Sample records for dry etch damage

  1. Characterization and modeling of low energy ion-induced damage in III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Hui

    1997-11-01

    Low energy ion-induced damage (sub-keV) created during dry etching processes can extend quite deeply into materials. A systematic study on the deep penetration of dry etch-induced damage is necessary to improve device performance and helpful in further understanding the nature of defect propagation in semiconductors. In this study, a phenomenological model of dry etching damage that includes both effects of ion channeling and defect diffusion has been developed. It underscores that in addition to ion channeling, enhanced defect diffusion also plays an important role in establishing the damage profile. Further, the enhanced diffusion of dry etch- induced damage was experimentally observed for the first time by investigating the influences of concurrent above- bandgap laser illumination and low energy Ar+ ion bombardment on the damage profiles of GaAs/AlGaAs and InP-GaAs/InP heterostructures. The results indicate that non-radiative recombination of electron and hole pairs at defect sites is responsible for the observed radiation enhanced diffusion. DLTS measurements are also employed to characterize the nature of the enhanced diffusion in n-GaAs and reveal that a major component of the ion- induced defects is associated with primary point defects. Using the better understanding of the damage propagation in dry etched materials, a thin layer of low temperature grown GaAs (~200A) was utilized to stop defect propagation during dry etching process. This approach has been successfully applied to reduce ion damage that would occur during the formation of a dry-etch gate recess of a high electron mobility transistor. Finally, some future experiments are proposed and conceptually described, which would further clarify some of the many outstanding issues in the understanding and mitigation of etch- induced damage.

  2. Direct mapping and characterization of dry etch damage-induced PN junction for long-wavelength HgCdTe infrared detector arrays.

    PubMed

    Li, Yantao; Hu, Weida; Ye, Zhenhua; Chen, Yiyu; Chen, Xiaoshuang; Lu, Wei

    2017-04-01

    Mercury cadmium telluride is the standard material to fabricate high-performance infrared focal plane array (FPA) detectors. However, etch-induced damage is a serious obstacle for realizing highly uniform and damage-free FPA detectors. In this Letter, the high signal-to-noise ratio and high spatial resolution scanning photocurrent microscopy (SPCM) is used to characterize the dry etch-induced inversion layer of vacancy-doped p-type Hg1-xCdxTe (x=0.22) material under different etching temperatures. It is found that the peak-to-peak magnitude of the SPCM profile decreases with a decrease in etching temperature, showing direct proof of controlling dry etch-induced type conversion. Our work paves the way toward seeking optimal etching processes in large-scale infrared FPAs.

  3. Analysis of InP-based single photon avalanche diodes based on a single recess-etching process

    NASA Astrophysics Data System (ADS)

    Lee, Kiwon

    2018-04-01

    Effects of the different etching techniques have been investigated by analyzing electrical and optical characteristics of two-types of single-diffused single photon avalanche diodes (SPADs). The fabricated two-types of SPADs have no diffusion depth variation by using a single diffusion process at the same time. The dry-etched SPADs show higher temperature dependence of a breakdown voltage, larger dark-count-rate (DCR), and lower photon-detection-efficiency (PDE) than those of the wet-etched SPADs due to plasma-induced damage of dry-etching process. The results show that the dry etching damages can more significantly affect the performance of the SPADs based on a single recess-etching process.

  4. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, C.I.H.; Myers, D.R.; Vook, F.L.

    1988-06-16

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  5. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, Carol I. H.; Myers, David R.; Vook, Frederick L.

    1989-01-01

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  6. A Study on Ohmic Contact to Dry-Etched p-GaN

    NASA Astrophysics Data System (ADS)

    Hu, Cheng-Yu; Ao, Jin-Ping; Okada, Masaya; Ohno, Yasuo

    Low-power dry-etching process has been adopted to study the influence of dry-etching on Ohmic contact to p-GaN. When the surface layer of as-grown p-GaN was removed by low-power SiCl4/Cl2-etching, no Ohmic contact can be formed on the low-power dry-etched p-GaN. The same dry-etching process was also applied on n-GaN to understand the influence of the low-power dry-etching process. By capacitance-voltage (C-V) measurement, the Schottky barrier heights (SBHs) of p-GaN and n-GaN were measured. By comparing the change of measured SBHs on p-GaN and n-GaN, it was suggested that etching damage is not the only reason responsible for the degraded Ohmic contacts to dry-etched p-GaN and for Ohmic contact formatin, the original surface layer of as-grown p-GaN have some special properties, which were removed by dry-etching process. To partially recover the original surface of as-grown p-GaN, high temperature annealing (1000°C 30s) was tried on the SiCl4/Cl2-etched p-GaN and Ohmic contact was obtained.

  7. A review on plasma-etch-process induced damage of HgCdTe

    NASA Astrophysics Data System (ADS)

    Liu, Lingfeng; Chen, Yiyu; Ye, Zhenhua; Ding, Ruijun

    2018-05-01

    Dry etching techniques with minimal etch induced damage are required to develop highly anisotropic etch for pixel delineation of HgCdTe infrared focal plane arrays (IRFPAs). High density plasma process has become the main etching technique for HgCdTe in the past twenty years, In this paper, high density plasma electron cyclotron resonance (ECR) and inductively coupled plasma (ICP) etching of HgCdTe are summarized. Common plasma-etch-process induced type conversion and related mechanisms are reviewed particularly.

  8. Low damage dry etch for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Nedy, Joseph G.; Young, Nathan G.; Kelchner, Kathryn M.; Hu, Yanling; Farrell, Robert M.; Nakamura, Shuji; DenBaars, Steven P.; Weisbuch, Claude; Speck, James S.

    2015-08-01

    We have developed a dry etch process for the fabrication of lithographically defined features close to light emitting layers in the III-nitride material system. The dry etch was tested for its effect on the internal quantum efficiency of c-plane InGaN quantum wells using the photoluminescence of a test structure with two active regions. No change was observed in the internal quantum efficiency of the test active region when the etched surface was greater than 71 nm away. To demonstrate the application of the developed dry etch process, surface-etched air gaps were fabricated 275 nm away from the active region of an m-plane InGaN/GaN laser diode and served as the waveguide upper cladding. Electrically injected lasing was observed without the need for regrowth or recovery anneals. This dry etch opens up a new design tool that can be utilized in the next generation of GaN light emitters.

  9. Dry etching technologies for reflective multilayer

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori

    2012-11-01

    We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.

  10. Overcoming Etch Challenges on a 6″ Hg1- x Cd x Te MBE on Si Wafer

    NASA Astrophysics Data System (ADS)

    Apte, Palash; Norton, Elyse; Robinson, Solomon

    2017-10-01

    The effect of increasing photoresist (PR) thickness on the inductively coupled plasma (ICP) dry etched characteristics of a 6″ (c.15 cm) molecular beam epitaxy Hg1- x Cd x Te/Si wafer is investigated. It is determined that the Hg1- x Cd x Te etch rate (ER) does not vary significantly with a change in the PR thickness. Also, the vertical ER of the PR is seen to be independent of the PR thickness, but the lateral ER is seen to reduce significantly with increased PR thickness. Indeed, very little reduction in the pixel mesa area post-dry etch is seen for the thicker PR. Consequently, the trench sidewall angle is also seen to vary as a function of the PR thickness. Since ICP is the more attractive choice for dry etching Hg1- x Cd x Te, this simple, cost-effective way to extend the capabilities of dry etching (larger mesa top area post-dry etch, ability to create tailor-made trench sidewall angles for optimal conformal passivation deposition, and potential for reduced dry etch damage) described here would allow for the fabrication of next generation infrared detectors with increased yield and reduced cost. Although similar results have been presented using the electron cyclotron resonance system to dry etch Hg1- x Cd x Te, to the best of our knowledge, this is the first time that such results have been presented using an ICP system.

  11. Inductively Coupled Plasma-Induced Electrical Damage on HgCdTe Etched Surface at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, L. F.; Chen, Y. Y.; Ye, Z. H.; Hu, X. N.; Ding, R. J.; He, L.

    2018-03-01

    Plasma etching is a powerful technique for transferring high-resolution lithographic patterns into HgCdTe material with low etch-induced damage, and it is important for fabricating small-pixel-size HgCdTe infrared focal plane array (IRFPA) detectors. P- to n-type conversion is known to occur during plasma etching of vacancy-doped HgCdTe; however, it is usually unwanted and its removal requires extra steps. Etching at cryogenic temperatures can reduce the etch-induced type conversion depth in HgCdTe via the electrical damage mechanism. Laser beam-induced current (LBIC) is a nondestructive photoelectric characterization technique which can provide information regarding the vertical and lateral electrical field distribution, such as defects and p-n junctions. In this work, inductively coupled plasma (ICP) etching of HgCdTe was implemented at cryogenic temperatures. For an Ar/CH4 (30:1 in SCCM) plasma with ICP input power of 1000 W and RF-coupled DC bias of ˜ 25 V, a HgCdTe sample was dry-etched at 123 K for 5 min using ICP. The sample was then processed to remove a thin layer of the plasma-etched region while maintaining a ladder-like damaged layer by continuously controlling the wet chemical etching time. Combining the ladder etching method and LBIC measurement, the ICP etching-induced electrical damage depth was measured and estimated to be about 20 nm. The results indicate that ICP etching at cryogenic temperatures can significantly suppress plasma etching-induced electrical damage, which is beneficial for defining HgCdTe mesa arrays.

  12. Dry etching, surface passivation and capping processes for antimonide based photodetectors

    NASA Astrophysics Data System (ADS)

    Dutta, Partha; Langer, Jeffery; Bhagwat, Vinay; Juneja, Jasbir

    2005-05-01

    III-V antimonide based devices suffer from leakage currents. Surface passivation and subsequent capping of the surfaces are absolutely essential for any practical applicability of antimonide based devices. The quest for a suitable surface passivation technology is still on. In this paper, we will present some of the promising recent developments in this area based on dry etching of GaSb based homojunction photodiodes structures followed by various passivation and capping schemes. We have developed a damage-free, universal dry etching recipe based on unique ratios of Cl2/BCl3/CH4/Ar/H2 in ECR plasma. This novel dry plasma process etches all III-V compounds at different rates with minimal damage to the side walls. In GaSb based photodiodes, an order of magnitude lower leakage current, improved ideality factor and higher responsivity has been demonstrated using this recipe compared to widely used Cl2/Ar and wet chemical etch recipes. The dynamic zero bias resistance-area product of the Cl2/BCl3/CH4/Ar/H2 etched diodes (830 Ω cm2) is higher than the Cl2/Ar (300 Ω cm2) and wet etched (330 Ω cm2) diodes. Ammonium sulfide has been known to passivate surfaces of III-V compounds. In GaSb photodiodes, the leakage current density reduces by a factor of 3 upon sulfur passivation using ammonium sulfide. However, device performance degrades over a period of time in the absence of any capping or protective layer. Silicon Nitride has been used as a cap layer by various researchers. We have found that by using silicon nitride caps, the devices exhibit higher leakage than unpassivated devices probably due to plasma damage during SiNx deposition. We have experimented with various polymers for capping material. It has been observed that ammonium sulfide passivation when combined with parylene capping layer (150 Å), devices retain their improved performance for over 4 months.

  13. Method of fabricating vertically aligned group III-V nanowires

    DOEpatents

    Wang, George T; Li, Qiming

    2014-11-25

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  14. Bottom-up and top-down fabrication of nanowire-based electronic devices: In situ doping of vapor liquid solid grown silicon nanowires and etch-dependent leakage current in InGaAs tunnel junctions

    NASA Astrophysics Data System (ADS)

    Kuo, Meng-Wei

    Semiconductor nanowires are important components in future nanoelectronic and optoelectronic device applications. These nanowires can be fabricated using either bottom-up or top-down methods. While bottom-up techniques can achieve higher aspect ratio at reduced dimension without having surface and sub-surface damage, uniform doping distributions with abrupt junction profiles are less challenging for top-down methods. In this dissertation, nanowires fabricated by both methods were systematically investigated to understand: (1) the in situ incorporation of boron (B) dopants in Si nanowires grown by the bottom-up vapor-liquid-solid (VLS) technique, and (2) the impact of plasma-induced etch damage on InGaAs p +-i-n+ nanowire junctions for tunnel field-effect transistors (TFETs) applications. In Chapter 2 and 3, the in situ incorporation of B in Si nanowires grown using silane (SiH4) or silicon tetrachloride (SiCl4) as the Si precursor and trimethylboron (TMB) as the p-type dopant source is investigated by I-V measurements of individual nanowires. The results from measurements using a global-back-gated test structure reveal nonuniform B doping profiles on nanowires grown from SiH4, which is due to simultaneous incorporation of B from nanowire surface and the catalyst during VLS growth. In contrast, a uniform B doping profile in both the axial and radial directions is achieved for TMBdoped Si nanowires grown using SiCl4 at high substrate temperatures. In Chapter 4, the I-V characteristics of wet- and dry-etched InGaAs p+-i-n+ junctions with different mesa geometries, orientations, and perimeter-to-area ratios are compared to evaluate the impact of the dry etch process on the junction leakage current properties. Different post-dry etch treatments, including wet etching and thermal annealing, are performed and the effectiveness of each is assessed by temperaturedependent I-V measurements. As compared to wet-etched control devices, dry-etched junctions have a significantly higher leakage current and a current kink in the reverse bias regime, which is likely due to additional trap states created by plasma-induced damage during the Cl2/Ar/H2 mesa isolation step. These states extend more than 60 nm from the mesa surface and can only be partially passivated after a thermal anneal at 350°C for 20 minutes. The evolution of the electrical properties with post-dry etch treatments indicates that the shallow and deep-level trap states resulting from ion-induced point defects, arsenic vacancies and hydrogen-dopant complexes are the primary cause of degradation in the electrical properties of the dry-etched junctions.

  15. Influence of Si wafer thinning processes on (sub)surface defects

    NASA Astrophysics Data System (ADS)

    Inoue, Fumihiro; Jourdain, Anne; Peng, Lan; Phommahaxay, Alain; De Vos, Joeri; Rebibis, Kenneth June; Miller, Andy; Sleeckx, Erik; Beyne, Eric; Uedono, Akira

    2017-05-01

    Wafer-to-wafer three-dimensional (3D) integration with minimal Si thickness can produce interacting multiple devices with significantly scaled vertical interconnections. Realizing such a thin 3D structure, however, depends critically on the surface and subsurface of the remaining backside Si after the thinning processes. The Si (sub)surface after mechanical grinding has already been characterized fruitfully for a range of few dozen of μm. Here, we expand the characterization of Si (sub)surface to 5 μm thickness after thinning process on dielectric bonded wafers. The subsurface defects and damage layer were investigated after grinding, chemical mechanical polishing (CMP), wet etching and plasma dry etching. The (sub)surface defects were characterized using transmission microscopy, atomic force microscopy, and positron annihilation spectroscopy. Although grinding provides the fastest removal rate of Si, the surface roughness was not compatible with subsequent processing. Furthermore, mechanical damage such as dislocations and amorphous Si cannot be reduced regardless of Si thickness and thin wafer handling systems. The CMP after grinding showed excellent performance to remove this grinding damage, even though the removal amount is 1 μm. For the case of Si thinning towards 5 μm using grinding and CMP, the (sub)surface is atomic scale of roughness without vacancy. For the case of grinding + dry etch, vacancy defects were detected in subsurface around 0.5-2 μm. The finished surface after wet etch remains in the nm scale in the strain region. By inserting a CMP step in between grinding and dry etch it is possible to significantly reduce not only the roughness, but also the remaining vacancies at the subsurface. The surface of grinding + CMP + dry etching gives an equivalent mono vacancy result as to that of grinding + CMP. This combination of thinning processes allows development of extremely thin 3D integration devices with minimal roughness and vacancy surface.

  16. Release of MEMS devices with hard-baked polyimide sacrificial layer

    NASA Astrophysics Data System (ADS)

    Boroumand Azad, Javaneh; Rezadad, Imen; Nath, Janardan; Smith, Evan; Peale, Robert E.

    2013-03-01

    Removal of polyimides used as sacrificial layer in fabricating MEMS devices can be challenging after hardbaking, which may easily result by the end of multiple-step processing. We consider the specific commercial co-developable polyimide ProLift 100 (Brewer Science). Excessive heat hardens this material, so that during wet release in TMAH based solvents, intact sheets break free from the substrate, move around in the solution, and break delicate structures. On the other hand, dry reactive-ion etching of hard-baked ProLift is so slow, that MEMS structures are damaged from undesirably-prolonged physical bombardment by plasma ions. We found that blanket exposure to ultraviolet light allows rapid dry etch of the ProLift surrounding the desired structures without damaging them. Subsequent removal of ProLift from under the devices can then be safely performed using wet or dry etch. We demonstrate the approach on PECVD-grown silicon-oxide cantilevers of 100 micron × 100 micron area supported 2 microns above the substrate by ~100-micron-long 8-micron-wide oxide arms.

  17. Response of murine bone marrow-derived mesenchymal stromal cells to dry-etched porous silicon scaffolds.

    PubMed

    Hajj-Hassan, Mohamad; Khayyat-Kholghi, Maedeh; Wang, Huifen; Chodavarapu, Vamsy; Henderson, Janet E

    2011-11-01

    Porous silicon shows great promise as a bio-interface material due to its large surface to volume ratio, its stability in aqueous solutions and to the ability to precisely regulate its pore characteristics. In the current study, porous silicon scaffolds were fabricated from single crystalline silicon wafers by a novel xenon difluoride dry etching technique. This simplified dry etch fabrication process allows selective formation of porous silicon using a standard photoresist as mask material and eliminates the post-formation drying step typically required for the wet etching techniques, thereby reducing the risk of damaging the newly formed porous silicon. The porous silicon scaffolds supported the growth of primary cultures of bone marrow derived mesenchymal stromal cells (MSC) plated at high density for up to 21 days in culture with no significant loss of viability, assessed using Alamar Blue. Scanning electron micrographs confirmed a dense lawn of cells at 9 days of culture and the presence of MSC within the pores of the porous silicon scaffolds. Copyright © 2011 Wiley Periodicals, Inc.

  18. Damage-Free Smooth-Sidewall InGaAs Nanopillar Array by Metal-Assisted Chemical Etching.

    PubMed

    Kong, Lingyu; Song, Yi; Kim, Jeong Dong; Yu, Lan; Wasserman, Daniel; Chim, Wai Kin; Chiam, Sing Yang; Li, Xiuling

    2017-10-24

    Producing densely packed high aspect ratio In 0.53 Ga 0.47 As nanostructures without surface damage is critical for beyond Si-CMOS nanoelectronic and optoelectronic devices. However, conventional dry etching methods are known to produce irreversible damage to III-V compound semiconductors because of the inherent high-energy ion-driven process. In this work, we demonstrate the realization of ordered, uniform, array-based In 0.53 Ga 0.47 As pillars with diameters as small as 200 nm using the damage-free metal-assisted chemical etching (MacEtch) technology combined with the post-MacEtch digital etching smoothing. The etching mechanism of In x Ga 1-x As is explored through the characterization of pillar morphology and porosity as a function of etching condition and indium composition. The etching behavior of In 0.53 Ga 0.47 As, in contrast to higher bandgap semiconductors (e.g., Si or GaAs), can be interpreted by a Schottky barrier height model that dictates the etching mechanism constantly in the mass transport limited regime because of the low barrier height. A broader impact of this work relates to the complete elimination of surface roughness or porosity related defects, which can be prevalent byproducts of MacEtch, by post-MacEtch digital etching. Side-by-side comparison of the midgap interface state density and flat-band capacitance hysteresis of both the unprocessed planar and MacEtched pillar In 0.53 Ga 0.47 As metal-oxide-semiconductor capacitors further confirms that the surface of the resultant pillars is as smooth and defect-free as before etching. MacEtch combined with digital etching offers a simple, room-temperature, and low-cost method for the formation of high-quality In 0.53 Ga 0.47 As nanostructures that will potentially enable large-volume production of In 0.53 Ga 0.47 As-based devices including three-dimensional transistors and high-efficiency infrared photodetectors.

  19. Correlation between border traps and exposed surface properties in gate recessed normally-off Al2O3/GaN MOSFET

    NASA Astrophysics Data System (ADS)

    Yin, Ruiyuan; Li, Yue; Sun, Yu; Wen, Cheng P.; Hao, Yilong; Wang, Maojun

    2018-06-01

    We report the effect of the gate recess process and the surface of as-etched GaN on the gate oxide quality and first reveal the correlation between border traps and exposed surface properties in normally-off Al2O3/GaN MOSFET. The inductively coupled plasma (ICP) dry etching gate recess with large damage presents a rough and active surface that is prone to form detrimental GaxO validated by atomic force microscopy and X-ray photoelectron spectroscopy. Lower drain current noise spectral density of the 1/f form and less dispersive ac transconductance are observed in GaN MOSFETs fabricated with oxygen assisted wet etching compared with devices based on ICP dry etching. One decade lower density of border traps is extracted in devices with wet etching according to the carrier number fluctuation model, which is consistent with the result from the ac transconductance method. Both methods show that the density of border traps is skewed towards the interface, indicating that GaxO is of higher trap density than the bulk gate oxide. GaxO located close to the interface is the major location of border traps. The damage-free oxidation assisted wet etching gate recess technique presents a relatively smooth and stable surface, resulting in lower border trap density, which would lead to better MOS channel quality and improved device reliability.

  20. Improved photoluminescence efficiency in UV nanopillar light emitting diode structures by recovery of dry etching damage.

    PubMed

    Jeon, Dae-Woo; Jang, Lee-Woon; Jeon, Ju-Won; Park, Jae-Woo; Song, Young Ho; Jeon, Seong-Ran; Ju, Jin-Woo; Baek, Jong Hyeob; Lee, In-Hwan

    2013-05-01

    In this study, we have fabricated 375-nm-wavelength InGaN/AlInGaN nanopillar light emitting diodes (LED) structures on c-plane sapphire. A uniform and highly vertical nanopillar structure was fabricated using self-organized Ni/SiO2 nano-size mask by dry etching method. To minimize the dry etching damage, the samples were subjected to high temperature annealing with subsequent chemical passivation in KOH solution. Prior to annealing and passivation the UV nanopillar LEDs showed the photoluminescence (PL) efficiency about 2.5 times higher than conventional UV LED structures which is attributed to better light extraction efficiency and possibly some improvement of internal quantum efficiency due to partially relieved strain. Annealing alone further increased the PL efficiency by about 4.5 times compared to the conventional UV LEDs, while KOH passivation led to the overall PL efficiency improvement by more than 7 times. Combined results of Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) suggest that annealing decreases the number of lattice defects and relieves the strain in the surface region of the nanopillars whereas KOH treatment removes the surface oxide from nanopillar surface.

  1. Effects of dry etching processes on exciton and polariton characteristics in ZnTe

    NASA Astrophysics Data System (ADS)

    Sun, J. H.; Xie, W. B.; Shen, W. Z.; Ogawa, H.; Guo, Q. X.

    2003-12-01

    We have employed temperature-dependent reflection spectra to study the effects of reactive ion etching (RIE) on the exciton and polariton characteristics in ZnTe crystals exposed to CH4/H2 gases under different rf plasma powers. Classic exciton-polariton theory has been used to calculate the reflection spectra. By comparing with an as-grown ZnTe crystal and the temperature-dependent behavior, we are able to identify the excitons and RIE-induced polariton structures in these dry etched ZnTe crystals. An increase of the rf plasma power will lead to an increase of defect density in the surface damage layers, resulting in a decrease of the photon energies of the observed exciton and polariton structures.

  2. Single-crystal silicon trench etching for fabrication of highly integrated circuits

    NASA Astrophysics Data System (ADS)

    Engelhardt, Manfred

    1991-03-01

    The development of single crystal silicon trench etching for fabrication of memory cells in 4 16 and 64Mbit DRAMs is reviewed in this paper. A variety of both etch tools and process gases used for the process development is discussed since both equipment and etch chemistry had to be improved and changed respectively to meet the increasing requirements for high fidelity pattern transfer with increasing degree of integration. In additon to DRAM cell structures etch results for deep trench isolation in advanced bipolar ICs and ASICs are presented for these applications grooves were etched into silicon through a highly doped buried layer and at the borderline of adjacent p- and n-well areas respectively. Shallow trench etching of large and small exposed areas with identical etch rates is presented as an approach to replace standard LOCOS isolation by an advanced isolation technique. The etch profiles were investigated with SEM TEM and AES to get information on contathination and damage levels and on the mechanism leading to anisotropy in the dry etch process. Thermal wave measurements were performed on processed single crystal silicon substrates for a fast evaluation of the process with respect to plasma-induced substrate degradation. This useful technique allows an optimization ofthe etch process regarding high electrical performance of the fully processed memory chip. The benefits of the use of magnetic fields for the development of innovative single crystal silicon dry

  3. High-density plasma etching of III-nitrides: Process development, device applications and damage remediation

    NASA Astrophysics Data System (ADS)

    Singh, Rajwinder

    Plasma-assisted etching is a key technology for III-nitride device fabrication. The inevitable etch damage resulting from energetic pattern transfer is a challenge that needs to be addressed in order to optimize device performance and reliability. This dissertation focuses on the development of a high-density inductively-coupled plasma (ICP) etch process for III-nitrides, the demonstration of its applicability to practical device fabrication using a custom built ICP reactor, and development of techniques for remediation of etch damage. A chlorine-based standard dry etch process has been developed and utilized in fabrication of a number of electronic and optoelectronic III-nitride devices. Annealing studies carried out at 700°C have yielded the important insight that the annealing time necessary for making good-quality metal contacts to etch processed n-GaN is very short (<30 sec), comparable with the annealing times necessary for dopant activation of p-GaN films and provides an opportunity for streamlining process flow. Plasma etching degrades contact quality on n-GaN films and this degradation has been found to increase with the rf bias levels (ion energies) used, most notably in films with higher doping levels. Immersion in 1:1 mixture of hydrochloric acid and de-ionized water, prior to metallization, removes some of the etch damage and is helpful in recovering contact quality. In-situ treatment consisting of a slow ramp-down of rf bias at the end of the etch is found to achieve the same effect as the ex-situ treatment. This insitu technique is significantly advantageous in a large-scale production environment because it eliminates a process step, particularly one involving treatment in hydrochloric acid. ICP equipment customization for scaling up the process to full 2-inch wafer size is described. Results on etching of state of the art 256 x 256 AlGaN focal plane arrays of ultraviolet photodetectors are reported, with excellent etch uniformity over the wafer area.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ast, D.G.

    Research focused on control of misfit dislocations in strained epitaxial layers of GaAs through prepatterning of the substrate. Patterning and etching trenches into GaAs substrates before epitaxial growth results in nonplanar wafer surface, which makes device fabrication more difficult. Selective ion damaging the substrate prior to growth was investigated. The question of whether the overlayer must or must not be discontinuous was addressed. The third research direction was to extend results from molecular beam epitaxially grown material to organometallic chemical vapor deposition. Effort was increased to study the patterning processes and the damage it introduces into the substrate. The researchmore » program was initiated after the discovery that 500-eV dry etching in GaAs damages the substrate much deeper than the ion range.« less

  5. Wafer-scale development and experimental verification of 0.36 mm2 228 mV open-circuit-voltage solid-state CMOS-compatible glucose fuel cell

    NASA Astrophysics Data System (ADS)

    Arata, Shigeki; Hayashi, Kenya; Nishio, Yuya; Kobayashi, Atsuki; Nakazato, Kazuo; Niitsu, Kiichi

    2018-04-01

    The world’s smallest (0.36 mm2) solid-state CMOS-compatible glucose fuel cell, which exhibits an open-circuit voltage (OCV) of 228 mV and a power generation density of 1.32 µW/cm2 with a 30 mM glucose solution, is reported in this paper. Compared with conventional wet etching, dry etching (reactive ion etching) for patterning minimizes damage to the anode and cathode, resulting in a cell with a small size and a high OCV, sufficient for CMOS circuit operation.

  6. Plasma etching of polymers like SU8 and BCB

    NASA Astrophysics Data System (ADS)

    Mischke, Helge; Gruetzner, Gabi; Shaw, Mark

    2003-01-01

    Polymers with high viscosity, like SU8 and BCB, play a dominant role in MEMS application. Their behavior in a well defined etching plasma environment in a RIE mode was investigated. The 40.68 MHz driven bottom electrode generates higher etch rates combined with much lower bias voltages by a factor of ten or a higher efficiency of the plasma with lower damaging of the probe material. The goal was to obtain a well-defined process for the removal and structuring of SU8 and BCB using fluorine/oxygen chemistry, defined using variables like electron density and collision rate. The plasma parameters are measured and varied using a production proven technology called SEERS (Self Excited Electron Resonance Spectroscopy). Depending on application and on Polymer several metals are possible (e.g., gold, aluminum). The characteristic of SU8 and BCB was examined in the case of patterning by dry etching in a CF4/O2 chemistry. Etch profile and etch rate correlate surprisingly well with plasma parameters like electron density and electron collision rate, thus allowing to define to adjust etch structure in situ with the help of plasma parameters.

  7. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  8. Method for dry etching of transition metals

    DOEpatents

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  9. Method for dry etching of transition metals

    DOEpatents

    Ashby, Carol I. H.; Baca, Albert G.; Esherick, Peter; Parmeter, John E.; Rieger, Dennis J.; Shul, Randy J.

    1998-01-01

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  10. Fabrication of self-aligned, nanoscale, complex oxide varactors

    NASA Astrophysics Data System (ADS)

    Fu, Richard X.; Toonen, Ryan C.; Hirsch, Samuel G.; Ivill, Mathew P.; Cole, Melanie W.; Strawhecker, Kenneth E.

    2015-01-01

    Applications in ferroelectric random access memory and superparaelectric devices require the fabrication of ferroelectric capacitors at the nanoscale that exhibit extremely small leakage currents. To systematically study the material-size dependence of ferroelectric varactor performance, arrays of parallel-plate structures have been fabricated with nanoscale dielectric diameters. Electron beam lithography and inductively coupled plasma dry etching have been used to fabricate arrays of ferroelectric varactors using top electrodes as a self-aligned etch mask. Parallel-plate test structures using RF-sputtered Ba0.6Sr0.4TiO3 thin-films were used to optimize the fabrication process. Varactors with diameters down to 20 nm were successfully fabricated. Current-voltage (I-V) characteristics were measured to evaluate the significance of etch-damage and fabrication quality by ensuring low leakage currents through the structures.

  11. Dry etching of chrome for photomasks for 100-nm technology using chemically amplified resist

    NASA Astrophysics Data System (ADS)

    Mueller, Mark; Komarov, Serguie; Baik, Ki-Ho

    2002-07-01

    Photo mask etching for the 100nm technology node places new requirements on dry etching processes. As the minimum-size features on the mask, such as assist bars and optical proximity correction (OPC) patterns, shrink down to 100nm, it is necessary to produce etch CD biases of below 20nm in order to reproduce minimum resist features into chrome with good pattern fidelity. In addition, vertical profiles are necessary. In previous generations of photomask technology, footing and sidewall profile slope were tolerated, since this dry etch profile was an improvement from wet etching. However, as feature sizes shrink, it is extremely important to select etch processes which do not generate a foot, because this will affect etch linearity and also limit the smallest etched feature size. Chemically amplified resist (CAR) from TOK is patterned with a 50keV MEBES eXara e-beam writer, allowing for patterning of small features with vertical resist profiles. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. Chrome etch process development has been performed using Design of Experiments to optimize parameters such as sidewall profile, etch CD bias, etch CD linearity for varying sizes of line/space patterns, etch CD linearity for varying sizes of isolated lines and spaces, loading effects, and application to contact etching.

  12. Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers.

    PubMed

    Ye, Hui; Li, Yaguo; Zhang, Qinghua; Wang, Wei; Yuan, Zhigang; Wang, Jian; Xu, Qiao

    2016-04-10

    HF-based (hydrofluoric acid) chemical etching has been a widely accepted technique to improve the laser damage performance of fused silica optics and ensure high-power UV laser systems at designed fluence. Etching processes such as acid concentration, composition, material removal amount, and etching state (etching with additional acoustic power or not) may have a great impact on the laser-induced damage threshold (LIDT) of treated sample surfaces. In order to find out the effects of these factors, we utilized the Taguchi method to determine the etching conditions that are helpful in raising the LIDT. Our results show that the most influential factors are concentration of etchants and the material etched away from the viewpoint of damage performance of fused silica optics. In addition, the additional acoustic power (∼0.6  W·cm-2) may not benefit the etching rate and damage performance of fused silica. Moreover, the post-cleaning procedure of etched samples is also important in damage performances of fused silica optics. Different post-cleaning procedures were, thus, experiments on samples treated under the same etching conditions. It is found that the "spraying + rinsing + spraying" cleaning process is favorable to the removal of etching-induced deposits. Residuals on the etched surface are harmful to surface roughness and optical transmission as well as laser damage performance.

  13. Neutral beam and ICP etching of HKMG MOS capacitors: Observations and a plasma-induced damage model

    NASA Astrophysics Data System (ADS)

    Kuo, Tai-Chen; Shih, Tzu-Lang; Su, Yin-Hsien; Lee, Wen-Hsi; Current, Michael Ira; Samukawa, Seiji

    2018-04-01

    In this study, TiN/HfO2/Si metal-oxide-semiconductor (MOS) capacitors were etched by a neutral beam etching technique under two contrasting conditions. The configurations of neutral beam etching technique were specially designed to demonstrate a "damage-free" condition or to approximate "reactive-ion-etching-like" conditions to verify the effect of plasma-induced damage on electrical characteristics of MOS capacitors. The results show that by neutral beam etching (NBE), the interface state density (Dit) and the oxide trapped charge (Qot) were lower than routine plasma etching. Furthermore, the decrease in capacitor size does not lead to an increase in leakage current density, indicating less plasma induced side-wall damage. We present a plasma-induced gate stack damage model which we demonstrate by using these two different etching configurations. These results show that NBE is effective in preventing plasma-induced damage at the high-k/Si interface and on the high-k oxide sidewall and thus improve the electrical performance of the gate structure.

  14. Dry-plasma-free chemical etch technique for variability reduction in multi-patterning (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kal, Subhadeep; Mohanty, Nihar; Farrell, Richard A.; Franke, Elliott; Raley, Angelique; Thibaut, Sophie; Pereira, Cheryl; Pillai, Karthik; Ko, Akiteru; Mosden, Aelan; Biolsi, Peter

    2017-04-01

    Scaling beyond the 7nm technology node demands significant control over the variability down to a few angstroms, in order to achieve reasonable yield. For example, to meet the current scaling targets it is highly desirable to achieve sub 30nm pitch line/space features at back-end of the line (BEOL) or front end of line (FEOL); uniform and precise contact/hole patterning at middle of line (MOL). One of the quintessential requirements for such precise and possibly self-aligned patterning strategies is superior etch selectivity between the target films while other masks/films are exposed. The need to achieve high etch selectivity becomes more evident for unit process development at MOL and BEOL, as a result of low density films choices (compared to FEOL film choices) due to lower temperature budget. Low etch selectivity with conventional plasma and wet chemical etch techniques, causes significant gouging (un-intended etching of etch stop layer, as shown in Fig 1), high line edge roughness (LER)/line width roughness (LWR), non-uniformity, etc. In certain circumstances this may lead to added downstream process stochastics. Furthermore, conventional plasma etches may also have the added disadvantage of plasma VUV damage and corner rounding (Fig. 1). Finally, the above mentioned factors can potentially compromise edge placement error (EPE) and/or yield. Therefore a process flow enabled with extremely high selective etches inherent to film properties and/or etch chemistries is a significant advantage. To improve this etch selectivity for certain etch steps during a process flow, we have to implement alternate highly selective, plasma free techniques in conjunction with conventional plasma etches (Fig 2.). In this article, we will present our plasma free, chemical gas phase etch technique using chemistries that have high selectivity towards a spectrum of films owing to the reaction mechanism ( as shown Fig 1). Gas phase etches also help eliminate plasma damage to the features during the etch process. Herein we will also demonstrate a test case on how a combination or plasma assisted and plasma free etch techniques has the potential to improve process performance of a 193nm immersion based self aligned quandruple patterning (SAQP) for BEOL compliant films (an example shown in Fig 2). In addition, we will also present on the application of gas etches for (1) profile improvement, (2) selective mandrel pull (3) critical dimension trim of mandrels, with an analysis of advantages over conventional techniques in terms of LER and EPE.

  15. High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper

    NASA Astrophysics Data System (ADS)

    Kim, Minkyu; Jeong, Jong Han; Lee, Hun Jung; Ahn, Tae Kyung; Shin, Hyun Soo; Park, Jin-Seong; Jeong, Jae Kyeong; Mo, Yeon-Gon; Kim, Hye Dong

    2007-05-01

    The authors report on the fabrication of thin film transistors (TFTs), which use an amorphous indium gallium zinc oxide (a-IGZO) channel, by rf sputtering at room temperature and for which the channel length and width are patterned by photolithography and dry etching. To prevent plasma damage to the active channel, a 100-nm-thick SiOx layer deposited by plasma enhanced chemical vapor deposition was adopted as an etch stopper structure. The a-IGZO TFT (W /L=10μm/50μm) fabricated on glass exhibited a high field-effect mobility of 35.8cm2/Vs, a subthreshold gate swing value of 0.59V/decade, a thrseshold voltage of 5.9V, and an Ion/off ratio of 4.9×106, which is acceptable for use as the switching transistor of an active-matrix TFT backplane.

  16. Effects of wet etch processing on laser-induced damage of fused silica surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battersby, C.L.; Kozlowski, M.R.; Sheehan, L.M.

    1998-12-22

    Laser-induced damage of transparent fused silica optical components by 355 nm illumination occurs primarily at surface defects produced during the grinding and polishing processes. These defects can either be surface defects or sub-surface damage.Wet etch processing in a buffered hydrogen fluoride (HF) solution has been examined as a tool for characterizing such defects. A study was conducted to understand the effects of etch depth on the damage threshold of fused silica substrates. The study used a 355 nm, 7.5 ns, 10 Hz Nd:YAG laser to damage test fused silica optics through various wet etch processing steps. Inspection of the surfacemore » quality was performed with Nomarski microscopy and Total Internal Reflection Microscopy. The damage test data and inspection results were correlated with polishing process specifics. The results show that a wet etch exposes subsurface damage while maintaining or improving the laser damage performance. The benefits of a wet etch must be evaluated for each polishing process.« less

  17. High rate dry etching of InGaZnO by BCl3/O2 plasma

    NASA Astrophysics Data System (ADS)

    Park, Wanjae; Whang, Ki-Woong; Gwang Yoon, Young; Hwan Kim, Jeong; Rha, Sang-Ho; Seong Hwang, Cheol

    2011-08-01

    This paper reports the results of the high-rate dry etching of indium gallium zinc oxide (IGZO) at room temperature using BCl3/O2 plasma. We achieved an etch rate of 250 nm/min. We inferred from the x-ray photoelectron spectroscopy analysis that BOx or BOClx radicals generated from BCl3/O2 plasma cause the etching of the IGZO material. O2 initiates the etching of IGZO, and Ar removes nonvolatile byproducts from the surface during the etching process. Consequently, a smooth etched surface results when these gases are added to the etch gas.

  18. Dry etching method for compound semiconductors

    DOEpatents

    Shul, Randy J.; Constantine, Christopher

    1997-01-01

    A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.

  19. Dry etching method for compound semiconductors

    DOEpatents

    Shul, R.J.; Constantine, C.

    1997-04-29

    A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.

  20. Capabilities of ICP-RIE cryogenic dry etching of silicon: review of exemplary microstructures

    NASA Astrophysics Data System (ADS)

    Sökmen, Ü.; Stranz, A.; Fündling, S.; Wehmann, H.-H.; Bandalo, V.; Bora, A.; Tornow, M.; Waag, A.; Peiner, E.

    2009-10-01

    Inductively coupled plasma (ICP) cryogenic dry etching was used to etch submicron pores, nano contact lines, submicron diameter pillars, thin and thick cantilevers, membrane structures and anisotropic deep structures with high aspect ratios in silicon for bio-nanoelectronics, optoelectronics and nano-micro electromechanical systems (NMEMS). The ICP cryogenic dry etching gives us the advantage of switching plasmas between etch rates of 13 nm min-1 and 4 µm min-1 for submicron pores and for membrane structures, respectively. A very thin photoresist mask can endure at -75 °C even during etching 70 µm deep for cantilevers and 300 µm deep for membrane structures. Coating the backsides of silicon membrane substrates with a thin photoresist film inhibited the lateral etching of cantilevers during their front release. Between -95 °C and -140 °C, we realized crystallographic-plane-dependent etching that creates facets only at the etch profile bottom. By varying the oxygen content and the process temperature, we achieved good control over the shape of the etched structures. The formation of black silicon during membrane etching down to 300 µm was delayed by reducing the oxygen content.

  1. Dry etched SiO2 Mask for HgCdTe Etching Process

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.

    2016-09-01

    A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.

  2. A junction-level optoelectronic characterization of etching-induced damage for third-generation HgCdTe infrared focal-plane array photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Wang, Yueming; Wu, Mingzai; Ye, Zhenhua

    2018-06-01

    Third-generation HgCdTe-based infrared focal plane arrays require high aspect ratio trenches with admissible etch induced damage at the surface and sidewalls for effectively isolating the pixels. In this paper, the high-density inductively coupled plasma enhanced reaction ion etching technique has been used for micro-mesa delineation of HgCdTe for third-generation infrared focal-plane array detectors. A nondestructive junction-level optoelectronic characterization method called laser beam induced current (LBIC) is used to evaluate the lateral junction extent of HgCdTe etch-induced damage scanning electron microscopy. It is found that the LBIC profiles exhibit evident double peaks and valleys phenomena. The lateral extent of etch induced mesa damage of ∼2.4 μm is obtained by comparing the LBIC profile and the scanning electron microscopy image of etched sample. This finding will guide us to nondestructively identify the distributions of the etching damages in large scale HgCdTe micro-mesa.

  3. Unclassified Publications of Lincoln Laboratory, 1 January-31 December 1987. Volume 13

    DTIC Science & Technology

    1987-12-31

    Visible-Laser Photochemical Etching of Cr , Mo, and W 5901 High-Speed Electronic Beam Steering Using Injection Locking of a Laser-Diode Array...of High- Power Broad-Area Diode Lasers High-Temperature Point-Contact Transistors and Schottky Diodes Formed on Synthetic Boron- Doped Diamond...SPEECHES MS No. 593IB C02 Laser Radar 6550B Recent Advances in Transition-Metal- Doped Lasers 6714D Radiation Damage in Dry

  4. A study of GaN-based LED structure etching using inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Cao, Bin; Gan, Zhiyin; Liu, Sheng

    2011-02-01

    GaN as a wide band gap semiconductor has been employed to fabricate optoelectronic devices such as light-emitting diodes (LEDs) and laser diodes (LDs). Recently several different dry etching techniques for GaN-based materials have been developed. ICP etching is attractive because of its superior plasma uniformity and strong controllability. Most previous reports emphasized on the ICP etching characteristics of single GaN film. In this study dry etching of GaN-based LED structure was performed by inductively coupled plasmas (ICP) etching with Cl2 as the base gas and BCl3 as the additive gas. The effects of the key process parameters such as etching gases flow rate, ICP power, RF power and chamber pressure on the etching properties of GaN-based LED structure including etching rate, selectivity, etched surface morphology and sidewall was investigated. Etch depths were measured using a depth profilometer and used to calculate the etch rates. The etch profiles were observed with a scanning electron microscope (SEM).

  5. GaN MOSFET with Boron Trichloride-Based Dry Recess Process

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Wang, Q. P.; Tamai, K.; Miyashita, T.; Motoyama, S.; Wang, D. J.; Ao, J. P.; Ohno, Y.

    2013-06-01

    The dry recessed-gate GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) on AlGaN/GaN heterostructure using boron trichloride (BCl3) as etching gas were fabricated and characterized. Etching with different etching power was conducted. Devices with silicon tetrachloride (SiCl4) etching gas were also prepared for comparison. Field-effect mobility and interface state density were extracted from current-voltage (I-V) characteristics. GaN MOSFETs on AlGaN/GaN heterostructure with BCl3 based dry recess achieved a high maximum electron mobility of 141.5 cm2V-1s-1 and a low interface state density.

  6. Development of TiO2 containing hardmasks through plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    De Silva, Anuja; Seshadri, Indira; Chung, Kisup; Arceo, Abraham; Meli, Luciana; Mendoza, Brock; Sulehria, Yasir; Yao, Yiping; Sunder, Madhana; Truong, Hoa; Matham, Shravan; Bao, Ruqiang; Wu, Heng; Felix, Nelson M.; Kanakasabapathy, Sivananda

    2017-04-01

    With the increasing prevalence of complex device integration schemes, trilayer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination and are limited in their ability to scale down thickness without compromising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of plasma-enhanced atomic layer deposited (PEALD) TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a trilayer scheme patterned with PEALD-based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited versus a spin-on metal hardmask.

  7. Development of TiO2 containing hardmasks through PEALD deposition

    NASA Astrophysics Data System (ADS)

    De Silva, Anuja; Seshadri, Indira; Chung, Kisup; Arceo, Abraham; Meli, Luciana; Mendoza, Brock; Sulehria, Yasir; Yao, Yiping; Sunder, Madhana; Truong, Hao; Matham, Shravan; Bao, Ruqiang; Wu, Heng; Felix, Nelson M.; Kanakasabapathy, Sivananda

    2017-03-01

    With the increasing prevalence of complex device integration schemes, tri layer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination, and are limited in their ability to scale down thickness without comprising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of PEALD deposited TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a tri layer scheme patterned with PEALD based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited vs a spin-on metal hardmask.

  8. Method for forming suspended micromechanical structures

    DOEpatents

    Fleming, James G.

    2000-01-01

    A micromachining method is disclosed for forming a suspended micromechanical structure from {111} crystalline silicon. The micromachining method is based on the use of anisotropic dry etching to define lateral features of the structure which are etched down into a {111}-silicon substrate to a first etch depth, thereby forming sidewalls of the structure. The sidewalls are then coated with a protection layer, and the substrate is dry etched to a second etch depth to define a spacing of the structure from the substrate. A selective anisotropic wet etchant (e.g. KOH, EDP, TMAH, NaOH or CsOH) is used to laterally undercut the structure between the first and second etch depths, thereby forming a substantially planar lower surface of the structure along a {111} crystal plane that is parallel to an upper surface of the structure. The lateral extent of undercutting by the wet etchant is controlled and effectively terminated by either timing the etching, by the location of angled {111}-silicon planes or by the locations of preformed etch-stops. This present method allows the formation of suspended micromechanical structures having large vertical dimensions and large masses while allowing for detailed lateral features which can be provided by dry etch definition. Additionally, the method of the present invention is compatible with the formation of electronic circuitry on the substrate.

  9. Dry etching technologies for the advanced binary film

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Yoshimori, Tomoaki; Azumano, Hidehito; Muto, Makoto; Nonaka, Mikio

    2011-11-01

    ABF (Advanced Binary Film) developed by Hoya as a photomask for 32 (nm) and larger specifications provides excellent resistance to both mask cleaning and 193 (nm) excimer laser and thereby helps extend the lifetime of the mask itself compared to conventional photomasks and consequently reduces the semiconductor manufacturing cost [1,2,3]. Because ABF uses Ta-based films, which are different from Cr film or MoSi films commonly used for photomask, a new process is required for its etching technology. A patterning technology for ABF was established to perform the dry etching process for Ta-based films by using the knowledge gained from absorption layer etching for EUV mask that required the same Ta-film etching process [4]. Using the mask etching system ARES, which is manufactured by Shibaura Mechatronics, and its optimized etching process, a favorable CD (Critical Dimension) uniformity, a CD linearity and other etching characteristics were obtained in ABF patterning. Those results are reported here.

  10. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, Carol I. H.; Dishman, James L.

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  11. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-08-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process.

