage strategies contributes to a continuum in light requirements among species. The link between storage and light requirements is especially strong in moist evergreen forest where species sort out along a light gradient, but disappears in dry deciduous forest where light is a less limiting resource and species sort out along drought and fire gradients.

  10. Automated Burned Area Delineation Using IRS AWiFS satellite data

    NASA Astrophysics Data System (ADS)

    Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.

    2014-12-01

    India is endowed with a rich forest cover. Over 21% of country's area is covered by forest of varied composition and structure. Out of 67.5 million ha of Indian forests, about 55% of the forest cover is being subjected to fires each year, causing an economic loss of over 440 crores of rupees apart from other ecological effects. Studies carried out by Forest Survey of India reveals that on an average 53% forest cover of the country is prone to fires and 6.17% of the forests are prone to severe fire damage. Forest Survey of India in a countrywide study in 1995 estimated that about 1.45 million hectares of forest are affected by fire annually. According to Forest Protection Division of the Ministry of Environment and Forest (GOI), 3.73 million ha of forests are affected by fire annually in India. Karnataka is one of the southern states of India extending in between latitude 110 30' and 180 25' and longitudes 740 10' and 780 35'. As per Forest Survey of India's State of Forest Report (SFR) 2009, of the total geographic area of 191791sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Typical forest fire season in the study area is from February-May with a peak during March-April every year, though sporadic fire episodes occur in other parts of the year sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Significant area of the deciduous forests, scrub and grasslands is prone to recurrent forest fires every year. In this study we evaluate the feasibility of burned area mapping over a large area (Karnataka state, India) using a semi-automated detection algorithm applied to medium resolution multi spectral data from the IRS AWiFS sensor. The method is intended to be used by non-specialist users for diagnostic rapid burnt area mapping.

  11. Geospatial monitoring and prioritization of forest fire incidences in Andhra Pradesh, India.

    PubMed

    Manaswini, G; Sudhakar Reddy, C

    2015-10-01

    Forest fire has been identified as one of the key environmental issue for long-term conservation of biodiversity and has impact on global climate. Spatially multiple observations are necessary for monitoring of forest fires in tropics for understanding conservation efficacy and sustaining biodiversity in protected areas. The present work was carried out to estimate the spatial extent of forest burnt areas and fire frequency using Resourcesat Advanced Wide Field Sensor (AWiFS) data (2009, 2010, 2012, 2013 and 2014) in Andhra Pradesh, India. The spatio-temporal analysis shows that an area of 7514.10 km(2) (29.22% of total forest cover) has been affected by forest fires. Six major forest types are distributed in Andhra Pradesh, i.e. semi-evergreen, moist deciduous, dry deciduous, dry evergreen, thorn and mangroves. Of the total forest burnt area, dry deciduous forests account for >75%. District-wise analysis shows that Kurnool, Prakasam and Cuddapah have shown >100 km(2) of burnt area every year. The total forest burnt area estimate covering protected areas ranges between 6.9 and 22.3% during the study period. Spatial burnt area analysis for protected areas in 2014 indicates 37.2% of fire incidences in the Nagarjunasagar Srisailam Tiger Reserve followed by 20.2 % in the Sri Lankamalleswara Wildlife Sanctuary, 20.1% in the Sri Venkateswara Wildlife Sanctuary and 17.4% in the Gundla Brahmeswaram Wildlife Sanctuary. The analysis of cumulative fire occurrences from 2009 to 2014 has helped in delineation of conservation priority hotspots using a spatial grid cell approach. Conservation priority hotspots I and II are distributed in major parts of study area including protected areas of the Nagarjunasagar Srisailam Tiger Reserve and Gundla Brahmeswaram Wildlife Sanctuary. The spatial database generated will be useful in studies related to influence of fires on species adaptability, ecological damage assessment and conservation planning.

  12. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India.

    PubMed

    Gandhi, Durai Sanjay; Sundarapandian, Somaiah

    2017-04-01

    Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among them in terms of biomass and carbon stocks which could be attributed to variation in anthropogenic pressures among the plots as well as to changes in tree density across landscapes. Total basal area of woody vegetation showed a significant positive (R 2  = 0.978; P = 0.000) relationship with carbon storage while juvenile tree basal area showed the negative relationship (R 2  = 0.4804; P = 0.000) with woody carbon storage. The present study generates a large-scale baseline data of dry deciduous forest carbon stock, which would facilitate carbon stock assessment at a national level as well as to understand its contribution on a global scale.

  13. Tropical Deforestation in the Bolivian Amazon

    NASA Technical Reports Server (NTRS)

    Tucker, Compton J.; Steininger, Marc K.; Townshend, John R. G.; Killeen, Timothy R.; Desch, Arthur

    2000-01-01

    Landsat satellite images from the mid-1980s and early 1990s were used to map tropical forest extent and deforestation in approximately 800,000 sq km of Amazonian Bolivia. Forest cover extent, including tropical deciduous forest, totalled 472,000 sq km while the area of natural non-forest formations totalled 298,000 sq km. The area deforested totalled 15,000 sq km in the middle 1980s and 28,800 sq km by the early 1990s. The rate of tropical deforestation in the >1,000 mm/y precipitation forest zone of Bolivia was 2,200 sq km/y from 1985-1986 to 1992-1994. We document a spatially-concentrated "deforestation zone" in Santa Cruz Department where >60% of the Bolivian deforestation is occurring at an accelerating rate in areas of tropical deciduous dry forest.

  14. Carbon exchange and quantum efficiency of ecosystem carbon storage in mature deciduous and old-growth coniferous forest in central New England in 2001

    NASA Astrophysics Data System (ADS)

    Hadley, J. L.; Urbanski, S. P.

    2002-12-01

    Carbon storage in forests of the northeastern U.S. and adjacent Canada may be a significant carbon sink, as forests and soils in this region have recovered after agricultural abandonment in the 19th century. Data collected during the 1990's showed that an area of 70 to 100 year old deciduous forest on abandoned farmland in central Massachusetts stored an average of 2.0 Mg C/ha/yr in trees and soil. During 2001 we measured carbon exchange and environmental parameters (above-canopy air temperature, atmospheric humidity, photosynthetically active radiation (PAR) and soil temperature) in both the 70-100 year old deciduous forest and in a nearby eastern hemlock (Tsuga canadensis L.)-dominated forest with trees up to 220 years old that was never cleared for agricultural use. The deciduous forest stored more than 4 Mg C/ ha in 2001, far higher than in any previous year since measurements started in 1991. Highest monthly deciduous forest carbon storage (1.8 - 1.9 Mg ha-1 month-1) occurred in July and August. The hemlock forest stored about 3 Mg C/ha, with peak storage in April and May (0.8 - 0.9Mg C ha-1 month-1), and little or no C storage during August. The differences in carbon storage between the two forests were related to differences in quantum use efficiency. Quantum efficiency of ecosystem carbon storage in the foliated deciduous forest averaged about 0.16 g C /mol PAR and was insensitive to temperature after leaf maturation. In contrast, the average hemlock forest quantum efficiency declined from about 0.10 g C /mol PAR at daily average above-canopy air temperature (T{a}{v}{g}) = 5 oC to zero quantum efficiency (no net carbon storage) at T{a}{v}{g} = 23 oC. Optimum temperatures for carbon storage in the hemlock forest occurred in April. Differences between the two forests are likely due primarily to a higher maximum photosynthetic rate and a more positive temperature response of leaf-level photosynthesis in red oak (the dominant deciduous species) as compared with eastern hemlock. Maintenance of high soil respiration in the hemlock forest during warm dry summer weather may also contribute to declining quantum efficiency of carbon storage in the hemlock forest during the summer.

  15. Root productivity of deciduous and evergreen species identified using a molecular approach

    NASA Astrophysics Data System (ADS)

    Ellsworth, P.; Sternberg, L. O.

    2012-12-01

    The linkage between leaf traits and root structure may explain how plants integrate above and belowground traits into whole plant adaptations to environmental stresses. In dry seasonal forests, the lack of dry season precipitation dries out the relatively nutrient-rich shallow soil, leaving shallow soil water and nutrients inaccessible to uptake until the wet season. In tropical or subtropical seasonal dry forests, deciduousness may allow for the survival of shallow fine roots during the dry season. Losing leaves during the dry season reduces aboveground plant water demand, and a greater proportion of water extracted from deep soil can be used to maintain shallow roots until the wet season. Higher shallow root survival through the dry season than evergreen species means that deciduous species can take advantage of the nutrient pulse associated with the onset of the wet season. To test the above hypothesis, fine roots were collected from soil cores in a seasonally dry forest during the dry season, onset of the wet season, and the wet season and were identified to selected evergreen and deciduous study species. The fine roots of two of the selected species (Lyonia ferruginea and Carya floridana) could be identified from visual characteristics. The other three study species, which were all from the genus Quercus (Q. geminata, Q. myrtifolia, and Q. laevis), were impossible to separate visually. We developed a PCR-based restriction fragment length polymorphism (PCR-RFLP) technique, which provided a quick, simple, low-cost way to identify the species of all fine roots of our study species. We extracted DNA from all roots that were not visually identified, amplified the internal transcribed spacer region (ITS), digested the ITS region with the restriction enzyme TaqαI, and used gel electrophoresis to separate DNA fragments. Using a PCR-RFLP based root identification key that we developed for the species at Archbold Biological Station, all species that could not be identified visually were separated based on each species ' unique banding pattern of restriction fragments. Approximately 2,500 roots were identified using PCR-RFLP and approximately 1,500 more roots were identified visually. Identifying fine roots to species allows for species-level analysis of root productivity in this in situ study.

  16. [Odocoileus virginianus diet (Artiodactyla: Cervidae) in a temperate forest of Northern Oaxaca, Mexico].

    PubMed

    González, Graciela; Briones-Salas, Miguel

    2012-03-01

    The Sierra Madre de Oaxaca region, located in the Northern state of Oaxaca, Mexico, is an area of forest ecosystems subject to high exploitation rates, although in some areas its temperate forests are conserved by indigenous community initiatives that live there. We analyzed the diet of white tailed-deer (Odocoileus virginianus) in the localities of Santa Catarina Lachatao and San Miguel Amatlán from June 1998 to August 1999. Sampling was done during both the wet and dry seasons, and included the observation of browsing traces (238 observations), microhistological analysis of deer feces (28 deer pellet-groups), and two stomach content analysis. The annual diet of white-tailed deer was composed of 42 species from 23 botanical families. The most represented families in the diet of this deer were Fagaceae, Asteraceae, Ericaceae and Fabaceae. There were significant differences in the alpha diversity of the diet during the wet and dry seasons (H'=2.957 and H'=1.832, respectively). The similarity percentage between seasons was 56%. Differences in plant species frequency were significantly higher during the wet season. Herbaceous plants made up the greatest percentage of all the species consumed. The preferred species throughout the year were Senecio sp. (shrub), Sedum dendroideum (herbaceous), Arctostaphylos pungens (shrub) and Satureja macrostema (shrub). Diet species richness was found to be lower than that observed in a tropical forest (Venezuela), tropical dry forest (Mexico) and temperate deciduous and mixed forest (Mexico), but similar to the diet species richness observed in a tropical dry forest (Costa Rica) and temperate coniferous and deciduous forests (USA).

  17. Successional changes in functional composition contrast for dry and wet tropical forest.

    PubMed

    Lohbeck, Madelon; Poorter, Lourens; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Paz, Horacio; Pérez-García, Eduardo A; Romero-Pérez, I Eunice; Tauro, Alejandra; Bongers, Frans

    2013-06-01

    We tested whether and how functional composition changes with succession in dry deciduous and wet evergreen forests of Mexico. We hypothesized that compositional changes during succession in dry forest were mainly determined by increasing water availability leading to community functional changes from conservative to acquisitive strategies, and in wet forest by decreasing light availability leading to changes from acquisitive to conservative strategies. Research was carried out in 15 dry secondary forest plots (5-63 years after abandonment) and 17 wet secondary forest plots (< 1-25 years after abandonment). Community-level functional traits were represented by community-weighted means based on 11 functional traits measured on 132 species. Successional changes in functional composition are more marked in dry forest than in wet forest and largely characterized by different traits. During dry forest succession, conservative traits related to drought tolerance and drought avoidance decreased, as predicted. Unexpectedly acquisitive leaf traits also decreased, whereas seed size and dependence on biotic dispersal increased. In wet forest succession, functional composition changed from acquisitive to conservative leaf traits, suggesting light availability as the main driver of changes. Distinct suites of traits shape functional composition changes in dry and wet forest succession, responding to different environmental filters.

  18. Modeling forest dynamics along climate gradients in Bolivia

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Hutjes, R. W. A.; Kruijt, B.; Quispe, J.; Añez, S.; Arora, V. K.; Melton, J. R.; Hickler, T.; Kabat, P.

    2014-05-01

    Dynamic vegetation models have been used to assess the resilience of tropical forests to climate change, but the global application of these modeling experiments often misrepresents carbon dynamics at a regional level, limiting the validity of future projections. Here a dynamic vegetation model (Lund Potsdam Jena General Ecosystem Simulator) was adapted to simulate present-day potential vegetation as a baseline for climate change impact assessments in the evergreen and deciduous forests of Bolivia. Results were compared to biomass measurements (819 plots) and remote sensing data. Using regional parameter values for allometric relations, specific leaf area, wood density, and disturbance interval, a realistic transition from the evergreen Amazon to the deciduous dry forest was simulated. This transition coincided with threshold values for precipitation (1400 mm yr-1) and water deficit (i.e., potential evapotranspiration minus precipitation) (-830 mm yr-1), beyond which leaf abscission became a competitive advantage. Significant correlations were found between modeled and observed values of seasonal leaf abscission (R2 = 0.6, p <0.001) and vegetation carbon (R2 = 0.31, p <0.01). Modeled Gross Primary Productivity (GPP) and remotely sensed normalized difference vegetation index showed that dry forests were more sensitive to rainfall anomalies than wet forests. GPP was positively correlated to the El Niño-Southern Oscillation index in the Amazon and negatively correlated to consecutive dry days. Decreasing rainfall trends were simulated to reduce GPP in the Amazon. The current model setup provides a baseline for assessing the potential impacts of climate change in the transition zone from wet to dry tropical forests in Bolivia.

  19. Analyzing the edge effects in a Brazilian seasonally dry tropical forest.

    PubMed

    Arruda, D M; Eisenlohr, P V

    2016-02-01

    Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests) they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I) Are there differences in canopy cover along the edge-interior gradient during the dry season? (II) How does the microclimate (air temperature, soil temperature, and relative humidity) vary along that gradient? (III) How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV) Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.

  20. Resilience of Alaska's boreal forest to climate change

    Treesearch

    F.S. Chapin; A.D. McGuire; R.W. Ruess; T.N. Hollingsworth; M.C. Mack; J.F. Johnstone; E.S. Kasischke; E.S. Euskirchen; J.B. Jones; M.T. Jorgenson; K. Kielland; G.P. Kofinas; M.R. Turetsky; J. Yarie; A.H. Lloyd; D.L. Taylor

    2010-01-01

    This paper assesses the resilience of Alaska's boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters...

  1. Semiquantitative color profiling of soils over a land degradation gradient in Sakaerat, Thailand.

    PubMed

    Doi, Ryoichi; Wachrinrat, Chongrak; Teejuntuk, Sakhan; Sakurai, Katsutoshi; Sahunalu, Pongsak

    2010-11-01

    In this study, we attempted multivariate color profiling of soils over a land degradation gradient represented by dry evergreen forest (original vegetation), dry deciduous forest (moderately disturbed by fire), and bare ground (severely degraded) in Sakaerat, Thailand. The soils were sampled in a dry-to-wet seasonal transition. Values of the red-green-blue (RGB), cyan-magenta-yellow-key black (CMYK), L*a*b*, and hue-intensity-saturation (HIS) color models were determined using the digital software Adobe Photoshop. Land degradation produced significant variations (p<0.05) in R, C, Y, L*, a*, b*, S, and I values (p<0.05). The seasonal transition produced significant variations (p<0.05) in R, G, B, C, M, K, L*, b*, and I values. In discriminating the soils, the color models did not differ in discriminatory power, while discriminatory power was affected by seasonal changes. Most color variation patterns had nonlinear relationships with the intensity of the land degradation gradient, due to effects of fire that darkened the deciduous forest soil, masking the nature of the soil as the intermediate between the evergreen forest and the bare ground soils. Taking these findings into account, the utilization of color profiling of soils in land conservation and rehabilitation is discussed.

  2. Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance.

    PubMed

    Markesteijn, Lars; Poorter, Lourens; Bongers, Frans; Paz, Horacio; Sack, Lawren

    2011-07-01

    Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K(l) with drought tolerance, we found a strong, negative correlation between K(l) and species' shade tolerance. Across species, K(s) and K(l) were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  3. Drought-related leaf phenology in tropical forests - Insights from a stochastic eco-hydrological approach

    NASA Astrophysics Data System (ADS)

    Vico, G.; Feng, X.; Dralle, D.; Thompson, S. E.; Manzoni, S.

    2016-12-01

    Drought deciduousness is a common phenological strategy to cope with water shortages during periodic dry spells or during the dry season in tropical forests. On one hand, shedding leaves allows avoiding drought stress, but implies leaf construction costs that evergreen species need to sustain less frequently. On the other hand, maintaining leaves during dry periods requires stable water sources, traits enabling leaves to remain active at low water potential, and carbon stores to sustain respiration costs in periods with little carbon uptake. Which of these strategies is the most competitive ultimately depends on the balance of carbon costs and gains in the long-term. In turn, this balance is affected by the hydro-climatic conditions, in terms of both length of the dry season and random rainfall occurrences during the wet season. To address the question as to which hydro-climatic conditions favor drought-deciduous vs. evergreen leaf habit in tropical forests, we develop a stochastic eco-hydrological framework that provides probability density functions of long-term carbon gain in tropical trees with a range of phenological strategies. From these distributions we compute the long-term mean carbon gain and use it as a measure of fitness and thus reproductive success. Finally, this measure is used to assess which phenological strategies are evolutionarily stable, providing an objective criterion to predict how likely a species with a certain phenological strategy is to invade a community dominated but another strategy. In general, we find that deciduous habit is evolutionary stable in more unpredictable climates for a given total rainfall, and in drier climates. However, a minimum annual rainfall is required for any strategy to have a positive carbon gain.

  4. Effects of Habitat Structure and Fragmentation on Diversity and Abundance of Primates in Tropical Deciduous Forests in Bolivia.

    PubMed

    Pyritz, Lennart W; Büntge, Anna B S; Herzog, Sebastian K; Kessler, Michael

    2010-10-01

    Habitat structure and anthropogenic disturbance are known to affect primate diversity and abundance. However, researchers have focused on lowland rain forests, whereas endangered deciduous forests have been neglected. We aimed to investigate the relationships between primate diversity and abundance and habitat parameters in 10 deciduous forest fragments southeast of Santa Cruz, Bolivia. We obtained primate data via line-transect surveys and visual and acoustic observations. In addition, we assessed the vegetation structure (canopy height, understory density), size, isolation time, and surrounding forest area of the fragments. We interpreted our results in the context of the historical distribution data for primates in the area before fragmentation and interviews with local people. We detected 5 of the 8 historically observed primate species: Alouatta caraya, Aotus azarae boliviensis, Callithrix melanura, Callicebus donacophilus, and Cebus libidinosus juruanus. Total species number and detection rates decreased with understory density. Detection rates also negatively correlated with forest areas in the surroundings of a fragment, which may be due to variables not assessed, i.e., fragment shape, distance to nearest town. Observations for Alouatta and Aotus were too few to conduct further statistics. Cebus and Callicebus were present in 90% and 70% of the sites, respectively, and their density did not correlate with any of the habitat variables assessed, signaling high ecological plasticity and adaptability to anthropogenic impact in these species. Detections of Callithrix were higher in areas with low forest strata. Our study provides baseline data for future fragmentation studies in Neotropical dry deciduous forests and sets a base for specific conservation measures.

  5. Deciduousness in a seasonal tropical forest in western Thailand: interannual and intraspecific variation in timing, duration and environmental cues.

    PubMed

    Williams, Laura J; Bunyavejchewin, Sarayudh; Baker, Patrick J

    2008-03-01

    Seasonal tropical forests exhibit a great diversity of leaf exchange patterns. Within these forests variation in the timing and intensity of leaf exchange may occur within and among individual trees and species, as well as from year to year. Understanding what generates this diversity of phenological behaviour requires a mechanistic model that incorporates rate-limiting physiological conditions, environmental cues, and their interactions. In this study we examined long-term patterns of leaf flushing for a large proportion of the hundreds of tree species that co-occur in a seasonal tropical forest community in western Thailand. We used the data to examine community-wide variation in deciduousness and tested competing hypotheses regarding the timing and triggers of leaf flushing in seasonal tropical forests. We developed metrics to quantify the nature of deciduousness (its magnitude, timing and duration) and its variability among survey years and across a range of taxonomic levels. Tree species varied widely in the magnitude, duration, and variability of leaf loss within species and across years. The magnitude of deciduousness ranged from complete crown loss to no crown loss. Among species that lost most of their crown, the duration of deciduousness ranged from 2 to 21 weeks. The duration of deciduousness in the majority of species was considerably shorter than in neotropical forests with similar rainfall periodicity. While the timing of leaf flushing varied among species, most ( approximately 70%) flushed during the dry season. Leaf flushing was associated with changes in photoperiod in some species and the timing of rainfall in other species. However, more than a third of species showed no clear association with either photoperiod or rainfall, despite the considerable length and depth of the dataset. Further progress in resolving the underlying internal and external mechanisms controlling leaf exchange will require targeting these species for detailed physiological and microclimatic studies.

  6. Vegetation Response to Upper Pliocene Glacial/Interglacial Cyclicity in the Central Mediterranean

    NASA Astrophysics Data System (ADS)

    Combourieu-Nebout, Nathalie

    1993-09-01

    New detailed pollen analysis of the lower part of the Upper Pliocene Semaforo section (Crotone, Italy) documents cyclic behavior of vegetation at the beginning of the Northern Hemisphere glaciations. The competition between four vegetation units (subtropical humid forest, deciduous temperate forest, altitudinal coniferous forest, and open xeric assemblage) probably reflects modifications of vegetation belts at this montane site. Several increases in herbaceous open vegetation regularly alternate with subtropical humid forest, which expresses rapid climatic oscillations. The complete temporal succession—deciduous forest (rich in Quercus), followed by subtropical humid forest (Taxodiaceae and Cathaya), then altitudinal coniferous forest ( Tsuga, Cedrus, Abies, and Picea), and finally herbaceous open vegetation (Graminae, Compositae, and Artemisia )—displays the climatic evolution from warm and humid interglaciation to cold and dry glaciation. It also suggests an independent variation of temperature and humidity, the two main climatic parameters. The vegetation history of southern Calabria recorded in the Semaforo section have been correlated with the ∂ 18O signal established in the Atlantic Ocean.

  7. Occurrence of termites (Isoptera) on living and standing dead trees in a tropical dry forest in Mexico.

    PubMed

    Calderón-Cortés, Nancy; Escalera-Vázquez, Luis H; Oyama, Ken

    2018-01-01

    Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60-98% of standing dead trees and 23-59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057-0.066 trees/m 2 ) than in riparian forests (0.022 and 0.027 trees/m 2 ), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01-0.09 trees/m 2 ) than in larger class sizes (0-0.02 trees/m 2 ). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.

  8. Occurrence of termites (Isoptera) on living and standing dead trees in a tropical dry forest in Mexico

    PubMed Central

    Escalera-Vázquez, Luis H.; Oyama, Ken

    2018-01-01

    Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60–98% of standing dead trees and 23–59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057–0.066 trees/m2) than in riparian forests (0.022 and 0.027 trees/m2), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01–0.09 trees/m2) than in larger class sizes (0–0.02 trees/m2). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil. PMID:29785342

  9. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    PubMed Central

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. PMID:24757012

  10. Comprehensive national database of tree effects on air quality and human health in the United States

    Treesearch

    Satoshi Hirabayashi; David J. Nowak

    2016-01-01

    Trees remove air pollutants through dry deposition processes depending upon forest structure, meteorology, and air quality that vary across space and time. Employing nationally available forest, weather, air pollution and human population data for 2010, computer simulations were performed for deciduous and evergreen trees with varying leaf area index for rural and...

  11. A Regional Simulation to Explore Impacts of Resource Use and Constraints

    DTIC Science & Technology

    2007-03-01

    mountaintops. (10) Deciduous Forest - This class is composed of forests, which contain at least 75% deciduous trees in the canopy, deciduous ... trees , pine plantations, and evergreen woodlands. (12) Mixed Forest - This class includes forests with mixed deciduous /coniferous canopies, natural...reflective surfaces. Classification of forested wetlands dominated by deciduous trees is probably more accurate than that in areas with 104

  12. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America.

    PubMed

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-10-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period - a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI - high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  13. Relations between water balance, wood traits and phenological behavior of tree species from a tropical dry forest in Costa Rica--a multifactorial study.

    PubMed

    Worbes, Martin; Blanchart, Sofie; Fichtler, Esther

    2013-05-01

    Drought tolerance is a key factor for the establishment and survival of tree species in tropical ecosystems. Specific mechanisms of drought resistance can be grouped into four functional ecotypes based on differences in leaf fall behavior: deciduous, brevi-deciduous, stem succulent and evergreen. To identify the key factors influencing phenology and cambial activity and thus drought tolerance, we tested the stomatal conductance, leaf water potential and stable carbon isotopes in the leaves and wood of 12 species from a tropical dry forest in Costa Rica. With wood anatomical techniques, we further studied seasonal cambial activity and a suite of wood traits related to water transport for each of the functional ecotypes. Using a principal component analysis, we identified two groups of variables that can be related to (i) hydraulic conductivity and (ii) control of transpiration and water loss. Hydraulic conductivity is controlled by vessel size as the limiting variable, water potential as the driving force and wood density as the stabilizing factor of the anatomical structure of an effective water transport system. Stomatal control plays a major role in terms of water loss or saving and is the dominant factor for differences in phenological behavior. Stem succulent species in particular developed a rarely identified but highly effective strategy against drought stress, which makes it a successful pioneer species in tropical dry forests.

  14. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe)

    NASA Astrophysics Data System (ADS)

    Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas

    2017-08-01

    Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.

  15. The Chameleon Concept: Modeling Quaternary Geomorphic Surfaces Using Laboratory, Field, and Imaging Spectrometry in the Lower Colorado Sonoran Desert

    DTIC Science & Technology

    2005-11-01

    Oblique aerial photographs of dry deciduous tropical forest at the STRI Tropical Research Crane at the Parque Natural Metropolitano, Republic of Panama...Research Crane at the Parque Natural Metropolitano, Republic of Panama. ......................... 134 58. Original (a) and synthetic (b and c) tropical... Parque Natural Metropolitano, Republic of Panama. 133 b. Double canopy tropical forest diversity as seen from the can- opy crane gondola

  16. Development of national database on long-term deforestation (1930-2014) in Bangladesh

    NASA Astrophysics Data System (ADS)

    Reddy, C. Sudhakar; Pasha, S. Vazeed; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.

    2016-04-01

    The aim of the present study is to prepare a nation-wide spatial database on forest cover to assess and monitor the land use changes associated with deforestation in Bangladesh. The multi-source data were interpreted to get the forest cover map of 1930, 1975, 1985, 1995, 2006 and 2014. The spatial information generated on total area under forest cover, rate of deforestation and afforestation, changes across forest types, forest canopy density, replacement land use in deforested area and deforestation hotspots. This spatial analysis has indicated that forest cover is undergoing significant negative change in area and quality. We report that forests in Bangladesh covered an area of 23,140 km2 in 1930 which has decreased to 14,086 km2 in 2014, a net loss of 9054 km2 (39.1%) in eight decades. Analysis of annual rate of gross deforestation for the recent period indicates 0.77% during 2006-2014. During the past eight decades, semi-evergreen forests show loss of 56.4% of forest cover followed by moist deciduous forests (51.5%), dry deciduous forests (43.1%) and mangroves (6.5%). The loss of 23.5% of dense forest cover was found from 1975 to 2014. Dense semi-evergreen forests shows more negative change (36.9%) followed by dense moist deciduous forest (32.7%) from 1975 to 2014. Annual rate of deforestation is higher in dense forests compared to open forests from 2006 to 2014 and indicates increased threat due to anthropogenic pressures. The spatial analysis of forest cover change in mangroves has shown a lower rate of deforestation. Most of the forest conversions have led to the degradation of forests to scrub and transition to agriculture and plantation. The study has identified the 'deforestation hotspots' can help in strategic planning for conservation and management of forest resources.

  17. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    PubMed

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Poorter, Lourens; Bongers, Frans

    2014-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and wet secondary forest species, the consequences for succession were different resulting from contrasting environmental filters.

  18. Remote sensing of forest canopy and leaf biochemical contents

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Matson, Pamela A.; Card, Don H.; Aber, John D.; Wessman, Carol; Swanberg, Nancy; Spanner, Michael

    1988-01-01

    Recent research on the remote sensing of forest leaf and canopy biochemical contents suggests that the shortwave IR region contains this information; laboratory analyses of dry ground leaves have yielded reliable predictive relationships between both leaf nitrogen and lignin with near-IR spectra. Attention is given to the application of these laboratory techniques to a limited set of spectra from fresh, whole leaves of conifer species. The analysis of Airborne Imaging Spectrometer data reveals that total water content variations in deciduous forest canopies appear as overall shifts in the brightness of raw spectra.

  19. Patterns of glacial-interglacial vegetation and climate variability in eastern South Africa

    NASA Astrophysics Data System (ADS)

    Dupont, Lydie; Caley, Thibaut; Malaizé, Bruno; Giraudeau, Jacques

    2010-05-01

    Vegetation is an integrated part of the earth system and our understanding needs records of its glacial-interglacial variability. Although the data coverage for South Africa is slightly better than for some other parts of Africa, there are only very few records that allow us a glimpse of the vegetation history and development through one or more late Quaternary climate cycles. The existing evidence is fragmentary and in some cases contradictory. Marine sediments can offer here continuous sequences that cover large periods of time and provide a record of a signal that integrates rather large continental regions. Core MD96-2048 has been cored off the Limpopo River mouth at 26°10'S 34°01'E in 660 m water depth. This area is under the double influence of continental discharge and Agulhas current water advection. The sedimentation is slow and continuous. The upper 5 meter (down till 250 ka) have been analysed for pollen and spores at millennial resolution. The terrestrial pollen assemblages indicate that during interglacials the vegetation of eastern South Africa and southern Mozambique largely consisted of evergreen and deciduous forests with an increase of dry deciduous forest and open woodland during interglacial optima. During glacials open mountainous shrubland extended. The pattern strongly suggests a shifting of altitudinal vegetation belts in the mountains primarily depending on temperature, although the decline of forested areas during glacial times might also be the effect of low atmospheric carbon dioxide concentrations. This pattern in eastern South Africa differs from that suggested for western South Africa, where extension of the winter rain climate seems likely, and corroborates findings of increased C4 vegetation during the Glacial of eastern South Africa. The spread of dry deciduous forest and open woodland suggests a hot and dry climate during interglacial optima. The vegetation and climate of eastern South Africa seems to follow a mid to high latitude rhythm, in which the glacial-interglacial contrast is more important than the precessional forced monsoon system of tropical Africa.

  20. Interannual variability in ozone removal by a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Clifton, O. E.; Fiore, A. M.; Munger, J. W.; Malyshev, S.; Horowitz, L. W.; Shevliakova, E.; Paulot, F.; Murray, L. T.; Griffin, K. L.

    2017-01-01

    The ozone (O3) dry depositional sink and its contribution to observed variability in tropospheric O3 are both poorly understood. Distinguishing O3 uptake through plant stomata versus other pathways is relevant for quantifying the O3 influence on carbon and water cycles. We use a decade of O3, carbon, and energy eddy covariance (EC) fluxes at Harvard Forest to investigate interannual variability (IAV) in O3 deposition velocities (vd,O3). In each month, monthly mean vd,O3 for the highest year is twice that for the lowest. Two independent stomatal conductance estimates, based on either water vapor EC or gross primary productivity, vary little from year to year relative to canopy conductance. We conclude that nonstomatal deposition controls the substantial observed IAV in summertime vd,O3 during the 1990s over this deciduous forest. The absence of obvious relationships between meteorology and vd,O3 implies a need for additional long-term, high-quality measurements and further investigation of nonstomatal mechanisms.

  1. Pennsylvanian coniferopsid forests in sabkha facies reveal the nature of seasonal tropical biome

    USGS Publications Warehouse

    Falcon-Lang, H. J.; Jud, N.A.; John, Nelson W.; DiMichele, W.A.; Chaney, D.S.; Lucas, S.G.

    2011-01-01

    Pennsylvanian fossil forests are known from hundreds of sites across tropical Pangea, but nearly all comprise remains of humid Coal Forests. Here we report a unique occurrence of seasonally dry vegetation, preserved in growth position along >5 km of strike, in the Pennsylvanian (early Kasimovian, Missourian) of New Mexico (United States). Analyses of stump anatomy, diameter, and spatial density, coupled with observations of vascular traces and associated megaflora, show that this was a deciduous, mixed-age, coniferopsid woodland (~100 trees per hectare) with an open canopy. The coniferopsids colonized coastal sabkha facies and show tree rings, confirming growth under seasonally dry conditions. Such woodlands probably served as the source of coniferopsids that replaced Coal Forests farther east in central Pangea during drier climate phases. Thus, the newly discovered woodland helps unravel biome-scale vegetation dynamics and allows calibration of climate models. ?? 2011 Geological Society of America.

  2. Functional Trait Strategies of Trees in Dry and Wet Tropical Forests Are Similar but Differ in Their Consequences for Succession

    PubMed Central

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A.; Poorter, Lourens; Bongers, Frans

    2015-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a ‘Community-Weighted Mean’ plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and wet secondary forest species, the consequences for succession were different resulting from contrasting environmental filters. PMID:25919023

  3. Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): Regolith matric storage buffers the groundwater recharge process

    NASA Astrophysics Data System (ADS)

    Ruiz, Laurent; Varma, Murari R. R.; Kumar, M. S. Mohan; Sekhar, M.; Maréchal, Jean-Christophe; Descloitres, Marc; Riotte, Jean; Kumar, Sat; Kumar, C.; Braun, Jean-Jacques

    2010-01-01

    SummaryAccurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments. In this paper, we propose to assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using a lumped conceptual model (COMFORT). The model is calibrated using a 5 year hydrological monitoring of an experimental watershed under dry deciduous forest in South India (Mule Hole watershed). The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with alternance of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm year -1 and the evapotranspiration was about 900 mm year -1 out of which 100 mm year -1 was uptake from the deep saprolite horizons. The stream flow was 100 mm year -1 while the groundwater underflow was 80 mm year -1. The simulation results suggest that (i) deciduous trees can uptake a significant amount of water from the deep regolith, (ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers and (iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems.

  4. Light-dependent leaf trait variation in 43 tropical dry forest tree species.

    PubMed

    Markesteijn, Lars; Poorter, Lourens; Bongers, Frans

    2007-04-01

    Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun-shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small trees. For each species, leaves were taken from five of the most and five of the least illuminated crowns. Trees were selected based on the percentage of the hemisphere uncovered by other crowns. We examined leaf trait variation and the relation between trait plasticity and light demand, maximum adult stature, and ontogenetic changes in crown exposure of the species. Leaf trait variation was mainly related to differences among species and to a minor extent to differences in light availability. Traits related to the palisade layer, thickness of the outer cell wall, and N(area) and P(area) had the greatest plasticity, suggesting their importance for leaf function in different light environments. Short-lived pioneers had the highest trait plasticity. Overall plasticity was modest and rarely associated with juvenile light requirements, adult stature, or ontogenetic changes in crown exposure. Dry forest tree species had a lower light-related plasticity than wet forest species, probably because wet forests cast deeper shade. In dry forests light availability may be less limiting, and low water availability may constrain leaf trait plasticity in response to irradiance.

  5. Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests.

    PubMed

    Ding, Junjun; Zhang, Yuguang; Wang, Mengmeng; Sun, Xin; Cong, Jing; Deng, Ye; Lu, Hui; Yuan, Tong; Van Nostrand, Joy D; Li, Diqiang; Zhou, Jizhong; Yang, Yunfeng

    2015-10-01

    As two major forest types in the subtropics, broadleaved evergreen and broadleaved deciduous forests have long interested ecologists. However, little is known about their belowground ecosystems despite their ecological importance in driving biogeochemical cycling. Here, we used Illumina MiSeq sequencing targeting 16S rRNA gene and a microarray named GeoChip targeting functional genes to analyse microbial communities in broadleaved evergreen and deciduous forest soils of Shennongjia Mountain of Central China, a region known as 'The Oriental Botanic Garden' for its extraordinarily rich biodiversity. We observed higher plant diversity and relatively richer nutrients in the broadleaved evergreen forest than the deciduous forest. In odds to our expectation that plant communities shaped soil microbial communities, we found that soil organic matter quantity and quality, but not plant community parameters, were the best predictors of microbial communities. Actinobacteria, a copiotrophic phylum, was more abundant in the broadleaved evergreen forest, while Verrucomicrobia, an oligotrophic phylum, was more abundant in the broadleaved deciduous forest. The density of the correlation network of microbial OTUs was higher in the broadleaved deciduous forest but its modularity was smaller, reflecting lower resistance to environment changes. In addition, keystone OTUs of the broadleaved deciduous forest were mainly oligotrophic. Microbial functional genes associated with recalcitrant carbon degradation were also more abundant in the broadleaved deciduous forests, resulting in low accumulation of organic matters. Collectively, these findings revealed the important role of soil organic matter in shaping microbial taxonomic and functional traits. © 2015 John Wiley & Sons Ltd.

  6. Estimation of tiger densities in the tropical dry forests of Panna, Central India, using photographic capture-recapture sampling

    USGS Publications Warehouse

    Karanth, K.Ullas; Chundawat, Raghunandan S.; Nichols, James D.; Kumar, N. Samba

    2004-01-01

    Tropical dry-deciduous forests comprise more than 45% of the tiger (Panthera tigris) habitat in India. However, in the absence of rigorously derived estimates of ecological densities of tigers in dry forests, critical baseline data for managing tiger populations are lacking. In this study tiger densities were estimated using photographic capture–recapture sampling in the dry forests of Panna Tiger Reserve in Central India. Over a 45-day survey period, 60 camera trap sites were sampled in a well-protected part of the 542-km2 reserve during 2002. A total sampling effort of 914 camera-trap-days yielded photo-captures of 11 individual tigers over 15 sampling occasions that effectively covered a 418-km2 area. The closed capture–recapture model Mh, which incorporates individual heterogeneity in capture probabilities, fitted these photographic capture history data well. The estimated capture probability/sample, p̂= 0.04, resulted in an estimated tiger population size and standard error (N̂(SÊN̂)) of 29 (9.65), and a density (D̂(SÊD̂)) of 6.94 (3.23) tigers/100 km2. The estimated tiger density matched predictions based on prey abundance. Our results suggest that, if managed appropriately, the available dry forest habitat in India has the potential to support a population size of about 9000 wild tigers.

  7. Late Permian Forest Composition And Climate Revealed From High-Resolution Carbon Isotopes In Fossil Tree Rings

    NASA Astrophysics Data System (ADS)

    Gulbranson, E.; Isbell, J. L.; Taylor, E. L.; Ryberg, P. E.; Taylor, T. N.

    2012-12-01

    Late Permian forests from Antarctica are one of a few examples of polar forest biomes in Earth history. We present a paleoforestry and geochemical study of three contemporaneous Late Permian fossil forests and geochemical analysis of fossil wood specimens from the Permian-Triassic contact in Antarctica. Late Permian paleoforestry analysis suggests that these forests responded to disturbance in exactly the opposite manner as compared to modern boreal forests, with forest thinning and loss of understory vegetation occurring towards areas of disturbance. New high-resolution carbon isotope data from 6 permineralized stumps, 32 tree rings studied in total, indicate that these forests were mixed evergreen and deciduous, but dominated by deciduous trees. Moreover, intra-tree ring and ring-to-ring variation of δ13C values suggest that the Late Permian polar climate maintained wet winters, with precipitation in the austral winter being a factor of three greater than the austral summer. Such seasonality in precipitation implies the development of a temperate-like climate at polar latitudes following the demise of the late Paleozoic ice age. High-resolution carbon isotopes in tree rings in a stratigraphic succession of Late Permian fossil wood to fossil wood at the Permian-Triassic contact indicates that Antarctica experienced a change in precipitation patterns around the time of the Permian-Triassic boundary, marked by intervals of pronounced drying juxtaposed against wetter conditions.

  8. The ecological variations in thermal infrared emissivity of vegetation. [in Texas, Arizona, New Mexico, and Mexico

    NASA Technical Reports Server (NTRS)

    Arp, G. K.; Phinney, D. E. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Through a series of contrasts, the statistical significance of differences in emissivity was determined for vegegation in dry and humid deserts, montane and deciduous rain forests, and the temperate region. No significant differences were found between the two types of desert vegetation or among the types of nondesert vegetation. However, the rain forest vegetation was significantly different from that of the temperate region. On a community-wide level, there is some physiological adaptation in plants to their radiational environment.

  9. Assessment of water availability and its relationship with vegetation distribution over a tropical montane system

    NASA Astrophysics Data System (ADS)

    Streher, A. S.; Sobreiro, J. F. F.; Silva, T. S. F.

    2017-12-01

    Water availability is one of the main drivers of vegetation distribution, but assessing it over mountainous regions is difficult given the effects of rugged topography on hydroclimatic dynamics (orographic rainfall, soil water, and runoff). We assessed how water availability may influence the distribution of vegetation types in the Espinhaço Range, a South American tropical mountain landscape comprised of savannas, grasslands, rock outcrops, cloud forests, and semi-deciduous/deciduous forests. For precipitation, we used CHIRPS monthly and daily products (1981- 2016) and 112 rain gauge ground stations, and assessed potential evapotranspiration (PET) using the MODIS MOD16A3 (2000-2013) product. Vegetation types were classified according to the Global Ecoregions by WWF. We show that rainfall has well-defined rainy and dry seasons with a strong latitudinal pattern, there is evidence for local orographic effects. Dry forests (907 mm/yr; 8% cv) and caatinga vegetation (795 mm/yr; 7% cv) had the lowest average annual precipitation and low variance, whilst Atlantic tropical forest in the southeast (1267 mm/yr; 15% cv), cerrado savanna vegetation in the west (1086 mm/yr; 15% cv) and rupestrian grasslands above 800m (1261 mm/yr; 20% cv) received the highest annual precipitation, with the largest observed variance due to their wide latitudinal distribution. Forests and rupestrian grasslands in the windward side of the mountain had a higher frequency of intense rainfall events (> 20mm), accounting for 6% of the CHIRPS daily time series, suggesting orographic effects on precipitation. Annual average PET was highest for dry forests (2437 mm/yr) and caatinga (2461 mm/yr), intermediate for cerrado (2264 mm/yr) and lowest for Atlantic tropical forest (2083 mm/yr) and rupestrian grasslands (2136 mm/yr). All vegetation types received less rainfall than its PET capacity based on yearly data, emphasizing the need for ecophysiological adaptations to water use. Climate change threatens these ecosystems by possible alterations on the hydrological cycle and, consequently, capacity for adaptations on water use. These could lead to shifts in vegetation composition and distribution within the studied region. Further investigation of seasonal trends on water availability and edaphic factors would improve these analyses.

  10. Deposition of Mercury in Forests along a Montane Elevation Gradient.

    PubMed

    Blackwell, Bradley D; Driscoll, Charles T

    2015-05-05

    Atmospheric mercury (Hg) deposition varies along elevation gradients and is influenced by both orographic and biological factors. We quantified total Hg deposition over a 2 year period at 24 forest sites at Whiteface Mountain, NY, USA, that ranged from 450 to 1450 m above sea level and covered three distinct forest types: deciduous/hardwood forest (14.1 μg/m2-yr), spruce/fir forest (33.8 μg/m2-yr), and stunted growth alpine/fir forest (44.0 μg/m2-yr). Atmospheric Hg deposition increased with elevation, with the dominant deposition pathways shifting from litterfall in low-elevation hardwoods to throughfall in midelevation spruce/fir to cloudwater in high-elevation alpine forest. Soil Hg concentrations (ranging from 69 to 416 ng/g for the Oi/Oe and 72 to 598 ng/g for the Oa horizons) were correlated with total Hg deposition, but the weakness of the correlations suggests that additional factors such as climate and tree species also contribute to soil Hg accumulation. Meteorological conditions influenced Hg deposition pathways, as cloudwater Hg diminished in 2010 (dry conditions) compared to 2009 (wet conditions). However, the dry conditions in 2010 led to increased Hg dry deposition and subsequent significant increases in throughfall Hg fluxes compared to 2009. These findings suggest that elevation, forest characteristics, and meteorological conditions are all important drivers of atmospheric Hg deposition to montane forests.

  11. Observation of organized structure in turbulent flow within and above a forest canopy

    NASA Technical Reports Server (NTRS)

    Gao, W.; Shaw, R. H.; Paw u, K. T.

    1989-01-01

    Data obtained with seven triaxial sonic anemometer/thermometers and three Lyman-alpha hygrometers at an experimental site in Ontario, Canada reveal the coherent occurrence of ramp patterns of temperature and humidity at several levels within and above the deciduous forest considered. The ramps appear most clearly in the middle and upper portion of the forest, and near the top of the forest they are composed of a weak ejecting motion transporting warm and/or moist air out of the forest, followed by strong sweeps of cool and/or dry air penetrating into the canopy. In the middle and upper parts of the canopy, the sweeps are found to conduct a large proportion of the overall transfer between the forest and the lower atmosphere, with a lesser contribution from ejections.

  12. Effects of logging and recruitment on community phylogenetic structure in 32 permanent forest plots of Kampong Thom, Cambodia

    PubMed Central

    Toyama, Hironori; Kajisa, Tsuyoshi; Tagane, Shuichiro; Mase, Keiko; Chhang, Phourin; Samreth, Vanna; Ma, Vuthy; Sokh, Heng; Ichihashi, Ryuji; Onoda, Yusuke; Mizoue, Nobuya; Yahara, Tetsukazu

    2015-01-01

    Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in secondary dry deciduous forests. Measurements were made in 1998, 2000, 2004 and 2010, and logging, recruitment and mortality of each tree were recorded. We estimated phylogeny using rbcL and matK gene sequences and quantified phylogenetic α and β diversity. Within communities, logging decreased phylogenetic diversity, and increased overall phylogenetic clustering and terminal phylogenetic evenness. Between communities, logging increased phylogenetic similarity between evergreen and deciduous plots. On the other hand, recruitment had opposite effects both within and between communities. The observed patterns can be explained by environmental homogenization under logging. Logging is biased to particular species and larger diameter at breast height, and forest patrol has been effective in decreasing logging. PMID:25561669

  13. Effects of logging and recruitment on community phylogenetic structure in 32 permanent forest plots of Kampong Thom, Cambodia.

    PubMed

    Toyama, Hironori; Kajisa, Tsuyoshi; Tagane, Shuichiro; Mase, Keiko; Chhang, Phourin; Samreth, Vanna; Ma, Vuthy; Sokh, Heng; Ichihashi, Ryuji; Onoda, Yusuke; Mizoue, Nobuya; Yahara, Tetsukazu

    2015-02-19

    Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in secondary dry deciduous forests. Measurements were made in 1998, 2000, 2004 and 2010, and logging, recruitment and mortality of each tree were recorded. We estimated phylogeny using rbcL and matK gene sequences and quantified phylogenetic α and β diversity. Within communities, logging decreased phylogenetic diversity, and increased overall phylogenetic clustering and terminal phylogenetic evenness. Between communities, logging increased phylogenetic similarity between evergreen and deciduous plots. On the other hand, recruitment had opposite effects both within and between communities. The observed patterns can be explained by environmental homogenization under logging. Logging is biased to particular species and larger diameter at breast height, and forest patrol has been effective in decreasing logging. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Multiresolution quantification of deciduousness in West-Central African forests

    NASA Astrophysics Data System (ADS)

    Viennois, G.; Barbier, N.; Fabre, I.; Couteron, P.

    2013-11-01

    The characterization of leaf phenology in tropical forests is of major importance for forest typology as well as to improve our understanding of earth-atmosphere-climate interactions or biogeochemical cycles. The availability of satellite optical data with a high temporal resolution has permitted the identification of unexpected phenological cycles, particularly over the Amazon region. A primary issue in these studies is the relationship between the optical reflectance of pixels of 1 km or more in size and ground information of limited spatial extent. In this paper, we demonstrate that optical data with high to very-high spatial resolution can help bridge this scale gap by providing snapshots of the canopy that allow discernment of the leaf-phenological stage of trees and the proportions of leaved crowns within the canopy. We also propose applications for broad-scale forest characterization and mapping in West-Central Africa over an area of 141 000 km2. Eleven years of the Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) data were averaged over the wet and dry seasons to provide a data set of optimal radiometric quality at a spatial resolution of 250 m. Sample areas covered at a very-high (GeoEye) and high (SPOT-5) spatial resolution were used to identify forest types and to quantify the proportion of leaved trees in the canopy. The dry-season EVI was positively correlated with the proportion of leaved trees in the canopy. This relationship allowed the conversion of EVI into canopy deciduousness at the regional level. On this basis, ecologically important forest types could be mapped, including young secondary, open Marantaceae, Gilbertiodendron dewevrei and swamp forests. We show that in West-Central African forests, a large share of the variability in canopy reflectance, as captured by the EVI, is due to variation in the proportion of leaved trees in the upper canopy, thereby opening new perspectives for biodiversity and carbon-cycle applications.

  15. Lemur species-specific metapopulation responses to habitat loss and fragmentation

    PubMed Central

    Lehman, Shawn M.

    2018-01-01

    Determining what factors affect species occurrence is vital to the study of primate biogeography. We investigated the metapopulation dynamics of a lemur community consisting of eight species (Avahi occidentalis, Propithecus coquereli, Microcebus murinus, Microcebus ravelobensis, Lepilemur edwardsi, Cheirogaleus medius, Eulemur mongoz, and Eulemur fulvus) within fragmented tropical dry deciduous forest habitat in Ankarafantsika National Park, Madagascar. We measured fragment size and isolation of 42 fragments of forest ranging in size from 0.23 to 117.7 ha adjacent to continuous forest. Between June and November 2011, we conducted 1218 surveys and observed six of eight lemur species (M. murinus, M. ravelobensis, C. medius, E. fulvus, P. coquereli, and L. edwardsi) in the 42 fragments. We applied among patch incidence function models (IFMs) with various measures of dispersal and a mainland-island IFM to lemur species occurrence, with the aim of answering the following questions: 1) Do lemur species in dry deciduous forest fragments form metapopulations? 2) What are the separate effects of area (extinction risk) and connectivity/isolation (colonization potential) within a lemur metapopulation? 3) Within simulated metapopulations over time, how do area and connectivity/isolation affect occurrence? and 4) What are the conservation implications of our findings? We found that M. murinus formed either a mainland-island or an among patch metapopulation, M. ravelobensis formed a mainland-island metapopulation, C. medius and E. fulvus formed among patch metapopulations, and neither P. coquereli or L. edwardsi formed a metapopulation. Metapopulation dynamics and simulations suggest that area was a more consistent positive factor determining lemur species occurrence than fragment isolation and is crucial to the maintenance of lemur populations within this fragmented landscape. Using a metapopulation approach to lemur biogeography is critical for understanding how lemur species respond to forest loss and fragmentation. PMID:29742108

  16. How did climate drying reduce ecosystem carbon storage in the forest-steppe ecotone? A case study in Inner Mongolia, China.

    PubMed

    Zhang, Yuke; Liu, Hongyan

    2010-07-01

    The projected recession of forests in the forest-steppe ecotone under projected climate drying would restrict the carbon sink function of terrestrial ecosystems. Previous studies have shown that the forest-steppe ecotone in the southeastern Inner Mongolia Plateau originally resulted from climate drying and vegetation shifts during the mid- to late-Holocene, but the interrelated processes of changing soil carbon storage and vegetation and soil shifts remain unclear. A total of 44 forest soil profiles and 40 steppe soil profiles were excavated to determine soil carbon storage in deciduous broadleaf forests (DBF), coniferous forests (CF) and steppe (ST) in this area. Carbon density was estimated to be 106.51 t/hm(2) (DBF), 73.20 t/hm(2) (CF), and 28.14 t/hm(2) (ST) for these ecosystems. Soil organic carbon (SOC) content was negatively correlated with sand content (R = -0.879, P < 0.01, n = 42), and positively correlated with silt (R = 0.881, P < 0.01, n = 42) and clay (R = 0.858, P < 0.01, n = 42) content. Consistent trends between fractions of coarse sand and a proxy index of relative aridity in sediment sequences from two palaeo-lakes further imply that climate drying reduced SOC through coarsening of the soil texture in the forest-steppe ecotone. Changes in carbon storage caused by climate drying can be divided into two stages: (1) carbon storage of the ecosystem was reduced to 68.7%, mostly by soil coarsening when DBF were replaced by CF at approximately 5,900 (14)C years before present (BP); and (2) carbon storage was reduced to 26.4%, mostly by vegetation shifts when CF were replaced by ST at approximately 2,900 (14)C years BP.

  17. Variations in evapotranspiration and climate for an Amazonian semi-deciduous forest over seasonal, annual, and El Niño cycles.

    PubMed

    Vourlitis, George L; de Souza Nogueira, José; de Almeida Lobo, Francisco; Pinto, Osvaldo Borges

    2015-02-01

    Tropical forests exchange large amounts of water and energy with the atmosphere and are important in controlling regional and global climate; however, climate and evaportranspiration (E) vary significantly across multiple time scales. To better understand temporal patterns in E and climate, we measured the energy balance and meteorology of a semi-deciduous forest in the rainforest-savanna ecotone of northern Mato Grosso, Brazil, over a 7-year period and analyzed regional climate patterns over a 16-year period. Spectral analysis revealed that E and local climate exhibited consistent cycles over annual, seasonal, and weekly time scales. Annual and seasonal cycles were also apparent in the regional monthly rainfall and humidity time series, and a cycle on the order of 3-5.5 years was also apparent in the regional air temperature time series, which is coincident with the average return interval of El Niño. Annual rates of E were significantly affected by the 2002 El Niño. Prior to this event, annual E was on average 1,011 mm/year and accounted for 52% of the annual rainfall, while after, annual E was 931 mm/year and accounted for 42% of the annual rainfall. Our data also suggest that E declined significantly over the 7-year study period while air temperature significantly increased, which was coincident with a long-term, regional warming and drying trend. These results suggest that drought and warming induced by El Niño and/or climate change cause declines in E for semi-deciduous forests of the southeast Amazon Basin.

  18. Variations in evapotranspiration and climate for an Amazonian semi-deciduous forest over seasonal, annual, and El Niño cycles

    NASA Astrophysics Data System (ADS)

    Vourlitis, George L.; de Souza Nogueira, José; de Almeida Lobo, Francisco; Pinto, Osvaldo Borges

    2015-02-01

    Tropical forests exchange large amounts of water and energy with the atmosphere and are important in controlling regional and global climate; however, climate and evaportranspiration ( E) vary significantly across multiple time scales. To better understand temporal patterns in E and climate, we measured the energy balance and meteorology of a semi-deciduous forest in the rainforest-savanna ecotone of northern Mato Grosso, Brazil, over a 7-year period and analyzed regional climate patterns over a 16-year period. Spectral analysis revealed that E and local climate exhibited consistent cycles over annual, seasonal, and weekly time scales. Annual and seasonal cycles were also apparent in the regional monthly rainfall and humidity time series, and a cycle on the order of 3-5.5 years was also apparent in the regional air temperature time series, which is coincident with the average return interval of El Niño. Annual rates of E were significantly affected by the 2002 El Niño. Prior to this event, annual E was on average 1,011 mm/year and accounted for 52 % of the annual rainfall, while after, annual E was 931 mm/year and accounted for 42 % of the annual rainfall. Our data also suggest that E declined significantly over the 7-year study period while air temperature significantly increased, which was coincident with a long-term, regional warming and drying trend. These results suggest that drought and warming induced by El Niño and/or climate change cause declines in E for semi-deciduous forests of the southeast Amazon Basin.

  19. Multiresolution quantification of deciduousness in West Central African forests

    NASA Astrophysics Data System (ADS)

    Viennois, G.; Barbier, N.; Fabre, I.; Couteron, P.

    2013-04-01

    The characterization of leaf phenology in tropical forests is of major importance and improves our understanding of earth-atmosphere-climate interactions. The availability of satellite optical data with a high temporal resolution has permitted the identification of unexpected phenological cycles, particularly over the Amazon region. A primary issue in these studies is the relationship between the optical reflectance of pixels of 1 km or more in size and ground information of limited spatial extent. In this paper, we demonstrate that optical data with high to very-high spatial resolution can help bridge this scale gap by providing snapshots of the canopy that allow discernment of the leaf-phenological stage of trees and the proportions of leaved crowns within the canopy. We also propose applications for broad-scale forest characterization and mapping in West Central Africa over an area of 141 000 km2. Eleven years of the Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) data were averaged over the wet and dry seasons to provide a dataset of optimal radiometric quality at a spatial resolution of 250 m. Sample areas covered at a very-high (GeoEye) and high (SPOT-5) spatial resolution were used to identify forest types and to quantify the proportion of leaved trees in the canopy. The dry season EVI was positively correlated with the proportion of leaved trees in the canopy. This relationship allowed the conversion of EVI into canopy deciduousness at the regional level. On this basis, ecologically important forest types could be mapped, including young secondary, open Marantaceae, Gilbertiodendron dewevrei and swamp forests. We show that in west central African forests, a large share of the variability in canopy reflectance, as captured by the EVI, is due to variation in the proportion of leaved trees in the upper canopy, thereby opening new perspectives for biodiversity and carbon-cycle applications.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinzman, Larry D.; Bolton, William Robert; Young-Robertson, Jessica

    This project improves meso-scale hydrologic modeling in the boreal forest by: (1) demonstrating the importance of capturing the heterogeneity of the landscape using small scale datasets for parameterization for both small and large basins; (2) demonstrating that in drier parts of the landscape and as the boreal forest dries with climate change, modeling approaches must consider the sensitivity of simulations to soil hydraulic parameters - such as residual water content - that are usually held constant. Thus, variability / flexibility in residual water content must be considered for accurate simulation of hydrologic processes in the boreal forest; (3) demonstrating thatmore » assessing climate change impacts on boreal forest hydrology through multiple model integration must account for direct effects of climate change (temperature and precipitation), and indirect effects from climate impacts on landscape characteristics (permafrost and vegetation distribution). Simulations demonstrated that climate change will increase runoff, but will increase ET to a greater extent and result in a drying of the landscape; and (4) vegetation plays a significant role in boreal hydrologic processes in permafrost free areas that have deciduous trees. This landscape type results in a decoupling of ET and precipitation, a tight coupling of ET and temperature, low runoff, and overall soil drying.« less

  1. Seasonal changes in plant-water relations influence patterns of leaf display in Miombo woodlands: evidence of water conservative strategies.

    PubMed

    Vinya, Royd; Malhi, Yadvinder; Brown, Nick D; Fisher, Joshua B; Brodribb, Timothy; Aragão, Luiz E O C

    2018-06-15

    Water availability has frequently been linked to seasonal leaf display in seasonally dry ecosystems, but there have been few ecohydrological investigations of this link. Miombo woodland is a dominant seasonally dry tropical forest ecosystem type in southern Africa; however, there are few data on the relationship between seasonal dynamics in plant-water relations and patterns of leaf display for Miombo woodland. Here we investigate this relationship among nine key Miombo woodland tree species differing in drought tolerance ability and leaf phenology. Results of this study showed that seasonal patterns of leaf phenology varied significantly with seasonal changes in stem water relations among the nine species. Leaf shedding coincided with the attainment of seasonal minimum stem water potential. Leaf flush occurred following xylem rehydration at the peak of the dry season suggesting that endogenous plant factors play a pivotal role in seasonal leaf display in this forest type. Drought-tolerant deciduous species suffered significantly higher seasonal losses in xylem hydraulic conductivity than the drought-intolerant semi-evergreen tree species (P < 0.05). There was a significant and positive correlation between species drought tolerance index and species' seasonal loss in hydraulic conductivity (P < 0.05), confirming the ecological role of long-distance xylem transport in this seasonally dry tropical forest. Our results reveal that water stress in seasonally dry tropical forests selects for water conservative traits that protect the vulnerable xylem transport system. Therefore, seasonal rhythms in xylem transport dictate patterns of leaf display in seasonally dry tropical forests.

  2. Impact of post-mining subsidence on nitrogen transformation in southern tropical dry deciduous forest, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, N.; Singh, R.S.; Singh, J.S.

    The goal of our research was to assess the impact of post-mining land subsidence, caused due to underground coal mining operations, on fine root biomass and root tips count; plant available nutrient status, microbial biomass N (MBN) and N-mineralization rates of a Southern tropical dry deciduous forest of Singareni Coalfields of India. The changes were quantified in all the three (rainy, winter and summer) seasons, in slope and depression microsites of the subsided land and an adjacent undamaged forest microsite. Physico-chemical characteristics were found to be altered after subsidence, showing a positive impact of subsidence on soil moisture, bulk density,more » water holding capacity, organic carbon content, total N and total P. The increase in all the parameters was found in depression microsites, while in slope microsites, the values were lower. Fine root biomass and root tips count increased in the subsided depression microsites, as demonstrated by increases of 62% and 45%, respectively. Soil nitrate-N and phosphate-P concentrations were also found to be higher in depression microsite, showing an increase of 35.68% and 24.74%, respectively. Depression microsite has also shown the higher MBN value with an increase over control. Net nitrification, net N-mineralization and MBN were increased in depression microsite by 29.77%, 25.72% and 34%, respectively. There was a positive relation of microbial N with organic C, fine root biomass and root tips.« less

  3. Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain.

    PubMed

    Bai, Kundong; He, Chengxin; Wan, Xianchong; Jiang, Debing

    2015-06-08

    The ecophysiological mechanisms underlying the pattern of bimodal elevational distribution of evergreen tree species remain incompletely understood. Here we used leaf economics spectrum (LES) theory to explain such patterns. We measured leaf economic traits and constructed an LES for the co-existing 19 evergreen and 15 deciduous species growing in evergreen broad-leaved forest at low elevation, beech-mixed forest at middle elevation and hemlock-mixed forest at high elevation in Mao'er Mountain, Guangxi, Southern China (25°50'N, 110°49'E). Leaf economic traits presented low but significant phylogenetic signal, suggesting trait similarity between closely related species. After considering the effects of phylogenetic history, deciduous species in general showed a more acquisitive leaf strategy with a higher ratio of leaf water to dry mass, higher leaf nitrogen and phosphorous contents, higher photosynthetic and respiratory rates and greater photosynthetic nitrogen-use efficiency. In contrast, evergreen species exhibited a more conservative leaf strategy with higher leaf mass per area, greater construction costs and longer leaf life span. With the elevation-induced decreases of temperature and soil fertility, both evergreen and deciduous species showed greater resource conservation, suggesting the increasing importance of environmental filtering to community assembly with increasing elevation. We found close inter-specific correlations between leaf economic traits, suggesting that there are strong genetic constraints limiting the independent evolution of LES traits. Phylogenetic signal increased with decreasing evolutionary rate across leaf economic traits, suggesting that genetic constraints are important for the process of trait evolution. We found a significantly positive relationship between primary axis species score (PASS) distance and phylogenetic distance across species pairs and an increasing average PASS distance between evergreen and deciduous species with increasing elevation, implying that the frequency of distantly related evergreen and deciduous pairs with wide spreading of leaf economic values increases with increasing elevation. Our findings thus suggest that elevation acts as an environmental filter to both select the locally adapted evergreen and deciduous species with sufficient phylogenetic variation and regulate their distribution along the elevational gradient based on their coordinated spreading of phylogenetic divergence and leaf economic variation. Published by Oxford University Press on behalf of the Annals of Botany Company.