  12. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    PubMed Central

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-01-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process. PMID:27484188

  13. Fabrication Methods for Adaptive Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; White, Victor E.; Manohara, Harish; Patterson, Keith D.; Yamamoto, Namiko; Gdoutos, Eleftherios; Steeves, John B.; Daraio, Chiara; Pellegrino, Sergio

    2013-01-01

    Previously, it was difficult to fabricate deformable mirrors made by piezoelectric actuators. This is because numerous actuators need to be precisely assembled to control the surface shape of the mirror. Two approaches have been developed. Both approaches begin by depositing a stack of piezoelectric films and electrodes over a silicon wafer substrate. In the first approach, the silicon wafer is removed initially by plasmabased reactive ion etching (RIE), and non-plasma dry etching with xenon difluoride (XeF2). In the second approach, the actuator film stack is immersed in a liquid such as deionized water. The adhesion between the actuator film stack and the substrate is relatively weak. Simply by seeping liquid between the film and the substrate, the actuator film stack is gently released from the substrate. The deformable mirror contains multiple piezoelectric membrane layers as well as multiple electrode layers (some are patterned and some are unpatterned). At the piezolectric layer, polyvinylidene fluoride (PVDF), or its co-polymer, poly(vinylidene fluoride trifluoroethylene P(VDF-TrFE) is used. The surface of the mirror is coated with a reflective coating. The actuator film stack is fabricated on silicon, or silicon on insulator (SOI) substrate, by repeatedly spin-coating the PVDF or P(VDFTrFE) solution and patterned metal (electrode) deposition. In the first approach, the actuator film stack is prepared on SOI substrate. Then, the thick silicon (typically 500-micron thick and called handle silicon) of the SOI wafer is etched by a deep reactive ion etching process tool (SF6-based plasma etching). This deep RIE stops at the middle SiO2 layer. The middle SiO2 layer is etched by either HF-based wet etching or dry plasma etch. The thin silicon layer (generally called a device layer) of SOI is removed by XeF2 dry etch. This XeF2 etch is very gentle and extremely selective, so the released mirror membrane is not damaged. It is possible to replace SOI with silicon substrate, but this will require tighter DRIE process control as well as generally longer and less efficient XeF2 etch. In the second approach, the actuator film stack is first constructed on a silicon wafer. It helps to use a polyimide intermediate layer such as Kapton because the adhesion between the polyimide and silicon is generally weak. A mirror mount ring is attached by using adhesive. Then, the assembly is partially submerged in liquid water. The water tends to seep between the actuator film stack and silicon substrate. As a result, the actuator membrane can be gently released from the silicon substrate. The actuator membrane is very flat because it is fixed to the mirror mount prior to the release. Deformable mirrors require extremely good surface optical quality. In the technology described here, the deformable mirror is fabricated on pristine substrates such as prime-grade silicon wafers. The deformable mirror is released by selectively removing the substrate. Therefore, the released deformable mirror surface replicates the optical quality of the underlying pristine substrate.

  14. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  15. Ridge-width dependence of the threshold of long wavelength (λ ≈ 14 µm) Quantum Cascade lasers with sloped and vertical sidewalls.

    PubMed

    Huang, Xue; Chiu, Yenting; Charles, William O; Gmachl, Claire

    2012-01-30

    We investigate the ridge-width dependence of the threshold of Quantum Cascade lasers fabricated by wet and dry etching, respectively. The sloped sidewalls resulting from wet etching affect the threshold in two ways as the ridge gets narrower. First, the transverse modes are deeper in the substrate, hence reducing the optical confinement factor. Second, more important, a non-negligible field exists in the lossy SiO2 insulation layer, as a result of transverse magnetic mode coupling to the surface plamon mode at the insulator/metal surface, which increases the waveguide loss. By contrast, dry etching is anisotropic and leads to waveguides with vertical sidewalls, which avoids the shift of the modes to the substrate layer and coupling to the surface plasmons, resulting in improved threshold compared with wet-etched lasers, e.g., for narrow ridge widths below 20 µm, the threshold of a 14 µm wide λ ≈ 14 µm laser by dry etching is ~60% lower than that of a wet-etched laser of the same width, at 80 K.

  16. Fabrication of ultra-high aspect ratio (>160:1) silicon nanostructures by using Au metal assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Hailiang; Ye, Tianchun; Shi, Lina; Xie, Changqing

    2017-12-01

    We present a facile and effective approach for fabricating high aspect ratio, dense and vertical silicon nanopillar arrays, using a combination of metal etching following electron-beam lithography and Au metal assisted chemical etching (MacEtch). Ti/Au nanostructures used as catalysts in MacEtch are formed by single layer resist-based electron-beam exposure followed by ion beam etching. The effects of MacEtch process parameters, including half period, etching time, the concentrations of H2O2 and HF, etching temperature and drying method are systematically investigated. Especially, we demonstrate an enhancement of etching quality by employing cold MacEtch process, and an enhancement in preventing the collapse of high aspect ratio nanostructures by employing low surface tension rinse liquid and natural evaporation in the drying stage. Using an optimized MacEtch process, vertical silicon nanopillar arrays with a period of 250 nm and aspect ratio up to 160:1 are realized. Our results should be instructive for exploring the achievable aspect ratio limit in silicon nanostructures and may find potential applications in photovoltaic devices, thermoelectric devices and x-ray diffractive optics.

  17. Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuboi, Nobuyuki, E-mail: Nobuyuki.Kuboi@jp.sony.com; Tatsumi, Tetsuya; Kinoshita, Takashi

    2015-11-15

    The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness,more » etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching showed that the Si fin (source/drain region) was directly damaged by high energy hydrogen and had local variations in the damage distribution, which may lead to a shift in the threshold voltage and the off-state leakage current. Therefore, side-wall etching and ion implantation processes must be carefully designed by considering the Si damage distribution to achieve low damage and high transistor performance for complementary metal–oxide–semiconductor devices.« less

  18. A Dry-Etch Process for Low Temperature Superconducting Transition Edge Sensors for Far Infrared Bolometer Arrays

    NASA Technical Reports Server (NTRS)

    Allen, Christine A.; Chervenak, James A.; Hsieh, Wen-Ting; McClanahan, Richard A.; Miller, Timothy M.; Mitchell, Robert; Moseley, S. Harvey; Staguhn, Johannes; Stevenson, Thomas R.

    2003-01-01

    The next generation of ultra-low power bolometer arrays, with applications in far infrared imaging, spectroscopy and polarimetry, utilizes a superconducting bilayer as the sensing element to enable SQUID multiplexed readout. Superconducting transition edge sensors (TES s) are being produced with dual metal systems of superconductinghormal bilayers. The transition temperature (Tc) is tuned by altering the relative thickness of the superconductor with respect to the normal layer. We are currently investigating MoAu and MoCu bilayers. We have developed a dry-etching process for MoAu TES s with integrated molybdenum leads, and are working on adapting the process to MoCu. Dry etching has the advantage over wet etching in the MoAu system in that one can achieve a high degree of selectivity, greater than 10, using argon ME, or argon ion milling, for patterning gold on molybdenum. Molybdenum leads are subsequently patterned using fluorine plasma.. The dry-etch technique results in a smooth, featureless TES with sharp sidewalls, no undercutting of the Mo beneath the normal metal, and Mo leads with high critical current. The effects of individual processing parameters on the characteristics of the transition will be reported.

  19. Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Chun, Dong Won; Kim, Tae Kyoung; Choi, Duyoung; Caldwell, Elizabeth; Kim, Young Jin; Paik, Jae Cheol; Jin, Sungho; Chen, Renkun

    2016-11-01

    In this work, vertically aligned Si nanowire arrays were fabricated by magnetically guided metal-assisted directional chemical etching. Using an anodized aluminum oxide template as a shadow mask, nanoscale Ni dot arrays were fabricated on an Si wafer to serve as a mask to protect the Si during the etching. For the magnetically guided chemical etching, we deposited a tri-layer metal catalyst (Au/Fe/Au) in a Swiss-cheese configuration and etched the sample under the magnetic field to improve the directionality of the Si nanowire etching and increase the etching rate along the vertical direction. After the etching, the nanowires were dried with minimal surface-tension-induced aggregation by utilizing a supercritical CO2 drying procedure. High-resolution transmission electron microscopy (HR-TEM) analysis confirmed the formation of single-crystal Si nanowires. The method developed here for producing vertically aligned Si nanowire arrays could find a wide range of applications in electrochemical and electronic devices.

  20. Characteristics of n-GaN after ICP etching

    NASA Astrophysics Data System (ADS)

    Han, Yanjun; Xue, Song; Guo, Wenping; Hao, Zhi-Biao; Sun, Changzheng; Luo, Yi

    2002-09-01

    In this work, a systematic study on the plasma-induced damage on n-type GaN by inductively coupled plasma (ICP) etching is presented. After n-contact metal formation and annealing, electrical property is evaluated by the I-V characteristics. Room temperature photoluminescence (PL) measurement of etched GaN surfaces is performed to investigate the etching damage on the optical properties of n-type GaN. Investigation of the effect of additive gas RF chuck power on these characteristics has also been carried out. The better etching conditions have been obtained based on these results.

  1. The development of an SC1 removable si-anti-reflective-coating

    NASA Astrophysics Data System (ADS)

    Yamada, Shintaro; Ke, Iou-Sheng; Cutler, Charlotte; Cui, Li; LaBeaume, Paul; Greene, Daniel; Popere, Bhooshan; Sullivan, Chris; Leonard, JoAnne; Coley, Suzanne; Wong, Sabrina; Ongayi, Owendi; Cameron, Jim; Clark, Michael B.; Fitzgibbons, Thomas C.

    2018-03-01

    A trilayer stack of spin-on-carbon (SOC), silicon anti-reflective coating (SiARC) and photoresist (PR) is often used to enable high resolution implant layers for integrated circuit manufacturing. Damage to substrates from SiARC removal using dry etching or aqueous hydrogen fluoride has increased the demand for innovative SiARC materials for implant lithography process. Wet strippable SiARCs (WS-SiARCs) capable of stripping under mild conditions such as SC1 (ammonium hydroxide/hydrogen peroxide/water) while maintaining key performance metrics of standard SiARCs is highly desirable. Minimizing the formation of Si-O-Si linkages by introducing organic crosslink sites was effective to impart SC1 solubility particularly after O2 dry etching. Incorporation of acidic groups onto the crosslinking site further improved SC1 solubility. A new siloxane polymer architecture that has SC1 active functionality in the polymer backbone was developed to further enhance SC1 solubility. A new SiARC formulation based on the new siloxane polymer achieved equivalent lithographic performances to a classic SiARC and SC1 strip rate >240Å/min under a relatively low concentration SC1 condition such as ammonium hydroxide/hydrogen peroxide/water=1/1/40.

  2. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  3. Silicon etching using only Oxygen at high temperature: An alternative approach to Si micro-machining on 150 mm Si wafers

    NASA Astrophysics Data System (ADS)

    Chai, Jessica; Walker, Glenn; Wang, Li; Massoubre, David; Tan, Say Hwa; Chaik, Kien; Hold, Leonie; Iacopi, Alan

    2015-12-01

    Using a combination of low-pressure oxygen and high temperatures, isotropic and anisotropic silicon (Si) etch rates can be controlled up to ten micron per minute. By varying the process conditions, we show that the vertical-to-lateral etch rate ratio can be controlled from 1:1 isotropic etch to 1.8:1 anisotropic. This simple Si etching technique combines the main respective advantages of both wet and dry Si etching techniques such as fast Si etch rate, stiction-free, and high etch rate uniformity across a wafer. In addition, this alternative O2-based Si etching technique has additional advantages not commonly associated with dry etchants such as avoiding the use of halogens and has no toxic by-products, which improves safety and simplifies waste disposal. Furthermore, this process also exhibits very high selectivity (>1000:1) with conventional hard masks such as silicon carbide, silicon dioxide and silicon nitride, enabling deep Si etching. In these initial studies, etch rates as high as 9.2 μm/min could be achieved at 1150 °C. Empirical estimation for the calculation of the etch rate as a function of the feature size and oxygen flow rate are presented and used as proof of concepts.

  4. Study on the performance of 2.6 μm In0.83Ga0.17As detector with different etch gases

    NASA Astrophysics Data System (ADS)

    Li, Ping; Tang, Hengjing; Li, Tao; Li, Xue; Shao, Xiumei; Ma, Yingjie; Gong, Haimei

    2017-09-01

    In order to obtain a low-damage recipe in the ICP processing, ICP-induced damage using Cl2/CH4 etch gases in extended wavelength In0.83Ga0.17As detector materials was studied in this paper. The effect of ICP etching on In0.83Ga0.17As samples was characterized qualitatively by the photoluminescence (PL) technology. The etch damage of In0.83Ga0.17As samples was characterized quantitatively by the Transmission Line Model (TLM), current voltage (IV) measurement, signal and noise testing and the Fourier Transform Infrared Spectroscopy (FTIR) technologies. The results showed that the Cl2/CH4 etching processing could lead better detector performance than that Cl2/N2, such as a larger square resistance, a lower dark current, a lower noise voltage and a higher peak detectivity. The lower PL signal intensity and lower dark current could be attributed to the hydrogen decomposed by the CH4 etch gases in the plasma etching process. These hydrogen particles generated non-radiative recombination centers in inner materials to weaken the PL intensity and passivated dangling bond at the surface to reduce the dark current. The larger square resistance resulted from the lower etch damage. The lower dark current meant that the detectors have less dangling bonds and leakage channels.

  5. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2013-10-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  6. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2012-03-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  7. Analysis of GaN Damage Induced by Cl2/SiCl4/Ar Plasma

    NASA Astrophysics Data System (ADS)

    Minami, Masaki; Tomiya, Shigetaka; Ishikawa, Kenji; Matsumoto, Ryosuke; Chen, Shang; Fukasawa, Masanaga; Uesawa, Fumikatsu; Sekine, Makoto; Hori, Masaru; Tatsumi, Tetsuya

    2011-08-01

    GaN-based optical devices are fabricated using a GaN/InGaN/GaN sandwiched structure. The effect of radicals, ions, and UV light on the GaN optical properties during Cl2/SiCl4/Ar plasma etching was evaluated using photoluminescence (PL) analysis. The samples were exposed to plasma (radicals, ions, and UV light) using an inductively coupled plasma (ICP) etching system and a plasma ion beam apparatus that can separate the effects of UV and ions both with and without covering the SiO2 window on the surface. Etching damage in an InGaN single quantum well (SQW) was formed by exposing the sample to plasma. The damage, which decreases PL emission intensity, was generated not only by ion beam irradiation but also by UV light irradiation. PL intensity decreased when the thickness of the upper GaN layer was etched to less than 60 nm. In addition, simultaneous irradiation of UV light and ions slightly increased the degree of damage. There seems to be a synergistic effect between the UV light and the ions. For high-quality GaN-based optoelectronics and power devices, UV light must be controlled during etching processes in addition to the etching profile, selectivity, and ion bombardment damage.

  8. Methods for improving the damage performance of fused silica polished by magnetorheological finishing

    DOE PAGES

    Kafka, Kyle R. P.; Hoffman, Brittany N.; Papernov, Semyon; ...

    2017-12-11

    The laser-induced damage threshold of fused-silica samples processed via magnetorheological finishing is investigated for polishing compounds depending on the type of abrasive material and the post-polishing surface roughness. The effectiveness of laser conditioning is examined using a ramped pre-exposure with the same 351-nm, 3-ns Gaussian pulses. Lastly, we examine chemical etching of the surface and correlate the resulting damage threshold to the etching protocol. A combination of etching and laser conditioning is found to improve the damage threshold by a factor of ~3, while maintaining <1-nm surface roughness.

  9. Methods for improving the damage performance of fused silica polished by magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Kafka, K. R. P.; Hoffman, B.; Papernov, S.; DeMarco, M. A.; Hall, C.; Marshall, K. L.; Demos, S. G.

    2017-12-01

    The laser-induced damage threshold of fused-silica samples processed via magnetorheological finishing is investigated for polishing compounds depending on the type of abrasive material and the post-polishing surface roughness. The effectiveness of laser conditioning is examined using a ramped pre-exposure with the same 351-nm, 3-ns Gaussian pulses. Finally, we examine chemical etching of the surface and correlate the resulting damage threshold to the etching protocol. A combination of etching and laser conditioning is found to improve the damage threshold by a factor of 3, while maintaining <1-nm surface roughness.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafka, Kyle R. P.; Hoffman, Brittany N.; Papernov, Semyon

    The laser-induced damage threshold of fused-silica samples processed via magnetorheological finishing is investigated for polishing compounds depending on the type of abrasive material and the post-polishing surface roughness. The effectiveness of laser conditioning is examined using a ramped pre-exposure with the same 351-nm, 3-ns Gaussian pulses. Lastly, we examine chemical etching of the surface and correlate the resulting damage threshold to the etching protocol. A combination of etching and laser conditioning is found to improve the damage threshold by a factor of ~3, while maintaining <1-nm surface roughness.

  11. Impact of recess etching and surface treatments on ohmic contacts regrown by molecular-beam epitaxy for AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joglekar, S.; Azize, M.; Palacios, T.

    Ohmic contacts fabricated by regrowth of n{sup +} GaN are favorable alternatives to metal-stack-based alloyed contacts in GaN-based high electron mobility transistors. In this paper, the influence of reactive ion dry etching prior to regrowth on the contact resistance in AlGaN/GaN devices is discussed. We demonstrate that the dry etch conditions modify the surface band bending, dangling bond density, and the sidewall depletion width, which influences the contact resistance of regrown contacts. The impact of chemical surface treatments performed prior to regrowth is also investigated. The sensitivity of the contact resistance to the surface treatments is found to depend uponmore » the dangling bond density of the sidewall facets exposed after dry etching. A theoretical model has been developed in order to explain the observed trends.« less

  12. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOEpatents

    Britten, Jerald A.

    1997-01-01

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.

  13. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOEpatents

    Britten, J.A.

    1997-08-26

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.

  14. Low-damage direct patterning of silicon oxide mask by mechanical processing

    PubMed Central

    2014-01-01

    To realize the nanofabrication of silicon surfaces using atomic force microscopy (AFM), we investigated the etching of mechanically processed oxide masks using potassium hydroxide (KOH) solution. The dependence of the KOH solution etching rate on the load and scanning density of the mechanical pre-processing was evaluated. Particular load ranges were found to increase the etching rate, and the silicon etching rate also increased with removal of the natural oxide layer by diamond tip sliding. In contrast, the local oxide pattern formed (due to mechanochemical reaction of the silicon) by tip sliding at higher load was found to have higher etching resistance than that of unprocessed areas. The profile changes caused by the etching of the mechanically pre-processed areas with the KOH solution were also investigated. First, protuberances were processed by diamond tip sliding at lower and higher stresses than that of the shearing strength. Mechanical processing at low load and scanning density to remove the natural oxide layer was then performed. The KOH solution selectively etched the low load and scanning density processed area first and then etched the unprocessed silicon area. In contrast, the protuberances pre-processed at higher load were hardly etched. The etching resistance of plastic deformed layers was decreased, and their etching rate was increased because of surface damage induced by the pre-processing. These results show that etching depth can be controlled by controlling the etching time through natural oxide layer removal and mechanochemical oxide layer formation. These oxide layer removal and formation processes can be exploited to realize low-damage mask patterns. PMID:24948891

  15. Exploration of suitable dry etch technologies for directed self-assembly

    NASA Astrophysics Data System (ADS)

    Yamashita, Fumiko; Nishimura, Eiichi; Yatsuda, Koichi; Mochiki, Hiromasa; Bannister, Julie

    2012-03-01

    Directed self-assembly (DSA) has shown the potential to replace traditional resist patterns and provide a lower cost alternative for sub-20-nm patterns. One of the possible roadblocks for DSA implementation is the ability to etch the polymers to produce quality masks for subsequent etch processes. We have studied the effects of RF frequency and etch chemistry for dry developing DSA patterns. The results of the study showed a capacitively-coupled plasma (CCP) reactor with very high frequency (VHF) had superior pattern development after the block co-polymer (BCP) etch. The VHF CCP demonstrated minimal BCP height loss and line edge roughness (LER)/line width roughness (LWR). The advantage of CCP over ICP is the low dissociation so the etch rate of BCP is maintained low enough for process control. Additionally, the advantage of VHF is the low electron energy with a tight ion energy distribution that enables removal of the polymethyl methacrylate (PMMA) with good selectivity to polystyrene (PS) and minimal LER/LWR. Etch chemistries were evaluated on the VHF CCP to determine ability to treat the BCPs to increase etch resistance and feature resolution. The right combination of RF source frequencies and etch chemistry can help overcome the challenges of using DSA patterns to create good etch results.

  16. Applications of MICP source for next-generation photomask process

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Joo; Chang, Byung-Soo; Choi, Boo-Yeon; Park, Kyung H.; Jeong, Soo-Hong

    2000-07-01

    As critical dimensions of photomask extends into submicron range, critical dimension uniformity, edge roughness, macro loading effect, and pattern slope become tighter than before. Fabrication of photomask relies on the ability to pattern features with anisotropic profile. To improve critical dimension uniformity, dry etcher is one of the solution and inductively coupled plasma (ICP) sources have become one of promising high density plasma sources for dry etcher. In this paper, we have utilized dry etcher system with multi-pole ICP source for Cr etch and MoSi etch and have investigated critical dimension uniformity, slope, and defects. We will present dry etch process data by process optimization of newly designed dry etcher system. The designed pattern area is 132 by 132 mm2 with 23 by 23 matrix test patterns. 3 (sigma) of critical dimension uniformity is below 12 nm at 0.8 - 3.0 micrometers . In most cases, we can obtain zero defect masks which is operated by face- down loading.

  17. Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains.

    PubMed

    Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae

    2018-03-23

    In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H 2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.

  18. Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains

    NASA Astrophysics Data System (ADS)

    Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae

    2018-03-01

    In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.

  19. High density circuit technology, part 3

    NASA Technical Reports Server (NTRS)

    Wade, T. E.

    1982-01-01

    Dry processing - both etching and deposition - and present/future trends in semiconductor technology are discussed. In addition to a description of the basic apparatus, terminology, advantages, glow discharge phenomena, gas-surface chemistries, and key operational parameters for both dry etching and plasma deposition processes, a comprehensive survey of dry processing equipment (via vendor listing) is also included. The following topics are also discussed: fine-line photolithography, low-temperature processing, packaging for dense VLSI die, the role of integrated optics, and VLSI and technology innovations.

  20. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, Carol I. H.; Dishman, James L.

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method, comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p- type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  1. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, C.R.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p-type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  2. Effects on optical systems from interactions with oxygen atoms in low earth orbits

    NASA Technical Reports Server (NTRS)

    Peters, P. N.; Swann, J. T.; Gregory, J. C.

    1986-01-01

    Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.

  3. Effects on optical systems from interactions with oxygen atoms in low earth orbits

    NASA Astrophysics Data System (ADS)

    Peters, P. N.; Swann, J. T.; Gregory, J. C.

    1986-04-01

    Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.

  4. Bi/In thermal resist for both Si anisotropic wet etching and Si/SiO2 plasma etching

    NASA Astrophysics Data System (ADS)

    Chapman, Glenn H.; Tu, Yuqiang; Peng, Jun

    2004-01-01

    Bi/In thermal resist is a bilayer structure of Bi over In films which can be exposed by laser with a wide range of wavelengths and can be developed by diluted RCA2 solutions. Current research shows bimetallic resist can work as etch masking layer for both dry plasma etching and wet anisotropic etching. It can act as both patterning and masking layers for Si and SiO2 with plasma "dry" etch using CF4/CHF3. The etching condition is CF4 flow rate 50 sccm, pressure 150 mTorr, and RF power 100 - 600W. The profile of etched structures can be tuned by adding CHF3 and other gases such as Ar, and by changing the CF4/CHF3 ratio. Depending on the fluorocarbon plasma etching recipe the etch rate of laser exposed Bi/In can be as low as 0.1 nm/min, 500 times lower than organic photoresists. O2 plasma ashing has little etching effect on exposed Bi/In. Bi/In also creates etch masking layers for alkaline-based (KOH, TMAH and EDP) "wet" anisotropic bulk Si etch without the need of SiO2 masking steps. The laser exposed Bi/In etches two times more slowly than SiO2. Experiment result shows that single metal Indium film exhibits thermal resist characteristics but at twice the exposure levels. It can be developed in diluted RCA2 solution and used as an etch mask layer for Si anisotropic etch. X-ray diffraction analysis shows that laser exposure causes both Bi and In single film to oxidize. In film may become amorphous when exposed to high laser power.

  5. Design of a new bottom antireflective coating composition for KrF resist

    NASA Astrophysics Data System (ADS)

    Mizutani, Kazuyoshi; Momota, Makoto; Aoai, Toshiaki; Yagihara, Morio

    1999-06-01

    A study for a new organic bottom antireflective coating (BARC) composition is described. A structural design of a light-absorbing dye was most important because dye structure not only plays a role in eliminating reflection from a substrate but also shows influence on dry etch rate of BARC material to a considerable extent. For example, an anthracene moiety with large absorption at 248 nm had undesirable dry etch resistance. 3-Hydroxy-2-naphthoic acid moiety was found to be one of suitable dyes for KrF BARC compositions, and the polymer bearing the dye showed enough absorbance and good erodability in dry etch. The BARC polymer was eroded as one and a half times faster than a novolak resin, and a little faster than an anthracene incorporated polymer. The result was discussed from the concepts of Ohnishi parameter and the ring parameter for dry etch durability of resist materials. BARC polymer should be thermoset by hard bake to eliminate intermixing with resist compositions. The BARC polymer bearing hydroxy group which is useful for a crosslinking reaction was thermoset in the presence of melamine-formaldehyde crosslinker and an acid catalyst after baking over 200 degrees C.

  6. Modeling, Fabrication, and Analysis of Vertical Conduction Gallium Nitride Fin MOSFET

    NASA Astrophysics Data System (ADS)

    Tahhan, Maher Bishara

    Gallium Nitride has seen much interest in the field of electronics due to its large bandgap and high mobility. In the field of power electronics, this combination leads to a low on-resistance for a given breakdown voltage. To take full advantage of this, vertical conduction transistors in GaN can give high breakdown voltages independent of chip area, leading to transistors with nominally low on resistance with high breakdown at a low cost. Acknowledging this, a vertical transistor design is presented with a small footprint area. This design utilizes a fin structure as a double gated insulated MESFET with electrons flowing from the top of the fin downward. The transistor's characteristics and design is initially explored via simulation and modelling. In this modelling, it is found that the narrow dimension of the fin must be sub-micron to allow for the device to be turned off with no leakage current and have a positive threshold voltage. Several process modules are developed and integrated to fabricate the device. A smooth vertical etch leaving low damage to the surfaces is demonstrated and characterized, preventing micromasking during the GaN dry etch. Methods of removing damage from the dry etch are tested, including regrowth and wet etching. Several hard masks were developed to be used in conjunction with this GaN etch for various requirements of the process, such as material constraints and self-aligning a metal contact. Multiple techniques are tested to deposit and pattern the gate oxide and metal to ensure good contact with the channel without causing unwanted shorts. To achieve small fin dimensions, a self-aligned transistor process flow is presented allowing for smaller critical dimensions at increased fabrication tolerances by avoiding the use of lithographic steps that require alignments to very high accuracy. In the case of the device design presented, the fins are lithographically defined at the limit of i-line stepper system. From this single lithography, the sources are formed, fins are etched, and the gate insulator and metal are deposited. The first functional fabricated devices are presented, but exhibit a few differences from the model. A threshold voltage of -6 V, was measured, with an ID of 5 kA/cm2 at 3 V, and Ron of 0.6 mO/cm 2. The current is limited by the Schottky nature of the top contacts and show a turn-on voltage as a result. These measurements are comparable to recently published GaN fin MOSFET data, whose devices were defined by e-beam lithography. This dissertation work sought to show that a vertical conduction fin MOSFET can be fabricated on GaN. Furthermore, it aimed to provide a self-aligned process that does not require e-beam lithography. With further development, such devices can be designed to hold large voltages while maintaining a small footprint.

  7. Isotropic plasma etching of Ge Si and SiN x films

    DOE PAGES

    Henry, Michael David; Douglas, Erica Ann

    2016-08-31

    This study reports on selective isotropic dry etching of chemically vapor deposited (CVD) Ge thin film, release layers using a Shibaura chemical downstream etcher (CDE) with NF 3 and Ar based plasma chemistry. Relative etch rates between Ge, Si and SiN x are described with etch rate reductions achieved by adjusting plasma chemistry with O 2. Formation of oxides reducing etch rates were measured for both Ge and Si, but nitrides or oxy-nitrides created using direct injection of NO into the process chamber were measured to increase Si and SiN x etch rates while retarding Ge etching.

  8. Process dependency on threshold voltage of GaN MOSFET on AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, Qingpeng; Jiang, Ying; Miyashita, Takahiro; Motoyama, Shin-ichi; Li, Liuan; Wang, Dejun; Ohno, Yasuo; Ao, Jin-Ping

    2014-09-01

    GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) with recessed gate on AlGaN/GaN heterostructure are reported in which the drain and source ohmic contacts were fabricated on the AlGaN/GaN heterostructure and the electron channel was formed on the GaN buffer layer by removing the AlGaN barrier layer. Negative threshold voltages were commonly observed in all devices. To investigate the reasons of the negative threshold voltages, different oxide thickness, etching gas and bias power of inductively-coupled plasma (ICP) system were utilized in the fabrication process of the GaN MOSFETs. It is found that positive charges of around 1 × 1012 q/cm2 exist near the interface at the just threshold condition in both silane- and tetraethylorthosilicate (TEOS)-based devices. It is also found that the threshold voltages do not obviously change with the different etching gas (SiCl4, BCl3 and two-step etching of SiCl4/Cl2) at the same ICP bias power level (20-25 W) and will become deeper when higher bias power is used in the dry recess process which may be related to the much serious ion bombardment damage. Furthermore, X-ray photoelectron spectroscopy (XPS) experiments were done to investigate the surface conditions. It is found that N 1s peaks become lower with higher bias power of the dry etching process. Also, silicon contamination was found and could be removed by HNO3/HF solution. It indicates that the nitrogen vacancies are mainly responsible for the negative threshold voltages rather than the silicon contamination. It demonstrates that optimization of the ICP recess conditions and improvement of the surface condition are still necessary to realize enhancement-mode GaN MOSFETs on AlGaN/GaN heterostructure.

  9. Optimization of the etch-and-rinse technique: New perspectives to improve resin-dentin bonding and hybrid layer integrity by reducing residual water using dimethyl sulfoxide pretreatments.

    PubMed

    Stape, Thiago Henrique Scarabello; Tjäderhane, Leo; Abuna, Gabriel; Sinhoreti, Mário Alexandre Coelho; Martins, Luís Roberto Marcondes; Tezvergil-Mutluay, Arzu

    2018-04-13

    To determine whether bonding effectiveness and hybrid layer integrity on acid-etched dehydrated dentin would be comparable to the conventional wet-bonding technique through new dentin biomodification approaches using dimethyl sulfoxide (DMSO). Etched dentin surfaces from extracted sound molars were randomly bonded in wet or dry conditions (30s air drying) with DMSO/ethanol or DMSO/H 2 O as pretreatments using a simplified (Scotchbond Universal Adhesive, 3M ESPE: SU) and a multi-step (Adper Scotchbond Multi-Purpose, 3M ESPE: SBMP) etch-and-rinse adhesives. Untreated dentin surfaces served as control. Bonded teeth (n=8) were stored in distilled water for 24h and sectioned into resin-dentin beams (0.8mm 2 ) for microtensile bond strength test and quantitative interfacial nanoleakage analysis (n=8) under SEM. Additional teeth (n=2) were prepared for micropermeability assessment by CFLSM under simulated pulpar pressure (20cm H 2 O) using 5mM fluorescein as a tracer. Microtensile data was analyzed by 3-way ANOVA followed by Tukey Test and nanoleakage by Kruskal-Wallis and Dunn-Bonferroni multiple comparison test (α=0.05). While dry-bonding of SBMP produced significantly lower bond strengths than wet-bonding (p<0.05), DMSO/H 2 O and DMSO/ethanol produced significantly higher bond strengths for SBMP irrespective of dentin condition (p<0.05). SU presented significantly higher nanoleakage levels (p<0.05) and micropermeability than SBMP. Improvement in hybrid layer integrity occurred for SBMP and SU for both pretreatments, albeit most pronouncedly for DMSO/ethanol regardless of dentin moisture. DMSO pretreatments may be used as a new suitable strategy to improve bonding of water-based adhesives to demineralized air-dried dentin beyond conventional wet-bonding. Less porous resin-dentin interfaces with higher bond strengths on air-dried etched dentin were achieved; nonetheless, overall efficiency varied according to DMSO's co-solvent and adhesive type. DMSO pretreatments permit etched dentin to be air-dried before hybridization facilitating residual water removal and thus improving bonding effectiveness. This challenges the current paradigm of wet-bonding requirement for the etch-and-rinse approach creating new possibilities to enhance the clinical longevity of resin-dentin interfaces. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  10. Selective dry etching of silicon containing anti-reflective coating

    NASA Astrophysics Data System (ADS)

    Sridhar, Shyam; Nolan, Andrew; Wang, Li; Karakas, Erdinc; Voronin, Sergey; Biolsi, Peter; Ranjan, Alok

    2018-03-01

    Multi-layer patterning schemes involve the use of Silicon containing Anti-Reflective Coating (SiARC) films for their anti-reflective properties. Patterning transfer completion requires complete and selective removal of SiARC which is very difficult due to its high silicon content (>40%). Typically, SiARC removal is accomplished through a non-selective etch during the pattern transfer process using fluorine containing plasmas, or an ex-situ wet etch process using hydrofluoric acid is employed to remove the residual SiARC, post pattern transfer. Using a non-selective etch may result in profile distortion or wiggling, due to distortion of the underlying organic layer. The drawbacks of using wet etch process for SiARC removal are increased overall processing time and the need for additional equipment. Many applications may involve patterning of active structures in a poly-Si layer with an underlying oxide stopping layer. In such applications, SiARC removal selective to oxide using a wet process may prove futile. Removing SiARC selectively to SiO2 using a dry etch process is also challenging, due to similarity in the nature of chemical bonds (Si - O) in the two materials. In this work, we present highly selective etching of SiARC, in a plasma driven by a surface wave radial line slot antenna. The first step in the process involves an in-situ modification of the SiARC layer in O2 plasma followed by selective etching in a NF3/H2 plasma. Surface treatment in O2 plasma resulted in enhanced etching of the SiARC layer. For the right processing conditions, in-situ NF3/H2 dry etch process demonstrated selectivity values greater than 15:1 with respect to SiO2. The etching chemistry, however, was sensitive to NF3:H2 gas ratio. For dilute NF3 in H2, no SiARC etching was observed. Presumably, this is due to the deposition of ammonium fluorosilicate layer that occurs for dilute NF3/H2 plasmas. Additionally, challenges involved in selective SiARC removal (selective to SiO2, organic and Si layers) post pattern transfer, in a multi-layer structure will be discussed.

  11. Atomic precision etch using a low-electron temperature plasma

    NASA Astrophysics Data System (ADS)

    Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.

    2016-03-01

    Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.

  12. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Dickenson, Nicholas E.; Erickson, Elizabeth S.; Mooren, Olivia L.; Dunn, Robert C.

    2007-05-01

    Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to ˜55-60°C as output powers reach ˜50nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of ˜450nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4±1.7 and 20.7±6.9mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes (˜15° for etched and ˜6° for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of ˜6μm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.

  13. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy.

    PubMed

    Dickenson, Nicholas E; Erickson, Elizabeth S; Mooren, Olivia L; Dunn, Robert C

    2007-05-01

    Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to approximately 55-60 degrees C as output powers reach approximately 50 nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of approximately 450 nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4+/-1.7 and 20.7+/-6.9 mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes ( approximately 15 degrees for etched and approximately 6 degrees for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of approximately 6 microm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.

  14. Reactive ion etching of GaN using BCl 3, BCl 3/Ar and BCl 3/ N 2 gas plasmas

    NASA Astrophysics Data System (ADS)

    Basak, D.; Nakanishi, T.; Sakai, S.

    2000-04-01

    Reactive ion etching (RIE) of GaN has been performed using BCl 3 and additives, Ar and N 2, to BCl 3 plasma. The etch rate, surface roughness and the etch profile have been investigated. The etch rate of GaN is found to be 104 nm/min at rf power of 200 W, pressure of 2 Pa, with 9.5 sccm flow rate of BCl 3. The addition of 5 sccm of Ar to 9.5 sccm of BCl 3 reduces the etch rate of GaN while the addition of N 2 does not influence the etch rate significantly. The RIE of GaN layer with BCl 3/Ar and BCl 3/N 2 results in a smoother surface compared to surfaces etched with BCl 3 only. The etched side-wall in BCl 3 plasma makes an angle of 60° with the normal surface, and the angle of inclination is more in cases of BCl 3/Ar and BCl 3/N 2 plasmas. The RIE induced damage to the surface is measured qualitatively by PL measurements. It is observed that the damage to the etched surfaces is similar for all the plasmas.

  15. Microleakage of self-etching sealant on noncontaminated and saliva-contaminated enamel.

    PubMed

    2011-01-01

    The purpose of this study was to compare the microleakage of a self-etching sealant with a traditional phosphoric acid-etched sealant under noncontaminated and saliva-contaminated conditions. Fifty-two sound extracted human molars were randomly divided into 4 groups (N=13). Teeth in Groups 1 and 2 were cleaned with pumice, etched with phosphoric acid, rinsed, coated with a drying agent, placed with sealants (UltraSeal XT Plus), and light cured. Teeth in Groups 3 and 4 were cleaned with a proprietary flour pumice and rinsed prior to being sealed with a self-etching sealant (Enamel Loc). Teeth in Groups 2 and 4 were contaminated with saliva and thoroughly air-dried prior to the sealant placement. All teeth were subjected to a thermocycling process, stained with silver nitrate, and sectioned, and images of the sealant on the occlusal surface were recorded. Microleakage distance was measured in millimeters and subjected to a 2-way analysis of variance. Significantly larger microleakage distances were found for the self-etching sealant vs the traditional sealant (P<.001). Saliva contamination did not significantly affect the microleakage distance (P<.17). Under the conditions used in this in vitro study, the self-etching sealant, regardless of contamination condition, had extensive microleakage distances vs. little microleakage in the traditional phosphoric acid-etched sealant.

  16. Utilization of optical emission endpoint in photomask dry etch processing

    NASA Astrophysics Data System (ADS)

    Faure, Thomas B.; Huynh, Cuc; Lercel, Michael J.; Smith, Adam; Wagner, Thomas

    2002-03-01

    Use of accurate and repeatable endpoint detection during dry etch processing of photomask is very important for obtaining good mask mean-to-target and CD uniformity performance. It was found that the typical laser reflectivity endpoint detecting system used on photomask dry etch systems had several key limitations that caused unnecessary scrap and non-optimum image size performance. Consequently, work to develop and implement use of a more robust optical emission endpoint detection system for chrome dry etch processing of photomask was performed. Initial feasibility studies showed that the emission technique was sensitive enough to monitor pattern loadings on contact and via level masks down to 3 percent pattern coverage. Additional work was performed to further improve this to 1 percent pattern coverage by optimizing the endpoint detection parameters. Comparison studies of mask mean-to-target performance and CD uniformity were performed with the use of optical emission endpoint versus laser endpoint for masks built using TOK IP3600 and ZEP 7000 resist systems. It was found that an improvement in mean-to-target performance and CD uniformity was realized on several types of production masks. In addition, part-to-part endpoint time repeatability was found to be significantly improved with the use of optical emission endpoint.

  17. Fabrication of high aspect ratio structure and its releasing for silicon on insulator MEMS/MOEMS device application

    NASA Astrophysics Data System (ADS)

    Fan, Ji; Zhang, Wen Ting; Liu, Jin Quan; Wu, Wen Jie; Zhu, Tao; Tu, Liang Cheng

    2015-04-01

    We systematically investigate the fabrication and dry-release technology for a high aspect ratio (HAR) structure with vertical and smooth silicon etching sidewalls. One-hundred-micrometer silicon on insulator (SOI) wafers are used in this work. By optimizing the process parameters of inductively coupled plasma deep reactive-ion etching, a HAR (˜25∶1) structure with a microtrench width of 4 μm has been demonstrated. A perfect etching profile has been obtained in which the structures present an almost perfect verticality of 0.10 μm and no sidewall scallops. The root-mean square roughness of silicon sidewalls is 20 to 29 nm. An in situ dry-release method using notching effect is employed after etching. By analysis, we found that the final notch length is typically an aspect-ratio-dependent process. The structure designed in this work has been successfully released by this in situ dry-release method, and the released bottom roughness effectively prohibits the stiction mechanism. The results demonstrate potential applications for design and fabrication of HAR SOI MEMS/MOEMS.

  18. Array automated assembly, phase 2

    NASA Technical Reports Server (NTRS)

    Taylor, W. E.

    1978-01-01

    An analysis was made of cost tradeoffs for shaping modified square wafers from cylindrical crystals. Tests were conducted of the effectiveness of texture etching for removal of surface damage on sawed wafers. A single step texturing etch appeared adequate for removal of surface damage on wafers cut with multiple blade reciprocating slurry saws.

  19. Influence of subsurface defects on damage performance of fused silica in ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Huang, Jin; Zhou, Xinda; Liu, Hongjie; Wang, Fengrui; Jiang, Xiaodong; Wu, Weidong; Tang, Yongjian; Zheng, Wanguo

    2013-02-01

    In ultraviolet pulse laser, damage performance of fused silica optics is directly dependent on the absorptive impurities and scratches in subsurface, which are induced by mechanical polishing. In the research about influence of subsurface defects on damage performance, a series of fused silica surfaces with various impurity concentrations and scratch structures were created by hydrofluoric (HF) acid solution etching. Time of Flight secondary ion mass spectrometry and scanning probe microprobe revealed that with increasing etching depth, impurity concentrations in subsurface layers are decreased, the scratch structures become smoother and the diameter:depth ratio is increased. Damage performance test with 355-nm pulse laser showed that when 600 nm subsurface thickness is removed by HF acid etching, laser-induced damage threshold of fused silica is raised by 40 percent and damage density is decreased by over one order of magnitude. Laser weak absorption was tested to explain the cause of impurity elements impacting damage performance, field enhancement caused by change of scratch structures was calculated by finite difference time domain simulation, and the calculated results are in accord with the damage test results.

  20. Improvement of a block co-polymer (PS-b-PDMS) template etch profile using amorphous carbon layer

    NASA Astrophysics Data System (ADS)

    Oh, JiSoo; Oh, Jong Sik; Sung, DaIn; Yim, SoonMin; Song, SeungWon; Yeom, GeunYoung

    2017-03-01

    Block copolymers (BCPs) are consisted of at least two types of monomers which have covalent bonding. One of the widely investigated BCPs is polystyrene-block-polydimethylsiloxane (PS-b-PDMS), which is used as an alternative patterning method for various deep nanoscale devices due to its high Flory-Huggins interaction parameter (χ), such as optical devices and transistors, replacing conventional photolithography. As an alternate or supplementary nextgeneration lithography technology to extreme ultraviolet lithography (EUVL), BCP lithography utilizing the DSA of BCP has been actively studied. However, the nanoscale BCP mask material is easily damaged by the plasma and has a very low etch selectivity over bottom semiconductor materials, because it is composed of polymeric materials even though it contains Si in PDMS. In this study, an amorphous carbon layer (ACL) was inserted as a hardmask material between BCP and materials to be patterned, and, by using O2 plasmas, the characteristics of dry etching of ACL for high aspect ratio (HAR) using a 10 nm PDMS pattern were investigated. The results showed that, by using a PS-b-PDMS pattern with an aspect ratio of 0.3 0.9:1, a HAR PDMS/ACL double layer mask with an aspect ratio of 10:1 could be fabricated. In addition, by the optimization of the plasma etch process, ACL masks with excellent sidewall roughness (SWR,1.35 nm) and sidewall angle (SWA, 87.9˚) could be fabricated.

  1. A method for determining average damage depth of sawn crystalline silicon wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopori, B.; Devayajanam, S.; Basnyat, P.

    2016-04-01

    The depth of surface damage (or simply, damage) in crystalline silicon wafers, caused by wire sawing of ingots, is determined by performing a series of minority carrier lifetime (MCLT) measurements. Samples are sequentially etched to remove thin layers from each surface and MCLT is measured after each etch step. The thickness-removed (..delta..t) at which the lifetime reaches a peak value corresponds to the damage depth. This technique also allows the damage to be quantified in terms of effective surface recombination velocity (Seff). To accomplish this, the MCLT data are converted into an Seff vs ..delta..t plot, which represents a quantitativemore » distribution of the degree of damage within the surface layer. We describe a wafer preparation procedure to attain reproducible etching and MCLT measurement results. We also describe important characteristics of an etchant used for controllably removing thin layers from the wafer surfaces. Some typical results showing changes in the MCLT vs ..delta..t plots for different cutting parameters are given.« less

  2. Selective Dry Etch for Defining Ohmic Contacts for High Performance ZnO TFTs

    DTIC Science & Technology

    2014-03-27

    scale, high-frequency ZnO thin - film transistors (TFTs) could be fabricated. Molybdenum, tantalum, titanium tungsten 10-90, and tungsten metallic contact... thin - film transistor layout utilized in the thesis research . . . . . 42 3.4 Process Flow Diagram for Optical and e-Beam Devices...TFT thin - film transistor TLM transmission line model UV ultra-violet xvii SELECTIVE DRY ETCH FOR DEFINING OHMIC CONTACTS FOR HIGH PERFORMANCE ZnO TFTs

  3. Semiconductor etching by hyperthermal neutral beams

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K. (Inventor); Giapis, Konstantinos P. (Inventor)

    1999-01-01

    An at-least dual chamber apparatus and method in which high flux beams of fast moving neutral reactive species are created, collimated and used to etch semiconductor or metal materials from the surface of a workpiece. Beams including halogen atoms are preferably used to achieve anisotropic etching with good selectivity at satisfactory etch rates. Surface damage and undercutting are minimized.

  4. Effects of solvent drying time on micro-shear bond strength and mechanical properties of two self-etching adhesive systems.

    PubMed

    Sadr, Alireza; Shimada, Yasushi; Tagami, Junji

    2007-09-01

    The all-in-one adhesives are simplified forms of two-step self-etching adhesive systems that must be air dried to remove solvent and water before curing. It was investigated whether those two systems perform equally well and if their performance is affected by air-drying of the solvent containing agent. Two adhesive systems (both by Kuraray Medical) were evaluated; Clearfil Tri-S bond (TS) and Clearfil SE bond (SE). Micro-shear bond strengths to human dentin after solvent air-drying times of 2, 5 or 10 s for each group were measured (n=10). The indentation creep and hardness of the bonding layer were also determined for each group. The lowest micro-shear bond strength, nano-indentation hardness and creep stress exponents were obtained for 2 s air dried specimens of each material. After 10 s air blowing, SE showed superior properties compared to TS groups (p<0.05). When properly handled, two step self-etching material performs better than the all-in-one adhesive. Air-drying is a crucial step in the application of solvent containing adhesives and may affect the overall clinical performance of them, through changes in the bond strength and altering nano-scale mechanical properties.

  5. High rate dry etching of (BiSb)2Te3 film by CH4/H2-based plasma

    NASA Astrophysics Data System (ADS)

    Song, Junqiang; Shi, Xun; Chen, Lidong

    2014-10-01

    Etching characteristics of p-type (BiSb)2Te3 films were studied with CH4/H2/Ar gas mixture using an inductively coupled plasma (ICP)-reactive ion etching (RIE) system. The effects of gas mixing ratio, working pressure and gas flow rate on the etch rate and the surface morphology were investigated. The vertical etched profile with the etch rate of 600 nm/min was achieved at the optimized processing parameters. X-ray photoelectron spectroscopy (XPS) analysis revealed the non-uniform etching of (BiSb)2Te3 films due to disparate volatility of the etching products. Micro-masking effects caused by polymer deposition and Bi-rich residues resulted in roughly etched surfaces. Smooth surfaces can be obtained by optimizing the CH4/H2/Ar mixing ratio.

  6. In vivo effect of a self-etching primer on dentin.

    PubMed

    Milia, E; Lallai, M R; García-Godoy, F

    1999-08-01

    To determine the ultrastructural aspects of the dentin collagen area in the cavity preparation floor produced in vivo after phosphoric acid acid-etching or after using Clearfil Liner Bond 2 self-etching primer (LB2 Primer). Twenty-four non-carious third molars scheduled for extraction from young adult patients (16-30 years old) were used. Conventional Class I cavities (+/- 2 mm deep) were prepared on the occlusal surfaces of all teeth using a cylindrical diamond bur on a high-speed handpiece with copious water spray. To avoid dehydration of the dentin, the smear layer-covered dentin was briefly air-dried for 2 seconds. Cavities were assigned at random to the following groups: Group A: Dentin etched for 15 seconds with 34% phosphoric acid, rinsed for 20 seconds and then briefly air-dried for 2 seconds with oil-free compressed air leaving the surfaces slightly moist. Group B: LB2 Primer was applied to the cavity surfaces for 30 seconds and then briefly air-dried to remove the solvent. Group C: The untreated dentin smear layer was used as a control. In all three groups, the cavities were filled incrementally with a resin-based composite (APX), light curing every increment for 40 seconds. After 30 minutes, the teeth were extracted atraumatically and the samples immediately prepared for evaluation with the transmission electron microscope. The use of a self-etching primer did not produce significant morphological changes in the moist dentin substrate. Adverse morphological conditions where observed when there was an excess water on the dentin surface. Phosphoric acid altered the collagen more severely than the self-etching primer.