  4. Vegetation history and salinity gradient during the last 3700 years in Pichavaram estuary, India

    NASA Astrophysics Data System (ADS)

    Srivastava, Jyoti; Farooqui, Anjum; Hussain, S. M.

    2012-10-01

    Palaeoclimate, palaeoecological and palaeoshoreline studies were carried out for a 2.5 m deep sediment core deposited since ˜3700 yrs BP in the central part of Pichavaram mangrove wetland, Cauvery river delta. Presently, the study area is dominated by Avicennia officinalis, A. marina and Suaeda sp. with fringes of Rhizophora sp. along the backwater channel. Based on sedimentology, palynological and thecamoebian analysis, it is inferred that since 2100 yrs BP the climate amelioration took place from warm and humid with strengthened monsoon to a dry and arid climate coupled with weakened monsoon condition inducing changes in ecology vulnerable for mangroves. Consequently, the vegetation too evolved from moist deciduous/evergreen forest to mixed deciduous forest and a reduction in mangrove diversity. The qualitative and quantitative study show a decline in the mangroves since the last millennium which may be attributed to the increased salinity along with enhanced anthropogenic activities in Pichavaram estuary. This is reflected by the dominance of salt tolerant mangrove associates since the last millennium.

  5. 60,000 years of vegetation and climate change in eastern, lowland Bolivia

    NASA Astrophysics Data System (ADS)

    Whitney, B. S.; Mayle, F. E.

    2006-12-01

    Presented here is a late Quaternary pollen record from Laguna La Gaiba (17°45`S, 57°35`W), a 55 km2 lake located at the western margin of the Pantanal basin, the world's largest tropical wetland, and the eastern limit of the Bolivian Chiquitano dry forest. A suite of 12 AMS radiocarbon dates on terrestrial macrofossils demonstrates a continuous sediment record spanning at least the last 60,000 years. Today, upland areas of the lake catchment are blanketed by closed-canopy semi-deciduous forest. However, arboreal pollen was largely absent from glacial-age sediments, indicative of a climate drier than present, and a landscape dominated by open, herbaceous savanna. Tropical forest appeared during the glacial-Holocene transition, pointing to increased precipitation, but was floristically different from those of the Holocene. Seasonally-dry tropical forest, floristically similar to that of today, appeared during the early Holocene. Changes in proportions of key dry forest taxa point to rising precipitation in the mid-late Holocene, consistent with other records from the southern hemisphere lowlands, as well as the tropical Andes. However, our evidence for reduced precipitation in the lowlands during the Last Glacial Maximum contrasts with high water- levels at Lake Titicaca and other sites on the Altiplano.

  6. Spatial pulses of water inputs in deciduous and hemlock forest stands

    NASA Astrophysics Data System (ADS)

    Guswa, A. J.; Mussehl, M.; Pecht, A.; Spence, C.

    2010-12-01

    Trees intercept and redistribute precipitation in time and space. While spatial patterns of throughfall are challenging to link to plant and canopy characteristics, many studies have shown that the spatial patterns persist through time. This persistence leads to wet and dry spots under the trees, creating spatial pulses of moisture that can affect infiltration, transpiration, and biogeochemical processes. In the northeast, the invasive hemlock woolly adelgid poses a significant threat to eastern hemlock (Tsuga canadensis), and replacement of hemlock forests by other species, such as birch, maple, and oak, has the potential to alter throughfall patterns and hydrologic processes. During the summers of 2009 and 2010, we measured throughfall in both hemlock and deciduous plots to assess its spatial distribution and temporal persistence. From 3 June to 25 July 2009, we measured throughfall in one hemlock and one deciduous plot over fourteen events with rainfall totaling 311 mm. From 8 June through 28 July 2010, we measured throughfall in the same two plots plus an additional hemlock stand and a young black birch stand, and rainfall totaled 148 mm over eight events. Averaged over space and time, throughfall was 81% of open precipitation in the hemlock stands, 88% in the mixed deciduous stand, and 100% in the young black birch stand. On an event basis, spatial coefficients of variation are similar among the stands and range from 11% to 49% for rain events greater than 5 mm. With the exception of very light events, coefficients of variation are insensitive to precipitation amount. Spatial patterns of throughfall persist through time, and seasonal coefficients of variation range from 13% to 33%. All stands indicate localized concentrations of water inputs, and there were individual collectors in the deciduous stands that regularly received more than twice the stand-average throughfall.

  7. Programmatic Environmental Assessment for Standard Targetry Replacement

    DTIC Science & Technology

    2006-04-01

    Appalachian oak and pine-oak stands. Pine barrens with grassy savannas are found in dry sandy soils, with thick shrubs often growing beneath the... fir . In interior valleys, the coniferous forest is less dense than along the coast; and often contains deciduous trees, such as big-leaf maple...Oregon ash, and black cottonwood. There are prairies that support open stands of oaks, or are broken by groves of Douglas fir and other trees

  8. Transpiration by tree roots in the deep unsaturated regolith buffers the recharge process in a tropical watershed under deciduous forest (Mule Hole, India)

    NASA Astrophysics Data System (ADS)

    Ruiz, Laurent; Varma, Murari Rr; Mohan Kumar, Ms; Sekhar, Muddu; Molenat, Jerome; Marechal, Jean-Christophe; Descloitres, Marc; Riotte, Jean; Kumar, Sat; Braun, Jean-Jacques

    2010-05-01

    Accurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments where deep tree root can uptake water at considerable depth. In this presentation, we assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using the lumped conceptual model COMFORT (Ruiz et al., 2010) to simulate discharge and groundwater levels monitored during six year in an experimental watershed under dry deciduous forest (Mule Hole, South India), which is part of the project "Observatoire de Recherche en Environnement - Bassin Versant Expérimentaux Tropicaux" (http://www.ore.fr/). The model was calibrated on the first four years data, and tested on the two remaining years. The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with successions of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm.year-1 and the evapotranspiration was about 900 mm.year-1 out of which 100 mm.year-1 was uptake from the deep regolith horizons. The stream flow was 100 mm.year-1 while the groundwater underflow was 80 mm.year-1. The simulation results show that i) deciduous trees can uptake a significant amount of water from the deep regolith, ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers, iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. These results are of practical relevance as they invalidate recharge assessment methods based on steady state assumptions in this context. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems. Ruiz L, Varma MRR, Mohan Kumar MS, Sekhar M, Maréchal JC, Descloitres M, Riotte J, Sat Kumar, Kumar C and Braun JJ 2010 Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India) : regolith matric storage buffers the groundwater recharge process. Journal of Hydrology, 380, 460-472. http://dx.doi.org/10.1016/j.jhydrol.2009.11.020

  9. [NDVI difference rate recognition model of deciduous broad-leaved forest based on HJ-CCD remote sensing data].

    PubMed

    Wang, Yan; Tian, Qing-Jiu; Huang, Yan; Wei, Hong-Wei

    2013-04-01

    The present paper takes Chuzhou in Anhui Province as the research area, and deciduous broad-leaved forest as the research object. Then it constructs the recognition model about deciduous broad-leaved forest was constructed using NDVI difference rate between leaf expansion and flowering and fruit-bearing, and the model was applied to HJ-CCD remote sensing image on April 1, 2012 and May 4, 2012. At last, the spatial distribution map of deciduous broad-leaved forest was extracted effectively, and the results of extraction were verified and evaluated. The result shows the validity of NDVI difference rate extraction method proposed in this paper and also verifies the applicability of using HJ-CCD data for vegetation classification and recognition.

  10. A numerical study of the effects of aerosol hygroscopic properties to dry deposition on a broad-leaved forest

    NASA Astrophysics Data System (ADS)

    Katata, Genki; Kajino, Mizuo; Matsuda, Kazuhide; Takahashi, Akira; Nakaya, Ko

    2014-11-01

    To investigate the impact of hygroscopic growth on dry deposition onto forest canopies, numerical simulations of PM2.5 sulfate deposition using a multi-layer atmosphere-SOiL-VEGetation model (SOLVEG) ware performed. The scheme of particle dry deposition in SOLVEG was extended for application to a broad-leaved forest. An aerosol hygroscopic model based on the widely used κ-Köhler theory was incorporated into the model to calculate water uptake by the aerosols. The model accurately reproduced essential turbulent exchange fluxes (momentum, heat, and water vapor) over the canopies and the soil temperature and moisture for a deciduous broad-leaved forest in central Japan. Temporal variations in the measured PM2.5 sulfate deposition velocity were generally reproduced by the model. By considering an increase in particle diameter due to hygroscopic growth, the prediction accuracy of the modeled deposition velocity under humid conditions was improved. Numerical experiments for varying aerosol size distributions and hygroscopic properties showed that the geometric mean diameter and hygroscopicity of particles have a large influence on hygroscopic growth levels. The results also suggested that the deposition velocity of wet particles increased due to hygroscopic growth when the relative humidity (RH) was approximately 50%, and that the velocity reached five times greater than that under dry conditions when RH exceeded 95%.

  11. DEPOSITION VELOCITIES OF SO2 AND O3 OVER AGRICULTURAL AND FOREST ECOSYSTEMS

    EPA Science Inventory

    The results of field studies that measured the flux and deposition velocity of SO2 and O3 are reported. Three of the studies were over agricultural crops (pasture, corn, and soybean), and two were over forest (a deciduous forest and a mixed coniferous - deciduous forest). In al...

  12. Arthropod vertical stratification in temperate deciduous forests: Implications for conservation oriented management

    Treesearch

    Ulyshen Michael

    2011-01-01

    Studies on the vertical distribution patterns of arthropods in temperate deciduous forests reveal highly stratified (i.e., unevenly vertically distributed) communities. These patterns are determined by multiple factors acting simultaneously, including: (1) time (forest age, season, time of day); (2) forest structure (height, vertical foliage complexity, plant surface...

  13. Spatio-Temporal Dynamics of Vegetation and Their Relationships with Climate in Southeast Asia Based on Three Satellite NDVI Products

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zeng, Z.; Piao, S.

    2014-12-01

    Tropical vegetation plays an essential role for global biogeochemical cycles. An abundant literature focused on the vegetation dynamics in Amazon. It is shown that the Amazonian rainforest is strongly controlled by radiation, even during dry season. However, only few researches deal with tropical rainforest in Southeast Asia; the vegetation dynamics in Southeast Asia remain poorly understood. In this study, we investigated the spatio-temporal dynamics of vegetation in Southeast Asia with three independent satellite derived Normalized Difference Vegetation Index (NDVI) products (GIMMS AVHRR NDVI3g, SPOT, and MODIS) as well as the recently developed Sun Induced chlorophyll Fluorescence (SIF). We furthermore examined how climate drivers (precipitation, temperature and radiation) exert influences on the vegetation dynamics. We find that the three NDVI datasets are generally consistent with each other. At seasonal scale, NDVI decreases from the beginning to the end of the dry season; at interannual scale, dry season NDVI is positively correlated to precipitation but negatively correlated to radiation, while wet season NDVI is positively correlated to radiation. Compared to evergreen forests, deciduous forests have a larger NDVI decrease rate and more extended area with positive relationships between NDVI and precipitation during the dry season. SIF is lower during dry season than during wet season. Our results indicate that most forests in Southeast Asia, unlike in the Amazonian basin, are water-limited in the dry season but radiation-limited in the wet season. These results imply that droughts may have a stronger impact on forests in Southeast Asia than in Amazon.

  14. Riparian litter inputs to streams in the central Oregon Coast Range

    USGS Publications Warehouse

    Hart, Stephanie K.; Hibbs, David E.; Perakis, Steven S.

    2013-01-01

    Riparian-zone vegetation can influence terrestrial and aquatic food webs through variation in the amount, timing, and nutritional content of leaf and other litter inputs. We investigated how riparian-forest community composition, understory density, and lateral slope shaped vertical and lateral litter inputs to 16 streams in the Oregon Coast Range. Riparian forests dominated by deciduous red alder delivered greater annual vertical litter inputs to streams (504 g m−2 y−1) than did riparian forests dominated by coniferous Douglas-fir (394 g m−2 y−1). Deciduous forests also contributed greater lateral litter inputs per meter of stream bank on one side (109 g m−1 y−1) than did coniferous forests (63 g m−1 y−1). Total litter inputs from deciduous forests exceeded those from coniferous forests most strongly in November, coincident with an autumn peak in litter inputs. Lateral litter inputs contributed most to total inputs during winter in both forest types. Annual lateral litter movement increased with slope at deciduous sites, but only in spring/summer months at coniferous sites. Neither experimental removal of understory vegetation nor installation of mesh fences to block downslope litter movement affected lateral litter inputs to streams, suggesting that ground litter moves <5 m downslope annually. N concentrations of several litter fractions were higher at deciduous sites and, when combined with greater litter amounts, yielded twice as much total litter N flux to streams in deciduous than coniferous sites. The presence of red alder in riparian forests along many small streams of the deeply incised and highly dendritic basins of the Oregon Coast Range enhances total fluxes and seasonality of litter delivery to both terrestrial and aquatic food webs in this region and complements the shade and large woody debris provided by large coniferous trees.

  15. Flammulated Owls (Otus flammeolus) breeding in deciduous forests

    Treesearch

    Carl D. Marti

    1997-01-01

    The first studies of nesting Flammulated Owls (Otus flammeolus) established the idea that the species needs ponderosa pine (Pinus ponderosa) forests for breeding. In northern Utah, Flammulated Owls nested in montane deciduous forests dominated by quaking aspen (Populus tremuloides). No pines were present but...

  16. Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, southern India.

    PubMed

    Nath, Cheryl D; Dattaraja, H S; Suresh, H S; Joshi, N V; Sukumar, R

    2006-12-01

    Tree diameter growth is sensitive to environmental fluctuations and tropical dry forests experience high seasonal and inter-annual environmental variation. Tree growth rates in a large permanent plot at Mudumalai, southern India, were examined for the influences of rainfall and three intrinsic factors (size, species and growth form) during three 4-year intervals over the period 1988-2000. Most trees had lowest growth during the second interval when rainfall was lowest, and skewness and kurtosis of growth distributions were reduced during this interval. Tree diameter generally explained less than 10% of growth variation and had less influence on growth than species identity or time interval. Intraspecific variation was high, yet species identity accounted for up to 16% of growth variation in the community. There were no consistent differences between canopy and understory tree growth rates; however, a few subgroups of species may potentially represent canopy and understory growth guilds. Environmentally-induced temporal variations in growth generally did not reduce the odds of subsequent survival. Growth rates appear to be strongly influenced by species identity and environmental variability in the Mudumalai dry forest. Understanding and predicting vegetation dynamics in the dry tropics thus also requires information on temporal variability in local climate.

  17. Tree Growth and Mortality in a Southern Appalachian Deciduous Forest Following Extended Wet and Dry Periods

    Treesearch

    Barton D. Clinton; J. Alan Yeakley; David E. Apsley

    2003-01-01

    Abstract: We inventoried two 1-ha plots on opposing watersheds (WS2–WS-S, WS18–WS-N) three times (1983, 1989, 1998) over a 16-year period to contrast how differing precipitation (P) regimes affect tree mortality. From 1983 to 1989, annual precipitation averaged 16.5% less than the 64-year mean; from 1989 to 1998, it averaged 12.2% above the mean. In...

  18. Movements, cover-type selection, and survival of fledgling Ovenbirds in managed deciduous and mixed coniferous-deciduous forests

    USGS Publications Warehouse

    Streby, Henry M.; Andersen, David E.

    2013-01-01

    We used radio telemetry to monitor movements, cover-type selection, and survival for fledglings of the mature-forest nesting Ovenbird (Seiurus aurocapilla) at two managed forest sites in north-central Minnesota. Both sites contained forested wetlands, regenerating clearcut stands of various ages, and logging roads, but differed in mature forest composition; one deciduous with open understory, and the other mixed coniferous-deciduous with dense understory. We used compositional analysis, modified to incorporate age-specific limitations in fledgling movements, to assess cover-type selection by fledglings throughout the dependent (on adult care) post-fledging period. Compared to those that were depredated, fledglings from nests in deciduous forest that survived the early post-fledging period had more older (sapling-dominated) clearcut available, directed movements toward older clearcuts and forested wetlands, and used older clearcuts more than other cover types relative to availability. Fledglings that were depredated had more young (shrub-dominated) clearcut and unpaved logging road available, and used mature forest and roads more than expected based on availability. For birds from nests in mixed mature forest with dense understory, movements and cover-type selection were similar between fledglings that survived and those that were depredated. However, fledglings that were depredated at that site also had more young clearcut available than fledglings that survived. We conclude that Ovenbird fledgling survival is influenced by distance of their nest to various non-nesting cover types, and by the subsequent selection among those cover types, but that the influence of non-nesting cover types varies depending on the availability of dense understory vegetation in mature forest.

  19. Long-term effects of climate change on carbon storage and tree species composition in a dry deciduous forest.

    PubMed

    Fekete, István; Lajtha, Kate; Kotroczó, Zsolt; Várbíró, Gábor; Varga, Csaba; Tóth, János Attila; Demeter, Ibolya; Veperdi, Gábor; Berki, Imre

    2017-08-01

    Forest vegetation and soils have been suggested as potentially important sinks for carbon (C) with appropriate management and thus are implicated as effective tools in stabilizing climate even with increasing anthropogenic release of CO 2 . Drought, however, which is often predicted to increase in models of future climate change, may limit net primary productio (NPP) of dry forest types, with unknown effects on soil C storage. We studied C dynamics of a deciduous temperate forest of Hungary that has been subject to significant decreases in precipitation and increases in temperature in recent decades. We resampled plots that were established in 1972 and repeated the full C inventory by analyzing more than 4 decades of data on the number of living trees, biomass of trees and shrubs, and soil C content. Our analyses show that the decline in number and biomass of oaks started around the end of the 1970s with a 71% reduction in the number of sessile oak stems by 2014. Projected growth in this forest, based on the yield table's data for Hungary, was 4.6 kg C/m 2 . Although new species emerged, this new growth and small increases in oak biomass resulted in only 1.9 kg C/m 2 increase over 41 years. The death of oaks increased inputs of coarse woody debris to the surface of the soil, much of which is still identifiable, and caused an increase of 15.5%, or 2.6 kg C/m 2 , in the top 1 m of soil. Stability of this fresh organic matter input to surface soil is unknown, but is likely to be low based on the results of a colocated woody litter decomposition study. The effects of a warmer and drier climate on the C balance of forests in this region will be felt for decades to come as woody litter inputs decay, and forest growth remains impeded. © 2017 John Wiley & Sons Ltd.

  20. Characterization of seasonal variation of forest canopy in a temperate deciduous broadleaf forest, using daily MODIS data

    Treesearch

    Qingyuan Zhang; Xiangming Xiao; Bobby Braswell; Ernst Linder; Scott Ollinger; Marie-Louise Smith; Julian P. Jenkins; Fred Baret; Andrew D. Richardson; Berrien III Moore; Rakesh Minocha

    2006-01-01

    In this paper, we present an improved procedure for collecting no or little atmosphere- and snow-contaminated observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The resultant time series of daily MODIS data of a temperate deciduous broadleaf forest (the Bartlett Experimental Forest) in 2004 show strong seasonal dynamics of surface...

  1. Trait Variation Along a Forest Successional Gradient in Dry Tropical Forest, Florida Keys

    NASA Astrophysics Data System (ADS)

    Subedi, S.; Ross, M. S.

    2016-12-01

    In most part of South Florida tropical dry forests, the early colonized trees on disturbed uplands are mostly deciduous species cable of surviving for several years after establishment. However, trees in mature forests are generally characterized by a suite of evergreen species, most of which are completely absent in younger stands even in seedling stage. This complete transition from one functional group to another in the course of stand development suggests a distinct change in the underlying environment during the course of succession. Such change in hammock functional groups as a function of the changing environmental drivers during succession in tropical dry forests is unknown and addressing this question may help to understand which drivers of change act as filters that select for and against particular groups of species and traits. In this study, we evaluate number of important functional traits (specific leaf area, wood density, leaf d13C, leaf N:P ratio, and architectural traits such as height, crown dimensions, diameter at breast height) for woody plant species occurring along a successional gradient across three ecological scales, community, species, and individual. A significant change in the overall trait distribution across the successional gradient is found. Intraspecific trait variation within the community is increased with increase in forest age. Most of these traits have shown correlation with stand age and showed preference to a certain environment. Stand age is the most important variable explaining the distribution of community characteristics. It is found that early successional forest are mostly shaped by environmental driven processes, and as forest get older and structurally more complex, they are increasingly shaped by competitively driven processes leading to limiting similarity. This study has shown that the patterns of trait shift can be predictable and can be used to characterize habitats and stage of forest succession in dry tropical forest.

  2. Archaeological Investigation in the Perry Lake Project Area, Northeastern Kansas National Register Evaluation of 17 Sites

    DTIC Science & Technology

    1989-01-01

    Muscotah and Arrington marshes reveal the presence of open vegetation, with some pine, spruce, and birch trees and local stands of alder and willow...1977). Zone 4 pollen frequency curves demonstrate the dynamic nature of the prairie-forest ecotone. In zone 4a, grasses and deciduous trees are both...ecotone. Trees disappeared from the uplands and low values of some types of arboreal pollen suggest that the Delaware River floodplain "dried out over

  3. Investigating the role of evergreen and deciduous forests in the increasing trend in atmospheric CO2 seasonal amplitude

    NASA Astrophysics Data System (ADS)

    Welp, L.; Calle, L.; Graven, H. D.; Poulter, B.

    2017-12-01

    The seasonal amplitude of Northern Hemisphere atmospheric CO2 concentrations has systematically increased over the last several decades, indicating that the timing and amplitude of net CO2 uptake and release by northern terrestrial ecosystems has changed substantially. Remote sensing, dynamic vegetation modeling, and in-situ studies have explored how changes in phenology, expansion of woody vegetation, and changes in species composition and disturbance regimes, among others, are driven by changes in climate and CO2. Despite these efforts, ecosystem models have not been able to reproduce observed atmospheric CO2 changes. Furthermore, the implications for the source/sink balance of northern ecosystems remains unclear. Changing proportions of evergreen and deciduous tree cover in response to climate change could be one of the key mechanisms that have given rise to amplified atmospheric CO2 seasonality. These two different plant functional types (PFTs) have different carbon uptake seasonal patterns and also different sensitivities to climate change, but are often lumped together as one forest type in global ecosystem models. We will demonstrate the potential that shifting distributions of evergreen and deciduous forests can have on the amplitude of atmospheric CO2. We will show phase differences in the net CO2 seasonal uptake using CO2 flux data from paired evergreen/deciduous eddy covariance towers. We will use simulations of evergreen and deciduous PFTs from the LPJ dynamic vegetation model to explore how climate change may influence the abundance and CO2 fluxes of each. Model results show that the area of deciduous forests is predicted to have increased, and the seasonal amplitude of CO2 fluxes has increased as well. The impact of surface flux seasonal variability on atmospheric CO2 amplitude is examined by transporting fluxes from each forest PFT through the TM3 transport model. The timing of the most intense CO2 uptake leads to an enhanced effect of deciduous forests on the atmospheric CO2 amplitude. These results demonstrate the potential significance of evergreen/deciduous forest PFTs on the amplitude of atmospheric CO2. In order to better understand the causes of the increasing amplitude trend, we encourage creating time-varying maps of evergreen/deciduous PFTs from remote sensing observations.

  4. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts.

    PubMed

    Xie, Yingying; Wang, Xiaojing; Silander, John A

    2015-11-03

    Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phenology data from 2001 to 2012, this study identified and quantified significant effects of a suite of environmental factors on the timing of fall dormancy of deciduous forest communities in New England, United States. Cold, frost, and wet conditions, and high heat-stress tended to induce earlier dormancy of deciduous forests, whereas moderate heat- and drought-stress delayed dormancy. Deciduous forests in two eco-regions showed contrasting, nonlinear responses to variation in these explanatory factors. Based on future climate projection over two periods (2041-2050 and 2090-2099), later dormancy dates were predicted in northern areas. However, in coastal areas earlier dormancy dates were predicted. Our models suggest that besides warming in climate change, changes in frost and moisture conditions as well as extreme weather events (e.g., drought- and heat-stress, and flooding), should also be considered in future predictions of autumn phenology in temperate deciduous forests. This study improves our understanding of how multiple environmental variables interact to affect autumn phenology in temperate deciduous forest ecosystems, and points the way to building more mechanistic and predictive models.

  5. Generic Environmental Impact Statement. Air Force Low Altitude Flying Operations. Preliminary Draft. Volume 3

    DTIC Science & Technology

    1990-01-01

    landing strip at Circle. Lodging is available primarily at Circle Hot Springs, approximately 30 miles southwest of Circle. In general, hiking, snowmobiling... timberline ), coniferous forest, and several widespread deciduous species. Coniferous and deciduous forest, alpine and deciduous scrub, shrub tundra, and...white and paper birch, quaking aspen, and balsam poplar. Common shrub species (above and below timberline ) are alder, willow, glandular birch

  6. Evolutionarily stable strategy of carbon and nitrogen investments in forest leaves and its application in vegetation dynamic modeling

    NASA Astrophysics Data System (ADS)

    Weng, E.; Farrior, C.; Dybzinski, R.; Pacala, S. W.

    2015-12-01

    Leaf mass per area (LMA) and leaf lifespan (LL) are two highly correlated plant traits that are key to plant physiological and ecological properties. Usually, low LMA means short LL, high nitrogen (N) content per unit mass, and fast turnover rates of nutrients; high LMA leads to long LL, low N content, and slow turnover rates. Deciduous trees with low LMA and short lifespan leaves have low carbon cost but high nitrogen demand; and evergreen trees, with high LMA and long lifespan leaves, have high carbon cost but low nitrogen demand. These relationships lead to: 1) evergreen trees have higher leaf area index than deciduous trees; 2) evergreen trees' carbon use efficiency is lower than the deciduous trees' because of their thick leaves and therefore high maintenance respiration; 3) the advantage of evergreens trees brought by their extra leaves over deciduous trees diminishes with increase N in ecosystem. These facts determine who will win when trees compete with each other in a N-limited ecosystem. In this study, we formulate a mathematical model according to the relationships between LMA, LL, leaf nitrogen, and leaf building and maintenance cost, where LMA is the fundamental variable determining the other three. We analyze the evolutionarily stable strategies (ESSs) of LMA with this mathematical model by examining the benefits of carbon and nitrogen investments to leaves in ecosystems with different N. The model shows the ESS converges to low LMA at high N and high LMA at low N. At intermediate N, there are two ESSs at low and high ends of LMA, respectively. The ESS also leads to low forest productivity by outcompeting the possible high productive strategies. We design a simulation scheme in an individual-based competition model (LM3-PPA) to simulate forest dynamics as results of the competition between deciduous and evergreen trees in three different biomes, which are temperate deciduous forest, deciduous-evergreen mixed forest, and boreal evergreen forest. The simulated results are consistent with the actual forests. Our model and simulated results indicate the distribution of evergreen and deciduous forests can be explained by one single leaf trait (i.e., LMA) and associated physiological and biogeochemical processes.

  7. Functional role of the herbaceous layer in eastern deciduous forest

    Treesearch

    Katherine J. Elliott; James M. Vose; Jennifer D. Knoepp; Barton D. Clinton; Brian D. Kloeppel

    2014-01-01

    The importance of the herbaceous layer in regulating ecosystem processes in deciduous forests is generally unknown. We use a manipulative study in a rich, mesophytic cove forest in the southern Appalachians to test the following hypotheses: (i) the herbaceous functional group (HFG) in mesophytic coves accelerates carbon and nutrient cycling, (ii) high litter quality...

  8. Antioxidant content in two CAM bromeliad species as a response to seasonal light changes in a tropical dry deciduous forest.

    PubMed

    González-Salvatierra, Claudia; Luis Andrade, José; Escalante-Erosa, Fabiola; García-Sosa, Karlina; Manuel Peña-Rodríguez, Luis

    2010-07-01

    Plants have evolved photoprotective mechanisms to limit photodamage; one of these mechanisms involves the biosynthesis of antioxidant metabolites to neutralize reactive oxygen species generated when plants are exposed to excess light. However, it is known that exposure of plants to conditions of extreme water stress and high light intensity results in their enhanced susceptibility to over-excitation of photosystem II and to photooxidative stress. In this investigation we used the 2,2-diphenyl-1-picrylhydrazyl reduction assay to conduct a broad survey of the effect of water availability and light exposure conditions on the antioxidant activity of the leaf extracts of two bromeliad species showing crassulacean acid metabolism. One of these was an epiphyte, Tillandsia brachycaulos, and the other a terrestrial species, Bromelia karatas. Both species were found growing wild in the tropical dry deciduous forest of Dzibilchaltún National Park, México. The microenvironment of T. brachycaulos and B. karatas experiences significant diurnal and seasonal light variations as well as changes in temperature and water availability. The results obtained showed that, for both bromeliads, increases in antioxidant activity occurred during the dry season, as a consequence of water stress and higher light conditions. Additionally, in T. brachycaulos there was a clear correlation between high light intensity conditions and the content of anthocyanins which accumulated below the leaf epidermis. This result suggests that the role of these pigments is as photoprotective screens in the leaves. The red coloration below the leaf epidermis of B. karatas was not due to anthocyanins but to other unidentified pigments. 2010 Elsevier GmbH. All rights reserved.

  9. Relative growth rate in phylogenetically related deciduous and evergreen woody species.

    PubMed

    Antúnez, Isabel; Retamosa, Emilio C; Villar, Rafael

    2001-07-01

    Relative growth rate (RGR) and other growth parameters were studied in eight pairs of closely related deciduous and evergreen species (within the same genus or family). The main objective of this study was to test the association between leaf turnover rate and RGR, specific leaf area (SLA, leaf area/leaf dry weight) and other growth variables. Plants were grown for 6 months in a greenhouse under favourable water and nutrient conditions. Variation in RGR among the 16 woody species was due mainly to differences in morphological parameters such as leaf area ratio (LAR, whole plant area/whole plant dry weight) and SLA). However, temporal variation in RGR within species was due mainly to variation in net assimilation rate. When phylogeny was not taken into account, analyses showed that deciduous species grew faster than evergreens. In contrast, when phylogeny was taken into account, the data analysis showed that a faster RGR is not consistently associated with the deciduous habit (in five pairs it was, but in the other three it was not). The faster growth of the deciduous trees (in the five positive contrasts) could be explained by their higher LAR and higher SLA relative to evergreens. The lack of differences in RGR between deciduous and evergreens (in three pairs) was due to the higher leaf mass ratio (LMR, leaf dry biomass/total dry biomass) for the evergreens, which offset the higher SLA of the deciduous species, resulting in a similar LAR in both functional groups (LAR=LMR×SLA). Deciduous species had consistently higher SLA than evergreens. We suggest that SLA, more than RGR, could be an important parameter in determining adaptive advantages of deciduous and evergreen species.

  10. Biodiversity Analysis of Forest Litter Ant Assemblages in the Wayanad Region of Western Ghats Using Taxonomic and Conventional Diversity Measures

    PubMed Central

    Anu, Anto; Sabu, Thomas K.

    2007-01-01

    The diversity of litter ant assemblages in evergreen, deciduous and Shola evergreen (Shola) forest vegetation types of the Wayanad region of the Western Ghats was assessed employing conventional and taxonomic diversity indices. Non-dependence on quantitative data and the ability to relate the phylogenetic structure of assemblages with ecological conditions of the habitat, and to ascertain priorities for conservation of habitats, makes non-parametric taxonomic diversity measures, such as variation in taxonomic distinctness Λ+ and average taxonomic distinctness Δ+, highly useful tools for assessment of litter ant biodiversity. Although Δ+ values saturated leading to closer values for the 3 litter ant assemblages, Λ+ proved to be a more dependable index. Evenness in taxonomic spread was high in ant assemblages in deciduous forests and low in evergreen forests compared to the regional master list. Low Λ+ of ant assemblage in deciduous forests indicates that among the 3 forest vegetation types, deciduous forests provided the most favorable habitat conditions for litter ants. Low evenness, as is indicated by Λ+ in evergreen forests, was attributed to the presence of a group of taxonomically closely related ant assemblage more adapted to prevail in moist and wet ecological conditions. PMID:20334594

  11. Development of a Site Comparison Index: Southeast Upland Forests

    DTIC Science & Technology

    2007-05-01

    was recorded to 0.1 cm, and only individual trees with a DBH =/> 5 cm were tallied. Pine snags and deciduous snags were also measured. Forty-three... tree species (plus Pine Snags and Deciduous Snags) represent- ing 7031 individuals were identified at the 40 sites, ranging from 1433 Loblolly Pines...of 40 sites. Based on basal areas of 24 tree species (N=6903), pine and deciduous snags. Table 1. Ten forest communities independently

  12. Forest aging, disturbance and the carbon cycle.

    PubMed

    Curtis, Peter S; Gough, Christopher M

    2018-05-16

    Contents Summary I. Introduction II. Forest aging and carbon storage III. Successional trends of NEP in northern deciduous forests IV. Mechanisms sustaining NEP in aging deciduous forests Acknowledgements References SUMMARY: Large areas of forestland in temperate North America, as well as in other parts of the world, are growing older and will soon transition into middle and then late successional stages exceeding 100 yr in age. These ecosystems have been important regional carbon sinks as they recovered from prior anthropogenic and natural disturbance, but their future sink strength, or annual rate of carbon storage, is in question. Ecosystem development theory predicts a steady decline in annual carbon storage as forests age, but newly available, direct measurements of forest net CO 2 exchange challenge that prediction. In temperate deciduous forests, where moderate severity disturbance regimes now often prevail, there is little evidence for any marked decline in carbon storage rate during mid-succession. Rather, an increase in physical and biological complexity under these disturbance regimes may drive increases in resource-use efficiency and resource availability that help to maintain significant carbon storage in these forests well past the century mark. Conservation of aging deciduous forests may therefore sustain the terrestrial carbon sink, whilst providing other goods and services afforded by these biologically and structurally complex ecosystems. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  13. Enhancement of understory productivity by asynchronous phenology with overstory competitors in a temperate deciduous forest.

    PubMed

    Jolly, William M; Nemani, Ramakrishna; Running, Steven W

    2004-09-01

    Some saplings and shrubs growing in the understory of temperate deciduous forests extend their periods of leaf display beyond that of the overstory, resulting in periods when understory radiation, and hence productivity, are not limited by the overstory canopy. To assess the importance of the duration of leaf display on the productivity of understory and overstory trees of deciduous forests in the north eastern United States, we applied the simulation model, BIOME-BGC with climate data for Hubbard Brook Experimental Forest, New Hampshire, USA and mean ecophysiological data for species of deciduous, temperate forests. Extension of the overstory leaf display period increased overstory leaf area index (LAI) by only 3 to 4% and productivity by only 2 to 4%. In contrast, extending the growing season of the understory relative to the overstory by one week in both spring and fall, increased understory LAI by 35% and productivity by 32%. A 2-week extension of the growing period in both spring and fall increased understory LAI by 53% and productivity by 55%.

  14. A resource at the crossroads: a history of the central hardwoods

    Treesearch

    Ray R., Jr. Hicks

    1997-01-01

    The Central Hardwood Forest is an oak dominated deciduous forest that stretches from Massachusetts to Arkansas and occurs in hilly to mountainous terrain. It is the largest and most extensive temperate deciduous forest in the world. During the past 20 million years or so, angiosperms have been gradually replacing gymnosperms as the dominant plant form on earth, and...

  15. Incubation of air-pollution-control residues from secondary Pb smelter in deciduous and coniferous organic soil horizons: leachability of lead, cadmium and zinc.

    PubMed

    Chrastný, Vladislav; Vaněk, Aleš; Komárek, Michael; Farkaš, Juraj; Drábek, Ondřej; Vokurková, Petra; Němcová, Jana

    2012-03-30

    The leachability of air-pollution-control (APC) residues from a secondary lead smelter in organic soil horizons (F and H) from a deciduous and a coniferous forest during incubation periods of 0, 3 and 6 months were compared in this work. While the concentration of Pb, Zn and Cd associated with the exchangeable/acid extractable fraction in the horizon F from the coniferous forest was higher compared to the deciduous, significantly lower concentrations in the humified horizon H was found. It is suggested that lower pH and a higher share of fulvic acids fraction (FAs) of solid phase soil organic matter (SOM) in the humified soil horizon H from the coniferous compared to the deciduous forest is responsible for a higher metal association with solid phase SOM and therefore a lower metal leaching in a soil system. From this point of view, the humified soil horizon H from the deciduous forest represents a soil system more vulnerable to Pb, Zn and Cd leaching from APC residues. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Tertiary climates and floristic relationships at high latitudes in the northern hemisphere

    USGS Publications Warehouse

    Wolfe, J.A.

    1980-01-01

    During the Paleocene and Eocene, climates were characterized by a low mean annual range of temperature (a maximum of 10-15??C), a moderate to high mean annual temperature (10-20??C), and abundant precipitation; strong broad-leaved evergreen vegetation extended to almost lat. 60??N during the Paleocene and to well above 61??N during the Eocene. Poleward of the broad-leaved evergreen forests were forests that were broad-leaved deciduous; these deciduous forests, however, were unlike extant broad-leaved deciduous forests in general floristic composition and physiognomy. Coniferous forests probably occupied the northernmost latitudes. At the end of the Eocene, a major climatic deterioration resulted in a high (> 30??C) mean annual range of temperature and a low mean annual temperature (< 10??C). Vegetation represented temperate broad-leaved deciduous and coniferous forests. The Oligocene and Neogene climatic trends represent a decrease in both mean annual range of temperature and mean annual temperature. Tundra vegetation did not appear until late in the Neogene. The present distribution of broad-leaved evergreens concomitant with the principles of plant physiology indicates that present winter light conditions at high latitudes could not support broad-leaved evergreen forest. A possible solution to the problem is to increase winter light by lessening the inclination of the earth's rotational axis. ?? 1980.

  17. Ecosystem-level water-use efficiency inferred from eddy covariance data: definitions, patterns and spatial up-scaling

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Beer, C.; Kuglitsch, F.; Papale, D.; Soussana, J. A.; Janssens, I.; Ciais, P.; Baldocchi, D.; Buchmann, N.; Verbeeck, H.; Ceulemans, R.; Moors, E.; Köstner, B.; Schulze, D.; Knohl, A.; Law, B. E.

    2007-12-01

    In this presentation we discuss ways to infer and to interpret water-use efficiency at ecosystem level (WUEe) from eddy covariance flux data and possibilities for scaling these patterns to regional and continental scale. In particular we convey the following: WUEe may be computed as a ratio of integrated fluxes or as the slope of carbon versus water fluxes offering different chances for interpretation. If computed from net ecosystem exchange and evapotranspiration on has to take of counfounding effects of respiration and soil evaporation. WUEe time-series at diurnal and seasonal scale is a valuable ecosystem physiological diagnostic for example about ecosystem-level responses to drought. Most often WUEe decreases during dry periods. The mean growing season ecosystem water-use efficiency of gross carbon uptake (WUEGPP) is highest in temperate broad-leaved deciduous forests, followed by temperate mixed forests, temperate evergreen conifers, Mediterranean broad-leaved deciduous forests, Mediterranean broad-leaved evergreen forests and Mediterranean evergreen conifers and boreal, grassland and tundra ecosystems. Water-use efficiency exhibits a temporally quite conservative relation with atmospheric water vapor pressure deficit (VPD) that is modified between sites by leaf area index (LAI) and soil quality, such that WUEe increases with LAI and soil water holding capacity which is related to texture. This property and tight coupling between carbon and water cycles is used to estimate catchment-scale water-use efficiency and primary productivity by integration of space-borne earth observation and river discharge data.

  18. Statistical data on forest fund of Russia and changing of forest productivity in the second half of XX century

    Treesearch

    Alexeyev V.A.; Markov M.V.; R.A. Birdsey; Birdsey R.A.

    2004-01-01

    Contains statistical data on area and growing-stock volume of forest lands in Oblasts, Krays and Republics of Russian Federation, for the period 1961-1998. Positive dynamics of average growing stock for coniferous, deciduous hardwood and deciduous softwood tree stands by stand-age groups were disclosed. The impact of main anthropogenic and natural factors, including...

  19. Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types.

    PubMed

    Acácio, Vanda; Dias, Filipe S; Catry, Filipe X; Rocha, Marta; Moreira, Francisco

    2017-03-01

    The Mediterranean region is projected to be extremely vulnerable to global change, which will affect the distribution of typical forest types such as native oak forests. However, our understanding of Mediterranean oak forest responses to future conditions is still very limited by the lack of knowledge on oak forest dynamics and species-specific responses to multiple drivers. We compared the long-term (1966-2006) forest persistence and land cover change among evergreen (cork oak and holm oak) and deciduous oak forests and evaluated the importance of anthropogenic and environmental drivers on observed changes for Portugal. We used National Forest Inventories to quantify the changes in oak forests and explored the drivers of change using multinomial logistic regression analysis and an information theoretical approach. We found distinct trends among oak forest types, reflecting the differences in oak economic value, protection status and management schemes: cork oak forests were the most persistent (62%), changing mostly to pines and eucalypt; holm oak forests were less persistent (53.2%), changing mostly to agriculture; and deciduous oak forests were the least persistent (45.7%), changing mostly to shrublands. Drivers of change had distinct importance across oak forest types, but drivers from anthropogenic origin (wildfires, population density, and land accessibility) were always among the most important. Climatic extremes were also important predictors of oak forest changes, namely extreme temperatures for evergreen oak forests and deficit of precipitation for deciduous oak forests. Our results indicate that under increasing human pressure and forecasted climate change, evergreen oak forests will continue declining and deciduous oak forests will be replaced by forests dominated by more xeric species. In the long run, multiple disturbances may change competitive dominance from oak forests to pyrophytic shrublands. A better understanding of forest dynamics and the inclusion of anthropogenic drivers on models of vegetation change will improve predicting the future of Mediterranean oak forests. © 2016 John Wiley & Sons Ltd.

  20. soil organic matter pools and quality are sensitive to global climate change in tropical forests from India

    NASA Astrophysics Data System (ADS)

    Mani, Shanmugam; Merino, Agustín; García-Oliva, Felipe; Riotte, Jean; Sukumar, Raman

    2016-04-01

    Soil organic carbon (SOC) storage and quality are some of the most important factors determining ecological process in tropical forests, which are especially sensitive to global climate change (GCC). In India, the GCC scenarios expect increasing of drought period and wildfire, which may affect the SOC, and therefore the capacity of forest for C sequestration. The aim of the study was to evaluate the amount of soil C and its quality in the mineral soil across precipitation gradient with different factors (vegetation, pH, soil texture and bedrock composition) for generate SOC predictions under GCC. Six soil samples were collected (top 10 cm depth) from 19 1-ha permanent plots in the Mudumalai Wildlife Sanctuary of southern India, which are characterised by four types of forest vegetation (i.e. dry thorn, dry deciduous, moist deciduous and semi-evergreen forest) distributed along to rainfall gradient. The driest sites are dominated by sandy soils, while the soil clay proportion increased in the wet sites. Total organic C (Leco CN analyser), and the SOM quality was assessed by Differential Scanning Calorimetry (DSC) and Solid-state 13CCP-MAS NMR analyses. Soil organic C was positively correlated with precipitation (R2 = 0.502, p<0.01) and with soil clay content (R2 =0.15, p<0.05), and negatively with soil sand content (R2=0.308, p<0.001) and with pH (R2=0.529, p<0.01); while the C/N was only found positive correlation with clay (R2= 0.350, p<0.01). The driest sites (dry thorn forest) has the lowest proportion of thermal combustion of recalcitrant organic matter (Q2,375-475 °C) than the other sites (p<0.05) and this SOC fraction correlated positively with rainfall (R2=0.27, p=0.01). The Q2 model with best fit included rainfall, pH, sand, clay, C and C/N (R2=0.52, p=0.01). Principal component analysis explains 77% of total variance. The sites on the fist component are distributed along the rainfall gradient. These results suggest that the 50% of variance was explained by precipitation and therefore vegetation type. Consequently, the drier sites has a lower C pools with a higher proportion of labile SOC fraction. As a consequence, we expect if the rainfall decreased by GCC could increase SOC mineralization, and therefore reducing the capacity of C sequestration within soil profile.

  1. Community composition and diversity of ground beetles (Coleoptera: Carabidae) in Yaoluoping National Nature Reserve

    PubMed Central

    Li, Wen-Bo; Liu, Nai-Yi; Wu, Yun-He; Zhang, Yu-Cai; Xu, Qin; Chu, Jun; Wang, Shu-Yan

    2017-01-01

    Abstract This study used pitfall trapping to examine community composition and diversity of ground beetles in five different habitats (coniferous, deciduous, mixed coniferous, farmland, and settlements) within Anhui Yaoluoping National Nature Reserve from May to September 2014. In total, 1,352 ground beetles were collected, belonging to 16 genera and 44 species. Of these, four dominant species Dolichus halensis, Harpalus pastor, Carabus casaleianus, and Pheropsophus jessoensis were identified, respectively, comprising 370, 177, 131, and 123 individuals. The deciduous forest showed greater diversity (3.78 according to Shannon–Weiner index), equitability (0.80 according to Pielou’s index), and dominance (9.52 according to Simpson’s index) when compared with farmland, but species richness in the deciduous forest (27) was lower than that in farmland (35). One-way analysis of variance showed that ground beetle species composition and abundance among different habitats varied significantly. Cluster analysis and principal coordinate analysis showed that farmland shared low community similarity with other habitat types, and coniferous and mixed coniferous forests shared similar community types. Our results indicate that species composition, abundance, and diversity of ground beetles are affected by different habitat types, with deciduous forest types being critical in maintaining the diversity of rare species. We recommend reducing cultivated farmland area and increasing the area of carefully planned deciduous forest in order to better protect ground beetle diversity in the region.

  2. Identity and relationships of the Arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil.

    PubMed

    Santos, Rubens M; Oliveira-Filho, Ary T; Eisenlohr, Pedro V; Queiroz, Luciano P; Cardoso, Domingos B O S; Rodal, Maria J N

    2012-02-01

    The tree species composition of seasonally dry tropical forests (SDTF) in north-eastern and central Brazil is analyzed to address the following hypotheses: (1) variations in species composition are related to both environment (climate and substrate) and spatial proximity; (2) SDTF floristic units may be recognized based on peculiar composition and environment; and (3) the Arboreal Caatinga, a deciduous forest occurring along the hinterland borders of the Caatinga Domain, is one of these units and its flora is more strongly related to the caatinga vegetation than to outlying forests. The study region is framed by the Brazilian coastline, 50th meridian west and 21st parallel south, including the Caatinga Domain and extensions into the Atlantic Forest and Cerrado Domains. Multivariate and geostatistic analyses were performed on a database containing 16,226 occurrence records of 1332 tree species in 187 georeferenced SDTF areas and respective environmental variables. Tree species composition varied significantly with both environmental variables and spatial proximity. Eight SDTF floristic units were recognized in the region, including the Arboreal Caatinga. In terms of species composition, its tree flora showed a stronger link with that of the Cerrado Dry Forest Enclaves. On the other hand, in terms of species frequency across sample areas, the links were stronger with two other units: Rock Outcrops Caatinga and Agreste and Brejo Dry Forests. There is a role for niche-based control of tree species composition across the SDTFs of the region determined primarily by the availability of ground water across time and secondarily by the amount of soil mineral nutrients. Spatial proximity also contributes significantly to the floristic cohesion of SDTF units suggesting a highly dispersal-limited tree flora. These units should be given the status of eco-regions to help driving the conservation policy regarding the protection of their biodiversity.

  3. Identity and relationships of the Arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil

    PubMed Central

    Santos, Rubens M; Oliveira-Filho, Ary T; Eisenlohr, Pedro V; Queiroz, Luciano P; Cardoso, Domingos B O S; Rodal, Maria J N

    2012-01-01

    The tree species composition of seasonally dry tropical forests (SDTF) in north-eastern and central Brazil is analyzed to address the following hypotheses: (1) variations in species composition are related to both environment (climate and substrate) and spatial proximity; (2) SDTF floristic units may be recognized based on peculiar composition and environment; and (3) the Arboreal Caatinga, a deciduous forest occurring along the hinterland borders of the Caatinga Domain, is one of these units and its flora is more strongly related to the caatinga vegetation than to outlying forests. The study region is framed by the Brazilian coastline, 50th meridian west and 21st parallel south, including the Caatinga Domain and extensions into the Atlantic Forest and Cerrado Domains. Multivariate and geostatistic analyses were performed on a database containing 16,226 occurrence records of 1332 tree species in 187 georeferenced SDTF areas and respective environmental variables. Tree species composition varied significantly with both environmental variables and spatial proximity. Eight SDTF floristic units were recognized in the region, including the Arboreal Caatinga. In terms of species composition, its tree flora showed a stronger link with that of the Cerrado Dry Forest Enclaves. On the other hand, in terms of species frequency across sample areas, the links were stronger with two other units: Rock Outcrops Caatinga and Agreste and Brejo Dry Forests. There is a role for niche-based control of tree species composition across the SDTFs of the region determined primarily by the availability of ground water across time and secondarily by the amount of soil mineral nutrients. Spatial proximity also contributes significantly to the floristic cohesion of SDTF units suggesting a highly dispersal-limited tree flora. These units should be given the status of eco-regions to help driving the conservation policy regarding the protection of their biodiversity. PMID:22423333

  4. Species-specific effects of Asian and European earthworms on microbial communities in Mid-Atlantic deciduous forests

    USDA-ARS?s Scientific Manuscript database

    Earthworm species with different feeding, burrowing, and/or casting behaviors can lead to distinct microbial communities through complex direct and indirect processes. European earthworm invasion into temperate deciduous forests in North America has been shown to alter microbial biomass in the soil ...

  5. Water flux through a semi-deciduous forest grove of the Orinoco savannas.

    PubMed

    San José, José J; Montes, Ruben A; Florentino, Adriana

    1995-02-01

    Water relations were analysed in a semi-deciduous forest grove occurring in the oxisols of the Orinoco savannas. This grove has a shallow unconsolidated ironstone cuirass, which is overlaid by a sandy loam layer (0.0-0.5 m) that contains more than 90% of the grove forest root phytomass. Evapotranspiration and through drainage were calculated by using data from the soil profile as related to physical characteristics of the site root zone, hydraulic conductivity, volumetric water content and potential hydraulic gradient. Mean annual evapotranspiration was 783 mm year -1 and annual through drainage below the root zone was 14% (162 mm year -1 ) of the gross rainfall. This drainage recharged the 42% of the annual saturation deficit of the water table. Similar mean annual evapotranspiration (770 mm year -1 ) was also calculated by using the water balance components. The mean daily coupling omega factor (Ω) between the grove canopy and the surrounding atmosphere indicated that a high degree of coupling (Ω=0.14±0.16) occurs in the grove and evapotranspiration was mainly controlled by surface conductance. As the dry season proceeded, the soil saturation deficit (δθ) increased rapidly resulting in a threshold surface conductance (0.030-0.005 m s -1 ) for δθ ranging from 0.05 to 0.10. Hypotheses to explain the omnipresence of perennial species in the wide range of physical conditions in neotropical savannas are discussed.

  6. Changes in conifer and deciduous forest foliar and forest floor chemistry and basal area tree growth across a nitrogen (N) deposition gradient in the northeastern US

    Treesearch

    Johnny L. Boggs; Steven G. McNulty; Linda H. Pardo

    2007-01-01

    We evaluated foliar and forest floor chemistry across a gradient of N deposition in the Northeast at 11 red spruce (Picea rubens Sarg.) sites in 1987/1988 and foliar and forest floor chemistry and basal area growth at six paired spruce and deciduous sites in 1999. The six red spruce plots were a subset of the original 1987/1988 spruce sites. In 1999...

  7. Winter-Deciduous versus Evergreen Habit in Mediterranean Regions: A Model

    Treesearch

    Mark A. Blumler

    1991-01-01

    Although winter-deciduous species are presumed to be "out-of-phase" with the mediterranean climate regime, distributional evidence suggests some taxa may be more tolerant of summer drought than evergreen sclerophylls. Deciduous species possess several features that confer advantage in extreme summer dry regions: drought-deciduousness, an efficient response to...

  8. The Pleistocene biogeography of eastern North America: A nonmigration scenario for deciduous forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loehle, C.; Iltis, H.

    The current reconstruction of the vegetation of eastern North America at the last glacial maximum postulates a very wide zone of tundra and boreal forest south of the ice. This reconstruction requires that the deciduous forest retreated far to the south. The authors believe that this reconstruction is seriously in error. Geologic evidence for glacial activity or tundra is absent from the southern Appalachians. Positive evidence for boreal forest is based on pollen identifications for Picea, Betula, and Pinus, when in reality southern members of these genera have pollen that cannot be distinguished from that of northern members. Further, pollenmore » of typical southern species such as oaks and hickories occurs throughout profiles that past authors had labeled boreal. Pollen evidence for a far southern deciduous forest refuge is lacking. Data on endemics are particularly challenging for the scenario in which deciduous forest migrated to the south and back. The southern Appalachian region is rife with endemics that are often extreme-habitat specialists unable to migrate. The previously glaciated zone is almost completely lacking in endemics. Outlier populations, range boundaries, and absence of certain hybrids all argue against a large boreal zone. The new reconstruction postulates a cold zone no more than 75--100 miles wide south of the ice in the East.« less

  9. Occurrence and nest survival of four thrush species on a managed central Appalachian forest

    USGS Publications Warehouse

    Dellinger, R.L.; Wood, P.B.; Keyser, P.D.

    2007-01-01

    The wood thrush (Hylocichla mustelina Gmelin) is a species of concern in the central Appalachians, and is sympatric there with three related species, the American robin (Turdus migratorius Linnaeus), hermit thrush (Catharus guttatus Pallas), and veery (Catharus fuscescens Stephens). Our objectives were to quantify use of mature forests and areas subjected to even-aged harvesting and partial harvesting by these four species by measuring their frequency of occurrence, nest survival, and nest site characteristics. We also compared microhabitat characteristics among the landcover types. During 2001-2003 we conducted point count surveys, monitored nests, and collected nest habitat data on a managed forest in West Virginia. Land cover was digitized into five categories: deciduous and mixed mature forest, deciduous and mixed partial harvest, and even-aged regeneration harvest. Chi-square goodness-of-fit analysis with Bonferroni 95% confidence intervals indicated that deciduous partial harvests were more likely to be inhabited by wood thrushes. The other three species were less likely to occur in deciduous partial harvests, and veery had lower nest survival in partial harvests than in mature forest. Contrary to many published descriptions that suggest thrushes will not nest in even-aged harvests, a small number of all species but hermit thrushes did nest in this cover type, often near a residual canopy tree. Hermit thrushes were less likely to inhabit mature deciduous forest, even-aged harvests, and harvested edges but chose nesting areas in mature mixed forest that was disturbed by road building and the seeding of landings and skid trails >10 years ago. Microhabitat characteristics of landcovers did not differ overall. Our results suggest a relationship with partial harvesting that is positive for wood thrush but negative for the other three species. ?? 2007 Elsevier B.V. All rights reserved.

  10. Measuring and Modeling the Effects of Alternate Post-Fire Successional Trajectories on Boreal Forest Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Goetz, S. J.; Mack, M. C.; Alexander, H. D.; Beck, P. S.

    2011-12-01

    High latitude ecosystems are experiencing amplified climate warming, and recent evidence suggests concurrent intensification of fire disturbance regimes. In central Alaskan boreal forests, severe burns consume more of the soil organic layer, resulting in increased establishment of deciduous seedlings and altered post-fire stand composition with increased deciduous dominance. Quantifying differences in ecosystem carbon (C) dynamics between forest successional trajectories in response to burn severity is essential for understanding potential changes in regional or global feedbacks between boreal forests and climate. We used the Biome BioGeochemical Cycling model (Biome-BGC) to quantify differences in C stocks and fluxes associated with alternate post-fire successional trajectories related to fire severity. A version of Biome-BGC that allows alternate competing vegetation types was calibrated against a series of aboveground biomass observations from chronosequences of stands with differing post-fire successional trajectories characterized by the proportion of deciduous biomass. The model was able to reproduce observed patterns of biomass accumulation after fire, with stands dominated by deciduous species sequestering more C at a faster rate than stands dominated by conifers. Modeled C fluxes suggest that stands dominated by deciduous species are a stronger sink of atmospheric C soon after disturbance than coniferous stands. These results agree with the few available C flux observations. We use a historic database in conjunction with a map of deciduous canopy cover to explore the consequences of ongoing and potential future changes in the fire regime on central Alaskan C balance.

  11. Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska

    USGS Publications Warehouse

    Mack, M.C.; Treseder, K.K.; Manies, K.L.; Harden, J.W.; Schuur, E.A.G.; Vogel, J.G.; Randerson, J.T.; Chapin, F. S.

    2008-01-01

    Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ???116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ?? 21 g m-2 (mean ?? 1SE) and vascular ANPP had recovered to 138 ?? 32 g m-2 y -1, which was not different than that of a nearby unburned stand (160 ?? 48 g m-2 y-1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ?? 180 (dry) and 4008 ?? 233 g m-2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ?? 68 g m-2 y -1 in the mature site, but in the dry chronosequence it peaked at 410 ?? 43 g m-2 y-1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls over these factors will help predict how changes in climate and fire regime will affect the carbon balance of Interior Alaska. ?? 2008 Springer Science+Business Media, LLC.

  12. Physiological plasticity of epiphytic orchids from two contrasting tropical dry forests

    NASA Astrophysics Data System (ADS)

    de la Rosa-Manzano, Edilia; Andrade, José Luis; Zotz, Gerhard; Reyes-García, Casandra

    2017-11-01

    An enormous variation in light, both temporally and spatially, exists in tropical forests, which represents a potential driver for plant physiological plasticity. The physiological plasticity of epiphytic orchids from two tropical dry forests in response to different light environments was experimentally investigated. Plants of five species were growing in a shade-house under three different light regimes (photosynthetic photon flux density; PPFD of 20, 50 and 70% of total daily incident radiation) under watered and drought conditions. Orchids with similar leaf morphology but from different forests responded differently to the same light environment. Linear leaves of Encyclia nematocaulon avoided drought stress through stomata control and had a notable increase of photosynthesis, lower osmotic potential, and high photosynthetic efficiency under 50% daily PPFD during both drought and watered periods. In contrast, orchids with cylindrical and oval leaves had a marked decrease of these physiological parameters under 50 and 70% of PPFD during the drought period, but then recovered after rewatering. Oval leaves of Lophiaris oerstedii were more sensitive to high light and water availability because they had a strong decrease of their physiological parameters at 70% of PPFD, even during the rewatering period. Contrary to our predictions, E. nematocaulon had low plasticity and Laelia rubescens, from the deciduous forest, was the most able to acclimate. In general, orchids from the drier forest had higher plasticity than those from the more humid forest, which might help them to tolerate the higher fluctuations of light and water availability that occur there.

  13. A Model-Data Intercomparison of Carbon Fluxes, Pools, and LAI in the Community Land Model (CLM) and Alternative Carbon Allocation Schemes

    NASA Astrophysics Data System (ADS)

    Montane, F.; Fox, A. M.; Arellano, A. F.; Alexander, M. R.; Moore, D. J.

    2016-12-01

    Carbon (C) allocation to different plant tissues (leaves, stem and roots) remains a central challenge for understanding the global C cycle, as it determines C residence time. We used a diverse set of observations (AmeriFlux eddy covariance towers, biomass estimates from tree-ring data, and Leaf Area Index measurements) to compare C fluxes, pools, and Leaf Area Index (LAI) data with the Community Land Model (CLM). We ran CLM for seven temperate forests in North America (including evergreen and deciduous sites) between 1980 and 2013 using different C allocation schemes: i) standard C allocation scheme in CLM, which allocates C to the stem and leaves as a dynamic function of annual net primary productivity (NPP); ii) two fixed C allocation schemes, one representative of evergreen and the other one of deciduous forests, based on Luyssaert et al. 2007; iii) an alternative C allocation scheme, which allocated C to stem and leaves, and to stem and coarse roots, as a dynamic function of annual NPP, based on Litton et al. 2007. At our sites CLM usually overestimated gross primary production and ecosystem respiration, and underestimated net ecosystem exchange. Initial aboveground biomass in 1980 was largely overestimated for deciduous forests, whereas aboveground biomass accumulation between 1980 and 2011 was highly underestimated for both evergreen and deciduous sites due to the lower turnover rate in the sites than the one used in the model. CLM overestimated LAI in both evergreen and deciduous sites because the Leaf C-LAI relationship in the model did not match the observed Leaf C-LAI relationship in our sites. Although the different C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, one of the alternative C allocation schemes used (iii) gave more realistic stem C/leaf C ratios, and highly reduced the overestimation of initial aboveground biomass, and accumulated aboveground NPP for deciduous forests by CLM. Our results would suggest using different C allocation schemes for evergreen and deciduous forests. It is crucial to improve CLM in the near future to minimize data-model mismatches, and to address some of the current model structural errors and parameter uncertainties.

  14. Spatiotemporal phenological changes in fall foliage peak coloration in deciduous forest and the responses to climatic variation

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Wilson, A. M.

    2017-12-01

    Plant phenology studies typically focus on the beginning and end of the growing season in temperate forests. We know too little about fall foliage peak coloration, which is a bioindicator of plant response in autumn to environmental changes, an important visual cue in fall associated with animal activities, and a key element in fall foliage ecotourism. Spatiotemporal changes in timing of fall foliage peak coloration of temperate forests and the associated environmental controls are not well understood. In this study, we examined multiple color indices to estimate Land Surface Phenology (LSP) of fall foliage peak coloration of deciduous forest in the northeastern USA using Moderate Resolution Imaging Spectroradiometer (MODIS) daily imagery from 2000 to 2015. We used long term phenology ground observations to validate our estimated LSP, and found that Visible Atmospherically Resistant Index (VARI) and Plant Senescence Reflectance Index (PSRI) were good metrics to estimate peak and end of leaf coloration period of deciduous forest. During the past 16 years, the length of period with peak fall foliage color of deciduous forest at southern New England and northern Appalachian forests regions became longer (0.3 7.7 days), mainly driven by earlier peak coloration. Northern New England, southern Appalachian forests and Ozark and Ouachita mountains areas had shorter period (‒0.2 ‒9.2 days) mainly due to earlier end of leaf coloration. Changes in peak and end of leaf coloration not only were associated with changing temperature in spring and fall, but also to drought and heat in summer, and heavy precipitation in both summer and fall. The associations between leaf peak coloration phenology and climatic variations were not consistent among ecoregions. Our findings suggested divergent change patterns in fall foliage peak coloration phenology in deciduous forests, and improved our understanding in the environmental control on timing of fall foliage color change.

  15. Causes and consequences of variation in conifer leaf life-span

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reich, P.B.; Koike, T.; Gower, S.T.