  7. Influence of drying time and temperature on bond strength of contemporary adhesives to dentine.

    PubMed

    Garcia, Fernanda C P; Almeida, Júlio C F; Osorio, Raquel; Carvalho, Ricardo M; Toledano, Manuel

    2009-04-01

    To evaluate the bond strength (microTBS) of self-etching adhesives in different solvent evaporation conditions. Flat dentine surfaces from extracted human third molars were bonded with: (1) 2 two-steps self-etching adhesives (Clearfil SE Bond-CSEB); (Protect Bond-PB) and (2) 2 one-step self-etch systems (Adper Prompt L Pop-ADPLP); (Xeno III-XIII). Bonded dentine surfaces were air-dried for 5s, 20s, 30s or 40s at either 21 degrees C or 38 degrees C. Composite build-ups were constructed incrementally. After storage in water for 24h at 37 degrees C, the specimens were prepared for microtensile bond strength testing. Data were analyzed by two-way ANOVA and Student-Newman-Keuls at alpha=0.05. CSEB and PB performed better at warm temperature with only 20s of air-blowing. The bond strength increased when XIII was performed at warm temperature at 40s air-blowing. Extended air-blowing not affect the performance of ADPLP, except at 30s air-blowing time at warm temperature. The use of a warm air-dry stream seems to be a clinical tool to improve the bond strength to self-etching adhesives.

  8. Ultraviolet Laser Damage Dependence on Contamination Concentration in Fused Silica Optics during Reactive Ion Etching Process

    PubMed Central

    Sun, Laixi; Shao, Ting; Shi, Zhaohua; Huang, Jin; Ye, Xin; Jiang, Xiaodong; Wu, Weidong; Yang, Liming; Zheng, Wanguo

    2018-01-01

    The reactive ion etching (RIE) process of fused silica is often accompanied by surface contamination, which seriously degrades the ultraviolet laser damage performance of the optics. In this study, we find that the contamination behavior on the fused silica surface is very sensitive to the RIE process which can be significantly optimized by changing the plasma generating conditions such as discharge mode, etchant gas and electrode material. Additionally, an optimized RIE process is proposed to thoroughly remove polishing-introduced contamination and efficiently prevent the introduction of other contamination during the etching process. The research demonstrates the feasibility of improving the damage performance of fused silica optics by using the RIE technique. PMID:29642571

  9. Microfabricated Cantilevers Based on Sputtered Thin-Film Ni50Ti50 Shape Memory Alloy (SMA)

    DTIC Science & Technology

    2015-08-01

    surface coating developed during the NiTi deposition or anneal that is relatively resistant to the wet etch. Fig. 2 SEMs after the NiTi wet -etch...SEMs of NiTi devices after the 600 °C anneal , wet -etch patterning of the NiTi. A 120-nm Au capping layer was also sputtered. Figure 3a shows a 200-nm...Ni50Ti50 Cantilever 2 3. Results and Discussion 3 3.1 Wet -Etch Patterning NiTi 3 3.2 Dry-Etch Release of NiTi Devices 5 3.3 Thermal Actuation of

  10. The Au/Si eutectic bonding compatibility with KOH etching for 3D devices fabrication

    NASA Astrophysics Data System (ADS)

    Liang, Hengmao; Liu, Mifeng; Liu, Song; Xu, Dehui; Xiong, Bin

    2018-01-01

    KOH etching and Au/Si eutectic bonding are cost-efficient technologies for 3D device fabrication. Aimed at investigating the process compatibility of KOH etching and Au/Si bonding, KOH etching tests have been carried out for Au/bulk Si and Au/amorphous Si (a-Si) bonding wafers in this paper. For the Au/bulk Si bonding wafer, a serious underetch phenomenon occurring on the damage layer in KOH etching definitely results in packaging failure. In the microstructure analysis, it is found that the formation of the damage layer between the bonded layer and bulk Si is attributed to the destruction of crystal Si lattices in Au/bulk Si eutectic reaction. Considering the occurrence of underetch for Au/Si bonding must meet two requirements: the superfluous Si and the defective layer near the bonded layer, the Au/a-Si bonding by regulating the a-Si/Au thickness ratio is presented in this study. Only when the a-Si/Au thickness ratio is relatively low are there not underetch phenomena, of which the reason is the full reaction of the a-Si layer avoiding the formation of the damage layer for easy underetch. Obviously, the Au/a-Si bonding via choosing a moderate a-Si/Au thickness ratio (⩽1.5:1 is suggested) could be reliably compatible with KOH etching, which provides an available and low-cost approach for 3D device fabrication. More importantly, the theory of the damage layer proposed in this study can be naturally applied to relevant analyses on the eutectic reaction of other metals and single crystal materials.

  11. Fabrication and analysis of single-crystal KTiOPO₄ films with thicknesses in the micrometer range.

    PubMed

    Ma, Changdong; Lu, Fei; Xu, Bo; Fan, Ranran

    2016-02-01

    Single-crystal potassium titanyl phosphate (KTiOPO4, KTP) films with thicknesses less than 5 μm are obtained by using helium (He) implantation combined with ion-beam-enhanced etching. A heavily damaged layer created by a 4×10(16)  cm(-2) fluence of 2 MeV He implantation is removed by means of wet chemical etching in hydrofluoric acid (HF). Thus, free-standing films of KTP with thicknesses in the range of 3-5 μm are obtained. The etching rate can be adjusted over a wide range by choosing temperature and HF concentration, as well as annealing conditions. Sharp etching edges and the smooth surface of the film indicate that a high selective-etching rate is achieved in the damaged layer, and the remaining part of the crystal is undamaged. X-ray and Raman-scattering results prove that KTP films have good single-crystal properties.

  12. Photoluminescence Study of Plasma-Induced Damage of GaInN Single Quantum Well

    NASA Astrophysics Data System (ADS)

    Izumi, Shouichiro; Minami, Masaki; Kamada, Michiru; Tatsumi, Tetsuya; Yamaguchi, Atsushi A.; Ishikawa, Kenji; Hori, Masaru; Tomiya, Shigetaka

    2013-08-01

    Plasma-induced damage (PID) due to Cl2/SiCl4/Ar plasma etching of the GaN capping layer (CAP)/GaInN single quantum well (SQW)/GaN structure was investigated by conventional photoluminescence (PL), transmission electron microscopy (TEM), and time-resolved and temperature-dependent photoluminescence (TRPL). SQW PL intensity remained constant initially, although plasma etching of the CAP layer proceeded, but when the etching thickness reached a certain amount (˜60 nm above the SQW), PL intensity started to decrease sharply. On the other hand, TEM observations show that the physical damage (structural damage) was limited to the topmost surface region. These findings can be explained by the results of TRPL studies, which revealed that there exist two different causes of PID. One is an increase in the number of nonradiative recombination centers, which mainly affects the PL intensity. The other is an increase in the quantum level fluctuation owing mainly to physical damage.

  13. Recovery of Mo/Si multilayer coated optical substrates

    DOEpatents

    Baker, Sherry L.; Vernon, Stephen P.; Stearns, Daniel G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO.sub.2 overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  14. Recovery of Mo/Si multilayer coated optical substrates

    DOEpatents

    Baker, S.L.; Vernon, S.P.; Stearns, D.G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO{sub 2} overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates. 5 figs.

  15. Combining wet etching and real-time damage event imaging to reveal the most dangerous laser damage initiator in fused silica.

    PubMed

    Hu, Guohang; Zhao, Yuanan; Liu, Xiaofeng; Li, Dawei; Xiao, Qiling; Yi, Kui; Shao, Jianda

    2013-08-01

    A reliable method, combining a wet etch process and real-time damage event imaging during a raster scan laser damage test, has been developed to directly determine the most dangerous precursor inducing low-density laser damage at 355 nm in fused silica. It is revealed that ~16% of laser damage sites were initiated at the place of the scratches, ~49% initiated at the digs, and ~35% initiated at invisible defects. The morphologies of dangerous scratches and digs were compared with those of moderate ones. It is found that local sharp variation at the edge, twist, or inside of a subsurface defect is the most dangerous laser damage precursor.

  16. (Preoxidation cleaning optimization for crystalline silicon)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    A series of controlled experiments has been performed in Sandia's Photovoltaic Device Fabrication Laboratory to evaluate the effect of various chemical surface treatments on the recombination lifetime of crystalline silicon wafers subjected to a high-temperature dry oxidation. From this series of experiments we have deduced a relatively simple yet effective cleaning sequence. We have also evaluated the effect of different chemical damage-removal etches for improving the recombination lifetime and surface smoothness of mechanically lapped wafers. This paper presents the methodology used, the experimental results obtained, and our experience with using this process on a continuing basis over a period ofmore » many months. 7 refs., 4 figs., 1 tab.« less

  17. Wideband two-port beam splitter of a binary fused-silica phase grating.

    PubMed

    Wang, Bo; Zhou, Changhe; Feng, Jijun; Ru, Huayi; Zheng, Jiangjun

    2008-08-01

    The usual beam splitter of multilayer-coated film with a wideband spectrum is not easy to achieve. We describe the realization of a wideband transmission two-port beam splitter based on a binary fused-silica phase grating. To achieve high efficiency and equality in the diffracted 0th and -1st orders, the grating profile parameters are optimized using rigorous coupled-wave analysis at a wavelength of 1550 nm. Holographic recording and the inductively coupled plasma dry etching technique are used to fabricate the fused-silica beam splitter grating. The measured efficiency of (45% x 2) = 90% diffracted into the both orders can be obtained with the fabricated grating under Littrow mounting. The physical mechanism of such a wideband two-port beam splitter grating can be well explained by the modal method based on two-beam interference of the modes excited by the incident wave. With the high damage threshold, low coefficient of thermal expansion, and wideband high efficiency, the presented beam splitter etched in fused silica should be a useful optical element for a variety of practical applications.

  18. Overview Of Dry-Etch Techniques

    NASA Astrophysics Data System (ADS)

    Salzer, John M.

    1986-08-01

    With pattern dimensions shrinking, dry methods of etching providing controllable degrees of anisotropy become a necessity. A number of different configurations of equipment - inline, hex, planar, barrel - have been offered, and within each type, there are numerous significant variations. Further, each specific type of machine must be perfected over a complex, interactive parameter space to achieve suitable removal of various materials. Among the most critical system parameters are the choice of cathode or anode to hold the wafers, the chamber pressure, the plasma excitation frequency, and the electrode and magnetron structures. Recent trends include the use of vacuum load locks, multiple chambers, multiple electrodes, downstream etching or stripping, and multistep processes. A major percentage of etches in production handle the three materials: polysilicon, oxide and aluminum. Recent process developments have targeted refractory metals, their silicides, and with increasing emphasis, silicon trenching. Indeed, with new VLSI structures, silicon trenching has become the process of greatest interest. For stripping, dry processes provide advantages other than anisotropy. Here, too, new configurations and methods have been introduced recently. While wet processes are less than desirable from a number of viewpoints (handling, safety, disposal, venting, classes of clean room, automatability), dry methods are still being perfected as a direct, universal replacement. The paper will give an overview of these machine structures and process solutions, together with examples of interest. These findings and the trends discussed are based on semiannual survey of manufacturers and users of the various types of equipment.

  19. The chemistry screening for ultra low-k dielectrics plasma etching

    NASA Astrophysics Data System (ADS)

    Zotovich, A.; Krishtab, M.; Lazzarino, F.; Baklanov, M. R.

    2014-12-01

    Nowadays, some of the important problems in microelectronics technological node scaling down are related to interconnect delay, dynamic power consumption and crosstalk. This compels introduction and integration of new materials with low dielectric permittivity (low-k materials) as insulator in interconnects. One of such materials under consideration for sub 10 nm technology node is a spin-coated organosilicate glass layer with ordered porosity (37-40%) and a k-value of 2.2 (OSG 2.2). High porosity leads to significant challenges during the integration and one of them is a material degradation during the plasma etching. The low-k samples have been etched in a CCP double frequency plasma chamber from TEL. Standard recipes developed for microporous materials with k<2.5 and based on mixture of C4F8 and CF4 with N2, O2 and Ar were found significantly damaging for high-porous ULK materials. The standard etch recipe was compared with oxygen free etch chemistries based on mixture CF4 with CH2F2 and Ar assuming that the presence of oxygen in the first recipe will have significant negative impact in high porous ULK materials. The film damage has been analyzed using FTIR spectroscopy and the k-value has been extracted by capacitance CV-measurements. There was indirectly shown that vacuum ultraviolet photons cause the main damage of low-k, whereas radicals and ions are not so harmful. Trench structures have been etched in low-k film and cross-SEM analysis with and without HF dipping has been performed to reveal patterning capability and visualize the sidewall damage and. The bottom roughness was analyzed by AFM.

  20. Methods for globally treating silica optics to reduce optical damage

    DOEpatents

    Miller, Philip Edward; Suratwala, Tayyab Ishaq; Bude, Jeffrey Devin; Shen, Nan; Steele, William Augustus; Laurence, Ted Alfred; Feit, Michael Dennis; Wong, Lana Louie

    2012-11-20

    A method for preventing damage caused by high intensity light sources to optical components includes annealing the optical component for a predetermined period. Another method includes etching the optical component in an etchant including fluoride and bi-fluoride ions. The method also includes ultrasonically agitating the etching solution during the process followed by rinsing of the optical component in a rinse bath.

  1. Cl 2-based dry etching of the AlGaInN system in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Cho, Hyun; Vartuli, C. B.; Abernathy, C. R.; Donovan, S. M.; Pearton, S. J.; Shul, R. J.; Han, J.

    1998-12-01

    Cl 2-Based inductively coupled plasmas with low additional d.c. self-biases (-100 V) produce convenient etch rates (500-1500 Å·min -1) for GaN, AlN, InN, InAlN and InGaN. A systematic study of the effects of additive gas (Ar, N 2, H 2), discharge composition and ICP source power and chuck power on etch rate and surface morphology has been performed. The general trends are to go through a maximum in etch rate with percent Cl 2 in the discharge for all three mixtures and to have an increase (decrease) in etch rate with source power (pressure). Since the etching is strongly ion-assisted, anisotropic pattern transfer is readily achieved. Maximum etch selectivities of approximately 6 for InN over the other nitrides were obtained.

  2. Radiation and process-induced damage in Ga2O3

    NASA Astrophysics Data System (ADS)

    Pearton, S. J.; Yang, Jiancheng; Ren, F.; Yang, G.; Kim, Jihyun; Stavola, M.; Kuramata, A.

    2018-02-01

    Ga2O3 is gaining attention for high breakdown electronics. The β-polymorph is air-stable, has a wide bandgap ( 4.6 eV) and is available in both bulk and epitaxial form. Different types of power diodes and transistors fabricated on Ga2O3 have shown impressive performance. Etching processes for Ga2O3 are needed for patterning for mesa isolation, threshold adjustment in transistors, thinning of nano-belts and selective area contact formation. Electrical damage in the near-surface region was found through barrier height changes of Schottky diodes on the etched surface. The damage is created by energetic ion bombardment, but may also consist of changes to near-surface stoichiometry through loss of lattice elements or deposition of etch residues. Annealing at 450°C removes this damage. We also discuss recent results on damage introduction by proton and electron irradiation. In this case, the carrier removal rates are found to be similar to those reported for GaN under similar conditions of dose and energy of the radiation.

  3. A plasmaless, photochemical etch process for porous organosilicate glass films

    NASA Astrophysics Data System (ADS)

    Ryan, E. Todd; Molis, Steven E.

    2017-12-01

    A plasmaless, photochemical etch process using ultraviolet (UV) light in the presence of NH3 or O2 etched porous organosilicate glass films, also called pSiCOH films, in a two-step process. First, a UV/NH3 or UV/O2 treatment removed carbon (mostly methyl groups bonded to silicon) from a pSiCOH film by demethylation to a depth determined by the treatment exposure time. Second, aqueous HF was used to selectively remove the demethylated layer of the pSiCOH film leaving the methylated layer below. UV in the presence of inert gas or H2 did not demethylate the pSiCOH film. The depth of UV/NH3 demethylation followed diffusion limited kinetics and possible mechanisms of demethylation are presented. Unlike reactive plasma processes, which contain ions that can damage surrounding structures during nanofabrication, the photochemical etch contains no damaging ions. Feasibility of the photochemical etching was shown by comparing it to a plasma-based process to remove the pSiCOH dielectric from between Cu interconnect lines, which is a critical step during air gap fabrication. The findings also expand our understanding of UV photon interactions in pSiCOH films that may contribute to plasma-induced damage to pSiCOH films.

  4. Surface Nanostructures Formed by Phase Separation of Metal Salt-Polymer Nanocomposite Film for Anti-reflection and Super-hydrophobic Applications

    NASA Astrophysics Data System (ADS)

    Con, Celal; Cui, Bo

    2017-12-01

    This paper describes a simple and low-cost fabrication method for multi-functional nanostructures with outstanding anti-reflective and super-hydrophobic properties. Our method employed phase separation of a metal salt-polymer nanocomposite film that leads to nanoisland formation after etching away the polymer matrix, and the metal salt island can then be utilized as a hard mask for dry etching the substrate or sublayer. Compared to many other methods for patterning metallic hard mask structures, such as the popular lift-off method, our approach involves only spin coating and thermal annealing, thus is more cost-efficient. Metal salts including aluminum nitrate nonahydrate (ANN) and chromium nitrate nonahydrate (CNN) can both be used, and high aspect ratio (1:30) and high-resolution (sub-50 nm) pillars etched into silicon can be achieved readily. With further control of the etching profile by adjusting the dry etching parameters, cone-like silicon structure with reflectivity in the visible region down to a remarkably low value of 2% was achieved. Lastly, by coating a hydrophobic surfactant layer, the pillar array demonstrated a super-hydrophobic property with an exceptionally high water contact angle of up to 165.7°.

  5. Surface Nanostructures Formed by Phase Separation of Metal Salt-Polymer Nanocomposite Film for Anti-reflection and Super-hydrophobic Applications.

    PubMed

    Con, Celal; Cui, Bo

    2017-12-16

    This paper describes a simple and low-cost fabrication method for multi-functional nanostructures with outstanding anti-reflective and super-hydrophobic properties. Our method employed phase separation of a metal salt-polymer nanocomposite film that leads to nanoisland formation after etching away the polymer matrix, and the metal salt island can then be utilized as a hard mask for dry etching the substrate or sublayer. Compared to many other methods for patterning metallic hard mask structures, such as the popular lift-off method, our approach involves only spin coating and thermal annealing, thus is more cost-efficient. Metal salts including aluminum nitrate nonahydrate (ANN) and chromium nitrate nonahydrate (CNN) can both be used, and high aspect ratio (1:30) and high-resolution (sub-50 nm) pillars etched into silicon can be achieved readily. With further control of the etching profile by adjusting the dry etching parameters, cone-like silicon structure with reflectivity in the visible region down to a remarkably low value of 2% was achieved. Lastly, by coating a hydrophobic surfactant layer, the pillar array demonstrated a super-hydrophobic property with an exceptionally high water contact angle of up to 165.7°.

  6. GaN nanowire arrays with nonpolar sidewalls for vertically integrated field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yu, Feng; Yao, Shengbo; Römer, Friedhard; Witzigmann, Bernd; Schimpke, Tilman; Strassburg, Martin; Bakin, Andrey; Schumacher, Hans Werner; Peiner, Erwin; Suryo Wasisto, Hutomo; Waag, Andreas

    2017-03-01

    Vertically aligned gallium nitride (GaN) nanowire (NW) arrays have attracted a lot of attention because of their potential for novel devices in the fields of optoelectronics and nanoelectronics. In this work, GaN NW arrays have been designed and fabricated by combining suitable nanomachining processes including dry and wet etching. After inductively coupled plasma dry reactive ion etching, the GaN NWs are subsequently treated in wet chemical etching using AZ400K developer (i.e., with an activation energy of 0.69 ± 0.02 eV and a Cr mask) to form hexagonal and smooth a-plane sidewalls. Etching experiments using potassium hydroxide (KOH) water solution reveal that the sidewall orientation preference depends on etchant concentration. A model concerning surface bonding configuration on crystallography facets has been proposed to understand the anisotropic wet etching mechanism. Finally, NW array-based vertical field-effect transistors with wrap-gated structure have been fabricated. A device composed of 99 NWs exhibits enhancement mode operation with a threshold voltage of 1.5 V, a superior electrostatic control, and a high current output of >10 mA, which prevail potential applications in next-generation power switches and high-temperature digital circuits.

  7. GaN nanowire arrays with nonpolar sidewalls for vertically integrated field-effect transistors.

    PubMed

    Yu, Feng; Yao, Shengbo; Römer, Friedhard; Witzigmann, Bernd; Schimpke, Tilman; Strassburg, Martin; Bakin, Andrey; Schumacher, Hans Werner; Peiner, Erwin; Wasisto, Hutomo Suryo; Waag, Andreas

    2017-03-03

    Vertically aligned gallium nitride (GaN) nanowire (NW) arrays have attracted a lot of attention because of their potential for novel devices in the fields of optoelectronics and nanoelectronics. In this work, GaN NW arrays have been designed and fabricated by combining suitable nanomachining processes including dry and wet etching. After inductively coupled plasma dry reactive ion etching, the GaN NWs are subsequently treated in wet chemical etching using AZ400K developer (i.e., with an activation energy of 0.69 ± 0.02 eV and a Cr mask) to form hexagonal and smooth a-plane sidewalls. Etching experiments using potassium hydroxide (KOH) water solution reveal that the sidewall orientation preference depends on etchant concentration. A model concerning surface bonding configuration on crystallography facets has been proposed to understand the anisotropic wet etching mechanism. Finally, NW array-based vertical field-effect transistors with wrap-gated structure have been fabricated. A device composed of 99 NWs exhibits enhancement mode operation with a threshold voltage of 1.5 V, a superior electrostatic control, and a high current output of >10 mA, which prevail potential applications in next-generation power switches and high-temperature digital circuits.

  8. Bond strengths of Scotchbond Multi-Purpose to moist dentin and enamel.

    PubMed

    Swift, E J; Triolo, P T

    1992-12-01

    This in vitro study tested the shear bond strengths of the Scotchbond Multi-Purpose adhesive system to moist and dry enamel and dentin. After the tooth was etched, the surface was either dried with compressed air or blotted with tissue paper, leaving the surface visibly moist. Primer and adhesive were applied according to the manufacturer's directions. Resin composite posts were applied, and the specimens were thermocycled. Shear bond strengths were determined using an Instron universal testing machine. For both enamel and dentin, mean shear bond strengths were higher when the surface was left visibly moist after etching. Bond strengths to moist and dry dentin were 21.8 and 17.8 MPa, respectively. Enamel bond strengths were slightly lower, with values of 17.0 and 14.2 MPa to moist and dry enamel, respectively.

  9. Anisotropic Etching Using Reactive Cluster Beams

    NASA Astrophysics Data System (ADS)

    Koike, Kunihiko; Yoshino, Yu; Senoo, Takehiko; Seki, Toshio; Ninomiya, Satoshi; Aoki, Takaaki; Matsuo, Jiro

    2010-12-01

    The characteristics of Si etching using nonionic cluster beams with highly reactive chlorine-trifluoride (ClF3) gas were examined. An etching rate of 40 µm/min or higher was obtained even at room temperature when a ClF3 molecular cluster was formed and irradiated on a single-crystal Si substrate in high vacuum. The etching selectivity of Si with respect to a photoresist and SiO2 was at least 1:1000. We also succeeded in highly anisotropic etching with an aspect ratio of 10 or higher. Moreover, this etching method has a great advantage of low damage, compared with the conventional plasma process.

  10. Making Porous Luminescent Regions In Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.; Jones, Eric W.

    1994-01-01

    Regions damaged by ion implantation stain-etched. Porous regions within single-crystal silicon wafers fabricated by straightforward stain-etching process. Regions exhibit visible photoluminescence at room temperature and might constitute basis of novel class of optoelectronic devices. Stain-etching process has advantages over recently investigated anodic-etching process. Process works on both n-doped and p-doped silicon wafers. Related development reported in article, "Porous Si(x)Ge(1-x) Layers Within Single Crystals of Si," (NPO-18836).

  11. Resistless lithography - selective etching of silicon with gallium doping regions

    NASA Astrophysics Data System (ADS)

    Abdullaev, D.; Milovanov, R.; Zubov, D.

    2016-12-01

    This paper presents the results for used of resistless lithography with a further reactive-ion etching (RIE) in various chemistry after local (Ga+) implantation of silicon with different doping dose and different size doped regions. We describe the different etching regimes for pattern transfer of FIB implanted Ga masks in silicon. The paper studied the influence of the implantation dose on the silicon surface, the masking effect and the mask resistance to erosion at dry etching. Based on these results we conclude about the possibility of using this method to create micro-and nanoscale silicon structures.

  12. A nontransferring dry adhesive with hierarchical polymer nanohairs.

    PubMed

    Jeong, Hoon Eui; Lee, Jin-Kwan; Kim, Hong Nam; Moon, Sang Heup; Suh, Kahp Y

    2009-04-07

    We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (approximately 26 N/cm(2) in maximum) in the angled direction and easy detachment (approximately 2.2 N/cm(2)) in the opposite direction, with a hysteresis value of approximately 10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 microm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 x 37.5 cm(2), second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization.

  13. A nontransferring dry adhesive with hierarchical polymer nanohairs

    PubMed Central

    Jeong, Hoon Eui; Lee, Jin-Kwan; Kim, Hong Nam; Moon, Sang Heup; Suh, Kahp Y.

    2009-01-01

    We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (≈26 N/cm2 in maximum) in the angled direction and easy detachment (≈2.2 N/cm2) in the opposite direction, with a hysteresis value of ≈10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 μm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 × 37.5 cm2, second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization. PMID:19304801

  14. Quantitative analysis of enamel on debonded orthodontic brackets.

    PubMed

    Cochrane, Nathan J; Lo, Thomas W G; Adams, Geoffrey G; Schneider, Paul M

    2017-09-01

    Iatrogenic damage to the tooth surface in the form of enamel tearouts can occur during removal of fixed orthodontic appliances. The aim of this study was to assess debonded metal and ceramic brackets attached with a variety of bonding materials to determine how frequently this type of damage occurs. Eighty-one patients close to finishing fixed orthodontic treatment were recruited. They had metal brackets bonded with composite resin and a 2-step etch-and-bond technique or ceramic brackets bonded with composite resin and a 2-step etch-and- bond technique, and composite resin with a self-etching primer or resin-modified glass ionomer cement. Debonded brackets were examined by backscattered scanning electron microscopy with energy dispersive x-ray spectroscopy to determine the presence and area of enamel on the base pad. Of the 486 brackets collected, 26.1% exhibited enamel on the bonding material on the bracket base pad. The incidences of enamel tearouts for each group were metal brackets, 13.3%; ceramic brackets, 30.2%; composite resin with self-etching primer, 38.2%; and resin-modified glass ionomer cement, 21.2%. The percentage of the bracket base pad covered in enamel was highly variable, ranging from 0% to 46.1%. Enamel damage regularly occurred during the debonding process with the degree of damage being highly variable. Damage occurred more frequently when ceramic brackets were used (31.9%) compared with metal brackets (13.3%). Removal of ceramic brackets bonded with resin-modified glass ionomer cement resulted in less damage compared with the resin bonding systems. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  15. Measurement of the Electron Density and the Attachment Rate Coefficient in Silane/Helium Discharges.

    DTIC Science & Technology

    1986-09-01

    materials -- in this case hydrogenated amorphous silicon . One of the biggest problems in such a task is the fact that the discharge creates complex radicals...electron density is enhanced -- even on a time-averaged basis, and the silicon deposition rate is also increased. The physical process for the density...etching and deposition of semiconductor materials. Plasma etching (also known as dry etching) Of silicon using flourine bearing gases has made it possible

  16. Optimization of plasma etching of SiO2 as hard mask for HgCdTe dry etching

    NASA Astrophysics Data System (ADS)

    Chen, Yiyu; Ye, Zhenhua; Sun, Changhong; Zhang, Shan; Xin, Wen; Hu, Xiaoning; Ding, Ruijun; He, Li

    2016-10-01

    HgCdTe is one of the dominating materials for infrared detection. To pattern this material, our group has proven the feasibility of SiO2 as a hard mask in dry etching process. In recent years, the SiO2 mask patterned by plasma with an auto-stopping layer of ZnS sandwiched between HgCdTe and SiO2 has been developed by our group. In this article, we will report the optimization of SiO2 etching on HgCdTe. The etching of SiO2 is very mature nowadays. Multiple etching recipes with deferent gas mixtures can be used. We utilized a recipe containing Ar and CHF3. With strictly controlled photolithography, the high aspect-ratio profile of SiO2 was firstly achieved on GaAs substrate. However, the same recipe could not work well on MCT because of the low thermal conductivity of HgCdTe and CdTe, resulting in overheated and deteriorated photoresist. By decreasing the temperature, the photoresist maintained its good profile. A starting table temperature around -5°C worked well enough. And a steep profile was achieved as checked by the SEM. Further decreasing of temperature introduced profile with beveled corner. The process window of the temperature is around 10°C. Reproducibility and uniformity were also confirmed for this recipe.

  17. Deep inductively coupled plasma etching of ELO-GaN grown with high fill factor

    NASA Astrophysics Data System (ADS)

    Gao, Haiyong; Lee, Jaesoong; Ni, Xianfeng; Leach, Jacob; Özgür, Ümit; Morkoç, Hadis

    2011-02-01

    The epitaxial lateral overgrowth (ELO) gallium nitride (GaN) was grown with high fill factor using metal organic chemical vapor deposition (MOCVD). The inductively coupled plasma (ICP) etching of ELO-GaN based on Cl2/Ar/SiCl4 gas mixture was performed. Surface properties of ELO-GaN subjected to ICP etching have been investigated and optimized etching condition in ELO-GaN with ICP etching is presented. Radiofrequency (RF) power and the flow rate of Cl2 gas were modified during the experiments. The window region, wing region and the edge region of ELO-GaN pattern present different etching characteristics. Different etching conditions were studied to get the minimized plasma-induced damage, relatively high etching rates, and excellent surface profiles. Etch depths of the etched ELO-GaN with smooth surface up to about 19 μm were achieved. The most suitable three-step etching condition is discussed with the assessment based on the morphology observation of the etched surface of ELO-GaN patterns.

  18. Micro-pyramidal structure fabrication on polydimethylsiloxane (PDMS) by Si (100) KOH wet etching

    NASA Astrophysics Data System (ADS)

    Hwang, Shinae; Lim, Kyungsuk; Shin, Hyeseon; Lee, Seongjae; Jang, Moongyu

    2017-10-01

    A high degree of accuracy in bulk micromachining is essential to fabricate micro-electro-mechanical systems (MEMS) devices. A series of etching experiments is carried out using 40 wt% KOH solutions at the constant temperature of 70 °C. Before wet etching, SF6 and O2 are used as the dry etching gas to etch the masking layers of a 100 nm thick Si3N4 and SiO2, respectively. The experimental results indicate that (100) silicon wafer form the pyramidal structures with (111) single crystal planes. All the etch profiles are analyzed using Scanning Electron Microscope (SEM) and the wet etch rates depend on the opening sizes. The manufactured pyramidal structures are used as the pattern of silicon mold. After a short hardening of coated polydimethylsiloxane (PDMS) layer, micro pyramidal structures are easily transferred to PDMS layer.

  19. Adhesive performance of a multi-mode adhesive system: 1-year in vitro study.

    PubMed

    Marchesi, Giulio; Frassetto, Andrea; Mazzoni, Annalisa; Apolonio, Fabianni; Diolosà, Marina; Cadenaro, Milena; Di Lenarda, Roberto; Pashley, David H; Tay, Franklin; Breschi, Lorenzo

    2014-05-01

    The aim of this study was to investigate the adhesive stability over time of a multi-mode one-step adhesive applied using different bonding techniques on human coronal dentine. The hypotheses tested were that microtensile bond strength (μTBS), interfacial nanoleakage expression and matrix metalloproteinases (MMPs) activation are not affected by the adhesive application mode (following the use of self-etch technique or with the etch-and-rinse technique on dry or wet dentine) or by ageing for 24h, 6 months and 1year in artificial saliva. Human molars were cut to expose middle/deep dentine and assigned to one of the following bonding systems (N=15): (1) Scotchbond Universal (3M ESPE) self-etch mode, (2) Scotchbond Universal etch-and-rinse technique on wet dentine, (3) Scotchbond Universal etch-and-rinse technique on dry dentine, and (4) Prime&Bond NT (Dentsply De Trey) etch-and-rinse technique on wet dentine (control). Specimens were processed for μTBS test in accordance with the non-trimming technique and stressed to failure after 24h, 6 months or 1 year. Additional specimens were processed and examined to assay interfacial nanoleakage and MMP expression. At baseline, no differences between groups were found. After 1 year of storage, Scotchbond Universal applied in the self-etch mode and Prime&Bond NT showed higher μTBS compared to the other groups. The lowest nanoleakage expression was found for Scotchbond Universal applied in the self-etch mode, both at baseline and after storage. MMPs activation was found after application of each tested adhesive. The results of this study support the use of the self-etch approach for bonding the tested multi-mode adhesive system to dentine due to improved stability over time. Improved bonding effectiveness of the tested universal adhesive system on dentine may be obtained if the adhesive is applied with the self-etch approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Scanning electron microscopy evaluation of the effect of etching agents on human enamel surface.

    PubMed

    Zanet, Caio G; Arana-Chavez, Victor E; Fava, Marcelo

    2006-01-01

    Acid etching promotes microporosities on enamel surface, which provide a better bonding surface to adhesive materials. The purpose of this study was to comparatively analyze the microstructure of enamel surface after etching with 37% phosphoric acid or with two self-etching primers, Non-rinse conditioner (NRC) and Clearfil SE Bond (CSEB) using scanning electron microscopy. Thirty sound premolars were divided into 3 groups with ten teeth each: Group 1: the buccal surface was etched with 37% phosphoric acid for 15 seconds; Group 2: the buccal surface was etched with NRC for 20 seconds; Group 3: the buccal surface was etched with CSEB for 20 seconds. Teeth from Group 1 were rinsed with water; teeth from all groups were air-dried for 15 seconds. After that, all specimens were processed for scanning electron microscopy and analyzed in a Jeol 6100 SEM. The results showed deeper etching when the enamel surface was etched with 37% phosphoric acid, followed by NRC and CSEB. It is concluded that 37% phosphoric acid is still the best agent for a most effective enamel etching.

  1. Process Development for Automated Solar Cell and Module Production. Task 4: Automated Array Assembly

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A baseline sequence for the manufacture of solar cell modules was specified. Starting with silicon wafers, the process goes through damage etching, texture etching, junction formation, plasma edge etch, aluminum back surface field formation, and screen printed metallization to produce finished solar cells. The cells were then series connected on a ribbon and bonded into a finished glass tedlar module. A number of steps required additional developmental effort to verify technical and economic feasibility. These steps include texture etching, plasma edge etch, aluminum back surface field formation, array layup and interconnect, and module edge sealing and framing.

  2. Temperature dependence on plasma-induced damage and chemical reactions in GaN etching processes using chlorine plasma

    NASA Astrophysics Data System (ADS)

    Liu, Zecheng; Ishikawa, Kenji; Imamura, Masato; Tsutsumi, Takayoshi; Kondo, Hiroki; Oda, Osamu; Sekine, Makoto; Hori, Masaru

    2018-06-01

    Plasma-induced damage (PID) on GaN was optimally reduced by high-temperature chlorine plasma etching. Energetic ion bombardments primarily induced PID involving stoichiometry, surface roughness, and photoluminescence (PL) degradation. Chemical reactions under ultraviolet (UV) irradiation and chlorine radical exposure at temperatures higher than 400 °C can be controlled by taking into account the synergism of simultaneous photon and radical irradiations to effectively reduce PID.

  3. Damage to the Silicon Substrate by Reactive Ion Etching Detected by a Slow Positron Beam

    NASA Astrophysics Data System (ADS)

    Wei, Long; Tabuki, Yasushi; Tanigawa, Shoichiro

    1993-01-01

    Defects in reactive ion-etched Si have been investigated by means of a slow positron beam. A thin carbon-containing film (<30 Å) was formed on the Si surface after reactive ion etching (RIE). Vacancy-type defects, which were estimated to distribute over 1200 Å in depth by numerical fitting using the positron trapping model, were observed in the damaged subsurface region of Si. Aside from ion bombardment, ultraviolet radiation is also presumed to affect the formation of vacancies, interstitials in oxide and the formation of vacancies in Si substrate. The ionization-enhanced diffusion (IED) mechanism is expected to promote the diffusion of vacancies and interstitials into Si substrate.

  4. Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour.

    PubMed

    Nagai, Masatsugu; Nakanishi, Kazuhiro; Takahashi, Hiraku; Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Matsumoto, Tsubasa; Inokuma, Takao; Tokuda, Norio

    2018-04-27

    Diamond possesses excellent physical and electronic properties, and thus various applications that use diamond are under development. Additionally, the control of diamond geometry by etching technique is essential for such applications. However, conventional wet processes used for etching other materials are ineffective for diamond. Moreover, plasma processes currently employed for diamond etching are not selective, and plasma-induced damage to diamond deteriorates the device-performances. Here, we report a non-plasma etching process for single crystal diamond using thermochemical reaction between Ni and diamond in high-temperature water vapour. Diamond under Ni films was selectively etched, with no etching at other locations. A diamond-etching rate of approximately 8.7 μm/min (1000 °C) was successfully achieved. To the best of our knowledge, this rate is considerably greater than those reported so far for other diamond-etching processes, including plasma processes. The anisotropy observed for this diamond etching was considerably similar to that observed for Si etching using KOH.

  5. Inverse metal-assisted chemical etching produces smooth high aspect ratio InP nanostructures.

    PubMed

    Kim, Seung Hyun; Mohseni, Parsian K; Song, Yi; Ishihara, Tatsumi; Li, Xiuling

    2015-01-14

    Creating high aspect ratio (AR) nanostructures by top-down fabrication without surface damage remains challenging for III-V semiconductors. Here, we demonstrate uniform, array-based InP nanostructures with lateral dimensions as small as sub-20 nm and AR > 35 using inverse metal-assisted chemical etching (I-MacEtch) in hydrogen peroxide (H2O2) and sulfuric acid (H2SO4), a purely solution-based yet anisotropic etching method. The mechanism of I-MacEtch, in contrast to regular MacEtch, is explored through surface characterization. Unique to I-MacEtch, the sidewall etching profile is remarkably smooth, independent of metal pattern edge roughness. The capability of this simple method to create various InP nanostructures, including high AR fins, can potentially enable the aggressive scaling of InP based transistors and optoelectronic devices with better performance and at lower cost than conventional etching methods.

  6. Ga Lithography in Sputtered Niobium for Superconductive Micro and Nanowires.

    DOE PAGES

    Henry, Michael David; Lewis, Rupert M.; Wolfley, Steven L.; ...

    2014-08-18

    This work demonstrates the use of FIB implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 um by and 10 um and 100 um by 100 um, demonstrate that doses above than 7.5 x 1015 cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic techniquemore » is demonstrated by fabrication of nanowires 75 nm wide by 10 um long connected to 50 um wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature, Tc =7.7 K, was measured using MPMS. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.« less

  7. Relation between film character and wafer alignment: critical alignment issues on HV device for VLSI manufacturing

    NASA Astrophysics Data System (ADS)

    Lo, Yi-Chuan; Lee, Chih-Hsiung; Lin, Hsun-Peng; Peng, Chiou-Shian

    1998-06-01

    Several continuous splits for wafer alignment target topography conditions to improve epitaxy film alignment were applied. The alignment evaluation among former layer pad oxide thickness (250 angstrom - 500 angstrom), drive oxide thickness (6000 angstrom - 10000 angstrom), nitride film thickness (600 angstrom - 1500 angstrom), initial oxide etch (fully wet etch, fully dry etch and dry plus wet etch) will be split to this experiment. Also various epitaxy deposition recipe such as: epitaxy source (SiHCl2 or SiCHCl3) and growth rate (1.3 micrometer/min approximately 2.0 micrometer/min) will be used to optimize the process window for alignment issue. All the reflectance signal and cross section photography of alignment target during NIKON stepper alignment process will be examined. Experimental results show epitaxy recipe plays an important role to wafer alignment. Low growth rate with good performance conformity epitaxy lead to alignment target avoid washout, pattern shift and distortion. All the results (signal monitor and film character) combined with NIKON's stepper standard laser scanning alignment system will be discussed in this paper.

  8. Mechanisms of Hydrocarbon Based Polymer Etch

    NASA Astrophysics Data System (ADS)

    Lane, Barton; Ventzek, Peter; Matsukuma, Masaaki; Suzuki, Ayuta; Koshiishi, Akira

    2015-09-01

    Dry etch of hydrocarbon based polymers is important for semiconductor device manufacturing. The etch mechanisms for oxygen rich plasma etch of hydrocarbon based polymers has been studied but the mechanism for lean chemistries has received little attention. We report on an experimental and analytic study of the mechanism for etching of a hydrocarbon based polymer using an Ar/O2 chemistry in a single frequency 13.56 MHz test bed. The experimental study employs an analysis of transients from sequential oxidation and Ar sputtering steps using OES and surface analytics to constrain conceptual models for the etch mechanism. The conceptual model is consistent with observations from MD studies and surface analysis performed by Vegh et al. and Oehrlein et al. and other similar studies. Parameters of the model are fit using published data and the experimentally observed time scales.

  9. Use of KRS-XE positive chemically amplified resist for optical mask manufacturing

    NASA Astrophysics Data System (ADS)

    Ashe, Brian; Deverich, Christina; Rabidoux, Paul A.; Peck, Barbara; Petrillo, Karen E.; Angelopoulos, Marie; Huang, Wu-Song; Moreau, Wayne M.; Medeiros, David R.

    2002-03-01

    The traditional mask making process uses chain scission-type resists such as PBS, poly(butene-1-sulfone), and ZEP, poly(methyl a-chloroacrylate-co-a-methylstyrene) for making masks with dimensions greater than 180nm. PBS resist requires a wet etch process to produce patterns in chrome. ZEP was employed for dry etch processing to meet the requirements of shrinking dimensions, optical proximity corrections and phase shift masks. However, ZEP offers low contrast, marginal etch resistance, organic solvent development, and concerns regarding resist heating with its high dose requirements1. Chemically Amplified Resist (CAR) systems are a very good choice for dimensions less than 180nm because of their high sensitivity and contrast, high resolution, dry etch resistance, aqueous development, and process latitude2. KRS-XE was developed as a high contrast CA resist based on ketal protecting groups that eliminate the need for post exposure bake (PEB). This resist can be used for a variety of electron beam exposures, and improves the capability to fabricate masks for devices smaller than 180nm. Many factors influence the performance of resists in mask making such as post apply bake, exposure dose, resist develop, and post exposure bake. These items will be discussed as well as the use of reactive ion etching (RIE) selectivity and pattern transfer.

  10. Chemical etching of nitinol stents.

    PubMed

    Katona, Bálint; Bognár, Eszter; Berta, Balázs; Nagy, Péter; Hirschberg, Kristóf

    2013-01-01

    At present the main cause of death originates from cardiovascular diseases. Primarily the most frequent cause is vessel closing thus resulting in tissue damage. The stent can help to avoid this. It expands the narrowed vessel section and allows free blood flow. The good surface quality of stents is important. It also must have adequate mechanical characteristics or else it can be damaged which can easily lead to the fracture of the implant. Thus, we have to consider the importance of the surface treatment of these implants. In our experiments the appropriate design was cut from a 1.041 mm inner diameter and 0.100 mm wall thickness nitinol tube by using Nd:YAG laser device. Then, the stent was subjected to chemical etching. By doing so, the burr created during the laser cutting process can be removed and the surface quality refined. In our research, we changed the time of chemical etching and monitored the effects of this parameter. The differently etched stents were subjected to microscopic analysis, mass measurement and in vivo environment tests. The etching times that gave suitable surface and mechanical features were identified.

  11. Atomic-layer soft plasma etching of MoS2

    PubMed Central

    Xiao, Shaoqing; Xiao, Peng; Zhang, Xuecheng; Yan, Dawei; Gu, Xiaofeng; Qin, Fang; Ni, Zhenhua; Han, Zhao Jun; Ostrikov, Kostya (Ken)

    2016-01-01

    Transition from multi-layer to monolayer and sub-monolayer thickness leads to the many exotic properties and distinctive applications of two-dimensional (2D) MoS2. This transition requires atomic-layer-precision thinning of bulk MoS2 without damaging the remaining layers, which presently remains elusive. Here we report a soft, selective and high-throughput atomic-layer-precision etching of MoS2 in SF6 + N2 plasmas with low-energy (<0.4 eV) electrons and minimized ion-bombardment-related damage. Equal numbers of MoS2 layers are removed uniformly across domains with vastly different initial thickness, without affecting the underlying SiO2 substrate and the remaining MoS2 layers. The etching rates can be tuned to achieve complete MoS2 removal and any desired number of MoS2 layers including monolayer. Layer-dependent vibrational and photoluminescence spectra of the etched MoS2 are also demonstrated. This soft plasma etching technique is versatile, scalable, compatible with the semiconductor manufacturing processes, and may be applicable for a broader range of 2D materials and intended device applications. PMID:26813335

  12. Combined dry plasma etching and online metrology for manufacturing highly focusing x-ray mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berujon, S., E-mail: berujon@esrf.eu; Ziegler, E., E-mail: ziegler@esrf.eu; Cunha, S. da

    A new figuring station was designed and installed at the ESRF beamline BM05. It allows the figuring of mirrors within an iterative process combining the advantage of online metrology with dry etching. The complete process takes place under a vacuum environment to minimize surface contamination while non-contact surfacing tools open up the possibility of performing at-wavelength metrology and eliminating placement errors. The aim is to produce mirrors whose slopes do not deviate from the stigmatic profile by more than 0.1 µrad rms while keeping surface roughness in the acceptable limit of 0.1-0.2 nm rms. The desired elliptical mirror surface shapemore » can be achieved in a few iterations in about a one day time span. This paper describes some of the important aspects of the process regarding both the online metrology and the etching process.« less

  13. Bond strength of self-etch adhesives after saliva contamination at different application steps.

    PubMed

    Cobanoglu, N; Unlu, N; Ozer, F F; Blatz, M B

    2013-01-01

    This study evaluated and compared the effect of saliva contamination and possible decontamination methods on bond strengths of two self-etching adhesive systems (Clearfil SE Bond [CSE], Optibond Solo Plus SE [OSE]). Flat occlusal dentin surfaces were created on 180 extracted human molar teeth. The two bonding systems and corresponding composite resins (Clearfil AP-X, Kerr Point 4) were bonded to the dentin under six surface conditions (n=15/group): group 1 (control): primer/bonding/composite; group 2: saliva/drying/primer/bonding/composite; group 3: primer/saliva/rinsing/drying/primer/bonding/composite; group 4: primer/saliva/rinsing/drying/bonding/composite; group 5: primer/bonding (cured)/saliva/rinsing/drying/primer/bonding/composite; group 6: primer/bonding (cured)/saliva/removing contaminated layer with a bur/rinsing/drying/primer/bonding/composite. Shear bond strength was tested after specimens were stored in distilled water at 37°C for 24 hours. One-way analysis of variance and Tukey post hoc tests were used for statistical analyses. For CSE, groups 2, 3, and 4 and for OSE, groups 6, 2, and 4 showed significantly lower bond strengths than the control group (p<0.05). CSE groups 5 and 6 and OSE groups 3 and 5 revealed bond strengths similar to the control. When saliva contamination occurred after light polymerization of the bonding agent, repeating the bonding procedure recovered the bonding capacity of both self-etch adhesives. However, saliva contamination before or after primer application negatively affected their bond strength.