    1995-07-01

    Species with mutually supporting traits, such as high N{sub mass}, SLA, and A{sub mass}, and short leaf life-span, tend to inhabit either generally resource-rich environments or spatial and/or temporal microhabitats that are resource-rich in otherwise more limited habitats (e.g., {open_quotes}precipitation{close_quotes} ephemerals in warm deserts or spring ephemerals in the understory of temperate deciduous forests). In contrast, species with long leaf life-span often support foliage with low SLA, N{sub mass}, and A{sub mass}, and often grow in low-temperature limited, dry, and/or nutrient-poor environments. The contrast between evergreen and deciduous species, and the implications that emerge from such comparisons, can be consideredmore » a paradigm of modern ecological theory. However, based on the results of Reich et al. (1992) and Gower et al. (1993), coniferous species with foliage that persists for 9-10 years are likely to assimilate and allocate carbon and nutrients differently than other evergreen conifers that retain foliage for 2-3 years. Thus, attempts to contrast ecophysiological or ecosystem characteristics of evergreen versus deciduous life forms may be misleading, and pronounced differences among evergreen conifers may be ignored. Clearly, the deciduous-evergreen contrast, although useful in several ways, should be viewed from the broader perspective of a gradient in leaf life-span.« less

  16. Assessing ecosystem restoration alternatives in eastern deciduous forests: the view from belowground

    Treesearch

    Ralph E.J. Boerner; Adam T. Coates; Daniel A. Yaussy; Thomas A. Waldrop

    2008-01-01

    Both structural and functional approaches to restoration of eastern deciduous forests are becoming more common as recognition of the altered state of these ecosystems grows. In our study, structural restoration involves mechanically modifying the woody plant assemblage to a species composition, density, and community structure specified by the restoration goals....

  17. Comprehensive national database of tree effects on air quality and human health in the United States.

    PubMed

    Hirabayashi, Satoshi; Nowak, David J

    2016-08-01

    Trees remove air pollutants through dry deposition processes depending upon forest structure, meteorology, and air quality that vary across space and time. Employing nationally available forest, weather, air pollution and human population data for 2010, computer simulations were performed for deciduous and evergreen trees with varying leaf area index for rural and urban areas in every county in the conterminous United States. The results populated a national database of annual air pollutant removal, concentration changes, and reductions in adverse health incidences and costs for NO2, O3, PM2.5 and SO2. The developed database enabled a first order approximation of air quality and associated human health benefits provided by trees with any forest configurations anywhere in the conterminous United States over time. Comprehensive national database of tree effects on air quality and human health in the United States was developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Warming increases the sensitivity of seedling growth capacity to rainfall in six temperate deciduous tree species

    PubMed Central

    Smith, Nicholas G; Hoeppner, Susanne S; Dukes, Jeffrey S

    2018-01-01

    Abstract Predicting the effects of climate change on tree species and communities is critical for understanding the future state of our forested ecosystems. We used a fully factorial precipitation (three levels; ambient, −50 % ambient, +50 % ambient) by warming (four levels; up to +4 °C) experiment in an old-field ecosystem in the northeastern USA to study the climatic sensitivity of seedlings of six native tree species. We measured whole plant-level responses: survival, total leaf area (TLA), seedling insect herbivory damage, as well as leaf-level responses: specific leaf area (SLA), leaf-level water content (LWC), foliar nitrogen (N) concentration, foliar carbon (C) concentration and C:N ratio of each of these deciduous species in each treatment across a single growing season. We found that canopy warming dramatically increased the sensitivity of plant growth (measured as TLA) to rainfall across all species. Warm, dry conditions consistently reduced TLA and also reduced leaf C:N in four species (Acer rubrum, Betula lenta, Prunus serotina, Ulmus americana), primarily as a result of reduced foliar C, not increased foliar N. Interestingly, these conditions also harmed the other two species in different ways, increasing either mortality (Populus grandidentata) or herbivory (Quercus rubra). Specific leaf area and LWC varied across species, but did not show strong treatment responses. Our results indicate that, in the northeastern USA, dry years in a future warmer environment could have damaging effects on the growth capacity of these early secondary successional forests, through species-specific effects on leaf production (total leaves and leaf C), herbivory and mortality. PMID:29484151

  19. On the difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern United States

    Treesearch

    Kimberly A. Novick; A. Christopher Oishi; Eric J. Ward; Mario B.S. Siqueira; Jehn-Yih Juang; Paul C. Stoy

    2015-01-01

    The southeastern United States is experiencing a rapid regional increase in the ratio of pine to deciduous forest ecosystems at the same time it is experiencing changes in climate. This study is focused on exploring how these shifts will affect the carbon sink capacity of southeastern US forests, which we show here are among the strongest carbon sinks in the...

  20. A comparison of the beetle (Coleoptera) fauna captured at two heights above the ground in a North American temperate deciduous forest

    Treesearch

    Michael D. Ulyshen; James L. Hanula

    2007-01-01

    We compared the beetle fauna captured in 12 pairs of flight intercept traps suspended at two different heights above the ground ($15 m and 0.5 m) in a temperate deciduous forest in the southeastern United States to better understand how the abundance, species richness, diversity and composition of insect communities differ among forest strata. A total of 15,012 beetle...

  1. A comparison of the Beetle (Coleoptera) Fauna Captured at two heights above the ground in a North American temperate deciduous forest

    Treesearch

    Michael Ulyshen; James Hanula

    2007-01-01

    We compared the beetle fauna captured in 12 pairs of flight intercept traps suspended at two different heights above the ground ($15 m and 0.5 m) in a temperate deciduous forest in the southeastern United States to better understand how the abundance, species richness, diversity and composition of insect communities differ among forest strata. A total of 15,012 beetle...

  2. Atmospheric deposition to forests in the eastern USA

    USGS Publications Warehouse

    Risch, Martin R.; DeWild, John F.; Gay, David A.; Zhang, Leiming; Boyer, Elizabeth W.; Krabbenhoft, David P.

    2017-01-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007–2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m2/yr) and ranged from 2.2 to 23.4 μg/m2/yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007–2009 than in 2012–2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can accumulate in the prey of songbirds, bats, and raptors.

  3. Atmospheric mercury deposition to forests in the eastern USA.

    PubMed

    Risch, Martin R; DeWild, John F; Gay, David A; Zhang, Leiming; Boyer, Elizabeth W; Krabbenhoft, David P

    2017-09-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007-2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m 2 /yr) and ranged from 2.2 to 23.4 μg/m 2 /yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007-2009 than in 2012-2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can accumulate in the prey of songbirds, bats, and raptors. Published by Elsevier Ltd.

  4. Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    Hadley, J. L.; Kuzeja, P.; Mulcahy, T.; Singh, S.

    2008-12-01

    Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S. Julian Hadley, Paul Kuzeja, Safina Singh and Thomas Mulcahy Transfers of water vapor from terrestrial ecosystems to the atmosphere affect regional hydrology, weather and climate over short time scales, and forest-atmosphere CO2 exchange affects global climate over long timescales. To better understand these effects for forests dominated by two very different tree species, we measured forest-atmosphere water vapor and CO2 transfers by the eddy flux technique to at two sites in central Massachusetts USA for three years. Average annual evapotranspiration (ET) for a young deciduous forest dominated by red oak (Quercus rubra L., the most abundant tree species in the area), was about 430 mm or 25 percent greater than for a coniferous forest dominated by 100 to 230 year old eastern hemlock (Tsuga canadensis L.). The difference in ET was most pronounced in July and August when the deciduous forest lost about 50 percent more water by ET in the average year (192 mm for oak forest versus 130 mm for hemlock). These data indicate that if deciduous trees with similar physiology to red oak replace hemlocks, summertime ET will increase while summer streamflow, soil water content and the extent of year- round wetlands will decrease. Increased summertime ET should also lead to slightly higher regional atmospheric humidity and precipitation. Hemlock-to-deciduous forest conversion has occurred from North Carolina to southern New England and is continuing northward as a lethal insect pest, the hemlock woolly adelgid (Adelges tsugae Annand) continues to kill hemlocks. Average annual carbon storage for the old hemlock forest in our study was about 3.3 Mg C/ha, nearly equal to the average for the deciduous forest, 3.5 Mg C/ha. This calls into question ecological theory that predicts large declines in the rate of carbon uptake for old forests, and indicates that annual carbon storage will not necessarily increase over the long term after hemlock trees are killed by the hemlock woolly adelgid and replaced by deciduous species. Maximum monthly carbon storage in the hemlock forest occurred in spring (April and May) and was enhanced by early soil thawing and cessation of nighttime frost. This pattern is probably common to many evergreen conifers in the northeastern U.S., so climate warming that includes an earlier end to freezing temperatures in spring should increase C storage by conifer forests in the northeastern U.S. - unless this effect is canceled out by reduced C uptake or enhanced C loss due to changes in summer and fall climate.

  5. Geographical and climatic gradients of evergreen versus deciduous broad-leaved tree species in subtropical China: Implications for the definition of the mixed forest.

    PubMed

    Ge, Jielin; Xie, Zongqiang

    2017-06-01

    Understanding climatic influences on the proportion of evergreen versus deciduous broad-leaved tree species in forests is of crucial importance when predicting the impact of climate change on broad-leaved forests. Here, we quantified the geographical distribution of evergreen versus deciduous broad-leaved tree species in subtropical China. The Relative Importance Value index (RIV) was used to examine regional patterns in tree species dominance and was related to three key climatic variables: mean annual temperature (MAT), minimum temperature of the coldest month (MinT), and mean annual precipitation (MAP). We found the RIV of evergreen species to decrease with latitude at a lapse rate of 10% per degree between 23.5 and 25°N, 1% per degree at 25-29.1°N, and 15% per degree at 29.1-34°N. The RIV of evergreen species increased with: MinT at a lapse rate of 10% per °C between -4.5 and 2.5°C and 2% per °C at 2.5-10.5°C; MAP at a lapse rate of 10% per 100 mm between 900 and 1,600 mm and 4% per 100 mm between 1,600 and 2,250 mm. All selected climatic variables cumulatively explained 71% of the geographical variation in dominance of evergreen and deciduous broad-leaved tree species and the climatic variables, ranked in order of decreasing effects were as follows: MinT > MAP > MAT. We further proposed that the latitudinal limit of evergreen and deciduous broad-leaved mixed forests was 29.1-32°N, corresponding with MAT of 11-18.1°C, MinT of -2.5 to 2.51°C, and MAP of 1,000-1,630 mm. This study is the first quantitative assessment of climatic correlates with the evergreenness and deciduousness of broad-leaved forests in subtropical China and underscores that extreme cold temperature is the most important climatic determinant of evergreen and deciduous broad-leaved tree species' distributions, a finding that confirms earlier qualitative studies. Our findings also offer new insight into the definition and distribution of the mixed forest and an accurate assessment of vulnerability of mixed forests to future climate change.

  6. Leaf-on canopy closure in broadleaf deciduous forests predicted during winter

    USGS Publications Warehouse

    Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.

    2015-01-01

    Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.

  7. Evergreen coniferous forests of the pacific northwest.

    PubMed

    Waring, R H; Franklin, J F

    1979-06-29

    The massive, evergreen coniferous forests in the Pacific Northwest are unique among temperate forest regions of the world. The region's forests escaped decimation during Pleistocene glaciation; they are now dominated by a few broadly distributed and well-adapted conifers that grow to large size and great age. Large trees with evergreen needle- or scale-like leaves have distinct advantages under the current climatic regime. Photosynthesis and nutrient uptake and storage are possible during the relatively warm, wet fall and winter months. High evaporative demand during the warm, dry summer reduces photosynthesis. Deciduous hardwoods are repeatedly at a disadvantage in competing with conifers in the regional climate. Their photosynthesis is predominantly limited to the growing season when evaporative demand is high and water is often limiting. Most nutrients needed are also less available at this time. The large size attained by conifers provides a buffer against environmental stress (especially for nutrients and moisture). The long duration between destructive fires and storms permits conifers to outgrow hardwoods with more limited stature and life spans.

  8. Savannahs of Asia: antiquity, biogeography, and an uncertain future.

    PubMed

    Ratnam, Jayashree; Tomlinson, Kyle W; Rasquinha, Dina N; Sankaran, Mahesh

    2016-09-19

    The savannahs of Asia remain locally unrecognized as distinctive ecosystems, and continue to be viewed as degraded forests or seasonally dry tropical forests. These colonial-era legacies are problematic, because they fail to recognize the unique diversity of Asian savannahs and the critical roles of fire and herbivory in maintaining ecosystem health and diversity. In this review, we show that: the palaeo-historical evidence suggests that the savannahs of Asia have existed for at least 1 million years, long before widespread landscape modification by humans; savannah regions across Asia have levels of C4 grass endemism and diversity that are consistent with area-based expectations for non-Asian savannahs; there are at least three distinct Asian savannah communities, namely deciduous broadleaf savannahs, deciduous fine-leafed and spiny savannahs and evergreen pine savannahs, with distinct functional ecologies consistent with fire- and herbivory-driven community assembly. Via an analysis of savannah climate domains on other continents, we map the potential extent of savannahs across Asia. We find that the climates of African savannahs provide the closest analogues for those of Asian deciduous savannahs, but that Asian pine savannahs occur in climates different to any of the savannahs in the southern continents. Finally, we review major threats to the persistence of savannahs in Asia, including the mismanagement of fire and herbivory, alien woody encroachment, afforestation policies and future climate uncertainty associated with the changing Asian monsoon. Research agendas that target these issues are urgently needed to manage and conserve these ecosystems.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  9. Savannahs of Asia: antiquity, biogeography, and an uncertain future

    PubMed Central

    2016-01-01

    The savannahs of Asia remain locally unrecognized as distinctive ecosystems, and continue to be viewed as degraded forests or seasonally dry tropical forests. These colonial-era legacies are problematic, because they fail to recognize the unique diversity of Asian savannahs and the critical roles of fire and herbivory in maintaining ecosystem health and diversity. In this review, we show that: the palaeo-historical evidence suggests that the savannahs of Asia have existed for at least 1 million years, long before widespread landscape modification by humans; savannah regions across Asia have levels of C4 grass endemism and diversity that are consistent with area-based expectations for non-Asian savannahs; there are at least three distinct Asian savannah communities, namely deciduous broadleaf savannahs, deciduous fine-leafed and spiny savannahs and evergreen pine savannahs, with distinct functional ecologies consistent with fire- and herbivory-driven community assembly. Via an analysis of savannah climate domains on other continents, we map the potential extent of savannahs across Asia. We find that the climates of African savannahs provide the closest analogues for those of Asian deciduous savannahs, but that Asian pine savannahs occur in climates different to any of the savannahs in the southern continents. Finally, we review major threats to the persistence of savannahs in Asia, including the mismanagement of fire and herbivory, alien woody encroachment, afforestation policies and future climate uncertainty associated with the changing Asian monsoon. Research agendas that target these issues are urgently needed to manage and conserve these ecosystems. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502371

  10. Intra- and interspecific variation in tropical tree and liana phenology derived from Unmanned Aerial Vehicle images

    NASA Astrophysics Data System (ADS)

    Bohlman, S.; Park, J.; Muller-Landau, H. C.; Rifai, S. W.; Dandois, J. P.

    2017-12-01

    Phenology is a critical driver of ecosystem processes. There is strong evidence that phenology is shifting in temperate ecosystems in response to climate change, but tropical tree and liana phenology remains poorly quantified and understood. A key challenge is that tropical forests contain hundreds of plant species with a wide variety of phenological patterns. Satellite-based observations, an important source of phenology data in northern latitudes, are hindered by frequent cloud cover in the tropics. To quantify phenology over a large number of individuals and species, we collected bi-weekly images from unmanned aerial vehicles (UAVs) in the well-studied 50-ha forest inventory plot on Barro Colorado Island, Panama. Between October 2014 and December 2015 and again in May 2015, we collected a total of 35 sets of UAV images, each with continuous coverage of the 50-ha plot, where every tree ≥ 1 cm DBH is mapped. Spectral, texture, and image information was extracted from the UAV images for individual tree crowns, which was then used as inputs for a machine learning algorithm to predict percent leaf and branch cover. We obtained the species identities of 2000 crowns in the images via field mapping. The objectives of this study are to (1) determined if machine learning algorithms, applied to UAV images, can effectively quantify changes in leaf cover, which we term "deciduousness; (2) determine how liana cover effects deciduousness and (3) test how well UAV-derived deciduousness patterns match satellite-derived temporal patterns. Machine learning algorithms trained on a variety of image parameters could effectively determine leaf cover, despite variation in lighting and viewing angles. Crowns with higher liana cover have less overall deciduousness (tree + liana together) than crowns with lower liana cover. Individual crown deciduousness, summed over all crowns measured in the 50-ha plot, showed a similar seasonal pattern as MODIS EVI composited over 10 years. However, MODIS EVI phenology was "greened" up earlier than UAV-based deciduousness, perhaps reflecting the new late dry season leaf flush that increases EVI but not overall leaf cover. We discuss how the potential mechanisms that explain variation among species and between trees and lianas and the consequences for these variation for ecosystem processes and modeling.

  11. Litter decomposition, N2-fixer abundance, and microbial dynamics govern tropical dry forest recovery to land use change

    NASA Astrophysics Data System (ADS)

    Trierweiler, A.; Powers, J. S.; Xu, X.; Gei, M. G.; Medvigy, D.

    2017-12-01

    As one of the most threatened tropical biomes, Seasonal Dry Tropical Forests (TDF) have undergone extensive land-use change. However, some areas are undergoing recovery into secondary forests. Despite their broad distribution (42% of tropical forests), they are under-studied compared to wet tropical forests and our understanding of their biogeochemical cycling and belowground processes are limited. Here, we use models along with field measurements to improve our understanding of nutrient cycling and limitation in secondary TDFs. We ask (1) Is there modeling evidence that tropical dry forests can become nutrient limited? (2) What are the most important mechanisms employed to avoid nutrient limitation? (3) How might climate change alter biogeochemical cycling and nutrient limitation in recovering TDF? We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs and incorporates a range of plant functional groups (including deciduousness and N2-fixation) and multiple resource constraints (carbon, nitrogen, phosphorus, and water). In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies using N2-fixing bacteria and mycorrhizal fungi according to the nutrient limitation status. We ran the model for a nutrient gradient of field sites in Costa Rica and explored the sensitivity of nutrient limitation to key mechanisms including litter respiration, N resorption, N2-fixation, and overflow respiration. Future runs will evaluate how CO2 and climate change affect recovering TDFs. We found increasing nutrient limitation across the nutrient gradient of sites. Nitrogen limitation dominated the nutrient limitation signal. In the model, forest litter accumulation was negatively correlated with site fertility in Costa Rican forests. Our sensitivity analyses indicate that N2-fixer abundance, decomposition rates, and adding more explicit microbial dynamics are key factors in overcoming this limitation. These insights improve our understanding of how TDFs function and are especially relevant to the management of recovering secondary TDFs by highlighting potential bottlenecks in the recovery process.

  12. Landscape risk factors for Lyme disease in the eastern broadleaf forest province of the Hudson River valley and the effect of explanatory data classification resolution.

    PubMed

    Messier, Kyle P; Jackson, Laura E; White, Jennifer L; Hilborn, Elizabeth D

    2015-01-01

    This study assessed how landcover classification affects associations between landscape characteristics and Lyme disease rate. Landscape variables were derived from the National Land Cover Database (NLCD), including native classes (e.g., deciduous forest, developed low intensity) and aggregate classes (e.g., forest, developed). Percent of each landcover type, median income, and centroid coordinates were calculated by census tract. Regression results from individual and aggregate variable models were compared with the dispersion parameter-based R(2) (Rα(2)) and AIC. The maximum Rα(2) was 0.82 and 0.83 for the best aggregate and individual model, respectively. The AICs for the best models differed by less than 0.5%. The aggregate model variables included forest, developed, agriculture, agriculture-squared, y-coordinate, y-coordinate-squared, income and income-squared. The individual model variables included deciduous forest, deciduous forest-squared, developed low intensity, pasture, y-coordinate, y-coordinate-squared, income, and income-squared. Results indicate that regional landscape models for Lyme disease rate are robust to NLCD landcover classification resolution. Published by Elsevier Ltd.

  13. Clarifying the role of fire in the deciduous forests of eastern North America: reply to Matlack

    Treesearch

    Michael C. Stambaugh; J. Morgan Varner; Reed F. Noss; Daniel C. Dey; Norman L. Christensen; Robert F. Baldwin; Richard P. Guyette; Brice B. Hanberry; Craig A. Harper; Sam G. Lindblom; Thomas A. Waldrop

    2015-01-01

    Fire is an important disturbance in ecosystems across the eastern deciduous forests of North America (Brose et al. 2014). Matlack (2013) provided an interpretation of historical and contemporary fire in this region. Although we applaud Matlack for correcting simplistic assumptions that fire was ubiquitous and all plant communities need to burn regularly to maintain...

  14. Fire ecology and bird populations in eastern deciduous forests

    Treesearch

    Vanessa L. Artman; Todd F. Hutchinson; Jeffrey D. Brawn; Jeffrey D. Brawn

    2005-01-01

    Eastern deciduous forests are located across the central portion of eastern North America and provide habitat for a wide diversity of bird species. The occurrence of fi re in the region has been associated with the presence of humans for over 10,000 yr. While pre-European fire regimes are poorly understood, fire is widely thought to have promoted and maintained large...

  15. Tree growth, foliar chemistry, and nitrogen cycling across a nitrogen deposition gradient in southern Appalachian deciduous forests

    Treesearch

    Johnny L. Boggs; Steven G. McNulty; Michael J. Gavazzi; Jennifer Moore Myers

    2005-01-01

    The declining health of high-elevation red spruce (Picea rubens Sarg.) and Fraser fir (Abies fraseri (Pursh) Poir.) in the southern Appalachian region has long been linked to nitrogen (N)deposition. Recently, N deposition has also been proposed as a source of negative health impacts in lower elevation deciduous forests. In 1998 we...

  16. Historic disturbance regimes promote tree diversity only under low browsing regimes in eastern deciduous forest

    Treesearch

    Tim Nuttle; Alejandro A. Royo; Mary Beth Adams; Walter P. Carson

    2013-01-01

    Eastern deciduous forests are changing in species composition and diversity outside of classical successional trajectories. Three disturbance mechanisms appear central to this phenomenon: fire frequency is reduced, canopy gaps are smaller, and browsers are more abundant. Which factor is most responsible is a matter of great debate and remains unclear, at least partly...

  17. A ˜50 ka record of monsoonal variability in the Darjeeling foothill region, eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Ghosh, Ruby; Bera, Subir; Sarkar, Anindya; Paruya, Dipak Kumar; Yao, Yi-Feng; Li, Cheng-Sen

    2015-04-01

    Pollen, phytoliths and δ 13C signatures of soil organic matter from two fluvial sedimentary sequences of the Darjeeling foothill region, eastern Himalayas are used to portray palaeoclimatic oscillations and their impact on regional plant communities over the last ˜50 ka. Quantitative palaeoclimate estimation using coexistence approach on pollen data and other proxies indicate significant oscillations in precipitation during the late part of MIS 3 (46.4-25.9 ka), early and middle part of MIS 2 (25.9-15.6 ka), and 5.4 to 3.5 ka. Middle to late MIS 3 (ca 46.4-31 ka.) was characterized by a comparatively low monsoonal activity and slightly higher temperature than that during ca 31 ka onwards. Simultaneous expansion of deciduous trees and chloridoid grasses also imply a drier and warmer phase. Between 31 and 22.3 ka (late MIS 3 to mid-MIS 2), higher precipitation and a slightly cooler temperature led to an increase in evergreen elements over deciduous taxa and wet-loving panicoid grasses over dry-loving chloridoid grasses than earlier. After ca 22.3 ka, shrinking of forest cover, expansion of C4 chloridoid grasses, Asteraceae and Cheno-ams in the vegetation with lowering of temperature and precipitation characterized the onset of the LGM which continued till 18.3 ka. End of the LGM is manifested by a restoration in the forest cover and in the temperature and precipitation regime. Later, during 5.4 to 4.3 ka, a strong monsoonal activity supported a dense moist evergreen forest cover that subsequently declined during 4.3 to 3.5 ka. A further increase in deciduous elements and non-arboreals might be a consequence of reduced precipitation and higher temperature during this phase. A comparison between monsoonal rainfall, MAT and palaeoatmospheric CO2 with floral dynamics since last ˜50 ka indicates that these fluctuations in plant succession were mainly driven by monsoonal variations.

  18. Foliar accumulation of polycyclic aromatic hydrocarbons in native tree species from the Atlantic Forest (SE-Brazil).

    PubMed

    Dias, Ana Paula L; Rinaldi, Mirian C S; Domingos, Marisa

    2016-02-15

    Polycyclic aromatic hydrocarbons (PAHs) are toxic to living organisms. They can accumulate on foliar surfaces due to their affinity with apolar organic compounds, which enables the use of native plant species as sentinels of atmospheric PAH deposition in polluted ecosystems. The present study extends the knowledge about this subject in the tropical region by focusing on the PAH accumulation in the foliage of dominant tree species (Astronium graveolens, Croton floribundus, Piptadenia gonoacantha) in four remnants of Semi-deciduous Atlantic Forest surrounded by diversified sources of PAHs and located in the cities of Campinas, Paulínia, Holambra and Cosmópilis (central-eastern part of São Paulo State, SE-Brazil). Leaves of the tree species were collected in the forest remnants during the wet and dry seasons (2011 to 2013). All samples were analyzed by high performance liquid chromatography (HPLC) coupled to a fluorescence detector for identification of 14 PAHs. The native tree species showed distinct capacities to accumulate PAHs. All of them accumulated proportionally more light PAHs than heavy PAHs, mainly during the dry period. P. gonoacantha was the most effective accumulator species. Higher accumulations of most of the PAHs occurred during the dry periods. The predominance of moderately (1 ≤ EF < 5) to highly enriched (EF ≥ 5) leaf samples of P. gonoacantha with regard to BaA and PHE in all of the forest remnants indicated that vehicular sources were widely distributed in the entire region. The predominance of the moderate to high enrichment of ACE in leaf samples from the forest remnants located in Paulínia, Holambra and Cosmópolis indicated that they were also affected by emissions from petrochemical industries. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Study on identifying deciduous forest by the method of feature space transformation

    NASA Astrophysics Data System (ADS)

    Zhang, Xuexia; Wu, Pengfei

    2009-10-01

    The thematic remotely sensed information extraction is always one of puzzling nuts which the remote sensing science faces, so many remote sensing scientists devotes diligently to this domain research. The methods of thematic information extraction include two kinds of the visual interpretation and the computer interpretation, the developing direction of which is intellectualization and comprehensive modularization. The paper tries to develop the intelligent extraction method of feature space transformation for the deciduous forest thematic information extraction in Changping district of Beijing city. The whole Chinese-Brazil resources satellite images received in 2005 are used to extract the deciduous forest coverage area by feature space transformation method and linear spectral decomposing method, and the result from remote sensing is similar to woodland resource census data by Chinese forestry bureau in 2004.

  20. Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador

    PubMed Central

    Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven

    2017-01-01

    Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium. PMID:29267357

  1. Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador.

    PubMed

    Manchego, Carlos E; Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven

    2017-01-01

    Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium.

  2. Fall fertilization enhanced nitrogen storage and translocation in Larix olgensis seedlings

    Treesearch

    Y. Zhu; R. K. Dumroese; G. L. Li; J. R. Pinto; Y. Liu

    2013-01-01

    Fall nutrient loading of deciduous forest nursery seedlings is of special interest because of foliage abscission and varied translocation patterns. For non-deciduous seedlings in the nursery, fall fertilization typically can reverse nutrient dilution and possibly increase nutrient reserves; however, this technique has received little attention with deciduous conifer...

  3. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests.

    PubMed

    Rodrigues, P M S; Silva, J O; Eisenlohr, P V; Schaefer, C E G R

    2015-08-01

    The aim of this study was to evaluate the ecological niche models (ENMs) for three specialist trees (Anadenanthera colubrina, Aspidosperma pyrifolium and Myracrodruon urundeuva) in seasonally dry tropical forests (SDTFs) in Brazil, considering present and future pessimist scenarios (2080) of climate change. These three species exhibit typical deciduousness and are widely distributed by SDTF in South America, being important in studies of the historical and evolutionary processes experienced by this ecosystem. The modeling of the potential geographic distribution of species was done by the method of maximum entropy (Maxent).We verified a general expansion of suitable areas for occurrence of the three species in future (c.a., 18%), although there was reduction of areas with high environmental suitability in Caatinga region. Precipitation of wettest quarter and temperature seasonality were the predictor variables that most contributed to our models. Climatic changes can provide more severe and longer dry season with increasing temperature and tree mortality in tropics. On this scenario, areas currently occupied by rainforest and savannas could become more suitable for occurrence of the SDTF specialist trees, whereas regions occupied by Caatinga could not support the future level of unsustainable (e.g., aridity). Long-term multidisciplinary studies are necessary to make reliable predictions of the plant's adaptation strategies and responses to climate changes in dry forest at community level. Based on the high deforestation rate, endemism and threat, public policies to minimize the effects of climate change on the biodiversity found within SDTFs must be undertaken rapidly.

  4. Late Cretaceous- Cenozoic history of deciduousness and the terminal Cretaceous event.

    USGS Publications Warehouse

    Wolfe, J.A.

    1987-01-01

    Deciduousness in mesic, broad-leaved plants occurred in disturbed, middle-latitude environments during the Late Cretaceous. Only in polar environments in the Late Cretaceous was the deciduous element dominant, although of low diversity. The terminal Cretaceous event resulted in wide-spread selection for plants of deciduous habit and diversification of deciduous taxa, thus leaving a lasting imprint on Northern Hemisphere vegetation. Various environmental factors have played important roles in subsequent diversification of mesic, broad-leaved deciduous taxa and in origination and decline of broad-leaved deciduous forests. Low diversity and rarity of mesic deciduous plants in the post-Cretaceous of the Southern Hemisphere indicate that the inferred 'impact winter' of the terminal Cretaceous event had little effect on Southern Hemisphere vegetation and climate. -Author

  5. Long-term (13 Years) decomposition rates of forest floor organic matter on paired coniferous and deciduous watersheds with contrasting temperature regimes

    Treesearch

    Robert G. Qualls

    2016-01-01

    Two sets of paired watersheds on north and South facing slopes were utilized to simulate the effects of temperature differences that are on the scale of those expected with near-term climatic warming on decomposition. Two watersheds were pine plantations (Pinus strobus L.) and two were mature deciduous forests established at similar elevation...

  6. Effects of seasonal variation of photosynthetic capacity on the carbon fluxes of a temperate deciduous forest

    Treesearch

    David Medvigy; Su-Jong Jeong; Kenneth L. Clark; Nicholas S. Skowronski; Karina V. R. Schäfer

    2013-01-01

    Seasonal variation in photosynthetic capacity is an important part of the overall seasonal variability of temperate deciduous forests. However, it has only recently been introduced in a few terrestrial biosphere models, and many models still do not include it. The biases that result from this omission are not well understood. In this study, we use the Ecosystem...

  7. Soil macroinvertebrate communities across a productivity gradient in deciduous forests of eastern North America

    Treesearch

    Evelyn S. Wenk; Mac A. Callaham; Joseph O' Brien; Paul J. Hanson

    2016-01-01

    Within the temperate, deciduous forests of the eastern US, diverse soil-fauna communities are structured by a combination of environmental gradients and interactions with other biota. The introduction of non-native soil taxa has altered communities and soil processes, and adds another degree of variability to these systems. We sampled soil macroinvertebrate abundance...

  8. Seed morphology, germination phenology, and capacity to form a seed bank in six herbaceous layer apiaceae species of the eastern deciduous forest

    Treesearch

    Tracy S. Hawkins; Jerry M. Baskin; Carol C. Baskin

    2007-01-01

    We compared seed mass, seed morphology, and long-term germination phenology of three monocarpic (MI and three polycarpic (P) Apiaceae species of the herbaceous layer of the Eastern Deciduous Forest. Seeds (mericarps) of the six species differed considerably in mass, shape, and ornamentation. Mean seed masses were ranked Cryptotaenia canadensis (M)...

  9. Molecular phylogenetics and species delimitation of leaf-toed geckos (Phyllodactylidae: Phyllodactylus) throughout the Mexican tropical dry forest.

    PubMed

    Blair, Christopher; Méndez de la Cruz, Fausto R; Law, Christopher; Murphy, Robert W

    2015-03-01

    Methods and approaches for accurate species delimitation continue to be a highly controversial subject in the systematics community. Inaccurate assessment of species' limits precludes accurate inference of historical evolutionary processes. Recent evidence suggests that multilocus coalescent methods show promise in delimiting species in cryptic clades. We combine multilocus sequence data with coalescence-based phylogenetics in a hypothesis-testing framework to assess species limits and elucidate the timing of diversification in leaf-toed geckos (Phyllodactylus) of Mexico's dry forests. Tropical deciduous forests (TDF) of the Neotropics are among the planet's most diverse ecosystems. However, in comparison to moist tropical forests, little is known about the mode and tempo of biotic evolution throughout this threatened biome. We find increased speciation and substantial, cryptic molecular diversity originating following the formation of Mexican TDF 30-20million years ago due to orogenesis of the Sierra Madre Occidental and Mexican Volcanic Belt. Phylogenetic results suggest that the Mexican Volcanic Belt, the Rio Fuerte, and Isthmus of Tehuantepec may be important biogeographic barriers. Single- and multilocus coalescent analyses suggest that nearly every sampling locality may be a distinct species. These results suggest unprecedented levels of diversity, a complex evolutionary history, and that the formation and expansion of TDF vegetation in the Miocene may have influenced subsequent cladogenesis of leaf-toed geckos throughout western Mexico. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    PubMed

    Mendivelso, Hooz A; Camarero, J Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  11. Differential Growth Responses to Water Balance of Coexisting Deciduous Tree Species Are Linked to Wood Density in a Bolivian Tropical Dry Forest

    PubMed Central

    Mendivelso, Hooz A.; Camarero, J. Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability. PMID:24116001

  12. Millennial-scale variability in vegetation records from the East Asian Islands: Taiwan, Japan and Sakhalin

    NASA Astrophysics Data System (ADS)

    Takahara, Hikaru; Igarashi, Yaeko; Hayashi, Ryoma; Kumon, Fujio; Liew, Ping-Mei; Yamamoto, Masanobu; Kawai, Sayuri; Oba, Tadamichi; Irino, Tomohisa

    2010-10-01

    High-resolution pollen records from Taiwan, Japan and Sakhalin document regional vegetation changes during Dansgaard-Oeschger (D-O) cycles during the last glacial. During the period from the cold phase (GS 18/19) to warm phase (D-O 19), the biome shift from temperate conifer forest to cold/cool conifer forest in Japan and from subtropical forest to temperate deciduous/conifer forest in Taiwan. The vegetation in D-O 17, cool mixed forest in central Japan, temperate deciduous broadleaf forest in western Japan and subtropical forest in Taiwan, indicates warm condition but not wet in all area. These vegetation changes lead to biome shift from MIS (Marine Isotope Stage) 4 to MIS 3. The abundance of Cryptomeria japonica and Fagus crenata in D-O 12 and D-O 8 indicates wet conditions brought by the strong summer monsoon through the Islands and high snowfall brought by the inflow of the Tsushima Warm Current into the Sea of Japan. The registration of other D-O warming events in MIS 3, although reflected by shifts in the abundance of key species, is not sufficient to produce changes in biomes. Development of cold deciduous forest in HS (Heinrich events) 1 in Sakhalin, Hokkaido and central Japan was conspicuous and was much larger than that in YD. Vegetation response in YD was small scale and within the same biome in the East Asian Islands. In D-O 1 at the termination of the last glacial, the same taxa that developed in the early Holocene, cold evergreen needleleaf trees in northern region, temperate deciduous broadleaf trees in central and western Japan, and warm-temperate evergreen trees in Taiwan, increased.

  13. Monitoring boreal forest leaf area index across a Siberian burn chronosequence: a MODIS validation study

    USGS Publications Warehouse

    Cheng, X.; Vierling, Lee; Deering, D.; Conley, A.

    2005-01-01

    Landscapes containing differing amounts of ecological disturbance provide an excellent opportunity to validate and better understand the emerging Moderate Resolution Imaging Spectrometer (MODIS) vegetation products. Four sites, including 1‐year post‐fire coniferous, 13‐year post‐fire deciduous, 24‐year post‐fire deciduous, and >100 year old post‐fire coniferous forests, were selected to serve as a post‐fire chronosequence in the central Siberian region of Krasnoyarsk (57.3°N, 91.6°E) with which to study the MODIS leaf area index (LAI) and vegetation index (VI) products. The collection 4 MODIS LAI product correctly represented the summer site phenologies, but significantly underestimated the LAI value of the >100 year old coniferous forest during the November to April time period. Landsat 7‐derived enhanced vegetation index (EVI) performed better than normalized difference vegetation index (NDVI) to separate the deciduous and conifer forests, and both indices contained significant correlation with field‐derived LAI values at coniferous forest sites (r 2 = 0.61 and r 2 = 0.69, respectively). The reduced simple ratio (RSR) markedly improved LAI prediction from satellite measurements (r 2 = 0.89) relative to NDVI and EVI. LAI estimates derived from ETM+ images were scaled up to evaluate the 1 km resolution MODIS LAI product; from this analysis MODIS LAI overestimated values in the low LAI deciduous forests (where LAI<5) and underestimated values in the high LAI conifer forests (where LAI>6). Our results indicate that further research on the MODIS LAI product is warranted to better understand and improve remote LAI quantification in disturbed forest landscapes over the course of the year.

  14. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    PubMed

    Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo

    2015-01-01

    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  15. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient

    PubMed Central

    Orihuela, Rodrigo L. L.; Peres, Carlos A.; Mendes, Gabriel; Jarenkow, João A.; Tabarelli, Marcelo

    2015-01-01

    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide. PMID:26309252

  16. Long term leaf phenology and leaf exchange strategies of a cerrado savanna community

    NASA Astrophysics Data System (ADS)

    de Camargo, Maria Gabriela G.; Costa Alberton, Bruna; de Carvalho, Gustavo H.; Magalhães, Paula A. N. R.; Morellato, Leonor Patrícia C.

    2017-04-01

    Leaf development and senescence cycles are linked to a range of ecosystem processes, affecting seasonal patterns of atmosphere-ecosystem carbon and energy exchanges, resource availability and nutrient cycling. The degree of deciduousness of tropical trees and communities depend on ecosystems characteristics such as amount of biomass, species diversity and the strength and length of the dry season. Besides defining the growing season, deciduousness can also be an indicator of species response to climate changes in the tropics, mainly because severity of dry season can intensify leaf loss. Based on seven-years of phenological observations (2005 to 2011) we describe the long-term patterns of leafing phenology of a Brazilian cerrado savanna, aiming to (i) identify leaf exchange strategies of species, quantifying the degree of deciduousness, and verify whether these strategies vary among years depending on the length and strength of the dry seasons; (ii) define the growing seasons along the years and the main drivers of leaf flushing in the cerrado. We analyzed leafing patterns of 107 species and classified 69 species as deciduous (11 species), semi-deciduous (29) and evergreen (29). Leaf exchange was markedly seasonal, as expected for seasonal tropical savannas. Leaf fall predominated in the dry season, peaking in July, and leaf flushing in the transition between dry to wet seasons, peaking in September. Leafing patterns were similar among years with the growing season starting at the end of dry season, in September, for most species. However, leaf exchange strategies varied among years for most species (65%), except for evergreen strategy, mainly constant over years. Leafing patterns of cerrado species were strongly constrained by rainfall. The length of the dry season and rainfall intensity were likely affecting the individuals' leaf exchange strategies and suggesting a differential resilience of species to changes of rainfall regime, predicted on future global change scenarios.

  17. Analyzing remote sensing geobotanical trends in Quetico Provincial Park, Ontario, Canada, using digital elevation data

    NASA Technical Reports Server (NTRS)

    Warner, Timothy A.; Campagna, David J.; Levandowski, Don W.; Cetin, Haluk; Evans, Carla S.

    1991-01-01

    A 10 x 13-km area in Quetico Provincial Park, Canada has been studied using a digital elevation model to separate different drainage classes and to examine the influence of site factors and lithology on vegetation. Landsat Thematic Mapper data have been classified into six forest classes of varying deciduous-coniferous cover through nPDF, a procedure based on probability density functions. It is shown that forests growing on mafic lithologies are enriched in deciduous species, compared to those growing on granites. Of the forest classes found on mafics, the highest coniferous component was on north facing slopes, and the highest deciduous component on south facing slopes. Granites showed no substantial variation between site classes. The digital elevation derived site data is considered to be an important tool in geobotanical investigations.

  18. Impacts of artificial reservoirs on floristic diversity and plant functional traits in dry forests after 15 years.

    PubMed

    Lopes, S F; Vale, V S; Prado Júnior, J A; Schiavini, I

    2015-08-01

    Dams are of paramount importance to a wide variety of human services and many of their environmental problems are known; however, there are few studies in the world addressing the impacts on the native vegetation previously distant from water bodies which became close to the lakeshore created by a dam. Thus, this paper aims to analyze the responses of a dry forest to a dam after 15 years. For this, 20 random samples of 40 trees were made, 10 close to the lakeshore and 10 distant from it, by applying the central square point method. Close to the dam, we found higher values regarding basal area, number of trees, number of evergreen trees, and zoochoric syndrome, but there were lower values of Shannon's diversity index. Therefore, the impacts of the dam after 15 years caused several changes to the tree community. The greater basal area close to the dam suggests that water deficit during the dry season was decreased and plants have thicker trunks. On the other hand, this sector had much more zoochoric syndrome and a larger number of evergreen trees than plots which are distant from water, suggesting changes with regard to the community's ecological functions. Furthermore, structural floristic data shows that the sector close to the dam is less similar to other deciduous forests within the same geographical region than the sector distant from water, thus providing evidence of the impacts of dams on the tree community.

  19. Seed longevity and dormancy state suggest management strategies for garlic mustard (Alliaria petiolata) and Japanese stiltgrass (Microstegium vimineum) in deciduous forest sites

    Treesearch

    Mame E. Redwood; Glenn R. Matlack; Cynthia D. Huebner

    2018-01-01

    An effective management plan for invasive herb populations must consider the potential for regeneration from the soil seedbank. To test chis potential, we examined two species, Japanese scilcgrass and garlic mustard, at deciduous forest sites in southeastern Ohio. Seeds were buried in nylon mesh bags and recovered at regular intervals over 24 mo. Recovered seeds were...

  20. Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China.

    PubMed

    He, Jinhong; Tedersoo, Leho; Hu, Ang; Han, Conghai; He, Dan; Wei, Hui; Jiao, Min; Anslan, Sten; Nie, Yanxia; Jia, Yongxia; Zhang, Gengxin; Yu, Guirui; Liu, Shirong; Shen, Weijun

    2017-07-01

    Whether and how seasonality of environmental variables impacts the spatial variability of soil fungal communities remain poorly understood. We assessed soil fungal diversity and community composition of five Chinese zonal forests along a latitudinal gradient spanning 23°N to 42°N in three seasons to address these questions. We found that soil fungal diversity increased linearly or parabolically with latitude. The seasonal variations in fungal diversity were more distinguishable in three temperate deciduous forests than in two subtropical evergreen forests. Soil fungal diversity was mainly correlated with edaphic factors such as pH and nutrient contents. Both latitude and its interactions with season also imposed significant impacts on soil fungal community composition (FCC), but the effects of latitude were stronger than those of season. Vegetational properties such as plant diversity and forest age were the dominant factors affecting FCC in the subtropical evergreen forests while edaphic properties were the dominant ones in the temperate deciduous forests. Our results indicate that latitudinal variation patterns of soil fungal diversity and FCC may differ among seasons. The stronger effect of latitude relative to that of season suggests a more important influence by the spatial than temporal heterogeneity in shaping soil fungal communities across zonal forests. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes.

    PubMed

    Tautenhahn, Susanne; Lichstein, Jeremy W; Jung, Martin; Kattge, Jens; Bohlman, Stephanie A; Heilmeier, Hermann; Prokushkin, Anatoly; Kahl, Anja; Wirth, Christian

    2016-06-01

    Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions. However, it is unknown if the mechanisms controlling fire-induced changes in deciduous hardwood cover are similar among different boreal forests, which differ in the ecological traits of the dominant tree species. To better understand the consequences of intensifying fire regimes in boreal forests, we studied postfire regeneration in five burns in the Central Siberian dark taiga, a vast but poorly studied boreal region. We combined field measurements, dendrochronological analysis, and seed-source maps derived from high-resolution satellite images to quantify the importance of site conditions (e.g., organic layer depth) vs. seed availability in shaping postfire regeneration. We show that dispersal limitation of evergreen conifers was the main factor determining postfire regeneration composition and density. Site conditions had significant but weaker effects. We used information on postfire regeneration to develop a classification scheme for successional pathways, representing the dominance of deciduous hardwoods vs. evergreen conifers at different successional stages. We estimated the spatial distribution of different successional pathways under alternative fire regime scenarios. Under intensified fire regimes, dispersal limitation of evergreen conifers is predicted to become more severe, primarily due to reduced abundance of surviving seed sources within burned areas. Increased dispersal limitation of evergreen conifers, in turn, is predicted to increase the prevalence of successional pathways dominated by deciduous hardwoods. The likely fire-induced shift toward greater deciduous hardwood cover may affect climate-vegetation feedbacks via surface albedo, Bowen ratio, and carbon cycling. © 2015 John Wiley & Sons Ltd.

  2. Nitrogen Deposition to and Cycling in a Deciduous Forest

    DOE PAGES

    Pryor, Sara C.; Barthelmie, Rebecca J.; Carreiro, Margaret; ...

    2001-01-01

    The project described here seeks to answer questions regarding the role increased nitrogen (N) deposition is playing in enhanced carbon (C) sequestration in temperate mid-latitude forests, using detailed measurements from an AmeriFlux tower in southern Indiana (Morgan-Monroe State Forest, or MMSF). The measurements indicate an average atmosphere-surface N flux of approximately 6 mg-N m -2 day -1 during the 2000 growing season, with approximately 40% coming from dry deposition of ammonia (NH 3 ), nitric acid (HNO 3 ), and particle-bound N. Wet deposition and throughfall measurements indicate significant canopy uptake of N (particularly NH 4 +) at the site,more » leading to a net canopy exchange (NCE) of –6 kg-N ha -1 for the growing season. These data are used in combination with data on the aboveground C:N ratio, litterfall flux, and soil net N mineralization rates to indicate the level of potential perturbation of C sequestration at this site.« less

  3. Persistent and pervasive compositional shifts of western boreal forest plots in Canada.

    PubMed

    Searle, Eric B; Chen, Han Y H

    2017-02-01

    Species compositional shifts have important consequences to biodiversity and ecosystem function and services to humanity. In boreal forests, compositional shifts from late-successional conifers to early-successional conifers and deciduous broadleaves have been postulated based on increased fire frequency associated with climate change truncating stand age-dependent succession. However, little is known about how climate change has affected forest composition in the background between successive catastrophic fires in boreal forests. Using 1797 permanent sample plots from western boreal forests of Canada measured from 1958 to 2013, we show that after accounting for stand age-dependent succession, the relative abundances of early-successional deciduous broadleaves and early-successional conifers have increased at the expense of late-successional conifers with climate change. These background compositional shifts are persistent temporally, consistent across all forest stand ages and pervasive spatially across the region. Rising atmospheric CO 2 promoted early-successional conifers and deciduous broadleaves, and warming increased early-successional conifers at the expense of late-successional conifers, but compositional shifts were not associated with climate moisture index. Our results emphasize the importance of climate change on background compositional shifts in the boreal forest and suggest further compositional shifts as rising CO 2 and warming will continue in the 21st century. © 2016 John Wiley & Sons Ltd.

  4. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests

    NASA Astrophysics Data System (ADS)

    Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; MacBean, Natasha; Alexander, M. Ross; Dye, Alex; Bishop, Daniel A.; Trouet, Valerie; Babst, Flurin; Hessl, Amy E.; Pederson, Neil; Blanken, Peter D.; Bohrer, Gil; Gough, Christopher M.; Litvak, Marcy E.; Novick, Kimberly A.; Phillips, Richard P.; Wood, Jeffrey D.; Moore, David J. P.

    2017-09-01

    How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.-iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m-2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m-2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C-LAI relationship in the model did not match the observed leaf C-LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic Cstem / Cleaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.

  5. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests

    DOE PAGES

    Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; ...

    2017-09-22

    How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocationmore » schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m -2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m -2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the observed leaf C–LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic C stem/C leaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.« less

  6. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.

    How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocationmore » schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m -2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m -2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the observed leaf C–LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic C stem/C leaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.« less

  7. Hydrologic response to and recovery from differing silvicultural systems in a deciduous forest landscape with seasonal snow cover

    NASA Astrophysics Data System (ADS)

    Buttle, J. M.; Beall, F. D.; Webster, K. L.; Hazlett, P. W.; Creed, I. F.; Semkin, R. G.; Jeffries, D. S.

    2018-02-01

    Hydrological consequences of alternative harvesting strategies in deciduous forest landscapes with seasonal snow cover have received relatively little attention. Most forest harvesting experiments in landscapes with seasonal snow cover have focused on clearcutting in coniferous forests. Few have examined alternative strategies such as selection or shelterwood cutting in deciduous stands whose hydrologic responses to harvesting may differ from those of conifers. This study presents results from a 31-year examination of hydrological response to and recovery from alternative harvesting strategies in a deciduous forest landscape with seasonal snow cover in central Ontario, Canada. A quantitative means of assessing hydrologic recovery to harvesting is also developed. Clearcutting resulted in increased water year (WY) runoff. This was accompanied by increased runoff in all seasons, with greatest relative increases in Summer. Direct runoff and baseflow from treatment catchments generally increased following harvesting, although annual peak streamflow did not. Largest increases in WY runoff and seasonal runoff as well as direct runoff and baseflow generally occurred in the selection harvest catchment, likely as a result of interception of hillslope runoff by a forest access road and redirection to the stream channel. Hydrologic recovery appeared to begin towards the end of the experimental period for several streamflow metrics but was incomplete for all harvesting strategies 15 years after harvesting. Geochemical tracing indicated that harvesting enhanced the relative importance of surface and near-surface water pathways on catchment slopes for all treatments, with the clearcut catchment showing the most pronounced and prolonged response. Such insights into water partitioning between flow pathways may assist assessments of the ecological and biogeochemical consequences of forest disturbance.

  8. Quaternary ecological and geomorphic changes associated with rainfall events in presently semi-arid northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Auler, Augusto S.; Wang, Xianfeng; Edwards, R. Lawrence; Cheng, Hai; Cristalli, Patrícia S.; Smart, Peter L.; Richards, David A.

    2004-10-01

    Several geomorphic features and palaeobiotic remains in now semi-arid northeastern Brazil indicate major palaeoenvironmental changes during past periods of increased rainfall. 230Th mass spectrometric ages of speleothems and travertines have allowed the determination of the timing and duration of wetter than present conditions. The data demonstrate that wet events have occurred throughout much of the Pleistocene, present dry conditions having been established at the end of the Younger Dryas. A markedly different fauna comprising megafaunal elements not adapted to the present low arboreal scrubland caatinga vegetation existed in the area. Palaeobotanical remains embedded in travertine indicate forested vegetation at these wetter intervals, suggesting that the caatinga was then replaced or mixed with a semi-deciduous forest. Due to the abundance of travertine sites containing fossil botanical remains in northeastern Brazil, it is believed that forest expansion occurred over large areas of the now semi-arid zone, showing that the long hypothesised forested links between biodiversity-rich Amazon and Atlantic rainforests may indeed have existed during these moister phases. Copyright

  9. Stemflow Acid Neutralization Capacity in a Broadleaved Deciduous Forest: The Role of Edge Effects

    NASA Astrophysics Data System (ADS)

    Levia, D. F., Jr.; Shiklomanov, A.

    2014-12-01

    The fragmentation of forests is occurring at an accelerated rate in parts of the United States. Forest fragmentation creates edge habitat that affects the biogeochemistry of forests. Atmospheric deposition is known to increase at the forest edge in comparison to the forest interior. Past research has demonstrated the critical role of edge effects on throughfall chemistry but no known work has examined the relationship between stemflow chemistry and edge effects. To fill this data gap, we quantified the stemflow acid neutralization capacity (ANC) of nineteen Liriodendron tulipifera L. (yellow poplar) trees between forest edge and interior locations in the Piedmont of the mid-Atlantic USA. ANC was measured directly by potentiometric titration. Both stemflow pH and ANC were higher for L. tulipifera trees on the forest edge as opposed to those in interior locations (p < 0.01), although marked variability was observed among individual trees. It is critical to note that the ANC of stemflow of edge trees is almost certainly contextual, depending on geographic locality. This is to say that stemflow from edge trees may neutralize acid inputs in some locations (as in our case) but lead to enhanced acidification of aqueous inputs to forest soils in other locales where the dry deposition of acid anions is high. The experimental results have ramifications for forest management schema seeking to increase or decrease the extent of edge habitat in forest fragments.

  10. Spatial dynamics of deforestation and forest fragmentation (1930-2013) in Eastern Ghats, India

    NASA Astrophysics Data System (ADS)

    Sudhakar Reddy, C.; Jha, C. S.; Dadhwal, V. K.

    2014-11-01

    The tropical forests are the most unique ecosystems for their potential economic value. Eastern Ghats, a phytogeographical region of India has rugged hilly terrain distributed in parts of five states, viz. Odisha, Andhra Pradesh, Telangana, Karnataka and Tamil Nadu. The present study is mainly aimed to analyse the trends in deforestation and its role in forest fragmentation of Eastern Ghats. The long term changes in forest cover with its spatial pattern over time has been assessed by analyzing a set of topographical maps and satellite remote sensing datasets. The multi-source and multi-date mapping has been carried out using survey of India topographical maps (1930's), Landsat MSS (1975 and 1985), IRS 1B LISS-I (1995), IRS P6 AWiFS (2005) and Resourcesat-2 AWiFS (2013) satellite images. The classified spatial data for 1930, 1975, 1985, 1995, 2005 and 2013 showed that the forest cover for the mentioned years are 102213 km2 (45.6 %), 76630 (34.2 %), 73416 km2 (32.7 %), 71730 km2 (32 %), 71305 km2 (31.8 %) and 71186 km2 (31.7 %) of the geographical area of Eastern Ghats respectively. A spatial statistical analysis of the deforestation rates and forest cover change were carried out based on distinctive time phases, i.e. 1930-1975, 1975-1985, 1985-1995, 1995-2005 and 2005-2013. The spatial analysis was carried out first by segmenting the study area into grid cells of 5 km x 5 km for time series assessment and determining spatial changes in forests. The distribution of loss and gain of forest was calculated across six classes i.e. <1 km2, 1-5 km2, 5-10 km2, 10-15 km2, 15-20 km2 and >20 km2. Landscape metrics were used to quantify spatial variability of landscape structure and composition. The results of study on net rate of deforestation was found to be 0.64 during 1935 to 1975, 0.43 during 1975-1985, 0.23 during 1985-1995, 0.06 during 1995-2005 and 0.02 during 2005-2013. The number of forest patches increased from 2688 (1930) to 13009 (2013). The largest forest patch in 1930 represents area of 41669 km2 that has reduced to 27800 km2 by 2013. Thus, it is evident that there is a substantial reduction in the size of the very large forest patches due to deforestation. According to spatial analysis, among the different land use change drivers, agriculture occupies highest area, followed by degradation to scrub and conversion to orchards. The dominant forest type was dry deciduous which comprises 37192 km2 (52.2 %) of the total forest area of Eastern Ghats, followed by moist deciduous forest (39.2 %) and semievergreen forest (4.8 %) in 2013. The change analysis showed that the large scale negative changes occurred in deciduous forests and semi-evergreen forests compared to wet evergreen forests due to high economic potential and accessibility. This study has quantified the deforestation that has taken place over the last eight decades in the Eastern Ghats. The decline in overall rate of deforestation in recent years indicates increased measures of conservation. The change analysis of deforestation and forest fragmentation provides a decisive component for conservation and helpful in long term management of forests of Eastern Ghats.

  11. Simulation of regional temperature change effect of land cover change in agroforestry ecotone of Nenjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Liu, Tingxiang; Zhang, Shuwen; Yu, Lingxue; Bu, Kun; Yang, Jiuchun; Chang, Liping

    2017-05-01

    The Northeast China is one of typical regions experiencing intensive human activities within short time worldwide. Particularly, as the significant changes of agriculture land and forest, typical characteristics of pattern and process of agroforestry ecotone change formed in recent decades. The intensive land use change of agroforestry ecotone has made significant change for regional land cover, which had significant impact on the regional climate system elements and the interactions among them. This paper took agroforestry ecotone of Nenjiang River Basin in China as study region and simulated temperature change based on land cover change from 1950s to 1978 and from 1978 to 2010. The analysis of temperature difference sensitivity to land cover change based on Weather Research and Forecasting (WRF) model showed that the land cover change from 1950s to 1978 induced warming effect over all the study area, including the change of grassland to agriculture land, grassland to deciduous broad-leaved forest, and deciduous broad-leaved forest to shrub land. The land cover change from 1978 to 2010 induced cooling effect over all the study area, including the change of deciduous broad-leaved forest to agriculture land, grassland to agriculture land, shrub land to agriculture land, and deciduous broad-leaved forest to grassland. In addition, the warming and cooling effect of land cover change was more significant in the region scale than specific land cover change area.

  12. Dry deposition velocities in the global multi-scale CTM MOCAGE

    NASA Astrophysics Data System (ADS)

    Michou, M.; Peuch, V.-H.

    2003-04-01

    Surface exchanges considered in the MOCAGE multiscale Chemistry and Transport Model (CTM) of Météo-France include dry deposition of gaseous species. To compute realistic time-dependent fluxes at the surface, a 2D interface between MOCAGE and ARPEGE, the French operational numerical weather prediction model, has been developed. Dry deposition of species including ozone, sulfur dioxide, nitrogen-containing compounds, long-lived and short-lived intermediates organic compounds, have been parameterised according to the [Wesely, 1989] scheme. A number of modifications has been made, for instance concerning the deposition against wet surfaces. The formulation of the aerodynamic resistance follows [Louis, 1979], and that of the stomatal resistance, the Interaction Soil Biosphere Atmosphere (ISBA) Météo-France scheme. Resistances are computed using the surface meteorological fields obtained from the analyses or forecasts of ARPEGE. Vegetation fields such as the Leaf Area Index are prescribed with a one-degree spatial resolution at the global scale, and a five-minute resolution over Europe. Calculated dry deposition velocities of ozone, sulfur dioxide and nitric acid have been evaluated against field experimental data at various locations around the world, from tropical regions, rain forest or savannah over Central Africa and Amazonia (EXPRESSO and LBA campaigns), to Mediterranean regions, including forested and crop sites (ESCOMPTE campaign), and temperate areas (deciduous and evergreen forests). Hourly values, monthly and seasonal means have been examined, as well as the impact of the model resolution, from 2 degrees over the globe to 0.08 degrees over regional domains. The contributions to the global budget of ozone of the deposition fluxes in these different regions of the globe will be also presented.

  13. Reduced dry season transpiration is coupled with shallow soil water use in tropical montane forest trees.

    PubMed

    Muñoz-Villers, Lyssette E; Holwerda, Friso; Alvarado-Barrientos, M Susana; Geissert, Daniel R; Dawson, Todd E

    2018-06-25

    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF ecohydrology remain poorly understood. To investigate functional responses of TMCF trees to reduced water availability, we conducted a study during the 2014 dry season in the lower altitudinal limit of TMCF in central Veracruz, Mexico. Temporal variations of transpiration, depth of water uptake and tree water sources were examined for three dominant, brevi-deciduous species using micrometeorological, sap flow and soil moisture measurements, in combination with oxygen and hydrogen stable isotope composition of rainfall, tree xylem, soil and stream water. Over the course of the dry season, reductions in crown conductance and transpiration were observed in canopy species (43 and 34%, respectively) and mid-story trees (23 and 8%), as atmospheric demand increased and soil moisture decreased. Canopy species consistently showed more depleted isotope values compared to mid-story trees. However, MixSIAR Bayesian model results showed that the evaporated (enriched) soil water pool was the main source for trees despite reduced soil moisture. Additionally, while increases in tree water uptake from deeper to shallower soil water sources occurred, concomitant decreases in transpiration were observed as the dry season progressed. A larger reduction in deep soil water use was observed for canopy species (from 79 ± 19 to 24 ± 20%) compared to mid-story trees (from 12 ± 17 to 10 ± 12%). The increase in shallower soil water sources may reflect a trade-off between water and nutrient requirements in this forest.

  14. Climate variability and management impacts on carbon uptake in a temperate pine forest in Eastern Canada using flux data from 2003 to 2013

    NASA Astrophysics Data System (ADS)

    Arain, M. A.; Brodeur, J. J.; Thorne, R.; Peichl, M.; Huang, S.; Khomik, M.

    2014-12-01

    Temperate forests play an important role in global carbon cycle. In this study, we evaluate the impacts of climate variability and management regime on carbon uptake in a 75-year old temperate pine (Pinus strobus L.) forest, near Lake Erie in southern Ontario, Canada using eleven years (2003 to 2013) of eddy covariance flux data. These fluxes are compared with similar measurements made in an 80-year-old deciduous (Carolinian) forest, established in 2012. Both forests are managed stands and part of the Turkey Point Flux Station and global Fluxnet. Mean net ecosystem productivity, NEP, in the conifer stand is 145 (range 35 to 277) g C m2 y-1 over the 2003 to 2013 period, while mean NEP in the deciduous stand is 271 (226 and 317) g C m2 y-1 from 2012 to 2013. The study period experienced four distinct extreme weather patterns: warm and dry springs in 2005 and 2012, extremely wet and warm summer in 2006, a summer drought in 2007 and warm summers in 2010 and 2012. In February-March 2012, the conifer stand was selectively thinned and approximately 30% of trees were removed to improve light and water availability and stimulate growth of remaining trees. Thinning reduced NEP in the first post-thinning year, with mean annual NEP of 48 g C m2 y-1 in 2012. Increased supply of dead organic matter and warm temperatures in 2012 increased ecosystem respiration much more than photosynthesis, resulting in lower annual NEP. Heat stress and drought in spring of 2005 reduced NEP of the conifer stand to 35 g C m2 y-1. The impact of this extreme weather event on NEP was similar to that observed in 2012 when the stand experienced a drastic structural change, a dry spring and warm temperatures throughout the growing season. Observed fluxes from this forest and other Fluxnet sites were used to develop and validate a C and N coupled dynamic vegetation model, CLASS-CTEM-N that was applied to simulate terrestrial ecosystem's carbon, water and energy budgets at 0.5 x 0.5 degree spatial resolution across the globe from 1901 to 2010 as part of North American Carbon Program (NACP) site-level and model intercomparison initiatives. The inclusion of the N processes in CLASS-CTEM model has improved model response to changing climate and atmospheric CO2 concentration levels.

  15. Impact of a drier Early-Mid-Holocene climate upon Amazonian forests.

    PubMed

    Mayle, Francis E; Power, Mitchell J

    2008-05-27

    This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early-Mid-Holocene (ca 8000-4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early-Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest 'dieback' scenario simulated for the future.

  16. AmeriFlux US-WCr Willow Creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ankur

    This is the AmeriFlux version of the carbon flux data for the site US-WCr Willow Creek. Site Description - Upland decduous broadleaf forest. Mainly sugar maple, also basswood. Uniform stand atop a very modest hill. Clearcut approximately 80 years ago. Chosen to be representative of the upland deciduous broadleaf forests within the WLEF tall tower flux footprint. It appears to be more heavily forested and more productive than most of the upland deciduous broadleaf forests in the WLEF flux footprint (see publications for more details). It is also important that SE winds are screened from the flux data (see Cookmore » et al, 2004 for details). Propane generator power.« less

  17. Resilience of Alaska's Boreal Forest to Climatic Change

    NASA Technical Reports Server (NTRS)

    Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.; hide

    2010-01-01

    This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  18. Resilience of Alaska’s boreal forest to climatic change

    USGS Publications Warehouse

    Chapin, F.S.; McGuire, A. David; Ruess, Roger W.; Hollingsworth, Teresa N.; Mack, M.C.; Johnstone, J.F.; Kasischke, E.S.; Euskirchen, E.S.; Jones, J.B.; Jorgenson, M.T.; Kielland, K.; Kofinas, G.; Turetsky, M.R.; Yarie, J.; Lloyd, A.H.; Taylor, D.L.

    2010-01-01

    This paper assesses the resilience of Alaska’s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska’s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social–ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  19. Monitoring of fire incidences in vegetation types and Protected Areas of India: Implications on carbon emissions

    NASA Astrophysics Data System (ADS)

    Reddy, C. Sudhakar; Padma Alekhya, V. V. L.; Saranya, K. R. L.; Athira, K.; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.

    2017-02-01

    Carbon emissions released from forest fires have been identified as an environmental issue in the context of global warming. This study provides data on spatial and temporal patterns of fire incidences, burnt area and carbon emissions covering natural vegetation types (forest, scrub and grassland) and Protected Areas of India. The total area affected by fire in the forest, scrub and grasslands have been estimated as 48765.45, 6540.97 and 1821.33 km 2, respectively, in 2014 using Resourcesat-2 AWiFS data. The total CO 2 emissions from fires of these vegetation types in India were estimated to be 98.11 Tg during 2014. The highest emissions were caused by dry deciduous forests, followed by moist deciduous forests. The fire season typically occurs in February, March, April and May in different parts of India. Monthly CO 2 emissions from fires for different vegetation types have been calculated for February, March, April and May and estimated as 2.26, 33.53, 32.15 and 30.17 Tg, respectively. Protected Areas represent 11.46% of the total natural vegetation cover of India. Analysis of fire occurrences over a 10-year period with two types of sensor data, i.e., AWiFS and MODIS, have found fires in 281 (out of 614) Protected Areas of India. About 16.78 Tg of CO 2 emissions were estimated in Protected Areas in 2014. The natural vegetation types of Protected Areas have contributed for burnt area of 17.3% and CO 2 emissions of 17.1% as compared to total natural vegetation burnt area and emissions in India in 2014. 9.4% of the total vegetation in the Protected Areas was burnt in 2014. Our results suggest that Protected Areas have to be considered for strict fire management as an effective strategy for mitigating climate change and biodiversity conservation.

  20. Integrating modelling and remote sensing to identify ecosystem performance anomalies in the boreal forest, Yukon River Basin, Alaska

    USGS Publications Warehouse

    Wylie, B.K.; Zhang, L.; Bliss, Norman B.; Ji, Lei; Tieszen, Larry L.; Jolly, W. M.

    2008-01-01

    High-latitude ecosystems are exposed to more pronounced warming effects than other parts of the globe. We develop a technique to monitor ecological changes in a way that distinguishes climate influences from disturbances. In this study, we account for climatic influences on Alaskan boreal forest performance with a data-driven model. We defined ecosystem performance anomalies (EPA) using the residuals of the model and made annual maps of EPA. Most areas (88%) did not have anomalous ecosystem performance for at least 6 of 8 years between 1996 and 2004. Areas with underperforming EPA (10%) often indicate areas associated with recent fires and areas of possible insect infestation or drying soil related to permafrost degradation. Overperforming areas (2%) occurred in older fire recovery areas where increased deciduous vegetation components are expected. The EPA measure was validated with composite burn index data and Landsat vegetation indices near and within burned areas.

  1. Applying a simple three-dimensional eddy correlation system for latent and sensible heat flux to contrasting forest canopies

    NASA Astrophysics Data System (ADS)

    Bernhofer, Ch.

    1992-06-01

    A simple eddy correlation system is presented that allows on-line calculation of latent and sensible heat fluxes. The system is composed of a three dimensional propeller anemometer, a thermocouple and a capacitance relative humidity sensor. Results from two contrasting sites demonstrate the capability of the system to measure turbulent fluxes under varying conditions. A dry mixed (dominantly coniferous) forest in hilly terrain in Austria is compared to a well irrigated, heavily transpiring, deciduous pecan orchard in the Southwest of the US. The US site shows insufficient closure of the energy balance that is attributed to non-turbulent fluxes under advective conditions in a stable boundary layer (Blanford et al., 1991) while the Austrian site exhibits almost perfect closure with the use of the very same instruments when the boundary layer is convective and advection is negligible.

  2. Vegetation responses to interglacial warming in the Arctic, examples from Lake El'gygytgyn, northeast Siberia

    NASA Astrophysics Data System (ADS)

    Lozhkin, A. V.; Anderson, P. M.

    2013-01-01

    Palynological data from Lake El'gygytgyn reveal responses of plant communities to a range of climatic conditions that can help assess the possible impact of global warming on arctoboreal ecosystems. Vegetation associated with climatic optima suggests two types of interglacial responses: one is dominated by deciduous taxa (the postglacial thermal maximum (PGTM) and marine isotope stage (MIS5)) and the second by evergreen conifers (MIS11, MIS31). The MIS11 forests show a similarity to Picea-Larix-Betula-Alnus forests of Siberia. While dark coniferous forest also characterizes MIS31, the pollen taxa show an affinity to the modern boreal forest of the lower Amur valley in the Russian Far East. Despite vegetation differences during the thermal maxima, all four glacial-interglacial transitions are alike, being dominated by deciduous woody taxa. Initially Betula shrub tundra established and was replaced by tundra with tree-sized shrubs (PGTM), Betula woodland (MIS5), or Betula-Larix (MIS11, MIS31) forest. The consistent occurrence of deciduous forest and/or high shrub tundra in all interglaciations as they approach or achieve maximum warmth underscores the significance of this biome for modeling efforts. The El'gygytgyn data also suggest the possible elimination or massive reduction of arctic plant communities under extreme warm-earth scenarios.

  3. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    NASA Astrophysics Data System (ADS)

    Miesel, Jessica R.; Hockaday, William C.; Kolka, Randall K.; Townsend, Philip A.

    2015-06-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition of postfire SOM. We sampled the forest floor layer (i.e., full organic horizon) and 0-10 cm mineral soil from stands dominated by coniferous (Pinus banksiana Lamb.) or deciduous (Populus tremuloides Michx.) species 1-2 months after the 2011 Pagami Creek wildfire in northern Minnesota. We used solid-state 13C NMR to characterize SOM composition across a gradient of fire severity in both forest cover types. SOM composition was affected by fire, even when no statistically significant losses of total C stocks were evident. The most pronounced differences in SOM composition between burned and unburned reference areas occurred in the forest floor for both cover types. Carbohydrate stocks in forest floor and mineral horizons decreased with severity level in both cover types, whereas pyrogenic C stocks increased with severity in the coniferous forest floor and decreased in only the highest severity level in the deciduous forest floor. Loss of carbohydrate and lignin pools contributed to a decreased SOM stability index and increased decomposition index. Our results suggest that increases in fire severity expected to occur under future climate scenarios may lead to changes in SOM composition and dynamics with consequences for postfire forest recovery and C uptake.

  4. Herbivore-mediated material fluxes in a northern deciduous forest under elevated carbon dioxide and ozone concentrations.

    PubMed

    Meehan, Timothy D; Couture, John J; Bennett, Alison E; Lindroth, Richard L

    2014-10-01

    Anthropogenic changes in atmospheric carbon dioxide (CO2 ) and ozone (O3 ) are known to alter tree physiology and growth, but the cascading effects on herbivore communities and herbivore-mediated nutrient cycling are poorly understood. We sampled herbivore frass, herbivore-mediated greenfall, and leaf-litter deposition in temperate forest stands under elevated CO2 (c. 560 ppm) and O3 (c. 1.5× ambient), analyzed substrate chemical composition, and compared the quality and quantity of fluxes under multiple atmospheric treatments. Leaf-chewing herbivores fluxed 6.2 g m(-2)  yr(-1) of frass and greenfall from the canopy to the forest floor, with a carbon : nitrogen (C : N) ratio 32% lower than that of leaf litter. Herbivore fluxes of dry matter, C, condensed tannins, and N increased under elevated CO2 (35, 32, 63 and 39%, respectively), while fluxes of N decreased (18%) under elevated O3 . Herbivore-mediated dry matter inputs scaled across atmospheric treatments as a constant proportion of leaf-litter inputs. Increased fluxes under elevated CO2 were consistent with increased herbivore consumption and abundance, and with increased plant growth and soil respiration, previously reported for this experimental site. Results suggest that insect herbivory will reinforce other factors, such as photosynthetic rate and fine-root production, impacting C sequestration by forests in future environments. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  5. Edge effects on foliar stable isotope values in a Madagascan tropical dry forest.

    PubMed

    Crowley, Brooke E; McGoogan, Keriann C; Lehman, Shawn M

    2012-01-01

    Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ¹³C values where leaves collected close to the forest floor would have lower δ¹³C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ¹³C and δ¹⁵N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ¹³C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ¹³C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ¹⁵N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation biology of forest ecosystems in Madagascar.

  6. Edge Effects on Foliar Stable Isotope Values in a Madagascan Tropical Dry Forest

    PubMed Central

    Crowley, Brooke E.; McGoogan, Keriann C.; Lehman, Shawn M.

    2012-01-01

    Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ13C values where leaves collected close to the forest floor would have lower δ13C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ13C and δ15N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ13C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ13C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ15N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation biology of forest ecosystems in Madagascar. PMID:22973460

  7. [Parameter optimization of BEPS model based on the flux data of the temperate deciduous broad-leaved forest in Northeast China.

    PubMed

    Lu, Wei; Fan, Wen Yi; Tian, Tian

    2016-05-01

    Keeping other parameters as empirical constants, different numerical combinations of the main photosynthetic parameters V c max and J max were conducted to estimate daily GPP by using the iteration method in this paper. To optimize V c max and J max in BEPSHourly model at hourly time steps, simulated daily GPP using different numerical combinations of the parameters were compared with the flux tower data obtained from the temperate deciduous broad-leaved forest of the Maoershan Forest Farm in Northeast China. Comparing the simulated daily GPP with the observed flux data in 2011, the results showed that optimal V c max and J max for the deciduous broad-leaved forest in Northeast China were 41.1 μmol·m -2 ·s -1 and 82.8 μmol·m -2 ·s -1 respectively with the minimal RMSE and the maximum R 2 of 1.10 g C·m -2 ·d -1 and 0.95. After V c max and J max optimization, BEPSHourly model simulated the seasonal variation of GPP better.

  8. Forest resilience to drought varies across biomes.

    PubMed

    Gazol, Antonio; Camarero, Jesus Julio; Vicente-Serrano, Sergio M; Sánchez-Salguero, Raúl; Gutiérrez, Emilia; de Luis, Martin; Sangüesa-Barreda, Gabriel; Novak, Klemen; Rozas, Vicente; Tíscar, Pedro A; Linares, Juan C; Martín-Hernández, Natalia; Martínez Del Castillo, Edurne; Ribas, Montse; García-González, Ignacio; Silla, Fernando; Camisón, Alvaro; Génova, Mar; Olano, José M; Longares, Luis A; Hevia, Andrea; Tomás-Burguera, Miquel; Galván, J Diego

    2018-05-01

    Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species-level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree-ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring-width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994-1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi-arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi-arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards. © 2018 John Wiley & Sons Ltd.

  9. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui

    2016-07-01

    Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.

  10. Arctic and boreal ecosystems of western North America as components of the climate system

    USGS Publications Warehouse

    Chapin, F. S.; McGuire, A.D.; Randerson, J.; Pielke, R.; Baldocchi, D.; Hobbie, S.E.; Roulet, Nigel; Eugster, W.; Kasischke, E.; Rastetter, E.B.; Zimov, S.A.; Running, S.W.

    2000-01-01

    Synthesis of results from several Arctic and boreal research programmes provides evidence for the strong role of high-latitude ecosystems in the climate system. Average surface air temperature has increased 0.3??C per decade during the twentieth century in the western North American Arctic and boreal forest zones. Precipitation has also increased, but changes in soil moisture are uncertain. Disturbance rates have increased in the boreal forest; for example, there has been a doubling of the area burned in North America in the past 20 years. The disturbance regime in tundra may not have changed. Tundra has a 3-6-fold higher winter albedo than boreal forest, but summer albedo and energy partitioning differ more strongly among ecosystems within either tundra or boreal forest than between these two biomes. This indicates a need to improve our understanding of vegetation dynamics within, as well as between, biomes. If regional surface warming were to continue, changes in albedo and energy absorption would likely act as a positive feedback to regional warming due to earlier melting of snow and, over the long term, the northward movement of treeline. Surface drying and a change in dominance from mosses to vascular plants would also enhance sensible heat flux and regional warming in tundra. In the boreal forest of western North America, deciduous forests have twice the albedo of conifer forests in both winter and summer, 50-80% higher evapotranspiration, and therefore only 30-50% of the sensible heat flux of conifers in summer. Therefore, a warming-induced increase in fire frequency that increased the proportion of deciduous forests in the landscape, would act as a negative feedback to regional warming. Changes in thermokarst and the aerial extent of wetlands, lakes, and ponds would alter high-latitude methane flux. There is currently a wide discrepancy among estimates of the size and direction of CO2 flux between high-latitude ecosystems and the atmosphere. These discrepancies relate more strongly to the approach and assumptions for extrapolation than to inconsistencies in the underlying data. Inverse modelling from atmospheric CO2 concentrations suggests that high latitudes are neutral or net sinks for atmospheric CO2, whereas field measurements suggest that high latitudes are neutral or a net CO2 source. Both approaches rely on assumptions that are difficult to verify. The most parsimonious explanation of the available data is that drying in tundra and disturbance in boreal forest enhance CO2 efflux. Nevertheless, many areas of both tundra and boreal forests remain net sinks due to regional variation in climate and local variation in topographically determined soil moisture. Improved understanding of the role of high-latitude ecosystems in the climate system requires a concerted research effort that focuses on geographical variation in the processes controlling land-atmosphere exchange, species composition, and ecosystem structure. Future studies must be conducted over a long enough time-period to detect and quantify ecosystem feedbacks.

  11. Final Environmental Assessment: Lease with Omaha Public Power District (OPPD) to Support New United States Strategic Command (USSTRATCOM) Facility and Existing Base Load

    DTIC Science & Technology

    2013-02-01

    Biological Resources The area around and encompassing Offutt AFB is the western edge of the Eastern Deciduous Forest and borders on the ecotone...that separates the Eastern Deciduous Forest from the Tall and Mid Grass Prairies. Early photos of the Offutt AFB area indicate that it was grassland...regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington

  12. Factors associated with long-term species composition in dry tropical forests of Central India

    NASA Astrophysics Data System (ADS)

    Agarwala, M.; DeFries, R. S.; Qureshi, Q.; Jhala, Y. V.

    2016-10-01

    The long-term future of species composition in forests depends on regeneration. Many factors can affect regeneration, including human use, environmental conditions, and species’ traits. This study examines the influence of these factors in a tropical deciduous forest of Central India, which is heavily used by local, forest-dependent residents for livestock grazing, fuel-wood extraction, construction and other livelihood needs. We measure size-class proportions (the ratio of abundance of a species at a site in a higher size class to total abundance in both lower and higher size classes) for 39 tree species across 20 transects at different intensities of human use. The size-class proportions for medium to large trees and for small to medium-sized trees were negatively associated with species that are used for local construction, while size class proportions for saplings to small trees were positively associated with those species that are fire resistant and negatively associated with livestock density. Results indicate that grazing and fire prevent non-fire resistant species from reaching reproductive age, which can alter the long term composition and future availability of species that are important for local use and ecosystem services. Management efforts to reduce fire and forest grazing could reverse these impacts on long-term forest composition.

  13. Analysis on Difference of Forest Phenology Extracted from EVI and LAI Based on PhenoCams

    NASA Astrophysics Data System (ADS)

    Wang, C.; Jing, L.; Qinhuo, L.

    2017-12-01

    Land surface phenology can make up for the deficiency of field observation with advantages of capturing the continuous expression of phenology on a large scale. However, there are some variability in phenological metrics derived from different satellite time-series data of vegetation parameters. This paper aims at assessing the difference of phenology information extracted from EVI and LAI time series. To achieve this, some web-camera sites were selected to analyze the characteristics between MODIS-EVI and MODIS-LAI time series from 2010 to 2014 for different forest types, including evergreen coniferous forest, evergreen broadleaf forest, deciduous coniferous forest and deciduous broadleaf forest. At the same time, satellite-based phenological metrics were extracted by the Logistics algorithm and compared with camera-based phenological metrics. Results show that the SOS and EOS that are extracted from LAI are close to bud burst and leaf defoliation respectively, while the SOS and EOS that are extracted from EVI is close to leaf unfolding and leaf coloring respectively. Thus the SOS that is extracted from LAI is earlier than that from EVI, while the EOS that is extracted from LAI is later than that from EVI at deciduous forest sites. Although the seasonal variation characteristics of evergreen forests are not apparent, significant discrepancies exist in LAI time series and EVI time series. In addition, Satellite- and camera-based phenological metrics agree well generally, but EVI has higher correlation with the camera-based canopy greenness (green chromatic coordinate, gcc) than LAI.

  14. Mercury in leaf litter in typical suburban and urban broadleaf forests in China.

    PubMed

    Niu, Zhenchuan; Zhang, Xiaoshan; Wang, Zhangwei; Ci, Zhijia

    2011-01-01

    To study the role of leaf litter in the mercury (Hg) cycle in suburban broadleaf forests and the distribution of Hg in urban forests, we collected leaf litter and soil from suburban evergreen and deciduous broadleaf forests and from urban forests in Beijing. The Hg concentrations in leaf litter from the suburban forests varied from 8.3 to 205.0 ng/g, with an average (avg) of (49.7 +/- 36.9) ng/g. The average Hg concentration in evergreen broadleaf forest leaf litter (50.8 + 39.4) ng/g was higher than that in deciduous broadleaf forest leaf litter (25.8 +/- 10.1) ng/g. The estimated Hg fluxes of leaf litter in suburban evergreen and deciduous broadleaf forests were 179.0 and 83.7 mg/(ha x yr), respectively. The Hg concentration in organic horizons (O horizons) ((263.1 +/- 237.2) ng/g) was higher than that in eluvial horizons (A horizons) ((83.9 +/- 52.0) ng/g). These results indicated that leaf litterfall plays an important role in transporting atmospheric mercury to soil in suburban forests. For urban forests in Beijing, the Hg concentrations in leaf litter ranged from 8.8-119.0 (avg 28.1 +/- 16.6) ng/g, with higher concentrations at urban sites than at suburban sites for each tree. The Hg concentrations in surface soil in Beijing were 32.0-25300.0 ng/g and increased from suburban sites to urban sites, with the highest value from Jingshan (JS) Park at the centre of Beijing. Therefore, the distribution of Hg in Beijing urban forests appeared to be strongly influenced by anthropogenic activities.

  15. A new seasonal-deciduous spring phenology submodel in the Community Land Model 4.5: impacts on carbon and water cycling under future climate scenarios.

    PubMed

    Chen, Min; Melaas, Eli K; Gray, Josh M; Friedl, Mark A; Richardson, Andrew D

    2016-11-01

    A spring phenology model that combines photoperiod with accumulated heating and chilling to predict spring leaf-out dates is optimized using PhenoCam observations and coupled into the Community Land Model (CLM) 4.5. In head-to-head comparison (using satellite data from 2003 to 2013 for validation) for model grid cells over the Northern Hemisphere deciduous broadleaf forests (5.5 million km 2 ), we found that the revised model substantially outperformed the standard CLM seasonal-deciduous spring phenology submodel at both coarse (0.9 × 1.25°) and fine (1 km) scales. The revised model also does a better job of representing recent (decadal) phenological trends observed globally by MODIS, as well as long-term trends (1950-2014) in the PEP725 European phenology dataset. Moreover, forward model runs suggested a stronger advancement (up to 11 days) of spring leaf-out by the end of the 21st century for the revised model. Trends toward earlier advancement are predicted for deciduous forests across the whole Northern Hemisphere boreal and temperate deciduous forest region for the revised model, whereas the standard model predicts earlier leaf-out in colder regions, but later leaf-out in warmer regions, and no trend globally. The earlier spring leaf-out predicted by the revised model resulted in enhanced gross primary production (up to 0.6 Pg C yr -1 ) and evapotranspiration (up to 24 mm yr -1 ) when results were integrated across the study region. These results suggest that the standard seasonal-deciduous submodel in CLM should be reconsidered, otherwise substantial errors in predictions of key land-atmosphere interactions and feedbacks may result. © 2016 John Wiley & Sons Ltd.

  16. How does forest disturbance and succession affect summer streamflow recession?

    NASA Astrophysics Data System (ADS)

    Brena, A.; Stahl, K.; Weiler, M.

    2011-12-01

    Streamflow recession is a main signature of catchment behavior during dry conditions. The storage-discharge relationship of every catchment reflects the aquifer properties and land surface processes including evapotranspiration rates. Commonly, the storage-discharge relationship in watersheds is analyzed through the recession limb of the hydrograph, which generally follows a nonlinear pattern. It is, however, unknown how forest disturbance and succession may modify the degree of nonlinearity of baseflow recession and the magnitude of baseflow. The presented study analyzes and characterizes streamflow recession during summer before and after forest disturbance using data from six experimental paired-watersheds with controlled forest disturbances across different climatic regions and ecozones of the USA. Characteristic non-linear recession parameters were fitted by a Monte Carlo resampling method. No systematic relationship was found between annual precipitation, drainage area, mean elevation, and recession characteristics. However, higher storage rates and low flows across the sites were detected following forest disturbance. Exceptions are the snow-dominated watersheds and changes appear to be stronger in watersheds with deciduous forests. The results are however dependent on the method of recession limb selection, including start level and time. Further research is needed over a wide range of forest sites and according to the type of disturbance (e.g. fire, disease), which may ultimately define the dynamics of forest succession and therefore the streamflow recession behavior.

  17. Functional strategies of tropical dry forest plants in relation to growth form and isotopic composition

    NASA Astrophysics Data System (ADS)

    Santiago, L. S.; Silvera, K.; Andrade, J. L.; Dawson, T. E.

    2017-11-01

    Tropical dry forests (TDFs) undergo a substantial dry season in which plant species must endure several months of drought. Although TDFs support a diverse array of plant growth forms, it is not clear how they vary in mechanisms for coping with seasonal drought. We measured organic tissue stable isotopic composition of carbon (δ13C) and nitrogen (δ15N) across six plant growth forms including epiphytes, terrestrial succulents, trees, shrubs, herbs, and vines, and oxygen (δ18O) of four growth forms, to distinguish among patterns of resource acquisition and evaluate mechanisms for surviving annual drought in a lowland tropical dry forest in Yucatan, Mexico. Terrestrial succulent and epiphyte δ13C was around -14‰, indicating photosynthesis through the Crassulacean acid metabolism pathway, and along with one C4 herb were distinct from mean values of all other growth forms, which were between -26 and -29‰ indicating C3 photosynthesis. Mean tissue δ15N across epiphytes was -4.95‰ and was significantly lower than all other growth forms, which had values around +3‰. Tissue N concentration varied significantly among growth forms with epiphytes and terrestrial succulents having significantly lower values of about 1% compared to trees, shrubs, herbs and vines, which were around 3%. Tissue C concentration was highest in trees, shrubs and vines, intermediate in herbs and epiphytes and lowest in terrestrial succulents. δ18O did not vary among growth forms. Overall, our results suggest several water-saving aspects of resource acquisition, including the absolute occurrence of CAM photosynthesis in terrestrial succulents and epiphytes, high concentrations of leaf N in some species, which may facilitate CO2 drawdown by photosynthetic enzymes for a given stomatal conductance, and potentially diverse N sources ranging from atmospheric N in epiphytes with extremely depleted δ15N values, and a large range of δ15N values among trees, many of which are legumes and dry season deciduous.

  18. Forest Carbon Storage in the Northern Midwest, USA: A Bottom-Up Scaling Approach Combining Local Meteorological and Biometric Data With Regional Forest Inventories

    NASA Astrophysics Data System (ADS)

    Curtis, P. S.; Gough, C. M.; Vogel, C. S.

    2005-12-01

    Carbon (C) storage increasingly is considered an important part of the economic return of forestlands, making easily parameterized models for assessing current and future C storage important for both ecosystem and money managers. For the deciduous forests of the northern midwest, USA, detailed information relating annual C storage to local site characteristics can be combined with spatially extensive forest inventories to produce simple, robust models of C storage useful at a variety of scales. At the University of Michigan Biological Station (45o35`' N, 84o42`' W) we measured C storage, or net ecosystem production (NEP), in 65 forest stands varying in age, disturbance history, and productivity (site index) using biometric methods, and independently measured net C exchange at the landscape level using meteorological methods. Our biometric and meteorological estimates of NEP converged to within 1% of each other over five years, providing important confirmation of the robustness of these two approaches applied within northern deciduous forests (Gough et al. 2005). We found a significant relationship between NEP, stand age ( A, yrs), and site index ( Is, m), where NEP = 0.134 + 0.022 * (LN[ A* Is]) (r2 = 0.50, P < 0.02). Site index is an integrated measure of site quality, expressed as 50 yr canopy height. We then used stand age and site index data from forests of similar species composition reported in the USDA Forest Inventory and Analysis database (ncrs2.fs.fed.us/4801/fiadb/) to estimate forest C storage at different scales across the upper midwest, Great Lakes region. Model estimates were validated against independent estimates of C storage for other forests in the region. At the local ecosystem-level (~1 km2) C storage averaged 1.52 Mg ha-1 yr-1. Scaling to the two-county area surrounding our meteorological and biometric study sites, average stand age decreased and site index increased, resulting in estimated storage of 1.62 Mg C ha-1 yr-1, or 0.22 Tg C yr-1 in the 1350 km2 of deciduous forest in this area. For the state of Michigan (31,537 km2 of deciduous forest), average uptake was estimated at 1.55 Mg C ha-1 yr-1, or 4.9 Tg C yr-1 total storage. For the three state region encompassing Minnesota, Michigan, and Wisconsin (97,769 km2 of deciduous forest), we estimated average storage in these forests of 1.51 Mg C ha-1 yr-1, or 14.1 Tg C yr-1 total storage. This storage represents ~ 13 % of regional anthropogenic C emissions (US Department of Energy, 2003). This modest rate of C storage by forests in the region may decrease due to changes in forest succession and land-use, and also in response to climate-driven shifts in the balance between photosynthesis and respiration. Gough C.M., Vogel C.S., Schmid H.P., Su H.-B., and Curtis P.S. 2005. Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agricultural and Forest Meteorology, In Press.

  19. Reconstruction of the long-term fire history of an old-growth deciduous forest in Southern Québec, Canada, from charred wood in mineral soils

    NASA Astrophysics Data System (ADS)

    Talon, Brigitte; Payette, Serge; Filion, Louise; Delwaide, Ann

    2005-07-01

    Charcoal particles are widespread in terrestrial and lake environments of the northern temperate and boreal biomes where they are used to reconstruct past fire events and regimes. In this study, we used botanically identified and radiocarbon-dated charcoal macrofossils in mineral soils as a paleoecological tool to reconstruct past fire activity at the stand scale. Charcoal macrofossils buried in podzolic soils by tree uprooting were analyzed to reconstruct the long-term fire history of an old-growth deciduous forest in southern Québec. Charcoal fragments were sampled from the uppermost mineral soil horizons and identified based on anatomical characters. Spruce ( Picea spp.) fragments dominated the charcoal assemblage, along with relatively abundant wood fragments of sugar maple ( Acer saccharum) and birch ( Betula spp.), and rare fragments of pine ( Pinus cf. strobus) and white cedar ( Thuja canadensis). AMS radiocarbon dates from 16 charcoal fragments indicated that forest fires were widespread during the early Holocene, whereas no fires were recorded from the mid-Holocene to present. The paucity of charcoal data during this period, however, does not preclude that a fire event of lower severity may have occurred. At least eight forest fires occurred at the study site between 10,400 and 6300 cal yr B.P., with a dominance of burned conifer trees between 10,400 and 9000 cal yr B.P. and burned conifer and deciduous trees between 9000 and 6300 cal yr B.P. Based on the charcoal record, the climate at the study site was relatively dry during the early Holocene, and more humid from 6300 cal yr B.P. to present. However, it is also possible that the predominance of conifer trees in the charcoal record between 10,400 and 6300 cal yr B.P. created propitious conditions for fire spreading. The charcoal record supports inferences based on pollen influx data (Labelle, C., Richard, P.J.H. 1981. Végétation tardiglaciaire et postglaciaire au sud-est du Parc des Laurentides, Québec. Géographie Physique et Quaternaire 35, 345-359) of the early arrival of spruce and sugar maple in the study area shortly after deglaciation. We conclude that macroscopic charcoal analysis of mineral soils subjected to disturbance by tree uprooting may be a useful paleoecological tool to reconstruct long-term forest fire history at the stand scale.

  20. [Nesting habitat characterization for Amazona oratrix (Psittaciformes: Psittacidae) in the Central Pacific, Mexico].

    PubMed

    Monterrubio-Rico, Tiberio C; Álvarez-Jara, Margarito; Tellez-Garcia, Loreno; Tena-Morelos, Carlos

    2014-09-01

    The nesting requirements of the Yellow-headed Parrot (Amazona oratrix) are poorly understood, despite their broad historical distribution, high demand for pet trade and current endangered status. Information concerning their nesting requirements is required in order to design specific restoration and conser- vation actions. To assess this, we studied their nesting ecology in the Central Pacific, Michoacan, Mexico during a ten year period. The analyzed variables ranged from local scale nest site characteristics such as nesting tree species, dimensions, geographic positions, diet and nesting forest patches structure, to large scale features such as vegetation use and climatic variables associated to the nesting tree distributions by an ecological niche model using Maxent. We also evaluated the parrot tolerance to land management regimes, and compared the Pacific nest trees with 18 nest trees recorded in an intensively managed private ranch in Tamaulipas, Gulf of Mexico. Parrots nested in tall trees with canopy level cavities in 92 nest-trees recorded from 11 tree species. The 72.8% of nesting occurred in trees of Astronium graveolens, and Enterolobium cyclocarpum which qualified as key- stone trees. The forests where the parrots nested, presented a maximum of 54 tree species, 50% of which were identified as food source; besides, these areas also had a high abundance of trees used as food supply. The lowest number of tree species and trees to forage occurred in an active cattle ranch, whereas the highest species rich- ness was observed in areas with natural recovery. The nesting cavity entrance height from above ground of the Pacific nesting trees resulted higher than those found in the Gulf of Mexico. We hypothesize that the differences may be attributed to Parrot behavioral differences adapting to differential poaching pressure and cavity avail- ability. Nesting trees were found in six vegetation types; however the parrots preferred conserved and riparian semi-deciduous forest for nesting, with fewer nests in deciduous forest, while nesting in transformed agricultural fields was avoided. The main climatic variables associated with the potential distribution of nests were: mean temperature of wettest quarter, mean diurnal temperature range, and precipitation of wettest month. Suitable cli- matic conditions for the potential presence of nesting trees were present in 61% of the region; however, most of the area consisted of tropical deciduous forests (55.8%), while semi-deciduous tropical forests covered only 17% of the region. These results indicated the importance to conserve semi-deciduous forests as breeding habitats for the Yellow-headed Parrot, and revealed the urgent need to implement conservation and restoration actions. These should include a total ban of land use change in tropical semi-deciduous forest areas, and for selective logging of all keystone tree species; besides, we recommend the establishment of wildlife sanctuaries in important nesting areas, and a series of tropical forest restoration programs in the Central Pacific coast.

  1. Comparison of throughfall chemistry in a mature hemlock forest and an early-successional deciduous forest resulting from salvage logging in Whately, Massachusetts

    NASA Astrophysics Data System (ADS)

    Zukswert, J. M.; Rhodes, A. L.; Dwyer, C. H.; Sweezy, T.

    2012-12-01

    Removal of foundation species as a result of disturbance events such as exotic species invasions can alter community composition and ecosystem function. The current hemlock woolly adelgid (Adelges tsugae) infestation in eastern North America that threatens the eastern hemlock (Tsuga canadensis), a foundation species, has motivated salvage logging efforts. Ecological succession resulting from salvage logging of hemlock would eventually produce a deciduous hardwood forest. The chemistry of throughfall beneath a mature hemlock forest canopy is expected to be more acidic than throughfall from a mature deciduous forest canopy because hemlock foliage releases more organic acids and fewer base cations. The chemical composition of throughfall during the early successional transition from hemlock to deciduous is less understood. We hypothesize that throughfall chemistry in a deciduous forest consisting primarily of juvenile trees may be more similar to direct precipitation because leaf area index is smaller. Differences between hemlock throughfall and direct precipitation may be larger due to the denser canopy of these mature trees. We compared the chemical composition of precipitation, hemlock throughfall, and black birch throughfall for 26 precipitation events from 4 March to 30 July 2012. The black birch (Betula lenta) forest patch resulted from salvage logging of hemlocks twenty years ago at the MacLeish Field Station in Whately, MA. From the three plots we measured the volume of water collected and pH, acid neutralizing capacity, dissolved organic carbon (DOC), and concentrations of cations (Ca2+, K+, Na+, Mg2+, NH4+), anions (Cl-, NO3-, SO42-), and dissolved silica. Precipitation totaled 405 mm during the course of the study. Throughfall totaled 347 mm in the black birch plot and 315 mm in the hemlock plot. The proportion of precipitation passing through the forest canopy was smaller in hemlock throughfall than black birch throughfall during small precipitation events (depth < 10 mm), but appeared comparable in larger events. Before leaf emergence, differences between base cation and DOC deposition were not significant (p>0.05, n = 5) for throughfall and direct precipitation. After leaf emergence, base cation and DOC deposition was significantly (p<0.05, n = 21) greater in throughfall than direct precipitation. Additionally, K+, Mg2+, and DOC deposition were significantly greater in hemlock throughfall than black birch throughfall. Black birch throughfall had significantly less H+ deposition than direct precipitation, which suggests that the black birch canopy appears to neutralize the acidity of the precipitation. H+ deposition in hemlock throughfall, however, was not significantly different than precipitation, which could be due to its higher DOC. These results suggest that the successional stage of a deciduous forest canopy has an effect on throughfall chemistry. Lower deposition of base cations prior to and during this juvenile stage could affect soil chemistry by increasing soil acidity and lowering base saturation.

  2. Retrieval of forest biomass for tropical deciduous mixed forest using ALOS PALSAR mosaic imagery and field plot data

    NASA Astrophysics Data System (ADS)

    Ningthoujam, Ramesh K.; Joshi, P. K.; Roy, P. S.

    2018-07-01

    Tropical forest is an important ecosystem rich in biodiversity and structural complexity with high woody biomass content. Longer wavelength radar data at L-band sensor provides improved forest biomass (AGB) information due to its higher penetration level and sensitivity to canopy structure. The study presents a regression based woody biomass estimation for tropical deciduous mixed forest dominated by Shorea robusta using ALOS PALSAR mosaic (HH, HV) and field data at the lower Himalayan belt of Northern India. For the purpose of understanding the scattering mechanisms at L-band from this forest type, Michigan Microwave Canopy Scattering model (MIMICS-I) was parameterized with field data to simulate backscatter across polarization and incidence range. Regression analysis between field measured forest biomass and L-band backscatter data from PALSAR mosaic show retrieval of woody biomass up to 100 Mg ha-1 with error between 92 and 94 Mg ha-1 and coefficient of determination (r2) between 0.53 and 0.55 for HH and HH + HV polarized channel at 0.25 ha resolution. This positive relationship could be due to strong volume scattering from ground/trunk interaction at HH-polarized while in combination with direct canopy scattering for HV-polarization at ALOS specific incidence angles as predicted by MIMICS-I model. This study has found that L-band SAR data from currently ALOS-1/-2 and upcoming joint NASA-ISRO SAR (NISAR) are suitable for mapping forest biomass ≤100 Mg ha-1 at 25 m resolution in far incidence range in dense deciduous mixed forest of Northern India.

  3. Modelling the Response of Energy, Water and CO2 Fluxes Over Forests to Climate Variability

    NASA Astrophysics Data System (ADS)

    Ju, W.; Chen, J.; Liu, J.; Chen, B.

    2004-05-01

    Understanding the response of energy, water and CO2 fluxes of terrestrial ecosystems to climate variability at various temporal scales is of interest to climate change research. To simulate carbon (C) and water dynamics and their interactions at the continental scale with high temporal and spatial resolutions, the remote sensing driven BEPS (Boreal Ecosystem Productivity Simulator) model was updated to couple with the soil model of CENTURY and a newly developed biophysical model. This coupled model separates the whole canopy into two layers. For the top layer, the leaf-level conductance is scaled up to canopy level using a sunlit and shaded leaf separation approach. Fluxes of water, and CO{2} are simulated as the sums of those from sunlit and shaded leaves separately. This new approach allows for close coupling in modeling these fluxes. The whole profile of soil under a seasonal snowpack is split into four layers for estimating soil moisture and temperature. Long-term means of the vegetation productivity and climate are employed to initialize the carbon pools for the computation of heterotrophic respiration. Validated against tower data at four forested sites, this model is able to describe these fluxes and their response to climate variability. The model captures over 55% of year-round half/one hourly variances of these fluxes. The highest agreement of model results with tower data was achieved for CO2 flux at Southern Old Aspen (SOA) (R2>0.85 and RMSE<2.37 μ mol C m-2 s-1, N=17520). However, the model slightly overestimates the diurnal amplitude of sensible heat flux in winter and sometimes underestimates that of CO2 flux in the growing season. Model simulations suggest that C uptakes of forests are controlled by climate variability and the response of C cycle to climate depends on forest type. For SOA, the annual NPP (Net Primary Productivity) is more sensitive to temperature than to precipitation. This forest usually has higher NPP in warm years than in cool years. Interannual variability of heterotrophic respiration, however, is strongly related to precipitation. The soil releases more CO2 in wet years than in dry years. Warm and relatively dry climate enhances the C uptake in this forest stand. Compared with SOA, a temperate deciduous forest in the southern part of the temperate deciduous forest biome in eastern United States responds to climate variability differently. High temperature and low precipitation in the growing season reduces NPP and consequently NEP (Net Ecosystem Productivity). In warm years, the Southern Old Jack Pine forest uptakes less C than in cool years. The modeled heterotrophic respiration and NEP are very sensitive to soil moisture and the empirical equation used to describe the effect of soil moisture on decomposition. This suggests that hydrological modelling is critical in C budget estimation. Next step, this model will be validated against more tower data and used for upscaling from site to region.

  4. Vegetation responses to interglacial warming in the Arctic: examples from Lake El'gygytgyn, Far East Russian Arctic

    NASA Astrophysics Data System (ADS)

    Lozhkin, A. V.; Anderson, P. M.

    2013-06-01

    Preliminary analyses of Lake El'gygytgyn sediment indicate a wide range of ecosystem responses to warmer than present climates. While palynological work describing all interglacial vegetation is ongoing, sufficient data exist to compare recent warm events (the postglacial thermal maximum, PGTM, and marine isotope stage, MIS5) with "super" interglaciations (MIS11, MIS31). Palynological assemblages associated with these climatic optima suggest two types of vegetation responses: one dominated by deciduous taxa (PGTM, MIS5) and the second by evergreen conifers (MIS11, MIS31). MIS11 forests show a similarity to modern Picea-Larix-Betula-Alnus forests of Siberia. While dark coniferous forest also characterizes MIS31, the pollen taxa show an affinity to the boreal forest of the lower Amur valley (southern Russian Far East). Despite vegetation differences during these thermal maxima, all glacial-interglacial transitions are alike, being dominated by deciduous woody taxa. Initially Betula shrub tundra established and was replaced by tundra with tree-sized shrubs (PGTM), Betula woodland (MIS5), or Betula-Larix (MIS11, MIS31) forest. The consistent occurrence of deciduous forest and/or high shrub tundra before the incidence of maximum warmth underscores the importance of this biome for modeling efforts. The El'gygytgyn data also suggest a possible elimination or massive reduction of Arctic plant communities under extreme warm-earth scenarios.

  5. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests.

    PubMed

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-05-06

    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.

  6. Monitoring Spring Recovery of Photosynthesis and Spectral Reflectance in Temperate Evergreen and Mixed Deciduous Forests

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2015-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which characterizes their photosynthetic activity with high activity in the growing season and downregulation during the winter season. Monitoring the timing of the transitions in evergreens is difficult since it's a largely invisible process, unlike deciduous trees that have a visible budding and senescence sequence. Spectral reflectance and the photochemical reflectance index (PRI), often used as a proxy for photosynthetic light-use efficiency, provides a promising tool to track the transition of evergreens between inactive and active photosynthetic states. To better understand the relationship between PRI and photosynthetic activity and to contrast this relationship between plant functional types, the spring recovery of an evergreen forest and mixed deciduous forest was monitored using spectral reflectance, chlorophyll fluorescence and gas exchange. All metrics indicate photosynthetic recovery during the spring season. These findings indicate that PRI can be used to observe the spring recovery of photosynthesis in evergreen conifers but may not be best suited for deciduous trees. These findings have implications for remote sensing, which provides a promising long-term monitoring system of whole ecosystems, which is important since their roles in the carbon cycle may shift in response to climate change.

  7. Forest Restoration in China: Advances, Obstacles, and Perspectives

    Treesearch

    Hai Ren; Hongfang Lu; Jun Wang; Nan Liu; Qinfeng Guo

    2012-01-01

    Because of the prolonged history of disturbance caused by intense human activities, restoration in China has been a major task facing many ecologists and land managers. There are six major forest types in China: cold temperate coniferous forest, temperate coniferous and broad-leaved mixed forest, warm temperate deciduous broad-leaved forest, subtropical evergreen broad...

  8. Forest Productivity, Leaf Area, and Terrain in Southern Appalachian Deciduous Forests

    Treesearch

    Paul V. Bolstad; James M. Vose; Steven G. McNulty

    2000-01-01

    Leaf area index (LAI) is an important structural characteristic of forest ecosystems which has been shown to be strongly related to forest mass and energy cycles and forest productivity. LAI is more easily measured than forest productivity, and so a strong relationship between LAI and productivity would be a valuable tool in forest management. While a linear...

  9. Soil types and forest canopy structures in southern Missouri: A first look with AIS data

    NASA Technical Reports Server (NTRS)

    Green, G. M.; Arvidson, R. E.

    1986-01-01

    Spectral reflectance properties of deciduous oak-hickory forests covering the eastern half of the Rolla Quadrangle were examined using Thematic Mapper (TM) data acquired in August and December, 1982 and Airborne Imaging Spectrometer (AIS) data acquired in August, 1985. For the TM data distinctly high relative reflectance values (greater than 0.3) in the near infrared (Band 4, 0.73 to 0.94 micrometers) correspond to regions characterized by xeric (dry) forests that overlie soils with low water retention capacities. These soils are derived primarily from rhyolites. More mesic forests characterized by lower TM band 4 relative reflectances are associated with soils of higher retention capacities derived predominately from non-cherty carbonates. The major factors affecting canopy reflectance appear to be the leaf area index (LAI) and leaf optical properties. The Suits canopy reflectance model predicts the relative reflectance values for the xeric canopies. The mesic canopy reflectance is less well matched and incorporation of canopy shadowing caused by the irregular nature of the mesic canopy may be necessary. Preliminary examination of high spectral resolution AIS data acquired in August of 1985 reveals no more information than found in the broad band TM data.

  10. Edge effects on morphometrics and body mass in two sympatric species of mouse lemurs in Madagascar.

    PubMed

    Burke, Ryan J; Lehman, Shawn M

    2014-01-01

    Edge effects are an inevitable and important consequence of forest loss and fragmentation. These effects include changes in species biology and biogeography. Here we examine variations in body mass and morphometrics for 2 sympatric species of mouse lemurs (Microcebus murinus and M. ravelobensis) between edge and interior habitats in the dry deciduous forest at Ankarafantsika National Park. Between May and August 2012, we conducted mark-recapture experiments on mouse lemurs trapped along edge and interior forest transects within continuous forest adjacent to a large savannah. Of the 34 M. murinus captured during our study, 82% (n = 28) were trapped in interior habitats. Conversely, 72% (n = 47) of M. ravelobensis were captured in edge habitats. We found that mean body mass of M. murinus and M. ravelobensis did not differ between edge and interior habitats. However, female M. ravelobensis weighed significantly more in edge habitats (56.09 ± 1.74 g) than in interior habitats (48.14 ± 4.44 g). Our study provides some of the first evidence of sex differences in edge responses for a primate species. © 2015 S. Karger AG, Basel.

  11. The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest.

    PubMed

    Abd Latif, Zulkiflee; Blackburn, George Alan

    2010-03-01

    The creation of gaps can strongly influence forest regeneration and habitat diversity within forest ecosystems. However, the precise characteristics of such effects depend, to a large extent, upon the way in which gaps modify microclimate and soil water content. Hence, the aim of this study was to understand the effects of gap creation and variations in gap size on forest microclimate and soil water content. The study site, in North West England, was a mixed temperate broadleaved deciduous forest dominated by mature sessile oak (Quercus petraea), beech (Fagus sylvatica) and ash (Fraxinus excelsior) with some representatives of sycamore (Acer pseudoplatanus). Solar radiation (I), air temperature (T(A)), soil temperature (T(S)), relative humidity (h), wind speed (v) and soil water content (Psi) were measured at four natural treefall gaps created after a severe storm in 2006 and adjacent sub-canopy sites. I, T(A), T(S), and Psi increased significantly with gap size; h was consistently lower in gaps than the sub-canopy but did not vary with gap size, while the variability of v could not be explained by the presence or size of gaps. There were systematic diurnal patterns in all microclimate variables in response to gaps, but no such patterns existed for Psi. These results further our understanding of the abiotic and consequent biotic responses to gaps in broadleaved deciduous forests created by natural treefalls, and provide a useful basis for evaluating the implications of forest management practices.

  12. Stemflow acid neutralization capacity in a broadleaved deciduous forest: the role of edge effects.

    PubMed

    Shiklomanov, Alexey N; Levia, Delphis F

    2014-10-01

    Atmospheric deposition is an important pathway for moisture, nutrient, and pollutant exchange among the atmosphere, forest, and soils. Previous work has shown the importance of proximity to the forest edge to chemical fluxes in throughfall, but far less research has considered stemflow. This study examined the difference in acid neutralization capacity (ANC) of stemflow of nineteen Liriodendron tulipifera L. (yellow poplar) trees between the forest edge and interior in a rural area of northeastern Maryland. We measured ANC directly via potentiometric titration. Stemflow from trees at the forest edge was found to have significantly higher and more variable pH and ANC than in the forest interior (p < 0.01). No mathematical trend between ANC and distance to the forest edge was observed, indicating the importance of individual tree characteristics in stemflow production and chemistry. These results reaffirm the importance of stemflow for acid neutralization by deciduous tree species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Current forest conditions of older stands of the mixed mesophytic forest region on the Appalachian Plateaus Province of eastern Kentucky

    Treesearch

    James F. Jr. Rosson

    2008-01-01

    E. Lucy Braun coined the term "mixed mesophytic forest" in 1916. These forests are structurally complex and occur extensively across the Appalachian Plateaus Province. This region is considered the epicenter of highest development of the eastern deciduous forest. I used U.S. Forest Service, Forest Inventory and Analysis (FIA) data to study current forest...

  14. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    PubMed Central

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; Cristóbal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds. PMID:27404274

  15. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    USGS Publications Warehouse

    Young, Jessica; Bolton, W. Robert; Bhatt, Uma; Cristobal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  16. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires.

    PubMed

    Terrier, Aurélie; Girardin, Martin P; Périé, Catherine; Legendre, Pierre; Bergeron, Yves

    2013-01-01

    There is general consensus that wildfires in boreal forests will increase throughout this century in response to more severe and frequent drought conditions induced by climate change. However, prediction models generally assume that the vegetation component will remain static over the next few decades. As deciduous species are less flammable than conifer species, it is reasonable to believe that a potential expansion of deciduous species in boreal forests, either occurring naturally or through landscape management, could offset some of the impacts of climate change on the occurrence of boreal wildfires. The objective of this study was to determine the potential of this offsetting effect through a simulation experiment conducted in eastern boreal North America. Predictions of future fire activity were made using multivariate adaptive regression splines (MARS) with fire behavior indices and ecological niche models as predictor variables so as to take into account the effects of changing climate and tree distribution on fire activity. A regional climate model (RCM) was used for predictions of future fire risk conditions. The experiment was conducted under two tree dispersal scenarios: the status quo scenario, in which the distribution of forest types does not differ from the present one, and the unlimited dispersal scenario, which allows forest types to expand their range to fully occupy their climatic niche. Our results show that future warming will create climate conditions that are more prone to fire occurrence. However, unlimited dispersal of southern restricted deciduous species could reduce the impact of climate change on future fire occurrence. Hence, the use of deciduous species could be a good option for an efficient strategic fire mitigation strategy aimed at reducing fire Propagation in coniferous landscapes and increasing public safety in remote populated areas of eastern boreal Canada under climate change.

  17. Uav-Based Photogrammetric Point Clouds and Hyperspectral Imaging for Mapping Biodiversity Indicators in Boreal Forests

    NASA Astrophysics Data System (ADS)

    Saarinen, N.; Vastaranta, M.; Näsi, R.; Rosnell, T.; Hakala, T.; Honkavaara, E.; Wulder, M. A.; Luoma, V.; Tommaselli, A. M. G.; Imai, N. N.; Ribeiro, E. A. W.; Guimarães, R. B.; Holopainen, M.; Hyyppä, J.

    2017-10-01

    Biodiversity is commonly referred to as species diversity but in forest ecosystems variability in structural and functional characteristics can also be treated as measures of biodiversity. Small unmanned aerial vehicles (UAVs) provide a means for characterizing forest ecosystem with high spatial resolution, permitting measuring physical characteristics of a forest ecosystem from a viewpoint of biodiversity. The objective of this study is to examine the applicability of photogrammetric point clouds and hyperspectral imaging acquired with a small UAV helicopter in mapping biodiversity indicators, such as structural complexity as well as the amount of deciduous and dead trees at plot level in southern boreal forests. Standard deviation of tree heights within a sample plot, used as a proxy for structural complexity, was the most accurately derived biodiversity indicator resulting in a mean error of 0.5 m, with a standard deviation of 0.9 m. The volume predictions for deciduous and dead trees were underestimated by 32.4 m3/ha and 1.7 m3/ha, respectively, with standard deviation of 50.2 m3/ha for deciduous and 3.2 m3/ha for dead trees. The spectral features describing brightness (i.e. higher reflectance values) were prevailing in feature selection but several wavelengths were represented. Thus, it can be concluded that structural complexity can be predicted reliably but at the same time can be expected to be underestimated with photogrammetric point clouds obtained with a small UAV. Additionally, plot-level volume of dead trees can be predicted with small mean error whereas identifying deciduous species was more challenging at plot level.

  18. Human-environment interaction during the Mesolithic- Neolithic transition in the NE Iberian Peninsula. Vegetation history, climate change and human impact during the Early-Middle Holocene in the Eastern Pre-Pyrenees

    NASA Astrophysics Data System (ADS)

    Revelles, J.; Burjachs, F.; Palomo, A.; Piqué, R.; Iriarte, E.; Pérez-Obiol, R.; Terradas, X.

    2018-03-01

    The synthetic analysis of several pollen records from sub-Mediterranean lowland Pre-Pyrenean regions evidences expansion of forests during the Early Holocene in Northeastern Iberia and the establishment of dense deciduous broadleaf forests during the Holocene Climate Optimum. Pollen records show the broadleaf deciduous forests resilience against cooling phases during the Mid-Holocene period, with slight regressions of oak woodlands and expansion of conifers or xerophytic taxa contemporary to some cooling episodes (i.e. 8.2 and 7.2 kyr cal. BP). Major vegetation changes influenced by climate change occurred in the transition to the Late Holocene, in terms of the start of a succession from broadleaf deciduous forests to evergreen sclerophyllous woodlands. The lack of evidence of previous occupation seems to support the Neolithisation of the NE Iberian Peninsula as a result of a process of migration of farming populations to uninhabited or sparsely inhabited territories. In that context, remarkable changes in vegetation were recorded from 7.3 kyr cal. BP onwards in the Lake Banyoles area, where the establishment of permanent farming settlements caused the deforestation of oak woodlands. In La Garrotxa region, short deforestation episodes affecting broadleaf deciduous forests, together with expansion of grasslands and presence of Cerealia-t were documented in the period 7.4-6.0 kyr cal. BP. Finally, in the coastal area, where less evidence of Early Neolithic occupations is recorded, evidence of Neolithic impact is reflected in the presence of Cerealia-t in 6.5-6.2 kyr cal. BP, but no strong human transformation of landscape was carried out until more recent chronologies.

  19. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    PubMed

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  20. The effect of fire on mercury cycling in the soils of forested watersheds: Acadia National Park, Maine, U.S.A

    USGS Publications Warehouse

    Amirbahman, A.; Ruck, P.L.; Fernandez, I.J.; Haines, T.A.; Kahl, J.S.

    2004-01-01

    This study compares mercury (Hg) and methylmercury (MeHg) distribution in the soils of two forested stream watersheds at Acadia National Park, Maine, U.S.A. Cadillac Brook watershed, which burned in 1947, has thin soils and predominantly deciduous vegetation. It was compared to the unburned Hadlock Brook watershed, with thicker soil and predominantly coniferous vegetation. Soils in both watersheds were primarily well drained. The fire had a significant impact on the Cadillac watershed, by raising the soil pH, altering the vegetation, and reducing carbon and Hg pools. Total Hg content was significantly higher (P < 0.05) in Hadlock soils (0.18 kg Hg ha-1) compared to Cadillac soils (0. 13 kg Hg ha-1). Hadlock O horizon had an average Hg concentration of 134??48 ng Hg g-1 dry weight, compared to 103??23 ng Hg g-1 dry weight in Cadillac O horizon. Soil pH was significantly higher in all soil horizons at Cadillac compared to Hadlock soils. This difference was especially significant in the O horizon, where Cadillac soils had an average pH of 3.41??0.22 compared to Hadlock soils with an average pH of 2.99??0.13. To study the mobilization potential of Hg in the O horizons of the two watersheds, batch adsorption experiments were conducted, and the results were modeled using surface complexation modeling. The results of Hg adsorption experiments indicated that the dissolved Hg concentration was controlled by the dissolved organic carbon (DOC) concentration. The adsorption isotherms suggest that Hg is more mobile in the O horizon of the unburned Hadlock watershed because of higher solubility of organic carbon resulting in higher DOC concentrations in that watershed. Methylmercury concentrations, however, were consistently higher in the burned Cadillac O horizon (0.20??0.13 ng Hg g-1 dry weight) than in the unburned Hadlock O horizon (0.07??0.07 ng Hg g-1 dry weight). Similarly, Cadillac soils possessed a higher MeHg content (0.30 g MeHg ha-1) than Hadlock soils (0.16 g MeHg ha-1). The higher MeHg concentrations in Cadillac soils may reflect generally faster rates of microbial metabolism due to more rapid nutrient cycling and higher soil pH in the deciduous forest. In this research, we have shown that the amount of MeHg is not a function of the total pool of Hg in the watershed. Indeed, MeHg was inversely proportional to total Hg, suggesting that landscape factors such as soil pH, vegetation type, or land use history (e.g., fire) may be the determining factors for susceptibility to high Hg in biota. ?? 2004 Kluwer Academic Publisher. Printed in the Netherlands.

  1. Structural Relationships Of Selected Tree Species at Several Mid-Latitude Deciduous Forest Sites in Virginia

    DTIC Science & Technology

    1999-09-01

    are included in the deciduous analyses. They are mockernut hickory { Carya tomentosa), American elm {Ulmus americana), pecan { Carya illinoensis ), and...alba, white ash (Fraxinus americana), and pecan ( Carya illinoensis ). A number of these trees have plaques indicating the dates of planting (late 1700s

  2. Topographic position, but not slope aspect, drives the dominance of functional strategies of tropical dry forest trees

    NASA Astrophysics Data System (ADS)

    Méndez-Toribio, M.; Ibarra-Manríquez, G.; Navarrete-Segueda, A.; Paz, H.

    2017-08-01

    In seasonal plant communities, it is recognized that topography-related variation in water availability and solar radiation determine vegetation structure and community composition; however, the effects on functional structure, particularly through changes in resource use strategies of plants are still poorly understood. This study examines the effects of slope aspect and topographic position on functional trait dominance in a tropical dry forest landscape and explores whether strategies for coping with drought (avoidance vs. tolerance) segregate spatially along the water stress gradient created by the interaction of these two topographic factors. The study was conducted in the Balsas river basin in south-central Mexico. Functional traits were evaluated in 63 species of trees (≥ 2.5 cm diameter at breast height) dominant in plots located at three topographic positions (low, medium and high) and on two slope aspects (north and south). Eight leaf and four stem functional traits, relating to the plants’ ability to avoid or tolerate water and temperature stress, were measured. Community-level functional traits were strongly affected by topographic position while only a weak signal was detected by the slope aspect. Contrary to our expectations, attributes associated with drought tolerance predominated on the lower topographic positions of the slopes, (moister and warmer sites), while on the upper parts with drier soil, but cooler air, attributes associated with water stress avoidance dominated. In addition, variation in the dominance of leaf pulvini and trichomes along the topographic gradient suggests environmental filtering by elevated air temperatures and water stress, respectively. Overall, our results suggest that the upper topographic positions that generate a shorter and more fluctuating water-availability window, favor readily-deciduous plants with high levels of water storage in their tissues, traits allowing for a rapid avoid of water stress, whereas on the lower topographic positions, where the soil remains moist for longer periods of time, tardily-deciduous species thrive with dense, low-water content tissues, attributes that are associated with physiological tolerance to drought.

  3. Mapping forest functional type in a forest-shrubland ecotone using SPOT imagery and predictive habitat distribution modelling

    USGS Publications Warehouse

    Assal, Timothy J.; Anderson, Patrick J.; Sibold, Jason

    2015-01-01

    The availability of land cover data at local scales is an important component in forest management and monitoring efforts. Regional land cover data seldom provide detailed information needed to support local management needs. Here we present a transferable framework to model forest cover by major plant functional type using aerial photos, multi-date Système Pour l’Observation de la Terre (SPOT) imagery, and topographic variables. We developed probability of occurrence models for deciduous broad-leaved forest and needle-leaved evergreen forest using logistic regression in the southern portion of the Wyoming Basin Ecoregion. The model outputs were combined into a synthesis map depicting deciduous and coniferous forest cover type. We evaluated the models and synthesis map using a field-validated, independent data source. Results showed strong relationships between forest cover and model variables, and the synthesis map was accurate with an overall correct classification rate of 0.87 and Cohen’s kappa value of 0.81. The results suggest our method adequately captures the functional type, size, and distribution pattern of forest cover in a spatially heterogeneous landscape.

  4. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    Treesearch

    M. Mazur; C.P.J. Mitchell; C.S. Eckley; S.L. Eggert; R.K. Kolka; S.D. Sebestyen; E.B. Swain

    2014-01-01

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil-air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown.We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg...

  5. Plant sexual systems and a review of the breeding system studies in the Caatinga, a Brazilian tropical dry forest.

    PubMed

    Machado, Isabel Cristina; Lopes, Ariadna Valentina; Sazima, Marlies

    2006-02-01

    The reproductive biology of a community can provide answers to questions related to the maintenance of the intraspecific pollen flow and reproductive success of populations, sharing and competition for pollinators and also questions on conservation of natural habitats affected by fragmentation processes. This work presents, for the first time, data on the occurrence and frequency of plant sexual systems for Caatinga communities, and a review of the breeding system studies of Caatinga species. The sexual systems of 147 species from 34 families and 91 genera occurring in three Caatinga areas in north-eastern Brazil were analysed and compared with worldwide studies focusing on reproductive biology of different tropical communities. The frequency of hermaphrodite species was 83.0 % (122 species), seven of these (or 4.8 % of the total) being heterostylous. Monoecy occurred in 9.5 % (14) of the species, and andromonoecy in 4.8 % (seven). Only 2.7 % (four) of the species were dioecious. A high percentage of hermaphrodite species was expected and has been reported for other tropical ecosystems. With respect to the breeding system studies with species of the Caatinga, the authors' data for 21 species and an additional 18 species studied by others (n = 39) revealed a high percentage (61.5 %) of obligatory self-incompatibility. Agamospermy was not recorded among the Caatinga studied species. The plant sexual systems in the Caatinga, despite the semi-arid climate, are similar to other tropical dry and wet forest communities, including those with high rainfall levels, except for the much lower percentage of dioecious species. The high frequency of self-incompatible species is similar to that reported for Savanna areas in Brazil, and also for dry (deciduous and semideciduous) and humid tropical forest communities.

  6. Assessment and monitoring of long-term forest cover changes in Odisha, India using remote sensing and GIS.

    PubMed

    Reddy, C Sudhakar; Jha, C S; Dadhwal, V K

    2013-05-01

    Deforestation and fragmentation are important concerns in managing and conserving tropical forests and have global significance. In the Indian context, in the last one century, the forests have undergone significant changes due to several policies undertaken by government as well as increased population pressure. The present study has brought out spatiotemporal changes in forest cover and variation in forest type in the state of Odisha (Orissa), India, during the last 75 years period. The mapping for the period of 1924-1935, 1975, 1985, 1995 and 2010 indicates that the forest cover accounts for 81,785.6 km(2) (52.5 %), 56,661.1 km(2) (36.4 %), 51,642.3 km(2) (33.2 %), 49,773 km(2) (32 %) and 48,669.4 km(2) (31.3 %) of the study area, respectively. The study found the net forest cover decline as 40.5 % of the total forest and mean annual rate of deforestation as 0.69 % year(-1) during 1935 to 2010. There is a decline in annual rate of deforestation during 1995 to 2010 which was estimated as 0.15 %. Forest type-wise quantitative loss of forest cover reveals large scale deforestation of dry deciduous forests. The landscape analysis shows that the number of forest patches (per 1,000) are 2.463 in 1935, 10.390 in 1975, 11.899 in 1985, 12.193 in 1995 and 15.102 in 2010, which indicates high anthropogenic pressure on the forests. The mean patch size (km(2)) of forest decreased from 33.2 in 1935 to 5.5 in 1975 and reached to 3.2 by 2010. The study demonstrated that monitoring of long term forest changes, quantitative loss of forest types and landscape metrics provides critical inputs for management of forest resources.

  7. ABOVEGROUND BIOMASS DISTRIBUTION OF US EASTERN HARDWOOD FORESTS AND THE USE OF LARGE TREES AS AN INDICATOR OF FOREST DEVELOPMENT

    EPA Science Inventory

    Past clearing and harvesting of the deciduous hardwood forests of eastern USA released large amount of carbon dioxide into the atmosphere, but through recovery and regrowth these forests are now accumulating atmospheric carbon (C). This study examined quantities and distribution ...