  14. Influence of incorrect application of a water-based adhesive system on the marginal adaptation of Class V restorations.

    PubMed

    Peschke, A; Blunck, U; Roulet, J F

    2000-10-01

    To determine the influence of incorrectly performed steps during the application of the water-based adhesive system OptiBond FL on the marginal adaptation of Class V composite restorations. In 96 extracted human teeth Class V cavities were prepared. Half of the margin length was situated in dentin. The teeth were randomly divided into 12 groups. The cavities were filled with Prodigy resin-based composite in combination with OptiBond FL according to the manufacturer's instructions (Group O) and including several incorrect application steps: Group A: prolonged etching (60 s); Group B: no etching of dentin; Group C: excessive drying after etching; Group D: short rewetting after excessive drying; Group E: air drying and rewetting; Group F: blot drying; Group G: saliva contamination; Group H: application of primer and immediate drying; group I: application of only primer; group J: application of only adhesive; Group K: no light curing of the adhesive before the application of composite. After thermocycling, replicas were taken and the margins were quantitatively analyzed in the SEM. Statistical analysis of the results was performed using non-parametric procedures. With exception of the "rewetting groups" (D and E) and the group with saliva contamination (G), all other application procedures showed a significantly higher amount of marginal openings in dentin compared to the control group (O). Margin quality in enamel was only affected when the primer was not applied.

  15. Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices

    NASA Astrophysics Data System (ADS)

    Rodionov, Ilya A.; Baburin, Alexander S.; Zverev, Alexander V.; Philippov, Ivan A.; Gabidulin, Aidar R.; Dobronosova, Alina A.; Ryzhova, Elena V.; Vinogradov, Alexey P.; Ivanov, Anton I.; Maklakov, Sergey S.; Baryshev, Alexander V.; Trofimov, Igor V.; Merzlikin, Alexander M.; Orlikovsky, Nikolay A.; Rizhikov, Ilya A.

    2017-08-01

    During last 20 years, great results in metamaterials and plasmonic nanostructures fabrication were obtained. However, large ohmic losses in metals and mass production compatibility still represent the most serious challenge that obstruct progress in the fields of metamaterials and plasmonics. Many recent research are primarily focused on developing low-loss alternative materials, such as nitrides, II-VI semiconductor oxides, high-doped semiconductors, or two-dimensional materials. In this work, we demonstrate that our perfectly fabricated silver films can be an effective low-loss material system, as theoretically well-known. We present a fabrication technology of plasmonic and metamaterial nanodevices on transparent (quartz, mica) and non-transparent (silicon) substrates by means of e-beam lithography and ICP dry etch instead of a commonly-used focused ion beam (FIB) technology. We eliminate negative influence of litho-etch steps on silver films quality and fabricate square millimeter area devices with different topologies and perfect sub-100 nm dimensions reproducibility. Our silver non-damage fabrication scheme is tested on trial manufacture of spasers, plasmonic sensors and waveguides, metasurfaces, etc. These results can be used as a flexible device manufacture platform for a broad range of practical applications in optoelectronics, communications, photovoltaics and biotechnology.

  16. Spectral artefacts post sputter-etching and how to cope with them - A case study of XPS on nitride-based coatings using monoatomic and cluster ion beams

    NASA Astrophysics Data System (ADS)

    Lewin, Erik; Counsell, Jonathan; Patscheider, Jörg

    2018-06-01

    The issue of artefacts due to sputter-etching has been investigated for a group of AlN-based thin film materials with varying thermodynamical stability. Stability of the materials was controlled by alloying AlN with the group 14 elements Si, Ge or Sn in two different concentrations. The coatings were sputter-etched with monoatomic Ar+ with energies between 0.2 and 4.0 keV to study the sensitivity of the materials for sputter damage. The use of Arn+ clusters to remove an oxidised surface layer was also evaluated for a selected sample. The spectra were compared to pristine spectra obtained after in-vacuo sample transfer from the synthesis chamber to the analysis instrument. It was found that the all samples were affected by high energy (4 keV) Ar+ ions to varying degrees. The determining factors for the amount of observed damage were found to be the materials' enthalpy of formation, where a threshold value seems to exist at approximately -1.25 eV/atom (∼-120 kJ/mol atoms). For each sample, the observed amount of damage was found to have a linear dependence to the energy deposited by the ion beam per volume removed material. Despite the occurrence of sputter-damage in all samples, etching settings that result in almost artefact-free spectral data were found; using either very low energy (i.e. 200 eV) monoatomic ions, or an appropriate combination of ion cluster size and energy. The present study underlines that analysis post sputter-etching must be carried out with an awareness of possible sputter-induced artefacts.

  17. Simulation of Corrosion Process for Structure with the Cellular Automata Method

    NASA Astrophysics Data System (ADS)

    Chen, M. C.; Wen, Q. Q.

    2017-06-01

    In this paper, from the mesoscopic point of view, under the assumption of metal corrosion damage evolution being a diffusive process, the cellular automata (CA) method was proposed to simulate numerically the uniform corrosion damage evolution of outer steel tube of concrete filled steel tubular columns subjected to corrosive environment, and the effects of corrosive agent concentration, dissolution probability and elapsed etching time on the corrosion damage evolution were also investigated. It was shown that corrosion damage increases nonlinearly with increasing elapsed etching time, and the longer the etching time, the more serious the corrosion damage; different concentration of corrosive agents had different impacts on the corrosion damage degree of the outer steel tube, but the difference between the impacts was very small; the heavier the concentration, the more serious the influence. The greater the dissolution probability, the more serious the corrosion damage of the outer steel tube, but with the increase of dissolution probability, the difference between its impacts on the corrosion damage became smaller and smaller. To validate present method, corrosion damage measurements for concrete filled square steel tubular columns (CFSSTCs) sealed at both their ends and immersed fully in a simulating acid rain solution were conducted, and Faraday’s law was used to predict their theoretical values. Meanwhile, the proposed CA mode was applied for the simulation of corrosion damage evolution of the CFSSTCs. It was shown by the comparisons of results from the three methods aforementioned that they were in good agreement, implying that the proposed method used for the simulation of corrosion damage evolution of concrete filled steel tubular columns is feasible and effective. It will open a new approach to study and evaluate further the corrosion damage, loading capacity and lifetime prediction of concrete filled steel tubular structures.

  18. Studies on evaluating and removing subsurface damage on the ground surface of CLEARCERAM-Z HS

    NASA Astrophysics Data System (ADS)

    Akitaya, Hiroshi; Yamashita, Takuya; Ohshima, Norio; Iye, Masanori; Maihara, Toshinori; Tokoro, Hitoshi; Takahashi, Keisuke

    2010-07-01

    We evaluated depth of subsurface damage on a ground surface of the ultra low expansion glass-ceramics CLEARCERAMR®-Z HS (CC-Z HS) by Ohara Inc., which is one of the candidates for material for segmented mirrors of the Thirty Meter Telescope. We made polishing spots of Magnetorheological Finishing on the ground surface of CC-Z HS and measured exposed subsurface damage features on the spot surface. We also studied on hydrofluoric acid etching of the CC-Z HS ground surface, which is expected to be an effective method to remove a subsurface damage layer compared with time-consuming polishing. We etched small ground surfaces of CC-Z HS and evaluated its uniformity.

  19. Characterization of Plasma-Induced Damage of Selectively Recessed GaN/InAlN/AlN/GaN Heterostructures Using SiCl4 and SF6

    NASA Astrophysics Data System (ADS)

    Ostermaier, Clemens; Pozzovivo, Gianmauro; Basnar, Bernhard; Schrenk, Werner; Carlin, Jean-François; Gonschorek, Marcus; Grandjean, Nicolas; Vincze, Andrej; Tóth, Lajos; Pécz, Bela; Strasser, Gottfried; Pogany, Dionyz; Kuzmik, Jan

    2010-11-01

    We have investigated an inductively coupled plasma etching recipe using SiCl4 and SF6 with a resulting selectivity >10 for GaN in respect to InAlN. The formation of an etch-resistant layer of AlF3 on InAlN required about 1 min and was noticed by a 4-times-higher initial etch rate on bare InAlN barrier high electron mobility transistors (HEMTs). Comparing devices with and without plasma-treatment below the gate showed no degradation in drain current and gate leakage current for plasma exposure durations shorter than 30 s, indicating no plasma-induced damage of the InAlN barrier. Devices etched longer than the required time for the formation of the etch-resistant barrier exhibited a slight decrease in drain current and an increase in gate leakage current which saturated for longer etching-time durations. Finally, we could prove the quality of the recipe by recessing the highly doped 6 nm GaN cap layer of a GaN/InAlN/AlN/GaN heterostructure down to the 2 nm thin InAlN/AlN barrier layer.

  20. AlGaN-Cladding-Free m-Plane InGaN/GaN Laser Diodes with p-Type AlGaN Etch Stop Layers

    NASA Astrophysics Data System (ADS)

    Farrell, Robert M.; Haeger, Daniel A.; Hsu, Po Shan; Hardy, Matthew T.; Kelchner, Kathryn M.; Fujito, Kenji; Feezell, Daniel F.; Mishra, Umesh K.; DenBaars, Steven P.; Speck, James S.; Nakamura, Shuji

    2011-09-01

    We present a new method of improving the accuracy and reproducibility of dry etching processes for ridge waveguide InGaN/GaN laser diodes (LDs). A GaN:Al0.09Ga0.91N etch rate selectivity of 11:1 was demonstrated for an m-plane LD with a 40 nm p-Al0.09Ga0.91N etch stop layer (ESL) surrounded by Al-free cladding layers, establishing the effectiveness of AlGaN-based ESLs for controlling etch depth in ridge waveguide InGaN/GaN LDs. These results demonstrate the potential for integrating AlGaN ESLs into commercial device designs where accurate control of the etch depth of the ridge waveguide is necessary for stable, kink-free operation at high output powers.

  1. Dry etch challenges for CD shrinkage in memory process

    NASA Astrophysics Data System (ADS)

    Matsushita, Takaya; Matsumoto, Takanori; Mukai, Hidefumi; Kyoh, Suigen; Hashimoto, Kohji

    2015-03-01

    Line pattern collapse attracts attention as a new problem of the L&S formation in sub-20nm H.P feature. Line pattern collapse that occurs in a slight non-uniformity of adjacent CD (Critical dimension) space using double patterning process has been studied with focus on micro-loading effect in Si etching. Bias RF pulsing plasma etching process using low duty cycle helped increase of selectivity Si to SiO2. In addition to the effect of Bias RF pulsing process, the thin mask obtained from improvement of selectivity has greatly suppressed micro-loading in Si etching. However it was found that micro-loading effect worsen again in sub-20nm space width. It has been confirmed that by using cycle etch process to remove deposition with CFx based etching micro-loading effect could be suppressed. Finally, Si etching process condition using combination of results above could provide finer line and space without "line pattern collapse" in sub-20nm.

  2. Etching method for photoresists or polymers

    NASA Technical Reports Server (NTRS)

    Lerner, Narcinda R. (Inventor); Wydeven, Theodore J., Jr. (Inventor)

    1991-01-01

    A method for etching or removing polymers, photoresists, and organic contaminants from a substrate is disclosed. The method includes creating a more reactive gas species by producing a plasma discharge in a reactive gas such as oxygen and contacting the resulting gas species with a sacrificial solid organic material such as polyethylene or polyvinyl fluoride, reproducing a highly reactive gas species, which in turn etches the starting polymer, organic contaminant, or photoresist. The sample to be etched is located away from the plasma glow discharge region so as to avoid damaging the substrate by exposure to high energy particles and electric fields encountered in that region. Greatly increased etching rates are obtained. This method is highly effective for etching polymers such as polyimides and photoresists that are otherwise difficult or slow to etch downstream from an electric discharge in a reactive gas.

  3. Large-aperture focusing of x rays with micropore optics using dry etching of silicon wafers.

    PubMed

    Ezoe, Yuichiro; Moriyama, Teppei; Ogawa, Tomohiro; Kakiuchi, Takuya; Mitsuishi, Ikuyuki; Mitsuda, Kazuhisa; Aoki, Tatsuhiko; Morishita, Kohei; Nakajima, Kazuo

    2012-03-01

    Large-aperture focusing of Al K(α) 1.49 keV x-ray photons using micropore optics made from a dry-etched 4 in. (100 mm) silicon wafer is demonstrated. Sidewalls of the micropores are smoothed with high-temperature annealing to work as x-ray mirrors. The wafer is bent to a spherical shape to collect parallel x rays into a focus. Our result supports that this new type of optics allows for the manufacturing of ultralight-weight and high-performance x-ray imaging optics with large apertures at low cost. © 2012 Optical Society of America

  4. The effect of silver fluoride and potassium iodide on the bond strength of auto cure glass ionomer cement to dentine.

    PubMed

    Knight, G M; McIntyre, J M; Mulyani

    2006-03-01

    Diamine silver fluoride (Ag(NH3)2F), referred to as AgF, has been shown to reduce the incidence of caries in primary dentitions. The clinical application of this material has been limited by staining associated with both teeth and restorative materials. The application of potassium iodide (KI) after AgF eliminates stain formation. There is a lack of information as to how the addition of AgF followed by KI may affect the bond strength to dentine. The purpose of this study was to compare the bond strengths of auto cure glass ionomer cement to dentine surfaces that had been treated with AgF and KI and without treatment. Ten recently extracted human third molars were embedded into methyl methacrylate resin and sliced to form a square block of exposed dentine surfaces. Each of the four surfaces were treated by one of the following procedures: (a) etching with 37 per cent phosphoric acid; (b) applying GC dentine conditioner; (c) etching, followed by application of AgF/KI then washing off the precipitate and air drying; and (d) etching, applying AgF/KI and air drying the reaction products on the surface. Fuji VII auto cure glass ionomer cement was bonded onto each sample and fracture tested. The dentine samples treated with AgF/KI followed by washing away the precipitate and air drying had bond strengths (2.83 MPa) not significantly different from samples that had been conditioned (2.40 MPa). Samples where the AgF/KI precipitate had been air dried onto the dentine surface had significantly lower bond strengths (1.49 MPa) than the washed samples. Samples that were etched had significantly lower bond strengths (1.91MPa) than the conditioned samples. This study found that the application of AgF/KI to etched dentine samples followed by washing off the precipitate, created bond strengths that were not significantly different to conditioned samples. Leaving the AgF/KI precipitate on the dentine surface significantly reduced the bond strength of auto cured glass ionomer cement to dentine. Washing away the reaction products and air drying is recommended as the clinical protocol for using AgF and KI on dentine surfaces prior to application of an auto cure glass ionomer cement.

  5. Ultradeep electron cyclotron resonance plasma etching of GaN

    DOE PAGES

    Harrison, Sara E.; Voss, Lars F.; Torres, Andrea M.; ...

    2017-07-25

    Here, ultradeep (≥5 μm) electron cyclotron resonance plasma etching of GaN micropillars was investigated. Parametric studies on the influence of the applied radio-frequency power, chlorine content in a Cl 2/Ar etch plasma, and operating pressure on the etch depth, GaN-to-SiO 2 selectivity, and surface morphology were performed. Etch depths of >10 μm were achieved over a wide range of parameters. Etch rates and sidewall roughness were found to be most sensitive to variations in RF power and % Cl 2 in the etch plasma. Selectivities of >20:1 GaN:SiO 2 were achieved under several chemically driven etch conditions where a maximummore » selectivity of ~39:1 was obtained using a 100% Cl 2 plasma. The etch profile and (0001) surface morphology were significantly influenced by operating pressure and the chlorine content in the plasma. Optimized etch conditions yielded >10 μm tall micropillars with nanometer-scale sidewall roughness, high GaN:SiO 2 selectivity, and nearly vertical etch profiles. These results provide a promising route for the fabrication of ultradeep GaN microstructures for use in electronic and optoelectronic device applications. In addition, dry etch induced preferential crystallographic etching in GaN microstructures is also demonstrated, which may be of great interest for applications requiring access to non- or semipolar GaN surfaces.« less

  6. Overview of several applications of chemical downstream etching (CDE) for IC manufacturing: advantages and drawbacks versus WET processes

    NASA Astrophysics Data System (ADS)

    de Buttet, Côme; Prevost, Emilie; Campo, Alain; Garnier, Philippe; Zoll, Stephane; Vallier, Laurent; Cunge, Gilles; Maury, Patrick; Massin, Thomas; Chhun, Sonarith

    2017-03-01

    Today the IC manufacturing faces lots of problematics linked to the continuous down scaling of printed structures. Some of those issues are related to wet processing, which are often used in the IC manufacturing flow for wafer cleaning, material etching and surface preparation. In the current work we summarize the limitations for the next nodes of wet processing such as metallic contaminations, wafer charging, corrosion and pattern collapse. As a replacement, we promoted the isotropic chemical dry etching (CDE) which is supposed to fix all the above drawbacks. Etching steps of SI3N4 layers were evaluated in order to prove the interest of such technique.

  7. Laser-assisted focused He + ion beam induced etching with and without XeF 2 gas assist

    DOE PAGES

    Stanford, Michael G.; Mahady, Kyle; Lewis, Brett B.; ...

    2016-10-04

    Focused helium ion (He +) milling has been demonstrated as a high-resolution nanopatterning technique; however, it can be limited by its low sputter yield as well as the introduction of undesired subsurface damage. Here, we introduce pulsed laser- and gas-assisted processes to enhance the material removal rate and patterning fidelity. A pulsed laser-assisted He+ milling process is shown to enable high-resolution milling of titanium while reducing subsurface damage in situ. Gas-assisted focused ion beam induced etching (FIBIE) of Ti is also demonstrated in which the XeF 2 precursor provides a chemical assist for enhanced material removal rate. In conclusion, amore » pulsed laser-assisted and gas-assisted FIBIE process is shown to increase the etch yield by ~9× relative to the pure He+ sputtering process. These He + induced nanopatterning techniques improve material removal rate, in comparison to standard He + sputtering, while simultaneously decreasing subsurface damage, thus extending the applicability of the He + probe as a nanopattering tool.« less

  8. Laser-assisted focused He + ion beam induced etching with and without XeF 2 gas assist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanford, Michael G.; Mahady, Kyle; Lewis, Brett B.

    Focused helium ion (He +) milling has been demonstrated as a high-resolution nanopatterning technique; however, it can be limited by its low sputter yield as well as the introduction of undesired subsurface damage. Here, we introduce pulsed laser- and gas-assisted processes to enhance the material removal rate and patterning fidelity. A pulsed laser-assisted He+ milling process is shown to enable high-resolution milling of titanium while reducing subsurface damage in situ. Gas-assisted focused ion beam induced etching (FIBIE) of Ti is also demonstrated in which the XeF 2 precursor provides a chemical assist for enhanced material removal rate. In conclusion, amore » pulsed laser-assisted and gas-assisted FIBIE process is shown to increase the etch yield by ~9× relative to the pure He+ sputtering process. These He + induced nanopatterning techniques improve material removal rate, in comparison to standard He + sputtering, while simultaneously decreasing subsurface damage, thus extending the applicability of the He + probe as a nanopattering tool.« less

  9. High-Temperature Isothermal Capacitance Transient Spectroscopy Study on Inductively Coupled Plasma Etching Damage for p-GaN Surfaces

    NASA Astrophysics Data System (ADS)

    Aoki, Toshichika; Wakayama, Hisashi; Kaneda, Naoki; Mishima, Tomoyoshi; Nomoto, Kazuki; Shiojima, Kenji

    2013-11-01

    The effects of the inductively coupled plasma (ICP) etching damage on the electrical characteristics of low-Mg-doped p-GaN Schottky contacts were evaluated by high-temperature isothermal capacitance transient spectroscopy. A large single peak for an acceptor-type surface state was dominantly detected for as-grown samples. The energy level and state density were obtained to be 1.18 eV above the valence band, which is close to a Ga vacancy (VGa), and 1.5×1013 cm-2, respectively. It was speculated that a small portion of Ga atoms were missing from the surface, and a high VGa density was observed in a few surface layers. The peak intensity decreased by 60% upon annealing at 800 °C, and further decrease was found by ICP etching. This decrease is consistent with the suppression of the memory effect in current-voltage characteristics. Upon annealing and ICP etching, since the VGa structure might be disordered, the peak intensity decreased.

  10. Fabrication of an optical component

    DOEpatents

    Nichols, Michael A.; Aikens, David M.; Camp, David W.; Thomas, Ian M.; Kiikka, Craig; Sheehan, Lynn M.; Kozlowski, Mark R.

    2000-01-01

    A method for forming optical parts used in laser optical systems such as high energy lasers, high average power lasers, semiconductor capital equipment and medical devices. The optical parts will not damage during the operation of high power lasers in the ultra-violet light range. A blank is first ground using a fixed abrasive grinding method to remove the subsurface damage formed during the fabrication of the blank. The next step grinds and polishes the edges and forms bevels to reduce the amount of fused-glass contaminants in the subsequent steps. A loose abrasive grind removes the subsurface damage formed during the fixed abrasive or "blanchard" removal process. After repolishing the bevels and performing an optional fluoride etch, the surface of the blank is polished using a zirconia slurry. Any subsurface damage formed during the loose abrasive grind will be removed during this zirconia polish. A post polish etch may be performed to remove any redeposited contaminants. Another method uses a ceria polishing step to remove the subsurface damage formed during the loose abrasive grind. However, any residual ceria may interfere with the optical properties of the finished part. Therefore, the ceria and other contaminants are removed by performing either a zirconia polish after the ceria polish or a post ceria polish etch.

  11. III-Nitride Blue Laser Diode with Photoelectrochemically Etched Current Aperture

    NASA Astrophysics Data System (ADS)

    Megalini, Ludovico

    Group III-nitride is a remarkable material system to make highly efficient and high-power optoelectronics and electronic devices because of the unique electrical, physical, chemical and structural properties it offers. In particular, InGaN-based blue Laser Diodes (LDs) have been successfully employed in a variety of applications ranging from biomedical and military devices to scientific instrumentation and consumer electronics. Recently their use in highly efficient Solid State Lighting (SSL) has been proposed because of their superior beam quality and higher efficiency at high input power density. Tremendous advances in research of GaN semi-polar and non-polar crystallographic planes have led both LEDs and LDs grown on these non-basal planes to rival with, and with the promise to outperform, their equivalent c-plane counterparts. However, still many issues need to be addressed, both related to material growth and device fabrication, including a lack of conventional wet etching techniques. GaN and its alloys with InN and AlN have proven resistant essentially to all known standard wet etching techniques, and the predominant etching methods rely on chlorine-based dry etching (RIE). These introduce sub-surface damage which can degrade the electrical properties of the epitaxial structure and reduce the reliability and lifetime of the final device. Such reasons and the limited effectiveness of passivation techniques have so far suggested to etch the LD ridges before the active region, although it is well-known that this can badly affect the device performance, especially in narrow stripe width LDs, because the gain guiding obtained in the planar configuration is weak and the low index step and high lateral current leakage result in devices with threshold current density higher than devices whose ridge is etched beyond the active region. Moreover, undercut etching of III-nitride layers has proven even more challenging, with limitations in control of the lateral etch distance. In this dissertation it is presented the first nitride blue edge emitting LD with a photoelectrochemical etched current aperture (CA-LD) into the device active region. Photoelectrochemical etching (PECE) has emerged as a powerful wet etching technique for III-nitride compounds. Beyond the advantages of wet etching technique, PECE offers bandgap selectivity, which is particularly desirable because it allows more freedom in designing new and advanced devices with higher performances. In the first part of this thesis a review of PECE is presented, and it is shown how it can be used to achieve a selective and controllable deep undercut of the active region of LEDs and LDs, in particular the selective PECE of MQW active region of (10-10) m-plane and (20-2-1) plane structures is reported. In the second part of this thesis, the fabrication flow process of the CA-LD is described. The performance of these devices is compared with that of shallow etched ridge LDs with a nominally identical epitaxial structure and active region width and it is experimentally shown that the CA-LD design has superior performance. CW operation of a (20-2-1) CA-LD with a 1.5 microm wide active region is demonstrated. Finally, in the third and last part of this thesis, the CA-LD performance is discussed in more details, in particular, an analysis of optical scattering losses caused by the rough edges of the remnant PEC etched active region is presented.

  12. Comparative analysis of barium titanate thin films dry etching using inductively coupled plasmas by different fluorine-based mixture gas

    PubMed Central

    2014-01-01

    In this work, the inductively coupled plasma etching technique was applied to etch the barium titanate thin film. A comparative study of etch characteristics of the barium titanate thin film has been investigated in fluorine-based (CF4/O2, C4F8/O2 and SF6/O2) plasmas. The etch rates were measured using focused ion beam in order to ensure the accuracy of measurement. The surface morphology of etched barium titanate thin film was characterized by atomic force microscope. The chemical state of the etched surfaces was investigated by X-ray photoelectron spectroscopy. According to the experimental result, we monitored that a higher barium titanate thin film etch rate was achieved with SF6/O2 due to minimum amount of necessary ion energy and its higher volatility of etching byproducts as compared with CF4/O2 and C4F8/O2. Low-volatile C-F compound etching byproducts from C4F8/O2 were observed on the etched surface and resulted in the reduction of etch rate. As a result, the barium titanate films can be effectively etched by the plasma with the composition of SF6/O2, which has an etch rate of over than 46.7 nm/min at RF power/inductively coupled plasma (ICP) power of 150/1,000 W under gas pressure of 7.5 mTorr with a better surface morphology. PMID:25278821

  13. Inorganic Bi/In thermal resist as a high-etch-ratio patterning layer for CF4/CHF3/O2 plasma etch

    NASA Astrophysics Data System (ADS)

    Tu, Yuqiang; Chapman, Glenn H.; Peng, Jun

    2004-05-01

    Bimetallic thin films containing indium and with low eutectic points, such as Bi/In, have been found to form highly sensitive thermal resists. They can be exposed by lasers with a wide range of wavelengths and be developed by diluted RCA2 solutions. The exposed bimetallic resist Bi/In can work as an etch masking layer for alkaline-based (KOH, TMAH and EDP) "wet" Si anisotropic etching. Current research shows that it can also act as a patterning and masking layer for Si and SiO2 plasma "dry" etch using CF4/CHF3. The profile of etched structures can be tuned by adding CHF3 and other gases such as Ar, and by changing the CF4/CHF3 ratio. Depending on the fluorocarbon plasma etching recipe the etch rate of laser exposed Bi/In can be as low as 0.1nm/min, 500 times lower than organic photoresists. O2 plasma ashing has little etching effect on exposed Bi/In, indicating that laser exposure is an oxidation process. Experiment result shows that single metal Indium film and bilayer Sn/In exhibit thermal resist characteristics but at higher exposure levels. They can be developed in diluted RCA2 solution and used as etch mask layers for Si anisotropic etch and plasma etch.

  14. Dry etching of copper phthalocyanine thin films: effects on morphology and surface stoichiometry.

    PubMed

    Van Dijken, Jaron G; Brett, Michael J

    2012-08-24

    We investigate the evolution of copper phthalocyanine thin films as they are etched with argon plasma. Significant morphological changes occur as a result of the ion bombardment; a planar surface quickly becomes an array of nanopillars which are less than 20 nm in diameter. The changes in morphology are independent of plasma power, which controls the etch rate only. Analysis by X-ray photoelectron spectroscopy shows that surface concentrations of copper and oxygen increase with etch time, while carbon and nitrogen are depleted. Despite these changes in surface stoichiometry, we observe no effect on the work function. The absorbance and X-ray diffraction spectra show no changes other than the peaks diminishing with etch time. These findings have important implications for organic photovoltaic devices which seek nanopillar thin films of metal phthalocyanine materials as an optimal structure.

  15. Etch challenges for DSA implementation in CMOS via patterning

    NASA Astrophysics Data System (ADS)

    Pimenta Barros, P.; Barnola, S.; Gharbi, A.; Argoud, M.; Servin, I.; Tiron, R.; Chevalier, X.; Navarro, C.; Nicolet, C.; Lapeyre, C.; Monget, C.; Martinez, E.

    2014-03-01

    This paper reports on the etch challenges to overcome for the implementation of PS-b-PMMA block copolymer's Directed Self-Assembly (DSA) in CMOS via patterning level. Our process is based on a graphoepitaxy approach, employing an industrial PS-b-PMMA block copolymer (BCP) from Arkema with a cylindrical morphology. The process consists in the following steps: a) DSA of block copolymers inside guiding patterns, b) PMMA removal, c) brush layer opening and finally d) PS pattern transfer into typical MEOL or BEOL stacks. All results presented here have been performed on the DSA Leti's 300mm pilot line. The first etch challenge to overcome for BCP transfer involves in removing all PMMA selectively to PS block. In our process baseline, an acetic acid treatment is carried out to develop PMMA domains. However, this wet development has shown some limitations in terms of resists compatibility and will not be appropriated for lamellar BCPs. That is why we also investigate the possibility to remove PMMA by only dry etching. In this work the potential of a dry PMMA removal by using CO based chemistries is shown and compared to wet development. The advantages and limitations of each approach are reported. The second crucial step is the etching of brush layer (PS-r-PMMA) through a PS mask. We have optimized this step in order to preserve the PS patterns in terms of CD, holes features and film thickness. Several integrations flow with complex stacks are explored for contact shrinking by DSA. A study of CD uniformity has been addressed to evaluate the capabilities of DSA approach after graphoepitaxy and after etching.

  16. Fabrication and Characterization of CMOS-MEMS Magnetic Microsensors

    PubMed Central

    Hsieh, Chen-Hsuan; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    This study investigates the design and fabrication of magnetic microsensors using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process. The magnetic sensor is composed of springs and interdigitated electrodes, and it is actuated by the Lorentz force. The finite element method (FEM) software CoventorWare is adopted to simulate the displacement and capacitance of the magnetic sensor. A post-CMOS process is utilized to release the suspended structure. The post-process uses an anisotropic dry etching to etch the silicon dioxide layer and an isotropic dry etching to remove the silicon substrate. When a magnetic field is applied to the magnetic sensor, it generates a change in capacitance. A sensing circuit is employed to convert the capacitance variation of the sensor into the output voltage. The experimental results show that the output voltage of the magnetic microsensor varies from 0.05 to 1.94 V in the magnetic field range of 5–200 mT. PMID:24172287

  17. A self-aligned dry etching method for mechanical strain enhancement of germanium and its uniformity improvement for photonic applications

    NASA Astrophysics Data System (ADS)

    Lin, Yiding; Ma, Danhao; Lee, Kwang Hong; Michel, Jurgen; Tan, Chuan Seng

    2018-02-01

    A self-aligned dry etching method was proposed and verified theoretically to enhance the magnitude and simultaneously improve the uniformity of the tensile strain in a germanium (Ge) wave-guide (WG), with the help of tensile-stressed SiN stressor at the WG sidewalls. The SiN-strained germanium-on-insulator (GOI) WG was also experimentally demonstrated. Significant tensile strain was observed in the Ge material via micro-Raman measurements. This method could potentially facilitate a Ge photodetector with its optical detection range extended further towards longer wavelength and to be comparable with that of state-of-the-art InGaAs detectors.

  18. Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching

    NASA Astrophysics Data System (ADS)

    Debnath, Kapil; Khokhar, Ali; Boden, Stuart; Arimoto, Hideo; Oo, Swe; Chong, Harold; Reed, Graham; Saito, Shinichi

    2016-11-01

    We demonstrate low-loss slot waveguides on silicon-on-insulator (SOI) platform. Waveguides oriented along the (11-2) direction on the Si (110) plane were first fabricated by a standard e-beam lithography and dry etching process. A TMAH based anisotropic wet etching technique was then used to remove any residual side wall roughness. Using this fabrication technique propagation loss as low as 3.7dB/cm was realized in silicon slot waveguide for wavelengths near 1550nm. We also realized low propagation loss of 1dB/cm for silicon strip waveguides.

  19. Effects of a non-rinse conditioner on the enamel of primary teeth.

    PubMed

    Fava, Marcelo; Myaki, Silvio Issáo; Arana-Chavez, Victor Elias; Fava-de-Moraes, Flavio

    2003-01-01

    The aim of this in vitro study was to evaluate by scanning electron microscopy the morphological aspects of the enamel of primary teeth after etching with 36% phosphoric acid or a non-rinse conditioner. Ten naturally exfoliated anterior primary teeth were selected. The samples were subjected to prophylaxis with pumice paste and water using a low-speed hand piece. Etching was done on the buccal surface. Specimens were divided into 2 groups: G1 (n=10): etching with 36% phosphoric acid gel - Conditioner 36 (Dentsply) for 20 s, followed by water rinse for 15 s; G2 (n=10): etching with NRC - Non Rinse Conditioner (Dentsply) for 20 s, followed by air drying for 15 s. The samples were dehydrated, mounted on metal stubs, coated with gold and observed with Jeol JSM-6100 scanning electron microscope. Electron-micrographic analysis showed that both etching agents were effective for etching the enamel of primary teeth causing the formation of microporosities on the enamel surface, although the etching pattern was more effective with the use of 36% phosphoric acid gel.

  20. Alternative process for thin layer etching: Application to nitride spacer etching stopping on silicon germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posseme, N., E-mail: nicolas.posseme@cea.fr; Pollet, O.; Barnola, S.

    2014-08-04

    Silicon nitride spacer etching realization is considered today as one of the most challenging of the etch process for the new devices realization. For this step, the atomic etch precision to stop on silicon or silicon germanium with a perfect anisotropy (no foot formation) is required. The situation is that none of the current plasma technologies can meet all these requirements. To overcome these issues and meet the highly complex requirements imposed by device fabrication processes, we recently proposed an alternative etching process to the current plasma etch chemistries. This process is based on thin film modification by light ionsmore » implantation followed by a selective removal of the modified layer with respect to the non-modified material. In this Letter, we demonstrate the benefit of this alternative etch method in term of film damage control (silicon germanium recess obtained is less than 6 A), anisotropy (no foot formation), and its compatibility with other integration steps like epitaxial. The etch mechanisms of this approach are also addressed.« less

  1. Optical and electrical characterization methods of plasma-induced damage in silicon nitride films

    NASA Astrophysics Data System (ADS)

    Kuyama, Tomohiro; Eriguchi, Koji

    2018-06-01

    We proposed evaluation methods of plasma-induced damage (PID) in silicon nitride (SiN) films. The formation of an oxide layer by air exposure was identified for damaged SiN films by X-ray photoelectron spectroscopy (XPS). Bruggeman’s effective medium approximation was employed for an optical model consisting of damaged and undamaged layers, which is applicable to an in-line monitoring by spectroscopic ellipsometry (SE). The optical thickness of the damaged layer — an oxidized layer — extended after plasma exposure, which was consistent with the results obtained by a diluted hydrofluoric acid (DHF) wet etching. The change in the conduction band edge of the damaged SiN films was presumed from two electrical techniques, i.e., current–voltage (I–V) measurement and time-dependent dielectric breakdown (TDDB) test with a constant voltage stress. The proposed techniques can be used for assigning the plasma-induced structural change in an SiN film widely used as an etch-protecting layer.

  2. Enamel Wetness Effects on Microshear Bond Strength of Different Bonding Agents (Adhesive Systems): An in vitro Comparative Evaluation Study.

    PubMed

    Kulkarni, Girish; Mishra, Vinay K

    2016-05-01

    The purpose of this study was to compare the effect of enamel wetness on microshear bond strength using different adhesive systems. To evaluate microshear bond strength of three bonding agents on dry enamel; to evaluate microshear bond strength of three bonding agents on wet enamel; and to compare microshear bond strength of three different bonding agents on dry and wet enamel. Sixty extracted noncarious human premolars were selected for this study. Flat enamel surfaces of approximately 3 mm were obtained by grinding the buccal surfaces of premolars with water-cooled diamond disks. This study evaluated one etch-and-rinse adhesive system (Single Bond 2) and two self-etching adhesive systems (Clearfil SE Bond and Xeno-V). The specimens were divided into two groups (n = 30). Group I (dry) was air-dried for 30 seconds and in group II (wet) surfaces were blotted with absorbent paper to remove excess water. These groups were further divided into six subgroups (n = 10) according to the adhesives used. The resin composite, Filtek Z 250, was bonded to flat enamel surfaces that had been treated with one of the adhesives, following the manufacturer's instructions. After being stored in water at 37°C for 24 hours, bonded specimens were stressed in universal testing machine (Fig. 3) at a crosshead speed of 1 mm/min. The data were evaluated with one-way and two-way analysis of variance (ANOVA), t-test, and Tukey's Multiple Post hoc tests (a = 0.05). The two-way ANOVA and Tukey's Multiple Post hoc tests showed significant differences among adhesive systems, but wetness did not influence microshear bond strength (p = 0.1762). The one-way ANOVA and t-test showed that the all-in-one adhesive (Xeno-V) was the only material influenced by the presence of water on the enamel surface. Xeno-V showed significantly higher microshear bond strength when the enamel was kept wet. Single Bond 2 adhesive showed significantly higher microshear bond strength as compared with Xeno-V adhesive but no significant difference when compared with Clearfil SE Bond adhesive in dry enamel. Single Bond 2 adhesive showed no significant difference in microshear bond strength as compared with self-etching adhesive systems (Clearfil SE Bond and Xeno-V), when the enamel was kept wet. From the findings of the results, it was concluded that self-etching adhesives were not negatively affected by the presence of water on the enamel surface. The all-in-one adhesive showed different behavior depending on whether the enamel surface was dry or wet. So the enamel surface should not be desiccated, when self-etching adhesives are used.

  3. Ion beam enhanced etching of LiNbO 3

    NASA Astrophysics Data System (ADS)

    Schrempel, F.; Gischkat, Th.; Hartung, H.; Kley, E.-B.; Wesch, W.

    2006-09-01

    Single crystals of z- and x-cut LiNbO 3 were irradiated at room temperature and 15 K using He +- and Ar +-ions with energies of 40 and 350 keV and ion fluences between 5 × 10 12 and 5 × 10 16 cm -2. The damage formation investigated with Rutherford backscattering spectrometry (RBS) channeling analysis depends on the irradiation temperature as well as the ion species. For instance, He +-irradiation of z-cut material at 300 K provokes complete amorphization at 2.0 dpa (displacements per target atom). In contrast, 0.4 dpa is sufficient to amorphize the LiNbO 3 in the case of Ar +-irradiation. Irradiation at 15 K reduces the number of displacements per atom necessary for amorphization. To study the etching behavior, 400 nm thick amorphous layers were generated via multiple irradiation with He +- and Ar +-ions of different energies and fluences. Etching was performed in a 3.6% hydrofluoric (HF) solution at 40 °C. Although the etching rate of the perfect crystal is negligible, that of the amorphized regions amounts to 80 nm min -1. The influence of the ion species, the fluence, the irradiation temperature and subsequent thermal treatment on damage and etching of LiNbO 3 are discussed.

  4. Self-Healing Thermal Annealing: Surface Morphological Restructuring Control of GaN Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Michele; Li, Haoning; Zubialevich, Vitaly Z.

    With advances in nanolithography and dry etching, top-down methods of nanostructuring have become a widely used tool for improving the efficiency of optoelectronics. These nano dimensions can offer various benefits to the device performance in terms of light extraction and efficiency, but often at the expense of emission color quality. Broadening of the target emission peak and unwanted yellow luminescence are characteristic defect-related effects due to the ion beam etching damage, particularly for III–N based materials. In this article we focus on GaN based nanorods, showing that through thermal annealing the surface roughness and deformities of the crystal structure canmore » be “self-healed”. Correlative electron microscopy and atomic force microscopy show the change from spherical nanorods to faceted hexagonal structures, revealing the temperature-dependent surface morphology faceting evolution. The faceted nanorods were shown to be strain- and defect-free by cathodoluminescence hyperspectral imaging, micro-Raman, and transmission electron microscopy (TEM). In-situ TEM thermal annealing experiments allowed for real time observation of dislocation movements and surface restructuring observed in ex-situ annealing TEM sampling. This thermal annealing investigation gives new insight into the redistribution path of GaN material and dislocation movement post growth, allowing for improved understanding and in turn advances in optoelectronic device processing of compound semiconductors.« less

  5. Distributed feedback InGaN/GaN laser diodes

    NASA Astrophysics Data System (ADS)

    Slight, Thomas J.; Watson, Scott; Yadav, Amit; Grzanka, Szymon; Stanczyk, Szymon; Docherty, Kevin E.; Rafailov, Edik; Perlin, Piotr; Najda, Steve; Leszczyński, Mike; Kelly, Anthony E.

    2018-02-01

    We have realised InGaN/GaN distributed feedback laser diodes emitting at a single wavelength in the 42X nm wavelength range. Laser diodes based on Gallium Nitride (GaN) are useful devices in a wide range of applications including atomic spectroscopy, data storage and optical communications. To fully exploit some of these application areas there is a need for a GaN laser diode with high spectral purity, e.g. in atomic clocks, where a narrow line width blue laser source can be used to target the atomic cooling transition. Previously, GaN DFB lasers have been realised using buried or surface gratings. Buried gratings require complex overgrowth steps which can introduce epi-defects. Surface gratings designs, can compromise the quality of the p-type contact due to dry etch damage and are prone to increased optical losses in the grating regions. In our approach the grating is etched into the sidewall of the ridge. Advantages include a simpler fabrication route and design freedom over the grating coupling strength.Our intended application for these devices is cooling of the Sr+ ion and for this objective the laser characteristics of SMSR, linewidth, and power are critical. We investigate how these characteristics are affected by adjusting laser design parameters such as grating coupling coefficient and cavity length.

  6. Effect of air-drying time of single-application self-etch adhesives on dentin bond strength.

    PubMed

    Chiba, Yasushi; Yamaguchi, Kanako; Miyazaki, Masashi; Tsubota, Keishi; Takamizawa, Toshiki; Moore, B Keith

    2006-01-01

    This study examined the effect of air-drying time of adhesives on the dentin bond strength of several single-application self-etch adhesive systems. The adhesive/resin composite combinations used were: Adper Prompt L-Pop/Filtek Z250 (AP), Clearfil Tri-S Bond/Clearfil AP-X (CT), Fluoro Bond Shake One/Beautifil (FB), G-Bond/Gradia Direct (GB) and One-Up Bond F Plus/Palfique Estelite (OF). Bovine mandibular incisors were mounted in self-curing resin and wet ground with #600 SiC to expose labial dentin. Adhesives were applied according to each manufacturer's instructions followed by air-drying time for 0 (without air-drying), 5 and 10 seconds. After light irradiation of the adhesives, the resin composites were condensed into a mold (phi4x2 mm) and polymerized. Ten samples per test group were stored in 37 degrees C distilled water for 24 hours; they were then shear tested at a crosshead speed of 1.0 mm/minute. One-way ANOVA followed by Tukey's HSD tests (alpha = 0.05) were done. FE-SEM observations of the resin/dentin interface were also conducted. Dentin bond strength varied with the different air drying times and ranged from 5.8 +/- 2.4 to 13.9 +/- 2.8 MPa for AP, 4.9 +/- 1.5 to 17.1 +/- 2.3 MPa for CT, 7.9 +/- 2.8 to 13.8 +/- 2.4 MPa for FB, 3.7 +/- 1.4 to 13.4 +/- 1.2 MPa for GB and 4.6 +/- 2.1 to 13.7 +/- 2.6 MPa for OF. With longer air drying of adhesives, no significant changes in bond strengths were found for the systems used except for OF. Significantly lower bond strengths were obtained for the 10-second air-drying group for OF. From FE-SEM observations, gaps between the cured adhesive and resin composites were observed for the specimens without the air drying of adhesives except for OF. The data suggests that, with four of the single-application self-etch adhesive systems, air drying is essential to obtain adequate dentin bond strengths, but increased drying time does not significantly influence bond strength. For the other system studied, the bond strength of the non-air dried group was not significantly different from the five second drying time, but prolonged drying was very detrimental to bond strength. For all five of the systems studied, a five-second air-drying time appeared to be appropriate.

  7. Surface characteristics and damage distributions of diamond wire sawn wafers for silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopori, Bhushan; Devayajanam, Srinivas; Basnyat, Prakash

    2016-01-01

    This paper describes surface characteristics, in terms of its morphology, roughness and near-surface damage of Si wafers cut by diamond wire sawing (DWS) of Si ingots under different cutting conditions. Diamond wire sawn Si wafers exhibit nearly-periodic surface features of different spatial wavelengths, which correspond to kinematics of various movements during wafering, such as ingot feed, wire reciprocation, and wire snap. The surface damage occurs in the form of frozen-in dislocations, phase changes, and microcracks. The in-depth damage was determined by conventional methods such as TEM, SEM and angle-polishing/defect-etching. However, because these methods only provide local information, we have alsomore » applied a new technique that determines average damage depth over a large area. This technique uses sequential measurement of the minority carrier lifetime after etching thin layers from the surfaces. The lateral spatial damage variations, which seem to be mainly related to wire reciprocation process, were observed by photoluminescence and minority carrier lifetime mapping. Our results show a strong correlation of damage depth on the diamond grit size and wire usage.« less

  8. Anisotropic selective etching between SiGe and Si

    NASA Astrophysics Data System (ADS)

    Ishii, Yohei; Scott-McCabe, Ritchie; Yu, Alex; Okuma, Kazumasa; Maeda, Kenji; Sebastian, Joseph; Manos, Jim

    2018-06-01

    In Si/SiGe dual-channel FinFETs, it is necessary to simultaneously control the etched amounts of SiGe and Si. However, the SiGe etch rate is higher than the Si etch rate in not only halogen plasmas but also physical sputtering. In this study, we found that hydrogen plasma selectively etches Si over SiGe. The result shows that the selectivity of Si over SiGe can be up to 38 with increasing Ge concentration in SiGe. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) results indicate that hydrogen selectively bonds with Si rather than with Ge in SiGe. During the etching, hydrogen-induced Si surface segregation is also observed. It is also observed that the difference in etched amount between SiGe and Si can be controlled from positive to negative values even in Si/SiGe dual-channel fin patterning while maintaining the vertical profiles. Furthermore, no plasma-induced lattice damage was observed by transmission electron microscopy for both Si and SiGe fin sidewalls.

  9. Plasma etching of superconducting Niobium tips for scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roychowdhury, A.; Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, Maryland 20742; Dana, R.

    We have developed a reproducible technique for the fabrication of sharp superconducting Nb tips for scanning tunneling microscopy (STM) and scanning tunneling spectroscopy. Sections of Nb wire with 250 μm diameter are dry etched in an SF₆ plasma in a Reactive Ion Etcher. The gas pressure, etching time, and applied power are chosen to control the ratio of isotropic to anisotropic etch rates and produce the desired tip shape. The resulting tips are atomically sharp, with radii of less than 100 nm, mechanically stable, and superconducting. They generate good STM images and spectroscopy on single crystal samples of Au(111), Au(100),more » and Nb(100), as well as a doped topological insulator Bi₂Se₃ at temperatures ranging from 30 mK to 9 K.« less

  10. A new universal simplified adhesive: 36-Month randomized double-blind clinical trial.

    PubMed

    Loguercio, Alessandro D; de Paula, Eloisa Andrade; Hass, Viviane; Luque-Martinez, Issis; Reis, Alessandra; Perdigão, Jorge

    2015-09-01

    It is still debatable which technique should be used with universal adhesives, either etch-and-rinse (wet or dry) or self-etch strategy (with or without selective enamel etching). To evaluate the 36-month clinical performance of Scotchbond Universal Adhesive (SU, 3M ESPE) in non-carious cervical lesions (NCCLs) using two evaluation criteria. Thirty-nine patients participated in this study. Two-hundred restorations were assigned to four groups: ERm: etch-and-rinse+moist dentin; ERd: etch-and-rinse+dry dentin; Set: selective enamel etching; and SE: self-etch. The same composite resin was inserted for all restorations in up to 3 increments. The restorations were evaluated at baseline and at 6-, 18-, and 36-months using both the FDI and the USPHS criteria. Statistical analyses were performed with Friedman repeated measures ANOVA by rank and McNemar test for significance in each pair (α=0.05). Eight restorations (ERm: 1; ERd: 1; Set: 1 and SE: 5) were lost after 36 months, but only significant for SE when compared with baseline (p=0.02 for either criteria). Marginal staining occurred in 6.8% of the restorations (groups ERm, ERd, and Set) and 17.5% of the restorations (group SE), with significant difference for each group when compared with baseline using the FDI criteria (p<0.04), while statistical significance was reached only for SE when compared with baseline using the USPHS criteria (p<0.03). Twenty-eight and 49 restorations were scored as bravo for marginal adaptation using the USPHS and FDI criteria, respectively, with significant difference for each group when compared with baseline (p<0.05). While there was no statistical difference among bonding strategies when a universal adhesive was used, there were signs of degradation when the universal adhesive was applied in SE mode. The FDI criteria remain more sensitive than the USPHS criteria, especially for the criteria marginal staining and marginal adaptation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Pretreatment of lubricated surfaces with sputtered cadmium oxide

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L. (Inventor)

    1991-01-01

    Cadmium oxide is used with a dry solid lubricant on a surface to improve wear resistance. The surface topography is first altered by photochemical etching to a predetermined pattern. The cadmium oxide is then sputtered onto the altered surface to form an intermediate layer to more tightly hold the dry lubricant, such as graphite.

  12. Reduction of the 355-nm laser-induced damage initiators by removing the subsurface cracks in fused silica

    NASA Astrophysics Data System (ADS)

    Yang, Minghong; Qi, Hongji; Zhao, Yuanan; Yi, Kui

    2012-01-01

    The 355 nm laser-induced damage thresholds (LIDTs) of polished fused silica with and without the residual subsurface cracks were explored. HF based wet etching and magnetorheological finishing was used to remove the subsurface cracks. To isolate the effect of subsurface cracks, chemical leaching was used to eliminate the photoactive impurities in the polishing layer. Results show that the crack number density decreased from~103 to <1cm-2, and the LIDT was improved as high as 2.8-fold with both the subsurface cracks and the polishing layer being removed. Subsurface cracks play a significant role in laser damage at fluencies between 15~31 J/cm2 (355nm, 8ns). HF Etching of the cracks was shown to increase the damage performance as nearly high as that of the samples in which subsurface cracks are well controlled.

  13. High-aspect ratio micro- and nanostructures enabled by photo-electrochemical etching for sensing and energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Alhalaili, Badriyah; Dryden, Daniel M.; Vidu, Ruxandra; Ghandiparsi, Soroush; Cansizoglu, Hilal; Gao, Yang; Saif Islam, M.

    2018-03-01

    Photo-electrochemical (PEC) etching can produce high-aspect ratio features, such as pillars and holes, with high anisotropy and selectivity, while avoiding the surface and sidewall damage caused by traditional deep reactive ion etching (DRIE) or inductively coupled plasma (ICP) RIE. Plasma-based techniques lead to the formation of dangling bonds, surface traps, carrier leakage paths, and recombination centers. In pursuit of effective PEC etching, we demonstrate an optical system using long wavelength (λ = 975 nm) infra-red (IR) illumination from a high-power laser (1-10 W) to control the PEC etching process in n-type silicon. The silicon wafer surface was patterned with notches through a lithography process and KOH etching. Then, PEC etching was introduced by illuminating the backside of the silicon wafer to enhance depth, resulting in high-aspect ratio structures. The effect of the PEC etching process was optimized by varying light intensities and electrolyte concentrations. This work was focused on determining and optimizing this PEC etching technique on silicon, with the goal of expanding the method to a variety of materials including GaN and SiC that are used in designing optoelectronic and electronic devices, sensors and energy harvesting devices.

  14. Selective Plasma Deposition of Fluorocarbon Films on SAMs

    NASA Technical Reports Server (NTRS)

    Crain, Mark M., III; Walsh, Kevin M.; Cohn, Robert W.

    2006-01-01

    A dry plasma process has been demonstrated to be useful for the selective modification of self-assembled monolayers (SAMs) of alkanethiolates. These SAMs are used, during the fabrication of semiconductor electronic devices, as etch masks on gold layers that are destined to be patterned and incorporated into the devices. The selective modification involves the formation of fluorocarbon films that render the SAMs more effective in protecting the masked areas of the gold against etching by a potassium iodide (KI) solution. This modification can be utilized, not only in the fabrication of single electronic devices but also in the fabrication of integrated circuits, microelectromechanical systems, and circuit boards. In the steps that precede the dry plasma process, a silicon mold in the desired pattern is fabricated by standard photolithographic techniques. A stamp is then made by casting polydimethylsiloxane (commonly known as silicone rubber) in the mold. The stamp is coated with an alkanethiol solution, then the stamp is pressed on the gold layer of a device to be fabricated in order to deposit the alkanethiol to form an alkanethiolate SAM in the desired pattern (see figure). Next, the workpiece is exposed to a radio-frequency plasma generated from a mixture of CF4 and H2 gases. After this plasma treatment, the SAM is found to be modified, while the exposed areas of gold remain unchanged. This dry plasma process offers the potential for forming masks superior to those formed in a prior wet etching process. Among the advantages over the wet etching process are greater selectivity, fewer pin holes in the masks, and less nonuniformity of the masks. The fluorocarbon films formed in this way may also be useful as intermediate layers for subsequent fabrication steps and as dielectric layers to be incorporated into finished products.

  15. Study of copper-free back contacts to thin film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vijay

    The goals of this project are to study Cu free back contact alternatives for CdS/CdTe thin film solar cells, and to research dry etching for CdTe surface preparation before contact application. In addition, an attempt has been made to evaluate the stability of some of the contacts researched. The contacts studied in this work include ZnTe/Cu2Te, Sb2Te 3, and Ni-P alloys. The ZnTe/Cu2Te contact system is studied as basically an extension of the earlier work done on Cu2Te at USF. RF sputtering from a compound target of ZnTe and Cu2Te respectively deposits these layers on etched CdTe surface. The effect of Cu2Te thickness and deposition temperature on contact and cell performance will be studied with the ZnTe depositions conditions kept constant. C-V measurements to study the effect of contact deposition conditions on CdTe doping will also be performed. These contacts will then be stressed to high temperatures (70--100°C) and their stability with stress time is analyzed. Sb2Te3 will be deposited on glass using RF sputtering, to study film properties with deposition temperature. The Sb2Te 3 contact performance will also be studied as a function of the Sb 2Te3 deposition temperature and thickness. The suitability of Ni-P alloys for back contacts to CdTe solar cells was studied by forming a colloidal mixture of Ni2P in graphite paste. The Ni-P contacts, painted on Br-methanol etched CdTe surface, will be studied as a function of Ni-P concentration (in the graphite paste), annealing temperature and time. Some of these cells will undergo temperature stress testing to determine contact behavior with time. Dry etching of CdTe will be studied as an alternative for wet etching processes currently used for CdTe solar cells. The CdTe surface is isotropically etched in a barrel reactor in N2, Ar or Ar:O 2 ambient. The effect of etching ambient, pressure, plasma power and etch time on contact performance will be studied.

  16. Deterministic Nanopatterning of Diamond Using Electron Beams.

    PubMed

    Bishop, James; Fronzi, Marco; Elbadawi, Christopher; Nikam, Vikram; Pritchard, Joshua; Fröch, Johannes E; Duong, Ngoc My Hanh; Ford, Michael J; Aharonovich, Igor; Lobo, Charlene J; Toth, Milos

    2018-03-27

    Diamond is an ideal material for a broad range of current and emerging applications in tribology, quantum photonics, high-power electronics, and sensing. However, top-down processing is very challenging due to its extreme chemical and physical properties. Gas-mediated electron beam-induced etching (EBIE) has recently emerged as a minimally invasive, facile means to dry etch and pattern diamond at the nanoscale using oxidizing precursor gases such as O 2 and H 2 O. Here we explain the roles of oxygen and hydrogen in the etch process and show that oxygen gives rise to rapid, isotropic etching, while the addition of hydrogen gives rise to anisotropic etching and the formation of topographic surface patterns. We identify the etch reaction pathways and show that the anisotropy is caused by preferential passivation of specific crystal planes. The anisotropy can be controlled by the partial pressure of hydrogen and by using a remote RF plasma source to radicalize the precursor gas. It can be used to manipulate the geometries of topographic surface patterns as well as nano- and microstructures fabricated by EBIE. Our findings constitute a comprehensive explanation of the anisotropic etch process and advance present understanding of electron-surface interactions.

  17. Seebeck Coefficient of Thermocouples from Nickel-Coated Carbon Fibers: Theory and Experiment.

    PubMed

    Hardianto, Hardianto; De Mey, Gilbert; Ciesielska-Wrόbel, Izabela; Hertleer, Carla; Van Langenhove, Lieva

    2018-05-30

    Thermocouples made of etched and non-etched nickel-coated carbon yarn (NiCCY) were investigated. Theoretic Seebeck coefficients were compared to experimental results from measurements of generated electric voltage by these thermocouples. The etching process for making thermocouples was performed by immersion of NiCCY in the solution containing a mixture of hydrochloric acid (HCl) (37% of concentration), and hydrogen peroxide (H₂O₂) in three different concentrations-3%, 6%, and 10%. Thirty minutes of etching to remove Ni from NiCCY was followed by washing and drying. Next, the ability to generate electrical voltage by the thermocouples (being a junction of the etched and the non-etched NiCCY) was measured in different ranges of temperatures, both a cold junction (291.15⁻293.15 K) and a hot junction (293.15⁻325.15 K). A formula predicting the Seebeck coefficient of this thermocouple was elaborated, taking into consideration resistance values of the tested samples. It was proven that there is a good agreement between the theoretical and experimental data, especially for the yarns etched with 6% and 10% peroxide (both were mixed with HCl). The electrical resistance of non-fully etched nickel remaining on the carbon fiber surface ( R 1 ) can have a significant effect on the thermocouples' characteristics.

  18. Anisotropic etching of amorphous perfluoropolymer films in oxygen-based inductively coupled plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Takao; Akagi, Takanori; Center for NanoBio Integration, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656

    2009-01-01

    An amorphous perfluoropolymer, 'Cytop' (Asahi Glass Co., Ltd.), is a preferable material for the fabrication of micro total analysis system devices because of its superior optical transparency over a wide wavelength range and low refractive index of 1.34, which is almost the same as that of water, as well as excellent chemical stability. To establish the precise microfabrication technology for this unique resin, the dry etching of the amorphous perfluoropolymer in Ar/O{sub 2} low-pressure inductively coupled plasma has been studied. A relatively high etch rate of approximately 6.3 {mu}m/min at maximum and highly anisotropic etched features was attained. Plasma measurementsmore » by a single Langmuir probe technique and actinometry revealed that etching is dominated by ion-assisted surface desorption above a 10%O{sub 2} mixing ratio, whereas the supply of active oxygen species is the rate-limiting process below 10%. Moreover, angled x-ray photoelectron spectroscopy measurements of an etched trench pattern revealed that a high anisotropy is attributed to the formation of a carbon-rich sidewall protection layer.« less

  19. Improvement in etching rate for epilayer lift-off with surfactant

    NASA Astrophysics Data System (ADS)

    Wu, Fan-Lei; Horng, Ray-Hua; Lu, Jian-Heng; Chen, Chun-Li; Kao, Yu-Cheng

    2013-03-01

    In this study, the GaAs epilayer is quickly separated from GaAs substrate by epitaxial lift-off (ELO) process with mixture etchant solution. The HF solution mixes with surfactant as mixture etchant solution to etch AlAs sacrificial layer for the selective wet etching of AlAs sacrificial layer. Addiction surfactants etchant significantly enhance the etching rate in the hydrofluoric acid etching solution. It is because surfactant provides hydrophilicity to change the contact angle with enhances the fluid properties of the mixture etchant between GaAs epilayer and GaAs substrate. Arsine gas was released from the etchant solution because the critical reaction product in semiconductor etching is dissolved arsine gas. Arsine gas forms a bubble, which easily displaces the etchant solution, before the AlAs layer was undercut. The results showed that acetone and hydrofluoric acid ratio of about 1:1 for the fastest etching rate of 13.2 μm / min. The etching rate increases about 4 times compared with pure hydrofluoric acid, moreover can shorten the separation time about 70% of GaAs epilayer with GaAs substrate. The results indicate that etching ratio and stability are improved by mixture etchant solution. It is not only saving the epilayer and the etching solution exposure time, but also reducing the damage to the epilayer structure.

  20. Spindt cold cathode electron gun development program

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.

    1983-01-01

    A thin film field emission cathode array and an electron gun based on this emitter array are summarized. Fabricating state of the art cathodes for testing at NASA and NRL, advancing the fabrication technology, developing wedge shaped emitters, and performing emission tests are covered. An anistropic dry etching process (reactive ion beam etching) developed that leads to increasing the packing density of the emitter tips to about 5 x 10 to the 6th power/square cm. Tests with small arrays of emitter tips having about 10 tips has demonstrated current densities of over 100 A/sq cm. Several times using cathodes having a packing density of 1.25 x 10 to the 6th power tips/sq cm. Indications are that the higher packing density achievable with the dry etch process may extend this capability to the 500 A/sq cm range and beyond. The wedge emitter geometry was developed and shown to produce emission. This geometry can (in principle) extend the current density capability of the cathodes beyond the 500 A/sq cm level. An emission microscope was built and tested for use with the cathodes.

  1. Processing-Induced Electrically Active Defects in Black Silicon Nanowire Devices.

    PubMed

    Carapezzi, Stefania; Castaldini, Antonio; Mancarella, Fulvio; Poggi, Antonella; Cavallini, Anna

    2016-04-27

    Silicon nanowires (Si NWs) are widely investigated nowadays for implementation in advanced energy conversion and storage devices, as well as many other possible applications. Black silicon (BSi)-NWs are dry etched NWs that merge the advantages related to low-dimensionality with the special industrial appeal connected to deep reactive ion etching (RIE). In fact, RIE is a well established technique in microelectronics manufacturing. However, RIE processing could affect the electrical properties of BSi-NWs by introducing deep states into their forbidden gap. This work applies deep level transient spectroscopy (DLTS) to identify electrically active deep levels and the associated defects in dry etched Si NW arrays. Besides, the successful fitting of DLTS spectra of BSi-NWs-based Schottky barrier diodes is an experimental confirmation that the same theoretical framework of dynamic electronic behavior of deep levels applies in bulk as well as in low dimensional structures like NWs, when quantum confinement conditions do not occur. This has been validated for deep levels associated with simple pointlike defects as well as for deep levels associated with defects with richer structures, whose dynamic electronic behavior implies a more complex picture.

  2. Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators

    PubMed Central

    Kao, Pin-Hsu; Shih, Po-Jen; Dai, Ching-Liang; Liu, Mao-Chen

    2010-01-01

    This work presents a thermoelectric micro generator fabricated by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and the post-CMOS process. The micro generator is composed of 24 thermocouples in series. Each thermocouple is constructed by p-type and n-type polysilicon strips. The output power of the generator depends on the temperature difference between the hot and cold parts in the thermocouples. In order to prevent heat-receiving in the cold part in the thermocouples, the cold part is covered with a silicon dioxide layer with low thermal conductivity to insulate the heat source. The hot part of the thermocouples is suspended and connected to an aluminum plate, to increases the heat-receiving area in the hot part. The generator requires a post-CMOS process to release the suspended structures. The post-CMOS process uses an anisotropic dry etching to remove the oxide sacrificial layer and an isotropic dry etching to etch the silicon substrate. Experimental results show that the micro generator has an output voltage of 67 μV at the temperature difference of 1 K. PMID:22205869

  3. Fabrication of wear-resistant silicon microprobe tips for high-speed surface roughness scanning devices

    NASA Astrophysics Data System (ADS)

    Wasisto, Hutomo Suryo; Yu, Feng; Doering, Lutz; Völlmeke, Stefan; Brand, Uwe; Bakin, Andrey; Waag, Andreas; Peiner, Erwin

    2015-05-01

    Silicon microprobe tips are fabricated and integrated with piezoresistive cantilever sensors for high-speed surface roughness scanning systems. The fabrication steps of the high-aspect-ratio silicon microprobe tips were started with photolithography and wet etching of potassium hydroxide (KOH) resulting in crystal-dependent micropyramids. Subsequently, thin conformal wear-resistant layer coating of aluminum oxide (Al2O3) was demonstrated on the backside of the piezoresistive cantilever free end using atomic layer deposition (ALD) method in a binary reaction sequence with a low thermal process and precursors of trimethyl aluminum and water. The deposited Al2O3 layer had a thickness of 14 nm. The captured atomic force microscopy (AFM) image exhibits a root mean square deviation of 0.65 nm confirming the deposited Al2O3 surface quality. Furthermore, vacuum-evaporated 30-nm/200-nm-thick Au/Cr layers were patterned by lift-off and served as an etch mask for Al2O3 wet etching and in ICP cryogenic dry etching. By using SF6/O2 plasma during inductively coupled plasma (ICP) cryogenic dry etching, micropillar tips were obtained. From the preliminary friction and wear data, the developed silicon cantilever sensor has been successfully used in 100 fast measurements of 5- mm-long standard artifact surface with a speed of 15 mm/s and forces of 60-100 μN. Moreover, the results yielded by the fabricated silicon cantilever sensor are in very good agreement with those of calibrated profilometer. These tactile sensors are targeted for use in high-aspect-ratio microform metrology.

  4. Polymerization contraction stress in dentin adhesives bonded to dentin and enamel.

    PubMed

    Hashimoto, Masanori; de Gee, Anton J; Feilzer, Albert J

    2008-10-01

    In a previous study on of polymerization contraction stress determinations of adhesives bonded to dentin a continuous decline of stress was observed after the adhesives had been light-cured. The decline was ascribed to stress relief caused by diffusion into the adhesive layer of water and/or solvents, left in the impregnated dentin surface after drying and/or evaporation in the application procedure. The purpose of the present study was to test the hypothesis that the contraction stress of adhesives bonded to enamel will not decline after light-curing, based on the assumption that water and/or solvents are more efficiently removed from impregnated enamel surfaces in the drying and/or evaporation step. Contraction stress was determined in a tensilometer for three total-etching adhesives Scotchbond multi-purpose, Single bond and One-step plus and four self-etching adhesives Clearfil SE Bond, Clearfil Protect Bond, AdheSE, and Xeno III. The adhesives were placed in a thin layer between a glass plate and a flat dentin or enamel surface pre-treated with phosphoric acid or self-etching primer and light-cured under constrained conditions. All adhesives bonded to enamel showed a stress decline, but significantly less than for dentin with the exception of two self-etching adhesives. The greatest decline was found for the total-etching adhesive systems bonded to dentin. The presence of hydrophobic monomers in the adhesives had a significant influence on the decline. The experiments indicate that fluids are withdrawn from the resin impregnated tooth structures, which may result in small defects in the tooth-resin interfaces.

  5. Etching Selectivity of Cr, Fe and Ni Masks on Si & SiO2 Wafers

    NASA Astrophysics Data System (ADS)

    Garcia, Jorge; Lowndes, Douglas H.

    2000-10-01

    During this Summer 2000 I joined the Semiconductors and Thin Films group led by Dr. Douglas H. Lowndes at Oak Ridge National Laboratory’s Solid State Division. Our objective was to evaluate the selectivity that Trifluoromethane (CHF3), and Sulfur Hexafluoride (SF6) plasmas have for Si, SiO2 wafers and the Ni, Cr, and Fe masks; being this etching selectivity the ratio of the etching rates of the plasmas for each of the materials. We made use of Silicon and Silicon Dioxide-coated wafers that have Fe, Cr or Ni masks. In the semiconductor field, metal layers are often used as masks to protect layers underneath during processing steps; when these wafers are taken to the dry etching process, both the wafer and the mask layers’ thickness are reduced.

  6. Highly selective dry etching of GaP in the presence of AlxGa1–xP with a SiCl4/SF6 plasma

    NASA Astrophysics Data System (ADS)

    Hönl, Simon; Hahn, Herwig; Baumgartner, Yannick; Czornomaz, Lukas; Seidler, Paul

    2018-05-01

    We present an inductively coupled-plasma reactive-ion etching process that simultaneously provides both a high etch rate and unprecedented selectivity for gallium phosphide (GaP) in the presence of aluminum gallium phosphide (AlxGa1–xP). Utilizing mixtures of silicon tetrachloride (SiCl4) and sulfur hexafluoride (SF6), selectivities exceeding 2700:1 are achieved at GaP etch rates above 3000 nm min‑1. A design of experiments has been employed to investigate the influence of the inductively coupled-plasma power, the chamber pressure, the DC bias and the ratio of SiCl4 to SF6. The process enables the use of thin AlxGa1–xP stop layers even at aluminum contents of a few percent.

  7. High-Frequency (>50 MHz) Medical Ultrasound Linear Arrays Fabricated From Micromachined Bulk PZT Materials

    PubMed Central

    Liu, Changgeng; Zhou, Qifa; Djuth, Frank T.; Shung, K. Kirk

    2012-01-01

    This paper describes the development and characterization of a high-frequency (65-MHz) ultrasound transducer linear array. The array was built from bulk PZT which was etched using an optimized chlorine-based plasma dry-etching process. The median etch rate of 8 μm/h yielded a good profile (wall) angle (>83°) and a reasonable processing time for etch depths up to 40 μm (which corresponds to a 50-MHz transducer). A backing layer with an acoustic impedance of 6 MRayl and a front-end polymer matching layer yielded a transducer bandwidth of 40%. The major parameters of the transducer have been characterized. The two-way insertion loss and crosstalk between adjacent channels at the center frequency are 26.5 and −25 dB, respectively. PMID:24626041

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, D.; Sankaranarayanan, S.; Khachariya, D.

    We demonstrate a method for nanowire formation by natural selection during wet anisotropic chemical etching in boiling phosphoric acid. Nanowires of sub-10 nm lateral dimensions and lengths of 700 nm or more are naturally formed during the wet etching due to the convergence of the nearby crystallographic hexagonal etch pits. These nanowires are site controlled when formed in augmentation with dry etching. Temperature and power dependent photoluminescence characterizations confirm excitonic transitions up to room temperature. The exciton confinement is enhanced by using two-dimensional confinement whereby enforcing greater overlap of the electron-hole wave-functions. The surviving nanowires have less defects and a small temperaturemore » variation of the output electroluminescent light. We have observed superluminescent behaviour of the light emitting diodes formed on these nanowires. There is no observable efficiency roll off for current densities up to 400 A/cm{sup 2}.« less

  9. Performance improvements of binary diffractive structures via optimization of the photolithography and dry etch processes

    NASA Astrophysics Data System (ADS)

    Welch, Kevin; Leonard, Jerry; Jones, Richard D.

    2010-08-01

    Increasingly stringent requirements on the performance of diffractive optical elements (DOEs) used in wafer scanner illumination systems are driving continuous improvements in their associated manufacturing processes. Specifically, these processes are designed to improve the output pattern uniformity of off-axis illumination systems to minimize degradation in the ultimate imaging performance of a lithographic tool. In this paper, we discuss performance improvements in both photolithographic patterning and RIE etching of fused silica diffractive optical structures. In summary, optimized photolithographic processes were developed to increase critical dimension uniformity and featuresize linearity across the substrate. The photoresist film thickness was also optimized for integration with an improved etch process. This etch process was itself optimized for pattern transfer fidelity, sidewall profile (wall angle, trench bottom flatness), and across-wafer etch depth uniformity. Improvements observed with these processes on idealized test structures (for ease of analysis) led to their implementation in product flows, with comparable increases in performance and yield on customer designs.

  10. Accelerating CR-39 Track Detector Processing by Utilizing UV

    NASA Astrophysics Data System (ADS)

    Sparling, Jonathan; Padalino, Stephen; McLean, James; Sangster, Craig; Regan, Sean

    2017-10-01

    The use of CR-39 plastic as a Solid State Nuclear Track Detector is an effective technique for obtaining data in high energy particle experiments including inertial confinement fusion. To reveal particle tracks after irradiation, CR-39 is chemically etched in NaOH at 80°C, producing micron-scale signal pits at the nuclear track sites. It has been shown that illuminating CR-39 with UV light prior to etching increases bulk and track etch rates, especially when combined with elevated temperature. Spectroscopic analysis for amorphous solids has helped identify which UV wavelengths are most effective at enhancing etch rates. Absorption peaks found in the near infrared range provide for efficient sample heating, and may allow targeting cooperative IR-UV chemistry. Avoiding UV induced noise can be achieved through variations in absorption depths with wavelength. Vacuum drying and water absorption tests allow measurement of the resulting variation of bulk etch rate with depth. Funded in part by the NSF and an Department of Energy Grant through the Lab of Laser Energetics.

  11. ICP etching for InAs-based InAs/GaAsSb superlattice long wavelength infrared detectors

    NASA Astrophysics Data System (ADS)

    Huang, Min; Chen, Jianxin; Xu, Jiajia; Wang, Fangfang; Xu, Zhicheng; He, Li

    2018-05-01

    In this work, we study and report the dry etching processes for InAs-based InAs/GaAsSb strain-free superlattice long wavelength infrared (LWIR) detectors. The proper etching parameters were first obtained through the parametric studies of Inductively Coupled Plasma (ICP) etching of both InAs and GaSb bulk materials in Cl2/N2 plasmas. Then an InAs-based InAs/GaAsSb superlattice LWIR detector with PπN structure was fabricated by using the optimized etching parameters. At 80 K, the detector exhibits a 100% cut-off wavelength of 12 μm and a responsivity of 1.5 A/W. Moreover, the dark current density of the device under a bias of -200 mV reaches 5.5 × 10-4 A/cm2, and the R0A is 15 Ω cm2. Our results pave the way towards InAs-based superlattice LWIR detectors with better performances.

  12. Modeling of block copolymer dry etching for directed self-assembly lithography

    NASA Astrophysics Data System (ADS)

    Belete, Zelalem; Baer, Eberhard; Erdmann, Andreas

    2018-03-01

    Directed self-assembly (DSA) of block copolymers (BCP) is a promising alternative technology to overcome the limits of patterning for the semiconductor industry. DSA exploits the self-assembling property of BCPs for nano-scale manufacturing and to repair defects in patterns created during photolithography. After self-assembly of BCPs, to transfer the created pattern to the underlying substrate, selective etching of PMMA (poly (methyl methacrylate)) to PS (polystyrene) is required. However, the etch process to transfer the self-assemble "fingerprint" DSA patterns to the underlying layer is still a challenge. Using combined experimental and modelling studies increases understanding of plasma interaction with BCP materials during the etch process and supports the development of selective process that form well-defined patterns. In this paper, a simple model based on a generic surface model has been developed and an investigation to understand the etch behavior of PS-b-PMMA for Ar, and Ar/O2 plasma chemistries has been conducted. The implemented model is calibrated for etch rates and etch profiles with literature data to extract parameters and conduct simulations. In order to understand the effect of the plasma on the block copolymers, first the etch model was calibrated for polystyrene (PS) and poly (methyl methacrylate) (PMMA) homopolymers. After calibration of the model with the homopolymers etch rate, a full Monte-Carlo simulation was conducted and simulation results are compared with the critical-dimension (CD) and selectivity of etch profile measurement. In addition, etch simulations for lamellae pattern have been demonstrated, using the implemented model.

  13. A unique patterned diamond stamp for a periodically hierarchical nanoarray structure.

    PubMed

    Wang, Yi; Shen, Yanting; Xu, Weiqing; Xu, Shuping; Li, Hongdong

    2016-09-23

    A diamond stamp with a hierarchical pattern was designed for the direct preparation of a periodic nanoarray structure, which was prepared by the reactive ion etching technique with a hierarchical ultrathin alumina membrane (HUTAM) as a mask. The optimal etching conditions for fabricating the diamond stamp were discussed in order to realize a vertical nanopore structure, avoiding structural damage from lateral etching. By using this diamond stamp, a polymer film with the desired hierarchical nanorod array structure can be obtained easily via the simple stamping process, which greatly simplifies the processing procedure. More importantly, the stamp is reusable because of its super-hardness, which ensures the reproducibility of the nanorod array pattern. Another merit is that the smooth surface of the etched diamond can avoid the use of a release agent. Our results prove that this hard stamp can be used for quick preparation of an elaborate periodic nanoarray structure. This study is significant in that it solves the problems of high cost and easy damage of stamps in nanoimprint lithography, and it might inspire more sophisticated applications of such an ordered structure in nanoplasmonics, biochemical sensing and nanophotonic devices.

  14. Effect of chemical etching on the surface roughness of CdZnTe and CdMnTe gamma radiation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain,A.; Babalola, S.; Bolotnikov, A.E.

    2008-08-11

    Generally, mechanical polishing is performed to diminish the cutting damage followed by chemical etching to remove the remaining damage on crystal surfaces. In this paper, we detail the findings from our study of the effects of various chemical treatments on the roughness of crystal surfaces. We prepared several CdZnTe (CZT) and CdMnTe (CMT) crystals by mechanical polishing with 5 {micro}m and/or lower grits of Al{sub 2}O{sub 3} abrasive papers including final polishing with 0.05-{micro}m particle size alumina powder and then etched them for different periods with a 2%, 5% Bromine-Methanol (B-M) solution, and also with an E-solution (HNO{sub 3}:H{sub 2}O:Cr{submore » 2}O{sub 7}). The material removal rate (etching rate) from the crystals was found to be 10 {micro}m, 30 {micro}m, and 15 {micro}m per minute, respectively. The roughness of the resulting surfaces was determined by the Atomic Force Microscopy (AFM) to identify the most efficient surface processing method by combining mechanical and chemical polishing.« less

  15. Processing, Fabrication and Characterization of Advanced Target Sensors Using Mercury Cadmium Telluride (MCT)

    DTIC Science & Technology

    2010-09-01

    doped with Au, Hg, Cd, Be, or Ga); or (3) photoemissive such as metal silicides and negative electron affinity materials. Photoconductive and...plasma (ICP) etching and metallization as required by the design of the sensors at different levels of processing were carried out using either AZ...Second, after all the processing and metallization is completed, the sensor material (Hg1–xCdxTe) and the substrate (silicon) must be dry etched

  16. Pre-release plastic packaging of MEMS and IMEMS devices

    DOEpatents

    Peterson, Kenneth A.; Conley, William R.

    2002-01-01

    A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.

  17. SiO2 Hole Etching Using Perfluorocarbon Alternative Gas with Small Global Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Ooka, Masahiro; Yokoyama, Shin

    2004-06-01

    The etching of contact holes of 0.1 μm size in SiO2 is achieved using, for the first time, cyclic (c-)C5F8 with a small greenhouse effect in the pulse-modulated inductively coupled plasma. The shape of the cross section of the contact hole is as good as that etched using conventional c-C4F8. It is confirmed that Kr mixing instead of Ar in the plasma does not change the etching characteristics, although lowering of the electron temperature is expected which reduces the plasma-induced damage. Pulse modulation of the plasma is found to improve the etching selectivity of SiO2 with respect to Si. Langmuir probe measurement of the plasma suggests that the improvement of the etching selectivity is due to the deposition of fluorocarbon film triggered by lowering of the electron temperature when the off time of the radio frequency (rf) power is extended.

  18. Repair of a Mirror Coating on a Large Optic for High Laser Damage Applications using Ion Milling and Over-Coating Methods.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.

    When an optical coating is damaged, deposited incorrectly, or is otherwise unsuitable, the conventional method to restore the optic often entails repolishing the optic surface, which can incur a large cost and long lead time. We propose three alternative options to repolishing, including (i) burying the unsuitable coating under another optical coating, (ii) using ion milling to etch the unsuitable coating completely from the optic surface, and then recoating the optic, and (iii) using ion milling to etch through a number of unsuitable layers, leaving the rest of the coating intact, and then recoating the layers that were etched. Repairsmore » were made on test optics with dielectric mirror coatings according to the above three options. The mirror coatings to be repaired were quarter wave stacks of HfO 2 and SiO 2 layers for high reflection at 1054 nm at 45° incidence in P-polarization. One of the coating layers was purposely deposited incorrectly as Hf metal instead of HfO 2 to evaluate the ability of each repair method to restore the coating’s high laser-induced damage threshold (LIDT) of 64.0 J/cm 2. Finally, the repaired coating with the highest resistance to laser-induced damage was achieved using repair method (ii) with an LIDT of 49.0 – 61.0 J/cm 2.« less

  19. Repair of a mirror coating on a large optic for high laser damage applications using ion milling and over-coating methods

    NASA Astrophysics Data System (ADS)

    Field, Ella S.; Bellum, John C.; Kletecka, Damon E.

    2017-01-01

    When an optical coating is damaged, deposited incorrectly, or is otherwise unsuitable, the conventional method to restore the optic often entails repolishing the optic surface, which can incur a large cost and long lead time. We propose three alternative options to repolishing, including (i) burying the unsuitable coating under another optical coating, (ii) using ion milling to etch the unsuitable coating completely from the optic surface and then recoating the optic, and (iii) using ion milling to etch through a number of unsuitable layers, leaving the rest of the coating intact, and then recoating the layers that were etched. Repairs were made on test optics with dielectric mirror coatings according to the above three options. The mirror coatings to be repaired were quarter wave stacks of HfO2 and SiO2 layers for high reflection at 1054 nm at 45 deg incidence in P-polarization. One of the coating layers was purposely deposited incorrectly as Hf metal instead of HfO2 to evaluate the ability of each repair method to restore the coating's high laser-induced damage threshold (LIDT) of 64.0 J/cm2. The repaired coating with the highest resistance to laser-induced damage was achieved using repair method (ii) with an LIDT of 49.0 to 61.0 J/cm2.

  20. Repair of a mirror coating on a large optic for high laser damage applications using ion milling and over-coating methods

    DOE PAGES

    Field, Ella S.; Bellum, John C.; Kletecka, Damon E.

    2016-07-08

    Here, when an optical coating is damaged, deposited incorrectly, or is otherwise unsuitable, the conventional method to restore the optic often entails repolishing the optic surface, which can incur a large cost and long lead time. We propose three alternative options to repolishing, including (i) burying the unsuitable coating under another optical coating, (ii) using ion milling to etch the unsuitable coating completely from the optic surface and then recoating the optic, and (iii) using ion milling to etch through a number of unsuitable layers, leaving the rest of the coating intact, and then recoating the layers that were etched.more » Repairs were made on test optics with dielectric mirror coatings according to the above three options. The mirror coatings to be repaired were quarter wave stacks of HfO 2 and SiO 2 layers for high reflection at 1054 nm at 45 deg incidence in P-polarization. One of the coating layers was purposely deposited incorrectly as Hf metal instead of HfO2 to evaluate the ability of each repair method to restore the coating’s high laser-induced damage threshold (LIDT) of 64.0 J/cm 2. The repaired coating with the highest resistance to laser-induced damage was achieved using repair method (ii) with an LIDT of 49.0 to 61.0 J/cm 2.« less

  1. Repair of a Mirror Coating on a Large Optic for High Laser Damage Applications using Ion Milling and Over-Coating Methods.

    DOE PAGES

    Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.

    2016-06-01

    When an optical coating is damaged, deposited incorrectly, or is otherwise unsuitable, the conventional method to restore the optic often entails repolishing the optic surface, which can incur a large cost and long lead time. We propose three alternative options to repolishing, including (i) burying the unsuitable coating under another optical coating, (ii) using ion milling to etch the unsuitable coating completely from the optic surface, and then recoating the optic, and (iii) using ion milling to etch through a number of unsuitable layers, leaving the rest of the coating intact, and then recoating the layers that were etched. Repairsmore » were made on test optics with dielectric mirror coatings according to the above three options. The mirror coatings to be repaired were quarter wave stacks of HfO 2 and SiO 2 layers for high reflection at 1054 nm at 45° incidence in P-polarization. One of the coating layers was purposely deposited incorrectly as Hf metal instead of HfO 2 to evaluate the ability of each repair method to restore the coating’s high laser-induced damage threshold (LIDT) of 64.0 J/cm 2. Finally, the repaired coating with the highest resistance to laser-induced damage was achieved using repair method (ii) with an LIDT of 49.0 – 61.0 J/cm 2.« less

  2. Repair of a mirror coating on a large optic for high laser damage applications using ion milling and over-coating methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Ella S.; Bellum, John C.; Kletecka, Damon E.

    Here, when an optical coating is damaged, deposited incorrectly, or is otherwise unsuitable, the conventional method to restore the optic often entails repolishing the optic surface, which can incur a large cost and long lead time. We propose three alternative options to repolishing, including (i) burying the unsuitable coating under another optical coating, (ii) using ion milling to etch the unsuitable coating completely from the optic surface and then recoating the optic, and (iii) using ion milling to etch through a number of unsuitable layers, leaving the rest of the coating intact, and then recoating the layers that were etched.more » Repairs were made on test optics with dielectric mirror coatings according to the above three options. The mirror coatings to be repaired were quarter wave stacks of HfO 2 and SiO 2 layers for high reflection at 1054 nm at 45 deg incidence in P-polarization. One of the coating layers was purposely deposited incorrectly as Hf metal instead of HfO2 to evaluate the ability of each repair method to restore the coating’s high laser-induced damage threshold (LIDT) of 64.0 J/cm 2. The repaired coating with the highest resistance to laser-induced damage was achieved using repair method (ii) with an LIDT of 49.0 to 61.0 J/cm 2.« less

  3. The effect of reactive ion etch (RIE) process conditions on ReRAM device performance

    NASA Astrophysics Data System (ADS)

    Beckmann, K.; Holt, J.; Olin-Ammentorp, W.; Alamgir, Z.; Van Nostrand, J.; Cady, N. C.

    2017-09-01

    The recent surge of research on resistive random access memory (ReRAM) devices has resulted in a wealth of different materials and fabrication approaches. In this work, we describe the performance implications of utilizing a reactive ion etch (RIE) based process to fabricate HfO2 based ReRAM devices, versus a more unconventional shadow mask fabrication approach. The work is the result of an effort to increase device yield and reduce individual device size. Our results show that choice of RIE etch gas (SF6 versus CF4) is critical for defining the post-etch device profile (cross-section), and for tuning the removal of metal layers used as bottom electrodes in the ReRAM device stack. We have shown that etch conditions leading to a tapered profile for the device stack cause poor electrical performance, likely due to metal re-deposition during etching, and damage to the switching layer. These devices exhibit nonlinear I-V during the low resistive state, but this could be improved to linear behavior once a near-vertical etch profile was achieved. Device stacks with vertical etch profiles also showed an increase in forming voltage, reduced switching variability and increased endurance.

  4. Fabrication of a terahertz quantum-cascade laser with a double metal waveguide based on multilayer GaAs/AlGaAs heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khabibullin, R. A., E-mail: khabibullin@isvch.ru; Shchavruk, N. V.; Pavlov, A. Yu.

    2016-10-15

    The Postgrowth processing of GaAs/AlGaAs multilayer heterostructures for terahertz quantumcascade lasers (QCLs) are studied. This procedure includes the thermocompression bonding of In–Au multilayer heterostructures with a doped n{sup +}-GaAs substrate, mechanical grinding, and selective wet etching of the substrate, and dry etching of QCL ridge mesastripes through a Ti/Au metallization mask 50 and 100 μm wide. Reactive-ion-etching modes with an inductively coupled plasma source in a BCl{sub 3}/Ar gas mixture are selected to obtain vertical walls of the QCL ridge mesastripes with minimum Ti/Au mask sputtering.

  5. Quantum cascade laser based monitoring of CF{sub 2} radical concentration as a diagnostic tool of dielectric etching plasma processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hübner, M.; Lang, N.; Röpcke, J.

    2015-01-19

    Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF{sub 2} radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF{sub 2} radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm{sup −1}. We measured Doppler-resolved ro-vibrational absorption lines andmore » determined absolute densities using transitions in the ν{sub 3} fundamental band of CF{sub 2} with the aid of an improved simulation of the line strengths. We found that the CF{sub 2} radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.« less

  6. Influence of warm air-drying on enamel bond strength and surface free-energy of self-etch adhesives.

    PubMed

    Shiratsuchi, Koji; Tsujimoto, Akimasa; Takamizawa, Toshiki; Furuichi, Tetsuya; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-08-01

    We examined the effect of warm air-drying on the enamel bond strengths and the surface free-energy of three single-step self-etch adhesives. Bovine mandibular incisors were mounted in self-curing resin and then wet ground with #600 silicon carbide (SiC) paper. The adhesives were applied according to the instructions of the respective manufacturers and then dried in a stream of normal (23°C) or warm (37°C) air for 5, 10, and 20 s. After visible-light irradiation of the adhesives, resin composites were condensed into a mold and polymerized. Ten samples per test group were stored in distilled water at 37°C for 24 h and then the bond strengths were measured. The surface free-energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. The enamel bond strengths varied according to the air-drying time and ranged from 15.8 to 19.1 MPa. The trends for the bond strengths were different among the materials. The value of the γS⁺ component increased slightly when drying was performed with a stream of warm air, whereas that of the γS⁻ component decreased significantly. These data suggest that warm air-drying is essential to obtain adequate enamel bond strengths, although increasing the drying time did not significantly influence the bond strength. © 2013 Eur J Oral Sci.

  7. Quantitative Analysis of Etching Rate Profiles for 11B+-Implanted Si3N4 Film

    NASA Astrophysics Data System (ADS)

    Nakata, Jyoji; Kajiyama, Kenji

    1983-01-01

    Etching rate enhancement for 11B+-implanted Si3N4 film was investigated both experimentally and theoretically. The etching solution was concentrated H3PO4 at ˜165°C Film thicknesses were precisely measured by ellipsometry. Enhancement resulted from Si-N bond breaking. This was confirmed by a decrease of infrared absorption at a 12.0 μm wavelength for Si-N bond vibration. Main and additional peaks were observed in the etching rate profile. The former was due to nuclear damage and was well represented by the calculated etching rate profile deduced from the nuclear deposited energy density distribution. The latter existed in the surface region only when the ion projected range was shorter than the film thickness. This peak was possibly caused by charge accumulation in the insulating Si3N4 film during 11B+ implantation.

  8. Mask fabrication process

    DOEpatents

    Cardinale, Gregory F.

    2000-01-01

    A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.

  9. Encapsulants for protecting MEMS devices during post-packaging release etch

    DOEpatents

    Peterson, Kenneth A.

    2005-10-18

    The present invention relates to methods to protect a MEMS or microsensor device through one or more release or activation steps in a "package first, release later" manufacturing scheme: This method of fabrication permits wirebonds, other interconnects, packaging materials, lines, bond pads, and other structures on the die to be protected from physical, chemical, or electrical damage during the release etch(es) or other packaging steps. Metallic structures (e.g., gold, aluminum, copper) on the device are also protected from galvanic attack because they are protected from contact with HF or HCL-bearing solutions.

  10. Quadrilateral Micro-Hole Array Machining on Invar Thin Film: Wet Etching and Electrochemical Fusion Machining

    PubMed Central

    Choi, Woong-Kirl; Kim, Seong-Hyun; Choi, Seung-Geon; Lee, Eun-Sang

    2018-01-01

    Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs) contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks. PMID:29351235

  11. Nanomanufacturing of 2D Transition Metal Dichalcogenide Materials Using Self-Assembled DNA Nanotubes.

    PubMed

    Choi, Jungwook; Chen, Haorong; Li, Feiran; Yang, Lingming; Kim, Steve S; Naik, Rajesh R; Ye, Peide D; Choi, Jong Hyun

    2015-11-04

    2D transition metal dichalcogenides (TMDCs) are nanomanufactured using a generalized strategy with self-assembled DNA nanotubes. DNA nanotubes of various lengths serve as lithographic etch masks for the dry etching of TMDCs. The nanostructured TMDCs are studied by atomic force microscopy, photoluminescence, and Raman spectroscopy. This parallel approach can be used to manufacture 2D TMDC nanostructures of arbitrary geometries with molecular-scale precision. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Novel Heterongineered Detectors for Multi-Color Infrared Sensing

    DTIC Science & Technology

    2012-01-30

    barriers”. Appl. Phys. Lett. 98, 121106 (2011) 9. A. Khoshakhlagh, F. Jaeckel C. Hains J. B. Rodriguez , L. R. Dawson, K. Malloy, and S. Krishna...AlAs etch-stop layer. The detailed processing sequence is included in the Methods. b da c n + -GaAs 200 nm Mesa lndium bump 2.1 –2.1 FPA p d SP-FPA...FPA chip. The processing scheme of the plasmonic FPA chip consists of a dry etch to form the mesa , surface passivation, ohmic metal evaporation, under

  13. Coating and dispersion of ceramic nanoparticles by UV-ozone etching assisted surface-initiated living radical polymerization.

    PubMed

    Arita, Toshihiko

    2010-10-01

    Commercially available unmodified ceramic nanoparticles (NPs) in dry powder state were surface-modified and dispersed in almost single-crystal size. The surface-initiated living radical polymerization after just UV-ozone soft etching enables one to graft polymers onto the surface of ceramic NPs and disperse them in solvents. Furthermore, a number of NPs were dispersed with single-crystal sizes. The technique developed here could be applied to almost all ceramic NPs including metal nitrides.

  14. Hemispherical cavities on silicon substrates: an overview of micro fabrication techniques

    NASA Astrophysics Data System (ADS)

    Poncelet, O.; Rasson, J.; Tuyaerts, R.; Coulombier, M.; Kotipalli, R.; Raskin, J.-P.; Francis, L. A.

    2018-04-01

    Hemispherical photonic crystals found in species like Papilio blumei and Cicendella chinensis have inspired new applications like anti-counterfeiting devices and gas sensors. In this work, we investigate and compare four different ways to micro fabricate such hemispherical cavities: using colloids as template, by wet (HNA) or dry (XeF2) isotropic etching of silicon and by electrochemical etching of silicon. The shape and the roughness of the obtained cavities have been discussed and the pros/cons for each method are highlighted.

  15. Recent progress on the scalable fabrication of hybrid polymer/SiO2 nanophotonic cavity arrays with an encapsulated MoS2 film

    NASA Astrophysics Data System (ADS)

    Hammer, Sebastian; Mangold, Hans-Moritz; Nguyen, Ariana E.; Martinez-Ta, Dominic; Naghibi Alvillar, Sahar; Bartels, Ludwig; Krenner, Hubert J.

    2018-02-01

    We review1 the fully-scalable fabrication of a large array of hybrid molybdenum disulfide (MoS2) - silicon dioxide (SiO2) one-dimensional (1D), freestanding photonic-crystal cavities (PCCs) capable of enhancement of the MoS2 photoluminescence (PL) at the narrow cavity resonance. As demonstrated in our prior work [S. Hammer et al., Sci. Rep. 7, 7251 (2017)]1, geometric mode tuning over the wide spectral range of MoS2 PL can be achieved by changing the PC period. In this contribution, we provide a step-by-step description of the fabrication process and give additional detailed information on the degradation of MoS2 by XeF2 vapor. We avoid potential damage of the MoS2 monolayer during the crucial XeF2 etch by refraining from stripping the electron beam (e-beam) resist after dry etching of the photonic crystal pattern. The remaining resist on top of the samples encapsulates and protects the MoS2 film during the entire fabrication process. Albeit the thickness of the remaining resists strongly depends on the fabrication process, the resulting encapsulation of the MoS2 layer improves the confinement to the optical modes and gives rise to a potential enhancement of the light-matter interaction.

  16. Single-Run Single-Mask Inductively-Coupled-Plasma Reactive-Ion-Etching Process for Fabricating Suspended High-Aspect-Ratio Microstructures

    NASA Astrophysics Data System (ADS)

    Yang, Yao-Joe; Kuo, Wen-Cheng; Fan, Kuang-Chao

    2006-01-01

    In this work, we present a single-run single-mask (SRM) process for fabricating suspended high-aspect-ratio structures on standard silicon wafers using an inductively coupled plasma-reactive ion etching (ICP-RIE) etcher. This process eliminates extra fabrication steps which are required for structure release after trench etching. Released microstructures with 120 μm thickness are obtained by this process. The corresponding maximum aspect ratio of the trench is 28. The SRM process is an extended version of the standard process proposed by BOSCH GmbH (BOSCH process). The first step of the SRM process is a standard BOSCH process for trench etching, then a polymer layer is deposited on trench sidewalls as a protective layer for the subsequent structure-releasing step. The structure is released by dry isotropic etching after the polymer layer on the trench floor is removed. All the steps can be integrated into a single-run ICP process. Also, only one mask is required. Therefore, the process complexity and fabrication cost can be effectively reduced. Discussions on each SRM step and considerations for avoiding undesired etching of the silicon structures during the release process are also presented.

  17. SHI induced nano track polymer filters and characterization

    NASA Astrophysics Data System (ADS)

    Vijay, Y. K.