  8. Indiana's forest resource in 2000

    Treesearch

    Thomas L. Schmidt; Manfred E. Mielke; Phillip T. Marshall

    2002-01-01

    Results of the 2000 annual inventory of Indiana show that the previous trend of increasing area of forest land and growing-stock volumes has leveled off. Deciduous species continue to dominate Indiana''s forests, accounting for 96 percent of the total growing-stock volume. Known pests in Indiana''s forests include gypsy moth, eastern tent...

  9. Insect-plant interactions in anthropogenically transformed ecosystems

    Treesearch

    Evgeny V. Kultunov; Victor I. Ponomarev; Sergey I. Fedorenko

    1991-01-01

    Structural and functional changes in forests due to anthropogenic factors have a considerable impact on the interaction of phytophagous insects with the phytocenosis. Many features of these processes have yet to be investigated in the deciduous forest conditions of the forest-steppe zone. We investigated birch forests disturbed by anthropogenic factors in the middle...

  10. VOLATILE ORGANIC COMPOUND EMISSION RATES FROM MIXED DECIDUOUS AND CONIFEROUS FORESTS IN NORTHERN WISCONSIN, USA

    EPA Science Inventory

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regio...

  11. The affection of boreal forest changes on imbalance of Nature (Invited)

    NASA Astrophysics Data System (ADS)

    Tana, G.; Tateishi, R.

    2013-12-01

    Abstract: The balance of nature does not exist, and, perhaps, never has existed [1]. In other words, the Mother Nature is imbalanced at all. The Mother Nature is changing every moment and never returns to previous condition. Because of the imbalance of nature, global climate has been changing gradually. To reveal the imbalance of nature, there is a need to monitor the dynamic changes of the Earth surface. Forest cover and forest cover change have been grown in importance as basic variables for modelling of global biogeochemical cycles as well as climate [2]. The boreal area contains 1/3 of the earth's trees. These trees play a large part in limiting harmful greenhouse gases by aborbing much of the earth's carbon dioxide (CO2) [3]. The boreal area mainly consists of needleleaf evergreen forest and needleleaf deciduous forest. Both of the needleleaf evergreen forest and needleleaf deciduous forest play the important roles on the uptake of CO2. However, because of the dormant period of needleleaf evergreen forest are shorter than that of needleleaf deciduous forest, needleleaf evergreen forest makes a greater contribution to the absorbtion of CO2. Satellite sensor because of its ability to observe the Earth continuously, can provide the opportunity to monitor the dynamic changes of the Earth. In this study, we used the MODerate resolution Imaging Spectroradiometer (MODIS) satellite data to monitor the dynamic change of boreal forest area which are mainly consist from needleleaf evergreen forest and needleleaf deciduous forest during 2003-2012. Three years MODIS data from the year 2003, 2008 and 2012 were used to detect the forest changed area. A hybrid change detection method which combines the threshold method and unsupervised classification method was used to detect the changes of forest area. In the first step, the difference of Normalized Difference Vegetation Index (NDVI) of the three years were calculated and were used to extract the changed areas by the threshold method. In the second step, the unsupervised classification method was used to classify and analyze detected change areas derived from the first step. Finally, the changed area were validated using the traning data collected for the three years. The validation result revealed that the forest in the study area has undergone the area and type changes during 2003-2012. The detailed procedure will be presented in the meeting. References: [1] Elton, C.S. (1930). Animal Ecology and Evolution. New York, Oxford University Press. [2] Potapov, P., Hansen, M. C., Stehman, S. V., Loveland, T. R., Pittman, K. (2008). Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss, Remote Sensing of Environment, 112, 3708-3719. [3] Houghton, R. A. (2003). Why are estimates of the terrestrial carbon balance so different? Global Change Biology, 9, 500-509.

  12. The Forest, Part 4: Late Summer and Fall

    ERIC Educational Resources Information Center

    Johnson, Elfriede Nemetz

    1973-01-01

    Briefly describes the ecology of a deciduous forest, and suggests activities for observing and appreciating the changes that occur during the Fall. Simple experiments relating to mosses and lichens are outlined. (JR)

  13. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode.

    PubMed

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-04-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.

  14. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode

    PubMed Central

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-01-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations. PMID:25897387

  15. Nymphal survival and habitat distribution of Ixodes scapularis and Amblyomma americanum ticks (Acari:Ixodidae) on Fire Island, New York

    USGS Publications Warehouse

    Ginsberg, H.S.; Zhioua, E.

    1996-01-01

    The distribution and survival of Ixodes scapularis and Amblyomma americanum were studied in deciduous and coniferous wooded habitats and in open habitats on Fire Island, New York, USA. The survival of nymphal I. scapularis in field enclosures was greater in forests than in open habitats, suggesting that greater survival contributes to the higher tick population in the woods. The nymphs of each species were more common in deciduous thickets (predominantly Aronia arbutifolia and Vaccinium corynbosum) than in coniferous woods (mostly Pinus rigida) in most but not all years. Larval I. scapularis were more common in coniferous sites in 1994, while the same ticks, as nymphs, were more common in deciduous sites in 1995. The survival of the nymphs was not consistently greater in either the deciduous or coniferous woods. Therefore, factors other than nymphal survival (e.g. larval overwintering survival and tick movement on hosts) probably influenced the relative nymph abundance in different forest types. Overall, the survival of A. americanum was far higher than that of I. scapularis.

  16. Long and short term changes in the forests of the Cumberland Plateau and Mountains using large scale forest inventory data

    Treesearch

    Christopher M. Oswalt; Andrew J. Hartsell

    2012-01-01

    The Cumberland Plateau and Mountains (CPM) are a significant component of the eastern deciduous forest with biological and cultural resources strongly connected to and dependent upon the forest resources of the region. As a result, continuous inventory and monitoring is critical. The USDA Forest Service Forest Inventory and Analysis (FIA) program has been collecting...

  17. Forest influences on snow accumulation and snowmelt at the Hubbard Brook Experimental Forest, New Hampshire, USA

    Treesearch

    Colin A. Penn; Beverley C. Wemple; John L. Campbell

    2012-01-01

    Many factors influence snow depth, water content and duration in forest ecosystems. The effects of forest cover and canopy gap geometry on snow accumulation has been well documented in coniferous forests of western North America and other regions; however, few studies have evaluated these effects on snowpack dynamics in mixed deciduous forests of the northeastern USA....

  18. Headwater streams and forest management: does ecoregional context influence logging effects on benthic communities?

    USGS Publications Warehouse

    Medhurst, R. Bruce; Wipfli, Mark S.; Binckley, Chris; Polivka, Karl; Hessburg, Paul F.; Salter, R. Brion

    2010-01-01

    Effects of forest management on stream communities have been widely documented, but the role that climate plays in the disturbance outcomes is not understood. In order to determine whether the effect of disturbance from forest management on headwater stream communities varies by climate, we evaluated benthic macroinvertebrate communities in 24 headwater streams that differed in forest management (logged-roaded vs. unlogged-unroaded, hereafter logged and unlogged) within two ecological sub-regions (wet versus dry) within the eastern Cascade Range, Washington, USA. In both ecoregions, total macroinvertebrate density was highest at logged sites (P = 0.001) with gathering-collectors and shredders dominating. Total taxonomic richness and diversity did not differ between ecoregions or forest management types. Shredder densities were positively correlated with total deciduous and Sitka alder (Alnus sinuata) riparian cover. Further, differences in shredder density between logged and unlogged sites were greater in the wet ecoregion (logging × ecoregion interaction; P = 0.006) suggesting that differences in post-logging forest succession between ecoregions were responsible for differences in shredder abundance. Headwater stream benthic community structure was influenced by logging and regional differences in climate. Future development of ecoregional classification models at the subbasin scale, and use of functional metrics in addition to structural metrics, may allow for more accurate assessments of anthropogenic disturbances in mountainous regions where mosaics of localized differences in climate are common.

  19. Interannual Variations in Ecosystem Oxidative Ratio in Croplands, Deciduous Forest, Coniferous Forest, and Early Successional Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Hockaday, W. C.; Gallagher, M. E.; Calligan, L.

    2009-12-01

    Ecosystem net primary productivity (NPP) can vary significantly with annual variations in precipitation and temperature. These climate variations can also drive changes in plant carbon allocation patterns. Shifting allocation patterns can lead to variation in net ecosystem biochemical stocks (e.g. kg cellulose, lignin, protein, and lipid/ha), which can in turn lead to shifts in ecosystem oxidative ratio (OR). OR is the molar ratio of O2 released : CO2 fixed during biosynthesis. Major plant biochemicals vary substantially in oxidative ratio, ranging from average organic acid OR values of 0.75 to average lipid OR values of 1.37 (Masiello et al., 2008). OR is a basic property of ecosystem biochemistry, and is also an essential variable needed to constrain the size of the terrestrial biospheric carbon sink (Keeling et al., 1996). OR is commonly assumed to be 1.10 (e.g. Prentice et al., 2001), but small variations in net ecosystem OR can drive large errors in estimates of the size of the terrestrial carbon sink (Randerson et al., 2006). We hypothesized that interannual changes in climate may drive interannual variation in ecosystem OR values. Working at Kellogg Biological Station NSF LTER, we measured the annual average OR of coniferous and deciduous forests, an early successional forest, and croplands under both corn and soy. There are clear distinctions between individual ecosystems (e.g., the soy crops have a higher OR than the corn crops, and the coniferous forests have a higher OR than the deciduous forests), but the ecosystems themselves retained remarkably constant annual OR values between 1998 and 2008.

  20. Increasing fire severity, alternate successional trajectories, and the carbon balance of Alaskan boreal forests

    NASA Astrophysics Data System (ADS)

    Mack, M. C.; Alexander, H. D.; Jean, M.; Melvin, A. M.; Johnstone, J. F.

    2016-12-01

    Climate-sensitive disturbances, such as wildfire, can feed back positively to climate warming via the carbon (C) cycle if C released by disturbance is not replaced over post-fire succession. In boreal forests, burning of carbon in deep organic soils is not only an important determinate of ecosystem element balance over the disturbance cycle, but also sets the conditions that control plant recruitment, species dominance and successional trajectory. Species dominance, in turn, has the potential to exert strong control over the plant-soil-microbial feedbacks that determine C and nutrient coupling, C storage, and ultimately, replacement of combusted C. We examined the consequences of increasing fire severity for C balance and C and nitrogen (N) coupling in Alaskan boreal forests. We estimated combustion losses in 90 black spruce (conifer) stands that burned in 2004. Over the next decade, we followed natural tree seedling establishment in these stands and used seedling species dominance identify conifer versus deciduous successional trajectories. We assembled data from 120 stands that varied in time after fire and successional trajectory, and estimated C and N dynamics across 150 years of post-fire succession for each trajectory. Conifer stands that burned with high severity transitioned to deciduous tree dominance after fire. These stands had smaller ecosystem pools of C and N before fire, lost a larger proportion of these pools during the fire, and began succession with smaller residual pools than stands that returned to conifer dominance after fire. Over secondary succession, deciduous stands accumulated about 10 times more carbon in aboveground biomass than conifer stands. Belowground biomass and soil carbon accumulation, by contrast, was about three times higher in the black spruce stands than in deciduous stands. As a result, net ecosystem C accumulation over the 100 year inter-fire interval was three times higher in deciduous stands than in coniferous stands. Nitrogen accumulation did not differ between the trajectories; high C:N ratio biomass accumulation in deciduous stands balanced low C:N ratio soil organic matter accumulation in conifer stands. The timing of N accumulation, however, differed substantially, supporting the idea that deciduous stands mine N from degrading permafrost after fire.

  1. Ouragans et diversité biologique dans les forêts tropicales. L'exemple de la Guadeloupe

    NASA Astrophysics Data System (ADS)

    Imbert, Daniel; Roustéau, Alain; Labbé, Patrick

    1998-06-01

    In this work, we consider the role played by hurricanes in the maintenance of high biodiversity, ,and we look at how biodiversity may influence the response of tropical forest ecosystems to hurricane disturbances. After hurricane Hugo struck Guadeloupe in 1989, we started a comparative study on the resistance and the resilience of the rain forest, the semi-deciduous forest and the mangrove forest. It appeared that the resistance of these forests was positively linked to their diversity, which was assessed both through flora richness and structure complexity (resultin from the variety of life forms). Examples of species specific resistance or vulnerability occur in the three forests; however, the higher the ecosystem diversity, the fewer and the weaker they are. Abundant species tend to be less vulnerable than others — at least in the rain forest and in the semi-deciduous forest. Forest recovery operates mainly through pre-existing individuals (surviving trees, coppicing stumps, saplings or seedlings). Pioneer species may slightly and temporarily benefit from large openings, especially in the rain forest. Strong recurrence of hurricanes may lead to the extinction of some rare, vulnerable, short-range disseminating, non pioneer species.

  2. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    DOE PAGES

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; ...

    2016-07-12

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m 3 of snowmelt water, which is equivalent to 8.7–10.2% of themore » Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m 3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m 3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m 3 of snowmelt water removed from the soil per year. Furthermore, this study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.« less

  3. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m 3 of snowmelt water, which is equivalent to 8.7–10.2% of themore » Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m 3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m 3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m 3 of snowmelt water removed from the soil per year. Furthermore, this study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.« less

  4. Carbon exchange between ecosystems and atmosphere in the Czech Republic is affected by climate factors.

    PubMed

    Marek, Michal V; Janouš, Dalibor; Taufarová, Klára; Havránková, Kateřina; Pavelka, Marian; Kaplan, Věroslav; Marková, Irena

    2011-05-01

    By comparing five ecosystem types in the Czech Republic over several years, we recorded the highest carbon sequestration potential in an evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). Because of a massive ecosystem respiration, the final carbon gain of the grassland was negative. Climate was shown to be an important factor of carbon uptake by ecosystems: by varying the growing season length (a 22-d longer season in 2005 than in 2007 increased carbon sink by 13%) or by the effect of short- term synoptic situations (e.g. summer hot and dry days reduced net carbon storage by 58% relative to hot and wet days). Carbon uptake is strongly affected by the ontogeny and a production strategy which is demonstrated by the comparison of seasonal course of carbon uptake between coniferous (Norway spruce) and deciduous (European beech) stands. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Community patterns of tropical tree phenology derived from Unmanned Aerial Vehicle images: intra- and interspecific variation, association with species plant traits, and response to interannual climate variation

    NASA Astrophysics Data System (ADS)

    Bohlman, Stephanie; Rifai, Sami; Park, John; Dandois, Jonathan; Muller-Landau, Helene

    2017-04-01

    Phenology is a key life history trait of plant species and critical driver of ecosystem processes. There is strong evidence that phenology is shifting in temperate ecosystems in response to climate change, but tropical forest phenology remains poorly quantified and understood. A key challenge is that tropical forests contain hundreds of plant species with a wide variety of phenological patterns, which makes it difficult to collect sufficient ground-based field data to characterize individual tropical tree species phenologies. Satellite-based observations, an important source of phenology data in northern latitudes, are hindered by frequent cloud cover in the tropics. To quantify phenology over a large number of individuals and species, we collected bi-weekly images from unmanned aerial vehicles (UAVs) in the well-studied 50-ha forest inventory plot on Barro Colorado Island, Panama. The objective of this study is to quantify inter- and intra-specific responses of tropical tree leaf phenology to environmental variation over large spatial scales and identify key environmental variables and physiological mechanisms underpinning phenological variation. Between October 2014 and December 2015 and again in May 2015, we collected a total of 35 sets of UAV images, each with continuous coverage of the 50-ha plot, where every tree ≥ 1 cm DBH is mapped. UAV imagery was corrected for exposure, orthorectified, and then processed to extract spectral, texture, and image information for individual tree crowns, which was then used as inputs for a machine learning algorithm that successfully predicted the percentages of leaf, branch, and flower cover for each tree crown (r2=0.76 between observed and predicted percent branch cover for individual tree crowns). We then quantified cumulative annual deciduousness for each crown by fitting a non-parametric curve of flexible shape to its predicted percent branch time series and calculated the area under the curve. We obtained the species identities of 2000 crowns in the images by linking the crowns to stem tags in the field, thus producing a time series of cumulative annual deciduousness for 65 species. Deciduousness showed continuous variation among species rather than distinct phenological categories (ie evergreen and deciduous) that are commonly used in physiological, ecosystem and modeling studies. Some species labelled as evergreen by expert-based classification had annual deciduousness higher than those labelled as deciduous. We found significant, positive relationships between species mean deciduousness and species' leaf phosphorous, photosynthetic capacity and adult relative growth rate, suggesting that higher deciduousness is associated with greater resource acquisition. Comparing May 2015 (during an El Nino drought) and May 2014 (an non El Nino year with normal rainfall), mean deciduousness values for nearly all species was greater in 2015 but with differing levels of intraspecific variation. We discuss how the variation in deciduousness among species, its relationship with plant traits and response to the drought might be incorporated into terrestrial biosphere models of tropical forests to more accurately represent phenology and understand the consequences of community-level variation in phenology for ecosystem processes.

  6. Extended leaf phenology and the autumn niche in deciduous forest invasions.

    PubMed

    Fridley, Jason D

    2012-05-17

    The phenology of growth in temperate deciduous forests, including the timing of leaf emergence and senescence, has strong control over ecosystem properties such as productivity and nutrient cycling, and has an important role in the carbon economy of understory plants. Extended leaf phenology, whereby understory species assimilate carbon in early spring before canopy closure or in late autumn after canopy fall, has been identified as a key feature of many forest species invasions, but it remains unclear whether there are systematic differences in the growth phenology of native and invasive forest species or whether invaders are more responsive to warming trends that have lengthened the duration of spring or autumn growth. Here, in a 3-year monitoring study of 43 native and 30 non-native shrub and liana species common to deciduous forests in the eastern United States, I show that extended autumn leaf phenology is a common attribute of eastern US forest invasions, where non-native species are extending the autumn growing season by an average of 4 weeks compared with natives. In contrast, there was no consistent evidence that non-natives as a group show earlier spring growth phenology, and non-natives were not better able to track interannual variation in spring temperatures. Seasonal leaf production and photosynthetic data suggest that most non-native species capture a significant proportion of their annual carbon assimilate after canopy leaf fall, a behaviour that was virtually absent in natives and consistent across five phylogenetic groups. Pronounced differences in how native and non-native understory species use pre- and post-canopy environments suggest eastern US invaders are driving a seasonal redistribution of forest productivity that may rival climate change in its impact on forest processes.

  7. Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, Christopher; Curtis, Peter; Hardiman, Brady

    Century-old forests in the U.S. upper Midwest and Northeast power much of North Amer- ica’s terrestrial carbon (C) sink, but these forests’ production and C sequestration capacity are expected to soon decline as fast-growing early successional species die and are replaced by slower growing late successional species. But will this really happen? Here we marshal empirical data and ecological theory to argue that substantial declines in net ecosystem production (NEP) owing to reduced forest growth, or net primary production (NPP), are not imminent in regrown temperate deciduous forests over the next several decades. Forest age and production data for temperatemore » deciduous forests, synthesized from published literature, suggest slight declines in NEP and increasing or stable NPP during middle successional stages. We revisit long-held hypotheses by EP Odum and others that suggest low-severity, high-frequency disturbances occurring in the region’s aging forests will, against intuition, maintain NEP at higher-than- expected rates by increasing ecosystem complexity, sustaining or enhancing NPP to a level that largely o sets rising C losses as heterotrophic respiration increases. This theoretical model is also supported by biological evidence and observations from the Forest Accelerated Succession Experiment in Michigan, USA. Ecosystems that experience high-severity disturbances that simplify ecosystem complexity can exhibit substantial declines in production during middle stages of succession. However, observations from these ecosystems have exerted a disproportionate in uence on assumptions regarding the trajectory and magnitude of age-related declines in forest production. We conclude that there is a wide ecological space for forests to maintain NPP and, in doing so, lessens the declines in NEP, with signi cant implications for the future of the North American carbon sink. Our intellectual frameworks for understanding forest C cycle dynamics and resilience need to catch up to our more complex and nuanced understanding of ecological succession.« less

  8. Survey for Armillaria by plant associations in northern Arizona

    Treesearch

    Christ W. Hoffman; Robert L. Mathiasen; Richard W. Hofstetter; Mary Lou Fairweather; John D. Shaw; John W. Hanna; Ned B. Klopfenstein

    2014-01-01

    Fungi in the genus Armillaria are associated with an important disease of deciduous and coniferous trees and shrubs in western North America. This study examined the distribution of Armillaria by forest habitat types on the Kaibab National Forest and northern Coconino National Forest, Arizona. Over 400 trees were examined for Armillaria in 76 Interior West Forest...

  9. Shifts and future trends in the forest resources of the Central Hardwood region

    Treesearch

    Thomas L. Schmidt; William H. McWilliams

    2003-01-01

    Forests in the Central Hardwood region are undergoing change in terms of area, volume, species composition, and forest structure. These forests are dominated by deciduous species; are increasing their average stand size, volume, and age; and, are experiencing woody plant species replacement as shade intolerant species are being replaced by more shade tolerant species....

  10. Shifts and future trends in the forest resources of the Central Hardwood Region

    Treesearch

    Thomas L. Schmidt; William H. McWilliams

    2003-01-01

    Forests in the Central Hardwood region are undergoing change in terms of area, volume, species composition, and forest structure. These forests are dominated by deciduous species; are increasing their average stand size, volume, and age; and, are experiencing woody plant species replacement as shade intolerant species are being replaced by more shade tolerant species....

  11. Conservation assessment for bloodroot in the Black Hills National Forest, South Dakota and Wyoming

    Treesearch

    J. Hope Hornbeck; Carolyn Hull Sieg; Deanna J. Reyher

    2003-01-01

    Bloodroot, Sanguinaria canadensis L. (Papaveraceae), is a common spring flowering herb in the deciduous forests of eastern North America. It is disjunctly distributed in the northeastern Black Hills of South Dakota. There are 22 known occurrences of bloodroot on Black Hills National Forest in hardwood forests, shrub thickets, and floodplain habitats of limited...

  12. Forest Dynamics in the Eastern Ghats of Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Jayakumar, S.; Ramachandran, A.; Bhaskaran, G.; Heo, J.

    2009-02-01

    The primary deciduous forests in the Eastern Ghats (EG) of Tamil Nadu (TN) India have undergone many changes owing to various need-based forest managements, such as timber extraction for industry, railway sleepers, charcoal, and forest clearance for hydroelectric projects and agriculture, during preindependence and postindependence periods (i.e., from 1800 to 1980). The enactment of a forest conservation act during the 1980s changed the perception of forest managers from utilization to conservation. This study was taken up to assess the forests dynamics in the EG of TN spatially between 1990 and 2003 and nonspatially between 1900 and the 1980s. Landsat Thematic Mapper (TM) and Indian Remote Sensing satellite (IRS) 1D Linear Imaging and Self Scanning (LISS III) data were used to assess forests during 1990 and 2003, respectively. Field floristic survey and secondary data (such as published literature, floras, books, and forest working plans) were used to assess the forest dynamics in terms of forest type and species composition among the preindependence period, the postindependence period, and the present (i.e., before and after 1980). The satellite data analysis revealed a considerable amount of changes in all forest types during the 13 years. The comparison of species composition and forest types between the past and present revealed that need-based forest management along with anthropogenic activity have altered the primary deciduous forest in to secondary and postextraction secondary forests such as southern thorn and southern thorn scrub forests in the middle [400-900 m above mean sea level (MSL)] and lower slopes (<400 m MSL). However, the evergreen forests present at the upper slope (>900 m MSL) and plateau seemed not to be much affected by the forest management. The changes estimated by the satellite data processing in the major forest types such as evergreen, deciduous, southern thorn, and southern thorn scrub are really alarming because these changes have occurred after the implementation of a forest conservation act. The dependence of local people on forests for various purposes in this region is also considerably high, which might be a key factor for the changes in the forests. The results of this study not only provide an outlook on the present status of the forests and the change trends but also provide the basis for further studies on forests in the EG of TN.

  13. Forest dynamics in the Eastern Ghats of Tamil Nadu, India.

    PubMed

    Jayakumar, S; Ramachandran, A; Bhaskaran, G; Heo, J

    2009-02-01

    The primary deciduous forests in the Eastern Ghats (EG) of Tamil Nadu (TN) India have undergone many changes owing to various need-based forest managements, such as timber extraction for industry, railway sleepers, charcoal, and forest clearance for hydroelectric projects and agriculture, during preindependence and postindependence periods (i.e., from 1800 to 1980). The enactment of a forest conservation act during the 1980s changed the perception of forest managers from utilization to conservation. This study was taken up to assess the forests dynamics in the EG of TN spatially between 1990 and 2003 and nonspatially between 1900 and the 1980s. Landsat Thematic Mapper (TM) and Indian Remote Sensing satellite (IRS) 1D Linear Imaging and Self Scanning (LISS III) data were used to assess forests during 1990 and 2003, respectively. Field floristic survey and secondary data (such as published literature, floras, books, and forest working plans) were used to assess the forest dynamics in terms of forest type and species composition among the preindependence period, the postindependence period, and the present (i.e., before and after 1980). The satellite data analysis revealed a considerable amount of changes in all forest types during the 13 years. The comparison of species composition and forest types between the past and present revealed that need-based forest management along with anthropogenic activity have altered the primary deciduous forest in to secondary and postextraction secondary forests such as southern thorn and southern thorn scrub forests in the middle [400-900 m above mean sea level (MSL)] and lower slopes (<400 m MSL). However, the evergreen forests present at the upper slope (>900 m MSL) and plateau seemed not to be much affected by the forest management. The changes estimated by the satellite data processing in the major forest types such as evergreen, deciduous, southern thorn, and southern thorn scrub are really alarming because these changes have occurred after the implementation of a forest conservation act. The dependence of local people on forests for various purposes in this region is also considerably high, which might be a key factor for the changes in the forests. The results of this study not only provide an outlook on the present status of the forests and the change trends but also provide the basis for further studies on forests in the EG of TN.

  14. Effects of microhabitat on palm seed predation in two forest fragments in southeast Brazil

    NASA Astrophysics Data System (ADS)

    Fleury, Marina; Galetti, Mauro

    2004-12-01

    The establishment of plants depends crucially on where seeds are deposited in the environment. Some authors suggest that in forest understory seed predation is lower than in gaps, and higher than at the forest edge. However, most studies have been carried out in large forest patches and very little is known about the effects of microhabitat conditions on seed predation in forest fragments. We evaluated the effects of three microhabitats (gaps, forest edge, and understory) on seed predation of two palm species ( Euterpe edulis and Syagrus romanzoffiana) in two semi-deciduous forest fragments (230 and 2100 ha) in southeast Brazil. Our objective was to test two hypotheses: (1) Low rodent abundance in small fragments as a result of meso-predator action levels leads to lower seed predation in small fragments. (2) Most mammal species in small fragments are generalists with respect to diet and habitat, so that seed predation is similar in different microhabitats (gaps, forest edge and understory) in the small fragment, but not in the larger one. The study community of small fragments is usually composed of generalist species (in diet and habitat aspects), so we expected the same rate of seed predation among microhabitats (gaps, forest edge and understory) in the tested smaller fragment. The experiment was carried out in the dry season (for E. edulis) and in the wet season (for S. romanzoffiana) in 1999. We conclude that post-dispersal seed predation in forest fragments can be directly connected with mammal communities, reflecting their historical and ecological aspects.

  15. Ecology of Missouri Forests. Instructional Unit. Conservation Education Series.

    ERIC Educational Resources Information Center

    Jackson, Jim

    This unit is designed to help science, social studies, vocational agriculture, and other teachers incorporate forest ecology concepts into their subject matter. The unit includes: (1) topic outline; (2) unit objectives; (3) background information on climate and soils, levels of a deciduous forest, age classes, food and energy relationships, forest…

  16. Managing Gambel oak in southwestern ponderosa pine forests: the status of our knowledge

    Treesearch

    Scott R. Abella

    2008-01-01

    Gambel oak (Quercus gambelii) is a key deciduous species in southwestern ponderosa pine (Pinus ponderosa) forests and is important for wildlife habitat, soil processes, and human values. This report (1) summarizes Gambel oak's biological characteristics and importance in ponderosa pine forests, (2) synthesizes literature on...

  17. Carbon exchange and venting anomalies in an upland deciduous forest in northern Wisconsin, USA

    Treesearch

    Bruce D. Cook; Kenneth J. Davis; Weiguo Wang; Ankur Desai; Bradford W. Berger; Ron M. Teclaw; Jonathan G. Martin; Paul V. Bolstad; Peter S. Bakwin; Chuixiang Yi; Warren Heilman

    2004-01-01

    Turbulent fluxes of carbon, water vapor, and temperature were continuously measured above an upland forest in north central Wisconsin during 1999 and 2000 using the eddy covariance method. Maple (Acer saccharum), basswood (Tilia americana), and green ash (Fraxinus pennsylvanica) species found in this forest...

  18. EVALUATION OF FOREST CANOPY MODELS FOR ESTIMATING ISOPRENE EMISSIONS

    EPA Science Inventory

    During the summer of 1992, isoprene emissions were measured in a mixed deciduous forest near Oak Ridge, Tennessee. Measurements were aimed at the experimental scale-up of emissions from the leaf level to the forest canopy to the mixed layer. Results from the scale-up study are co...

  19. Role of natural organic matter on iodine and (239)(,240)Pu distribution and mobility in environmental samples from the northwestern Fukushima Prefecture, Japan.

    PubMed

    Xu, Chen; Zhang, Saijin; Sugiyama, Yuko; Ohte, Nobuhito; Ho, Yi-Fang; Fujitake, Nobuhide; Kaplan, Daniel I; Yeager, Chris M; Schwehr, Kathleen; Santschi, Peter H

    2016-03-01

    In order to assess how environmental factors are affecting the distribution and migration of radioiodine and plutonium that were emitted from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, we quantified iodine and (239,240)Pu concentration changes in soil samples with different land uses (urban, paddy, deciduous forest and coniferous forest), as well as iodine speciation in surface water and rainwater. Sampling locations were 53-63 km northwest of the FDNPP within a 75-km radius, in close proximity of each other. A ranking of the land uses by their surface soil (<4 cm) stable (127)I concentrations was coniferous forest > deciduous forest > urban > paddy, and (239,240)Pu concentrations ranked as deciduous forest > coniferous forest > paddy ≥ urban. Both were quite distinct from that of (134)Cs and (137)Cs: urban > coniferous forest > deciduous forest > paddy, indicating differences in their sources, deposition phases, and biogeochemical behavior in these soil systems. Although stable (127)I might not have fully equilibrated with Fukushima-derived (129)I, it likely still works as a proxy for the long-term fate of (129)I. Surficial soil (127)I content was well correlated to soil organic matter (SOM) content, regardless of land use type, suggesting that SOM might be an important factor affecting iodine biogeochemistry. Other soil chemical properties, such as Eh and pH, had strong correlations to soil (127)I content, but only within a given land use (e.g., within urban soils). Organic carbon (OC) concentrations and Eh were positively, and pH was negatively correlated to (127)I concentrations in surface water and rain samples. It is also noticeable that (127)I in the wet deposition was concentrated in both the deciduous and coniferous forest throughfall and stemfall water, respectively, comparing to the bulk rainwater. Further, both forest throughfall and stemflow water consisted exclusively of organo-iodine, suggesting all inorganic iodine in the original bulk deposition (∼ 28.6% of total iodine) have been completely converted to organo-iodine. Fukushima-derived (239,240)Pu was detectable at a distance ∼ 61 km away, NW of FDNPP. However, it is confined to the litter layer, even three years after the FDNPP accident-derived emissions. Plutonium-239,240 activities were significantly correlated with soil OC and nitrogen contents, indicating Pu may be associated with nitrogen-containing SOM, similar to what has been observed at other locations in the United States. Together, these finding suggest that natural organic matter (NOM) plays a key role in affecting the fate and transport of I and Pu and may warrant greater consideration for predicting long-term stewardship of contaminated areas and evaluating various remediation options in Japan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Treesearch

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

  1. Towards the harmonization between National Forest Inventory and Forest Condition Monitoring. Consistency of plot allocation and effect of tree selection methods on sample statistics in Italy.

    PubMed

    Gasparini, Patrizia; Di Cosmo, Lucio; Cenni, Enrico; Pompei, Enrico; Ferretti, Marco

    2013-07-01

    In the frame of a process aiming at harmonizing National Forest Inventory (NFI) and ICP Forests Level I Forest Condition Monitoring (FCM) in Italy, we investigated (a) the long-term consistency between FCM sample points (a subsample of the first NFI, 1985, NFI_1) and recent forest area estimates (after the second NFI, 2005, NFI_2) and (b) the effect of tree selection method (tree-based or plot-based) on sample composition and defoliation statistics. The two investigations were carried out on 261 and 252 FCM sites, respectively. Results show that some individual forest categories (larch and stone pine, Norway spruce, other coniferous, beech, temperate oaks and cork oak forests) are over-represented and others (hornbeam and hophornbeam, other deciduous broadleaved and holm oak forests) are under-represented in the FCM sample. This is probably due to a change in forest cover, which has increased by 1,559,200 ha from 1985 to 2005. In case of shift from a tree-based to a plot-based selection method, 3,130 (46.7%) of the original 6,703 sample trees will be abandoned, and 1,473 new trees will be selected. The balance between exclusion of former sample trees and inclusion of new ones will be particularly unfavourable for conifers (with only 16.4% of excluded trees replaced by new ones) and less for deciduous broadleaves (with 63.5% of excluded trees replaced). The total number of tree species surveyed will not be impacted, while the number of trees per species will, and the resulting (plot-based) sample composition will have a much larger frequency of deciduous broadleaved trees. The newly selected trees have-in general-smaller diameter at breast height (DBH) and defoliation scores. Given the larger rate of turnover, the deciduous broadleaved part of the sample will be more impacted. Our results suggest that both a revision of FCM network to account for forest area change and a plot-based approach to permit statistical inference and avoid bias in the tree sample composition in terms of DBH (and likely age and structure) are desirable in Italy. As the adoption of a plot-based approach will keep a large share of the trees formerly selected, direct tree-by-tree comparison will remain possible, thus limiting the impact on the time series comparability. In addition, the plot-based design will favour the integration with NFI_2.

  2. Hypholoma lateritium isolated from coarse woody debris, the forest floor, and mineral soil in a deciduous forest in New Hampshire

    Treesearch

    Therese A. Thompson; R. Greg Thorn; Kevin T. Smith

    2012-01-01

    Fungi in the Agaricomycetes (Basidiomycota) are the primary decomposers in temperate forests of dead wood on and in the forest soil. Through the use of isolation techniques selective for saprotrophic Agaricomycetes, a variety of wood decay fungi were isolated from a northern hardwood stand in the Bartlett Experimental Forest, New Hampshire, USA. In particular,

  3. Forest in My Neighborhood: An Exercise Using Aerial Photos to Engage Students in Forest Ecology & Land Use History

    ERIC Educational Resources Information Center

    Matlack, Glenn R.; McEwan, Ryan W.

    2008-01-01

    Human activity has profoundly altered the deciduous forest of the eastern United States. Modern forest is a patchwork of stands of varying ages, sizes, and shapes reflecting a complex history of land use. Much modern forest is nestled in and around human communities, and faces the threat of imminent clearance for residential and commercial…

  4. Reconstructing European forest management from 1600 to 2010

    NASA Astrophysics Data System (ADS)

    McGrath, M. J.; Luyssaert, S.; Meyfroidt, P.; Kaplan, J. O.; Buergi, M.; Chen, Y.; Erb, K.; Gimmi, U.; McInerney, D.; Naudts, K.; Otto, J.; Pasztor, F.; Ryder, J.; Schelhaas, M.-J.; Valade, A.

    2015-04-01

    European forest use for fuel, timber and food dates back to pre-Roman times. Century-scale ecological processes and their legacy effects require accounting for forest management when studying today's forest carbon sink. Forest management reconstructions that are used to drive land surface models are one way to quantify the impact of both historical and today's large scale application of forest management on today's forest-related carbon sink and surface climate. In this study we reconstruct European forest management from 1600 to 2010 making use of diverse approaches, data sources and assumptions. Between 1600 and 1828, a demand-supply approach was used in which wood supply was reconstructed based on estimates of historical annual wood increment and land cover reconstructions. For the same period demand estimates accounted for the fuelwood needed in households, wood used in food processing, charcoal used in metal smelting and salt production, timber for construction and population estimates. Comparing estimated demand and supply resulted in a spatially explicit reconstruction of the share of forests under coppice, high stand management and forest left unmanaged. For the reconstruction between 1829 and 2010 a supply-driven back-casting method was used. The method used age reconstructions from the years 1950 to 2010 as its starting point. Our reconstruction reproduces the most important changes in forest management between 1600 and 2010: (1) an increase of 593 000 km2 in conifers at the expense of deciduous forest (decreasing by 538 000 km2), (2) a 612 000 km2 decrease in unmanaged forest, (3) a 152 000 km2 decrease in coppice management, (4) a 818 000 km2 increase in high stand management, and (5) the rise and fall of litter raking which at its peak in 1853 removed 50 Tg dry litter per year.

  5. Application of satellite data and LARS's data processing techniques to mapping vegetation of the Dismal Swamp. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Messmore, J. A.

    1976-01-01

    The feasibility of using digital satellite imagery and automatic data processing techniques as a means of mapping swamp forest vegetation was considered, using multispectral scanner data acquired by the LANDSAT-1 satellite. The site for this investigation was the Dismal Swamp, a 210,000 acre swamp forest located south of Suffolk, Va. on the Virginia-North Carolina border. Two basic classification strategies were employed. The initial classification utilized unsupervised techniques which produced a map of the swamp indicating the distribution of thirteen forest spectral classes. These classes were later combined into three informational categories: Atlantic white cedar (Chamaecyparis thyoides), Loblolly pine (Pinus taeda), and deciduous forest. The subsequent classification employed supervised techniques which mapped Atlantic white cedar, Loblolly pine, deciduous forest, water and agriculture within the study site. A classification accuracy of 82.5% was produced by unsupervised techniques compared with 89% accuracy using supervised techniques.

  6. Chilean and Southeast Pacific paleoclimate variations during the last glacial cycle: directly correlated pollen and δ18O records from ODP Site 1234

    NASA Astrophysics Data System (ADS)

    Heusser, Linda; Heusser, Cal; Mix, Alan; McManus, Jerry

    2006-12-01

    Joint pollen and oxygen isotope data from Ocean Drilling Program Site 1234 in the southeast Pacific provide the first, continuous record of temperate South American vegetation and climate from the last 140 ka. Located at ˜36°S, ˜65 km offshore of Concepcion, Chile, Site 1234 monitors the climatic transition zone between northern semi-arid, summer dry-winter wet climate and southern year-round, rainy, cool temperate climate. Dominance of onshore winds suggests that pollen preserved here reflects transport to the ocean via rivers that drain the region and integrate conditions from the coastal mountains to the Andean foothills. Down-hole changes in diagnostic pollen assemblages from xeric lowland deciduous forest (characterized by grasses, herbs, ferns, and trees such as deciduous beech, Nothofagus obliqua), mesic Valdivian Evergreen Forest (including conifers such as the endangered Prumnopitys andina), and Subantarctic Evergreen Rainforest (comprised primarily of southern beech, N. dombeyi) reveal large rapid shifts that likely reflect latitudinal movements in atmospheric circulation and storm tracks associated with the southern westerly winds. During glacial intervals (MIS 2-4, and 6), rainforests and parkland dominated by Nothofagus moved northward into the region. At the MIS 6/5e transition, coeval with the rapid shift to lower isotopic values, rainforest vegetation was rapidly replaced by xeric plant communities associated with Mediterranean-type climate. An increased prominence of halophytic vegetation suggests that MIS 5e was more arid and possibly warmer than MIS 1. Although rainforest pollen rises again at the end of MIS 5e, lowland deciduous forest pollen persists through MIS 5d and 5c, into MIS 5b. Substantial millennial-scale variations occur in both interglacial and glacial regimes, attesting to the sensitivity of the southern westerly belt to climate change. Comparison of the cool, mesic N. dombeyi rainforest assemblage from Site 1234 with δ18O in the Byrd Ice core shows that on time scales longer than ˜10 ka, cool-moist conditions in central Chile were coherent with and occurred in phase with Antarctic cooling. This is also likely at millennial scales, although rainforest pollen lags Antarctic cooling with exponential response times of about 1000 years, which plausibly reflects the ecological response time to regional climate change.

  7. Quantification of soil respiration in forest ecosystems across China

    NASA Astrophysics Data System (ADS)

    Song, Xinzhang; Peng, Changhui; Zhao, Zhengyong; Zhang, Zhiting; Guo, Baohua; Wang, Weifeng; Jiang, Hong; Zhu, Qiuan

    2014-09-01

    We collected 139 estimates of the annual forest soil CO2 flux and 173 estimates of the Q10 value (the temperature sensitivity) assembled from 90 published studies across Chinese forest ecosystems. We analyzed the annual soil respiration (Rs) rates and the temperature sensitivities of seven forest ecosystems, including evergreen broadleaf forests (EBF), deciduous broadleaf forests (DBF), broadleaf and needleleaf mixed forests (BNMF), evergreen needleleaf forests (ENF), deciduous needleleaf forests (DNF), bamboo forests (BF) and shrubs (SF). The results showed that the mean annual Rs rate was 33.65 t CO2 ha-1 year-1 across Chinese forest ecosystems. Rs rates were significantly different (P < 0.001) among the seven forest types, and were significantly and positively influenced by mean annual temperature (MAT), mean annual precipitation (MAP), and actual evapotranspiration (AET); but negatively affected by latitude and elevation. The mean Q10 value of 1.28 was lower than the world average (1.4-2.0). The Q10 values derived from the soil temperature at a depth of 5 cm varied among forest ecosystems by an average of 2.46 and significantly decreased with the MAT but increased with elevation and latitude. Moreover, our results suggested that an artificial neural network (ANN) model can effectively predict Rs across Chinese forest ecosystems. This study contributes to better understanding of Rs across Chinese forest ecosystems and their possible responses to global warming.

  8. The Abundance of Salamanders in Forest Stands with Different Histories of Disturbance

    Treesearch

    F. Harvey Pough; Donald H. Rhodes; Andres Collazo

    1987-01-01

    Because of the importance of salamanders in forest food chains, the effects of forest management practices on populations of these animals warrant consideration. We compared the numbers and activity patterns of salamanders in areas of a deciduous forest in central New York State that had been cut selectively for firewood, or c1earcut, or planted with conifers. Numbers...

  9. Will more nitrogen enhance carbon storage in young forest stands in central Appalachia?

    Treesearch

    Zachariah K. Fowler; Mary Beth Adams; William T. Peterjohn

    2015-01-01

    Many temperate deciduous forests in the Eastern US are secondary, regrowing forests and have experienced decades of elevated inputs of acidic compounds and biologically available nitrogen (N) from the atmosphere. These young forests play an important role in the global carbon (C) cycle as C sinks, and it is possible that acidic deposition will influence the strength...

  10. Spread of an invasive grass in closed-canopy deciduous forests across local and regional environmental gradients

    Treesearch

    Cynthia D. Huebner

    2010-01-01

    Spread of Microstegium vimineum, an invasive exotic grass, in closed-canopy forests of West Virginia, U.S. was evaluated across a local (roadside to forest interior) and regional (across two geographic provinces) environmental gradient. Seed dispersal distances from roadside populations into forest interiors based on seed rain and soil seed bank data...

  11. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years

    PubMed Central

    Kelly, Ryan; Chipman, Melissa L.; Higuera, Philip E.; Stefanova, Ivanka; Brubaker, Linda B.; Hu, Feng Sheng

    2013-01-01

    Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000–3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000–500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate–fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming. PMID:23878258

  12. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years.

    PubMed

    Kelly, Ryan; Chipman, Melissa L; Higuera, Philip E; Stefanova, Ivanka; Brubaker, Linda B; Hu, Feng Sheng

    2013-08-06

    Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000-3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000-500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate-fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming.

  13. Spatial and temporal trends in distribution of forest fires in Central and Eastern Europe

    Treesearch

    Ryszard Szczygieł; Barbara Ubysz; Tomasz Zawiła-Niedźwiecki

    2009-01-01

    Forest in Central and Eastern Europe (CEE) covers 56,285,000 ha (5% of European total forested area). Forest cover in CEE makes 30% of land use. Almost 50% of the forest under study is formed by coniferous species and only 30% by deciduous ones. Forest younger than 60 years old grows on 57% of that area. These factors, together with climate conditions cause that on the...

  14. Influence of vegetation structure on lidar-derived canopy height and fractional cover in forested riparian buffers during leaf-off and leaf-on conditions.

    PubMed

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available.

  15. Statewide land cover derived from multiseasonal Landsat TM data: A retrospective of the WISCLAND project

    USGS Publications Warehouse

    Reese, H.M.; Lillesand, T.M.; Nagel, D.E.; Stewart, J.S.; Goldmann, R.A.; Simmons, T.E.; Chipman, J.W.; Tessar, P.A.

    2002-01-01

    Landsat Thematic Mapper (TM) data were the basis in production of a statewide land cover data set for Wisconsin, undertaken in partnership with U.S. Geological Survey's (USGS) Gap Analysis Program (GAP). The data set contained seven classes comparable to Anderson Level I and 24 classes comparable to Anderson Level II/III. Twelve scenes of dual-date TM data were processed with methods that included principal components analysis, stratification into spectrally consistent units, separate classification of upland, wetland, and urban areas, and a hybrid supervised/unsupervised classification called "guided clustering." The final data had overall accuracies of 94% for Anderson Level I upland classes, 77% for Level II/III upland classes, and 84% for Level II/III wetland classes. Classification accuracies for deciduous and coniferous forest were 95% and 93%, respectively, and forest species' overall accuracies ranged from 70% to 84%. Limited availability of acceptable imagery necessitated use of an early May date in a majority of scene pairs, perhaps contributing to lower accuracy for upland deciduous forest species. The mixed deciduous/coniferous forest class had the lowest accuracy, most likely due to distinctly classifying a purely mixed class. Mixed forest signatures containing oak were often confused with pure oak. Guided clustering was seen as an efficient classification method, especially at the tree species level, although its success relied in part on image dates, accurate ground troth, and some analyst intervention. ?? 2002 Elsevier Science Inc. All rights reserved.

  16. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    PubMed Central

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  17. Fleshy fruit characteristics in a temperate deciduous forest of Japan: how unique are they?

    PubMed

    Masaki, Takashi; Takahashi, Kazuaki; Sawa, Ayako; Kado, Tomoyuki; Naoe, Shoji; Koike, Shinsuke; Shibata, Mitsue

    2012-01-01

    This study investigated the fleshy fruit characteristics of 28 woody species in a Japanese temperate forest where large sedentary seed-dispersing mammals are present. We tested whether the findings in previous studies in temperate forests of Europe and North America are universal or not. Results have suggested that fruits of all species were eaten both by birds and mammals except for four species with larger fruits, which were eaten only by mammals. A gradient was found from a syndrome characterized by small, oily, and large-seeded fruits to a syndrome characterized by large, succulent, non-oily, and small-seeded fruits. The sizes and colors of the fruits were not conspicuously different from previous findings in Europe and North America. On the other hand, nitrogen and lipids in the fleshy part did not show seasonally increasing trends, or even seasonally decreasing trends in terms of dry weight. This result, suggesting the absence of community-level adaptation of fruit traits to migratory bird dispersers, contrasted with findings in Europe and North America. Large sedentary arboreal or tree-climbing mammals may have a greater effect on the evolution of fruit-disperser relations than opportunistic migratory birds.

  18. Strategic management of five deciduous forest invaders using Microstegium vimineum as a model species

    Treesearch

    Cynthia D. Huebner

    2007-01-01

    This paper links key plant invasive traits with key landscape traits to define strategic management for five common forest invaders, using empirical data of Microstegium vimineum dispersal into forests as a preliminary model. Microstegium vimineum exhibits an Allee effect that may allow management to focus on treating its source...

  19. A nondestructive technique to monitor the relative abundance of terrestrial salamanders

    Treesearch

    Richard M. DeGraaf; Mariko Yamasaki

    1992-01-01

    Salamanders are abundant vertebrates in many forest ecosystems, and their annual biomass production can be important in forest food webs (Pough et al. 1987). Population densities of eastern redback salamanders (Plethodon cinereus) can exceed 2 individuals/m2 in deciduous forests of the United States (Heatwole 1962, Jaeger 1980...

  20. Factors influencing avian habitat selection between oak-hickory and mesic forests in southern Illinois

    Treesearch

    Kevin P. Sierzega; Michael W. Eichholz

    2014-01-01

    Oak (Quercus spp.) regeneration has declined drastically over the past century in eastern deciduous forests predominantly because of decreased disturbance (i.e., fire). Many forests are undergoing mesophication, a positive feedback system that occurs within closed-canopy systems wherein shade-tolerant, late successional, mesic species such as maples...

  1. Introduction, study area description, and experimental design

    Treesearch

    Elaine Kennedy Sutherland; Todd F. Hutchinson; Daniel A. Yaussy

    2003-01-01

    Throughout much of the Eastern Deciduous Forest, the sustainability of oak-dominated forests is threatened by poor oak regeneration as other tree species increase in abundance. Historically, fire was a frequent process in oak-dominated ecosystems (savannas, woodlands, open-structured forests) as Native Americans and then Euro-American settlers used fire for a variety...

  2. Forest management and nutrient cycling in eastern hardwoods

    Treesearch

    James H. Patric; David W. Smith

    1975-01-01

    The literature was reviewed for reports on nutrient cycling in the eastern deciduous forest, particularly with respect to nitrogen, and for effects of forest management on the nutrient cycle. Although most such research has dealt with conifers, a considerable body of literature relates to hardwoods. Usually, only those references that dealt quantitatively with nutrient...

  3. Refining the oak-fire hypothesis for management of oak-dominated forests of the eastern United States

    Treesearch

    Mary A. Arthur; Heather D. Alexander; Daniel C. Dey; Callie J. Schweitzer; David L. Loftis

    2012-01-01

    Prescribed fires are increasingly implemented throughout eastern deciduous forests to accomplish various management objectives, including maintenance of oak-dominated (Quercus spp.) forests. Despite a regional research-based understanding of prehistoric and historic fire regimes, a parallel understanding of contemporary fire use to preserve oak...

  4. Using pan-tropical biomass maps to improve IPCC Tier 1 default level emission factors - a case study for the Democratic Republic of the Congo (DRC)

    NASA Astrophysics Data System (ADS)

    Langner, Andreas; Achard, Frédéric; Grassi, Giacomo

    2014-05-01

    The IPCC proposes three Tier levels for greenhouse gas emission monitoring with a hierarchical order in terms of accuracy as well as data requirements/complexity. While Tier 1 provides default above-ground biomass (AGB) values per ecological zone and continent, Tier 2 and 3 are either based on country-specific remote sensing or permanent sample-plot data. Due to missing capacities most developing countries have to rely on Tier 1 default values, which show highest uncertainties. Furthermore, IPCC Tier 1 values lack transparency as they are based on a variety of studies that have been repeatedly updated and combined with expert opinions, thus blurring the original data sources. A possible way to increase credibility is a conservative monitoring approach, following the principle of conservativeness, thus reducing the likelihood of unjustified payments for emission reductions not reflecting reality. For the implementation of that principle knowledge about the distribution of the biomass within each ecological zone is essential. However, such information is not available for the IPCC Tier 1 values, which only provide mean values and/or AGB ranges that are not based on a common statistical analysis. Using the pan-tropical datasets of Saatchi et al (Proc Natl Acad Sci USA, 108, 9899-9904, 2011; 1km spatial resolution) and Baccini et al (Nat Climate Change, 2:182-185, 2012; 500m spatial resolution) we calculated the mean AGB values as well as their 50% confidence intervals for each ecological zone within the DRC using Globcover2009 as forest/non-forest mask and the FAO ecological zones dataset. Such analysis is more transparent while at the same time leading to "statistically improved" Tier 1 values, potentially allowing a conservative monitoring approach by selecting the lower bound of the confidence interval for emission estimation during the reference period and the higher bound for the assessment period. Within the DRC Baccini generally delivers higher AGB estimates than Saatchi but even Baccini shows between 81t/ha and 143t/ha lower estimates for Tropical Rain Forests and Moist Deciduous Forests respectively than IPCC. While the AGB values for Tropical Dry Forest of both maps are similar to the IPCC, Tropical Mountain Systems cannot easily be compared as their IPCC data lack a mean value. A recent study by Mitchard et al (Carbon Balance and Management, 8, 10, 2013) compared both pan-tropical datasets, pointing out notable differences in the Congo basin. However, their analysis revealed that none of both maps is generally superior. Therefore, we suggest using the average of both maps as a reasonable approximation to the real but unknown AGB values, thus resulting in 213±69t/ha for Tropical Rain Forests, 94±19t/ha for Moist Deciduous Forests, 119±31t/ha for Tropical Dry Forests and 182±61t/ha for Tropical Mountain Systems of the DRC while the corresponding IPCC values are 310t/ha, 260t/ha, 120t/ha and 40-190t/ha.

  5. The effect of interspecific variation in photosynthetic plasticity on 4-year growth rate and 8-year survival of understorey tree seedlings in response to gap formations in a cool-temperate deciduous forest.

    PubMed

    Oguchi, Riichi; Hiura, Tsutom; Hikosaka, Kouki

    2017-08-01

    Gap formation increases the light intensity in the forest understorey. The growth responses of seedlings to the increase in light availability show interspecific variation, which is considered to promote biodiversity in forests. At the leaf level, some species increase their photosynthetic capacity in response to gap formation, whereas others do not. Here we address the question of whether the interspecific difference in the photosynthetic response results in the interspecific variation in the growth response. If so, the interspecific difference in photosynthetic response would also contribute to species coexistence in forests. We also address the further relevant question of why some species do not increase their photosynthetic capacity. We assumed that some cost of photosynthetic plasticity may constrain acquisition of the plasticity in some species, and hypothesized that species with larger photosynthetic plasticity exhibit better growth after gap formation and lower survivorship in the shade understorey of a cool-temperate deciduous forest. We created gaps by felling canopy trees and studied the relationship between the photosynthetic response and the subsequent growth rate of seedlings. Naturally growing seedlings of six deciduous woody species were used and their mortality was examined for 8 years. The light-saturated rate of photosynthesis (Pmax) and the relative growth rate (RGR) of the seedlings of all study species increased at gap plots. The extent of these increases varied among the species. The stimulation of RGR over 4 years after gap formation was strongly correlated with change in photosynthetic capacity of newly expanded leaves. The increase in RGR and Pmax correlated with the 8-year mortality at control plots. These results suggest a trade-off between photosynthetic plasticity and the understorey shade tolerance. Gap-demanding species may acquire photosynthetic plasticity, sacrificing shade tolerances, whereas gap-independent species may acquire shade tolerances, sacrificing photosynthetic plasticity. This strategic difference among species would contribute to species coexistence in cool-temperate deciduous forests. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Diurnal and Seasonal Trends in Canopy Transpiration and Conductance of Pristine Forest Types in Belize, Central America

    NASA Technical Reports Server (NTRS)

    Zimmermann, R.; Oren, R.; Billings, S.; Muller-Ezards, C.; Schaaff, C.; Strohmeier, P.; Obermaier, E.

    1994-01-01

    Five semi-deciduous broadleaf forest types growing over tropical karst in Belize, Central America, were monitored for three years to study diurnal and seasonal changes of transpiration and micro-meteorologic conditions.

  7. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    DOE PAGES

    Gu, Lianhong; Huang, Ni; Black, T. Andrew; ...

    2015-11-23

    Soil respiration (R s), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this article, we proposed a methodology for the remote estimation of annual R s at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest).

  8. Germination, survival, and early growth of three invasive plants in response to five forest management regimes common to US northeastern deciduous forests

    Treesearch

    Cynthia D. Huebner; Adam E. Regula; David W. McGill

    2018-01-01

    The association between invasive plants and disturbance is well-documented. Most forest management regimes include disturbance (i.e., harvesting and fire) to improve regeneration of native plants, such as oaks. There is a need for land managers of northeastern forests to foster regeneration of native species without promoting invasive species establishment. We...

  9. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    Treesearch

    Jessica R. Miesel; William C. Hockaday; Randy Kolka; Philip A. Townsend

    2015-01-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition...

  10. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

    PubMed Central

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

    2016-01-01

    The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests. PMID:27974832

  11. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

    2016-12-01

    The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests.

  12. A millennium of Mediterranean climate change and forest history in central Italy

    NASA Astrophysics Data System (ADS)

    Mensing, S. A.; Tunno, I.; Piovesan, G.

    2010-12-01

    A 1100 year sedimentary sequence from a lake in central Italy near Rome (Lago Lungo, Lazio, 379 m a.s.l.) was sampled for pollen and charcoal at an average interval of 26 years providing a high-resolution reconstruction of vegetation from 885 AD to the present. Pollen percentages support historical documents that describe periodic deforestation and agricultural expansion during the Medieval Climate Anomaly (MCA). Forests recovered about 1400 AD following depopulation associated with the black plague and socio-economic instability and a shift to cool wet climate during the Little Ice Age (LIA). Mixed deciduous forest reached a maximum in 1550 AD, approximately one century later than many sites across Western Europe. A less diverse less dense forest emerged after 1650 AD following the plague of 1656 AD. There is no evidence that excessive cutting, burning and erosion during the medieval period caused permanent degradation of the landscape. Forests appear to have recovered rapidly when land use declined and climate became favorable. Comparison of the pollen data with reconstructed Palmer Drought Severity Index (PDSI) of Morocco and North Atlantic Oscillation (NAO) indicate periods of deforestation and woodland regeneration coincide with climate change. During warm dry climate, deforestation accelerated and agriculture expanded, and during extended cool wet climate, conditions for cereal cultivation deteriorated, forests and wetland expanded, and the local agricultural system collapsed. These results show that in the Mediterranean, collapse of local agricultural systems may also occur during extended periods of cool/wet climate.

  13. Vulnerability of forest vegetation to anthropogenic climate change in China.

    PubMed

    Wan, Ji-Zhong; Wang, Chun-Jing; Qu, Hong; Liu, Ran; Zhang, Zhi-Xiang

    2018-04-15

    China has large areas of forest vegetation that are critical to biodiversity and carbon storage. It is important to assess vulnerability of forest vegetation to anthropogenic climate change in China because it may change the distributions and species compositions of forest vegetation. Based on the equilibrium assumption of forest communities across different spatial and temporal scales, we used species distribution modelling coupled with endemics-area relationship to assess the vulnerability of 204 forest communities across 16 vegetation types under different climate change scenarios in China. By mapping the vulnerability of forest vegetation to climate change, we determined that 78.9% and 61.8% of forest vegetation should be relatively stable in the low and high concentration scenarios, respectively. There were large vulnerable areas of forest vegetation under anthropogenic climate change in northeastern and southwestern China. The vegetation of subtropical mixed broadleaf evergreen and deciduous forest, cold-temperate and temperate mountains needleleaf forest, and temperate mixed needleleaf and broadleaf deciduous forest types were the most vulnerable under climate change. Furthermore, the vulnerability of forest vegetation may increase due to high greenhouse gas concentrations. Given our estimates of forest vegetation vulnerability to anthropogenic climate change, it is critical that we ensure long-term monitoring of forest vegetation responses to future climate change to assess our projections against observations. We need to better integrate projected changes of temperature and precipitation into climate-adaptive conservation strategies for forest vegetation in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Low volume undiluted Btk application against heavy gypsy moth population densities in southern Corsica

    Treesearch

    Robert A. Fusco; Jean-Claude Martin

    2003-01-01

    Low volume undiluted applications of Bacillus thuringiensis are common and efficacious against coniferous forest pests such as pine processionary moth and spruce budworm, but have not been common practice against deciduous forest pests due to coverage issues.

  15. Reconstructing European forest management from 1600 to 2010

    NASA Astrophysics Data System (ADS)

    McGrath, M. J.; Luyssaert, S.; Meyfroidt, P.; Kaplan, J. O.; Bürgi, M.; Chen, Y.; Erb, K.; Gimmi, U.; McInerney, D.; Naudts, K.; Otto, J.; Pasztor, F.; Ryder, J.; Schelhaas, M.-J.; Valade, A.

    2015-07-01

    Because of the slow accumulation and long residence time of carbon in biomass and soils, the present state and future dynamics of temperate forests are influenced by management that took place centuries to millennia ago. Humans have exploited the forests of Europe for fuel, construction materials and fodder for the entire Holocene. In recent centuries, economic and demographic trends led to increases in both forest area and management intensity across much of Europe. In order to quantify the effects of these changes in forests and to provide a baseline for studies on future land-cover-climate interactions and biogeochemical cycling, we created a temporally and spatially resolved reconstruction of European forest management from 1600 to 2010. For the period 1600-1828, we took a supply-demand approach, in which supply was estimated on the basis of historical annual wood increment and land cover reconstructions. We made demand estimates by multiplying population with consumption factors for construction materials, household fuelwood, industrial food processing and brewing, metallurgy, and salt production. For the period 1829-2010, we used a supply-driven backcasting method based on national and regional statistics of forest age structure from the second half of the 20th century. Our reconstruction reproduces the most important changes in forest management between 1600 and 2010: (1) an increase of 593 000 km2 in conifers at the expense of deciduous forest (decreasing by 538 000 km2); (2) a 612 000 km2 decrease in unmanaged forest; (3) a 152 000 km2 decrease in coppice management; (4) a 818 000 km2 increase in high-stand management; and (5) the rise and fall of litter raking, which at its peak in 1853 resulted in the removal of 50 Tg dry litter per year.

  16. Evaluation and prediction of shrub cover in coastal Oregon forests (USA)

    Treesearch

    Becky K. Kerns; Janet L. Ohmann

    2004-01-01

    We used data from regional forest inventories and research programs, coupled with mapped climatic and topographic information, to explore relationships and develop multiple linear regression (MLR) and regression tree models for total and deciduous shrub cover in the Oregon coastal province. Results from both types of models indicate that forest structure variables were...

  17. EAB induced tree mortality impacts ecosystem respiration and tree water use in an experimental forest

    Treesearch

    Charles E. Flower; Douglas J. Lynch; Kathleen S. Knight; Miquel A. Gonzales-Meler

    2011-01-01

    The invasive emerald ash borer (Agrilus planipennis Fairmaire, EAB) has been spreading across the forest landscape of the Midwest resulting in the rapid decline of ash trees (Fraxinus spp.). Ash trees represent a dominant riparian species in temperate deciduous forests of the Eastern United States (USDA FIA Database). Prior...

  18. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years

    Treesearch

    Ilyas Siddique; Vera Lex Engel; David Lamb; Gabriela B. Nardoto; Jean P.H.B. Ometto; Luiz A. Martinelli; Susanne Schmidt

    2008-01-01

    Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations...

  19. Monitoring Insects to Maintain Biodiversity in Ogawa Forest Reserve

    Treesearch

    S. Makino; T. Inoue; K. Hamaguchi; K. Okabe; I. Okochi; H. Tanaka; H. Goto; M. Hasegawa; M. Sueyoshi

    2006-01-01

    The results of a biodiversity monitoring program conducted in the Ogawa Forest Reserve and its vicinity, situated in a temperate region of Japan, identified three different patterns for species richness. Forests of the region are characterized by a mosaic of secondary deciduous stands of various ages scattered among plantations of conifers. The three different types of...

  20. Soluble organic and inorganic nutrient fluxes in clearcut and mature deciduous forests

    Treesearch

    R.G. Qualls; B.L. Haines; W.T. Swank; S.W. Tyler

    2000-01-01

    The mechanisms by which forest ecosystems retain or lose soluble inorganic nutrients after disturbance are well known, but substantial amounts of soluble organic nutrients may also be released from cut vegetation. Our objective was to compare the leaching of dissolved organic and inorganic nutrients in cut and mature forest stands and to develop hypotheses about...

  1. Vertical distribution and seasonality of predatory wasps (Hymenoptera: Vespidae) in a temperate deciduous forest

    Treesearch

    Michael D. Ulyshen; Villu Soon; James L. Hanula

    2011-01-01

    Efforts to investigate the vertical dimension of forests continue to refine our thinking on issues of biodiversity and ecology. Arthropod communities exhibit a high degree of vertical stratification in forests worldwide but the vertical distribution patterns of most taxa remain largely unexplored or poorly understood. For example, only 2 studies provide information on...

  2. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests

    Treesearch

    Andrew D. Richardson; David Y. Hollinger; D. Bryan Dail; John T. Lee; J. William Munger; John O' Keefe

    2009-01-01

    Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface-atmosphere CO2 exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux...

  3. Litterfall in the hardwood forest of a minor alluvial-floodplain

    Treesearch

    Calvin E. Meier; John A. Stanturf; Emile S. Gardiner

    2006-01-01

    within mature deciduous forests, annual development of foliar biomass is a major component of aboveground net primary production and nutrient demand. As litterfall, this same foliage becomes a dominant annual transfer of biomass and nutrients to the detritus pathway. We report litterfall transfers of a mature bottomland hardwood forest in a minor alluvial-floodplain...

  4. Establishment of an invasive grass in closed-canopy deciduous forests across local and regional environmental gradients

    Treesearch

    Cynthia D. Huebner

    2010-01-01

    Establishment of Microstegium vimineum, an invasive exotic grass, in closed-canopy U.S. eastern forests was evaluated across a local (roadside to forest interior) and regional (across two geographic provinces) environmental gradient in West Virginia. The two geographic provinces were the Allegheny Plateau (more mesic) and the Ridge and Valley...

  5. Evaluation of land surface model representation of phenology: an analysis of model runs submitted to the NACP Interim Site Synthesis

    NASA Astrophysics Data System (ADS)

    Richardson, A. D.; Nacp Interim Site Synthesis Participants

    2010-12-01

    Phenology represents a critical intersection point between organisms and their growth environment. It is for this reason that phenology is a sensitive and robust integrator of the biological impacts of year-to-year climate variability and longer-term climate change on natural systems. However, it is perhaps equally important that phenology, by controlling the seasonal activity of vegetation on the land surface, plays a fundamental role in regulating ecosystem processes, competitive interactions, and feedbacks to the climate system. Unfortunately, the phenological sub-models implemented in most state-of-the-art ecosystem models and land surface schemes are overly simplified. We quantified model errors in the representation of the seasonal cycles of leaf area index (LAI), gross ecosystem photosynthesis (GEP), and net ecosystem exchange of CO2. Our analysis was based on site-level model runs (14 different models) submitted to the North American Carbon Program (NACP) Interim Synthesis, and long-term measurements from 10 forested (5 evergreen conifer, 5 deciduous broadleaf) sites within the AmeriFlux and Fluxnet-Canada networks. Model predictions of the seasonality of LAI and GEP were unacceptable, particularly in spring, and especially for deciduous forests. This is despite an historical emphasis on deciduous forest phenology, and the perception that controls on spring phenology are better understood than autumn phenology. Errors of up to 25 days in predicting “spring onset” transition dates were common, and errors of up to 50 days were observed. For deciduous sites, virtually every model was biased towards spring onset being too early, and autumn senescence being too late. Thus, models predicted growing seasons that were far too long for deciduous forests. For most models, errors in the seasonal representation of deciduous forest LAI were highly correlated with errors in the seasonality of both GPP and NEE, indicating the importance of getting the underlying canopy dynamics correct. Most of the models in this comparison were unable to successfully predict the observed interannual variability in either spring or autumn transition dates. And, perhaps surprisingly, the seasonal cycles of models using phenology prescribed by remote sensing observations was, in general, no better than that that predicted by models with prognostic phenology. Reasons for the poor performance of both approaches will be discussed. These results highlight the need for improved understanding of the environmental controls on vegetation phenology. Existing models are unlikely to accurately predict future responses of phenology to climate change, and therefore will misrepresent the seasonality of key biosphere-atmosphere feedbacks and interactions in coupled model runs. New data sets, as for example from webcam-based monitoring networks (e.g. PhenoCam) or citizen science efforts (USA National Phenology Network) should prove valuable in this regard.

  6. Post-deposition early-phase migration and retention behavior of radiocesium in a litter-mineral soil system in a Japanese deciduous forest affected by the Fukushima nuclear accident.

    PubMed

    Koarashi, Jun; Nishimura, Syusaku; Nakanishi, Takahiro; Atarashi-Andoh, Mariko; Takeuchi, Erina; Muto, Kotomi

    2016-12-01

    The fate of radiocesium ( 137 Cs) derived from the Fukushima nuclear accident and associated radiation risks are largely dependent on its migration and retention behavior in the litter-soil system of Japanese forest ecosystems. However, this behavior has not been well quantified. We established field lysimeters in a Japanese deciduous broad-leaved forest soon after the Fukushima nuclear accident to continuously monitor the downward transfer of 137 Cs at three depths: the litter-mineral soil boundary and depths of 5 cm and 10 cm in the mineral soil. Observations were conducted at two sites within the forest from May 2011 to May 2015. Results revealed similar temporal and depth-wise variations in 137 Cs downward fluxes for both sites. The 137 Cs downward fluxes generally decreased year by year at all depths, indicating that 137 Cs was rapidly leached from the forest-floor litter layer and was then immobilized in the upper (0-5 cm) mineral soil layer through its interaction with clay minerals. The 137 Cs fluxes also showed seasonal variation, which was in accordance with variations in the throughfall and soil temperature at the sites. There was no detectable 137 Cs flux at a depth of 10 cm in the mineral soil in the third and fourth years after the accident. The decreased inventory of mobile (or bioavailable) 137 Cs observed during early stages after deposition indicates that the litter-soil system in the Japanese deciduous forest provides only a temporary source for 137 Cs recycling in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Moose habitat in Massachusetts: Assessing use at the southern edge of the range

    USGS Publications Warehouse

    Wattles, David W.; DeStefano, Stephen

    2013-01-01

    Moose (Alces alces) have recently re-occupied a portion of their range in the temperate deciduous forest of the northeastern United States after a more than 200 year absence. In southern New England, moose are exposed to a variety of forest types, increasing development, and higher ambient temperatures as compared to other parts of their geographic range. Additionally, large-scale disturbances that shape forest structure and expansive naturally occurring shrub-willow communities used commonly elsewhere are lacking. We used utilization distributions to determine third order habitat selection (selection within the home range) of GPS-collared moose. In central Massachusetts, forests regenerating from logging were the most heavily used cover type in all seasons (48 - 63% of core area use). Habitat use of moose in western Massachusetts varied more seasonally, with regenerating forests used most heavily in summer and fall (57 and 46%, respectively), conifer and mixed forests in winter (47 - 65%), and deciduous forests in spring (41%). This difference in habitat selection reflected the transition from northern forest types to more southern forest types across the state. The intensive use of patches of regenerating forest emphasizes the importance of sustainable forest harvesting to moose. This study provides the first assessment of habitat requirements in this southern portion of moose range and provides insights into re-establishment of moose in unoccupied portions of its historic range in New York and Pennsylvania.

  8. Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010

    PubMed Central

    Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhang, Geli; Roy, Partha Sarathi; Joshi, Pawan Kumar; Gilani, Hammad; Murthy, Manchiraju Sri Ramachandra; Jin, Cui; Wang, Jie; Zhang, Yao; Chen, Bangqian; Menarguez, Michael Angelo; Biradar, Chandrashekhar M.; Bajgain, Rajen; Li, Xiangping; Dai, Shengqi; Hou, Ying; Xin, Fengfei; Moore III, Berrien

    2016-01-01

    Extensive forest changes have occurred in monsoon Asia, substantially affecting climate, carbon cycle and biodiversity. Accurate forest cover maps at fine spatial resolutions are required to qualify and quantify these effects. In this study, an algorithm was developed to map forests in 2010, with the use of structure and biomass information from the Advanced Land Observation System (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) mosaic dataset and the phenological information from MODerate Resolution Imaging Spectroradiometer (MOD13Q1 and MOD09A1) products. Our forest map (PALSARMOD50 m F/NF) was assessed through randomly selected ground truth samples from high spatial resolution images and had an overall accuracy of 95%. Total area of forests in monsoon Asia in 2010 was estimated to be ~6.3 × 106 km2. The distribution of evergreen and deciduous forests agreed reasonably well with the median Normalized Difference Vegetation Index (NDVI) in winter. PALSARMOD50 m F/NF map showed good spatial and areal agreements with selected forest maps generated by the Japan Aerospace Exploration Agency (JAXA F/NF), European Space Agency (ESA F/NF), Boston University (MCD12Q1 F/NF), Food and Agricultural Organization (FAO FRA), and University of Maryland (Landsat forests), but relatively large differences and uncertainties in tropical forests and evergreen and deciduous forests. PMID:26864143

  9. Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010.

    PubMed

    Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhang, Geli; Roy, Partha Sarathi; Joshi, Pawan Kumar; Gilani, Hammad; Murthy, Manchiraju Sri Ramachandra; Jin, Cui; Wang, Jie; Zhang, Yao; Chen, Bangqian; Menarguez, Michael Angelo; Biradar, Chandrashekhar M; Bajgain, Rajen; Li, Xiangping; Dai, Shengqi; Hou, Ying; Xin, Fengfei; Moore, Berrien

    2016-02-11

    Extensive forest changes have occurred in monsoon Asia, substantially affecting climate, carbon cycle and biodiversity. Accurate forest cover maps at fine spatial resolutions are required to qualify and quantify these effects. In this study, an algorithm was developed to map forests in 2010, with the use of structure and biomass information from the Advanced Land Observation System (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) mosaic dataset and the phenological information from MODerate Resolution Imaging Spectroradiometer (MOD13Q1 and MOD09A1) products. Our forest map (PALSARMOD50 m F/NF) was assessed through randomly selected ground truth samples from high spatial resolution images and had an overall accuracy of 95%. Total area of forests in monsoon Asia in 2010 was estimated to be ~6.3 × 10(6 )km(2). The distribution of evergreen and deciduous forests agreed reasonably well with the median Normalized Difference Vegetation Index (NDVI) in winter. PALSARMOD50 m F/NF map showed good spatial and areal agreements with selected forest maps generated by the Japan Aerospace Exploration Agency (JAXA F/NF), European Space Agency (ESA F/NF), Boston University (MCD12Q1 F/NF), Food and Agricultural Organization (FAO FRA), and University of Maryland (Landsat forests), but relatively large differences and uncertainties in tropical forests and evergreen and deciduous forests.

  10. Common allometric response of open-grown leader shoots to tree height in co-occurring deciduous broadleaved trees

    PubMed Central

    Miyata, Rie; Kubo, Takuya; Nabeshima, Eri; Kohyama, Takashi S.

    2011-01-01

    Background and Aims Morphology of crown shoots changes with tree height. The height of forest trees is usually correlated with the light environment and this makes it difficult to separate the effects of tree size and of light conditions on the morphological plasticity of crown shoots. This paper addresses the tree-height dependence of shoot traits under full-light conditions where a tree crown is not shaded by other crowns. Methods Focus is given to relationships between tree height and top-shoot traits, which include the shoot's leaf-blades and non-leafy mass, its total leaf-blade area and the length and basal diameter of the shoot's stem. We examine the allometric characteristics of open-grown current-year leader shoots at the tops of forest tree crowns up to 24 m high and quantify their responses to tree height in 13 co-occurring deciduous hardwood species in a cool-temperate forest in northern Japan. Key Results Dry mass allocated to leaf blades in a leader shoot increased with tree height in all 13 species. Specific leaf area decreased with tree height. Stem basal area was almost proportional to total leaf area in a leader shoot, where the proportionality constant did not depend on tree height, irrespective of species. Stem length for a given stem diameter decreased with tree height. Conclusions In the 13 species observed, height-dependent changes in allometry of leader shoots were convergent. This finding suggests that there is a common functional constraint in tree-height development. Under full-light conditions, leader shoots of tall trees naturally experience more severe water stress than those of short trees. We hypothesize that the height dependence of shoot allometry detected reflects an integrated response to height-associated water stress, which contributes to successful crown expansion and height gain. PMID:21914698

  11. The impact of climate change on the distribution of two threatened Dipterocarp trees.

    PubMed

    Deb, Jiban C; Phinn, Stuart; Butt, Nathalie; McAlpine, Clive A

    2017-04-01

    Two ecologically and economically important, and threatened Dipterocarp trees Sal ( Shorea robusta ) and Garjan ( Dipterocarpus turbinatus ) form mono-specific canopies in dry deciduous, moist deciduous, evergreen, and semievergreen forests across South Asia and continental parts of Southeast Asia. They provide valuable timber and play an important role in the economy of many Asian countries. However, both Dipterocarp trees are threatened by continuing forest clearing, habitat alteration, and global climate change. While climatic regimes in the Asian tropics are changing, research on climate change-driven shifts in the distribution of tropical Asian trees is limited. We applied a bioclimatic modeling approach to these two Dipterocarp trees Sal and Garjan. We used presence-only records for the tree species, five bioclimatic variables, and selected two climatic scenarios (RCP4.5: an optimistic scenario and RCP8.5: a pessimistic scenario) and three global climate models (GCMs) to encompass the full range of variation in the models. We modeled climate space suitability for both species, projected to 2070, using a climate envelope modeling tool "MaxEnt" (the maximum entropy algorithm). Annual precipitation was the key bioclimatic variable in all GCMs for explaining the current and future distributions of Sal and Garjan (Sal: 49.97 ± 1.33; Garjan: 37.63 ± 1.19). Our models predict that suitable climate space for Sal will decline by 24% and 34% (the mean of the three GCMs) by 2070 under RCP4.5 and RCP8.5, respectively. In contrast, the consequences of imminent climate change appear less severe for Garjan, with a decline of 17% and 27% under RCP4.5 and RCP8.5, respectively. The findings of this study can be used to set conservation guidelines for Sal and Garjan by identifying vulnerable habitats in the region. In addition, the natural habitats of Sal and Garjan can be categorized as low to high risk under changing climates where artificial regeneration should be undertaken for forest restoration.

  12. [Changes of Forest Canopy Spectral Reflectance with Seasons in Lang Ya Mountains].

    PubMed

    Li, Wei-tao; Peng, Dao-li; Zhang, Yan; Wu, Jian; Chen, Tai-sheng

    2015-08-01

    The physiological mechanism and ecological structure of forest trees can change with the changes of years. In a certain extent, the changes were expressed through the canopy spectral features. The mastery of changing rules about spectral characteristics of trees over the years is benefit to remote sensing interpretation and provide scientific basis for the classification of different trees. The study adopted high-resolution spectrometer to measure the canopy spectral characteristics for seven major deciduous trees and seven evergreen trees to gain the spectrum curve of four different ages and calculate the first derivative curve. The analysis of changing rules about spectral characteristics of different deciduous trees and evergreen trees and the comparison of changes about spectrum of various trees in the visible and infrared band could find the best year and best band for identification of trees. The results showed that the canopy spectral reflectance of deciduous and evergreen trees increases with the increase of age. And the spectral changes of two species were most obvious in the near infrared band.

  13. Monitoring phenology of photosynthesis in temperate evergreen and mixed deciduous forests using the normalized difference vegetation index (NDVI) and the photochemical reflectance index (PRI) at leaf and canopy scales

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2016-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which determines their phenology of high photosynthetic activity in the growing season and downregulation during the winter. Monitoring the timing of the transition between summer activity and winter downregulation in evergreens is difficult since this is a largely invisible process, unlike in deciduous trees that have a visible budding and a sequence of leaf unfolding in the spring and leaf abscission in the fall. The light-use efficiency (LUE) model estimates gross primary productivity (GPP) and may be parameterized using remotely sensed vegetation indices. Using spectral reflectance data, we derived the normalized difference vegetation index (NDVI), a measure of leaf "greenness", and the photochemical reflectance index (PRI), a proxy for chlorophyll:carotenoid ratios which is related to photosynthetic activity. To better understand the relationship between these vegetation indices and photosynthetic activity and to contrast this relationship between plant functional types, the phenology of NDVI, PRI and photosynthesis was monitored in an evergreen forest and a mixed deciduous forest at the leaf and canopy scale. Our data indicates that the LUE model can be parameterized by NDVI and PRI to track forest phenology. Differences in the sensitivity of PRI and NDVI will be discussed. These findings have implications to address the phenology of evergreen conifers by using PRI to complement NDVI in the LUE model, potentially improving model productivity estimates in northern hemisphere forests, that are dominated by conifers.

  14. Long-term soil warming and Carbon Cycle Feedbacks to the Climate System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melillo, Jerry M.

    2014-04-30

    The primary objective of the proposed research was to quantify and explain the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem. The research was done at an established soil warming experiment at the Harvard Forest in central Massachusetts – Barre Woods site established in 2001. In the field, a series of plant and soil measurements were made to quantify changes in C storage in the ecosystem and to provide insights into the possible relationships between C-storage changes and nitrogen (N) cycling changes in the warmed plots. Fieldmore » measurements included: 1) annual woody increment; 2) litterfall; 3) carbon dioxide (CO2) efflux from the soil surface; 4) root biomass and respiration; 5) microbial biomass; and 6) net N mineralization and net nitrification rates. This research was designed to increase our understanding of how global warming will affect the capacity of temperate forest ecosystems to store C. The work explored how soil warming changes the interactions between the C and N cycles, and how these changes affect land-atmosphere feedbacks. This core research question framed the project – What are the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem? A second critical question was addressed in this research – What are the effects of a sustained in situ 5{degrees}C soil temperature increase on nitrogen (N) cycling in a northeastern deciduous forest ecosystem?« less

  15. Identification of Armillaria Species in the Chequamegon-Nicolet National Forest

    Treesearch

    Kathryn W. Kromroy

    2004-01-01

    Armillaria species were isolated from coniferous and deciduous overstory species in 17 of 22 stands in the Chequamenon are of the Chequamegon-Nicolet National Forest. Armillaria calvescens and A. sinapina were identified once each, and the remainder of isolates were A. ostoyae. These...

  16. Interspecific variation in leaf pigments and nutrients of five tree species from a subtropical forest in southern Brazil.

    PubMed

    Bündchen, Márcia; Boeger, Maria Regina T; Reissmann, Carlos B; Geronazzo, Kelly M

    2016-01-01

    The purpose of this study was to analyze the seasonal variation in the nutrient and pigment content of leaves from five tree species - of which three are perennial (Cupania vernalis, Matayba elaeagnoides and Nectandra lanceolata) and two are deciduous (Cedrela fissilis and Jacaranda micrantha) - in an ecotone between a Deciduous Seasonal Forest and a Mixed Ombrophilous Forest in the state of Santa Catarina, Brazil. Leaf samples were collected in the four seasons of the year to determine the content of macronutrients (N, K, P, Mg, Ca, S) and photosynthetic pigments (Chla, Chlb, Chltot, Cartot, Chla:Chlb and Cartot:Chltot). The principal component analysis showed that leaf pigments contributed to the formation of the first axis, which explains most of the data variance for all species, while leaf nutrient contribution showed strong interspecific variation. These results demonstrate that the studied species have different strategies for acquisition and use of mineral resources and acclimation to light, which are determinant for them to coexist in the forest environment.

  17. Seasonality of Central Amazon Forest Leaf Flush Using Tower-Mounted RGB Camera

    NASA Astrophysics Data System (ADS)

    Wu, J.; Nelson, B. W.; Tavares, J. V.; Valeriano, D. M.; Lopes, A. P.; Marostica, S. F.; Martins, G.; Prohaska, N.; Albert, L.; De Araujo, A. C.; Manzi, A. O.; Saleska, S. R.; Huete, A. R.

    2014-12-01

    Tower-mounted RGB cameras can contribute data to the debate on seasonality of photosynthesis in Amazon upland forests and to improved modelling of forest response to climate change. In late 2010 we began monitoring upper crown surfaces of ~65 living trees or vines from a 54m tall eddy-flux tower on a well-drained clay-soil plateau. This Central Amazon site (60.2091 W, 2.6092 S) is in a large forest reserve. We deployed a Stardot Netcam XL RGB camera with a 1024 x 768 resolution CMOS sensor, 66o HFOV lens, fixed oblique south view, fixed iris, fixed white balance and auto-exposure. Images were logged every 15 seconds to a passively cooled FitPC2i with heat-tolerant SSD drive. Camera and PC automatically rebooted after power outages. Here we report results for two full years, from 1 Dec 2011 through 30 Nov 2013. Images in six day intervals were selected near local noon for homogeneous diffuse lighting under cloudy sky and for a standard reflected radiance (± 10%). Crowns showing two easily recognized phenophases were tallied: (1) massive flushing of new light-green leaves and (2) complete or nearly complete leaf loss. On average, 60% of live crowns flushed a massive amount of new leaves each year. Each crown flush was completed within 30 days. During the five driest months (Jun-Oct), 44% of all live crowns, on average, exhibited such massive leaf flush. In the five wettest months (Dec-Apr) only 11% of live crowns mass-flushed new leaves. In each year 23% of all live crowns became deciduous, usually a brief (1-2 week) preamble to flushing. Additional crowns lost old dark-green leaves partially and more gradually, becoming semi-deciduous prior to flushing. From these two years of camera data we infer that highly efficient leaves of 2-6 months age (high maximum carboxylation rate) are most abundant from the late dry season (October) through the mid wet season (March). This coincides with peak annual photosynthesis (Gross Ecosystem Productivity) reported for this same Central Amazon site using eddy flux methods.

  18. On the vertical distribution of bees in a temperate deciduous forest

    Treesearch

    Michael Ulyshen; Villa Soon; James Hanula

    2010-01-01

    1. Despite a growing interest in forest canopy biology, very few studies have examined the vertical distribution of forest bees. In this study, bees were sampled using 12 pairs of flight-intercept traps suspended in the canopy (‡15 m) and near the ground (0.5 m) in a bottomland hardwood forest in the southeastern United States. 2. In total, 6653 bees from 5 families...

  19. Ecophysiological and phenological strategies in seasonally-dry ecosystems: an ecohydrological approach

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Manzoni, Stefano; Thompson, Sally; Molini, Annalisa; Porporato, Amilcare

    2015-04-01

    Seasonally-dry climates are particularly challenging for vegetation, as they are characterized by prolonged dry periods and often marked inter-annual variability. During the dry season plants face predictable physiological stress due to lack of water, whereas the inter-annual variability in rainfall timing and amounts requires plants to develop flexible adaptation strategies. The variety of strategies observed across seasonally-dry (Mediterranean and tropical) ecosystems is indeed wide - ranging from near-isohydric species that adjust stomatal conductance to avoid drought, to anisohydric species that maintain gas exchange during the dry season. A suite of phenological strategies are hypothesized to be associated to ecophysiological strategies. Here we synthetize current knowledge on ecophysiological and phenological adaptations through a comprehensive ecohydrological model linking a soil water balance to a vegetation carbon balance. Climatic regimes are found to select for different phenological strategies that maximize the long-term plant carbon uptake. Inter-annual variability of the duration of the wet season allows coexistence of different drought-deciduous strategies. In contrast, short dry seasons or access to groundwater favour evergreen species. Climatic changes causing more intermittent rainfall and/or shorter wet seasons are predicted to favour drought-deciduous species with opportunistic water use.

  20. Lead sequestration and species redistribution during soil organic matter decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  1. Comparison of Evapotranspiration and Forest Cover Type in the Southeast United States: A Long-term Water Budget Approach

    NASA Astrophysics Data System (ADS)

    Younger, S. E.

    2015-12-01

    This study assessed the relationship between evapotranspiration (ET) and different types of forest for 74 gaged drainage basins in the Southeast United States with at least 29 years of data and greater than 40% forest cover. The objective was to determine if a difference in tree water use was detectible at the USGS gaged basin scale. It was hypothesized that ET rates are higher in Evergreen dominated watershed due to greater annual productivity. Discharge from United States Geological Survey (USGS) gages (D), landcover from the National Landcover Dataset (NLCD), and precipitation (P) from Daymet, Mauer, Observed Gridded, and PRISM. Annual ET was estimated using ET = P - D. To reduce geological influences the study basins were selected from an area of crystalline bedrock within the Piedmont and Southern Blue Ridge physiographic provinces. Correlations between ET and forest type show a significant difference between evergreen and deciduous forest cover. Evergreen forest dominated watersheds had a positive relationship with ET. Deciduous and Mixed forest dominated watersheds had a negative relationship with ET. These findings are similar to other studies looking at the effect of forest type on ET although other land uses in the basins have potentially indiscernible influences on discharge.

  2. Roosevelt elk selection of temperate rain forest seral stages in western Washington

    USGS Publications Warehouse

    Schroer, Greg L.; Jenkins, Kurt J.; Moorhead, Bruce B.

    1993-01-01

    We studied habitat selection by Roosevelt elk (Cervus elaphus roosevelti) in a temperate rain forest in the lower Queets River Valley of the western Olympic Peninsula, Washington from June 1986-July 1987. Elk annual home ranges included predominantly unlogged forests protected within Olympic National Park and logged, regenerating forests adjacent to the park. Radio-collared elk selected valley floors during all seasons except winter, when elk frequently used an adjoining plateau 60 m above the floodplain. In winder, radio-collared elk selected 6-15 year-old clearcuts, which were available on the plateau. Elk selected mature deciduous forests of the valley floor during spring, summer, and autumn, and generally they selected old-age Sitka spruce forests during autumn and winter. Young clearcuts (1-5 years old) and even-aged, regenerating stands (16-150 years old) generally were avoided during all seasons. Management practices that retain preferred habitat of elk, such as deciduous forests, 6-15 yr-old coniferous stands, and old-age coniferous bottomland forests will benefit elk, particularly on elk ranges managed for short-rotation, even-aged stands. Silvicultural alternatives to typical even-aged stand management, such as uneven-aged management and commercial thinning, should also be considered for improving and maintaining interspersion of forage and cover.

  3. Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa.

    PubMed

    Moore, Sam; Adu-Bredu, Stephen; Duah-Gyamfi, Akwasi; Addo-Danso, Shalom D; Ibrahim, Forzia; Mbou, Armel T; de Grandcourt, Agnès; Valentini, Riccardo; Nicolini, Giacomo; Djagbletey, Gloria; Owusu-Afriyie, Kennedy; Gvozdevaite, Agne; Oliveras, Imma; Ruiz-Jaen, Maria C; Malhi, Yadvinder

    2018-02-01

    Net Primary Productivity (NPP) is one of the most important parameters in describing the functioning of any ecosystem and yet it arguably remains a poorly quantified and understood component of carbon cycling in tropical forests, especially outside of the Americas. We provide the first comprehensive analysis of NPP and its carbon allocation to woody, canopy and root growth components at contrasting lowland West African forests spanning a rainfall gradient. Using a standardized methodology to study evergreen (EF), semi-deciduous (SDF), dry forests (DF) and woody savanna (WS), we find that (i) climate is more closely related with above and belowground C stocks than with NPP (ii) total NPP is highest in the SDF site, then the EF followed by the DF and WS and that (iii) different forest types have distinct carbon allocation patterns whereby SDF allocate in excess of 50% to canopy production and the DF and WS sites allocate 40%-50% to woody production. Furthermore, we find that (iv) compared with canopy and root growth rates the woody growth rate of these forests is a poor proxy for their overall productivity and that (v) residence time is the primary driver in the productivity-allocation-turnover chain for the observed spatial differences in woody, leaf and root biomass across the rainfall gradient. Through a systematic assessment of forest productivity we demonstrate the importance of directly measuring the main components of above and belowground NPP and encourage the establishment of more permanent carbon intensive monitoring plots across the tropics. © 2017 John Wiley & Sons Ltd.

  4. Leaf Area Influence on Surface Layer in a Deciduous Forest. Part 2; Detecting Leaf Area and Surface Resistance During Transition Seasons

    NASA Technical Reports Server (NTRS)

    Sakai, Ricardo K.; Fitzjarrald, David R.; Moore, Kathleen E.; Sicker, John W.; Munger, Willian J.; Goulden, Michael L.; Wofsy, Steven C.

    1996-01-01

    Temperate deciduous forest exhibit dramatic seasonal changes in surface exchange properties following on the seasonal changes in leaf area index. The canopy resistance to water vapor transport r(sub c) decreased abruptly at leaf emergence in each year but then also continued to decrease slowly during the remaining growing season due to slowly increasing LAI. Canopy resistance and PAR-albedo (albedo from photosynthetically active radiation) began to increase about one month before leaf fall with the diminishment of CO2 gradient above the canopy as well. At this time evaporation begun to be controlled as if the canopy were leafless.

  5. Space Radar Image of Raco, Michigan

    NASA Image and Video Library

    1999-05-01

    These are two false-color composites of Raco, Michigan, located at the eastern end of Michigan upper peninsula, west of Sault Ste. Marie and south of Whitefish Bay on Lake Superior. The two images (centered at 46.39 degrees north latitude, 84.88 degrees west longitude) show significant seasonal changes in the mid-latitude region of mixed deciduous and coniferous forests. The images were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the shuttle Endeavour on the sixth orbit of each mission. In these images, red is L-band (23 cm) with horizontal/vertical polarization; green is C-band (6 cm) with horizontal/vertical polarization; blue is C-band with horizontal/horizontal polarization. The region shown is largely forested and includes a large portion of Hiawatha National Forest, as well as an agricultural region near the bottom of each image. In early April, the area was snow-covered with up to 50 centimeters (19.5 inches) of snow in forest clearings and agricultural fields. Buds had not yet broken on deciduous trees, but the trees were not frozen and sap was generally flowing. Lake Superior, in the upper right, and the small inland lakes were frozen and snow-covered on April 9, 1994. By the end of September, deciduous trees were just beginning to change color after a relatively wet period. Leaf loss was estimated at about 30 percent, depending on the species, and the soil was moist to wet after a heavy rainfall on September 28, 1994. Most agricultural fields were covered with grasses of up to 60 centimeters (23 inches) in height. In the two images the colors are related to the types of land cover (i.e. vegetation type) and the brightness is related to the amount of plant material and its relative moisture content. Significant seasonal changes between early spring and early fall are illustrated by this pair of images. For the agricultural region near the bottom of the images, the change from snow-cover to moist soil with short vegetation cover is shown by the color change from blue to green and blue. The green color corresponds to significant increases in vegetation cover and field-to-field differences in blue are the result of differences in surface roughness and soil moisture. In the forested areas, many of the conifer forests appear similar in both images (red pine forests appear red in both images). However, there is more blue and green in the September 30, 1994 image as a consequence of greater foliage and more moisture in the forest crowns. Lowland conifer forests (spruce and northern white cedars) appear as bright green in both images. Deciduous forests produce very strong radar returns at these frequencies and polarization combinations, resulting in a nearly white appearance on the images (the specific color mix is related to the local species mix). In the September 30, 1994 image, the areas of deciduous forest appear darker than in the April image because of the weaker radar signal from the foliage in the crown layer. The clear-cut areas (shown in April by the irregularly shaped dark areas in the center) change dramatically in appearance due to loss of snow cover and increases in soil moisture and vegetation cover by the end of September. http://photojournal.jpl.nasa.gov/catalog/PIA01730

  6. Variability in runoff fluxes of dissolved and particulate carbon and nitrogen from two watersheds of different tree species during intense storm events

    NASA Astrophysics Data System (ADS)

    Lee, Mi-Hee; Payeur-Poirier, Jean-Lionel; Park, Ji-Hyung; Matzner, Egbert

    2016-09-01

    Heavy storm events may increase the amount of organic matter in runoff from forested watersheds as well as the relation of dissolved to particulate organic matter. This study evaluated the effects of monsoon storm events on the runoff fluxes and on the composition of dissolved (< 0.45 µm) and particulate (0.7 µm to 1 mm) organic carbon and nitrogen (DOC, DON, POC, PON) in a mixed coniferous/deciduous (mixed watershed) and a deciduous forested watershed (deciduous watershed) in South Korea. During storm events, DOC concentrations in runoff increased with discharge, while DON concentrations remained almost constant. DOC, DON and NO3-N fluxes in runoff increased linearly with discharge pointing to changing flow paths from deeper to upper soil layers at high discharge, whereas nonlinear responses of POC and PON fluxes were observed likely due to the origin of particulate matter from the erosion of mineral soil along the stream benches. The integrated C and N fluxes in runoff over the 2-month study period were in the order of DOC > POC and NO3-N > DON > PON. The integrated DOC fluxes in runoff during the study period were much larger at the deciduous watershed (16 kg C ha-1) than at the mixed watershed (7 kg C ha-1), while the integrated NO3-N fluxes were higher at the mixed watershed (5.2 kg N ha-1) than at the deciduous watershed (2.9 kg N ha-1). The latter suggests a larger N uptake by deciduous trees. Integrated fluxes of POC and PON were similar at both watersheds. The composition of organic matter in soils and runoff indicates that the contribution of near-surface flow to runoff was larger at the deciduous than at the mixed watershed. Our results demonstrate different responses of particulate and dissolved C and N in runoff to storm events as a combined effect of tree species composition and watershed specific flow paths.

  7. Amphibian and reptile abundance in riparian and upslope areas of five forest types in western Oregon

    USGS Publications Warehouse

    Gomez, D.M.; Anthony, R.G.

    1996-01-01

    We compared species composition and relative abundance of herpetofauna between riparian and upslope habitats among 5 forest types (shrub, open sapling-pole, large sawtimber and old-growth conifer forests, and deciduous forests) in Western Oregon. Riparian- and upslope- associated species were identified based on capture frequencies from pitfall trapping. Species richness was similar among forest types but slightly greater in the shrub stands. The abundances of 3 species differed among forest types. Total captures was highest in deciduous forests, intermediate in the mature conifer forests, and lowest in the 2 young coniferous forests. Species richness was similar between stream and upslope habitats; however, captures were higher in riparian than upslope habitat. Tailed frogs (Ascaphus truei), Dunn's salamanders (Plethodon dunni), roughskin newts(Tanicha granulosa), Pacific giant salamanders (Dicamptodon tenebrosus) and red-legged frogs(Rana aurora) were captured more frequently in riparian than upslope habitats. Of these species the red-legged frog and Pacific giant salamander may depend on riparian habitat for at least part of their life requirements, while tailed frogs, Dunn's salamanders and roughskin newts appear to be riparian associated species. In addition, we found Oregon salamanders (Ensatina eschscholtzi) were associated with upslope habitats. We suggest riparian management zones should be al least 75-100 m on each side of the stream and that management for upslope/and or old forest associates may be equally as important as for riparian species.

  8. Growth and yield model application in tropical rain forest management

    Treesearch

    James Atta-Boateng; John W., Jr. Moser

    2000-01-01

    Analytical tools are needed to evaluate the impact of management policies on the sustainable use of rain forest. Optimal decisions concerning the level of management inputs require accurate predictions of output at all relevant input levels. Using growth data from 40 l-hectare permanent plots obtained from the semi-deciduous forest of Ghana, a system of 77 differential...

  9. The importance of streamside sandbars to ground beetle (Coleoptera, Carabidae) communities in a deciduous forest.

    Treesearch

    S. Horn; M.D. Ulyshen

    2009-01-01

    We used pitfall traps to sample ground beetles on sandbars along a small woodland stream and in the adjacent floodplain forest (Oglethorpe Co., GA, USA). We captured a total of 1,477 ground beetles representing 41 species. Twenty-two species were exclusive to sandbars, while eight were found only in the forested habitat. Ground beetles...

  10. Logging legacies affect insect pollinator communities in southern Appalachian forests

    Treesearch

    Michelle M. Jackson; Monica G. Turner; Scott M. Pearson

    2014-01-01

    Many temperate deciduous forests are recovering from past logging, but the effects of logging legacies and environmental gradients on forest insect pollinators have not been well studied. In this study, we asked how pollinator abundance and community composition varied with distance from logging roads and elevation in old (logged >90 years ago) and young (logged 20–...

  11. Climate response of five oak species in the eastern deciduous forest of the southern Appalachain Mountains, USA

    Treesearch

    James H Speer; Henry D Grission-Mayer; Kenneth H Orivs; Cathryn H: Greenberg

    2009-01-01

    The climatic response of trees that occupy closed canopy forests in the eastern United States (US) is important to understanding the possible trajectory these forests may lake in response to a warming climate. Our study examined tree rings of 664 trees from five oak species (white (Querclus alba L), black (Quercus "velutina Lam...

  12. Productivity of early successional shrubland birds in clearcuts and groupcuts in an eastern deciduous forest

    Treesearch

    David I. King; Richard M. DeGraaf; Curtice R. Griffin

    2001-01-01

    Uneven-aged forest management has been advocated as a silvicultural practice because of concerns about the negative effects of even-aged management on birds that dwell in mature forests. Recent evidence, however, indicates that in the northeastern United States, bird species that inhabit early successional habitats may be experiencing more widespread declines than...

  13. Regional distribution and dynamics of coarse woody debris in Midwestern old-growth forests

    Treesearch

    Martin A. Spetich; Stephen R. Shifley; George R. Parker

    1999-01-01

    Old-growth forests have been noted for containing significant quantities of deadwood. However, there has been no coordinated effort to quantify the deadwood component of old-growth remnants across large regions of temperate deciduous forest. We present results of a regional inventory that quantifies and examines regional and temporal trends for deadwood in upland old-...

  14. Dynamics of a temperate deciduous forest under landscape-scale management: Implications for adaptability to climate change

    Treesearch

    Matthew G. Olson; Benjamin O. Knapp; John M. Kabrick

    2017-01-01

    Landscape forest management is an approach to meeting diverse objectives that collectively span multiple spatial scales. It is critical that we understand the long-term effects of landscape management on the structure and composition of forest tree communities to ensure that these practices are sustainable. Furthermore, it is increasingly important to also consider...

  15. BIOGENIC HYDROCARBON EMISSION INVENTORY FOR THE U.S. USING A SIMPLE FOREST CANOPY MODEL

    EPA Science Inventory

    A biogenic hydrocarbon emission inventory system, developed for acid deposition and regional oxidant modeling, is described, and results for a U.S. emission inventory are presented. or deciduous and coniferous forests, scaling relationships are used to account for canopy effects ...

  16. Making Rainforests Relevant.

    ERIC Educational Resources Information Center

    Lustbader, Sara

    1995-01-01

    Describes a program for teaching about tropical rainforests in a concrete way using what's outside the door. This activity uses an eastern deciduous hardwood forest as an example. Step-by-step instructions include introductory activities, plus descriptions of stations in the forest to be visited. Resources include books, audio-visual materials,…

  17. Long-Term Wet and Dry Deposition of Total and Methyl Mercury in the Remote Boreal Ecoregion of Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graydon, Jennifer A; Louis, Vincent; Hintelmann, Holger

    2008-11-01

    Although a positive relationship between atmospheric loadings of inorganic mercury (Hg(II)) to watersheds and concentrations of methyl mercury (MeHg) in fish has now been established, net wet and dry deposition of Hg(II) and MeHg to watersheds remains challenging to quantify. In this study, concentrations and loadings of total mercury (THg; all forms of Hg in a sample) and MeHg in open area wet deposition, throughfall, and litterfall were quantified at the remote Experimental Lakes Area in the boreal ecoregion, NW Ontario, Canada. Between 1992 and 2006, mean annual THg and MeHg loadings in the open were 36 17 and 0.5more » 0.2 mg ha 1, respectively. Throughfall THg and MeHg loadings were generally 2 4 times and 0.8 2 times higher, respectively, than loadings in the open. Loadings of both THg and MeHg were highest under an old growth spruce/fir canopy and lowest under a deciduous maple canopy, whereas loadings under young jack pine and wetland spruce/pine/alder canopies were intermediate. Litterfall generally represented the largest input of THg (86 105 mg ha 1) and MeHg (0.7 0.8 mg ha 1) to the landscape on an annual basis. Using the direct method of estimating dry deposition (thoughfall + litterfall open loadings), we calculated that annual dry deposition of THg and MeHg under forest canopies ranged from 105 to 201 mg ha 1, whereas dry deposition of MeHg ranged from 0.7 to 1.2 mg ha 1. Photoreduction and emission of wet-deposited Hg(II) from canopy foliage were accounted for, resulting in 3 5% (5 6 mg ha 1) higher annual estimates of dry deposition than via the direct method alone. Net THg and MeHg loadings to this remote landscape were lower than at any other previously studied forested site globally. This study shows that THg and MeHg loading can be extremely variable within a heterogeneous boreal landscape and that processes such as Hg photoreduction and emission from foliage should be considered when estimating dry deposition of Hg.« less

  18. Depression of belowground respiration rates at simulated high moose population densities in boreal forests.

    PubMed

    Persson, Inga-Lill; Nilsson, Mats B; Pastor, John; Eriksson, Tobias; Bergström, Roger; Danell, Kjell

    2009-10-01

    Large herbivores can affect the carbon cycle in boreal forests by changing productivity and plant species composition, which in turn could ultimately alter litter production, nutrient cycling, and the partitioning between aboveground and belowground allocation of carbon. Here we experimentally tested how moose (Alces alces) at different simulated population densities affected belowground respiration rates (estimated as CO2 flux) in young boreal forest stands situated along a site productivity gradient. At high simulated population density, moose browsing considerably depressed belowground respiration rates (24-56% below that of no-moose controls) except during June, where the difference only was 10%. Moose browsing depressed belowground respiration the most on low-productivity sites. Soil moisture and temperature did not affect respiration rates. Impact of moose on belowground respiration was closely linked to litter production and followed Michaelis-Menten dynamics. The main mechanism by which moose decrease belowground respiration rates is likely their effect on photosynthetic biomass (especially decreased productivity of deciduous trees) and total litter production. An increased productivity of deciduous trees along the site productivity gradient causes an unequal effect of moose along the same gradient. The rapid growth of deciduous trees may offer higher resilience against negative effects of moose browsing on litter production and photosynthate allocation to roots.

  19. Plant Sexual Systems and a Review of the Breeding System Studies in the Caatinga, a Brazilian Tropical Dry Forest

    PubMed Central

    MACHADO, ISABEL CRISTINA; LOPES, ARIADNA VALENTINA; SAZIMA, MARLIES

    2006-01-01

    • Backgrounds and Aims The reproductive biology of a community can provide answers to questions related to the maintenance of the intraspecific pollen flow and reproductive success of populations, sharing and competition for pollinators and also questions on conservation of natural habitats affected by fragmentation processes. This work presents, for the first time, data on the occurrence and frequency of plant sexual systems for Caatinga communities, and a review of the breeding system studies of Caatinga species. • Methods The sexual systems of 147 species from 34 families and 91 genera occurring in three Caatinga areas in north-eastern Brazil were analysed and compared with worldwide studies focusing on reproductive biology of different tropical communities. • Key Results The frequency of hermaphrodite species was 83·0 % (122 species), seven of these (or 4·8 % of the total) being heterostylous. Monoecy occurred in 9·5 % (14) of the species, and andromonoecy in 4·8 % (seven). Only 2·7 % (four) of the species were dioecious. A high percentage of hermaphrodite species was expected and has been reported for other tropical ecosystems. With respect to the breeding system studies with species of the Caatinga, the authors' data for 21 species and an additional 18 species studied by others (n = 39) revealed a high percentage (61·5 %) of obligatory self-incompatibility. Agamospermy was not recorded among the Caatinga studied species. • Conclusions The plant sexual systems in the Caatinga, despite the semi-arid climate, are similar to other tropical dry and wet forest communities, including those with high rainfall levels, except for the much lower percentage of dioecious species. The high frequency of self-incompatible species is similar to that reported for Savanna areas in Brazil, and also for dry (deciduous and semideciduous) and humid tropical forest communities. PMID:16377654

  20. Spatial patterns in vegetation fires in the Indian region.

    PubMed

    Vadrevu, Krishna Prasad; Badarinath, K V S; Anuradha, Eaturu

    2008-12-01

    In this study, we used fire count datasets derived from Along Track Scanning Radiometer (ATSR) satellite to characterize spatial patterns in fire occurrences across highly diverse geographical, vegetation and topographic gradients in the Indian region. For characterizing the spatial patterns of fire occurrences, observed fire point patterns were tested against the hypothesis of a complete spatial random (CSR) pattern using three different techniques, the quadrat analysis, nearest neighbor analysis and Ripley's K function. Hierarchical nearest neighboring technique was used to depict the 'hotspots' of fire incidents. Of the different states, highest fire counts were recorded in Madhya Pradesh (14.77%) followed by Gujarat (10.86%), Maharastra (9.92%), Mizoram (7.66%), Jharkhand (6.41%), etc. With respect to the vegetation categories, highest number of fires were recorded in agricultural regions (40.26%) followed by tropical moist deciduous vegetation (12.72), dry deciduous vegetation (11.40%), abandoned slash and burn secondary forests (9.04%), tropical montane forests (8.07%) followed by others. Analysis of fire counts based on elevation and slope range suggested that maximum number of fires occurred in low and medium elevation types and in very low to low-slope categories. Results from three different spatial techniques for spatial pattern suggested clustered pattern in fire events compared to CSR. Most importantly, results from Ripley's K statistic suggested that fire events are highly clustered at a lag-distance of 125 miles. Hierarchical nearest neighboring clustering technique identified significant clusters of fire 'hotspots' in different states in northeast and central India. The implications of these results in fire management and mitigation were discussed. Also, this study highlights the potential of spatial point pattern statistics in environmental monitoring and assessment studies with special reference to fire events in the Indian region.

  1. Assessing satellite-derived start-of-season measures in the conterminous USA

    USGS Publications Warehouse

    Schwartz, Mark D.; Reed, Bradley C.; White, Michael A.

    2002-01-01

    National Oceanic and Atmospheric Administration (NOAA)-series satellites, carrying advanced very high-resolution radiometer (AVHRR) sensors, have allowed moderate resolution (1 km) measurements of the normalized difference vegetation index (NDVI) to be collected from the Earth's land surfaces for over 20 years. Across the conterminous USA, a readily accessible and decade-long data set is now available to study many aspects of vegetation activity in this region. One feature, the onset of deciduous plant growth at the start of the spring season (SOS) is of special interest, as it appears to be crucial for accurate computation of several important biospheric processes, and a sensitive measure of the impacts of global change. In this study, satellite-derived SOS dates produced by the delayed moving average (DMA) and seasonal midpoint NDVI (SMN) methods, and modelled surface phenology (spring indices, SI) were compared at widespread deciduous forest and mixed woodland sites during 1990–93 and 1995–99, and these three measures were also matched to native species bud-break data collected at the Harvard Forest (Massachusetts) over the same time period. The results show that both SOS methods are doing a modestly accurate job of tracking the general pattern of surface phenology, but highlight the temporal limitations of biweekly satellite data. Specifically, at deciduous forest sites: (1) SMN SOS dates are close in time to SI first bloom dates (average bias of +0.74 days), whereas DMA SOS dates are considerably earlier (average bias of −41.24 days) and also systematically earlier in late spring than in early spring; (2) SMN SOS tracks overall yearly trends in deciduous forests somewhat better than DMA SOS, but with larger average error (MAEs 8.64 days and 7.37 days respectively); and (3) error in both SOS techniques varies considerably by year. Copyright © 2002 Royal Meteorological Society.

  2. Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests.

    PubMed

    Migliavacca, Mirco; Reichstein, Markus; Richardson, Andrew D; Mahecha, Miguel D; Cremonese, Edoardo; Delpierre, Nicolas; Galvagno, Marta; Law, Beverly E; Wohlfahrt, Georg; Black, T Andrew; Carvalhais, Nuno; Ceccherini, Guido; Chen, Jiquan; Gobron, Nadine; Koffi, Ernest; Munger, J William; Perez-Priego, Oscar; Robustelli, Monica; Tomelleri, Enrico; Cescatti, Alessandro

    2015-01-01

    Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem respiration (RECO) in deciduous forests. Previous studies showed that empirical RECO models can be substantially improved by considering the biotic dependency of RECO on the short-term productivity (e.g., daily gross primary production, GPP) in addition to the well-known environmental controls of temperature and water availability. Here, we use a model-data integration approach to investigate the added value of physiological phenology, represented by the first temporal derivative of GPP, or alternatively of the fraction of absorbed photosynthetically active radiation, for modeling RECO at 19 deciduous broadleaved forests in the FLUXNET La Thuile database. The new data-oriented semiempirical model leads to an 8% decrease in root mean square error (RMSE) and a 6% increase in the modeling efficiency (EF) of modeled RECO when compared to a version of the model that does not consider the physiological phenology. The reduction of the model-observation bias occurred mainly at the monthly time scale, and in spring and summer, while a smaller reduction was observed at the annual time scale. The proposed approach did not improve the model performance at several sites, and we identified as potential causes the plant canopy heterogeneity and the use of air temperature as a driver of ecosystem respiration instead of soil temperature. However, in the majority of sites the model-error remained unchanged regardless of the driving temperature. Overall, our results point toward the potential for improving current approaches for modeling RECO in deciduous forests by including the phenological cycle of the canopy. © 2014 John Wiley & Sons Ltd.

  3. AVIRIS spectral trajectories for forested areas of the Gifford Pinchot National Forest

    NASA Technical Reports Server (NTRS)

    Sabol, Donald E., Jr.; Smith, Milton O.; Adams, John B.; Zukin, Janet H.; Tucker, Compton J.; Roberts, Dar A.; Gillespie, Alan R.

    1995-01-01

    A simple mixing model employing reference endmembers (green vegetation, non-photosynthetic vegetation, soil and shade), and using 180 AVIRIS bands, was used to establish an interpretive framework for a forested area in the Pacific Northwest. A regrowth trend, based on changes in the endmember proportions, was defined for conifers that extends from clearcuts to mature forest, and by implication to old growth. Deciduous species within replanted forest plots caused the fractions to be displaced from the main coniferous regrowth trend and to move toward the green vegetation fraction. The results indicate that the spectral information in AVIRIS can be inverted to estimate approximate stand age and relative proportion of deciduous species in the context of the area studied. Using AVIRIS we measured a 3 to 5 percent increase in woody material in old-growth forest, as distinct from other mature forest. This result is consistent with a predicted increase in NPV in old-growth forest, based on field observations. Previous application of the mixing analysis to a TM image of the same area separated old growth based solely on the shade fraction; however the approach required successful removal of shade introduced by topography. Our new results suggest that with the high spectral resolution and high signal-to-noise of AVIRIS images it may be possible to characterize and map old-growth forests in the Northwest using both the NPV fraction and shade.

  4. Can Tree Ring Analyses Predict Resilience of Black Spruce Forests to Fire in Interior Alaska?

    NASA Astrophysics Data System (ADS)

    Walker, X. J.; Johnstone, J. F.; Mack, M. C.

    2015-12-01

    Climate change has increased the occurrence, severity, and impact of disturbances on forested ecosystems worldwide. As such there is a growing need to identify factors that contribute to an ecosystem's ability to recover from disturbance, commonly referred to as ecosystem resilience. In trees, drought-induced growth declines may signal decreased ecosystem resilience if mature trees are able to survive in stressful environmental conditions that do not permit successful post-disturbance recruitment and survival. Here we explore links between ecosystem resilience and the growth-climate relationships of pre-fire trees, specifically drought stress signals, across topographic moisture gradients within the boreal forest. We sampled 72 recently (2004) burned black spruce stands within interior Alaska and found the proportion of black spruce relative to deciduous trees decreased post-fire, ranging from almost no change to a 90% decrease. The largest shifts in post-fire species composition occurred in sites where trees showed negative growth responses to warm spring temperatures, and shallow post-fire organic layer depths due to dry site conditions or high fire severity. These sites were generally located at warmer and drier landscape positions, suggesting they are less resilient to disturbance than sites at the wetter end of the gradient. Tree growth-climate responses can provide an estimate of stand environmental stress to ongoing climate change and as such are a valuable tool for predicting landscape variations in forest ecosystem resilience and forecasting future forest composition.

  5. Paradigms and proboscideans in the southern Great Lakes region, USA

    USGS Publications Warehouse

    Saunders, J.J.; Grimm, E.C.; Widga, C.C.; Campbell, G.D.; Curry, B. Brandon; Grimley, D.A.; Hanson, P.R.; McCullum, J.P.; Oliver, J.S.; Treworgy, J.D.

    2010-01-01

    Thirteen new chronometric dates for Illinois proboscideans are considered in relation to well-dated pollen records from northeastern and central Illinois. These dates span an interval from 21,228 to 12,944 cal BP. When compared to pollen spectra, it is evident that Mammut americanum inhabited spruce (Picea) and black ash (Fraxinus nigra) forest during the B??lling-Aller??d (14,700-12,900 cal BP) and early Younger Dryas (12,900-11,650 cal BP) chronozones. Both Mammuthus jeffersonii and Mammuthus primigenius inhabited spruce dominated open-woodland during the Oldest Dryas chronozone, while M.??primigenius persisted in a forest of predominantly black ash during the Aller??d chronozone. A newly discovered specimen from Lincoln, IL, clarifies the taxonomic distinction between M. primigenius and M.??jeffersonii. Hitherto, a paradigm of proboscidean succession during the full- to late-glacial periods was based on the vegetation succession of steppe tundra-like vegetation to spruce forest to spruce-deciduous forest. The presumed proboscidean succession was that of cold, dry steppe-adapted M. primigenius succeeded by more mesic-tolerant M. jeffersonii that in turn was succeeded by the wet forest-adapted M.??americanum. Reported data do not support this view and indicate a need for re-evaluation of assumptions of proboscidean ecology and history, e.g., the environmental tolerances and habits of M.??primigenius in regions south of 55??N, and its dynamic relationship with other proboscidean taxa. ?? 2009 Elsevier Ltd and INQUA.

  6. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit.

    Treesearch

    A.C. Franco; M. Bustamante; L.S. Caldas; G. Goldstein; F.C. Meinzer; A.R. Kozovits; P. Rundel; Vera T.R. Coradin

    2005-01-01

    The seasonal savannas (cerrados) of Central Brazil are characterized by a large diversity of evergreen and deciduous trees, which do not show a clear differentiation in terms of active rooting depth. Irrespective of the depth of the root system, expansion of new foliage in deciduous species occurs at the end of the dry season. In this study, we examined a suite of leaf...

  7. Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone

    Treesearch

    Kurt Pregitzer; Wendy Loya; Mark Kubiske; Donald Zak

    2006-01-01

    The aspen free-air CO2 and O3 enrichment (FACTS II-FACE) study in Rhinelander, Wisconsin, USA, is designed to understand the mechanisms by which young northern deciduous forest ecosystems respond to elevated atmospheric carbon dioxide (CO2) and elevated tropospheric ozone (O3)...

  8. Invasibility of mature and 15-year-old deciduous forests by exotic plants

    Treesearch

    Cynthia D. Huebner; Patrick C. Tobin

    2006-01-01

    High species richness, resource availability and disturbance are community characteristics associated with forest invasibility. We categorized commonly measured community variables, including species composition, topography, and landscape features, within both mature and 15-year-old clearcuts in West Virginia, USA. We evaluated the importance of each variable for...

  9. VOLATILE ORGANIC COMPOUNDS AND ISOPRENE OXIDATION PRODUCTS AT A TEMPERATE DECIDUOUS FOREST SITE

    EPA Science Inventory

    Biogenic volatile compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs suc...

  10. Fire history in a southern Appalachian deciduous forest

    Treesearch

    Norman L., Jr. Christensen; Kurt Fesenmeyer

    2012-01-01

    Because there are few long-term dendrochronological and lake sediment data for the southern Appalachians, little is known regarding the history of fire in this region's forests through the Holocene. Radio-carbon ages for 82 soil charcoal samples collected from local depositional sites along a topographic gradient from mixed hardwood (Liriodendron...

  11. Environmental factors affecting understory diversity in second-growth deciduous forests

    Treesearch

    Cynthia D. Huebner; J.C. Randolph; G.R. Parker

    1995-01-01

    The purpose of this study was to determine the most important nonanthropogenic factors affecting understory (herbs, shrubs and low-growing vines) diversity in forested landscapes of southern Indiana. Fourteen environmental variables were measured for 46 sites. Multiple regression analysis showed significant positive correlation between understory diversity and tree...

  12. SEASONAL COURSE OF ISOPRENE EMISSIONS FROM A MIDLATITUDE DECIDUOUS FOREST

    EPA Science Inventory

    Continuous measurements of whole canopy isoprene emissions over an entire growing season are reported from Harvard Forest (42E32'N, 72E11'W). Emissions were calculated from the ratio of observed CO2 flux and gradient multiplied by the observed hydrocarbon gradients. In summer 199...

  13. Decadal time-scale monitoring of forest fires in Similipal Biosphere Reserve, India using remote sensing and GIS.

    PubMed

    Saranya, K R L; Reddy, C Sudhakar; Rao, P V V Prasada; Jha, C S

    2014-05-01

    Analyzing the spatial extent and distribution of forest fires is essential for sustainable forest resource management. There is no comprehensive data existing on forest fires on a regular basis in Biosphere Reserves of India. The present work have been carried out to locate and estimate the spatial extent of forest burnt areas using Resourcesat-1 data and fire frequency covering decadal fire events (2004-2013) in Similipal Biosphere Reserve. The anomalous quantity of forest burnt area was recorded during 2009 as 1,014.7 km(2). There was inconsistency in the fire susceptibility across the different vegetation types. The spatial analysis of burnt area shows that an area of 34.2 % of dry deciduous forests, followed by tree savannah, shrub savannah, and grasslands affected by fires in 2013. The analysis based on decadal time scale satellite data reveals that an area of 2,175.9 km(2) (59.6 % of total vegetation cover) has been affected by varied rate of frequency of forest fires. Fire density pattern indicates low count of burnt area patches in 2013 estimated at 1,017 and high count at 1,916 in 2004. An estimate of fire risk area over a decade identifies 12.2 km(2) is experiencing an annual fire damage. Summing the fire frequency data across the grids (each 1 km(2)) indicates 1,211 (26 %) grids are having very high disturbance regimes due to repeated fires in all the 10 years, followed by 711 grids in 9 years and 418 in 8 years and 382 in 7 years. The spatial database offers excellent opportunities to understand the ecological impact of fires on biodiversity and is helpful in formulating conservation action plans.

  14. Fine Root Growth Phenology, Production, and Turnover in a Northern Hardwood Forest Ecosystem

    Treesearch

    Dudley J. Raynal

    1994-01-01

    A large part of the nutrient flux in deciduous forests is through fine root turnover, yet this process is seldom measured. As part of a nutrient cycling study, fine root dynamics were studied for two years at Huntington Forest in the Adirondack Mountain region of New York, USA. Root growth phenology was characterized using field rhizotrons, three methods were used to...

  15. Ecological and ecophysiological attributes and responses to fire in eastern oak forests

    Treesearch

    Marc D. Abrams

    2006-01-01

    Prior to European settlement vast areas of the eastern U. S. deciduous forest were dominated by oak species. Evidence indicates that periodic understory fire was an important ecological factor in the historical development of oak forests. During European settlement of the late 19th and early 20th century, much of the Eastern United States was impacted by land clearing...

  16. Using Lidar and color infrared imagery to successfully measure stand characteristics on the William B. Bankhead National Forest, Alabama

    Treesearch

    Jeffrey Stephens; Luben Dimov; Callie Schweitzer; Wubishet Tadesse

    2008-01-01

    Light detection and ranging (Lidar) and color infrared imagery (CIR) were used to quantify forest structure and to distinguish deciduous from coniferous trees for selected stands on the William B. Bankhead National Forest in Alabama. Lidar bare ground and vegetation point clouds were used to determine tree heights and tree locations. Lidar accuracy was assessed by...

  17. Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements

    Treesearch

    Karis J. McFarlane; Margaret S. Torn; Paul J. Hanson; Rachel C. Porras; Christopher W. Swanston; Mac A. Callaham; Thomas P. Guilderson

    2013-01-01

    Forest soils represent a significant pool for carbon sequestration and storage, but the factors controlling soil carbon cycling are not well constrained.We compared soil carbon dynamics at five broadleaf forests in the Eastern US that vary in climate, soil type, and soil ecology: two sites at the University of Michigan Biological Station (MI-Coarse, sandy;MI-Fine,...

  18. Abundance and population structure of eastern worm snakes in forest stands with various levels of overstory tree retention

    Treesearch

    Zachary I. Felix; Yong Wang; Callie Jo Schweitzer

    2010-01-01

    In-depth analyses of a species’ response to canopy retention treatments can provide insight into reasons for observed changes in abundance. The eastern worm snake (Carphophis amoenus amoenus Say) is common in many eastern deciduous forests, yet little is known about the ecology of the species in managed forests. We examined the relationship between...

  19. Effects of forest management on soil carbon: results of some long-term resampling studies

    Treesearch

    D.W. Johnson; Jennifer D. Knoepp; Wayne T. Swank; J. Shan; L.A. Morris; David H. D.H. van Lear; P.R. Kapeluck

    2002-01-01

    The effects of harvest intensity (sawlog, SAW; whole tree, WTH; and complete tree, CTH) on biomass and soil carbon (C) were studied in four forested sites in the Southeastern United States: (mixed deciduous forests at Oak Ridge, TN and Coweeta, NC; Pinus taeda at Clemson, SC; and P. eliottii at Bradford, FL). In general, harvesting had no lasting...

  20. The importance of streamside sandbars to ground beetle (Coleoptera, Carabidae) communities in a deciduous forest

    Treesearch

    Scott Horn; Michael Ulyshen

    2009-01-01

    We used pitfall traps to sample ground beetles on sandbars along a small woodland stream and in the adjacent floodplain forest (Oglethorpe Co., GA, USA). We captured a total of 1,477 ground beetles representing 41 species. Twenty-two species were exclusive to sandbars, while eight were found only in the forested habitat. Ground beetles were captured in significantly...

  1. Land application of hydrofracturing fluids damages a deciduous forest stand in West Virginia

    Treesearch

    Mary Beth Adams

    2011-01-01

    In June 2008, 303,000 L of hydrofracturing fluid from a natural gas well were applied to a 0.20-ha area of mixed hardwood forest on the Fernow Experimental Forest, West Virginia. During application, severe damage and mortality of ground vegetation was observed, followed about 10 d later by premature leaf drop by the overstory trees. Two years after fluid application,...

  2. Net ecosystem carbon exchange of a dry temperate eucalypt forest

    NASA Astrophysics Data System (ADS)

    Hinko-Najera, Nina; Isaac, Peter; Beringer, Jason; van Gorsel, Eva; Ewenz, Cacilia; McHugh, Ian; Exbrayat, Jean-François; Livesley, Stephen J.; Arndt, Stefan K.