    2009-07-01

    Swift heavy ion irradiation produces damage in polymers in the form of latent tracks. Latent tracks can be enlarged by etching it in a suitable etchant and thus nuclear track etch membrane can be formed for gas permeation / purification in particular for hydrogen where the molecular size is very small. By applying suitable and controlled etching conditions well defined tracks can be formed for specific applications of the membranes. After etching gas permeation method is used for characterizing the tracks. In the present work polycarbonate (PC) of various thickness were irradiated with energetic ion beam at Inter University Accelerator Centre (IUAC), New Delhi. Nuclear tracks were modified by etching the PC in 6N NaOH at 60 (±1) °C from both sides for different times to produce track etch membranes. At critical etch time the etched pits from both the sides meet a rapid increase in gas permeation was observed. Permeability of hydrogen and carbon dioxide has been measured in samples etched for different times. The latent tracks produced by SHI irradiation in the track etch membranes show enhancement of free volume of the polymer. Nano filters are separation devices for the mixture of gases, different ions in the solution and isotopes and isobars separations. The polymer thin films with controlled porosity finding it self as best choice. However, the permeability and selectivity of these polymer based membrane filters are very important at the nano scale separation. The Swift Heavy Ion (SHI) induced nuclear track etched polymeric films with controlled etching have been attempted and characterized as nano scale filters.

  18. Effect of a Cooling Step Treatment on a High-Voltage GaN LED During ICP Dry Etching

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Sheng; Hsiao, Sheng-Yu; Tseng, Chun-Lung; Shen, Ching-Hsing; Chiang, Jung-Sheng

    2017-02-01

    In this study, a lower dislocation density for a GaN surface and a reduced current path are observed at the interface of a SiO2 isolation sidewall, using high-resolution transmission electron microscopy. This is grown using a 3-min cooling step treatment during inductivity coupled plasma dry etching. The lower forward voltage is measured, the leakage current decreases from 53nA to 32nA, and the maximum output power increases from 354.8 W to 357.2 W for an input current of 30 mA. The microstructure and the optoelectronic properties of high-voltage light-emitting-diodes is proven to be affected by the cooling step treatment, which allows enough time to release the thermal energy of the SiO2 isolation well.

  19. Total etch technique and cavity isolation.

    PubMed

    Fusayama, T

    1992-01-01

    In the total etch technique for chemically adhesive composite restorations, the phosphoric acid penetrates only 10 microns or less into the vital dentin with the dentinal tubules being filled with the odontoblast processes. The acid is completely removed by subsequent air-water jet spray washing. The tubule apertures are perfectly sealed by the protective bonding agent layer with the resin tags adhering to the tubule walls and the resin-impregnated dentin surface. Isolation of the cavity from moisture contamination is required for only less than a few seconds after drying the etched cavity until the bonding agent coating and after this coating until the composite resin placement. Such a short time for isolation is quite easy even without a rubber dam when a trained assistant is cooperating.

  20. Nanofabrication on monocrystalline silicon through friction-induced selective etching of Si3N4 mask

    PubMed Central

    2014-01-01

    A new fabrication method is proposed to produce nanostructures on monocrystalline silicon based on the friction-induced selective etching of its Si3N4 mask. With low-pressure chemical vapor deposition (LPCVD) Si3N4 film as etching mask on Si(100) surface, the fabrication can be realized by nanoscratching on the Si3N4 mask and post-etching in hydrofluoric acid (HF) and potassium hydroxide (KOH) solution in sequence. Scanning Auger nanoprobe analysis indicated that the HF solution could selectively etch the scratched Si3N4 mask and then provide the gap for post-etching of silicon substrate in KOH solution. Experimental results suggested that the fabrication depth increased with the increase of the scratching load or KOH etching period. Because of the excellent masking ability of the Si3N4 film, the maximum fabrication depth of nanostructure on silicon can reach several microns. Compared to the traditional friction-induced selective etching technique, the present method can fabricate structures with lesser damage and deeper depths. Since the proposed method has been demonstrated to be a less destructive and flexible way to fabricate a large-area texture structure, it will provide new opportunities for Si-based nanofabrication. PMID:24940174

  1. Localized etching of polymer films using an atmospheric pressure air microplasma jet

    NASA Astrophysics Data System (ADS)

    Guo, Honglei; Liu, Jingquan; Yang, Bin; Chen, Xiang; Yang, Chunsheng

    2015-01-01

    A direct-write process device based on the atmospheric pressure air microplasma jet (AμPJ) has been developed for the localized etching of polymer films. The plasma was generated by the air discharge ejected out through a tip-nozzle (inner diameter of 100 μm), forming the microplasma jet. The AμPJ was capable of reacting with the polymer surface since it contains a high concentration of oxygen reactive species and thus resulted in the selective removal of polymer films. The experimental results demonstrated that the AμPJ could fabricate different microstructures on a parylene-C film without using any masks or causing any heat damage. The etch rate of parylene-C reached 5.1 μm min-1 and microstructures of different depth and width could also be realized by controlling two process parameters, namely, the etching time and the distance between the nozzle and the substrate. In addition, combining XPS analysis and oxygen-induced chemical etching principles, the potential etching mechanism of parylene-C by the AμPJ was investigated. Aside from the etching of parylene-C, micro-holes on the photoresist and polyimide film were successfully created by the AμPJ. In summary, maskless pattern etching of polymer films could be achieved using this AμPJ.

  2. Advanced Baffle Materials Technology Development

    DTIC Science & Technology

    1991-10-01

    few baffle materials, data from Misty North and Diesel Train provide guidance on damage mechanisms and give points with which theory can be compared...adequate to permit correlation of theory with experiment for thin film baffle structures which can be approximated as a series of planes. No means of...etching to produce surface microtexture on samples of 3 aluminum (see Figure 3-5). Current theory predicts that sputter texture etching works because

  3. Fabrication and Theoretical Evaluation of Microlens Arrays on Layered Polymers

    NASA Astrophysics Data System (ADS)

    Oder, Tom; McMaster, Michael; Merlo, Corey; Bagheri, Camron; Reakes, Clayton; Petrus, Joshua; Li, Dingqiang; Crescimanno, Michael; Andrews, James

    2014-03-01

    Arrays of microlens were fabricated on nano-layered polymers using reactive ion etching. Semi hemispherical patterns with diameters ranging from 20 to 80 micrometers were first formed on a thick photoresist film that was spin-coated on the layered polymers using standard photolithographic process employing a gray scale glass mask. These patterns were then transferred to the polymers using dry etching in a reactive ion etching system. The optimized etch condition included a mixture of sulfur hexafluoride and oxygen, which resulted in an etch depth of 5 micrometers and successfully exposed the individual sub-micron thick layers in the polymers. Physical characterization of the microlens arrays was done using atomic force microscope and scanning electron microscope. We combine basic physical optics theory with the transfer matrix analysis of optical transport in nano-layered polymers to address subtleties in the chromatic response of microlenses made from these materials. In particular this method explains the len's behavior in and around the reflection band of the materials. We wish to acknowledge support of funds from NSF through its Center for Layered Polymeric Systems (CLiPS) at Case Western Reserve University.

  4. Roughness evolution of metallic implant surfaces under contact loading and nanometer-scale chemical etching.

    PubMed

    Ryu, J J; Letchuman, S; Shrotriya, P

    2012-10-01

    Surface damage of metallic implant surface at taper lock and clamped interfaces may take place through synergistic interactions between repeated contact loading and corrosion. In the present research, we investigated the influence of surface roughness and contact loading on the mechanical and chemical damage phenomena. Cobalt-chromium (CoCrMo) specimens with two different roughness configurations created by milling and grinding process were subjected to normal and inclined contact loading. During repeated contact loading, amplitude of surface roughness reached a steady value after decreasing during the first few cycles. During the second phase, the alternating experiment of rough surface contact and micro-etching was conducted to characterize surface evolution behavior. As a result, surface roughness amplitude continuously evolved-decreasing during contact loading due to plastic deformation of contacting asperities and increasing on exposure to corrosive environment by the preferential corrosion attack on stressed area. Two different instabilities could be identified in the surface roughness evolution during etching of contact loaded surfaces: increase in the amplitude of dominant wavenumber and increase in amplitude of a small group of roughness modes. A damage mechanism that incorporates contact-induced residual stress development and stress-assisted dissolution is proposed to elucidate the measured instabilities in surface roughness evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Damage-free back channel wet-etch process in amorphous indium-zinc-oxide thin-film transistors using a carbon-nanofilm barrier layer.

    PubMed

    Luo, Dongxiang; Zhao, Mingjie; Xu, Miao; Li, Min; Chen, Zikai; Wang, Lang; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2014-07-23

    Amorphous indium-zinc-oxide thin film transistors (IZO-TFTs) with damage-free back channel wet-etch (BCE) process were investigated. A carbon (C) nanofilm was inserted into the interface between IZO layer and source/drain (S/D) electrodes as a barrier layer. Transmittance electron microscope images revealed that the 3 nm-thick C nanofilm exhibited a good corrosion resistance to a commonly used H3PO4-based etchant and could be easily eliminated. The TFT device with a 3 nm-thick C barrier layer showed a saturated field effect mobility of 14.4 cm(2) V(-1) s(-1), a subthreshold swing of 0.21 V/decade, an on-to-off current ratio of 8.3 × 10(10), and a threshold voltage of 2.0 V. The favorable electrical performance of this kind of IZO-TFTs was due to the protection of the inserted C to IZO layer in the back-channel-etch process. Moreover, the low contact resistance of the devices was proved to be due to the graphitization of the C nanofilms after annealing. In addition, the hysteresis and thermal stress testing confirmed that the usage of C barrier nanofilms is an effective method to fabricate the damage-free BCE-type devices with high reliability.

  6. Recovery of GaN surface after reactive ion etching

    NASA Astrophysics Data System (ADS)

    Fan, Qian; Chevtchenko, S.; Ni, Xianfeng; Cho, Sang-Jun; Morko, Hadis

    2006-02-01

    Surface properties of GaN subjected to reactive ion etching and the impact on device performance have been investigated by surface potential, optical and electrical measurements. Different etching conditions were studied and essentially high power levels and low chamber pressures resulted in higher etch rates accompanying with the roughening of the surface morphology. Surface potential for the as-grown c-plane GaN was found to be in the range of 0.5~0.7 V using Scanning Kevin Probe Microscopy. However, after reactive ion etching at a power level of 300 W, it decreased to 0.1~0.2 V. A nearly linear reduction was observed on c-plane GaN with increasing power. The nonpolar a-plane GaN samples also showed large surface band bending before and after etching. Additionally, the intensity of the near band-edge photoluminescence decreased and the free carrier density increased after etching. These results suggest that the changes in the surface potential may originate from the formation of possible nitrogen vacancies and other surface oriented defects and adsorbates. To recover the etched surface, N II plasma, rapid thermal annealing, and etching in wet KOH were performed. For each of these methods, the surface potential was found to increase by 0.1~0.3 V, also the reverse leakage current in Schottky diodes fabricated on treated samples was reduced considerably compared with as-etched samples, which implies a partial-to-complete recovery from the plasma-induced damage.

  7. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    DOEpatents

    Hankins, Matthew G [Albuquerque, NM

    2009-10-06

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  8. Evaluation of the Shear Bond Strength of Composite Resin to Wet and Dry Enamel Using Dentin Bonding Agents Containing Various Solvents.

    PubMed

    Usha, Carounanidy; Ramarao, Sathyanarayanan; John, Bindu Meera; Rajesh, Praveen; Swatha, S

    2017-01-01

    Bonding of composite resin to dentin mandates a wet substrate whereas, enamel should be dry. This may not be easily achievable in intracoronal preparations where enamel and dentin are closely placed to each other. Therefore, Dentin Bonding Agents (DBA) are recommended for enamel and dentinal bonding, where enamel is also left moist. A research question was raised if the "enamel-only" preparations will also benefit from wet enamel bonding and contemporary DBA. The aim of this study was to compare the shear bond strengths of composite resin, bonded to dry and wet enamel using fifth generation DBA (etch and rinse system) containing various solvents such as ethanol/water, acetone and ethanol. The crowns of 120 maxillary premolars were split into buccal and lingual halves. They were randomly allocated into four groups of DBA: Group 1-water/ethanol based, Group 2-acetone based, Group 3-ethanol based, Group 4-universal bonding agent (control group). The buccal halves and lingual halves were bonded using the wet bonding and dry bonding technique respectively. After application of the DBAs and composite resin build up, shear bond strength testing was done. Group 1 (ethanol/water based ESPE 3M, Adper Single Bond) showed highest bond strength of (23.15 MPa) in dry enamel. Group 2 (acetone based Denstply, Prime and Bond NT, showed equal bond strength in wet and dry enamel condition (18.87 MPa and 18.02 MPa respectively). Dry enamel bonding and ethanol/water based etch and rinse DBA can be recommended for "enamel-only" tooth preparations.

  9. Fundamental Studies and Device Development in Beta Silicon Carbide

    DTIC Science & Technology

    1990-02-28

    8217 and (d) 14.5- off (000 1) tovwird 111201 axis, respectively. 25p atoms are considered to exist in monoatomic form. The overall reaction fort the...IOOOA thick oxide layer was thermally grown in a dry oxygen ambient at 1200°C. The oxide layer was etched and a layer of gold , 񓟰A in thickness, was...and gold etching in a KI:12:H20 solution, 4:1:40 by weight. The diodes were separated from the field region by a 100 pm wide annular ring. The

  10. Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea.

    PubMed

    Hutson, M Shane; Ivanov, Borislav; Jayasinghe, Aroshan; Adunas, Gilma; Xiao, Yaowu; Guo, Mingsheng; Kozub, John

    2009-06-08

    Infrared free-electron lasers ablate tissue with high efficiency and low collateral damage when tuned to the 6-microm range. This wavelength-dependence has been hypothesized to arise from a multi-step process following differential absorption by tissue water and proteins. Here, we test this hypothesis at wavelengths for which cornea has matching overall absorption, but drastically different differential absorption. We measure etch depth, collateral damage and plume images and find that the hypothesis is not confirmed. We do find larger etch depths for larger spot sizes--an effect that can lead to an apparent wavelength dependence. Plume imaging at several wavelengths and spot sizes suggests that this effect is due to increased post-pulse ablation at larger spots.

  11. Hair Shaft Damage from Heat and Drying Time of Hair Dryer

    PubMed Central

    Lee, Yoonhee; Kim, Youn-Duk; Hyun, Hye-Jin; Pi, Long-quan; Jin, Xinghai

    2011-01-01

    Background Hair dryers are commonly used and can cause hair damage such as roughness, dryness and loss of hair color. It is important to understand the best way to dry hair without causing damage. Objective The study assessed changes in the ultra-structure, morphology, moisture content, and color of hair after repeated shampooing and drying with a hair dryer at a range of temperatures. Methods A standardized drying time was used to completely dry each hair tress, and each tress was treated a total of 30 times. Air flow was set on the hair dryer. The tresses were divided into the following five test groups: (a) no treatment, (b) drying without using a hair dryer (room temperature, 20℃), (c) drying with a hair dryer for 60 seconds at a distance of 15 cm (47℃), (d) drying with a hair dryer for 30 seconds at a distance of 10 cm (61℃), (e) drying with a hair dryer for 15 seconds at a distance of 5 cm (95℃). Scanning and transmission electron microscopy (TEM) and lipid TEM were performed. Water content was analyzed by a halogen moisture analyzer and hair color was measured with a spectrophotometer. Results Hair surfaces tended to become more damaged as the temperature increased. No cortex damage was ever noted, suggesting that the surface of hair might play a role as a barrier to prevent cortex damage. Cell membrane complex was damaged only in the naturally dried group without hair dryer. Moisture content decreased in all treated groups compared to the untreated control group. However, the differences in moisture content among the groups were not statistically significant. Drying under the ambient and 95℃ conditions appeared to change hair color, especially into lightness, after just 10 treatments. Conclusion Although using a hair dryer causes more surface damage than natural drying, using a hair dryer at a distance of 15 cm with continuous motion causes less damage than drying hair naturally. PMID:22148012

  12. Characterization of gate recessed GaN/AlGaN/GaN high electron mobility transistors fabricated using a SiCl4/SF6 dry etch recipe

    NASA Astrophysics Data System (ADS)

    Green, R. T.; Luxmoore, I. J.; Lee, K. B.; Houston, P. A.; Ranalli, F.; Wang, T.; Parbrook, P. J.; Uren, M. J.; Wallis, D. J.; Martin, T.

    2010-07-01

    Incorporating GaN capping layers in conjunction with recessing has been identified as a means to maximize the high frequency performance of AlGaN/GaN high electron mobility transistors (HEMTs). Doping the cap heavily n-type is required in order to ensure minimal loss of carriers from the channel. Using a SiCl4/SF6 dry etch plasma recipe, 250 nm gate length HEMTs with recess lengths varying from 300 nm to 5 μm are fabricated. Heavily doped n+GaN caps enabled contact resistances of 0.3 Ω mm to be achieved. Recessing using a SiCl4/SF6 recipe does not introduce significant numbers of bulk traps. Gate recessing in conjunction with Si3N4 passivation reduces rf dispersion to negligible levels.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, E. A.; Reza, S.; Sanchez, C.

    Due to the ultra-wide bandgap of Al-rich AlGaN, up to 5.8 eV for the structures in this study, obtaining low resistance ohmic contacts is inherently difficult to achieve. A comparative study of three different fabrication schemes is presented for obtaining ohmic contacts to an Al-rich AlGaN channel. Schottky-like behavior was observed for several different planar metallization stacks (and anneal temperatures), in addition to a dry-etch recess metallization contact scheme on Al 0.85Ga 0.15N/Al 0.66Ga 0.34N. However, a dry etch recess followed by n +-GaN regrowth fabrication process is reported as a means to obtain lower contact resistivity ohmic contacts onmore » a Al 0.85Ga 0.15N/Al 0.66Ga 0.34N heterostructure. In conclusion, specific contact resistivity of 5×10 -3 Ω cm 2 was achieved after annealing Ti/Al/Ni/Au metallization.« less

  14. Microfluidic-based photocatalytic microreactor for environmental application: a review of fabrication substrates and techniques, and operating parameters.

    PubMed

    Das, Susmita; Srivastava, Vimal Chandra

    2016-06-08

    Photochemical technology with microfluidics is emerging as a new platform in environmental science. Microfluidic technology has various advantages, like better mixing and a shorter diffusion distance for the reactants and products; and uniform distribution of light on the photocatalyst. Depending on the material type and related applications, several fabrication techniques have been adopted by various researchers. Microreactors have been prepared by various techniques, such as lithography, etching, mechanical microcutting technology, etc. Lithography can be classified into photolithography, soft lithography and X-ray lithography techniques whereas the etching process is divided into wet etching (chemical etching) and dry etching (plasma etching) techniques. Several substrates, like polymers, such as polydimethyl-siloxane (PDMS), polymethyle-methacrylate (PMMA), hydrogel, etc.; metals, such as stainless steel, titanium foil, etc.; glass, such as silica capillary, glass slide, etc.; and ceramics have been used for microchannel fabrication. During degradation in a microreactor, the degradation efficiency is affected by few important parameters such as flow rate, initial concentration of the target compound, microreactor dimensions, light intensity, photocatalyst structure and catalyst support. The present paper discusses and critically reviews fabrication techniques and substrates used for microchannel fabrication and critical operating parameters for organics, especially dye degradation in the microreactor. The kinetics of degradation has also been discussed.

  15. Combined technique of elastic magnetorheological finishing and HF etching for high-efficiency improving of the laser-induced damage threshold of fused silica optics.

    PubMed

    Shi, Feng; Tian, Ye; Peng, Xiaoqiang; Dai, Yifan

    2014-02-01

    The inadequate laser-induced damage threshold (LIDT) of optical elements limits the future development of high-power laser systems. With the aim of raising the LIDT, the elastic passivating treatment mechanism and parameter optimization of a combined magnetorheological finishing (MRF) and HF etching process are investigated. The relationships among the width/depth ratio of defects and parameters of the passivating treatment process (MRF and HF etching), relative intensity (RI), and LIDT of fused silica (FS) optics are revealed through a set of simulations and experiments. For high-efficiency improvement of LIDT, in an elastic passivating treatment process, scratches or other defects need not be wiped off entirely, but only passivated or enlarged to an acceptable profile. This combined process can be applied in polishing high-power-laser-irradiated components with high efficiency, low damage, and high LIDT. A 100  mm×100  mm×10  mm FS optic window is treated, and the width/depth ratio rises from 3 to 11, RI decreases from 4 to 1.2, and LIDT is improved from 7.8 to 17.8  J/cm2 after 385 min of MRF elastic polishing and 60 min of HF etching. Comparing this defect-carrying sample to the defect-free one, the MRF polishing time is shortened, obviously, from 1100 to 385 min, and the LIDT is merely decreased from 19.4 to 17.8  J/cm2. Due to the optimized technique, the fabricating time was shortened by a factor of 2.6, while the LIDT decreased merely 8.2%.

  16. Removing Al and regenerating caustic soda from the spent washing liquor of Al etching

    NASA Astrophysics Data System (ADS)

    Barakat, M. A.; El-Sheikh, S. M.; Farghly, F. E.

    2005-08-01

    Spent liquor from washing of aluminum section materials after etching with caustic soda (NaOH) has been treated. Aluminum was removed from the liquor and caustic soda was regenerated by adding precipitating agents to hydrolyze sodium aluminate (Na2AlO2), separating the aluminumprecipitate, and concentrating free NaOH in the resulting solution for reuse in the etching process. Four systems were investigated: hydrated lime [Ca(OH)2], hydrogen peroxide (H2O2), H2O2/Ca(OH)2 mixture, and dry lime (CaO). Results revealed that CaO was more efficient in the removal of aluminum from the spent liquor with a higher hydrolyzing rate of Na2AlO2 than Ca(OH)2, H2O2, or their mixture.

  17. Lithography-free glass surface modification by self-masking during dry etching

    NASA Astrophysics Data System (ADS)

    Hein, Eric; Fox, Dennis; Fouckhardt, Henning

    2011-01-01

    Glass surface morphologies with defined shapes and roughness are realized by a two-step lithography-free process: deposition of an ~10-nm-thin lithographically unstructured metallic layer onto the surface and reactive ion etching in an Ar/CF4 high-density plasma. Because of nucleation or coalescence, the metallic layer is laterally structured during its deposition. Its morphology exhibits islands with dimensions of several tens of nanometers. These metal spots cause a locally varying etch velocity of the glass substrate, which results in surface structuring. The glass surface gets increasingly rougher with further etching. The mechanism of self-masking results in the formation of surface structures with typical heights and lateral dimensions of several hundred nanometers. Several metals, such as Ag, Al, Au, Cu, In, and Ni, can be employed as the sacrificial layer in this technology. Choice of the process parameters allows for a multitude of different glass roughness morphologies with individual defined and dosed optical scattering.

  18. Developing Barbed Microtip-Based Electrode Arrays for Biopotential Measurement

    PubMed Central

    Hsu, Li-Sheng; Tung, Shu-Wei; Kuo, Che-Hsi; Yang, Yao-Joe

    2014-01-01

    This study involved fabricating barbed microtip-based electrode arrays by using silicon wet etching. KOH anisotropic wet etching was employed to form a standard pyramidal microtip array and HF/HNO3 isotropic etching was used to fabricate barbs on these microtips. To improve the electrical conductance between the tip array on the front side of the wafer and the electrical contact on the back side, a through-silicon via was created during the wet etching process. The experimental results show that the forces required to detach the barbed microtip arrays from human skin, a polydimethylsiloxane (PDMS) polymer, and a polyvinylchloride (PVC) film were larger compared with those required to detach microtip arrays that lacked barbs. The impedances of the skin-electrode interface were measured and the performance levels of the proposed dry electrode were characterized. Electrode prototypes that employed the proposed tip arrays were implemented. Electroencephalogram (EEG) and electrocardiography (ECG) recordings using these electrode prototypes were also demonstrated. PMID:25014098

  19. Pyramidal pits created by single highly charged ions in BaF{sub 2} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Said, A. S.; Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura; Heller, R.

    2010-07-15

    In various insulators, the impact of individual slow highly charged ions (eV-keV) creates surface nanostructures, whose size depends on the deposited potential energy. Here we report on the damage created on a cleaved BaF{sub 2} (111) surface by irradiation with 4.5xq keV highly charged xenon ions from a room-temperature electron-beam ion trap. Up to charge states q=36, no surface topographic changes on the BaF{sub 2} surface are observed by scanning force microscopy. The hidden stored damage, however, can be made visible using the technique of selective chemical etching. Each individual ion impact develops into a pyramidal etch pits, as canmore » be concluded from a comparison of the areal density of observed etch pits with the applied ion fluence (typically 10{sup 8} ions/cm{sup 2}). The dimensional analysis of the measured pits reveals the significance of the deposited potential energy in the creation of lattice distortions/defects in BaF{sub 2}.« less

  20. Effect of 2% Chlorhexidine Digluconate on the Bond Strength to Normal versus Caries-Affected Dentin

    PubMed Central

    Komori, Paula C. P.; Pashley, David H.; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; de Goes, Mario Fernando; Wang, Linda; Carrilho, Marcela R.

    2013-01-01

    SUMMARY This study evaluated the effect of 2% chlorhexidine digluconate (CHX) used as a therapeutic primer on the long-term bond strengths of two etch-and-rinse adhesives to normal (ND) and caries-affected (CAD) dentin. Forty extracted human molars with coronal carious lesions, surrounded by normal dentin, were selected for this study. Flat surfaces of two types of dentin (i.e. ND and CAD) were prepared with a water-cooled high speed diamond disc, and then acid-etched, rinsed and air-dried. In control groups, dentin was re-hydrated with distilled water, blot-dried and bonded with a three-step (Scotchbond Multi-Purpose-MP) or a two-step (Single Bond 2-SB) etch-and-rinse adhesive. In experimental groups, dentin was re-hydrated with 2% CHX (60 s), blot-dried and bonded with the same adhesives. Resin composite build-ups were made. Specimens were prepared for microtensile bond testing in accordance with the non-trimming technique and then tested either immediately or after 6-month storage in artificial saliva. Data were analyzed by ANOVA/Bonferroni tests (α = 0.05). CHX did not affect the immediate bond strength to ND or CAD (p>0.05). CHX treatment significantly lowered the loss of bond strength after 6 months seen in control bonds for ND (p<0.05), but it did not alter the bond strength of CAD (p>0.05). Application of MP on CHX-treated ND or CAD produced bonds that did not change over 6 months of storage. PMID:19363971

  1. Effect of 2% chlorhexidine digluconate on the bond strength to normal versus caries-affected dentin.

    PubMed

    Komori, Paula C P; Pashley, David H; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; de Goes, Mario Fernando; Wang, Linda; Carrilho, Marcela R

    2009-01-01

    This study evaluated the effect of 2% chlorhexidine digluconate (CHX) used as a therapeutic primer on the long-term bond strengths of two etch-and-rinse adhesives to normal (ND) and caries-affected (CAD) dentin. Forty extracted human molars with coronal carious lesions, surrounded by normal dentin, were selected for this study. The flat surfaces of two types of dentin (ND and CAD) were prepared with a water-cooled high-speed diamond disc, then acid-etched, rinsed and air-dried. In the control groups, the dentin was re-hydrated with distilled water, blot-dried and bonded with a three-step (Scotchbond Multi-Purpose-MP) or two-step (Single Bond 2-SB) etch-and-rinse adhesive. In the experimental groups, the dentin was rehydrated with 2% CHX (60 seconds), blot-dried and bonded with the same adhesives. Resin composite build-ups were made. The specimens were prepared for microtensile bond testing in accordance with the non-trimming technique, then tested either immediately or after six-months storage in artificial saliva. The data were analyzed by ANOVA/Bonferroni tests (alpha = 0.05). CHX did not affect the immediate bond strength to ND or CAD (p > 0.05). CHX treatment significantly lowered the loss of bond strength after six months as seen in the control bonds for ND (p < 0.05), but it did not alter the bond strength of CAD (p > 0.05). The application of MP on CHX-treated ND or CAD produced bonds that did not change over six months of storage.

  2. Optimization of etching and reading procedures for the Autoscan 60 track etch system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeever, R.; Devine, R.; Coennen, C.

    1997-02-11

    The Los Alamos National Laboratory is charged with measuring the occupational exposure to radiological workers and contractors throughout the Laboratory, which includes many different sites with multiple and varied radiation fields. Of concern here are the high energy neutrons such as those generated during accelerator operations at Los Alamos Neutron Science Center (LANSCE). In 1993, the Los Alamos National Laboratory purchased an Autoscan 60 automated reader for use with chemically etched CR39 detectors. The dosimeter design employed at LANL uses a plastic, hemispherical case, encompassing a polystyrene pyramidal detector holder. The pyramidal holder supports three detectors at a 35{degree} angle.more » Averaging the results of the three detectors minimizes the angular dependence normally associated with a planar dosimeter. The Autoscan 60 is an automated reading system for use with CR39 chemical etch detectors. The detectors are immersed in an etch solution to enhance the visibility of the damage sites caused by recoil proton impact with the hydrogen atoms in the detector. The authors decided to increase the etch time from six hours to 15 hours, while retaining the 70 C temperature. The reason for the change in the etch is to enhance the sensitivity and precision of the CR39 detector as indicated by this study.« less

  3. Examination of femtosecond laser matter interaction in multipulse regime for surface nanopatterning of vitreous substrates.

    PubMed

    Varkentina, Nadezda; Cardinal, Thierry; Moroté, Fabien; Mounaix, Patrick; André, Pascal; Deshayes, Yannick; Canioni, Lionel

    2013-12-02

    The paper presents our results on laser micro- and nanostructuring of sodium aluminosilicate glass for the permanent storage purposes and photonics applications. Surface structuring is realized by fs laser irradiation followed by the subsequent etching in a potassium hydroxide (10M@80 °C) for 1 to 10 minutes. As the energy deposited is lower than the damage and/or ablation threshold, the chemical etching permits to produce small craters in the laser modified region. The laser parameters dependent interaction regimes are revealed by microscopic analysis (SEM and AFM). The influence of etching time on craters formation is investigated under different incident energies, number of pulses and polarization states.

  4. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Leem, Jung Woo; Song, Young Min; Yu, Jae Su

    2013-10-01

    We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance.We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr02806b

  5. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    NASA Astrophysics Data System (ADS)

    Lu, J.; Meng, X.; Springthorpe, A. J.; Shepherd, F. R.; Poirier, M.

    2004-05-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated ``T electrodes'' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ~0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 °C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes. .

  6. Evaluation of the Shear Bond Strength of Composite Resin to Wet and Dry Enamel Using Dentin Bonding Agents Containing Various Solvents

    PubMed Central

    Ramarao, Sathyanarayanan; John, Bindu Meera; Rajesh, Praveen; Swatha, S

    2017-01-01

    Introduction Bonding of composite resin to dentin mandates a wet substrate whereas, enamel should be dry. This may not be easily achievable in intracoronal preparations where enamel and dentin are closely placed to each other. Therefore, Dentin Bonding Agents (DBA) are recommended for enamel and dentinal bonding, where enamel is also left moist. A research question was raised if the “enamel-only” preparations will also benefit from wet enamel bonding and contemporary DBA. Aim The aim of this study was to compare the shear bond strengths of composite resin, bonded to dry and wet enamel using fifth generation DBA (etch and rinse system) containing various solvents such as ethanol/water, acetone and ethanol. Materials and Methods The crowns of 120 maxillary premolars were split into buccal and lingual halves. They were randomly allocated into four groups of DBA: Group 1-water/ethanol based, Group 2-acetone based, Group 3-ethanol based, Group 4-universal bonding agent (control group). The buccal halves and lingual halves were bonded using the wet bonding and dry bonding technique respectively. After application of the DBAs and composite resin build up, shear bond strength testing was done. Results Group 1 (ethanol/water based ESPE 3M, Adper Single Bond) showed highest bond strength of (23.15 MPa) in dry enamel. Group 2 (acetone based Denstply, Prime and Bond NT, showed equal bond strength in wet and dry enamel condition (18.87 MPa and 18.02 MPa respectively). Conclusion Dry enamel bonding and ethanol/water based etch and rinse DBA can be recommended for “enamel-only” tooth preparations. PMID:28274042

  7. Influence of Blood Contamination on Bond Strength of a Self-Etching System

    PubMed Central

    de Carvalho Mendonça, Ellen Cristina; Vieira, Samuel Nilo; Kawaguchi, Fernando Aparecido; Powers, John; Matos, Adriana Bona

    2010-01-01

    Objectives: To detect the influence of blood contamination (BC) on the bond strength (BS) of a self-etching bonding system (SES) to enamel and dentine. Methods: 25 human molars were longitudinally sectioned on the mesio-distal axis in order to obtain 50 specimens, which were embedded in acrylic resin. At first, the specimens were ground to expose a flat surface of enamel, and a bond strength test was performed. Afterwards, the samples were ground again in order to obtain a flat surface of dentine. Ten groups (total: n=100) were assigned according to substrate (enamel and dentine), step in the bonding sequence when contamination occurred (before the acidic primer and after the bonding resin), and contamination treatment (dry or rinse and dry procedure). Fresh human blood was introduced either before or after SES application (Clearfil SE Bond) and treated with air drying, or by rinsing and drying following application. Composite resin (Filtek Z-250,3M ESPE) was applied as inverted, truncated cured cones that were debonded in tension. Results: The mean tensile BS values (MPa) for enamel/dentine were 19.4/23.0 and 17.1/10.0 for rinse-and-dry treatment (contamination before and after SES, respectively); while the measurements for the dry treatment, 16.2/23.3 and 0.0/0.0 contamination before and after SES, respectively. Conclusions: It was determined that blood contamination impaired adhesion to enamel and dentine when it occurred after bond light curing. Among the tested contamination treatments, the rinse-and-dry treatment produced the highest bond strength with BC after SES application, but it was not sufficient to recover the BS in the contamination-free group. PMID:20613916

  8. Multi-Functional, Micro Electromechanical Silicon Carbide Accelerometer

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2004-01-01

    A method of bulk manufacturing SiC sensors is disclosed and claimed. Materials other than SiC may be used as the substrate material. Sensors requiring that the SiC substrate be pierced are also disclosed and claimed. A process flow reversal is employed whereby the metallization is applied first before the recesses are etched into or through the wafer. Aluminum is deposited on the entire planar surface of the metallization. Photoresist is spun onto the substantially planar surface of the Aluminum which is subsequently masked (and developed and removed). Unwanted Aluminum is etched with aqueous TMAH and subsequently the metallization is dry etched. Photoresist is spun onto the still substantially planar surface of Aluminum and oxide and then masked (and developed and removed) leaving the unimidized photoresist behind. Next, ITO is applied over the still substantially planar surface of Aluminum, oxide and unimidized photoresist. Unimidized and exposed photoresist and ITO directly above it are removed with Acetone. Next, deep reactive ion etching attacks exposed oxide not protected by ITO. Finally, hot phosphoric acid removes the Al and ITO enabling wires to connect with the metallization. The back side of the SiS wafer may be also etched.

  9. Multi-functional micro electromechanical devices and method of bulk manufacturing same

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2004-01-01

    A method of bulk manufacturing SiC sensors is disclosed and claimed. Materials other than SiC may be used as the substrate material. Sensors requiring that the SiC substrate be pierced are also disclosed and claimed. A process flow reversal is employed whereby the metallization is applied first before the recesses are etched into or through the wafer. Aluminum is deposited on the entire planar surface of the metallization. Photoresist is spun onto the substantially planar surface of the Aluminum which is subsequently masked (and developed and removed). Unwanted Aluminum is etched with aqueous TMAH and subsequently the metallization is dry etched. Photoresist is spun onto the still substantially planar surface of Aluminum and oxide and then masked (and developed and removed) leaving the unimidized photoresist behind. Next, ITO is applied over the still substantially planar surface of Aluminum, oxide and unimidized photoresist. Unimidized and exposed photoresist and ITO directly above it are removed with Acetone. Next, deep reactive ion etching attacks exposed oxide not protected by ITO. Finally, hot phosphoric acid removes the Al and ITO enabling wires to connect with the metallization. The back side of the SiC wafer may be also be etched.

  10. Femtosecond laser etching of dental enamel for bracket bonding.

    PubMed

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  11. Iodine enhanced focused-ion-beam etching of silicon for photonic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrauwen, Jonathan; Thourhout, Dries van; Baets, Roel

    Focused-ion-beam etching of silicon enables fast and versatile fabrication of micro- and nanophotonic devices. However, large optical losses due to crystal damage and ion implantation make the devices impractical when the optical mode is confined near the etched region. These losses are shown to be reduced by the local implantation and etching of silicon waveguides with iodine gas enhancement, followed by baking at 300 deg. C. The excess optical loss in the silicon waveguides drops from 3500 to 1700 dB/cm when iodine gas is used, and is further reduced to 200 dB/cm after baking at 300 deg. C. We presentmore » elemental and chemical surface analyses supporting that this is caused by the desorption of iodine from the silicon surface. Finally we present a model to extract the absorption coefficient from the measurements.« less

  12. Nitrogen reactive ion etch processes for the selective removal of poly-(4-vinylpyridine) in block copolymer films.

    PubMed

    Flynn, Shauna P; Bogan, Justin; Lundy, Ross; Khalafalla, Khalafalla E; Shaw, Matthew; Rodriguez, Brian J; Swift, Paul; Daniels, Stephen; O'Connor, Robert; Hughes, Greg; Kelleher, Susan M

    2018-08-31

    Self-assembling block copolymer (BCP) patterns are one of the main contenders for the fabrication of nanopattern templates in next generation lithography technology. Transforming these templates to hard mark materials is key for pattern transfer and in some cases, involves selectively removing one block from the nanopattern. For poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP), a high χ BCP system which could be potentially incorporated into semiconductor nanofabrication, this selective removal is predominantly done by a wet etch/activation process. Conversely, this process has numerous disadvantages including lack of control and high generation of waste leading to high cost. For these reasons, our motivation was to move away from the wet etch process and optimise a dry etch which would overcome the limitations associated with the activation process. The work presented herein shows the development of a selective plasma etch process for the removal of P4VP cores from PS-b-P4VP nanopatterned film. Results have shown that a nitrogen reactive ion etch plasma has a selectivity for P4VP of 2.2:1 and suggest that the position of the nitrogen in the aromatic ring of P4VP plays a key role in this selectivity. In situ plasma etching and x-ray photoelectron spectrometry measurements were made without breaking vacuum, confirming that the nitrogen plasma has selectivity for removal of P4VP over PS.

  13. Fabrication of 3D surface structures using grayscale lithography

    NASA Astrophysics Data System (ADS)

    Stilson, Christopher; Pal, Rajan; Coutu, Ronald A.

    2014-03-01

    The ability to design and develop 3D microstructures is important for microelectromechanical systems (MEMS) fabrication. Previous techniques used to create 3D devices included tedious steps in direct writing and aligning patterns onto a substrate followed by multiple photolithography steps using expensive, customized equipment. Additionally, these techniques restricted batch processing and placed limits on achievable shapes. Gray-scale lithography enables the fabrication of a variety of shapes using a single photolithography step followed by reactive ion etching (RIE). Micromachining 3D silicon structures for MEMS can be accomplished using gray-scale lithography along with dry anisotropic etching. In this study, we investigated: using MATLAB for mask designs; feasibility of using 1 μm Heidelberg mask maker to direct write patterns onto photoresist; using RIE processing to etch patterns into a silicon substrate; and the ability to tailor etch selectivity for precise fabrication. To determine etch rates and to obtain desired etch selectivity, parameters such as gas mixture, gas flow, and electrode power were studied. This process successfully demonstrates the ability to use gray-scale lithography and RIE for use in the study of micro-contacts. These results were used to produce a known engineered non-planer surface for testing micro-contacts. Surface structures are between 5 μm and 20 μm wide with varying depths and slopes based on mask design and etch rate selectivity. The engineered surfaces will provide more insight into contact geometries and failure modes of fixed-fixed micro-contacts.

  14. Self-Anchored Catalyst Interface Enables Ordered Via Array Formation from Submicrometer to Millimeter Scale for Polycrystalline and Single-Crystalline Silicon.

    PubMed

    Kim, Jeong Dong; Kim, Munho; Kong, Lingyu; Mohseni, Parsian K; Ranganathan, Srikanth; Pachamuthu, Jayavel; Chim, Wai Kin; Chiam, Sing Yang; Coleman, James J; Li, Xiuling

    2018-03-14

    Defying text definitions of wet etching, metal-assisted chemical etching (MacEtch), a solution-based, damage-free semiconductor etching method, is directional, where the metal catalyst film sinks with the semiconductor etching front, producing 3D semiconductor structures that are complementary to the metal catalyst film pattern. The same recipe that works perfectly to produce ordered array of nanostructures for single-crystalline Si (c-Si) fails completely when applied to polycrystalline Si (poly-Si) with the same doping type and level. Another long-standing challenge for MacEtch is the difficulty of uniformly etching across feature sizes larger than a few micrometers because of the nature of lateral etching. The issue of interface control between the catalyst and the semiconductor in both lateral and vertical directions over time and over distance needs to be systematically addressed. Here, we present a self-anchored catalyst (SAC) MacEtch method, where a nanoporous catalyst film is used to produce nanowires through the pinholes, which in turn physically anchor the catalyst film from detouring as it descends. The systematic vertical etch rate study as a function of porous catalyst diameter from 200 to 900 nm shows that the SAC-MacEtch not only confines the etching direction but also enhances the etch rate due to the increased liquid access path, significantly delaying the onset of the mass-transport-limited critical diameter compared to nonporous catalyst c-Si counterpart. With this enhanced mass transport approach, vias on multistacks of poly-Si/SiO 2 are also formed with excellent vertical registry through the polystack, even though they are separated by SiO 2 which is readily removed by HF alone with no anisotropy. In addition, 320 μm square through-Si-via (TSV) arrays in 550 μm thick c-Si are realized. The ability of SAC-MacEtch to etch through poly/oxide/poly stack as well as more than half millimeter thick silicon with excellent site specificity for a wide range of feature sizes has significant implications for 2.5D/3D photonic and electronic device applications.

  15. Fabrication of biomimetic dry-adhesion structures through nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Kuo, P. C.; Chang, N. W.; Suen, Y.; Yang, S. Y.

    2018-03-01

    Components with surface nanostructures suitable for biomimetic dry adhesion have a great potential in applications such as gecko tape, climbing robots, and skin patches. In this study, a nanosphere lithography technique with self-assembly nanospheres was developed to achieve effective and efficient fabrication of dry-adhesion structures. Self-assembled monolayer nanospheres with high regularity were obtained through tilted dip-coating. Reactive-ion etching of the self-assembled nanospheres was used to fabricate nanostructures of different shapes and aspect ratios by varying the etching time. Thereafter, nickel molds with inverse nanostructures were replicated using the electroforming process. Polydimethylsiloxane (PDMS) nanostructures were fabricated through a gas-assisted hot-embossing method. The pulling test was performed to measure the shear adhesion on the glass substrate of a sample, and the static contact angle was measured to verify the hydrophobic property of the structure. The enhancement of the structure indicates that the adhesion force increased from 1.2 to 4.05 N/cm2 and the contact angle increased from 118.6° to 135.2°. This columnar structure can effectively enhance the adhesion ability of PDMS, demonstrating the potential of using nanosphere lithography for the fabrication of adhesive structures.

  16. Four chemical methods of porcelain conditioning and their influence over bond strength and surface integrity

    PubMed Central

    Stella, João Paulo Fragomeni; Oliveira, Andrea Becker; Nojima, Lincoln Issamu; Marquezan, Mariana

    2015-01-01

    OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding. METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%). RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased. CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface. PMID:26352845

  17. Consequences of atomic layer etching on wafer scale uniformity in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Huard, Chad M.; Lanham, Steven J.; Kushner, Mark J.

    2018-04-01

    Atomic layer etching (ALE) typically divides the etching process into two self-limited reactions. One reaction passivates a single layer of material while the second preferentially removes the passivated layer. As such, under ideal conditions the wafer scale uniformity of ALE should be independent of the uniformity of the reactant fluxes onto the wafers, provided all surface reactions are saturated. The passivation and etch steps should individually asymptotically saturate after a characteristic fluence of reactants has been delivered to each site. In this paper, results from a computational investigation are discussed regarding the uniformity of ALE of Si in Cl2 containing inductively coupled plasmas when the reactant fluxes are both non-uniform and non-ideal. In the parameter space investigated for inductively coupled plasmas, the local etch rate for continuous processing was proportional to the ion flux. When operated with saturated conditions (that is, both ALE steps are allowed to self-terminate), the ALE process is less sensitive to non-uniformities in the incoming ion flux than continuous etching. Operating ALE in a sub-saturation regime resulted in less uniform etching. It was also found that ALE processing with saturated steps requires a larger total ion fluence than continuous etching to achieve the same etch depth. This condition may result in increased resist erosion and/or damage to stopping layers using ALE. While these results demonstrate that ALE provides increased etch depth uniformity, they do not show an improved critical dimension uniformity in all cases. These possible limitations to ALE processing, as well as increased processing time, will be part of the process optimization that includes the benefits of atomic resolution and improved uniformity.

  18. Normally-off AlGaN/GaN-based MOS-HEMT with self-terminating TMAH wet recess etching

    NASA Astrophysics Data System (ADS)

    Son, Dong-Hyeok; Jo, Young-Woo; Won, Chul-Ho; Lee, Jun-Hyeok; Seo, Jae Hwa; Lee, Sang-Heung; Lim, Jong-Won; Kim, Ji Heon; Kang, In Man; Cristoloveanu, Sorin; Lee, Jung-Hee

    2018-03-01

    Normally-off AlGaN/GaN-based MOS-HEMT has been fabricated by utilizing damage-free self-terminating tetramethyl ammonium hydroxide (TMAH) recess etching. The device exhibited a threshold voltage of +2.0 V with good uniformity, extremely small hysteresis of ∼20 mV, and maximum drain current of 210 mA/mm. The device also exhibited excellent off-state performances, such as breakdown voltage of ∼800 V with off-state leakage current as low as ∼10-12 A and high on/off current ratio (Ion/Ioff) of 1010. These excellent device performances are believed to be due to the high quality recessed surface, provided by the simple self-terminating TMAH etching.

  19. Improving Resonance Characteristics of Gas Sensors by Chemical Etching of Quartz Plates

    NASA Astrophysics Data System (ADS)

    Raicheva, Z.; Georgieva, V.; Grechnikov, A.; Gadjanova, V.; Angelov, Ts; Vergov, L.; Lazarov, Y.

    2012-12-01

    The paper presents the results of the influence of the etching process of AT-cut quartz plates on the resonance parameters and the QCM sensors. Quartz wafers (100 μm thick, with a diameter of 8 mm), divided into five groups, have been etched in [NH4]2 F2: H2O = 1:1 solution at temperatures in the range from 70°C to 90°C. The influence of etching temperature on the surface morphology of quartz wafers has been estimated by Atomic Force Microscopy (AFM). A correlation between the etching temperature and the dynamic characteristics is obtained. The optimal etching conditions for removing the surface damages caused by the mechanical treatment of the quartz wafers and for obtaining a clean surface were determined. The typical parameters of fabricated resonators on the quartz plates etched in the temperature range from 70°C to 90°C are as follows: Frequency, Fs 16 MHz ± 100 kHz Motional resistance, Rs less 10 Ω Motional inductance, Lq higher than 3 mH Motional capacitance, Cq less 30 fF Static capacitance, Co around 5 pF Quality factor, Q from 46 000 to 70 000 Sorption properties of QCM - MoO3 are evaluated at NH3 concentrations in the interval from 100 ppm to 500 ppm.

  20. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser

    NASA Astrophysics Data System (ADS)

    Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.

    2015-10-01

    Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43 μm), pulse energy (up to 3 mJ/pulse), and spot diameter (100 to 600 μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09 μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (˜100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1 mJ). When the beam is softly focused (˜300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications.

  1. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser

    PubMed Central

    Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.