    2017-08-01

    Forest ecosystems play a crucial role in the global carbon cycle by sequestering a considerable fraction of anthropogenic CO2, thereby contributing to climate change mitigation. However, there is a gap in our understanding about the carbon dynamics of eucalypt (broadleaf evergreen) forests in temperate climates, which might differ from temperate evergreen coniferous or deciduous broadleaved forests given their fundamental differences in physiology, phenology and growth dynamics. To address this gap we undertook a 3-year study (2010-2012) of eddy covariance measurements in a dry temperate eucalypt forest in southeastern Australia. We determined the annual net carbon balance and investigated the temporal (seasonal and inter-annual) variability in and environmental controls of net ecosystem carbon exchange (NEE), gross primary productivity (GPP) and ecosystem respiration (ER). The forest was a large and constant carbon sink throughout the study period, even in winter, with an overall mean NEE of -1234 ± 109 (SE) g C m-2 yr-1. Estimated annual ER was similar for 2010 and 2011 but decreased in 2012 ranging from 1603 to 1346 g C m-2 yr-1, whereas GPP showed no significant inter-annual variability, with a mean annual estimate of 2728 ± 39 g C m-2 yr-1. All ecosystem carbon fluxes had a pronounced seasonality, with GPP being greatest during spring and summer and ER being highest during summer, whereas peaks in NEE occurred in early spring and again in summer. High NEE in spring was likely caused by a delayed increase in ER due to low temperatures. A strong seasonal pattern in environmental controls of daytime and night-time NEE was revealed. Daytime NEE was equally explained by incoming solar radiation and air temperature, whereas air temperature was the main environmental driver of night-time NEE. The forest experienced unusual above-average annual rainfall during the first 2 years of this 3-year period so that soil water content remained relatively high and the forest was not water limited. Our results show the potential of temperate eucalypt forests to sequester large amounts of carbon when not water limited. However, further studies using bottom-up approaches are needed to validate measurements from the eddy covariance flux tower and to account for a possible underestimation in ER due to advection fluxes.

  3. Arbuscular mycorrhizal propagules in soils from a tropical forest and an abandoned cornfield in Quintana Roo, Mexico: visual comparison of most-probable-number estimates.

    PubMed

    Ramos-Zapata, José A; Guadarrama, Patricia; Navarro-Alberto, Jorge; Orellana, Roger

    2011-02-01

    The present study was aimed at comparing the number of arbuscular mycorrhizal fungi (AMF) propagules found in soil from a mature tropical forest and that found in an abandoned cornfield in Noh-Bec Quintana Roo, Mexico, during three seasons. Agricultural practices can dramatically reduce the availability and viability of AMF propagules, and in this way delay the regeneration of tropical forests in abandoned agricultural areas. In addition, rainfall seasonality, which characterizes deciduous tropical forests, may strongly influence AMF propagules density. To compare AMF propagule numbers between sites and seasons (summer rainy, winter rainy and dry season), a "most probable number" (MPN) bioassay was conducted under greenhouse conditions employing Sorgum vulgare L. as host plant. Results showed an average value of 3.5 ± 0.41 propagules in 50 ml of soil for the mature forest while the abandoned cornfield had 15.4 ± 5.03 propagules in 50 ml of soil. Likelihood analysis showed no statistical differences in MPN of propagules between seasons within each site, or between sites, except for the summer rainy season for which soil from the abandoned cornfield had eight times as many propagules compared to soil from the mature forest site for this season. Propagules of arbuscular mycorrhizal fungi remained viable throughout the sampling seasons at both sites. Abandoned areas resulting from traditional slash and burn agriculture practices involving maize did not show a lower number of AMF propagules, which should allow the establishment of mycotrophic plants thus maintaining the AMF inoculum potential in these soils.

  4. Implications for local and global climate of alternative forest management strategies in Norway

    NASA Astrophysics Data System (ADS)

    Bright, Ryan M.; Antón-Fernández, Clara; Astrup, Rasmus; Cherubini, Francesco; Kvalevåg, Maria; Hammer Strømman, Anders

    2014-05-01

    We applied a mix of observation and empirical models to evaluate both local and global climate effects of three realistic alternative forest management scenarios in the boreal forests of Norway's largest logging region. The alternative management scenarios embraced strategies aimed at increasing harvest intensities and allowing harvested conifer sites to regenerate naturally with broadleaved species. Stand-level analysis was firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across coniferous, deciduous, and clear-cut sites. Relative to a coniferous site, we observed a slight local cooling of 0.13 °C at a deciduous site and 0.25 °C at a clear-cut site over a 6-year period which was mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes - despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies simultaneously promoted an enhanced material supply over business-as-usual levels. While additional climate impact linked to changes in life-cycle emissions and to changes in the global supply and demand of timber products ought to be factored into any mitigation-oriented climate policy involving the forestry sector, our analysis demonstrates that - within the boundaries of the managed forest ecosystem - excluding important biogeophysical considerations like surface albedo change may lead to sub-optimal climate policy.

  5. Vegetation carbon sequestration in Chinese forests from 2010 to 2050.

    PubMed

    He, Nianpeng; Wen, Ding; Zhu, Jianxing; Tang, Xuli; Xu, Li; Zhang, Li; Hu, Huifeng; Huang, Mei; Yu, Guirui

    2017-04-01

    Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr -1 with a 95% confidence interval of 0.28-0.42 Pg C yr -1 , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6-8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China. © 2016 John Wiley & Sons Ltd.

  6. [Spatial pattern of sub-alpine forest restoration in west Sichuan].

    PubMed

    Zhang, Yuandong; Liu, Shirong; Zhao, Changming

    2005-09-01

    West Sichuan sub-alpine is an extension of Qinghai-Tibet Plateau to southeast China, which is covered mainly with dark coniferous forest. As a result of long-term large scale over-logging, the forests have been greatly reduced and degraded. Nowadays, the forest restoration and regeneration in the region are being highlighted. Selecting Miyaluo as a case study area and employing the methods of plot investigation, ETM image interpretation, and overlaying vegetation map with digital topography, this paper analyzed the relations between the appearance and origin of four forest vegetation types, along with their topography differentiation and spatial patterns after a large scale logging and regeneration. The results showed that the appearance of forest vegetations was significantly correlated with their origin. Old coniferous forests (OC) were primitive ones, middle-aged and young coniferous forests (MYC) were from artificial regeneration, deciduous broadleaf forests (DB) were natural secondary ones, while mixed coniferous and deciduous forests (MCD) were partly from natural secondary ones and others from the conjunct action of artificial and natural regeneration. The main cut area in Miyaluo located in the sites with elevation from 2 800 to 3 600 m, where forest restoration appeared difference among different aspects. MYC was mainly distributed on sunny and half-sunny slope, DB and MCD were distributed on shady and half-shady slope, and OC were reserved on the sites with elevation more than 3 600 m. In the process of forest restoration, the four forest vegetation types were in mosaic pattern, and the landscape was seriously fragmentized.

  7. Environmental Assessment of Alternate Training Area Jack Pine Flats Idaho Department of Lands Near Coolin, Idaho

    DTIC Science & Technology

    2009-05-01

    Affected Environment The ROI is within the Eastern Washington -Northern Idaho Interstate Air Quality Control Region. Of the six criteria pollutants...growth. Numerous openings (natural and man-made), wetlands, riparian areas, dry meadow, shrublands, and stands of deciduous trees distributed across... deciduous trees and shrubs or lodge pole pine) to provide food and cover for wintering snowshoe hare. • Denning Cover - generally mature and/or old

  8. Seasonal and Inter-annual Variation in Wood Production in Tropical Trees on Barro Colorado Island, Panama, is Related to Local Climate and Species Functional Traits

    NASA Astrophysics Data System (ADS)

    Cushman, K.; Muller-Landau, H. C.; Kellner, J. R.; Wright, S. J.; Condit, R.; Detto, M.; Tribble, C. M.

    2015-12-01

    Tropical forest carbon budgets play a major role in global carbon dynamics, but the responses of tropical forests to current and future inter-annual climatic variation remains highly uncertain. Better predictions of future tropical forest carbon fluxes require an improved understanding of how different species of tropical trees respond to changes in climate at seasonal and inter-annual temporal scales. We installed dendrometer bands on a size-stratified sample of 2000 trees in old growth forest on Barro Colorado Island, Panama, a moist lowland forest that experiences an annual dry season of approximately four months. Tree diameters were measured at the beginning and end of the rainy season since 2008. Additionally, we recorded the canopy illumination level, canopy intactness, and liana coverage of all trees during each census. We used linear mixed-effects models to evaluate how tree growth was related to seasonal and interannual variation in local climate, tree condition, and species identity, and how species identity effects related to tree functional traits. Climatic variables considered included precipitation, solar radiation, soil moisture, and climatological water deficit, and were all calculated from high-quality on-site measurements. Functional traits considered included wood density, maximum adult stature, deciduousness, and drought tolerance. We found that annual wood production was positively related to water availability, with higher growth in wetter years. Species varied in their response to seasonal water availability, with some species showing more pronounced reduction of growth during the dry season when water availability is limited. Interspecific variation in seasonal and interannual growth patterns was related to life-history strategies and species functional traits. The finding of higher growth in wetter years is consistent with previous tree ring studies conducted on a small subset of species with reliable annual rings. Together with previous findings that seed production at this site is higher in sunnier (and drier) years, this suggests strong climate-related shifts in allocation. This study highlights the importance of considering forest species composition and potential allocational shifts when predicting carbon fluxes in response to local climate variation.

  9. Hitting an Unintended Target: Phylogeography of Bombus brasiliensis Lepeletier, 1836 and the First New Brazilian Bumblebee Species in a Century (Hymenoptera: Apidae)

    PubMed Central

    Santos Júnior, José Eustáquio; Santos, Fabrício R.; Silveira, Fernando A.

    2015-01-01

    This work tested whether or not populations of Bombus brasiliensis isolated on mountain tops of southeastern Brazil belonged to the same species as populations widespread in lowland areas in the Atlantic coast and westward along the Paraná-river valley. Phylogeographic and population genetic analyses showed that those populations were all conspecific. However, they revealed a previously unrecognized, apparently rare, and potentially endangered species in one of the most threatened biodiversity hotspots of the World, the Brazilian Atlantic Forest. This species is described here as Bombus bahiensis sp. n., and included in a revised key for the identification of the bumblebee species known to occur in Brazil. Phylogenetic analyses based on two mtDNA markers suggest this new species to be sister to B. brasiliensis, from which its workers and queens can be easily distinguished by the lack of a yellow hair-band on the first metasomal tergum. The results presented here are consistent with the hypothesis that B. bahiensis sp. n. may have originated from an ancestral population isolated in an evergreen-forest refuge (the so-called Bahia refuge) during cold, dry periods of the Pleistocene. This refuge is also known as an important area of endemism for several animal taxa, including other bees. Secondary contact between B. bahiensis and B. brasiliensis may be presently prevented by a strip of semi-deciduous forest in a climate zone characterized by relatively long dry seasons. Considering the relatively limited range of this new species and the current anthropic pressure on its environment, attention should be given to its conservation status. PMID:25992624

  10. Hitting an Unintended Target: Phylogeography of Bombus brasiliensis Lepeletier, 1836 and the First New Brazilian Bumblebee Species in a Century (Hymenoptera: Apidae).

    PubMed

    Santos Júnior, José Eustáquio; Santos, Fabrício R; Silveira, Fernando A

    2015-01-01

    This work tested whether or not populations of Bombus brasiliensis isolated on mountain tops of southeastern Brazil belonged to the same species as populations widespread in lowland areas in the Atlantic coast and westward along the Paraná-river valley. Phylogeographic and population genetic analyses showed that those populations were all conspecific. However, they revealed a previously unrecognized, apparently rare, and potentially endangered species in one of the most threatened biodiversity hotspots of the World, the Brazilian Atlantic Forest. This species is described here as Bombus bahiensis sp. n., and included in a revised key for the identification of the bumblebee species known to occur in Brazil. Phylogenetic analyses based on two mtDNA markers suggest this new species to be sister to B. brasiliensis, from which its workers and queens can be easily distinguished by the lack of a yellow hair-band on the first metasomal tergum. The results presented here are consistent with the hypothesis that B. bahiensis sp. n. may have originated from an ancestral population isolated in an evergreen-forest refuge (the so-called Bahia refuge) during cold, dry periods of the Pleistocene. This refuge is also known as an important area of endemism for several animal taxa, including other bees. Secondary contact between B. bahiensis and B. brasiliensis may be presently prevented by a strip of semi-deciduous forest in a climate zone characterized by relatively long dry seasons. Considering the relatively limited range of this new species and the current anthropic pressure on its environment, attention should be given to its conservation status.

  11. Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies.

    PubMed

    Maguire, Dorothy Y; Robert, Katleen; Brochu, Kristen; Larrivée, Maxim; Buddle, Christopher M; Wheeler, Terry A

    2014-02-01

    Forest canopies support high arthropod biodiversity, but in temperate canopies, little is known about the spatial distribution of these arthropods. This is an important first step toward understanding ecological roles of insects in temperate canopies. The objective of this study was to assess differences in the species composition of two dominant and diverse taxa (Diptera and Coleoptera) along a vertical gradient in temperate deciduous forest canopies. Five sugar maple trees from each of three deciduous forest sites in southern Quebec were sampled using a combination of window and trunk traps placed in three vertical strata (understory, mid-canopy, and upper-canopy) for three sampling periods throughout the summer. Coleoptera species richness and abundance did not differ between canopy heights, but more specimens and species of Diptera were collected in the upper-canopy. Community composition of Coleoptera and Diptera varied significantly by trap height. Window traps collected more specimens and species of Coleoptera than trunk traps, although both trap types should be used to maximize representation of the entire Coleoptera community. There were no differences in abundance, diversity, or composition of Diptera collected between trap types. Our data confirm the relevance of sampling all strata in a forest when studying canopy arthropod biodiversity.

  12. Consequences of forest clear-cuts for native and nonindigenous ants (Hymenoptera: Formicidae)

    USGS Publications Warehouse

    Zettler, J.A.; Taylor, M.D.; Allen, Craig R.; Spira, T.P.

    2004-01-01

    Currently, the southern United States produces more timber than any other region in the world. Entire timber stands are removed through a harvesting method called clear-cutting. This common forestry practice may lead to the replacement of native ant communities with invasive, nonindigenous species. In four deciduous forest sites in South Carolina, we monitored the change in ant species richness, diversity, and abundance immediately after forest clearing for a period of 15 mo to 2 yr and determined the incidence of colonization of the red imported fire ant Solenopsis invicta into these four newly disturbed sites. Each site consisted of an uncut, forested plot and a logged, pine-planted plot. Fire ants were collected in clear-cuts as early as 3 mo postcutting, and by the end of the experiment, they were found in all four treatment sites. Our study is the first to document, through a controlled experiment, that clear-cutting alters ant species assemblages by increasing S. invicta and Pheidole spp. populations and significantly reducing native ant numbers. Long-term studies are needed to assess how replacing native deciduous forests with pine monocultures affects ant assemblages. ?? 2004 Entomological Society of America.

  13. Estimates of ion sources in deciduous and coniferous throughfall

    USGS Publications Warehouse

    Puckett, L.J.

    1990-01-01

    Estimates of external and internal sources of ions in net throughfall deposition were derived for a deciduous and coniferous canopy by use of multiple regression. The externel source component appears to be dominated by dry deposition of Ca2+, SO2 and NO3- during dormant and growing seasons for the two canopy types. Increases in the leaching rates of K+ and Mg2+ during the growing season reflect the presence of leaves in the deciduous canopy and increased physiological activity in both canopies. Internal leaching rates for SO42- doubled during the growing season presumably caused by increased physiological activity and uptake of SO2 through stomates. Net deposition of SO42- in throughfall during the growing season appears highly dependent on stomatal uptake of SO2. Estimates of SO2 deposition velocities were 0.06 cm s-1 and 0.13 cm s-1 for the deciduous and coniferous canopies, respectively, during the dormant season, and 0.30 cm s-1 and 0.43 cm s-1 for the deciduous and coniferous canopies, respectively, during the growing season. For the ions of major interest with respect to ecosystem effects, namely H+, NO3- and SO42-, precipitation inputs generally outweighed estimates of dry deposition input. However, net throughfall deposition of NO3- and SO42- accounted for 20-47 and 34-50 per cent, respectively, of total deposition of those ions. Error estimates of ion sources were at least 50-100 per cent and the method is subject to several assumptions and limitations.

  14. Future species composition will affect forest water use after loss of eastern hemlock from southern Appalachian forests.

    PubMed

    Brantley, Steven; Ford, Chelcy R; Vose, James M

    2013-06-01

    Infestation of eastern hemlock (Tsuga canadensis (L.) Carr.) with hemlock woolly adelgid (HWA, Adelges tsugae) has caused widespread mortality of this key canopy species throughout much of the southern Appalachian Mountains in the past decade. Because eastern hemlock is heavily concentrated in riparian habitats, maintains a dense canopy, and has an evergreen leaf habit, its loss is expected to have a major impact on forest processes, including transpiration (E(t)). Our goal was to estimate changes in stand-level E(t) since HWA infestation, and predict future effects of forest regeneration on forest E(t) in declining eastern hemlock stands where hemlock represented 50-60% of forest basal area. We used a combination of community surveys, sap flux measurements, and empirical models relating sap flux-scaled leaf-level transpiration (E(L)) to climate to estimate the change in E(t) after hemlock mortality and forecast how forest E(t) will change in the future in response to eastern hemlock loss. From 2004 to 2011, eastern hemlock mortality reduced annual forest E(t) by 22% and reduced winter E(t) by 74%. As hemlock mortality increased, growth of deciduous tree species--especially sweet birch (Betula lenta L.), red maple (Acer rubrum L.), yellow poplar (Liriodendron tulipifera L.), and the evergreen understory shrub rosebay rhododendron (Rhododendron maximum L.)--also increased, and these species will probably dominate post-hemlock riparian forests. All of these species have higher daytime E(L) rates than hemlock, and replacement of hemlock with species that have less conservative transpiration rates will result in rapid recovery of annual stand E(t). Further, we predict that annual stand E(t) will eventually surpass E(t) levels observed before hemlock was infested with HWA. This long-term increase in forest E(t) may eventually reduce stream discharge, especially during the growing season. However, the dominance of deciduous species in the canopy will result in a permanent reduction in winter E(t) and possible increase in winter stream discharge. The effects of hemlock die-off and replacement with deciduous species will have a significant impact on the hydrologic flux of forest transpiration, especially in winter. These results highlight the impact that invasive species can have on landscape-level ecosystem fluxes.

  15. Mycorrhizae promote fire adaptation in oak-hickory forests in Eastern USA

    Treesearch

    Aaron D. Stottlemyer; G. Geoff Wang; Thomas A. Waldrop

    2015-01-01

    Prescribed fire is commonly used in silvicultural programs designed to promote oak (Quercus spp.) and hickory (Carya spp.) regeneration in eastern deciduous forests (Brose and others 2008). Thick bark, hypogeal germination, large root systems, repeated-prolific sprouting, and the ability to compartmentalize scars are well-known characteristics that enable oaks and...

  16. Landscape Risk Factors for Lyme Disease in the Eastern Broadleaf Forest Province of the Hudson River Valley and the Effect of Explanatory Data Classification Resolution

    EPA Science Inventory

    This study assessed how landcover classification affects associations between landscape characteristics and Lyme disease rate. Landscape variables were derived from the National Land Cover Database (NLCD), including native classes (e.g., deciduous forest, developed low intensity)...

  17. Underplanting to sustain future stocking of oak (Quercus) in temperate deciduous forests

    Treesearch

    Daniel C. Dey; Emile S. Gardiner; Callie J. Schweitzer; John M. Kabrick; Douglass F. Jacobs

    2012-01-01

    Oaks (Quercus spp.) are one of the most important tree taxa in the northern hemisphere. Although they are dominant in mixed species forests and widely distributed, there are frequent reports of regeneration failures. An adequate population of large oak advance reproduction is a critical prerequisite to successful oak regeneration, and hence...

  18. Drought during canopy development has lasting effect on annual carbon balance in a deciduous temperate forest

    Treesearch

    Asko Noormets; Steve G. McNulty; Jared L. DeForest; Ge Sun; Qinglin Li; Jiquan Chen

    2008-01-01

    Climate change projections predict an intensifying hydrologic cycle and an increasing frequency of droughts, yet quantitative understanding of the effects on ecosystem carbon exchange remains limitedHere, the effect of contrasting precipitation and soil moisture dynamics were evaluated on forest carbon exchange using 2 yr of...

  19. Surface Water and Groundwater Nitrogen Dynamics in a Well Drained Riparian Forest within a Poorly Drained Agricultural Landscape

    EPA Science Inventory

    The effectiveness of riparian zones in mitigating nutrients in ground and surface water depends on the climate, management and hydrogeomorphology of a site. The purpose of this study was to determine the efficacy of a well-drained, mixed-deciduous riparian forest to buffer a ri...

  20. The Central Hardwood Forest: its boundaries and physiographic provinces

    Treesearch

    James S. Fralish

    2003-01-01

    The Central Hardwood Forest (CHF) refers to the area where deciduous hardwood species overwhelmingly, but not exclusively, dominate the stands and cover types that occur as repeating units across the landscape. Transition zones where Central Hardwood species mix with species from adjacent regions identify boundaries of the region. These regions are the Northern...

  1. The Central Hardwood Forest: Its Boundaries and Physiographic Provinces

    Treesearch

    James S. Fralish

    2003-01-01

    The Central Hardwood Forest (CHF) refers to the area where deciduous hardwood species overwhelmingly, but not exclusively, dominate the stands and cover types that occur as repeating units across the landscape. Transition zones where Central Hardwood species mix with species from adjacent regions identify boundaries of the region. These regions are the Northern...

  2. The Fundamental Skills Training Project

    DTIC Science & Technology

    2003-08-01

    rejecting hypotheses. This ITS teaches ecology concepts in areas including biomes , abiotic factors of plant growth, biotic factors in ecosystems, human...Deserts, Temperate Deciduous Forests, Coniferous Forests, Tropical Rainforests, Polar Regions, Tundra, Fresh Water, Marine . Abiotic Factors...critical points in each workspace. Incorporating motivational features that address individual characteristics such as learning styles and interests

  3. Leaf morphophysiology of a Neotropical mistletoe is shaped by seasonal patterns of host leaf phenology.

    PubMed

    Scalon, Marina Corrêa; Rossatto, Davi Rodrigo; Domingos, Fabricius Maia Chaves Bicalho; Franco, Augusto Cesar

    2016-04-01

    Several mistletoe species are able to grow and reproduce on both deciduous and evergreen hosts, suggesting a degree of plasticity in their ability to cope with differences in intrinsic host functions. The aim of this study was to investigate the influence of host phenology on mistletoe water relations and leaf gas exchange. Mistletoe Passovia ovata parasitizing evergreen (Miconia albicans) hosts and P. ovata parasitizing deciduous (Byrsonima verbascifolia) hosts were sampled in a Neotropical savanna. Photosynthetic parameters, diurnal cycles of stomatal conductance, pre-dawn and midday leaf water potential, and stomatal anatomical traits were measured during the peak of the dry and wet seasons, respectively. P. ovata showed distinct water-use strategies that were dependent on host phenology. For P. ovata parasitizing the deciduous host, water use efficiency (WUE; ratio of photosynthetic rate to transpirational water loss) was 2-fold lower in the dry season than in the wet season; in contrast, WUE was maintained at the same level during the wet and dry seasons in P. ovata parasitizing the evergreen host. Generally, mistletoe and host diurnal cycles of stomatal conductance were linked, although there were clear differences in leaf water potential, with mistletoe showing anisohydric behaviour and the host showing isohydric behaviour. Compared to mistletoes attached to evergreen hosts, those parasitizing deciduous hosts had a 1.4-fold lower stomatal density and 1.2-fold wider stomata on both leaf surfaces, suggesting that the latter suffered less intense drought stress. This is the first study to show morphophysiological differences in the same mistletoe species parasitizing hosts of different phenological groups. Our results provide evidence that phenotypical plasticity (anatomical and physiological) might be essential to favour the use of a greater range of hosts.

  4. Two decades of compositional and structural change in deciduous old-growth forests of Indiana, USA

    Treesearch

    Christy A. Lowney; Bradley D. Graham; Martin A. Spetich; Stephen R. Shifley; Michael R. Saunders; Michael A. Jenkins

    2015-01-01

    AimsUsing a network of permanent plots, we determined how multiple old-growth forests changed over an 18–19-year period at a statewide scale. This examination of change allowed us to assess how the compositional and structural stability of each forest varied with site characteristics (topography, physiography and productivity)...

  5. Effects of disturbance and climate change on ecosystem performance in the Yukon River Basin boreal forest

    USGS Publications Warehouse

    Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan

    2014-01-01

    A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.

  6. Impacts of experimentally applied mountain biking and hiking on vegetation and soil of a deciduous forest.

    PubMed

    Thurston, E; Reader, R J

    2001-03-01

    Many recent trail degradation problems have been attributed to mountain biking because of its alleged capacity to do more damage than other activities, particularly hiking. This study compared the effects of experimentally applied mountain biking and hiking on the understory vegetation and soil of a deciduous forest. Five different intensities of biking and hiking (i.e., 0, 25, 75, 200 and 500 passes) were applied to 4-m-long x 1-m-wide lanes in Boyne Valley Provincial Park, Ontario, Canada. Measurements of plant stem density, species richness, and soil exposure were made before treatment, two weeks after treatment, and again one year after treatment. Biking and hiking generally had similar effects on vegetation and soil. Two weeks after treatment, stem density and species richness were reduced by up to 100% of pretreatment values. In addition, the amount of soil exposed increased by up to 54%. One year later, these treatment effects were no longer detectable. These results indicate that at a similar intensity of activity, the short-term impacts of mountain biking and hiking may not differ greatly in the undisturbed area of a deciduous forest habitat. The immediate impacts of both activities can be severe but rapid recovery should be expected when the activities are not allowed to continue. Implications of these results for trail recreation are discussed.

  7. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests.

    PubMed

    Richardson, Andrew D; Hollinger, David Y; Dail, D Bryan; Lee, John T; Munger, J William; O'keefe, John

    2009-03-01

    Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface-atmosphere CO(2) exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux sites. All phenological measures, including CO(2) source-sink transition dates, could be well predicted on the basis of a simple two-parameter spring warming model, indicating good potential for improving the representation of phenological transitions and their dynamic responsiveness to climate variability in land surface models. The date at which canopy-scale photosynthetic capacity reached a threshold value of 12 micromol m(-2) s(-1) was better correlated with spring and annual flux integrals than were either deciduous or coniferous bud burst dates. For all phenological indicators, earlier spring onset consistently, but not always significantly, resulted in higher gross primary productivity (GPP) and ecosystem respiration (RE) for both seasonal (spring months, April-June) and annual flux integrals. The increase in RE was less than that in GPP; depending on the phenological indicator used, a one-day advance in spring onset increased springtime net ecosystem productivity (NEP) by 2-4 g C m(-2) day(-1). In general, we could not detect significant differences between the two forest types in response to earlier spring, although the response to earlier spring was generally more pronounced for Harvard Forest than for Howland Forest, suggesting that future climate warming may favor deciduous species over coniferous species, at least in this region. The effect of earlier spring tended to be about twice as large when annual rather than springtime flux integrals were considered. This result is suggestive of both immediate and lagged effects of earlier spring onset on ecosystem C cycling, perhaps as a result of accelerated N cycling rates and cascading effects on N uptake, foliar N concentrations and photosynthetic capacity.

  8. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway.

    PubMed

    Bright, Ryan M; Antón-Fernández, Clara; Astrup, Rasmus; Cherubini, Francesco; Kvalevåg, Maria; Strømman, Anders H

    2014-02-01

    Empirical models alongside remotely sensed and station measured meteorological observations are employed to investigate both the local and global direct climate change impacts of alternative forest management strategies within a boreal ecosystem of eastern Norway. Stand-level analysis is firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across conifer, deciduous, and clear-cut sites. Relative to a conifer site, a slight local cooling of −0.13 °C at a deciduous site and −0.25 °C at a clear-cut site were observed over a 6-year period, which were mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes – despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies jointly promoted an enhanced material supply over business-as-usual levels. Expressed in terms of an equivalent CO2 emission pulse at the start of the simulation, the net climate response at the end of the 21st century spanned −8 to −159 Tg-CO2-eq., depending on whether near-term harvest levels increased or followed current trends, respectively. This magnitude equates to approximately −20 to −300% of Norway's annual domestic (production) emission impact. Our analysis supports the assertion that a carbon-only focus in the design and implementation of forest management policy in boreal and other climatically similar regions can be counterproductive – and at best – suboptimal if boreal forests are to be used as a tool to mitigate global warming.

  9. Emma Lucy Braun's forest plots in eastern North America.

    PubMed

    Ricklefs, Robert E

    2018-02-01

    Relative abundances of tree species are presented for the 348 forest plots described in E. Lucy Braun's (1950) book, Deciduous Forests of Eastern North America (Hafner, New York, facsimile reprint 1972). Information about the plots includes forest type, location with latitude and longitude, WorldClim climate variables, and sources of original studies where applicable. No copyright restrictions are associated with the use of this data set. Please cite this article when the data are used in other publications. © 2017 by the Ecological Society of America.

  10. Effects of mercury deposition and coniferous forests on the mercury contamination of fish in the south central United States

    USGS Publications Warehouse

    Drenner, Ray W.; Chumchal, Matthew M.; Jones, Christina M.; Lehmann, Christopher M.B.; Gay, David A.; Donato, David I.

    2013-01-01

    Mercury (Hg) is a toxic metal that is found in aquatic food webs and is hazardous to human and wildlife health. We examined the relationship between Hg deposition, land coverage by coniferous and deciduous forests, and average Hg concentrations in largemouth bass (Micropterus salmoides)-equivalent fish (LMBE) in 14 ecoregions located within all or part of six states in the South Central U.S. In 11 ecoregions, the average Hg concentrations in 35.6-cm total length LMBE were above 300 ng/g, the threshold concentration of Hg recommended by the U.S. Environmental Protection Agency for the issuance of fish consumption advisories. Percent land coverage by coniferous forests within ecoregions had a significant linear relationship with average Hg concentrations in LMBE while percent land coverage by deciduous forests did not. Eighty percent of the variance in average Hg concentrations in LMBE between ecoregions could be accounted for by estimated Hg deposition after adjusting for the effects of coniferous forests. Here we show for the first time that fish from ecoregions with high atmospheric Hg pollution and coniferous forest coverage pose a significant hazard to human health. Our study suggests that models that use Hg deposition to predict Hg concentrations in fish could be improved by including the effects of coniferous forests on Hg deposition.

  11. A Long Term View of Forest Response to Environmental Change: 25 Years of Studying Harvard Forest

    NASA Astrophysics Data System (ADS)

    Munger, J. W.; Wofsy, S. C.; Lindaas, J.; David, F.; David, O.

    2014-12-01

    Forests influence the budgets of greenhouse gases, and understanding how they will respond to environmental change is critical to accurately predicting future GHG trends. The time scale for climate change is long and forest growth is slow, thus very long measurement periods are required to observe meaningful forest response. We established an eddy flux tower within a mixed forest stand dominated by red oak and red maple at the Harvard Forest LTER site in 1989 where CO2, H2O and energy fluxes together with meteorological observations have been measured continuously. An array of plots for biometric measurements was established in 1993. Flux measurement at an adjacent hemlock stand began in 2000. Records of land use and disturbance and vegetation plot data extend back to 1907. The combined suite of measurements merges observations of instantaneous ecosystem responses to environmental forcing with details of vegetation dynamics and forest growth that represent the emergent properties relevant to long-term ecosystem change. Both the deciduous stand and hemlock stand are accumulating biomass. Each has added over 20 Mg-C ha-1 as woody biomass in trees >10cm dbh since 1990, even though the hemlock stand is older. Net carbon exchange shows enhanced uptake in early spring and late fall months in response to warmer temperatures and likely an increase in evergreen foliage at the deciduous site. Net carbon uptake efficiency at the deciduous stand has increased over time as well as indicated by peak NEE under optimum light conditions. The trend is only partly explained by variation in mean leaf area index and cannot be directly attributed to climate response. The combination of longer growing season and increased uptake efficiency yields a general trend of increasing annual NEE (Fig. 1). However, significant excursions in the trend highlight the sensitivity of forest carbon stocks. The pulse of high annual carbon uptake (peak 6 Mg-C ha-1y-1 in 2008) from 2000-2008 is only partially matched by carbon stored in woody biomass, leaving a large fraction of carbon to have accumulated in litter and fine roots in the forest floor, which has as much carbon as the above-ground woody biomass, but shorter turnover time. Invasion by Hemlock wooly adelgid, an insect that kills hemlock trees portends a major shift in NEE for the hemlock stand in the next decade.

  12. Litterfall mercury dry deposition in the eastern USA

    Treesearch

    Martin R. Risch; John F. DeWild; David P. Krabbenhoft; Randall K. Kolka; Leiming. Zhang

    2012-01-01

    Mercury (Hg) in autumn litterfall frompredominately deciduous forestswas measured in 3 years of samples from 23 Mercury Deposition Network sites in 15 states across the eastern USA. Annual litterfall Hg dry depositionwas significantly higher (median 12.3 micrograms per square meter (µg/m2), range 3.5-23.4 µg/m2...

  13. Molecular characterization of organic matter in converted forests in Western Europe; disentangling the effects of edaphic factors and input differences on SOM composition

    NASA Astrophysics Data System (ADS)

    Brock, Olaf; Kooijman, Annemieke; Vancampenhout, Karen; Muys, Bart; Jansen, Boris

    2017-04-01

    By storing carbon in the soil, forests can play an important role in climate mitigation. We studied how the SOM composition was affected by conversion of deciduous stands to mono-culture spruce plantations in the Mullerthal in Luxembourg and the Gaume in south-east Belgium. Both regions have a known and similar vegetation history on different lithologies, ranging from carcareous marls to decalcified sands. Lignin and cutin/suberin biomarkers were identified by using thermally assisted hydrolysis and methylation (THM) with unlabelled tetra methyl ammonium hydroxide (TMAH). Lignin was used to distinguish deciduous and coniferous litter sources, whereas cutin and suberin indicated the respective input of above- and belowground litter input. A twinplot setup was used to be able to independently evaluate the effect of edaphic factors versus input differences on SOM composition. pH values and SOC stocks reflected the lithological gradients in both study areas. The difference was more subtle in the Gaume where the gradient is much narrower. The existence of pedogenic thresholds explains why significant differences in lignin yield and SOC stocks between plots with different lithology were also found along the subtle gradient in the Gaume. Secondly, we observed differences in molecular composition and also in decomposition state of lignin that were caused solely by input differences between adjacent deciduous and coniferous forest plots. Furthermore, we found a legacy effect, a signal of former deciduous forest in the deeper soil layers (15-20 cm) under the current spruce plantations, in the loamy substrate plots of the Gaume, which was not observed in the Mullerthal, despite the similar vegetation history of both regions. This can be explained by differences in environmental conditions between both areas. Higher pH values resulting in a higher biological activity could explain the absence of a legacy effect in the Mullerthal plots. Therefore, an important conclusion of this work is that the presence of a legacy effect depends on local soil conditions and soil process domains. Lignin decomposition was found to be higher under more acid conditions, as present in spruce soils compared with the soils under deciduous trees. Moreover, the observance that in the Mullerthal the amount of lignin relative to TOC decreased with increasing depth from the surface, indicates preferential decomposition of lignin with depth. This is in line with the new paradigm that the (soil) environment rather than molecular composition is in many situations a dominant factor in determining the lignin turnover rate. Lastly, in both study areas within most twin plots SOC stocks were similar for both forest types, while SOC stocks were higher on a marl or limestone substrate than on a sandy substrate. We therefore argue that edapthic factors are of vital importance when considering forests to effectively mitigate climate change and that litter quality,and therefore the molecular composition of the organic matter, cannot be ignored when discussing organic matter persistence and carbon sequestration.

  14. Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework.

    PubMed

    Weng, Ensheng; Farrior, Caroline E; Dybzinski, Ray; Pacala, Stephen W

    2017-06-01

    Earth system models are incorporating plant trait diversity into their land components to better predict vegetation dynamics in a changing climate. However, extant plant trait distributions will not allow extrapolations to novel community assemblages in future climates, which will require a mechanistic understanding of the trade-offs that determine trait diversity. In this study, we show how physiological trade-offs involving leaf mass per unit area (LMA), leaf lifespan, leaf nitrogen, and leaf respiration may explain the distribution patterns of evergreen and deciduous trees in the temperate and boreal zones based on (1) an evolutionary analysis of a simple mathematical model and (2) simulation experiments of an individual-based dynamic vegetation model (i.e., LM3-PPA). The evolutionary analysis shows that these leaf traits set up a trade-off between carbon- and nitrogen-use efficiency at the scale of individual trees and therefore determine competitively dominant leaf strategies. As soil nitrogen availability increases, the dominant leaf strategy switches from one that is high in nitrogen-use efficiency to one that is high in carbon-use efficiency or, equivalently, from high-LMA/long-lived leaves (i.e., evergreen) to low-LMA/short-lived leaves (i.e., deciduous). In a region of intermediate soil nitrogen availability, the dominant leaf strategy may be either deciduous or evergreen depending on the initial conditions of plant trait abundance (i.e., founder controlled) due to feedbacks of leaf traits on soil nitrogen mineralization through litter quality. Simulated successional patterns by LM3-PPA from the leaf physiological trade-offs are consistent with observed successional dynamics of evergreen and deciduous forests at three sites spanning the temperate to boreal zones. © 2016 John Wiley & Sons Ltd.

  15. Influence of Different Forest System Management Practices on Leaf Litter Decomposition Rates, Nutrient Dynamics and the Activity of Ligninolytic Enzymes: A Case Study from Central European Forests

    PubMed Central

    Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling. PMID:24699676

  16. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests.

    PubMed

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.

  17. Chronic over browsing and biodiversity collapse in a forest understory in Pennsylvania: Results from a 60 year-old deer exclusion plot

    Treesearch

    Chandra Goetsch; Jennifer Wigg; Alejandro A. Royo; Todd Ristau; Walter P. Carson

    2011-01-01

    We evaluated the impact of chronic deer over browsing on the diversity and abundance of understory forbs and shrubs within a forest stand in the Allegheny High Plateau Region of Pennsylvania by comparing vegetation inside a 60-year-old exclosure to vegetation within an adjacent reference site. This is the oldest known exclosure in the Eastern Deciduous Forest. Browsing...

  18. Distribution of biomass in an Indiana old-growth forest from 1926 to 1992

    Treesearch

    Martin A. Spetich; George R. Parker

    1998-01-01

    We examined the structural and spatial distribution of woody biomass in relationship to disturbance in an Indiana old-growth deciduous forest over a 66-year period. Analysis was done on the core 7.92 ha of a 20.6 ha forest in which every tree 10 cm dbh and over has been tagged and mapped since 1926. Five years are compared - 1926, 1976, 1981, 1986 and 1992....

  19. Long-term variability and environmental control of the carbon cycle in an oak-dominated temperate forest

    Treesearch

    Jing Xie; Jiquan Chen; Ge Sun; Housen Chu; Asko Noormets; Zutao Ouyang; Ranjeet John; Shiqiang Wan; Wenbin Guan

    2014-01-01

    Our understanding of the long-term carbon (C) cycle of temperate deciduous forests and its sensitivity to climate variability is limited due to the large temporal dynamics of C fluxes. The goal of the study was to quantify the effects of environmental variables on the C balance in a 70-year-old mixed-oak woodland forest over a 7-year period in northwest Ohio, USA. The...

  20. Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest

    Treesearch

    Dohyoung Kim; Ram Oren; A. Christopher Oishi; Cheng-I Hsieh; Nathan Phillips; Kimberly A. Novick; Paul C. Stoy

    2014-01-01

    Wind velocity (U) within and above forest canopies can alter the coupling between the vapor-saturated sub-stomatal airspace and the drier atmosphere aloft, thereby influencing transpiration rates. In practice, however, the actual increase in transpiration with increasing U depends on the aerodynamic resistance (RA) to vapor transfer compared to canopy resistance to...

  1. Fine root dynamics across a chronosequence of upland temperate deciduous forests

    Treesearch

    Travis W. Idol; Phillip E. Pope; Felix Jr. Ponder

    2000-01-01

    Following a major disturbance event in forests that removes most of the standing vegetation, patterns of fine root growth, mortality, and decomposition may be altered from the pre-disturbance conditions. The objective of this study was to describe the changes in the seasonal and spatial dynamics of fine root growth, mortality, and decomposition that occur following...

  2. Volatile organic compound emmission rates from mixed deciduous and coniferous foest in Northern Wisconsin, USA

    Treesearch

    J. G. Isebrands; A. B. Guenther; P. Harley; D. Helmig; L. Klinger; L. Vierling; P. Zimmerman; C. Geron

    1999-01-01

    Biogenic emissions of volatile organic compounds {VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regions of the world to understand regional and global impacts and to implement possible...

  3. Forest restoration in the Nordic countries

    Treesearch

    Palle Madsen; Ása Arad•ttir; Emile Gardiner; Pelle Gemmel; Kåre Lund Høie; Magnus Löf; John A. Stanturf; Peter Tigerstedt; Hardi Tullus; Sauli Valkonen; Veiko Uri

    2000-01-01

    The Nordic countries include Iceland, Norway, Sweden, Finland, and Denmark, which range from lat. 54° in southern Denmark to lat. 72° at North Cape, Norway. This region is dominated by the boreal coniferous vegetational zone.Denmark and southern Sweden are, however, located in the deciduous (nemoral) forest zone, whereas the interior part of Iceland and the high...

  4. A Long-Term View of Old-Growth Deciduous Forests

    Treesearch

    James T. Tanner; Paul B. Hamel

    2001-01-01

    Lowland old-growth forests in the Southeastern United States and Eastern Europe (Poland) survived because of accidents of history, topography, and ownership until they came under governmental protection. Such old-growth stands are the similar the world over; they have trees of many ages, patchy distribution of habitats, and a variety of microhabitats, all of which...

  5. Restoring forest herb communities through landscape-level deer herd reductions: Is recovery limited by legacy effects?

    Treesearch

    Alejandro A. Royo; Susan L. Stout; David S. deCalesta; Timothy G. Pierson

    2010-01-01

    White-tailed deer (Odocoileus virginianus) overbrowsing has altered plant species diversity throughout deciduous forest understories in eastern North America. Here we report on a landscape-level (306 km2) project in Pennsylvania, USA that tracked the herbaceous community response to deer herd reductions. From 2001 to 2007, we...

  6. Relationship between foliar chemistry and insect performance: the forest tent caterpillar

    Treesearch

    Francois Lorenzetti; Yves Mauffette; Eric Bauce

    1999-01-01

    Forest tent caterpillar (FTC) feeds on several species of deciduous trees (Stehr and Cook 1968), in northeastern North America, quaking aspen is the preferred host of this spring-feeding insect. FTC commonly defoliates several thousands of hectares of aspen stands each year in Quebec (Bordeleau 1990), although its secondary hosts seldom are attacked.

  7. Nitrogen cycling in a forest stream determined by a 15N tracer addition

    Treesearch

    Patrick J. Mullholland; Jennifer L. Tank; Diane M. Sanzone; Wilfred M. Wollheim; Bruce J. Peterson; Jackson R. Webster; Judy L. Meyer

    2000-01-01

    Nitrogen uptake and cycling was examined using a six-week tracer addition of 15N-labeled ammonium in early spring in Waer Branch, a first-order deciduous forest stream in eastern Tennessee. Prior to the 15N addition, standing stocks of N were determined for the major biomass compartments. During and after the addition,

  8. Characterizing movement of ground-dwelling arthropods with a novel mark-capture method using fluorescent powder

    Treesearch

    Kayla I. Perry; Kimberly F. Wallin; John W. Wenzel; Daniel A. Herms

    2017-01-01

    A major knowledge gap exists in understanding dispersal potential of ground-dwelling arthropods, especially in forest ecosystems. Movement of the ground-dwelling arthropod community was quantified using a novel markcapture technique in which three different colored fluorescent powders in two separate mixtures were applied to the floor of a deciduous forest in...

  9. The paleoecology of fire and oaks in eastern forests

    Treesearch

    William A. III Patterson

    2006-01-01

    Oaks (Quercus spp.) currently dominate eastern deciduous forests, but are widely perceived as declining, with regeneration inadequate to perpetuate many stands. Most stands regenerated following fire in the 19th and early 20th centuries, and a lack of recent fire is viewed as contributing to the shortage of sapling and pole-size stands. But paleoecological studies...

  10. Aerial detection of Ailanthus altissima: a cost-effective method to map an invasive tree in forested landscapes

    Treesearch

    Joanne Rebbeck; Aaron Kloss; Michael Bowden; Cheryl Coon; Todd F. Hutchinson; Louis Iverson; Greg Guess

    2015-01-01

    We present an aerial mapping method to efficiently and effectively identify seed clusters of the invasive tree, Ailanthus altissima (Mill.) Swingle across deciduous forest landscapes in the eastern United States. We found that the ideal time to conduct aerial digital surveys is early to middle winter, when Ailanthus seed...

  11. Some effects of forest preservation

    Treesearch

    William B. Leak

    1974-01-01

    Long-term preservation (no cutting) of a deciduous forest stand in New Hampshire is leading toward stable populations of beech, sugar maple, striped maple, mountain maple, and hobblebush, coupled with a decline or complete disappearance of other woody species. The humus has stabilized at a depth no greater than that of cut stands. Nitrate discharge in the streams is...

  12. Using thinning as a management tool for gypsy moth: the influence on small mammal abundance

    Treesearch

    R.M. Muzika; S.T. Grushecky; A.M. Liebhold; R.L. Smith

    2004-01-01

    Silvicultural manipulations may be used to reduce forest susceptibility or vulnerability to defoliation by the gypsy moth. The effects of this management strategy on small mammal abundance were determined by pitfall trapping small mammals 1 year before silvicultural thinnings and for 3 years following thinning in a deciduous montane forest. Sorex cinereus...

  13. Growth pf Chinese tallow in a bottomland forest in Southern Mississippi

    Treesearch

    Nana Tian; Zhaofei Fan

    2015-01-01

    Chinese tallow tree [Triadica sebifera (L.) Small, formerly Sapium sebiferum (L.) Roxb.] is a monoecious and deciduous tree, native to central and southern China. As a nonnative invasive tree species, it has aggressively invaded forestlands in southeastern United States, particularly the low- and bottom-land forests along the coastal region of the Gulf of Mexico. This...

  14. Effects of ungulate herbivory on aspen, cottonwood, and willow development under forest fuels treatment regimes

    Treesearch

    Bryan A. Endress; Michael J. Wisdom; Martin Vavra; Catherine G. Parks; Brian L. Dick; Bridgett J. Naylor; Jennifer M. Boyd

    2012-01-01

    Herbivory by domestic and wild ungulates can dramatically affect vegetation structure, composition and dynamics in nearly every terrestrial ecosystem of the world. These effects are of particular concern in forests of western North America, where intensive herbivory by native and domestic ungulates has the potential to substantially reduce or eliminate deciduous,...

  15. Drought impacts on tree growth and mortality of southern Appalachian forests

    Treesearch

    Brian D. Kloeppel; Barton D. Clinton; James M. Vose; Aaron R. Cooper

    2003-01-01

    The Coweeta LTER Program represents the eastern deciduous forests of the southem Appalachian Mountains in the United States. Coweeta Hydrologic Laboratory was established in 1934 and hence has a long record of climate measurement and vegetation response to both natural and human disturbance (Swank and Crossley 1988). The general climate of the area is classified as...

  16. Evaluating relationships among tree growth rate, shade tolerance, and browse tolerance following disturbance in an eastern deciduous forest

    Treesearch

    Lisa M. Krueger; Chris J. Peterson; Alejandro Royo; Walter P. Carson

    2009-01-01

    Interspecific differences in shade tolerance among woody species are considered a primary driving force underlying forest succession. However, variation in shade tolerance may be only one of many interspecific differences that cause species turnover. For example, tree species may differ in their sensitivity to herbivory. Nonetheless,...

  17. Influences of the vegetation mosaic on riparian and stream environments in a mixed forest-grassland landscape in "Mediterranean" northwestern California

    Treesearch

    Hartwell H Welsh Jr; Garth R. Hodgson; Nancy E. Karraker

    2005-01-01

    We examined differences in riparian and aquatic environments within the three dominant vegetation patch types of the Mattole River watershed, a 789-km2 mixed conifer-deciduous (hardwood) forest and grassland-dominated landscape in northwestern California, USA. Riparian and aquatic environments, and particularly microclimates therein, influence...

  18. Xylobios: patterns, roles and determinants of saproxylic diversity in Belgian deciduous forests

    Treesearch

    Philippe Fayt; Etienne Branquart; Marc Dufrene; Jean-Marc Henin; Christophe Pontegnie; Veerle Versteirt

    2003-01-01

    The XYLOBIOS project aims to study patterns, roles and determinants of saproxylic diversity (i.e., species richness and abundance of organisms which are dependent upon the dead or dying wood of moribund or dead trees, or upon the presence of other saproxylics) found in Belgian beech Fagus sylvatica and oak Quercus spp. forests. The...

  19. Tropical forest cover change in the 1990s and options for future monitoring

    PubMed Central

    Mayaux, Philippe; Holmgren, Peter; Achard, Frédéric; Eva, Hugh; Stibig, Hans-Jürgen; Branthomme, Anne

    2005-01-01

    Despite the importance of the world's humid tropical forests, our knowledge concerning their rates of change remains limited. Two recent programmes (FAO 2000 Forest Resources Assessment and TREES II), exploiting the global imaging capabilities of Earth observing satellites, have recently been completed to provide information on the dynamics of tropical forest cover. The results from these independent studies show a high degree of conformity and provide a good understanding of trends at the pan-tropical level. In 1990 there were some 1150 million ha of tropical rain forest with the area of the humid tropics deforested annually estimated at 5.8 million ha (approximately twice the size of Belgium). A further 2.3 million ha of humid forest is apparently degraded annually through fragmentation, logging and/or fires. In the sub-humid and dry tropics, annual deforestation of tropical moist deciduous and tropical dry forests comes to 2.2 and 0.7 million ha, respectively. Southeast Asia is the region where forests are under the highest pressure with an annual change rate of −0.8 to −0.9%. The annual area deforested in Latin America is large, but the relative rate (−0.4 to −0.5%) is lower, owing to the vast area covered by the remaining Amazonian forests. The humid forests of Africa are being converted at a similar rate to those of Latin America (−0.4 to −0.5% per year). During this period, secondary forests have also been established, through re-growth on abandoned land and forest plantations, but with different ecological, biophysical and economic characteristics compared with primary forests. These trends are significant in all regions, but the extent of new forest cover has proven difficult to establish. These results, as well as the lack of more detailed knowledge, clearly demonstrate the need to improve sound scientific evidence to support policy. The two projects provide useful guidance for future monitoring efforts in the context of multilateral environmental agreements and of international aid, trade and development partnerships. Methodologically, the use of high-resolution remote sensing in representative samples has been shown to be cost-effective. Close collaboration between tropical institutions and inter-governmental organizations proved to be a fruitful arrangement in the different projects. To properly assist decision-making, monitoring and assessments should primarily be addressed at the national level, which also corresponds to the ratification level of the multilateral environmental agreements. The Forest Resources Assessment 2000 deforestation statistics from countries are consistent with the satellite-based estimates in Asia and America, but are significantly different in Africa, highlighting the particular need for long-term capacity-building activities in this continent. PMID:15814351

  20. Tropical forest cover change in the 1990s and options for future monitoring.

    PubMed

    Mayaux, Philippe; Holmgren, Peter; Achard, Frédéric; Eva, Hugh; Stibig, Hans-Jürgen; Branthomme, Anne

    2005-02-28

    Despite the importance of the world's humid tropical forests, our knowledge concerning their rates of change remains limited. Two recent programmes (FAO 2000 Forest Resources Assessment and TREES II), exploiting the global imaging capabilities of Earth observing satellites, have recently been completed to provide information on the dynamics of tropical forest cover. The results from these independent studies show a high degree of conformity and provide a good understanding of trends at the pan-tropical level. In 1990 there were some 1150 million ha of tropical rain forest with the area of the humid tropics deforested annually estimated at 5.8 million ha (approximately twice the size of Belgium). A further 2.3 million ha of humid forest is apparently degraded annually through fragmentation, logging and/or fires. In the sub-humid and dry tropics, annual deforestation of tropical moist deciduous and tropical dry forests comes to 2.2 and 0.7 million ha, respectively. Southeast Asia is the region where forests are under the highest pressure with an annual change rate of -0.8 to -0.9%. The annual area deforested in Latin America is large, but the relative rate (-0.4 to -0.5%) is lower, owing to the vast area covered by the remaining Amazonian forests. The humid forests of Africa are being converted at a similar rate to those of Latin America (-0.4 to -0.5% per year). During this period, secondary forests have also been established, through re-growth on abandoned land and forest plantations, but with different ecological, biophysical and economic characteristics compared with primary forests. These trends are significant in all regions, but the extent of new forest cover has proven difficult to establish. These results, as well as the lack of more detailed knowledge, clearly demonstrate the need to improve sound scientific evidence to support policy. The two projects provide useful guidance for future monitoring efforts in the context of multilateral environmental agreements and of international aid, trade and development partnerships. Methodologically, the use of high-resolution remote sensing in representative samples has been shown to be cost-effective. Close collaboration between tropical institutions and inter-governmental organizations proved to be a fruitful arrangement in the different projects. To properly assist decision-making, monitoring and assessments should primarily be addressed at the national level, which also corresponds to the ratification level of the multilateral environmental agreements. The Forest Resources Assessment 2000 deforestation statistics from countries are consistent with the satellite-based estimates in Asia and America, but are significantly different in Africa, highlighting the particular need for long-term capacity-building activities in this continent.

  1. More than Drought: Precipitation Variance, Excessive Wetness, Pathogens and the Future of the Western Edge of the Eastern Deciduous Forest.

    PubMed

    Hubbart, Jason A; Guyette, Richard; Muzika, Rose-Marie

    2016-10-01

    For many regions of the Earth, anthropogenic climate change is expected to result in increasingly divergent climate extremes. However, little is known about how increasing climate variance may affect ecosystem productivity. Forest ecosystems may be particularly susceptible to this problem considering the complex organizational structure of specialized species niche adaptations. Forest decline is often attributable to multiple stressors including prolonged heat, wildfire and insect outbreaks. These disturbances, often categorized as megadisturbances, can push temperate forests beyond sustainability thresholds. Absent from much of the contemporary forest health literature, however, is the discussion of excessive precipitation that may affect other disturbances synergistically or that might represent a principal stressor. Here, specific points of evidence are provided including historic climatology, variance predictions from global change modeling, Midwestern paleo climate data, local climate influences on net ecosystem exchange and productivity, and pathogen influences on oak mortality. Data sources reveal potential trends, deserving further investigation, indicating that the western edge of the Eastern Deciduous forest may be impacted by ongoing increased precipitation, precipitation variance and excessive wetness. Data presented, in conjunction with recent regional forest health concerns, suggest that climate variance including drought and excessive wetness should be equally considered for forest ecosystem resilience against increasingly dynamic climate. This communication serves as an alert to the need for studies on potential impacts of increasing climate variance and excessive wetness in forest ecosystem health and productivity in the Midwest US and similar forest ecosystems globally. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Structure, Function and Floristic Relationships of Plant Communities in Stressful Habitats Marginal to the Brazilian Atlantic Rainforest

    PubMed Central

    SCARANO, FABIO R.

    2002-01-01

    The Brazilian Atlantic rainforest consists of a typical tropical rainforest on mountain slopes, and stands out as a biodiversity hotspot for its high species richness and high level of species endemism. This forest is bordered by plant communities with lower species diversity, due mostly to more extreme environmental conditions than those found in the mesic rainforest. Between the mountain slopes and the sea, the coastal plains have swamp forests, dry semi‐deciduous forests and open thicket vegetation on marine sand deposits. At the other extreme, on top of the mountains (>2000 m a.s.l.), the rainforest is substituted by high altitude fields and open thicket vegetation on rocky outcrops. Thus, the plant communities that are marginal to the rainforest are subjected either to flooding, drought, oceanicity or cold winter temperatures. It was found that positive interactions among plants play an important role in the structuring and functioning of a swamp forest, a coastal sandy vegetation and a cold, high altitude vegetation in the state of Rio de Janeiro. Moreover, only a few species seem to adopt this positive role and, therefore, the functioning of these entire systems may rely on them. Curiously, these nurse plants are often epiphytes in the rainforest, and at the study sites are typically terrestrial. Many exhibit crassulacean acid metabolism. Conservation initiatives must treat the Atlantic coastal vegetation as a complex rather than a rainforest alone. PMID:12324276

  3. Fallout volume and litter type affect 137Cs concentration difference in litter between forest and stream environments.

    PubMed

    Sakai, Masaru; Gomi, Takashi; Negishi, Junjiro N

    2016-11-01

    It is important to understand the changes in the 137 Cs concentration in litter through leaching when considering that 137 Cs is transferred from basal food resources to animals in forested streams. We found that the difference of 137 Cs activity concentration in litter between forest and stream was associated with both litter type and 137 Cs fallout volume around Fukushima, Japan. The 137 Cs activity concentrations in the litter of evergreen conifers tended to be greater than those in the litter of broad-leaved deciduous trees because of the absence of deciduous leaves during the fallout period in March 2011. Moreover, 137 Cs activity concentrations in forest litter were greater with respect to the 137 Cs fallout volume. The 137 Cs activity concentrations in stream litter were much lower than those in forest litter when those in forest litter were higher. The 137 Cs leaching patterns indicated that the differences in 137 Cs activity concentration between forest and stream litter could change with changes in both fallout volume and litter type. Because litter is an important basal food resource in the food webs of both forests and streams, the 137 Cs concentration gradient reflects to possible 137 Cs transfer from lower to higher trophic animals. Our findings will improve our understanding of the spatial heterogeneity and variability of 137 Cs concentrations in animals resident to the contaminated landscape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Advancement of tree species across ecotonal borders into non-forested ecosystems

    NASA Astrophysics Data System (ADS)

    Hanberry, Brice B.; Hansen, Mark H.

    2015-10-01

    Woody species are increasing in density, causing transition to more densely wooded vegetation states, and encroaching across ecotonal borders into non-forested ecosystems. We examined USDA Forest Service Forest Inventory and Analysis data to identify tree species that have expanded longitudinally in range, particularly into the central United States. We analyzed compositional differences within ecological regions (i.e., subsections) in eastern and western ranges of species using repeated measures ANOVA. We considered differences in outer ranges to indicate range expansion or contraction. We also estimated the shift in forest area and basal area relative to the center of the US and compared change in deciduous forest land cover. Out of 80 candidate species, 22 species expanded to the west, seven species expanded to the east, and five species expanded in both directions. During the survey interval, eastern tree species advanced into the predominantly non-forested ecosystems of central United States. Eastern cottonwood, eastern hophornbeam, eastern redbud, honeylocust, Osage-orange, pecan, red mulberry, and Shumard oak represent some of the species that are advancing eastern forest boundaries across forest-grassland ecotones into the central United States. Forest land has shifted towards the center of the continent, as has the center of mean tree basal area, and a simple comparison of deciduous cover change also displayed forest advancement into the central United States from eastern forests. The expanding species may spread along riparian migration corridors that provide protection from drought. Humans use the advancing tree species for windbreaks, fencerows, and ornamental landscaping, while wildlife spread fruit seeds, which results in unintentional assisted migration, or translocation, to drier sites across the region.

  5. Methane emissions and uptake in temperate and tropical forest trees on free-draining soils.

    NASA Astrophysics Data System (ADS)

    Welch, Bertie; Sayer, Emma; Siegenthaler, Andy; Gauci, Vincent

    2016-04-01

    Forests play an important role in the exchange of radiatively important gases with the atmosphere. Previous studies have shown that in both temperate and tropical wetland forests tree stems are significant sources of methane (CH4), yet little is known about trace greenhouse gas dynamics in free-draining soils that dominate global forested areas. We examined trace gas (CH4 and N2O) fluxes from both soils and tree stems in a lowland tropical forest on free-draining soils in Panama, Central America and from a deciduous woodland in the United Kingdom. The tropical field site was a long-term experimental litter manipulation experiment in the Barro Colorado Nature Monument within the Panama Canal Zone, fluxes were sampled over the dry to wet season transition (March-August) in 2014 and November 2015. Temperate fluxes were sampled at Wytham Woods, Oxfordshire, over 12 months from February 2015 to January 2016. Tree stem samples were collected via syringe from temporary chambers strapped to the trees (as per Siegenthaler et al. (2015)) and the soil fluxes were sampled from permanently installed collars inserted to a 3cm depth. We found that seasonality (precipitation) is a significant driver of changing soil exchange from methane uptake to emission at the Panama sites. Experimental changes to litter quantity only become significant when coupled with seasonal change. Seasonal variability is an important control of the fluxes at out temperate forest site with changes in temperature and soil water content leading to changes in soil and tree stem trace gas fluxes from Wytham Woods. Siegenthaler, A., Welch, B., Pangala, S. R., Peacock, M., and Gauci, V.: Technical Note: Semi-rigid chambers for methane gas flux measurements on tree-stems, Biogeosciences Discuss., 12, 16019-16048, doi:10.5194/bgd-12-16019-2015, 2015.

  6. Lead levels in deciduous teeth of children in Bahrain.

    PubMed

    al-Mahroos, F; al-Saleh, F S

    1997-06-01

    To determine lead exposure among children in Bahrain, a total of 280 shed deciduous whole teeth were collected from 269 children. Teeth were analyzed for lead concentrations using atomic absorption spectrophotometry with electrothermal atomization. Children were between 5 and 15 years old. The study period extended from July 1993 to April 1994. The study showed that the overall mean tooth-lead level was 4.3 micrograms/g dry weight with a range of 0.1-60.8 micrograms/g dry weight. The cumulative frequency distribution revealed that 35% of the teeth had a lead concentration of more than 4 micrograms/g dry weight. The tooth-lead concentrations differed according to the tooth type age. The child's sex, nationality, area of residence and socio-economic status had no impact on tooth-lead level. In conclusion, lead is present in toxic concentrations in 35% of the teeth of the children studied. Urgent measures are needed to eliminate lead from gasoline, paint and other sources in the environment.

  7. Mapping of taiga forest units using AIRSAR data and/or optical data, and retrieval of forest parameters

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Williams, Cynthia; Way, Jobea; Viereck, Leslie

    1993-01-01

    A maximum a posteriori Bayesian classifier for multifrequency polarimetric SAR data is used to perform a supervised classification of forest types in the floodplains of Alaska. The image classes include white spruce, balsam poplar, black spruce, alder, non-forests, and open water. The authors investigate the effect on classification accuracy of changing environmental conditions, and of frequency and polarization of the signal. The highest classification accuracy (86 percent correctly classified forest pixels, and 91 percent overall) is obtained combining L- and C-band frequencies fully polarimetric on a date where the forest is just recovering from flooding. The forest map compares favorably with a vegetation map assembled from digitized aerial photos which took five years for completion, and address the state of the forest in 1978, ignoring subsequent fires, changes in the course of the river, clear-cutting of trees, and tree growth. HV-polarization is the most useful polarization at L- and C-band for classification. C-band VV (ERS-1 mode) and L-band HH (J-ERS-1 mode) alone or combined yield unsatisfactory classification accuracies. Additional data acquired in the winter season during thawed and frozen days yield classification accuracies respectively 20 percent and 30 percent lower due to a greater confusion between conifers and deciduous trees. Data acquired at the peak of flooding in May 1991 also yield classification accuracies 10 percent lower because of dominant trunk-ground interactions which mask out finer differences in radar backscatter between tree species. Combination of several of these dates does not improve classification accuracy. For comparison, panchromatic optical data acquired by SPOT in the summer season of 1991 are used to classify the same area. The classification accuracy (78 percent for the forest types and 90 percent if open water is included) is lower than that obtained with AIRSAR although conifers and deciduous trees are better separated due to the presence of leaves on the deciduous trees. Optical data do not separate black spruce and white spruce as well as SAR data, cannot separate alder from balsam poplar, and are of course limited by the frequent cloud cover in the polar regions. Yet, combining SPOT and AIRSAR offers better chances to identify vegetation types independent of ground truth information using a combination of NDVI indexes from SPOT, biomass numbers from AIRSAR, and a segmentation map from either one.