    2015-01-01

    Abstract. Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43  μm), pulse energy (up to 3  mJ/pulse), and spot diameter (100 to 600  μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09  μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (∼100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1  mJ). When the beam is softly focused (∼300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications. PMID:26456553

  2. Influence of blood contamination during multimode adhesive application on the microtensile bond strength to dentin.

    PubMed

    Kucukyilmaz, E; Celik, E U; Akcay, M; Yasa, B

    2017-12-01

    The present study evaluated the effects of blood contamination performed at different steps of bonding on the microtensile bond strength (μTBS) of multimode adhesives to dentin when using the self-etch approach. Seventy-five molars were randomly assigned to three adhesive groups comprising 25 specimens each: two multimode adhesives [Single Bond Universal (SBU) and All-Bond Universal (ABU)] and a conventional one-step self-etch adhesive [Clearfil S3 Bond Plus (CSBP)]. Each group was subdivided as follows: (1) uncontaminated (control): bonding application/light curing as a positive control; (2) contamination-1 (cont-1): bonding application/light curing/blood contamination/dry as a negative control; (3) contamination-2 (cont-2): bonding application/light curing/blood contamination/rinse/dry; (4) contamination-3 (cont-3): bonding application/blood contamination/dry/bonding re-application/light curing; and (5) contamination-4 (cont-4): bonding application/blood contamination/rinse/dry/bonding re-application/light curing. Dentin specimens were prepared for μTBS testing after the composite resin application. Data were analyzed with two-way ANOVA and post-hoc tests (α = 0.05). μTBS values were similar in cont-3 groups, and ABU/cont-4 and corresponding control groups, but were significantly lower in the other groups than in their control groups (P < 0.05). Cont-1 groups showed the lowest μTBS values (P < 0.05). Neither decontamination method prevented the decrease in μTBS when contamination occurred after light curing. Drying the blood contaminants and reapplying the adhesive may regain the dentin adhesion when contamination occurs before light curing. Alternatively, rinsing and drying contaminants followed by adhesive re-application may be effective depending on adhesive type.

  3. Bio-inspired Fabrication of Complex Hierarchical Structure in Silicon.

    PubMed

    Gao, Yang; Peng, Zhengchun; Shi, Tielin; Tan, Xianhua; Zhang, Deqin; Huang, Qiang; Zou, Chuanping; Liao, Guanglan

    2015-08-01

    In this paper, we developed a top-down method to fabricate complex three dimensional silicon structure, which was inspired by the hierarchical micro/nanostructure of the Morpho butterfly scales. The fabrication procedure includes photolithography, metal masking, and both dry and wet etching techniques. First, microscale photoresist grating pattern was formed on the silicon (111) wafer. Trenches with controllable rippled structures on the sidewalls were etched by inductively coupled plasma reactive ion etching Bosch process. Then, Cr film was angled deposited on the bottom of the ripples by electron beam evaporation, followed by anisotropic wet etching of the silicon. The simple fabrication method results in large scale hierarchical structure on a silicon wafer. The fabricated Si structure has multiple layers with uniform thickness of hundreds nanometers. We conducted both light reflection and heat transfer experiments on this structure. They exhibited excellent antireflection performance for polarized ultraviolet, visible and near infrared wavelengths. And the heat flux of the structure was significantly enhanced. As such, we believe that these bio-inspired hierarchical silicon structure will have promising applications in photovoltaics, sensor technology and photonic crystal devices.

  4. Ohmic contacts to Al-rich AlGaN heterostructures

    DOE PAGES

    Douglas, E. A.; Reza, S.; Sanchez, C.; ...

    2017-06-06

    Due to the ultra-wide bandgap of Al-rich AlGaN, up to 5.8 eV for the structures in this study, obtaining low resistance ohmic contacts is inherently difficult to achieve. A comparative study of three different fabrication schemes is presented for obtaining ohmic contacts to an Al-rich AlGaN channel. Schottky-like behavior was observed for several different planar metallization stacks (and anneal temperatures), in addition to a dry-etch recess metallization contact scheme on Al 0.85Ga 0.15N/Al 0.66Ga 0.34N. However, a dry etch recess followed by n +-GaN regrowth fabrication process is reported as a means to obtain lower contact resistivity ohmic contacts onmore » a Al 0.85Ga 0.15N/Al 0.66Ga 0.34N heterostructure. In conclusion, specific contact resistivity of 5×10 -3 Ω cm 2 was achieved after annealing Ti/Al/Ni/Au metallization.« less

  5. Laser-etch patterning of metal oxide coated carbon nanotube 3D architectures.

    PubMed

    Aksu, Cemile; Ingram, Wade; Bradford, Philip D; Jur, Jesse S

    2018-08-17

    This paper describes a way to fabricate novel hybrid low density nanostructures containing both carbon nanotubes (CNTs) and ceramic nanotubes. Using atomic layer deposition, a thin film of aluminum oxide was conformally deposited on aligned multiwall CNT foams in which the CNTs make porous, three-dimensional interconnected networks. A CO 2 laser was used to etch pure alumina nanotube structures by burning out the underlying CNT substrate in discrete locations via the printed laser pattern. Structural and morphological transitions during the calcination process of aluminum oxide coated CNTs were investigated through in situ transmission electron microscopy and high-resolution scanning electron microscopy. Laser parameters were optimized to etch the CNT away (i.e. etching speed, power and focal length) while minimizing damage to the alumina nanotubes due to overheating. This study opens a new route for fabricating very low density three dimensionally patterned materials with areas of dissimilar materials and properties. To demonstrate the attributes of these structures, the etched areas were used toward anisotropic microfluidic liquid flow. The demonstration used the full thickness of the material to make complex pathways for the liquid flow in the structure. Through tuning of processing conditions, the alumina nanotube (etched) regions became hydrophilic while the bulk material remained hydrophobic and electrically conductive.

  6. Selective dry etching of III-V nitrides in Cl{sub 2}/Ar, CH{sub 4}/H{sub 2}/Ar, ICi/Ar, and IBr/Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vartuli, C.B.; Pearton, S.J.; MacKenzie, J.D.

    1996-10-01

    The selectivity for etching the binary (GaN, AlN, and InN) and ternary nitrides (InGaN and InAlN) relative to each other in Cl{sub 2}/Ar, CH{sub 4}/H{sub 2}/Ar, ICl/Ar, or IBr/Ar electron cyclotron resonance (ECR) plasmas, and Cl{sub 2}/Ar or CH{sub 4}/H{sub 2}/Ar reactive ion (RIE) plasmas was investigated. Cl-based etches appear to be the best choice for maximizing the selectivity of GaN over the other nitrides. GaN/AlN and GaN/InGaN etch rate ratios of {approximately} 10 were achieved at low RF power in Cl{sub 2}/Ar under ECR and RIE conditions, respectively. GaN/InN selectivity of 10 was found in ICl under ECR conditions.more » A relatively high selectivity (> 6) of InN/GaN was achieved in CH{sub 4}/H{sub 2}/Ar under ECR conditions at low RF powers (50 W). Since the high bond strengths of the nitrides require either high ion energies or densities to achieve practical etch rates it is difficult to achieve high selectivities.« less

  7. Farbrication of diffractive optical elements on a Si chip by an imprint lithography using nonsymmetrical silicon mold

    NASA Astrophysics Data System (ADS)

    Hirai, Yoshihiko; Okano, Masato; Okuno, Takayuki; Toyota, Hiroshi; Yotsuya, Tsutomu; Kikuta, Hisao; Tanaka, Yoshio

    2001-11-01

    Fabrication of a fine diffractive optical element on a Si chip is demonstrated using imprint lithography. A chirped diffraction grating, which has modulated pitched pattern with curved cross section is fabricated by an electron beam lithography, where the exposure dose profile is automatically optimized by computer aided system. Using the resist pattern as an etching mask, anisotropic dry etching is performed to transfer the resist pattern profile to the Si chip. The etched Si substrate is used as a mold in the imprint lithography. The Si mold is pressed to a thin polymer (poly methyl methacrylate) on a Si chip. After releasing the mold, a fine diffractive optical pattern is successfully transferred to the thin polymer. This method is exceedingly useful for fabrication of integrated diffractive optical elements with electric circuits on a Si chip.

  8. Fabrication of Cantilever-Bump Type Si Probe Card

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Yong; Lee, Dong-Seok; Kim, Dong-Kwon; Lee, Jong-Hyun

    2000-12-01

    Probe card is most important part in the test system which selects the good or bad chip of integrated circuit (IC) chips. Silicon vertical probe card is able to test multiple semiconductor chips simultaneously. We presented cantilever-bump type vertical probe card. It was fabricated by dry etching using RIE(reactive ion etching) technique and porous silicon micromachining using silicon direct bonded (SDB) wafer. Cantilevers and bumps were fabricated by isotropic etching using RIE@. 3-dimensional structures were formed by porous silicon micromachining technique using SDB wafer. Contact resistance of fabricated probe card was less than 2 Ω and its life time was more than 200,000 turns. The process used in this work is very simple and reproducible, which has good controllability in the tip dimension and spacing. It is expected that the fabricated probe card can reduce testing time, can promote productivity and enables burn-in test.

  9. REAP (raster e-beam advanced process) using 50-kV raster e-beam system for sub-100-nm node mask technology

    NASA Astrophysics Data System (ADS)

    Baik, Ki-Ho; Dean, Robert L.; Mueller, Mark; Lu, Maiying; Lem, Homer Y.; Osborne, Stephen; Abboud, Frank E.

    2002-07-01

    A chemically amplified resist (CAR) process has been recognized as an approach to meet the demanding critical dimension (CD) specifications of 100nm node technology and beyond. Recently, significant effort has been devoted to optimizing CAR materials, which offer the characteristics required for next generation photomask fabrication. In this paper, a process established with a positive-tone CAR from TOK and 50kV MEBES eXara system is discussed. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. The coating process is conducted in an environment with amine concentration less than 2 ppb. A nitrogen environment is provided during plate transfer steps. Resolution using a 60nm writing grid is 90nm line and space patterns. CD linearity is maintained down to 240nm for isolated lines or spaces by applying embedded proximity effect correction (emPEC). Optimizations of post-apply bake (PAB) and post-expose bake (PEB) time, temperature, and uniformity are completed to improve adhesion, coating uniformity, and resolution. A puddle develop process is optimized to improve line edge roughness, edge slope, and resolution. Dry etch process is optimized on a TetraT system to transfer the resist image into the chrome layer with minimum etch bias.

  10. Paradigm shifts in plasma processing and application of fundamental kinetics to problems targeting 5 nm technology device technology

    NASA Astrophysics Data System (ADS)

    Chen, Lee

    2016-09-01

    It is often said that semiconductor technology is approaching the end of scaling. While fundamental device limits do approach, plasma etching has been doing the heavy lifting to supplement the basic limits in lithography. RF plasmas, pulsing in many forms, diffusion plasmas are but a few of the important developments over the last 20 years that have succeeded in the seemingly impossible tasks. The commonality of these plasmas is being self-consistent: their near-Boltzmann EEDf maintains ionization with its tail while providing charge-balance with its Te . To control the plasma chemistry is to control its EEDf; the entanglement of ionization with charge-balance in self-consistent plasmas places a constraint on the decoupling of plasma chemistry from ionization. Example like DC/RF parallel-plate hybridizes stochastic heating with DC-cathode injected e- -beam. While such arrangement offers some level of decoupling, it raised more questions than what it helped answered along the lines of beam-plasma instabilities, bounce-resonance ionization, etc. Pure e- -beam plasmas could be a drastic departure from the self-consistent plasmas. Examples like the NRL e- -beam system and the more recent TEL NEP (Nonambipolar e- Plasma) show strong decoupling of Te from ionization but it is almost certain, many more questions lurk: the functions connecting collisional relaxation with instabilities, the channels causing the dissociation of large fluorocarbons (controlling the ion-to- radical ratio), the production of the damaging deep UV in e- -beam plasmas, etc., and the list goes on. IADf is one factor on feature-profile and IEDf determines the surgical surface-excitation governing the selectivity, and both functions have Ti as the origin; what controls the e- -beam plasmas' Ti ? RF-bias has served well in applications requiring energetic excitation but, are there ways to improve the IEDf tightness? What are the adverse side-effects of ``improved IEDf''? Decades ago an infant RF-plasma was thrown into the dry-etch arena and it hit the ground running with much of the understandings as after the facts. While the etching industry enjoys the heavy lifting by the successful self-consistent plasmas, perhaps time can be used on front-loaded soul searching of the ``maybe needed'' plasmas, for the future etching needs.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Economou, Demetre J.

    As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods includemore » the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas.« less

  12. Plastic deformation of a magnesium oxide 001-plane surface produced by cavitation

    NASA Technical Reports Server (NTRS)

    Hattori, S.; Miyoshi, K.; Buckley, D. H.; Okada, T.

    1986-01-01

    An investigation was conducted to examine plastic deformation of a cleaved single-crystal magnesium oxide 001-plane surface exposed to cavitation. Cavitation damage experiments were carried out in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (2 mm) to the surface of the cleaved specimen. The dislocation-etch-pit patterns induced by cavitation were examined and compared with that of microhardness indentations. The results revealed that dislocation-etch-pit patterns around hardness indentations contain both screw and edge dislocations, while the etch-pit patterns on the surface exposed to cavitation contain only screw dislocations. During cavitation, deformation occurred in a thin surface layer, accompanied by work-hardening of the ceramic. The row of screw dislocations underwent a stable growth, which was analyzed crystallographically.

  13. Optimization Of Fluoride Glass Fiber Drawing With Respect To Mechanical Strength

    NASA Astrophysics Data System (ADS)

    Schneider, H. W.; Schoberth, A.; Staudt, A.; Gerndt, Ch.

    1987-08-01

    Heavy metal fluoride fibers have attracted considerable attention recently as lightguides for infrared optical devices. Besides the optical loss mechanical performance of the fiber is of major interest. At present fiber strength suffers from surface crystallization prior to or during fiber drawing. We developed an etching method for the preparation of preforms with clean surface. Drawing these preforms under optimized conditions in a dry atmosphere results in fibers with improved strength. So far, mean value of 400 N/mm2 tensile strength have been achieved. Maximum values of 800 N/mm2 measured on etched fibers indicate an even higher strength potential for the material itself.

  14. SiC/GaN Based Optically Triggered MESFET for High Power Efficiency and High Radiation Resistance Solid State Switch Application for Actuator System

    DTIC Science & Technology

    2016-06-23

    somnath.chattopadhyay@csun.edu 1-818-677-7197 clean/etch. Excessively hard- baked photoresist can usually be dissolved in piranha etching solution. 48 hours of...coated onto the freshly cleaned and dried wafer at 3000RPM, then soft- baked at 180ºC for 120 seconds. This gives a PMGI layer of about 0.4µm. Then the...PR is spin coated onto the wafer at about 4000RPM and soft baked at 115ºC for 90seconds, resulting in a PR layer about 1.3µm thick. The wafer is

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Jimmy J.; Gottwald, Matthias; Fullerton, Eric E.

    We describe low-temperature characterization of magnetic tunnel junctions (MTJs) patterned by reactive ion etching for spin-transfer-torque magnetic random access memory. Magnetotransport measurements of typical MTJs show increasing tunneling magnetoresistance (TMR) and larger coercive fields as temperature is decreased down to 10 K. However, MTJs selected from the high-resistance population of an MTJ array exhibit stable intermediate magnetic states when measured at low temperature and show TMR roll-off below 100 K. These non-ideal low-temperature behaviors arise from edge damage during the etch process and can have negative impacts on thermal stability of the MTJs.

  16. Nanofabrication and ion milling introduced effects on magnetic properties in magnetic recording

    NASA Astrophysics Data System (ADS)

    Sun, Zhenzhong

    Perpendicular magnetic nanostructures have played an important role in magnetic recording technologies. In this dissertation, a systematic study on the CoPt magnetic nanostructures from fabrication, characterization to computer simulation has been performed. During the fabrication process, ion irradiation/bombardment in ion mill can cause physical damage to the magnetic nanostructures and degrade their magnetic properties. To study the effect of ion damage on CoPt nanostructures, different degrees of ion damage are introduced into CoPt nanopillars by varying the accelerating voltage in ion mill. The results demonstrate that the ion damage can reduce the coercivity by softening circumferential edge, and therefore changes the switching mechanism from coherent rotation to nucleation followed by rapid domain wall propagation. The SFD of CoPt nanostructures is independent of ion damage and is mainly determined by the intrinsic anisotropy distribution of the film rather than the nanostructure size distribution. Anisotropy-graded bit-patterned media are fabricated and studied based on high anisotropy L10-FePt material system. L10-FePt thin films with linearly and quadratically distributed anisotropy are achieved by varying substrate temperature during film growth. After patterning, the anisotropy-graded L10-FePt nanopillars display a reduced switching field and maintain a good thermal stability compared to the non-graded one. Experimental investigation and comparison further prove the concept of "anisotropy-graded" bit-patterned media and their potential application in the future magnetic recording. During magnetic write head fabrication, ion-beam damage may degrade the performance of the magnetic write pole. A surface sensitive MOKE is used to characterize the magnetic properties of these etched FeCo films. MOKE measurement shows a hard axis hysteresis loop with a high Mr in the high power etched film due to the ion beam introduced defects. The high power etched film also shows the highest RMS by AFM measurement. The geometric peaks at the top surface may have shape anisotropy and serve as the pinning sites. These magnetic pinning sites can prevent the nucleation center forming at the top surface during the switching process and lead to a high Mr in the top surface region.

  17. Enamel Thickness before and after Orthodontic Treatment Analysed in Optical Coherence Tomography

    PubMed Central

    Koprowski, Robert; Safranow, Krzysztof; Woźniak, Krzysztof

    2017-01-01

    Despite the continuous development of materials and techniques of adhesive bonding, the basic procedure remains relatively constant. The technique is based on three components: etching substance, adhesive system, and composite material. The use of etchants during bonding orthodontic brackets carries the risk of damage to the enamel. Therefore, the article examines the effect of the manner of enamel etching on its thickness before and after orthodontic treatment. The study was carried out in vitro on a group of 80 teeth. It was divided into two subgroups of 40 teeth each. The procedure of enamel etching was performed under laboratory conditions. In the first subgroup, the classic method of enamel etching and the fifth-generation bonding system were used. In the second subgroup, the seventh-generation (self-etching) bonding system was used. In both groups, metal orthodontic brackets were fixed and the enamel was cleaned with a cutter fixed on the micromotor after their removal. Before and after the treatment, two-dimensional optical coherence tomography scans were performed. The enamel thickness was assessed on the two-dimensional scans. The average enamel thickness in both subgroups was not statistically significant. PMID:28243604

  18. Effect of salivary contamination and decontamination on bond strength of two one-step self-etching adhesives to dentin of primary and permanent teeth.

    PubMed

    Santschi, Katharina; Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2015-02-01

    To evaluate the effects of human saliva contamination and two decontamination procedures at different stages of the bonding procedure on the bond strength of two one-step self-etching adhesives to primary and permanent dentin. Extracted human primary and permanent molars (210 of each) were ground to mid-coronal dentin. The dentin specimens were randomly divided into 7 groups (n = 15/group/molar type) for each adhesive (Xeno V+ and Scotchbond Universal): no saliva contamination (control); saliva contamination before or after light curing of the adhesives followed by air drying, rinsing with water spray/air drying, or by rinsing with water spray/air drying/reapplication of the adhesives. Resin composite (Filtek Z250) was applied on the treated dentin surfaces. The specimens were stored at 37°C and 100% humidity for 24 h. After storage, shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by exact Wilcoxon rank sum tests. Xeno V+ generated significantly higher SBS than Scotchbond Universal when no saliva contamination occurred. Saliva contamination reduced SBS of Xeno V+, with the reduction being more pronounced when contamination occurred before light curing than after. In both situations, decontamination involving reapplication of the adhesive restored SBS. Saliva contamination had no significant effect on Scotchbond Universal. There were no differences in SBS between primary and permanent teeth. Rinsing with water and air drying followed by reapplication of the adhesive restored bond strength to saliva-contaminated dentin.

  19. Recovery of EUVL substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernon, S.P.; Baker, S.L.

    1995-01-19

    Mo/Si multilayers, were removed from superpolished zerodur and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  20. Enhanced light absorption of solar cells and photodetectors by diffraction

    DOEpatents

    Zaidi, Saleem H.; Gee, James M.

    2005-02-22

    Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ion etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.

  1. Dose equivalent neutron dosimeter

    DOEpatents

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  2. Comparative evaluation of self-etching primers and phosphoric acid effectiveness on composite to enamel bond: an in vitro study.

    PubMed

    Patil, Basanagouda S; Rao, Bk Raghavendra; Sharathchandra, Sm; Hegde, Reshma; Kumar, G Vinay

    2013-09-01

    The aim of the present study was to investigate the effectiveness of the one total-etch self-priming adhesive, one two-step self-etching primer adhesive, and one 'all-in-one' self-etching adhesive system on the adhesion of a resin composite to enamel. Thirty-six freshly extracted human mandibular molars were selected for this study. A fat area about 5 mm in diameter was created on the exposed mesial surface of enamel of each tooth by moist grinding with 320, 420 and 600 grit silicon carbide paper. Twelve teeth were randomly assigned into three groups. In group 1, Adper Easy One (3M ESPE), a one step self-etching primer adhesive was applied and light curing unit for 10 seconds. In group 2, Adper SE Plus, a two-step self-etching primer with bottle A containing the aqueous primer and bottle B containing the acidic adhesive was applied and light cured for 10 seconds. Group 3 (control)-etchant 37% phosphoric acid is applied to the surface for 15 seconds and rinsed with water and air dried and adhesive (single bond 2) is applied to the surface and tube is placed and light cured for 20 seconds. Composite material (Z350) was placed in the tube and light cured for 40 seconds in all the groups. Bond strength testing was done using universal testing machine at the enamel-composite interface. The debonded enamel surface was evaluated in stereomicroscope to assess the cohesive, adhesive or mixed fracture. Data was statistically analyzed by one way analysis of variance (ANOVA). Group 1 performed least among all groups with a mean score of 19.46 MPa. Group 2 had a mean score of 25.67 MPa. Group 3 had a mean score of 27.16 MPa. Under the conditions of this in vitro study, the bond strength values of the two-step self-etching primer systems tested were similar to the total-etch. And, one step self-etching primers have lower bond strength compared to the total-etch.

  3. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  4. Effects of blood contamination on microtensile bond strength to dentin of three self-etch adhesives.

    PubMed

    Chang, Seok Woo; Cho, Byeong Hoon; Lim, Ran Yeob; Kyung, Seung Hyun; Park, Dong Sung; Oh, Tae Seok; Yoo, Hyun Mi

    2010-01-01

    This study evaluated the effects of blood contamination and decontamination methods during different steps of bonding procedures on the microtensile bond strength of two-step self-etch adhesives to dentin. Sixty extracted human molars were ground flat to expose occlusal dentin. The 60 molars were randomly assigned to three groups, each treated with a different two-step self-etch adhesive: Clearfil SE Bond, AdheSE and Tyrian SPE. In turn, these groups were subdivided into five subgroups (n = 20), each treated using different experimental conditions as follows: control group-no contamination; contamination group 1-CG1: primer application/ contamination/primer re-application; contamination group 2-CG2: primer application/contamination/wash/dry/primer re-application; contamination group 3-CG3: primer application/adhesive application/light curing/contamination/ adhesive re-application/light curing; contamina- tion group 4-CG4: primer application/adhesive application/light curing/contamination/wash/ dry/adhesive re-application/light curing. Composite buildup was performed using Z250. After 24 hours of storage in distilled water at 37 degrees C, the bonded specimens were trimmed to an hourglass shape and serially sectioned into slabs with 0.6 mm2 cross-sectional areas. Microtensile bond strengths (MTBS) were assessed for each specimen using a universal testing machine. The data were analyzed by two-way ANOVA followed by a post hoc LSD test. SEM evaluations of the fracture modes were also performed. The contaminated specimens showed lower bond strengths than specimens in the control group (p < 0.05), with the exception of CG1 in the Clearfil SE group and CG2 and CG3 in the Tyrian SPE group. Among the three self-etch adhesives, the Tyrian SPE group exhibited a significantly lower average MTBS compared to the Clearfil SE Bond and AdheSE (p < 0.05) groups. Based on the results of the current study, it was found that blood contamination reduced the MTBS of all three self-etch adhesives to dentin, and water-rinsing was unable to overcome the effects of blood contamination.

  5. Focused-ion-beam-inflicted surface amorphization and gallium implantation--new insights and removal by focused-electron-beam-induced etching.

    PubMed

    Roediger, P; Wanzenboeck, H D; Waid, S; Hochleitner, G; Bertagnolli, E

    2011-06-10

    Recently focused-electron-beam-induced etching of silicon using molecular chlorine (Cl(2)-FEBIE) has been developed as a reliable and reproducible process capable of damage-free, maskless and resistless removal of silicon. As any electron-beam-induced processing is considered non-destructive and implantation-free due to the absence of ion bombardment this approach is also a potential method for removing focused-ion-beam (FIB)-inflicted crystal damage and ion implantation. We show that Cl(2)-FEBIE is capable of removing FIB-induced amorphization and gallium ion implantation after processing of surfaces with a focused ion beam. TEM analysis proves that the method Cl(2)-FEBIE is non-destructive and therefore retains crystallinity. It is shown that Cl(2)-FEBIE of amorphous silicon when compared to crystalline silicon can be up to 25 times faster, depending on the degree of amorphization. Also, using this method it has become possible for the first time to directly investigate damage caused by FIB exposure in a top-down view utilizing a localized chemical reaction, i.e. without the need for TEM sample preparation. We show that gallium fluences above 4 × 10(15) cm(-2) result in altered material resulting from FIB-induced processes down to a depth of ∼ 250 nm. With increasing gallium fluences, due to a significant gallium concentration close beneath the surface, removal of the topmost layer by Cl(2)-FEBIE becomes difficult, indicating that gallium serves as an etch stop for Cl(2)-FEBIE.

  6. Transfer-free, lithography-free and fast growth of patterned CVD graphene directly on insulators by using sacrificial metal catalyst.

    PubMed

    Dong, Yibo; Xie, Yiyang; Xu, Chen; Fu, Yafei; Fan, Xing; Li, Xuejian; Wang, Le; Xiong, Fangzhu; Guo, Weiling; Pan, Guanzhong; Wang, Qiuhua; Qian, Fengsong; Sun, Jie

    2018-06-14

    Chemical vapor deposited graphene suffers from two problems: transfer from metal catalysts to insulators, and photoresist induced degradation during patterning. Both result in macroscopic and microscopic damages such as holes, tears, doping, and contamination, translated into property and yield dropping. We attempt to solve the problems simultaneously. A nickel thin film is evaporated on SiO 2 as a sacrificial catalyst, on which surface graphene is grown. A polymer (PMMA) support is spin-coated on the graphene. During the Ni wet etching process, the etchant can permeate the polymer, making the etching efficient. The PMMA/graphene layer is fixed on the substrate by controlling the surface morphology of Ni film during the graphene growth. After etching, the graphene naturally adheres to the insulating substrate. By using this method, transfer-free, lithography-free and fast growth of graphene realized. The whole experiment has good repeatability and controllability. Compared with graphene transfer between substrates, here, no mechanical manipulation is required, leading to minimal damage. Due to the presence of Ni, the graphene quality is intrinsically better than catalyst-free growth. The Ni thickness and growth temperature are controlled to limit the number of layers of graphene. The technology can be extended to grow other two-dimensional materials with other catalysts.

  7. Surface and structure modification induced by high energy and highly charged uranium ion irradiation in monocrystal spinel

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Song, Yin; Gou, Jie; Zhang, Liqing; Meng, Yancheng; Zhang, Hengqing; Ma, Yizhun

    2014-05-01

    Due to its high temperature properties and relatively good behavior under irradiation, magnesium aluminate spinel (MgAl2O4) is considered as a possible material to be used as inert matrix for the minor actinides burning. In this case, irradiation damage is an unavoidable problem. In this study, high energy and highly charged uranium ions (290 MeV U32+) were used to irradiate monocrystal spinel to the fluence of 1.0 × 1013 ions/cm2 to study the modification of surface and structure. Highly charged ions carry large potential energy, when they interact with a surface, the release of potential energy results in the modification of surface. Atomic force microscopy (AFM) results showed the occurrence of etching on surface after uranium ion irradiation. The etching depth reached 540 nm. The surprising efficiency of etching is considered to be induced by the deposition of potential energy with high density. The X-ray diffraction results showed that the (4 4 0) diffraction peak obviously broadened after irradiation, which indicated that the distortion of lattice has occurred. After multi-peak Gaussian fitting, four Gaussian peaks were separated, which implied that a structure with different damage layers could be formed after irradiation.

  8. High-performance low-cost back-channel-etch amorphous gallium-indium-zinc oxide thin-film transistors by curing and passivation of the damaged back channel.

    PubMed

    Park, Jae Chul; Ahn, Seung-Eon; Lee, Ho-Nyeon

    2013-12-11

    High-performance, low-cost amorphous gallium-indium-zinc oxide (a-GIZO) thin-film-transistor (TFT) technology is required for the next generation of active-matrix organic light-emitting diodes. A back-channel-etch structure is the most appropriate device structure for high-performance, low-cost a-GIZO TFT technology. However, channel damage due to source/drain etching and passivation-layer deposition has been a critical issue. To solve this problem, the present work focuses on overall back-channel processes, such as back-channel N2O plasma treatment, SiOx passivation deposition, and final thermal annealing. This work has revealed the dependence of a-GIZO TFT characteristics on the N2O plasma radio-frequency (RF) power and frequency, the SiH4 flow rate in the SiOx deposition process, and the final annealing temperature. On the basis of these results, a high-performance a-GIZO TFT with a field-effect mobility of 35.7 cm(2) V(-1) s(-1), a subthreshold swing of 185 mV dec(-1), a switching ratio exceeding 10(7), and a satisfactory reliability was successfully fabricated. The technology developed in this work can be realized using the existing facilities of active-matrix liquid-crystal display industries.

  9. The influence of salivary contamination on shear bond strength of dentin adhesive systems.

    PubMed

    Park, Jeong-won; Lee, Kyung Chae

    2004-01-01

    This study evaluated the influence of salivary contamination during dentin bonding procedures on shear bond strength and investigated the effect of contaminant-removing treatments on the recovery of bond strength for two dentin bonding agents. One hundred and ten human molars were embedded in cylindrical molds with self-curing acrylic resin. The occlusal dentin surface was exposed by wet grinding with #800 silicon carbide abrasive paper. The teeth were divided into five groups for One-step (OS) (BISCO, Inc) and six groups for Clearfil SE Bond (SE) (Kuraray Co, Ltd, Osaka, Japan). For One-step, the grinding surface was treated with 32% phosphoric acid; BAC (BISCO Inc) and divided into five groups: OS control group (uncontaminated), OS I (salivary contamination, blot dried), OS II (salivary contamination, completely dried), OS III (salivary contamination, wash and blot dried) and OS IV (salivary contamination, re-etching for 10 seconds, wash and blot dried). For SE bond, the following surface treatments were done: SE control group (primer applied to the fresh dentin surface), SE I (after salivary contamination, primer applied), SE II (primer, salivary contamination, dried), SE III (primer, salivary contamination, wash and dried), SE IV (after procedure of SE II, re-application of primer) and SE V (after procedure of SE III, re-application of primer). Each bonding agent was applied and light cured for 10 seconds. Clearfil AP-X (Kuraray Co, Ltd) composite was packed into the Ultradent mount jig mold and light cured for 40 seconds. The bonded specimens were stored for 24 hours in a 37 degrees C waterbath. The shear bond strengths were measured using an Instron testing machine (Model 4202, Instron Corp). The data for each group were subjected to one-way ANOVA followed by the Newman-Keuls test to make comparisons among the groups. The results were as follows: In the One-step groups, the OS II group showed statistically significant lower shear bond strength than the OS control, I, III and IV (p<0.05). In the Clearfil SE Bond groups, the SE II and SE III groups had decreased shear bond strength compared with the control and SE I, SE IV and SE V groups (p<0.05). In conclusion, when using One-step total etch adhesive and when the etched surface is contaminated by saliva, blotting the surface and applying the primer can recover the bond strength. Complete drying of the salivary contaminated surface should be avoided. In the Clearfil SE Bond groups, the re-priming treatment (SE IV and SE V) resulted in the recovery of shear bond strength in the specimens contaminated after priming.

  10. Multiscale characterization of partially demineralized superficial and deep dentin surfaces.

    PubMed

    Pelin, Irina M; Trunfio-Sfarghiu, Ana-Maria; Farge, Pierre; Piednoir, Agnes; Pirat, Christophe; Ramos, Stella M M

    2013-08-01

    The objective of this study was to address the following question: 'Which properties are modified in partially demineralized surfaces, compared with non-demineralized dentin surfaces, following orthophosphoric acid-etching as performed in clinical procedures?'. For this purpose, the complementary techniques atomic force microscopy/spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and contact angle measurements were used to provide a multiscale characterization of the dentin substrate undergoing the acidic preconditioning designed to enhance wetting. Special attention was given to the influence of the etching pretreatment on the nanomechanical properties at different levels of dentin surfaces, in both dry and hydrated conditions. The four-sided pyramid model (extended Hertz contact model) proved to be accurate for calculating the apparent Young's modulus, offering new information on the elasticity of dentin. The modulus value notably decreased following etching and surface hydration. This study underlines that after the acid etching pretreatment the contribution of the nanomechanical, morphological, and physicochemical modifications has a strong influence on the dentin adhesion properties and thus plays a significant role in the coupling of the adhesive-resin composite build-up material at the dentin surface. © 2013 Eur J Oral Sci.

  11. Formation of the InAs-, InSb-, GaAs-, and GaSb-polished surface

    NASA Astrophysics Data System (ADS)

    Levchenko, Iryna; Tomashyk, Vasyl; Stratiychuk, Iryna; Malanych, Galyna; Korchovyi, Andrii; Kryvyi, Serhii; Kolomys, Oleksandr

    2018-04-01

    The features of the InAs, InSb, GaAs, and GaSb ultra-smooth surface have been investigated using chemical-mechanical polishing with the (NH4)2Cr2O7-HBr-CH2(OH)CH2(OH)-etching solutions. The etching rate of the semiconductors has been measured as a function of the solution saturation by organic solvent (ethylene glycol). It was found that mechanical effect significantly increases the etching rate from 1.5 to 57 µm/min, and the increase of the organic solvent concentration promotes the decrease of the damaged layer-removing rate. According to AFM, RS, HRXRD results, the treatment with the (NH4)2Cr2O7-HBr-ethylene glycol solutions produces the clean surface of the nanosize level (R a < 0.5 nm).

  12. Tuning the thickness of exfoliated quasi-two-dimensional β-Ga2O3 flakes by plasma etching

    NASA Astrophysics Data System (ADS)

    Kwon, Yongbeom; Lee, Geonyeop; Oh, Sooyeoun; Kim, Jihyun; Pearton, Stephen J.; Ren, Fan

    2017-03-01

    We demonstrated the thinning of exfoliated quasi-two-dimensional β-Ga2O3 flakes by using a reactive ion etching technique. Mechanical exfoliation of the bulk β-Ga2O3 by using an adhesive tape was followed by plasma etching to tune its thickness. Since β-Ga2O3 is not a van der Waals material, it is challenging to obtain ultra-thin flakes below a thickness of 100 nm. In this study, an etch rate of approximately 16 nm/min was achieved at a power of 200 W with a flow of 50 sccm of SF6, and under these conditions, thinning of β-Ga2O3 flakes from 300 nm down to ˜60 nm was achieved with smooth morphology. We believe that the reaction between SF6 and Ga2O3 results in oxygen and volatile oxygen fluoride compounds, and non-volatile compounds such as GaFX that can be removed by ion bombardment. The opto-electrical properties were also characterized by fabricating solar-blind photodetectors using the plasma-thinned β-Ga2O3 flakes; these detectors showed fast response and decay with excellent responsivity and selectivity. Our results pave the way for tuning the thickness of two-dimensional materials by using this scalable, industry-compatible dry etching technique.

  13. High-speed scanning ablation of dental hard tissues with a λ=9.3-μm CO2 laser: heat accumulation and peripheral thermal damage

    NASA Astrophysics Data System (ADS)

    Nguyen, Daniel; Staninec, Michal; Lee, Chulsung; Fried, Daniel

    2010-02-01

    A mechanically scanned CO2 laser operated at high laser pulse repetition rates can be used to rapidly and precisely remove dental decay. This study aims to determine whether these laser systems can safely ablate enamel and dentin without excessive heat accumulation and peripheral thermal damage. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. Samples were derived from noncarious extracted molars. Pulpal temperatures were recorded using microthermocouples situated at the pulp chamber roof of samples (n=12), which were occlusally ablated using a rapid-scanning, water-cooled 300 Hz CO2 laser over a two minute time course. The mechanical strength of facially ablated dentin (n=10) was determined via four-point bend test and compared to control samples (n=10) prepared with 320 grit wet sand paper to simulate conventional preparations. Composite-to-enamel bond strength was measured via single-plane shear test for ablated/non-etched (n=10) and ablated/acid-etched (n=8) samples and compared to control samples (n=9) prepared by 320 grit wet sanding. Thermocouple measurements indicated that the temperature remained below ambient temperature at 19.0°C (s.d.=0.9) if water-cooling was used. There was no discoloration of either dentin and enamel, the treated surfaces were uniformly ablated and there were no cracks observable on the laser treated surfaces. Fourpoint bend tests yielded mean mechanical strengths of 18.2 N (s.d.=4.6) for ablated dentin and 18.1 N (s.d.=2.7) for control (p>0.05). Shear tests yielded mean bond strengths of 31.2 MPa (s.d.=2.5, p<0.01) for ablated/acid-etched samples, 5.2 MPa (s.d.=2.4, p<0.001) for ablated/non-etched samples, and 37.0 MPa (s.d.=3.6) for control. The results indicate that a rapid-scanning 300 Hz CO2 laser can effectively ablate dentin and enamel without excessive heat accumulation and with minimal thermal damage. It is not clear whether the small (16%) but statistically significant reduction in the shear bond strength to enamel is clinically significant since the mean shear bond strength exceeded 30 MPa.

  14. The Effect of the Elimination of Micromotion and Tissue Strain on Intracortical Device Performance

    DTIC Science & Technology

    2017-10-01

    dry mode and after soaking for 60 min in PBS at 37 °C. 6 3. Connectivity Issue: An additional issue emerged while trying to establish an electrical...patterned to dry etch the Parylene-C film using DMA ribbons photo mask using O2 plasma. The photoresist is then stripped off to get the wafers ready for...investigated visually by the naked eye and with an optical microscope and only those who pass (substrates with very low number of small particles, if

  15. Self-assembled titanium calcium oxide nanopatterns as versatile reactive nanomasks for dry etching lithographic transfer with high selectivity.

    PubMed

    Faustini, Marco; Drisko, Glenna L; Letailleur, Alban A; Montiel, Rafael Salas; Boissière, Cédric; Cattoni, Andrea; Haghiri-Gosnet, Anne Marie; Lerondel, Gilles; Grosso, David

    2013-02-07

    We report the simple preparation of ultra-thin self-assembled nanoperforated titanium calcium oxide films and their use as reactive nanomasks for selective dry etching of silicon. This novel reactive nanomask is composed of TiO(2) in which up to 50% of Ti was replaced by Ca (Ca(x)Ti(1-x)O(2-x)). The system was prepared by evaporation induced self-assembly of dip-coated solution of CaCl(2), TiCl(4) and poly(butadiene-block-ethylene oxide) followed by 5 min of thermal treatment at 500 °C in air. The mask exhibits enhanced selectivity by forming a CaF(2) protective layer in the presence of a chemically reactive fluorinated plasma. In particular it is demonstrated that ordered nano-arrays of dense Si pillars, or deep cylindrical wells, with high aspect ratio i.e. lateral dimensions as small as 20 nm and height up to 200 nm, can be formed. Both wells and pillars were formed by tuning the morphology and the homogeneity of the deposited mask. The mask preparation is extremely fast and simple, low-cost and easily scalable. Its combination with reactive ion etching constitutes one of the first examples of what can be achieved when sol-gel chemistry is coupled with top-down technologies. The resulting Si nanopatterns and nanostructures are of high interest for applications in many fields of nanotechnology including electronics and optics. This work extends and diversifies the toolbox of nanofabrication methods.

  16. Process technologies of MPACVD planar waveguide devices and fiber attachment

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Chung; Qian, Fan; Boudreau, Robert A.; Rowlette, John R., Sr.; Bowen, Terry P.

    1999-03-01

    Optical circuits based on low-loss glass waveguide on silicon are a practical and promising approach to integrate different functional components. Fiber attachment to planar waveguide provides a practical application for optical communications. Microwave Plasma Assisted Chemical Vapor Deposition (MPACVD) produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. Microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer is thus deposited with a compatible high growth rate (i.e. 0.4 - 0.5 micrometer/min). Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The resultant refractive index can be varied between 1.46 (i.e. pure silica) and 1.60 (i.e. pure germania). Waveguides can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on a mask layer. The core layer is removed by plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma (ICP) etch. Etch rates of 3000 - 4000 angstrom/min have been achieved using ICP compared to typical etch rates of 200 - 300 angstrom/min using conventional RIE. Planar waveguides offer good mode matching to optical fiber. A polished fiber end can be glued to the end facet of waveguide with a very low optical coupling loss. In addition, anisotropic etching of silicon V- grooves provides a passive alignment capability. Epoxy and solder were used to fix the fiber within the guiding groove. Several designs of waveguide-fiber attachment will be discussed.

  17. Advanced process and defect characterization methodology to support process development of advanced patterning structures

    NASA Astrophysics Data System (ADS)

    Ketkar, Supriya; Lee, Junhan; Asokamani, Sen; Cho, Winston; Mishra, Shailendra

    2018-03-01

    This paper discusses the approach and solution adopted by GLOBALFOUNDRIES, a high volume manufacturing (HVM) foundry, for dry-etch related edge-signature surface particle defects issue facing the sub-nm node in the gate-etch sector. It is one of the highest die killers for the company in the 14-nm node. We have used different approaches to attack and rectify the edge signature surface particle defect. Several process-related & hardware changes have been successively implemented to achieve defect reduction improvement by 63%. Each systematic process and/or hardware approach has its own unique downstream issues and they have been dealt in a route-cause-effect technique to address the issue.

  18. Harnessing Solid-State Ionic Transport for Nanomanufacturing and Nanodevices

    ERIC Educational Resources Information Center

    Hsu, Keng Hao

    2009-01-01

    Through this work a new all-solid, ambient processing condition direct metal patterning technique has been developed and characterized. This ionic-transport-based patterning technique is capable of sub-50nm feature resolution under ambient conditions. It generates features with a rate that is comparable to conventional dry-etching techniques. A…

  19. Exposure characteristics of positive tone electron beam resist containing p-chloro-α-methylstyrene

    NASA Astrophysics Data System (ADS)

    Ochiai, Shunsuke; Takayama, Tomohiro; Kishimura, Yukiko; Asada, Hironori; Sonoda, Manae; Iwakuma, Minako; Hoshino, Ryoichi

    2017-07-01

    The positive tone resist consisted of methyl-α-chloroacrylate (ACM) and α-methylstyrene (MS) has higher sensitivity and higher dry etching resistance than poly (methylmethacrylate) (PMMA) due to the presence of a chlorine atom and a phenyl group. Copolymers consisted of ACM and p-chloro-α-methylstyrene (PCMS), where the additional chlorine atom is introduced in phenyl group compared with ACM-MS resist are synthesized and their exposure characteristics are investigated. ACM-PCMS resist with the ACM:PCMS composition ratio of 49:51 indicates the high solubility for amyl acetate developer. As the ACM composition ratio increases, the solubility of ACM-PCMS resist is suppressed. In both ACM-PCMS and ACM-MS resists, the sensitivity decreases while the contrast increases with increasing ACM ratio. When the composition ratio of ACM:PCMS is 69:31, 100/100 nm line and space pattern having a good shape is obtained at 120 μC/cm2 which is comparable to the required exposure dose for conventional ACM-MS resist with ACM:MS=50:50. Dry etching resistance of ACM:PCMS resists for Ar gas is also presented.

  20. Iridium-coated micropore x-ray optics using dry etching of a silicon wafer and atomic layer deposition.

    PubMed

    Ogawa, Tomohiro; Ezoe, Yuichiro; Moriyama, Teppei; Mitsuishi, Ikuyuki; Kakiuchi, Takuya; Ohashi, Takaya; Mitsuda, Kazuhisa; Putkonen, Matti

    2013-08-20

    To enhance x-ray reflectivity of silicon micropore optics using dry etching of silicon (111) wafers, iridium coating is tested by use of atomic layer deposition. An iridium layer is successfully formed on sidewalls of tiny micropores with a pore width of 20 μm and depth of 300 μm. The film thickness is ∼20  nm. An enhanced x-ray reflectivity compared to that of silicon is confirmed at Ti Kα 4.51 keV, for what we believe to be the first time, with this type of optics. Some discrepancies from a theoretical reflectivity curve of iridium-coated silicon are noticed at small incident angles <1.3°. When a geometrical shadowing effect due to occultation by a ridge existing on the sidewalls is taken into account, the observed reflectivity becomes well represented by the modified theoretical curve. An estimated surface micro roughness of ∼1  nm rms is consistent with atomic force microscope measurements of the sidewalls.

  1. Tunable Nanoantennas for Surface Enhanced Infrared Absorption Spectroscopy by Colloidal Lithography and Post-Fabrication Etching

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Duy Dao, Thang; Nagao, Tadaaki

    2017-03-01

    We fabricated large-area metallic (Al and Au) nanoantenna arrays on Si substrates using cost-effective colloidal lithography with different micrometer-sized polystyrene spheres. Variation of the sphere size leads to tunable plasmon resonances in the middle infrared (MIR) range. The enhanced near-fields allow us to detect the surface phonon polaritons in the natural SiO2 thin layers. We demonstrated further tuning capability of the resonances by employing dry etching of the Si substrates with the nanoantennas acting as the etching masks. The effective refractive index of the nanoantenna surroundings is efficiently decreased giving rise to blueshifts of the resonances. In addition, partial removal of the Si substrates elevates the nanoantennas from the high-refractive-index substrates making more enhanced near-fields accessible for molecular sensing applications as demonstrated here with surface-enhanced infrared absorption (SEIRA) spectroscopy for a thin polymer film. We also directly compared the plasmonic enhancement from the Al and Au nanoantenna arrays.

  2. Nanofabrication of 10-nm T-shaped gates using a double patterning process with electron beam lithography and dry etch

    NASA Astrophysics Data System (ADS)

    Shao, Jinhai; Deng, Jianan; Lu, W.; Chen, Yifang

    2017-07-01

    A process to fabricate T-shaped gates with the footprint scaling down to 10 nm using a double patterning procedure is reported. One of the keys in this process is to separate the definition of the footprint from that for the gate-head so that the proximity effect originated from electron forward scattering in the resist is significantly minimized, enabling us to achieve as narrow as 10-nm foot width. Furthermore, in contrast to the reported technique for 10-nm T-shaped profile in resist, this process utilizes a metallic film with a nanoslit as an etch mask to form a well-defined 10-nm-wide foot in a SiNx layer by reactive ion etch. Such a double patterning process has demonstrated enhanced reliability. The detailed process is comprehensively described, and its advantages and limitations are discussed. Nanofabrication of InP-based high-electron-mobility transistors using the developed process for 10- to 20-nm T-shaped gates is currently under the way.

  3. Fabrication of porous microrings via laser printing and ion-beam post-etching

    NASA Astrophysics Data System (ADS)

    Syubaev, S.; Nepomnyashchiy, A.; Mitsai, E.; Pustovalov, E.; Vitrik, O.; Kudryashov, S.; Kuchmizhak, A.

    2017-08-01

    Pulsed-laser dry printing of noble-metal microrings with a tunable internal porous structure, which can be revealed via an ion-beam etching post-procedure, was demonstrated. The abundance and average size of the pores inside the microrings were shown to be tuned in a wide range by varying the incident pulse energy and a nitrogen doping level controlled in the process of magnetron deposition of the gold film in the appropriate gaseous environment. The fabricated porous microrings were shown to provide many-fold near-field enhancement of incident electromagnetic fields, which was confirmed by mapping of the characteristic Raman band of a nanometer-thick covering layer of Rhodamine 6G dye molecules and supporting finite-difference time-domain calculations. The proposed laser-printing/ion-beam etching approach is demonstrated to be a unique tool aimed at designing and fabricating multifunctional plasmonic structures and metasurfaces for spectroscopic bioidentification based on surface-enhanced infrared absorption, Raman scattering, and photoluminescence detection schemes.

  4. Implementation of atomic layer etching of silicon: Scaling parameters, feasibility, and profile control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjan, Alok, E-mail: alok.ranjan@us.tel.com; Wang, Mingmei; Sherpa, Sonam D.