  8. Drought tolerance, xylem sap abscisic acid and stomatal conductance during soil drying: a comparison of canopy trees of three temperate deciduous angiosperms.

    PubMed

    Loewenstein, Nancy J.; Pallardy, Stephen G.

    1998-07-01

    Patterns of water relations, xylem sap abscisic acid concentration ([ABA]) and stomatal aperture were characterized and compared in drought-sensitive black walnut (Juglans nigra L.), less drought-sensitive sugar maple (Acer saccharum Marsh.) and drought-tolerant white oak (Quercus alba L.) trees co-occurring in a second-growth forest in Missouri, USA. There were strong correlations among reduction in predawn leaf water potential, increased xylem sap [ABA] and stomatal closure in all species. Stomatal conductance was more closely correlated with xylem sap ABA concentration than with ABA flux or xylem sap pH and cation concentrations. In isohydric black walnut, increased concentrations of ABA in the xylem sap appeared to be primarily of root origin, causing stomatal closure in response to soil drying. In anisohydric sugar maple and white oak, however, there were reductions in midday leaf water potential associated with stomatal closure, making it uncertain whether drought-induced xylem sap ABA was of leaf or root origin. The role of root-originated xylem sap ABA in these species as a signal to the shoot of the water status of the roots is, therefore, less certain.

  9. Clear cutting (10-13th century) and deep stable economy (18-19th century) as responsible interventions for sand drifting and plaggic deposition in cultural landscapes on aeolian sands (SE-Netherlands).

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; Vera, Hein; Wallinga, Jakob

    2013-04-01

    The landscape in extensive areas in SE-Netherlands is underlain by coversand, deposited during the Late Glacial of the Weichselian. In the Preboreal, aeolian processes reduced soil formation. From the Preboreal to the Atlantic a deciduous climax forest developed. The geomorphology was a coversand landscape, composed of ridges (umbric podzols), coversand plains (gleyic podzols), coversand depressions (histic podzols) and small valleys (gleysols). The area was used by hunting people during the Late Paleolithic and Mesolithic. During the Bronze and Iron Ages the area was populated by people, living from forest grazing, shifting cultivation and trade. The natural deciduous forest gradually degraded into Calluna heath. The deforestation accelerated the soil acidification and affected the hydrology, which is reflected in drying out of ridges and wetting of depressions, promoting the development of histic podzols and even histosols. Aeolian erosion was during this period restricted to local, small scale sand drifting, related to natural hazards as forest fires and hurricanes and shifting cultivation. Sustainable crop productivity on chemically poor sandy substrates required application of organic fertilizers, composed of a mixture of organic litter and animal manure with a very low mineral compound, produced in shallow stables. At least since 1000 AD, heath management was regulated by a series of rules that aimed to protect the valuable heat lands against degradation. During the 11th, 12th and 13th centuries there was an increasing demand for wood and clear cutting transformed the majority of the forests in driftsand landscapes. The most important market was formed by the very wealthy Flemish cities. The exposed soil surface was subjected to wind erosion and sand drifting which endangered the Calluna heath, arable land and even farmhouses. As a consequence, umbric podzols, the natural climax soil under deciduous forests on coversand, degraded into larger scale driftsand landscapes, characterized by deflation plains (gleyic arenosols) and complexes of inland dunes (haplic arenosols). Clear cutting was responsible for the mediaeval first large scale expansion of drift sand landscapes. In such driftsand landscapes, the majority of the podzolic soils in coversand has been truncated by aeolian erosion. Only on scattered sheltered sites in the landscape, palaeopodzols were buried under mono or polycyclic driftsand deposits. They are now the valuable soil archives for palaeoecological research. During the 18th century, the population growth and regional economic activity stimulated the agricultural productivity. Farmers introduced the innovative 'deep stable' technique to increase the production of fertilizers. Farmers started sod digging, including the top of the Ah horizon of the humus forms. This consequently promoted heath degradation and sand drifting, resulting in the extension of driftsand landscapes. Deep stable economy and sod digging was responsible for the 18th century second large scale expansion of drift sand landscapes. During the 19th century, farmers tried to find alternative fertilizers and authorities initiated reforestation projects. The invention of chemical fertilizers at the end of the 19th century marked the end of the period of heath management and plaggic agriculture. The heath was no longer used for the harvesting of plaggic matter and new land management practices were introduced. Heath was reclaimed to new arable land or reforested with Scotch pine. Geomorphological features as inland dunes and plaggic covers survived in the landscape and are now included in the geological inheritance.

  10. Forest Resource Information System (FRIS)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technological and economical feasibility of using multispectral digital image data as acquired from the LANDSAT satellites in an ongoing operational forest information system was evaluated. Computer compatible multispectral scanner data secured from the LANDSAT satellites were demonstrated to be a significant contributor to ongoing information systems by providing the added dimensions of synoptic and repeat coverage of the Earth's surface. Major forest cover types of conifer, deciduous, mixed conifer-deciduous and non-forest, were classified well within the bounds of the statistical accuracy of the ground sample. Further, when overlayed with existing maps, the acreage of cover type retains a high level of positional integrity. Maps were digitized by a graphics design system, overlayed and registered onto LANDSAT imagery such that the map data with associated attributes were displayed on the image. Once classified, the analysis results were converted back to map form as a cover type of information. Existing tabular information as represented by inventory is registered geographically to the map base through a vendor provided data management system. The notion of a geographical reference base (map) providing the framework to which imagery and tabular data bases are registered and where each of the three functions of imagery, maps and inventory can be accessed singly or in combination is the very essence of the forest resource information system design.

  11. A Machine Learning and Cross-Validation Approach for the Discrimination of Vegetation Physiognomic Types Using Satellite Based Multispectral and Multitemporal Data.

    PubMed

    Sharma, Ram C; Hara, Keitarou; Hirayama, Hidetake

    2017-01-01

    This paper presents the performance and evaluation of a number of machine learning classifiers for the discrimination between the vegetation physiognomic classes using the satellite based time-series of the surface reflectance data. Discrimination of six vegetation physiognomic classes, Evergreen Coniferous Forest, Evergreen Broadleaf Forest, Deciduous Coniferous Forest, Deciduous Broadleaf Forest, Shrubs, and Herbs, was dealt with in the research. Rich-feature data were prepared from time-series of the satellite data for the discrimination and cross-validation of the vegetation physiognomic types using machine learning approach. A set of machine learning experiments comprised of a number of supervised classifiers with different model parameters was conducted to assess how the discrimination of vegetation physiognomic classes varies with classifiers, input features, and ground truth data size. The performance of each experiment was evaluated by using the 10-fold cross-validation method. Experiment using the Random Forests classifier provided highest overall accuracy (0.81) and kappa coefficient (0.78). However, accuracy metrics did not vary much with experiments. Accuracy metrics were found to be very sensitive to input features and size of ground truth data. The results obtained in the research are expected to be useful for improving the vegetation physiognomic mapping in Japan.

  12. Infrasonic wind noise under a deciduous tree canopy.

    PubMed

    Webster, Jeremy; Raspet, Richard

    2015-05-01

    In a recent paper, the infrasonic wind noise measured at the floor of a pine forest was predicted from the measured wind velocity spectrum and profile within and above the trees [Raspet and Webster, J. Acoust. Soc. Am. 137, 651-659 (2015)]. This research studies the measured and predicted wind noise under a deciduous forest with and without leaves. A calculation of the turbulence-shear interaction pressures above the canopy predicts the low frequency peak in the wind noise spectrum. The calculated turbulence-turbulence interaction pressure due to the turbulence field near the ground predicts the measured wind noise spectrum in the higher frequency region. The low frequency peak displays little dependence on whether the trees have leaves or not. The high frequency contribution with leaves is approximately an order of magnitude smaller than the contribution without leaves. Wind noise levels with leaves are very similar to the wind noise levels in the pine forest. The calculated turbulence-shear contribution from the wind within the canopy is shown to be negligible in comparison to the turbulence-turbulence contribution in both cases. In addition, the effect of taller forests and smaller roughness lengths than those of the test forest on the turbulence-shear interaction is simulated based on measured meteorological parameters.

  13. Subtle Ecological Gradient in the Tropics Triggers High Species-Turnover in a Local Geographical Scale

    PubMed Central

    Nguyen, Dinh T.

    2016-01-01

    Our perception of diversity, including both alpha- and beta-diversity components, depends on spatial scale. Studies of spatial variation of the latter are just starting, with a paucity of research on beta-diversity patterns at smaller scales. Understanding these patterns and the processes shaping the distribution of diversity is critical to describe this diversity, but it is paramount in conservation too. Here, we investigate the diversity and structure of a tropical community of herbivorous beetles at a reduced local scale of some 10 km2, evaluating the effect of a small, gradual ecological change on this structure. We sampled leaf beetles in the Núi Chúa National Park (S Vietnam), studying changes in alpha- and beta-diversity across an elevation gradient up to 500 m, encompassing the ecotone between critically endangered lowland dry deciduous forest and mixed evergreen forest at higher elevations. Leaf beetle diversity was assessed using several molecular tree-based species delimitation approaches (with mtDNA cox1 data), species richness using rarefaction and incidence-based diversity indexes, and beta-diversity was investigated decomposing the contribution of species turnover and nestedness. We documented 155 species in the area explored and species-richness estimates 1.5–2.0x higher. Species diversity was similar in both forest types and changes in alpha-diversity along the elevation gradient showed an expected local increase of diversity in the ecotone. Beta-diversity was high among forest paths (average Sørensen's dissimilarity = 0.694) and, tentatively fixing at 300 m the boundary between otherwise continuous biomes, demonstrated similarly high beta-diversity (Sørensen's dissimilarity = 0.581), with samples clustering according to biome/elevation. Highly relevant considering the local scale of the study, beta-diversity had a high contribution of species replacement among locales (54.8%) and between biomes (79.6%), suggesting environmental heterogeneity as the dominant force shaping diversity at such small scale, directly and indirectly on the plant communities. Protection actions in the Park, especially these addressed at the imperative conservation of dry forest, must ponder the small scale at which processes shape species diversity and community structure for inconspicuous, yet extraordinarily diverse organisms such as the leaf beetles. PMID:27276228

  14. Natural Variation in the Carbon Oxidation State and Oxidative Ratio of a Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Calligan, L. J.; Gallagher, M. E.; Hockaday, W. C.; Robertson, G. P.

    2007-12-01

    Here we report natural variability in the oxidative ratio (OR) and carbon oxidation state (Cox) of a temperate, deciduous forest measured on an annual basis via elemental analysis of leaf litter. The OR of the terrestrial biosphere is a key component in O2 -based calculations of the biosphere's uptake of fossil fuel CO2 (eg [ Keeling, et al., 1996]). Ecosystem OR has been assumed to be invariant; however, small OR variations may cause significant shifts in the calculated size of the terrestrial biospheric C sink [ Randerson, et al., 2006]. Accurate measurements of OR are necessary for the accurate apportionment of fossil fuel CO2 between the atmosphere, oceans, and terrestrial biosphere. Ecosystem OR is linearly related to Cox, a parameter which can be easily measured via elemental analysis, calorimetry, or solid state nuclear magnetic resonance [ Masiello, et al., 2007]. We are measuring Cox and OR at the three deciduous forest sites within the Kellogg Biological Station NSF LTER (lter.kbs.msu.edu). We report OR from litter collected from three forest sites from 1998-2003, a time series which covers periods of both normal and low precipitation. We also report error introduced in the Cox to OR conversion via a range of plausible assumptions about ecosystem N cycling. Keeling, R. F., et al. (1996), Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration, Nature, 381, 218-221. Masiello, C.A. et al. (in review 2007) Two new approaches for measuring ecosystem carbon oxidation state and oxidative ratio. J.G.R. Biogeosciences. Randerson, J. T., et al. (2006), Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2, Global Change Biology, 12, 260-271.

  15. Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest

    Treesearch

    Shawn Urbanski; C. Barford; S. Wofsy; C. Kucharik; E. Pyle; J. Budney; K. McKain; D. Fitzjarrald; M. Czikowsky; J. W. Munger

    2007-01-01

    We analyzed 13 years (1992-2004) of CO2 flux data, biometry, and meteorology from a mixed deciduous forest in central Massachusetts. Annual net uptake of CO2 ranged from 1.0 to 4.7 Mg-C ha-1yr-1, with an average of 2.5 Mg-C ha-1yr-1. Uptake rates increased systematically, nearly doubling over the period despite forest age of 75–110 years; there were...

  16. Plot size recommendations for biomass estimation in a midwestern old-growth forest

    Treesearch

    Martin A. Spetich; George R Parker

    1998-01-01

    The authors examine the relationship between disturbance regime and plot size for woody biomass estimation in a midwestern old-growth deciduous forest from 1926 to 1992. Analysis was done on the core 19.6 ac of a 50.1 ac forest in which every tree 4 in. d.b.h. and greater has been tagged and mapped since 1926. Five windows of time are compared—1926, 1976, 1981, 1986...

  17. Net Ecosystem Fluxes of Hydrocarbons from a Ponderosa Pine Forest in Colorado

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Turnipseed, A. A.; Ortega, J. V.; Smith, J. N.; Guenther, A. B.; Shen, S.; Martinez, L.; Koss, A.; Warneke, C.; De Gouw, J. A.; Deventer, M. J.

    2015-12-01

    Light (C2-C4) alkenes, light alkanes and isoprene (C5H8) are non-methane hydrocarbons that play important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. Natural terrestrial fluxes of the light hydrocarbons are poorly characterized, with global emission estimates based on limited field measurements. In 2014, net fluxes of these compounds were measured at the Manitou Experimental Forest Observatory, a semi-arid ponderosa pine forest in the Colorado Rocky Mountains and site of the prior BEACHON campaigns. Three field intensives were conducted between June 17 and August 10, 2014. Net ecosystem flux measurements utilized a relaxed eddy accumulation system coupled to an automated gas chromatograph. Summertime average emissions of ethene and propene were up to 90% larger than those observed from a temperate deciduous forest. Ethene and propene fluxes were also correlated to each other, similar to the deciduous forest study. Emissions of isoprene were small, as expected for a coniferous forest, and these fluxes were not correlated with either ethene or propene. Unexpected emissions of light alkanes were also observed, and these showed a distinct diurnal cycle. Understory flux measurements allowed for the partitioning of fluxes between the surface and the canopy. Full results from the three field intensives will be compared with environmental variables in order to parameterize the fluxes for use in modeling emissions.

  18. Metasequoia glyptostroboides and its Utility in Paleoecological Reconstruction of Eocene High Latitude Forests

    NASA Astrophysics Data System (ADS)

    Williams, C. J.; LePage, B. A.; Vann, D. R.; Johnson, A. H.

    2001-05-01

    Abundant fossil plant remains are preserved in the Eocene-aged deposits of the Buchanan Lake formation on Axel Heiberg Island, Nunavut, Canada. Intact leaf litter, logs, and stumps preserved in situ as mummified remains present an opportunity to determine forest composition, structure, and productivity of a Taxodiaceae-dominated forest that once grew north of the Arctic Circle (paleolatitude 75-80° N). We excavated 37 tree stems for dimensional analysis from mudstone and channel-sand deposits. Stem length ranged from 1.0 m to 14.8 m (average = 3.2 m). Stem diameter ranged from less than 10 cm to greater than 75 cm (average = 32.2 cm). All stem wood was tentatively identified to genus as Metasequoia sp. The diameters and parabolic shape of the preserved tree trunks indicate that the Metasequoia were about 39 m tall across a wide range of diameters. The allometric relationships we derived for modern Metasequoia (n=70) allowed independent predictions of Metasequoia height given the stand density and stump diameters of the fossil forest. The two height estimates of 40 and 40.5 m match the results obtained from measurements of the Eocene trees. We used stump diameter data (n =107, diameter > 20 cm) and an uniform canopy height of 39 m to calculate parabolic stem volume and stem biomass for a 0.22 ha area of fossil forest. Stem volume equaled 2065 m3 ha-1 and stem biomass equaled 560 Mg ha-1 . In the Eocene forest, as determined from length of stems that were free of protruding branches and from 7 exhumed tree tops, the uppermost 9 m of the trees carried live branches with foliage. In living conifers, branch weights and the amount of foliage carried by branches are well correlated with branch diameters measured where the branch joins the main stem. To determine the biomass in branches and foliage in the Eocene forest, we used relationships derived from large modern Metasequoia. Based on the regression of branch weight v. branch diameter (r2 = 0.97) and foliar biomass v. branch diameter (r2 = 0.91) for living Metasequoia and branch diameters of the Eocene trees, branch biomass of the Eocene trees was estimated to be 28 Mg ha-1 dry weight and foliar biomass (and annual foliar production for this deciduous conifer) of fossil Metasequoia was estimated to be 3.5 Mg ha-1 dry weight. Total standing biomass of the fossil forest was estimated to be 591 Mg ha-1 dry weight. On a stand-average basis, the annual ring width of the trees we sampled equaled 1.3 mm. Based on this ring width our preliminary estimate for the aboveground net primary productivity (NPP) of these forests is 5.9 Mg ha-1yr^{-1}$ (foliage production plus wood production). Thus, these were high biomass forests with moderate productivity typical of modern cool temperate forests similar in stature and total biomass to the modern old-growth forests of the Pacific Northwest (USA).

  19. Silvicultural treatments to improve pondberry stem length growth

    Treesearch

    Brian Roy Lockhart

    2016-01-01

    Pondberry (Lindera melissifolia (Walter) Blume) is a deciduous woody shrub in the Lauraceae that is endemic to low-lying forests in seven southeastern states. In the Mississippi Alluvial Valley, pondberry occurs in the understory of bottomland hardwood forests. This rare shrub was listed as an endangered species in 1986. The U.S. Fish and Wildlife...

  20. Browse use by deer in an east Texas forest

    Treesearch

    Lowell K. Halls

    1975-01-01

    In an east Texas pine-hardwood forest moderately stocked wllh white-tailed deer, average utilization of 73 recorded species of browse was 18 percent. Fifteen to 20 species furnished most of the browse diet. On the average, laurel greenbrier waos grazed most heavily. Although most deciduous species received heaviest use in spring and sumnmer, many of them were also...

  1. The indirect impact of long-term overbrowsing on insects in the Allegheny National Forest region of Pennsylvania

    Treesearch

    Michael J. Chips; Ellen H. Yerger; Arpad Hervanek; Tim Nuttle; Alex Royo; Jonathan N. Pruitt; Terrence P. McGlynn; Cynthia L. Riggall; Walter P. Carson

    2015-01-01

    Overbrowsing has created depauperate plant communities throughout the eastern deciduous forest. We hypothesized these low-diversity plant communities are associated with lower insect diversity. We compared insects inside and outside a 60-year-old fenced deer exclosure where plant species richness is 5x higher inside versus outside. We sampled aboveground and litter...

  2. The demographics and regeneration dynamic of hickory in second-growth temperate forest

    Treesearch

    Aaron B. Lefland; Marlyse C. Duguid; Randall S. Morin; Mark S. Ashton

    2018-01-01

    Hickory (Carya spp.) is an economically and ecologically important genus to the eastern deciduous forest of North America. Yet, much of our knowledge about the genus comes from observational and anecdotal studies that examine the genus as a whole, or from research that examines only one species, in only one part of its range. Here, we use data sets...

  3. History of fire in a southern Ohio second-growth mixed-oak forest

    Treesearch

    Elaine Kennedy Sutherland

    1997-01-01

    The role of fire in shaping the composition and structure of Quercus (oak)-dominated communities in the deciduous forests of eastern North America is becoming clearer but fire regimes are less well known. I analyzed the fire-scar patterns in 14 oak cross sections from a mixed-oak stand in Vinton County, southeastern Ohio, to determine the frequency...

  4. Evaluating the potential for ruffed grouse restoration in east-central Missouri by linking habitat suitability and population viability

    Treesearch

    J.L. Isabelle; Frank R. Thompson; W.D. Dijak

    2016-01-01

    Ruffed grouse Bonasa umbellus (hereafter, grouse) are early-successional forest habitat (ESFH) specialists that prefer regenerating deciduous forests < 25 years-of-age for cover. Despite being historically present through-out much of Missouri, USA, grouse numbers declined rapidly during the early 1900s due to habitat loss and over-harvest....

  5. Aboveground and belowground mammalian herbivores regulate the demography of deciduous woody species in conifer forests

    Treesearch

    Bryan A. Endress; Bridgett J. Naylor; Burak K. Pekin; Michael J. Wisdom

    2016-01-01

    Mammalian herbivory can have profound impacts on plant population and community dynamics. However, our understanding of specific herbivore effects remains limited, even in regions with high densities of domestic and wild herbivores, such as the semiarid conifer forests of western North America. We conducted a seven-year manipulative experiment to evaluate the effects...

  6. Competition among surface roots in a selectively-logged, semi-deciduous forest in southeastern Mexico - effects on seedlings of two species of contrasting shade tolerance

    Treesearch

    Matthew Dickinson; D.F. Wigham

    2013-01-01

    Experimental manipulations of root competition on naturally established seedlings were conducted across canopy openness and soil depth gradients in a selectively-logged, semideciduous forest on limestone-derived soils in southeastern Mexico. We studied the relatively shade intolerant mahogany (Swietenia macrophylla, Meliaceae) and shade tolerant...

  7. Frequency of sprout-origin trees in pre-European settlement forests of the southern Appalachian Mountains

    Treesearch

    Carolyn A. Copenheaver; Tara L. Keyser

    2016-01-01

    We hypothesized that tree form, recorded in historical public land surveys, would provide a valuable proxy record of regeneration patterns during early-European settlement of North America's eastern deciduous forest. To test this hypothesis, we tallied stem form from witness trees used in land survey records in the southern Appalachian Mountains from 13 counties...

  8. Acidity of tree bark as a bioindicator of forest pollution in southern Poland

    Treesearch

    Dr. K. Grodzinska

    1976-01-01

    PH values and buffering capacity were determined for bark samples of 5 deciduous trees (oak, alder, hornbeam, ash, linden), one shrub (hazel) and one coniferous tree (Scots pine) in the Cracow Industrial Region (Southern Poland) and for comparison in the Bialowieza Forest (North-Eastern Poland). The correlation was found between acidification of tree bark and air...

  9. Leaf Quality and the Host Preferences of Gypsy Moth in the Northern Deciduous Forest

    Treesearch

    Martin J.  Lechowicz

    1983-01-01

    Both gypsy morh host preferences and the foliage characteristics thaL have been implicated as factors in host selection were monitored from 1979 to 1982 in a Quercus-Acer-Ostrya forest near Montreal, Quebec. The preliminary analyses of these data suggest the hypothesis that gypsy moth larvae preferentially attack trees that have high sugar:tannin...

  10. Effects of fire severity on plant nutrient uptake reinforce alternate pathways of succession in boreal forests

    Treesearch

    A. Shenoy; K. Kielland; J.F. Johnstone

    2013-01-01

    Fire activity in the North American boreal region is projected to increase under a warming climate and trigger changes in vegetation composition. In black spruce forests of interior Alaska, fire severity impacts residual organic layer depth which is strongly linked to the relative dominance of deciduous versus coniferous trees in early succession. These alternate...

  11. Development, succession, and stand dynamics of upland oak forests in the Wisconsin Driftless Area: Implications for oak regeneration and management

    Treesearch

    Megan L. Buchanan; Kurt F. Kipfmueller; Anthony W. D' Amato

    2017-01-01

    Throughout the deciduous forests of the eastern United States, oak (Quercus) regeneration has declined in stands historically dominated by oak species. In the Wisconsin Driftless Area, the level of decline in oak regeneration is variable and influenced by stand structural development, historical disturbance regime, abiotic site characteristics, and...

  12. Investigation of ammonia air-surface exchange processes in a ...

    EPA Pesticide Factsheets

    Recent assessments of atmospheric deposition in North America note the increasing importance of reduced (NHx = NH3 + NH4+) forms of nitrogen (N) relative to oxidized forms. This shift in in the composition of inorganic nitrogen deposition has both ecological and policy implications. Deposition budgets developed from inferential models applied at the landscape scale, as well as regional and global chemical transport models, indicate that NH3 dry deposition contributes a significant portion of inorganic N deposition in many areas. However, the bidirectional NH3 flux algorithms employed in these models have not been extensively evaluated for North American conditions (e.g, atmospheric chemistry, meteorology, biogeochemistry). Further understanding of the processes controlling NH3 air-surface exchange in natural systems is critically needed. Based on preliminary results from the Southern Appalachian Nitrogen Deposition Study (SANDS), this presentation examines processes of NH3 air-surface exchange in a deciduous montane forest at the Coweeta Hydrologic Laboratory in western North Carolina. A combination of measurements and modeling are used to investigate net fluxes of NH3 above the forest and sources and sinks of NH3 within the canopy and forest floor. Measurements of biogeochemical NH4+ pools are used to characterize emission potential and NH3 compensation points of canopy foliage (i.e., green vegetation), leaf litter, and soil and their relation to NH3 fluxes

  13. Late-Quaternary vegetation history at White Pond on the inner Coastal Plain of South Carolina*1

    NASA Astrophysics Data System (ADS)

    Watts, W. A.

    1980-03-01

    At White Pond near Columbia, South Carolina, a pollen assemblage of Pinus banksiana (jack pine), Picea (spruce), and herbs is dated between 19,100 and 12,800 14C yr B.P. Plants of sandhill habitats are more prominent than at other sites of similar age, and pollen of deciduous trees is infrequent. The vegetation was probably a mosaic of pine and spruce stands with prairies and sand-dune vegetation. The climate may have been like that of the eastern boreal forest today. 14C dates of 12,800 and 9500 yr B.P. bracket a time when Quercus (oak), Carya (hickory), Fagus (beech), and Ostrya-Carpinus (ironwood) dominated the vegetation. It is estimated that beech and hickory made up at least 25% of the forest trees. Conifers were rare or absent. The environment is interpreted as hickory-rich mesic deciduous forest with a climate similar to but slightly warmer than that of the northern hardwoods region of western New York State. After 9500 yr B.P. oak and pine forest dominated the landscape, with pine becoming the most important tree genus in the later Holocene.

  14. Inversion analysis of estimating interannual variability and its uncertainties in biotic and abiotic parameters of a parsimonious physiologically based model after wind disturbance

    NASA Astrophysics Data System (ADS)

    Toda, M.; Yokozawa, M.; Richardson, A. D.; Kohyama, T.

    2011-12-01

    The effects of wind disturbance on interannual variability in ecosystem CO2 exchange have been assessed in two forests in northern Japan, i.e., a young, even-aged, monocultured, deciduous forest and an uneven-aged mixed forest of evergreen and deciduous trees, including some over 200 years old using eddy covariance (EC) measurements during 2004-2008. The EC measurements have indicated that photosynthetic recovery of trees after a huge typhoon occurred during early September in 2004 activated annual carbon uptake of both forests due to changes in physiological response of tree leaves during their growth stages. However, little have been resolved about what biotic and abiotic factors regulated interannual variability in heat, water and carbon exchange between an atmosphere and forests. In recent years, an inverse modeling analysis has been utilized as a powerful tool to estimate biotic and abiotic parameters that might affect heat, water and CO2 exchange between the atmosphere and forest of a parsimonious physiologically based model. We conducted the Bayesian inverse model analysis for the model with the EC measurements. The preliminary result showed that the above model-derived NEE values were consistent with observed ones on the hourly basis with optimized parameters by Baysian inversion. In the presentation, we would examine interannual variability in biotic and abiotic parameters related to heat, water and carbon exchange between the atmosphere and forests after disturbance by typhoon.

  15. Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the neotropics.

    PubMed

    Kauffman, J Boone; Hughes, R Flint; Heider, Chris

    2009-07-01

    Current rates of deforestation and the resulting C emissions in the tropics exceed those of secondary forest regrowth and C sequestration. Changing land-use strategies that would maintain standing forests may be among the least expensive of climate change mitigation options. Further, secondary tropical forests have been suggested to have great value for their potential to sequester atmospheric C. These options require an understanding of and capability to quantify C dynamics at landscape scales. Because of the diversity of physical and biotic features of tropical forests as well as approaches and intensities of land uses within the neotropics, there are tremendous differences in the capacity of different landscapes to store and sequester C. Major gaps in our current knowledge include quantification of C pools, rates and patterns of biomass loss following land-cover change, and quantification of the C storage potential of secondary forests following abandonment. In this paper we present a synthesis and further analyses from recent studies that describe C pools, patterns of C decline associated with land use, and rates of C accumulation following secondary-forest establishment--all information necessary for climate-change mitigation options. Ecosystem C pools of Neotropical primary forests minimally range from approximately 141 to 571 Mg/ha, demonstrating tremendous differences in the capacity of different forests to store C. Most of the losses in C and nutrient pools associated with conversion occur when fires are set to remove the slashed forest to prepare sites for crop or pasture establishment. Fires burning slashed primary forests have been found to result in C losses of 62-80% of prefire aboveground pools in dry (deciduous) forest landscapes and 29-57% in wet (evergreen) forest landscapes. Carbon emissions equivalent to the aboveground primary-forest pool arise from repeated fires occurring in the first 4 to 10 years following conversion. Feedbacks of climate change, land-cover change, and increasing habitat fragmentation may result in increases of both the area burned and the total quantity of biomass consumed per unit area by fire. These effects may well limit the capacity for future tropical forests to sequester C and nutrients.

  16. Later springs green-up faster: the relation between onset and completion of green-up in deciduous forests of North America

    NASA Astrophysics Data System (ADS)

    Klosterman, Stephen; Hufkens, Koen; Richardson, Andrew D.

    2018-05-01

    In deciduous forests, spring leaf phenology controls the onset of numerous ecosystem functions. While most studies have focused on a single annual spring event, such as budburst, ecosystem functions like photosynthesis and transpiration increase gradually after budburst, as leaves grow to their mature size. Here, we examine the "velocity of green-up," or duration between budburst and leaf maturity, in deciduous forest ecosystems of eastern North America. We use a diverse data set that includes 301 site-years of phenocam data across a range of sites, as well as 22 years of direct ground observations of individual trees and 3 years of fine-scale high-frequency aerial photography, both from Harvard Forest. We find a significant association between later start of spring and faster green-up: - 0.47 ± 0.04 (slope ± 1 SE) days change in length of green-up for every day later start of spring within phenocam sites, - 0.31 ± 0.06 days/day for trees under direct observation, and - 1.61 ± 0.08 days/day spatially across fine-scale landscape units. To explore the climatic drivers of spring leaf development, we fit degree-day models to the observational data from Harvard Forest. We find that the default phenology parameters of the ecosystem model PnET make biased predictions of leaf initiation (39 days early) and maturity (13 days late) for red oak, while the optimized model has biases of 1 day or less. Springtime productivity predictions using optimized parameters are closer to results driven by observational data (within 1%) than those of the default parameterization (17% difference). Our study advances empirical understanding of the link between early and late spring phenophases and demonstrates that accurately modeling these transitions is important for simulating seasonal variation in ecosystem productivity.

  17. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, J. M.; Cihlar, J.; Chen, W.

    1999-11-01

    The purpose of this paper is to upscale tower measurements of net primary productivity (NPP) to the Boreal Ecosystem-Atmosphere Study (BOREAS) study region by means of remote sensing and modeling. The Boreal Ecosystem Productivity Simulator (BEPS) with a new daily canopy photosynthesis model was first tested in one coniferous and one deciduous site. The simultaneous CO2 flux measurements above and below the tree canopy made it possible to isolate daily net primary productivity of the tree canopy for model validation. Soil water holding capacity and gridded daily meteorological data for the region were used as inputs to BEPS, in addition to 1 km resolution land cover and leaf area index (LAI) maps derived from the advanced very high resolution radiometer (AVHRR) data. NPP statistics for the various cover types in the BOREAS region and in the southern study area (SSA) and the northern study area (NSA) are presented. Strong dependence of NPP on LAI was found for the three major cover types: coniferous forest, deciduous forest and cropland. Since BEPS can compute total photosynthetically active radiation absorbed by the canopy in each pixel, light use efficiencies for NPP and gross primary productivity could also be analyzed. From the model results, the following area-averaged statistics were obtained for 1994: (1) mean NPP for the BOREAS region of 217 g C m-2 yr-1; (2) mean NPP of forests (excluding burnt areas in the region) equal to 234 g C m-2 yr-1; (3) mean NPP for the SSA and the NSA of 297 and 238 g C m-2 yr-1, respectively; and (4) mean light use efficiency for NPP equal to 0.40, 0.20, and 0.33 g C (MJ APAR)-1 for deciduous forest, coniferous forest, and crops, respectively.

  18. Reassessment of the use of fire as a management tool in deciduous forests of eastern North America.

    PubMed

    Matlack, Glenn R

    2013-10-01

    Prescribed burning is increasingly being used in the deciduous forests of eastern North America. Recent work suggests that historical fire frequency has been overestimated east of the prairie-woodland transition zone, and its introduction could potentially reduce forest herb and shrub diversity. Fire-history recreations derived from sedimentary charcoal, tree fire scars, and estimates of Native American burning suggest point-return times ranging from 5-10 years to centuries and millennia. Actual return times were probably longer because such records suffer from selective sampling, small sample sizes, and a probable publication bias toward frequent fire. Archeological evidence shows the environmental effect of fire could be severe in the immediate neighborhood of a Native American village. Population density appears to have been low through most of the Holocene, however, and villages were strongly clustered at a regional scale. Thus, it appears that the majority of forests of the eastern United States were little affected by burning before European settlement. Use of prescribed burning assumes that most forest species are tolerant of fire and that burning will have only a minimal effect on diversity. However, common adaptations such as serotiny, epicormic sprouting, resprouting from rhizomes, and smoke-cued germination are unknown across most of the deciduous region. Experimental studies of burning show vegetation responses similar to other forms of disturbance that remove stems and litter and do not necessarily imply adaptation to fire. The general lack of adaptation could potentially cause a reduction in diversity if burning were introduced. These observations suggest a need for a fine-grained examination of fire history with systematic sampling in which all subregions, landscape positions, and community types are represented. Responses to burning need to be examined in noncommercial and nonwoody species in rigorous manipulative experiments. Until such information is available, it seems prudent to limit the use of prescribed burning east of the prairie-woodland transition zone. © 2013 Society for Conservation Biology.

  19. Regional Distribution of Forest Height and Biomass from Multisensor Data Fusion

    NASA Technical Reports Server (NTRS)

    Yu, Yifan; Saatchi, Sassan; Heath, Linda S.; LaPoint, Elizabeth; Myneni, Ranga; Knyazikhin, Yuri

    2010-01-01

    Elevation data acquired from radar interferometry at C-band from SRTM are used in data fusion techniques to estimate regional scale forest height and aboveground live biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to perform post-processing and parameter estimations from four data sets: 1 arc sec National Elevation Data (NED), SRTM derived elevation (30 m), Landsat Enhanced Thematic Mapper (ETM) bands (30 m), derived vegetation index (VI) and NLCD2001 land cover map. The first fusion algorithm corrects for missing or erroneous NED data using an iterative interpolation approach and produces distribution of scattering phase centers from SRTM-NED in three dominant forest types of evergreen conifers, deciduous, and mixed stands. The second fusion technique integrates the USDA Forest Service, Forest Inventory and Analysis (FIA) ground-based plot data to develop an algorithm to transform the scattering phase centers into mean forest height and aboveground biomass. Height estimates over evergreen (R2 = 0.86, P < 0.001; RMSE = 1.1 m) and mixed forests (R2 = 0.93, P < 0.001, RMSE = 0.8 m) produced the best results. Estimates over deciduous forests were less accurate because of the winter acquisition of SRTM data and loss of scattering phase center from tree ]surface interaction. We used two methods to estimate AGLB; algorithms based on direct estimation from the scattering phase center produced higher precision (R2 = 0.79, RMSE = 25 Mg/ha) than those estimated from forest height (R2 = 0.25, RMSE = 66 Mg/ha). We discuss sources of uncertainty and implications of the results in the context of mapping regional and continental scale forest biomass distribution.

  20. Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest.

    PubMed

    Levick, Shaun R; Hessenmöller, Dominik; Schulze, E-Detlef

    2016-12-01

    Monitoring and managing carbon stocks in forested ecosystems requires accurate and repeatable quantification of the spatial distribution of wood volume at landscape to regional scales. Grid-based forest inventory networks have provided valuable records of forest structure and dynamics at individual plot scales, but in isolation they may not represent the carbon dynamics of heterogeneous landscapes encompassing diverse land-management strategies and site conditions. Airborne LiDAR has greatly enhanced forest structural characterisation and, in conjunction with field-based inventories, it provides avenues for monitoring carbon over broader spatial scales. Here we aim to enhance the integration of airborne LiDAR surveying with field-based inventories by exploring the effect of inventory plot size and number on the relationship between field-estimated and LiDAR-predicted wood volume in deciduous broad-leafed forest in central Germany. Estimation of wood volume from airborne LiDAR was most robust (R 2  = 0.92, RMSE = 50.57 m 3 ha -1  ~14.13 Mg C ha -1 ) when trained and tested with 1 ha experimental plot data (n = 50). Predictions based on a more extensive (n = 1100) plot network with considerably smaller (0.05 ha) plots were inferior (R 2  = 0.68, RMSE = 101.01 ~28.09 Mg C ha -1 ). Differences between the 1 and 0.05 ha volume models from LiDAR were negligible however at the scale of individual land-management units. Sample size permutation tests showed that increasing the number of inventory plots above 350 for the 0.05 ha plots returned no improvement in R 2 and RMSE variability of the LiDAR-predicted wood volume model. Our results from this study confirm the utility of LiDAR for estimating wood volume in deciduous broad-leafed forest, but highlight the challenges associated with field plot size and number in establishing robust relationships between airborne LiDAR and field derived wood volume. We are moving into a forest management era where field-inventory and airborne LiDAR are inextricably linked, and we encourage field inventory campaigns to strive for increased plot size and give greater attention to precise stem geolocation for better integration with remote sensing strategies.

  1. Termites as a factor of spatial differentiation of CO2 fluxes from the soils of monsoon tropical forests in Southern Vietnam

    NASA Astrophysics Data System (ADS)

    Lopes de Gerenyu, Valentin; Anichkin, Alexander

    2016-04-01

    Termites play the key role in biogeochemical transformation of organic matter acting as "moderators" of fluxes of carbon and other nutrients. They destroy not only leave litter but also coarse woody debris. Termites translocate considerable masses of dead organic materials into their houses, which leads to significant accumulations of organic matter in termite mounds. We studied the impact of termite mounds on redistribution of CO2 fluxes from soils in semi-deciduous monsoon tropical forests of southern Vietnam. Field study was performed in the Cat Tien National Park (11°21'-11°48'N, 107°10'-107°34'E). The spatial and temporary dynamics of CO2 fluxes from soils (Andosols) populated by termites were studied in plain lagerstroemia (Lagerstroemia calyculata Kurz) monsoon tropical forests. The rate of CO2 emission from the soil surface was measured by closed chamber method two-three times per month from November 2010 to December 2011. Permanent cylindrical PVC chambers (9 cm in diameter and 15 cm in height) were installed beyond the areas occupied by termite mounds (5 replications). Litter was not removed from the soil surface before the measurements. To estimate the spatial heterogeneity of the CO2 emission fluxes from soils populated by termites, a special 'termite' plot (TerPl) was equipped. It was 10×10 m in size and included three termite mounds: one mound built up by Globitermes sulphureus and two mounds populated by termites of the Odontotermes genus. Overall, 52 PVC chambers were installed permanently on the 'termite' plot (ca. 1 m apart from one another). The CO2 emission rate from TerPl was also measured by chamber closed method once in the dry season (April) and twice through the wet season (July and August). The average rate of CO2 emission from termite mounds was two times higher than that from the surrounding area (SurAr). In the dry season, it comprised 91±7 mg C/m2/h from the surrounding soils and 196±16 mg C/m2/h from the termite mounds. In the wet season, the CO2 emission rate was considerably higher and reached 266±40 and 520 ± 39 mg C/m2/h in SurAr and TerPl, respectively. The highest rates of CO2 fluxes (730-880 mg C/m2/h) were observed in the wet season in some of the chambers installed on TerPl. In the tropical forest, termites are the factor of the significant spatial variability in the CO2 fluxes from the soils. On the plots populated by termites, the coefficient of variation of CO2 emission rates reached 79%, while it rarely exceeded 45% on the surrounding area. The termite mounds occupy about 4% of the area of tropical forest ecosystems. However, the overall effect of termites on the carbon budget was more significant and, according to our estimates, it reached up to 10% of the total annual CO2 flux from the soils. Thus, underestimation of the influence of termites may lead to significant errors in the assessment of the organic carbon budget in the semi-deciduous tropical forests.

  2. Overstory structure and soil nutrients effect on plant diversity in unmanaged moist tropical forest

    NASA Astrophysics Data System (ADS)

    Gautam, Mukesh Kumar; Manhas, Rajesh Kumar; Tripathi, Ashutosh Kumar

    2016-08-01

    Forests with intensive management past are kept unmanaged to restore diversity and ecosystem functioning. Before perpetuating abandonment after protracted restitution, understanding its effect on forest vegetation is desirable. We studied plant diversity and its relation with environmental variables and stand structure in northern Indian unmanaged tropical moist deciduous forest. We hypothesized that post-abandonment species richness would have increased, and the structure of contemporary forest would be heterogeneous. Vegetation structure, composition, and diversity were recorded, in forty 0.1 ha plots selected randomly in four forest ranges. Three soil samples per 0.1 ha were assessed for physicochemistry, fine sand, and clay mineralogy. Contemporary forest had less species richness than pre-abandonment reference period. Fourteen species were recorded as either seedling or sapling, suggesting reappearance or immigration. For most species, regeneration was either absent or impaired. Ordination and multiple regression results showed that exchangeable base cations and phosphorous affected maximum tree diversity and structure variables. Significant correlations between soil moisture and temperature, and shrub layer was observed, besides tree layer correspondence with shrub richness, suggesting that dense overstory resulting from abandonment through its effect on soil conditions, is responsible for dense shrub layer. Herb layer diversity was negatively associated with tree layer and shrub overgrowth (i.e. Mallotus spp.). Protracted abandonment may not reinforce species richness and heterogeneity; perhaps result in high tree and shrub density in moist deciduous forests, which can impede immigrating or reappearing plant species establishment. This can be overcome by density/basal area reduction strategies, albeit for both tree and shrub layer.

  3. Water use and carbon exchange of red oak- and eastern hemlock-dominated forests in the northeastern USA: implications for ecosystem-level effects of hemlock woolly adelgid.

    PubMed

    Hadley, Julian L; Kuzeja, Paul S; Daley, Michael J; Phillips, Nathan G; Mulcahy, Thomas; Singh, Safina

    2008-04-01

    Water use and carbon exchange of a red oak-dominated (Quercus rubra L.) forest and an eastern hemlock-dominated (Tsuga canadensis L.) forest, each located within the Harvard Forest in north-central Massachusetts, were measured for 2 years by the eddy flux method. Water use by the red oak forest reached 4 mm day(-1), compared to a maximum of 2 mm day(-1) by the eastern hemlock forest. Maximal carbon (C) uptake rate was also higher in the red oak forest than in the eastern hemlock forest (about 25 versus 15 micromol m(-2) s(-1)). Sap flux measurements indicated that transpiration of red oak, and also of black birch (Betula lenta L.), which frequently replaces eastern hemlock killed by hemlock woolly adelgid (Adelges tsugae Annand.), were almost twice that of eastern hemlock. Despite the difference between species in maximum summertime C assimilation rate, annual C storage of the eastern hemlock forest almost equaled that of the red oak forest because of net C uptake by eastern hemlock during unusually warm fall and spring weather, and a near-zero C balance during the winter. Thus, the effect on C storage of replacing eastern hemlock forest with a forest dominated by deciduous species is unclear. Carbon storage by eastern hemlock forests during fall, winter and spring is likely to increase in the event of climate warming, although this may be offset by C loss during hotter summers. Our results indicate that, although forest water use will decrease immediately following eastern hemlock mortality due to the hemlock woolly adelgid, the replacement of eastern hemlock by deciduous species such as red oak will likely increase summertime water use over current rates in areas where hemlock is a major forest species.

  4. A study of the dry forest communities in the Dominican Republic.

    PubMed

    García-Fuentes, Antonio; Torres-Cordero, Juan A; Ruiz-Valenzuela, Luis; Lendínez-Barriga, María Lucía; Quesada-Rincón, Juan; Valle-Tendero, Francisco; Veloz, Alberto; León, Yolanda M; Salazar-Mendías, Carlos

    2015-03-01

    This paper is a floristic and phytosociological study of the dry forest communities of the Dominican Republic. A total of 69 relevés in dry forest biotopes were carried out. The samples were subsequently subjected to Detrended Correspondence Analysis for the determination and study of possible groupings. The study does not cover tree formations growing on serpentines, nor the so-called semideciduous forests, peculiar to areas with higher rainfall. A total of nine phytocoenoses were identified. The most significant results led to the description of six new phytosociological associations: Simaroubetum berteroani (thorny dry forest on coastal dunes), Phyllostylo rhamnoidis-Prosopidetum juliflorae (southern Dominican disturbed dry forest), Consoleo moniliformis-Camerarietum linearifoliae (dry forest on hard limestones), Lemaireocereo hystricis-Prosopidetum juliflorae (northern Dominican disturbed dry forest), Lycio americani-Prosopidetum juliflorae (disturbed dry forest on saline soils) and Guettardo ellipticae-Guapiretum discoloris (dry forest on flat-topped hillocks in Montecristi). This is an important step forward in the phytosociological and floristic studies of the Caribbean territories.

  5. Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients.

    PubMed

    Fajardo, Alex; Piper, Frida I; Hoch, Günter

    2013-08-01

    The most plausible explanation for treeline formation so far is provided by the growth limitation hypothesis (GLH), which proposes that carbon sinks are more restricted by low temperatures than by carbon sources. Evidence supporting the GLH has been strong in evergreen, but less and weaker in deciduous treeline species. Here a test is made of the GLH in deciduous-evergreen mixed species forests across elevational gradients, with the hypothesis that deciduous treeline species show a different carbon storage trend from that shown by evergreen species across elevations. Tree growth and concentrations of non-structural carbohydrates (NSCs) in foliage, branch sapwood and stem sapwood tissues were measured at four elevations in six deciduous-evergreen treeline ecotones (including treeline) in the southern Andes of Chile (40°S, Nothofagus pumilio and Nothofagus betuloides; 46°S, Nothofagus pumilio and Pinus sylvestris) and in the Swiss Alps (46°N, Larix decidua and Pinus cembra). Tree growth (basal area increment) decreased with elevation for all species. Regardless of foliar habit, NSCs did not deplete across elevations, indicating no shortage of carbon storage in any of the investigated tissues. Rather, NSCs increased significantly with elevation in leaves (P < 0·001) and branch sapwood (P = 0·012) tissues. Deciduous species showed significantly higher NSCs than evergreens for all tissues; on average, the former had 11 % (leaves), 158 % (branch) and 103 % (sapwood) significantly (P < 0·001) higher NSCs than the latter. Finally, deciduous species had higher NSC (particularly starch) increases with elevation than evergreens for stem sapwood, but the opposite was true for leaves and branch sapwood. Considering the observed decrease in tree growth and increase in NSCs with elevation, it is concluded that both deciduous and evergreen treeline species are sink limited when faced with decreasing temperatures. Despite the overall higher requirements of deciduous tree species for carbon storage, no indication was found of carbon limitation in deciduous species in the alpine treeline ecotone.

  6. Permafrost conditions at the Upper Kuskokwim river area and its influence on local communities.

    NASA Astrophysics Data System (ADS)

    Kholodov, A. L.; Panda, S. K.; Hanson, T.

    2017-12-01

    Research area located within the zone of discontinuous permafrost distribution. Recent mean annual air temperature here is close to the 0C. It means, that taking in consideration warming influence of the snow cower during winter, mean annual temperature at the ground surface is well above freezing point. It means that presence or absence of permafrost here completely controlled by the ecological conditions. Based on remote sensing data and the surveys conducted in 2016-17 we selected 6 main ecotypes typical for this area: black spruce boreal forest, wetlands, low and tall shrubs, deciduous and mixed forest. Most of them (low shrubs, deciduous and mixed forest) represent different stages of area recovering after forest fires that was confirmed by the presence of ashy layer close to ground surface in soil pits had been dug within these landscapes. Permafrost was observed only within 2 of them: low shrubs and black spruce boreal forest. Within these types of terrain temperature at the bottom of active layer varies from -0.2/-0.5C at the areas of low shrubs, recovered after relatively recent (approximately 30-50 years old) fires to -1/-1.5 within black spruce forest. Active (seasonally thawed) layer as thick as 0.6 to 0.8 m. Warmest ecotypes for the area are tall shrubs and deciduous forest, temperature at the depth close to 1 m is about +3C. At the mixed forest temperature at the same depth consists of +1/+2C. Active (seasonally frozen) layer thickness within permafrost free areas is 1-1.5 m at the drained sites and about 0.5 within wetlands. Ice-rich permafrost underlying the active layer was noticed only within the black spruce forest. Areas which are free of permafrost are much better drained, typical moisture of mineral soil is less than 30% versus 45-50% in seasonally thawed layer. The current state of permafrost and the fact that it presence completely depends on ecosystems limits land use abilities of local inhabitants. Any changes of forest coverage or organic layer thickness will lead to permafrost degradation and initiate thermokarst process or dryness of the area that increases risk of wild fires. Also, shallow soil freezing within wetlands makes shorter the safe period of snow machines operation. Current research should help local communities make more informed decisions in adaptation of resources management and land use.

  7. Short-term stem mortality of 10 deciduous broadleaved species following prescribed burning in upland forests of the southern US

    Treesearch

    Tara L. Keyser; Virginia L. McDaniel; Robert N. Klein; Dan G. Drees; Jesse A. Burton; Melissa M. Forder

    2018-01-01

    In upland forests of the southern US, management is increasingly focussed on the restoration and maintenance of resilient structures and species compositions, with prescribed burning being the primary tool used to achieve these goals and objectives. In this study, we utilised an extensive dataset comprising 91 burn units and 210 plots across 13 National Park Service...

  8. A long-term study of tree seedling recruitment in Southern Appalachian forests: the effects of canopy gaps and shrub understories

    Treesearch

    Brian Beckage; James S. Clark; Barton D. Clinton; Bruce L. Haines

    2000-01-01

    We examined the importance of intermediate-sized gaps and a dense shrub layer on tree seedling recruitment in a Southern Appalachian deciduous forest. We created 12 canopy gaps under two contrasting understory conditions: 6 gaps were dominated by the dense, shade-producing shrub, Rhododendron maximum L., while the remaining gaps were relatively open...

  9. Interspecific divergence in foliar nutrient dynamics and stem growth in a temperate forest in response to chronic nitrogen inputs

    Treesearch

    Jeffrey D. May; Sarah Beth Burdette; Frank S. Gilliam; Mary Beth Adams

    2005-01-01

    We studied the effects of excessive nitrogen (N) fertilization on foliar nutrient dynamics and stem growth in three important tree species in a mixed-deciduous forest. Stem diameter growth, foliar N concentrations, nitrogen-phosphorus (NIP) ratios, and nutrient resorption were determined for Acer rubrum L. (ACRU), Liriodendron tulipifera L. (LITU), and Prunas serotina...

  10. An application of LANDSAT digital technology to forest fire fuel type mapping

    NASA Technical Reports Server (NTRS)

    Kourtz, P. H.

    1977-01-01

    The role of digital classifications suitable as fuel maps was examined. A Taylor enhancement was produced for an 8 million hectare fire control region showing water, muskeg, coniferous, deciduous and mixed stands, clearcut logging, burned areas, regeneration areas, nonforested areas and large forest roads. Use of the map by fire control personnel demonstrated its usefulness for initial attack decision making.

  11. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA

    Treesearch

    Matthew B. Dickinson; Todd F. Hutchinson; Mark Dietenberger; Frederick Matt; Matthew P. Peters; Jian Yang

    2016-01-01

    Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to...

  12. Biophysical relationship between leaf-level optical properties and phenology of canopy spectral reflectance in a cool-temperate deciduous broadleaf forest at Takayama, central Japan

    NASA Astrophysics Data System (ADS)

    Noda, H. M.; Nasahara, K. N.; Muraoka, H.

    2016-12-01

    Growing requirements to observe the spatial and temporal changes of forest canopy structure and functions under climate change expect advancement of ecophysiological interpretation of satellite remote sensing data. To achieve this we need mechanistic and quantitative understanding on the consequence between leaf-level traits and canopy-level spectral reflectance by coupling in-situ observation and analytical modeling. Deciduous forest is characterized by remarkable changes in canopy morphological and physiological structure through leaf expansion in spring to leaf fall in autumn. In addition, optical properties (spectral reflectance, absorption and transmittance of radiation) of leaves also change because they reflect leaf biochemical components such as pigments and water, and anatomical and surface structures. In this study we studied such consequence in a cool-temperate deciduous broadleaf forest, namely "Takayama site", on the northwestern slope of Mt. Norikura in central Japan. The forest canopy is dominated by Quercus crispula Blume and Betula ermanii Cham. In this forest, we measured the leaf optical properties of Q. crispula and B. ermanii during the growing season, from budburst in mid-May to senescence at beginning of November in 2004, 2005, 2006 and 2010. The measurement was conducted for both adaxial and abaxial side of the leaves.In the near infrared band, the leaf reflectance increased and the transmittance decreased during development period. Those changed very little in senescence period. The leaf reflectance in visible region changes small during the development period, the transmittance dropped remarkably. The abaxial side reflectance was about twice higher than adaxial side in the visible region. Those changes in the growing period fitted well to the development model base on air temperature. To validate the model, we simulate the canopy reflectance by using radiative transfer model SAIL. As our leaf spectral data and canopy spectral model have high flexibility to estimate the reflectance of target spectra according to the specificity of optical sensors on satellite, thus constructed mechanistic model would be applied to interpret many kinds of optical data observed by satellites.

  13. Patch occupancy and dispersal of spruce grouse on the edge of its range in Maine

    USGS Publications Warehouse

    Whitcomb, S.A.; Servello, F.A.; O'Connell, A.F.

    1996-01-01

    We surveyed 18 habitat patches (black spruce (Picea marinana) - tamarack (Larix larcina) wetlands) for spruce grouse (Dendragapus canadensis canadensis) on Mount Desert Island, Maine, during April-May in 1992 and 1993 to determine patch occupancy relative to patch area. We also equipped nine juvenile grouse with radio transmitters to determine movement and habitat use outside of patches during autumn dispersal. The 2 large patches (77 and 269 ha), 5 of 6 medium-sized (11-26 ha) patches, and 1 of 10 small (4-8 ha) patches were occupied. Spruce grouse occupied smaller habitat patches than previously reported, and occupied patches were closer (P < 0.05) to the nearest occupied patch (x = 1.2 km) than were unoccupied patches (x = 2.5 km). Eight of nine juvenile grouse left their natal habitat patch during autumn dispersal, and net dispersal distance (x = 2.3 km) was greater than that reported for grouse in areas with more contiguous habitat. Dispersing juveniles used all major forest types and 33 % of relocations were in deciduous forest. Thus, deciduous forest was not an absolute dispersal barrier.

  14. Diet of Wilson's warblers and distribution of arthropod prey in the understory of Douglas-fir forests

    USGS Publications Warehouse

    Hagar, Joan C.; Dugger, Kate; Starkey, Edward E.

    2007-01-01

    Availability of food resources is an important factor in avian habitat selection. Food resources for terrestrial birds often are closely related to vegetation structure and composition. Identification of plant species important in supporting food resources may facilitate vegetation management to achieve objectives for providing bird habitat. We used fecal analysis to describe the diet of adult Wilson's Warblers (Wilsonia pusilla) that foraged in the understory of Douglas-fir (Pseudotsuga menziesii) forests in western Oregon during the breeding season. We sampled arthropods at the same sites where diet data were collected, and compared abundance and biomass of prey among seven common shrub species. Wilson's Warblers ate more caterpillars (Lepidoptera larvae), flies (Diptera), beetles (Coleoptera), and Homoptera than expected based on availability. Deciduous shrubs supported higher abundances of arthropod taxa and size classes used as prey by Wilson's Warblers than did evergreen shrubs. The development and maintenance of deciduous understory vegetation in conifer forests of the Pacific Northwest may be fundamental for conservation of food webs that support breeding Wilson's Warblers and other shrub-associated, insectivorous songbirds.

  15. Arthropod prey of Wilson's Warblers in the understory of Douglas-fir forests

    USGS Publications Warehouse

    Hagar, J.C.; Dugger, K.M.; Starkey, E.E.

    2007-01-01

    Availability of food resources is an important factor in avian habitat selection. Food resources for terrestrial birds often are closely related to vegetation structure and composition. Identification of plant species important in supporting food resources may facilitate vegetation management to achieve objectives for providing bird habitat. We used fecal analysis to describe the diet of adult Wilson's Warblers (Wilsonia pusilla) that foraged in the understory of Douglas-fir (Pseudotsuga menziesii) forests in western Oregon during the breeding season. We sampled arthropods at the same sites where diet data were collected, and compared abundance and biomass of prey among seven common shrub species. Wilson's Warblers ate more caterpillars (Lepidoptera larvae), flies (Diptera), beetles (Coleoptera), and Homoptera than expected based on availability. Deciduous shrubs supported higher abundances of arthropod taxa and size classes used as prey by Wilson's Warblers than did evergreen shrubs. The development and maintenance of deciduous understory vegetation in conifer forests of the Pacific Northwest may be fundamental for conservation of food webs that support breeding Wilson's Warblers and other shrub-associated, insectivorous songbirds.

  16. Forest Surface Energy Balance and Evapotranspiration Estimated From Four Eddy Covariance Towers

    NASA Astrophysics Data System (ADS)

    Rabbani, G. A.; Adam, J. C.; Elliot, W. J.; Liu, H.

    2016-12-01

    Evapotranspiration (ET), which refers to the combined effect of surface water evaporation and plant transpiration, is one of the vital elements of the global water balance. It is also an important process for plants, providing water, nutrient, and cooling needs, and helping to regulate carbon dioxide entry through open/closure of the plant's stomata. Quantifying ET in forested environments is an ongoing research area. Complex physiological responses with climatic variation, combined with difficulty in making wide-spread measurements, makes ET one of the least understood components of a forest water balance. The objective of this study is to estimate ET and energy balance closure by using flux net data from eddy covariance towers. ET is estimated for different forest types with multiple age classes during the years of 2011, 2012 and 2013. We studied two coniferous forests (F1, F2), one deciduous forest (F3) and one mixed forest (F4) in Washington, Wyoming, Wisconsin and New Jersey, respectively. Label 2 (Data checked and formatted by Carbon Dioxide Information Analysis Center) gap filled flux data were collected from the AmeriFlux database (ameriflux.ornl.gov). Discrepancies between turbulent fluxes and available energy are investigated. Among the studied forests, the highest and lowest average monthly ET are exhibited by the mixed forest (F4) and coniferous forest (F1) in 2012 which are 2,692 and 633 mm/month, respectively. Difference in average monthly ET can be an implication of substantial age difference between these two types of forest. The regression analysis showed significant correlation between turbulent fluxes and available energy (R2=0.91) for mixed forest where the discrepancy varied from 5-11%. Conversely, for coniferous and deciduous forests, the discrepancy varied from 46-49% and 28%, respectively, with almost similar correlation between the fluxes (0.86 and 0.84, respectively). This study will facilitate an improved understanding of how forest type and age pose differences in ET and surface energy components.

  17. Seed reserve composition in 19 tree species of a tropical deciduous forest in Mexico and its relationship to seed germination and seedling growth

    PubMed Central

    Soriano, Diana; Orozco-Segovia, Alma; Márquez-Guzmán, Judith; Kitajima, Kaoru; Gamboa-de Buen, Alicia; Huante, Pilar

    2011-01-01

    Background and Aims The size and composition of seed reserves may reflect the ecological strategy and evolutionary history of a species and also temporal variation in resource availability. The seed mass and composition of seed reserves of 19 co-existing tree species were studied, and we examined how they varied among species in relation to germination and seedling growth rates, as well as between two years with contrasting precipitation (652 and 384 mm). Methods Seeds were collected from a tropical deciduous forest in the northwest of Mexico (Chamela Biological Station). The seed dry mass, with and without the seed coat, and the concentrations of lipids, nitrogen and non-structural carbohydrates for the seed minus seed coat were determined. The anatomical localization of these reserves was examined using histochemical analysis. The germination capacity, rate and lag time were determined. The correlations among these variables, and their relationship to previously reported seedling relative growth rates, were evaluated with and without phylogenetic consideration. Key Results There were interannual differences in seed mass and reserve composition. Seed was significantly heavier after the drier year in five species. Nitrogen concentration was positively correlated with seed coat fraction, and was significantly higher after the drier year in 12 species. The rate and lag time of germination were negatively correlated with each other. These trait correlations were also supported for phylogenetic independent contrasts. Principal component analysis supported these correlations, and indicated a negative association of seedling relative growth rate with seed size, and a positive association of germination rate with nitrogen and lipid concentrations. Conclusions Nitrogen concentration tended to be higher after the drier year and, while interannual variations in seed size and reserve composition were not sufficient to affect interspecific correlations among seed and seedling traits, some of the reserves were related to germination variables and seedling relative growth rate. PMID:21385781

  18. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake

    DOE PAGES

    Wehr, Richard; Commane, Roisin; Munger, J. William; ...

    2017-01-26

    Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface–atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem–atmosphere exchange ofmore » OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is needed to further model development and improve our understanding of carbon and water cycling.« less

  19. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehr, Richard; Commane, Roisin; Munger, J. William

    Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface–atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem–atmosphere exchange ofmore » OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is needed to further model development and improve our understanding of carbon and water cycling.« less

  20. Physiological Adjustments of Leaf Respiration to Atmospheric Warming in Betula alleghaniensis and Quercus rubra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vollmar, A.; Gunderson, C.

    2006-01-01

    Global air temperatures are predicted to rise 1° to 4.5° Celsius by the year 2100. This climatic change is expected to have a great effect on the succession and migration of temperate deciduous forest species. Most physiologically based models of forest response to climatic change focus on the ecosystems as a whole instead of on individual tree species, assuming that the effects of warming on respiration are generally the same for each species, and that processes can not adjust to a changing climate. Experimental data suggest that physiological adjustments are possible, but there is a lack of data in deciduousmore » species. In order to correctly model the effects of climate change on temperate species, species-specific respiration acclimation (adjustment) to rising temperatures is being determined in this experiment. Two temperate deciduous tree species Betula alleghaniensis (BA) and Quercus rubra (QR) were grown over a span of four years in open-top chambers and subjected to two different temperature treatments; ambient and ambient plus 4° Celsius (E4). Between 0530 hours and 1100 hours, respiration was measured over a range of leaf temperatures on several comparable, fully expanded leaves in each treatment. Circular punches were taken from the leaves and dried at 60°C to determine leaf mass per area (LMA). Respiration rates at a common temperature decreased by 15-18% in both species, and the entire resperation versus temperature curve shifted by at least 4°C, indicating a large degree of physiological acclimation. Foliar mass per area decreased with increasing growth temperature for both species. It can be concluded that there is a relationship between leaf respiration and foliar mass as it relates to respiratory acclimation, and that these two species had similar patterns of adjustment to warming.« less

Top