    2016-05-15

    Atomic or layer by layer etching of silicon exploits temporally segregated self-limiting adsorption and material removal steps to mitigate the problems associated with continuous or quasicontinuous (pulsed) plasma processes: selectivity loss, damage, and profile control. Successful implementation of atomic layer etching requires careful choice of the plasma parameters for adsorption and desorption steps. This paper illustrates how process parameters can be arrived at through basic scaling exercises, modeling and simulation, and fundamental experimental tests of their predictions. Using chlorine and argon plasma in a radial line slot antenna plasma source as a platform, the authors illustrate how cycle time, ionmore » energy, and radical to ion ratio can be manipulated to manage the deviation from ideality when cycle times are shortened or purges are incomplete. Cell based Monte Carlo feature scale modeling is used to illustrate profile outcomes. Experimental results of atomic layer etching processes are illustrated on silicon line and space structures such that iso-dense bias and aspect ratio dependent free profiles are produced. Experimental results also illustrate the profile control margin as processes move from atomic layer to multilayer by layer etching. The consequence of not controlling contamination (e.g., oxygen) is shown to result in deposition and roughness generation.« less

  5. Effect of Silanization on Microtensile Bond Strength of Different Resin Cements to a Lithium Disilicate Glass Ceramic.

    PubMed

    Gré, Cristina Parise; de Ré Silveira, Renan C; Shibata, Shizuma; Lago, Carlo Tr; Vieira, Luiz Cc

    2016-02-01

    This study evaluated the influence of a silane-coupling agent on the bond strength of a self-adhesive cement and a conventional resin cement to a lithium disilicate glass ceramic. A total of eight ceramic blocks were fabricated and divided into four groups (n = 2). In groups 1 and 3, ceramic surfaces were etched with hydrofluoric acid 10% for 20 seconds, rinsed for 30 seconds, and air-dried. One layer of a silane agent was applied onto all ceramic specimens and air-dried for 30 seconds. In groups 2 and 4, ceramic surfaces were etched with hydrofluoric acid, rinsed, and air-dried without application of the silane-coupling agent. The ceramic blocks were bonded to a block of composite with a self-adhesive resin cement or with a conventional resin cement, according to the manufacturer's instructions. After 24 hours in distilled water at 37°C, the specimens were sectioned perpendicular to the bonding interface area to obtain beams with a bonding area of 0.8 mm(2) and submitted to a microtensile bond strength test at a crosshead speed of 0.5 mm/min. Data were statistically analyzed with one-way analysis of variance and the Games-Howell post hoc test (p = 0.05). Fractured specimens were examined under optical microscopy at 40x magnification. Silanization resulted in higher microtensile bond strength compared to groups without silane. No significant differences were found between the conventional resin cement and the self-adhesive resin cement with silane agent (p = 0.983), and without silane agent (p = 0.877). Silanization appears to be crucial for resin bonding to a lithium disilicate-based ceramic, regardless of the resin cement used. The self-adhesive resin cement performed as well as the conventional resin cement. Applying one layer of a silane-coupling agent after etching the ceramic surface with hydrofluoric acid 10% enhanced the bond strength between resin cements and a glass ceramic.

  6. Verification of E-Beam direct write integration into 28nm BEOL SRAM technology

    NASA Astrophysics Data System (ADS)

    Hohle, Christoph; Choi, Kang-Hoon; Gutsch, Manuela; Hanisch, Norbert; Seidel, Robert; Steidel, Katja; Thrun, Xaver; Werner, Thomas

    2015-03-01

    Electron beam direct write lithography (EBDW) potentially offers advantages for low-volume semiconductor manufacturing, rapid prototyping or design verification due to its high flexibility without the need of costly masks. However, the integration of this advanced patterning technology into complex CMOS manufacturing processes remains challenging. The low throughput of today's single e-Beam tools limits high volume manufacturing applications and maturity of parallel (multi) beam systems is still insufficient [1,2]. Additional concerns like transistor or material damage of underlying layers during exposure at high electron density or acceleration voltage have to be addressed for advanced technology nodes. In the past we successfully proved that potential degradation effects of high-k materials or ULK shrink can be neglected and were excluded by demonstrating integrated electrical results of 28nm node transistor and BEOL performance following 50kV electron beam dry exposure [3]. Here we will give an update on the integration of EBDW in the 300mm CMOS manufacturing processes of advanced integrated circuits at the 28nm SRAM node of GLOBALFOUNDRIES Dresden. The work is an update to what has been previously published [4]. E-beam patterning results of BEOL full chip metal and via layers with a dual damascene integration scheme using a 50kV VISTEC SB3050DW variable shaped electron beam direct writer at Fraunhofer IPMSCNT are demonstrated. For the patterning of the Metal layer a Mix & Match concept based on the sequence litho - etch -litho -etch (LELE) was developed and evaluated wherein several exposure fields were blanked out during the optical exposure. Etch results are shown and compared to the POR. Results are also shown on overlay performance and optimized e-Beam exposure time using most advanced data prep solutions and resist processes. The patterning results have been verified using fully integrated electrical measurement of metal lines and vias on wafer level. In summary we demonstrate the integration capability of EBDW into a productive CMOS process flow at the example of the 28nm SRAM technology node.

  7. A Self-Aligned a-IGZO Thin-Film Transistor Using a New Two-Photo-Mask Process with a Continuous Etching Scheme.

    PubMed

    Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der

    2014-08-11

    Minimizing the parasitic capacitance and the number of photo-masks can improve operational speed and reduce fabrication costs. Therefore, in this study, a new two-photo-mask process is proposed that exhibits a self-aligned structure without an etching-stop layer. Combining the backside-ultraviolet (BUV) exposure and backside-lift-off (BLO) schemes can not only prevent the damage when etching the source/drain (S/D) electrodes but also reduce the number of photo-masks required during fabrication and minimize the parasitic capacitance with the decreasing of gate overlap length at same time. Compared with traditional fabrication processes, the proposed process yields that thin-film transistors (TFTs) exhibit comparable field-effect mobility (9.5 cm²/V·s), threshold voltage (3.39 V), and subthreshold swing (0.3 V/decade). The delay time of an inverter fabricated using the proposed process was considerably decreased.

  8. A Self-Aligned a-IGZO Thin-Film Transistor Using a New Two-Photo-Mask Process with a Continuous Etching Scheme

    PubMed Central

    Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der

    2014-01-01

    Minimizing the parasitic capacitance and the number of photo-masks can improve operational speed and reduce fabrication costs. Therefore, in this study, a new two-photo-mask process is proposed that exhibits a self-aligned structure without an etching-stop layer. Combining the backside-ultraviolet (BUV) exposure and backside-lift-off (BLO) schemes can not only prevent the damage when etching the source/drain (S/D) electrodes but also reduce the number of photo-masks required during fabrication and minimize the parasitic capacitance with the decreasing of gate overlap length at same time. Compared with traditional fabrication processes, the proposed process yields that thin-film transistors (TFTs) exhibit comparable field-effect mobility (9.5 cm2/V·s), threshold voltage (3.39 V), and subthreshold swing (0.3 V/decade). The delay time of an inverter fabricated using the proposed process was considerably decreased. PMID:28788159

  9. Total Internal Reflection Microscopy (TIRM) as a nondestructive surface damage assessment tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Z.M.; Cohen, S.J.; Taylor, J.R.

    1994-10-01

    An easy to use, nondestructive, method for evaluating subsurface damage in polished substrates has been established at LLNL. Subsurface damage has been related to laser damage in coated optical components used in high power, high repetition rate laser systems. Total Internal Reflection Microscopy (TIRM) has been shown to be a viable nondestructive technique in analyzing subsurface damage in optical components. A successful TIRM system has been established for evaluating subsurface damage on fused silica components. Laser light scattering from subsurface damage sites is collected through a Nomarski microscope. These images are then captured by a CCD camera for analysis onmore » a computer. A variety of optics, including components with intentional subsurface damage due to grinding and polishing, have been analyzed and their TIRM images compared to an existing destructive etching method. Methods for quantitative measurement of subsurface damage are also discussed.« less

  10. Functionalized Silk Materials

    DTIC Science & Technology

    2010-06-10

    properties, such as toughness, biocompatibility and biodegrability. Trends in spider silk-like block copolymer secondary structure and assembly behavior...to construct transistors on ultrathin sheets of polyimide . Briefly, the doped silicon nanomembranes were transfer printed onto a film of polyimide ...layer of polyimide was used to encapsulate the active devices. Dry etching the polymer layers completed the fabrication of an array of isolated

  11. Dry etch method for texturing silicon and device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershon, Talia S.; Haight, Richard A.; Kim, Jeehwan

    2017-07-25

    A method for texturing silicon includes loading a silicon wafer into a vacuum chamber, heating the silicon wafer and thermal cracking a gas to generate cracked sulfur species. The silicon wafer is exposed to the cracked sulfur species for a time duration in accordance with a texture characteristic needed for a surface of the silicon wafer.

  12. Fabrication of monolithic microfluidic channels in diamond with ion beam lithography

    NASA Astrophysics Data System (ADS)

    Picollo, F.; Battiato, A.; Boarino, L.; Ditalia Tchernij, S.; Enrico, E.; Forneris, J.; Gilardino, A.; Jakšić, M.; Sardi, F.; Skukan, N.; Tengattini, A.; Olivero, P.; Re, A.; Vittone, E.

    2017-08-01

    In the present work, we report on the monolithic fabrication by means of ion beam lithography of hollow micro-channels within a diamond substrate, to be employed for microfluidic applications. The fabrication strategy takes advantage of ion beam induced damage to convert diamond into graphite, which is characterized by a higher reactivity to oxidative etching with respect to the chemically inert pristine structure. This phase transition occurs in sub-superficial layers thanks to the peculiar damage profile of MeV ions, which mostly damage the target material at their end of range. The structures were obtained by irradiating commercial CVD diamond samples with a micrometric collimated C+ ion beam at three different energies (4 MeV, 3.5 MeV and 3 MeV) at a total fluence of 2 × 1016 cm-2. The chosen multiple-energy implantation strategy allows to obtain a thick box-like highly damaged region ranging from 1.6 μm to 2.1 μm below the sample surface. High-temperature annealing was performed to both promote the graphitization of the ion-induced amorphous layer and to recover the pristine crystalline structure in the cap layer. Finally, the graphite was removed by ozone etching, obtaining monolithic microfluidic structures. These prototypal microfluidic devices were tested injecting aqueous solutions and the evidence of the passage of fluids through the channels was confirmed by confocal fluorescent microscopy.

  13. Pulpo-dentin complex response after direct capping with self-etch adhesive systems.

    PubMed

    Nowicka, Alicja; Parafiniuk, Miroslaw; Lipski, Mariusz; Lichota, Damian; Buczkowska-Radlinska, Jadwiga

    2012-01-01

    The purpose of the present study was to evaluate morphologically the response of feline teeth pulp to direct pulp capping with two different self-etch adhesive systems. Twenty-four cavities in feline teeth were mechanically exposed and assigned to one of two experimental groups: AdheSE + Tetric Ceram (the ASE group), or Adper Prompt L-Pop + Filtek Supreme (the APLP group). There was also a control group Dycal Ca(OH)(2) liner + Amalgam (the CH group eight teeth), and six teeth were used as an intact control group. The animals were sacrificed after 40 days. The teeth were removed and processed for standard histological evaluation, using a scoring system for inflammatory cell response, pulp tissue disorganisation, reparative tissue formation, and the presence of bacteria. Statistical analysis revealed no significant differences between the ASE and APLP self-etching resin systems during the observation period. The majority of the specimens presented inflammatory pulp response with tissue disorganisation and a lack of dentinal bridge formation. CH capping resulted in a significantly smaller inflammatory pulp response and a considerably higher incidence of reparative dentin formation. ASE and APLP were comparably effective as direct pulp capping materials, but their application resulted in significantly greater pulp tissue damage than CH capping. Further in vivo human studies are necessary to determine which adhesive resin systems should be clinically used for direct pulp capping without incurring severe damage to the pulpal tissue.

  14. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayn, I.; Mouradian, S.; Li, L.

    2014-11-24

    A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q = 2.51 × 10{sup 6}) photonic crystal cavities with low mode volume (V{sub m} = 1.062 × (λ/n){sup 3}), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05 dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q = 3 × 10{sup 3}.

  15. Effect of Minocycline on the Durability of Dentin Bonding Produced with Etch-and-Rinse Adhesives.

    PubMed

    Loguercio, A D; Stanislawczuk, R; Malaquias, P; Gutierrez, M F; Bauer, J; Reis, A

    2016-01-01

    To evaluate the effect of minocycline and chlorhexidine pretreatment of acid-etched dentin on the longevity of resin-dentin bond strength (μTBS) and nanoleakage of two-step etch-and-rinse adhesives. Before application of Prime & Bond NT and Adper Single Bond 2 in occlusal dentin, the dentin surfaces were treated with 37% phosphoric acid, rinsed, air-dried, and rewetted with water (control group), 2% minocycline, or 2% chlorexidine digluconate. Composite buildups were constructed incrementally, and specimens were longitudinally sectioned to obtain bonded sticks (0.8 mm 2 ) to be tested in tension (0.5 mm/min) immediately or after 24 months of water storage. For nanoleakage, two specimens of each tooth/period were immersed in the silver nitrate solution, photo-developed, and polished with SiC paper for analysis under energy-dispersive X-ray spectroscopy/scanning electron microscopy. Reductions of the μTBS and increases in the nanoleakage were observed for both adhesives when the rewetting procedure was performed with water. Stable bonds were observed for the 2% minocycline and 2% chlorexidine digluconate groups after 24 months. The use of 2% minocycline as pretreatment of acid-etched dentin is one alternative to retard the degradation of resin-dentin interfaces over a 24-month period as well as 2% chlorexidine digluconate.

  16. Developing quartz wafer mold manufacturing process for patterned media

    NASA Astrophysics Data System (ADS)

    Chiba, Tsuyoshi; Fukuda, Masaharu; Ishikawa, Mikio; Itoh, Kimio; Kurihara, Masaaki; Hoga, Morihisa

    2009-04-01

    Recently, patterned media have gained attention as a possible candidate for use in the next generation of hard disk drives (HDD). Feature sizes on media are predicted to be 20-25 nm half pitch (hp) for discrete-track media in 2010. One method of fabricating such a fine pattern is by using a nanoimprint. The imprint mold for the patterned media is created from a 150-millimeter, rounded, quartz wafer. The purpose of the process introduced here was to construct a quartz wafer mold and to fabricate line and space (LS) patterns at 24 nmhp for DTM. Additionally, we attempted to achieve a dense hole (HOLE) pattern at 12.5 nmhp for BPM for use in 2012. The manufacturing process of molds for patterned media is almost the same as that for semiconductors, with the exception of the dry-etching process. A 150-millimeter quartz wafer was etched on a special tray made from carving a 6025 substrate, by using the photo-mask tool. We also optimized the quartz etching conditions. As a result, 24 nmhp LS and HOLE patterns were manufactured on the quartz wafer. In conclusion, the quartz wafer mold manufacturing process was established. It is suggested that the etching condition should be further optimized to achieve a higher resolution of HOLE patterns.

  17. Adaptive wettability-enhanced surfaces ordered on molded etched substrates using shrink film

    NASA Astrophysics Data System (ADS)

    Jayadev, Shreshta; Pegan, Jonathan; Dyer, David; McLane, Jolie; Lim, Jessica; Khine, Michelle

    2013-01-01

    Superhydrophobic surfaces in nature exhibit desirable properties including self-cleaning, bacterial resistance, and flight efficiency. However, creating such intricate multi-scale features with conventional fabrication approaches is difficult, expensive, and not scalable. By patterning photoresist on pre-stressed shrink-wrap film, which contracts by 95% in surface area when heated, such features over large areas can be obtained easily. Photoresist serves as a dry etch mask to create complex and high-aspect ratio microstructures in the film. Using a double-shrink process, we introduce adaptive wettability-enhanced surfaces ordered on molded etched (AWESOME) substrates. We first create a mask out of the children’s toy ‘Shrinky-Dinks’ by printing dots using a laserjet printer. Heating this thermoplastic sheet causes the printed dots to shrink to a fraction of their original size. We then lithographically transfer the inverse pattern onto photoresist-coated shrink-wrap polyolefin film. The film is then plasma etched. After shrinking, the film serves as a high-aspect ratio mold for polydimethylsiloxane, creating a superhydrophobic surface with water contact angles >150° and sliding angles <10°. We pattern a microarray of ‘sticky’ spots with a dramatically different sliding angle compared to that of the superhydrophobic region, enabling microtiter-plate type assays without the need for a well plate.

  18. Defect formation during chlorine-based dry etching and their effects on the electronic and structural properties of InP/InAsP quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landesman, Jean-Pierre, E-mail: jean-pierre.landesman@univ-rennes1.fr; Jiménez, Juan; Torres, Alfredo

    The general objective is the investigation of the defects formed by dry etching tools such as those involved in the fabrication of photonic devices with III–V semiconductors. Emphasis is put on plasma exposures with chlorine-based chemistries. In addition to identifying these defects and describing their effects on the electro-optic and structural properties, the long-term target would be to predict the impact on the parameters of importance for photonic devices, and possibly include these predictions in their design. The work is first centered on explaining the experimental methodology. This methodology starts with the design and growth of a quantum well structuremore » on indium phosphide, including ternary indium arsenide/phosphide quantum wells with graded arsenic/phosphor composition. These samples have then been characterized by luminescence methods (photo- and cathodoluminescence), high-resolution transmission electron microscopy, and secondary ion mass spectrometry. As one of the parameters of importance in this study, the authors have also included the doping level. The samples have been exposed to the etching plasmas for “short” durations that do not remove completely the quantum wells, but change their optical signature. No masking layer with lithographic features was involved as this work is purely oriented to study the interaction between the plasma and the samples. A significant difference in the luminescence spectra of the as-grown undoped and doped samples is observed. A mechanism describing the effect of the built-in electric field appearing as a consequence of the doping profile is proposed. This mechanism involves quantum confined Stark effect and electric-field induced carrier escape from the quantum wells. In the following part, the effects of exposure to various chlorine-based plasmas were explored. Differences are again observed between the undoped and doped samples, especially for chemistries containing silicon tetrachloride. Secondary ion mass spectrometry indicates penetration of chlorine in the structures. Transmission electron microscopy is used to characterize the quantum well structure before and after plasma bombardment. By examining carefully the luminescence spectral properties, the authors could demonstrate the influence of the etching plasmas on the built-in electric field (in the case of doped samples), and relate it to some ionic species penetrating the structures. Etching plasmas involving both chlorine and nitrogen have also been studied. The etching rate for these chemistries is much slower than for some of the silicon tetrachloride based chemistries. Their effects on the samples are also very different, showing much reduced effect on the built-in electric field (for the doped samples), but significant blue-shifts of the luminescence peaks that the authors attributed to the penetration of nitrogen in the structures. Nitrogen, in interstitial locations, induces mechanical compressive stress that accounts for the blue-shifts. Finally, from the comparison between secondary ion mass spectrometry and luminescence spectra, the authors suggest some elements for a general mechanism involved in the etching by chloride-chemistries, in which a competition takes place between the species at the surface, active for the etching mechanism, and the species that penetrate the structure, lost for the etching process, but relevant in terms of impact on the electro-optic and structural features of the exposed materials.« less

  19. Recent advances in laser in situ keratomileusis-associated dry eye.

    PubMed

    Xie, Wenjia

    2016-03-01

    Dry eye is the most common complication after laser in situ keratomileusis (LASIK). The major cause of LASIK-associated dry eye is corneal nerve damage. Early identification and treatment of post-operative dry eye are essential to prevent further ocular surface damage. This article reviews the recent studies of LASIK-associated dry eye, including clinical features, aetiology, risk factors, evaluations and treatment. The applications of novel technologies in LASIK-associated dry eye evaluation like anterior segment spectral-domain optical coherence tomography (SD-OCT) and corneal confocal microscopy are also introduced in this review. © 2016 Optometry Australia.

  20. 7 CFR 51.493 - Damage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... materially detracting from the appearance of the cantaloup; (g) Cracks when deep or not dry. Slight, dry cracks at the ends or in the sutures of the cantaloup shall not be considered damage; (h) Ground spot...

  1. 7 CFR 51.493 - Damage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... materially detracting from the appearance of the cantaloup; (g) Cracks when deep or not dry. Slight, dry cracks at the ends or in the sutures of the cantaloup shall not be considered damage; (h) Ground spot...

  2. Bond strength of a pit-and-fissure sealant associated to etch-and-rinse and self-etching adhesive systems to saliva-contaminated enamel: individual vs. simultaneous light curing.

    PubMed

    Gomes-Silva, Jaciara Miranda; Torres, Carolina Paes; Contente, Marta Maria Martins Giamatei; Oliveira, Maria Angélica Hueb de Menezes; Palma-Dibb, Regina Guenka; Borsatto, Maria Cristina

    2008-01-01

    This study evaluated in vitro the shear bond strength (SBS) of a resin-based pit-and-fissure sealant [Fluroshield (F), Dentsply/Caulk] associated with either an etch-and-rinse [Adper Single Bond 2 (SB), 3M/ESPE] or a self-etching adhesive system [Clearfil S3 Bond (S3), Kuraray Co., Ltd.] to saliva-contaminated enamel, comparing two curing protocols: individual light curing of the adhesive system and the sealant or simultaneous curing of both materials. Mesial and distal enamel surfaces from 45 sound third molars were randomly assigned to 6 groups (n=15), according to the bonding technique: I - F was applied to 37% phosphoric acid etched enamel. The other groups were contaminated with fresh human saliva (0.01 mL; 10 s) after acid etching: II - SB and F were light cured separately; III - SB and F were light cured together; IV - S3 and F were light cured separately; V - S3 and F were light cured simultaneously; VI - F was applied to saliva-contaminated, acid-etched enamel without an intermediate bonding agent layer. SBS was tested to failure in a universal testing machine at 0.5 mm/min. Data were analyzed by one-way ANOVA and Fisher's test (alpha=0.05).The debonded specimens were examined with a stereomicroscope to assess the failure modes. Three representative specimens from each group were observed under scanning electron microscopy for a qualitative analysis. Mean SBS in MPa were: I-12.28 (+/-4.29); II-8.57 (+/-3.19); III-7.97 (+/-2.16); IV-12.56 (+/-3.11); V-11.45 (+/-3.77); and VI-7.47 (+/-1.99). In conclusion, individual or simultaneous curing of the intermediate bonding agent layer and the resin sealant did not seem to affect bond strength to saliva-contaminated enamel. S3/F presented significantly higher SBS than the that of the groups treated with SB etch-and-rinse adhesive system and similar SBS to that of the control group, in which the sealant was applied under ideal dry, noncontaminated conditions.

  3. Development of new resist materials for 193-nm dry and immersion lithography

    NASA Astrophysics Data System (ADS)

    Sasaki, Takashi; Shirota, Naoko; Takebe, Yoko; Yokokoji, Osamu

    2006-03-01

    We earlier developed new monocyclic fluoropolymers (FUGU) for F II resist materials. But, it is necessary for FUGU to improve of their characteristics, especially the dry-etching resistance, in order to apply for ArF lithography at fine design rules. We have tried to combine FUGUs with Adamntyl methacrylates based conventional ArF resist polymer. In this paper, we have investigated the role of cyclic fluorinated unit, FUGU, in 193 nm resist polymers by analyzing the dissolution behavior. We found that FGEAM showed high sensitivity and good dissolution contrast, compared with acrylate based conventional samples at low PEB temperature (100 °C). And this difference of sensitivity was clearly found when weak acidity PAGs were used. From the dissolution behaviors of FGEAM, FUGU unit can work to improve the resist sensitivity in acrylate based ArF resist polymers. And we also found that FGEAM showed long acid diffusion length on PEB process, compared with Conventional samples. These result show that FUGU unit has a unique characteristics of the sensitivity with 193nm exposure and the acid diffusion behavior. We also investigated a new series of fluorinated copolymers for 193-nm lithography, combination of FUGU monomer and acrylate units which are used in conventional ArF resist. Six ter-polymers of FUGU, combination of FUGU monomers and EAdMA, GBLMA and HAdMA were prepared. We found that FUGU ter-polymers had a good dry etching resistance keeping high transparency at 193nm. And FUGU ter-polymers showed high sensitivity toward 193nm exposure. FUGU ter-polymers also had a high hydrophobic properties compared conventional type ArF resist polymers. So we also expect FUGU ter-polymers to be useful for ArF dry and immersion lithography.

  4. Effect of laser heat treatment on Pull-out bond strength of fiber posts treated with different silanes.

    PubMed

    Shafiei, Fereshteh; Saadat, Maryam; Jowkar, Zahra

    2018-05-01

    This study evaluated the effect of three different silanes and post-silanization treatments on the retentive strength of fiber posts luted with an etch-and-rinse resin cement. One hundred intact maxillary central incisors were randomly divided into 10 groups after endodontic treatment and post space preparation (n=10). The fiber posts were etched using 24% hydrogen peroxide. Posts of the control group did not receive silane. In nine experimental groups, each of the three silanes used, Scotchbond Universal adhesive, Bis-Silane and Porcelain Primer, was subjected to three treatments: air-drying at 25°C, warm air-drying and CO2 laser heat treatment. After cementation of the treated posts using One-Step Plus/Duo-Link cement, the specimens were stored for one weak and then subjected to pull-out bond strength (PBS) testing. The data in Newton (N) were analyzed using two-way ANOVA and Tukey tests (α=0.05). PBS was significantly affected by silane type and post-silanization treatment ( p <0.001). The interaction of the two factors was not statistically significant ( p =0.15). The effect of Porcelain Primer on PBS was significantly higher than those of universal adhesive ( p <0.001) and Bis-Silane ( p =0.01), with similar results for the two latter. Warm air-drying and laser treatment significantly increased PBS ( p <0.001). The lowest and highest PBS was obtained in the control (no silane) group (190.9±31) and laser-treated/ Porcelain Primer group (377.1±50), respectively. Warm air-drying and CO2 laser heat treatment had a significantly beneficial effect on retentive strength of fiber posts. Porcelain Primer was significantly more effective than universal adhesive and Bis-Silane. Key words: Laser heat treatment, Pull-out bond strength, fiber post.

  5. Wafer level fabrication of single cell dispenser chips with integrated electrodes for particle detection

    NASA Astrophysics Data System (ADS)

    Schoendube, Jonas; Yusof, Azmi; Kalkandjiev, Kiril; Zengerle, Roland; Koltay, Peter

    2015-02-01

    This work presents the microfabrication and experimental evaluation of a dispenser chip, designed for isolation and printing of single cells by combining impedance sensing and drop-on-demand dispensing. The dispenser chip features 50  ×  55 µm (width × height) microchannels, a droplet generator and microelectrodes for impedance measurements. The chip is fabricated by sandwiching a dry film photopolymer (TMMF) between a silicon and a Pyrex wafer. TMMF has been used to define microfluidic channels, to serve as low temperature (75 °C) bonding adhesive and as etch mask during 300 µm deep HF etching of the Pyrex wafer. Due to the novel fabrication technology involving the dry film resist, it became possible to fabricate facing electrodes at the top and bottom of the channel and to apply electrical impedance sensing for particle detection with improved performance. The presented microchip is capable of dispensing liquid and detecting microparticles via impedance measurement. Single polystyrene particles of 10 µm size could be detected with a mean signal amplitude of 0.39  ±  0.13 V (n=439 ) at particle velocities of up to 9.6 mm s-1 inside the chip.

  6. Improved light extraction efficiency in GaN-based light emitting diode by nano-scale roughening of p-GaN surface.

    PubMed

    Park, Sang Jae; Sadasivam, Karthikeyan Giri; Chung, Tae Hoon; Hong, Gi Cheol; Kim, Jin Bong; Kim, Sang Mook; Park, Si-Hyun; Jeon, Seong-Ran; Lee, June Key

    2008-10-01

    Improvement in light extraction efficiency of Ultra Violet-Light Emitting Diode (UV-LED) is achieved by nano-scale roughening of p-type Gallium Nitride (p-GaN) surface. The process of surface roughening is carried out by using self assembled gold (Au) nano-clusters with support of nano-size silicon-oxide (SiO2) pillars on p-GaN surface as a dry etching mask and by p-GaN regrowth in the regions not covered by the mask after dry etching. Au nano-clusters are formed by rapid thermal annealing (RTA) process carried out at 600 degrees C for 1 min using 15 nm thick Au layer on top of SiO2. The p-GaN roughness is controlled by p-GaN regrowth time. Four different time values of 15 sec, 30 sec, 60 sec and 120 sec are considered for p-GaN regrowth. Among the four different p-GaN regrowth time values 30 sec regrown p-GaN sample has the optimum roughness to increase the electroluminescence (EL) intensity to a value approximately 60% higher than the EL intensity of a conventional LED.

  7. Compensation of long-range process effects on photomasks by design data correction

    NASA Astrophysics Data System (ADS)

    Schneider, Jens; Bloecker, Martin; Ballhorn, Gerd; Belic, Nikola; Eisenmann, Hans; Keogan, Danny

    2002-12-01

    CD requirements for advanced photomasks are getting very demanding for the 100 nm-node and below; the ITRS roadmap requires CD uniformities below 10 nm for the most critical layers. To reach this goal, statistical as well as systematic CD contributions must be minimized. Here, we focus on the reduction of systematic CD variations across the masks that may be caused by process effects, e.g. dry etch loading. We address this topic by compensating such effects via design data correction analogous to proximity correction. Dry etch loading is modeled by gaussian convolution of pattern densities. Data correction is done geometrically by edge shifting. As the effect amplitude has an order of magnitude of 10 nm this can only be done on e-beam writers with small address grids to reduce big CD steps in the design data. We present modeling and correction results for special mask patterns with very strong pattern density variations showing that the compensation method is able to reduce CD uniformity by 50-70% depending on pattern details. The data correction itself is done with a new module developed especially to compensate long-range effects and fits nicely into the common data flow environment.

  8. Vacuum Freeze-Drying, a Method Used To Salvage Water-Damaged Archival and Library Materials: A RAMP Study with Guidelines.

    ERIC Educational Resources Information Center

    McCleary, John M.

    This Records and Archives Management Programme (RAMP) study covers the conservation of archival documents and the application of freeze-drying to the salvage of documents damaged by flood. Following an introductory discussion of the hazards of water, the study presents a broad summary of data on freeze-drying, including the behavior of…

  9. Heatstroke model for desert dry-heat environment and observed organ damage.

    PubMed

    ou Zhou, Ren; Liu, Jiang Wei; Zhang, Dong; Zhang, Qiong

    2014-06-01

    Heatstroke is one of the most common clinical emergencies. Heatstroke that occurred in a dry-heat environment such as desert is usually more seriously effective and often leads to death. However, the report of the pathophysiologic mechanisms about heatstroke in dry-heat environment of desert has not been seen. Our objectives are to establish a rat model of heatstroke of dry-heat environment of desert, to assess the different degrees of damage of organ, and to preliminarily discuss the mechanism of heatstroke in dry-heat environment of desert. The first step, we have established a rat heatstroke model of dry heat environment of desert. The second step, we have accessed changes in morphology and blood indicators of heatstroke rats in dry-heat environment of desert. The heatstroke rats have expressed the changing characteristics of mean arterial pressure, core temperature, and heart rate. The organ damage changed from mild to serious level, specifically in the morphology and blood enzymology parameters such as alanine aminotransferase, aspartate aminotransferase, creatinine, urea, uric acid, creatine kinase-MB, creatine kinase, and blood gas parameters such as base excess extracellular fluid and bicarbonate ions (HCO3-). We have successfully established the rat heatstroke model of dry-heat environment of desert. We have identified heatstroke rats that presented changing characteristics on physiological indicators and varying degrees of organ damage, which are aggravated by the evolution of heatstroke in dry-heat environment of desert. We have preliminarily discussed the mechanism of heatstroke in dry-heat environment of desert. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Nanowire dopant measurement using secondary ion mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chia, A. C. E.; Boulanger, J. P.; Wood, B. A.

    2015-09-21

    A method is presented to improve the quantitative determination of dopant concentration in semiconductor nanowire (NW) arrays using secondary ion mass spectrometry (SIMS). SIMS measurements were used to determine Be dopant concentrations in a Be-doped GaAs thin film and NW arrays of various pitches that were dry-etched from the same film. A comparison of these measurements revealed a factor of 3 to 12 difference, depending on the NW array pitch, between the secondary Be ion yields of the film and the NW arrays, despite being identically doped. This was due to matrix effects and ion beam mixing of Be frommore » the NWs into the surrounding benzocyclobutene that was used to fill the space between the NWs. This indicates the need for etched NWs to be used as doping standards instead of 2D films when evaluating NWs of unknown doping by SIMS. Using the etched NWs as doping standards, NW arrays of various pitches grown by the vapour-liquid-solid mechanism were characterized by SIMS to yield valuable insights into doping mechanisms.« less

  11. Development of a wavelength tunable filter using MEMS technology

    NASA Astrophysics Data System (ADS)

    Liu, Junting

    Microelectromechanical systems (MEMS) for optical applications have received intensive attention in recent years because of their potential applications in optical telecommunication. Traditional wavelength division multiplexing (WDM) offers high capacity but requires the fabrication of selective add-drop filters. MEMS technology offers an effective way to fabricate these components at low cost. This thesis presents the development of a device that tunes the Bragg wavelength by coupling into the evanescent field of the grating. A Bragg grating is a periodic perturbation of the refractive index along a fiber or a periodic perturbation of the structure of a planar waveguide. The Bragg wavelength can be tuned by changing the degree to which a dielectric slab couples into the evanescent field. The result is a change in the effective index of the grating, and thus a change in the wavelength that which it reflects. In this thesis Bragg gratings were successfully written into an optical fiber using phase mask technique. Mechanical polishing was used to side-polish the fiber and remove cladding to expose the core. Grating structures were also fabricated in planar waveguide using E-beam writing and dry etching. In order to achieve the smoothest possible morphology of the waveguide, plasma dry etching of transparent substrates was studied in great detail. It is found that the pre-etch cleaning procedure greatly influences the ability to obtain a smooth etched surface. Upper limits of evanescent field tuning were investigated by applying different index liquids such as D. I. water and index matching oils or by positioning different dielectric materials such as glass and silicon close to the grating. Planar waveguides were found to be more sensitive to effective index change. Two kinds of computer simulation were carried out to understand the mode profile and to estimate the value of effective index of planar waveguide under "dry" and "wet" conditions. The first one used an average depth of grating approximation. The second explicitly considered the corrugated structure of the waveguide. Results of both simulations were compared with the experimental results in order to find the proper simulation approach. The fiber or planar waveguide gratings were "device" integrated and their pro and cons were compared. Devices using an optical fiber employed a microactuator driven by electrothermal vibromotor to change the degree of coupling between fiber and "tuning block". Device using planar waveguides used an electrostatic force actuated membrane, flip-chip mounted atop the waveguide. All devices were fabricated using polysilicon surface micromachining processes. I concluded that devices driven by electrostatic force were easier to actuate and their integration with waveguide less challenging.

  12. FY07 LDRD Final Report A Fracture Mechanics and Tribology Approach to Understanding Subsurface Damage on Fused Silica during Grinding and Polishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala, T I; Miller, P E; Menapace, J A

    The objective of this work is to develop a solid scientific understanding of the creation and characteristics of surface fractures formed during the grinding and polishing of brittle materials, specifically glass. In this study, we have experimentally characterized the morphology, number density, and depth distribution of various surface cracks as a function of various grinding and polishing processes (blanchard, fixed abrasive grinding, loose abrasive, pitch polishing and pad polishing). Also, the effects of load, abrasive particle (size, distribution, foreign particles, geometry, velocity), and lap material (pitch, pad) were examined. The resulting data were evaluated in terms of indentation fracture mechanicsmore » and tribological interactions (science of interacting surfaces) leading to several models to explain crack distribution behavior of ground surfaces and to explain the characteristics of scratches formed during polishing. This project has greatly advanced the scientific knowledge of microscopic mechanical damage occurring during grinding and polishing and has been of general interest. This knowledge-base has also enabled the design and optimization of surface finishing processes to create optical surfaces with far superior laser damage resistance. There are five major areas of scientific progress as a result of this LDRD. They are listed in Figure 1 and described briefly in this summary below. The details of this work are summarized through a number of published manuscripts which are included this LDRD Final Report. In the first area of grinding, we developed a technique to quantitatively and statistically measure the depth distribution of surface fractures (i.e., subsurface damage) in fused silica as function of various grinding processes using mixtures of various abrasive particles size distributions. The observed crack distributions were explained using a model that extended known, single brittle indentation models to an ensemble of loaded, sliding particles. The model illustrates the importance of the particle size distribution of the abrasive and its influence on the resulting crack distribution. The results of these studies are summarized in references 1-7. In the second area of polishing, we conducted a series of experiments showing the influence of rogue particles (i.e., particles in the polishing slurry that are larger than base particles) on the creation of scratches on polished surfaces. Scratches can be thought of a as a specific type of sub-surface damage. The characteristics (width, length, type of fractures, concentration) were explained in terms of the rogue particle size, the rogue particle material, and the viscoelastic properties of the lap. The results of these studies are summarized in references 6-7. In the third area of etching, we conducted experiments aimed at understanding the effect of HF:NH{sub 4}F acid etching on surface fractures on fused silica. Etching can be used as a method: (a) to expose sub-surface mechanical damage, (b) to study the morphology of specific mechanical damage occurring by indentation, and (c) to convert a ground surface containing a high concentration of sub-surface mechanical damage into surface roughness. Supporting models have been developed to describe in detail the effect of etching on the morphology and evolution of surface cracks. The results of these studies are summarized in references 8-9. In the fourth area of scratch forensics or scratch fractography, a set of new scratch forensic rule-of-thumbs were developed in order to aid the optical fabricator and process engineer to interpret the cause of scratches and digs on surfaces. The details of how these rules were developed are described in each of the references included in this summary (1-9). Figure 2 provides as a summary of some of the more commonly used rules-of-thumbs that have been developed in this study. In the fifth and final area of laser damage, we demonstrated that the removal of such surface fractures from the surface during optical fabrication can dramatically improve the laser damage.« less

  13. Fabrication of vertical nanowire resonators for aerosol exposure assessment

    NASA Astrophysics Data System (ADS)

    Merzsch, Stephan; Wasisto, Hutomo Suryo; Stranz, Andrej; Hinze, Peter; Weimann, Thomas; Peiner, Erwin; Waag, Andreas

    2013-05-01

    Vertical silicon nanowire (SiNW) resonators are designed and fabricated in order to assess exposure to aerosol nanoparticles (NPs). To realize SiNW arrays, nanolithography and inductively coupled plasma (ICP) deep reactive ion etching (DRIE) at cryogenic temperature are utilized in a top-down fabrication of SiNW arrays which have high aspect ratios (i.e., up to 34). For nanolithography process, a resist film thickness of 350 nm is applied in a vacuum contact mode to serve as a mask. A pattern including various diameters and distances for creating pillars is used (i.e., 400 nm up to 5 μm). In dry etching process, the etch rate is set high of 1.5 μm/min to avoid underetching. The etch profiles of Si wires can be controlled aiming to have either perpendicularly, negatively or positively profiled sidewalls by adjusting the etching parameters (e.g., temperature and oxygen content). Moreover, to further miniaturize the wire, multiple sacrificial thermal oxidations and subsequent oxide stripping are used yielding SiNW arrays of 650 nm in diameter and 40 μm in length. In the resonant frequency test, a piezoelectric shear actuator is integrated with the SiNWs inside a scanning electron microscope (SEM) chamber. The observation of the SiNW deflections are performed and viewed from the topside of the SiNWs to reduce the measurement redundancy. Having a high deflection of ~10 μm during its resonant frequency of 452 kHz and a low mass of 31 pg, the proposed SiNW is potential for assisting the development of a portable aerosol resonant sensor.

  14. Polarization-Engineered Ga-Face GaN-Based Heterostructures for Normally-Off Heterostructure Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Kim, Hyeongnam; Nath, Digbijoy; Rajan, Siddharth; Lu, Wu

    2013-01-01

    Polarization-engineered Ga-face GaN-based heterostructures with a GaN cap layer and an AlGaN/ p-GaN back barrier have been designed for normally-off field-effect transistors (FETs). The simulation results show that an unintentionally doped GaN cap and p-GaN layer in the buffer primarily deplete electrons in the channel and the Al0.2Ga0.8N back barrier helps to pinch off the channel. Experimentally, we have demonstrated a normally-off GaN-based field-effect transistor on the designed GaN cap/Al0.3Ga0.7N/GaN channel/Al0.2Ga0.8N/ p-GaN/GaN heterostructure. A positive threshold voltage of 0.2 V and maximum transconductance of 2.6 mS/mm were achieved for 80- μm-long gate devices. The device fabrication process does not require a dry etching process for gate recessing, while highly selective etching of the GaN cap against a very thin Al0.3GaN0.7N top barrier has to be performed to create a two-dimensional electron gas for both the ohmic and access regions. A self-aligned, selective etch of the GaN cap in the access region is introduced, using the gate metal as an etch mask. The absence of gate recess etching is promising for uniform and repeatable threshold voltage control in normally-off AlGaN/GaN heterostructure FETs for power switching applications.

  15. Effect of different evaporation periods on microtensile bond strength of an acetone-based adhesive to dentin.

    PubMed

    Davari, Abdolrahim; Mousvinasab, Majid; Kazemi, Alireza Danesh; Rouzbeh, Reza

    2013-01-01

    Solvent content of a contemporary dental adhesive affect the bonding process, especially in the case of acetone based adhesives. The aim of this study was to evaluate the effect of different air-drying periods on microtensile bond strength (MTBS) of a total-etch adhesive to dentin. Prime & Bond NT (Dentsply-USA) was used with different air-drying periods (0, 2, 5, 10, 30sec) for bonding a composite resin to prepared dentin. The specimens were then subjected to a tensile force until fracture and the MTBSs of the samples were recorded. Failure modes of the fractured samples were also determined using stereomicroscope and scanning electron microscopy. Data were analyzed using ANOVA and Bonferroni tests (P = 0.05). With increasing the air-drying periods, the MTBSs were increased until the 5 second air-blowing; after that, with increasing the air-drying periods, the MTBSs decreased. Both, the most complicated failure and the strongest bond were seen in the 5 sec air-drying group. There is an optimum air-drying time for acetone based adhesives which results in the strongest bond to dentin.

  16. Silica coating of PbS quantum dots and their position control using a nanohole on Si substrate

    NASA Astrophysics Data System (ADS)

    Mukai, Kohki; Okumura, Isao; Nishizaki, Yuta; Yamashita, Shuzo; Niwa, Keisuke

    2018-04-01

    We succeeded in controlling the apparent size of a colloidal PbS quantum dot (QD) in the range of 20 to 140 nm by coating with silica and trapping the coated QDs in a nanohole prepared by scanning probe microscope lithography. Photoluminescence intensity was improved by controlling the process of adding the silica source material of tetraethoxysilane for the coating. Nanoholes of different sizes were formed on a single substrate by scanning probe oxidation with the combination of SF6 dry etching and KOH wet etching. QDs having an arbitrary energy structure can be arranged at an arbitrary position on the semiconductor substrate using this technique, which will aid in the fabrication of future nanosize solid devices such as quantum information circuits.

  17. Fabrication of large-area nano-scale patterned sapphire substrate with laser interference lithography

    NASA Astrophysics Data System (ADS)

    Xuan, Ming-dong; Dai, Long-gui; Jia, Hai-qiang; Chen, Hong

    2014-01-01

    Periodic triangle truncated pyramid arrays are successfully fabricated on the sapphire substrate by a low-cost and high-efficiency laser interference lithography (LIL) system. Through the combination of dry etching and wet etching techniques, the nano-scale patterned sapphire substrate (NPSS) with uniform size is prepared. The period of the patterns is 460 nm as designed to match the wavelength of blue light emitting diode (LED). By improving the stability of the LIL system and optimizing the process parameters, well-defined triangle truncated pyramid arrays can be achieved on the sapphire substrate with diameter of 50.8 mm. The deviation of the bottom width of the triangle truncated pyramid arrays is 6.8%, which is close to the industrial production level of 3%.

  18. Development of speckle-free channel-cut crystal optics using plasma chemical vaporization machining for coherent x-ray applications.

    PubMed

    Hirano, Takashi; Osaka, Taito; Sano, Yasuhisa; Inubushi, Yuichi; Matsuyama, Satoshi; Tono, Kensuke; Ishikawa, Tetsuya; Yabashi, Makina; Yamauchi, Kazuto

    2016-06-01

    We have developed a method of fabricating speckle-free channel-cut crystal optics with plasma chemical vaporization machining, an etching method using atmospheric-pressure plasma, for coherent X-ray applications. We investigated the etching characteristics to silicon crystals and achieved a small surface roughness of less than 1 nm rms at a removal depth of >10 μm, which satisfies the requirements for eliminating subsurface damage while suppressing diffuse scattering from rough surfaces. We applied this method for fabricating channel-cut Si(220) crystals for a hard X-ray split-and-delay optical system and confirmed that the crystals provided speckle-free reflection profiles under coherent X-ray illumination.

  19. Patterning of graphene on silicon-on-insulator waveguides through laser ablation and plasma etching

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Ciuk, Tymoteusz; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Van Put, Steven; Van Steenberge, Geert; Baert, Kitty; Terryn, Herman; Thienpont, Hugo; Vermeulen, Nathalie

    2016-05-01

    We present the use of femtosecond laser ablation for the removal of monolayer graphene from silicon-on-insulator (SOI) waveguides, and the use of oxygen plasma etching through a metal mask to peel off graphene from the grating couplers attached to the waveguides. Through Raman spectroscopy and atomic force microscopy, we show that the removal of graphene is successful with minimal damage to the underlying SOI waveguides. Finally, we employ both removal techniques to measure the contribution of graphene to the loss of grating-coupled graphene-covered SOI waveguides using the cut-back method. This loss contribution is measured to be 0.132 dB/μm.

  20. Effects of processing history on the evolution of surface damage layer and dislocation substructure in large grain niobium cavities

    DOE PAGES

    Kang, D.; Bieler, T. R.; Compton, C.

    2015-12-16

    Large grain niobium (Nb) is being investigated for fabricating superconducting radiofrequency cavities as an alternative to the traditional approach using fine grain polycrystalline Nb sheets. Past studies have identified a surface damage layer on fine grain cavities due to deep drawing and demonstrated the necessity for chemical etching on the surface. However, the origin of and depth of the damage layer are not well understood, and similar exploration on large grain cavities is lacking. In this work, electron backscatter diffraction (EBSD) was used to examine the cross sections at the equator and iris of a half cell deep drawn frommore » a large grain Nb ingot slice. The results indicate that the damage (identified by a high density of geometrically necessary dislocations) depends on crystal orientations, is different at the equator and iris, and is present through the full thickness of a half cell in some places. After electron backscatter diffraction, the specimens were heat treated at 800 °C or 1000 °C for two hours, and the same areas were reexamined. A more dramatic decrease in dislocation content was observed at the iris than the equator, where some regions exhibited no change. The specimens were then etched and examined again, to determine if the subsurface region behaved differently than the surface. As a result, little change in the dislocation substructure was observed, suggesting that the large grain microstructure is retained with a normal furnace anneal.« less

  1. Impact of drying on pore structures in ettringite-rich cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, I., E-mail: isabelgalan@abdn.ac.uk; Beltagui, H.; García-Maté, M.

    Drying techniques affect the properties of cement pastes to varying extents. The effect of different drying techniques on calcium sulfoaluminate-based (C$A) cements and their constituent phases is reported for a range of simulated and commercial C$A pastes which are benchmarked against an OPC paste. The recommended methodologies used to dry samples were identified from the literature and include D-drying and solvent exchange. These methods were used in conjunction with mercury intrusion porosimetry (MIP) and X-ray powder diffraction (XRPD) measurements to assess the changes in pore structure and the damage to crystalline phases, respectively. D-drying and isopropanol exchange are the mostmore » satisfactory and least damaging methods for drying C$A based pastes.« less

  2. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    PubMed Central

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-01-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal peripheral thermal and mechanical damage and without excessive heat accumulation. PMID:21806256

  3. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    NASA Astrophysics Data System (ADS)

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal peripheral thermal and mechanical damage and without excessive heat accumulation.

  4. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage.

    PubMed

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO(2) lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO(2) laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO(2) lasers with minimal peripheral thermal and mechanical damage and without excessive heat accumulation.

  5. Nonlinear Ultrasonic Diagnosis and Prognosis of ASR Damage in Dry Cask Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jianmin; Bazant, Zdenek; Jacobs, Laurence

    Alkali-silica reaction (ASR) is a deleterious chemical process that may occur in cement-based materials such as mortars and concretes, where the hydroxyl ions in the highly alkaline pore solution attack the siloxane groups in the siliceous minerals in the aggregates. The reaction produces a cross-linked alkali-silica gel. The ASR gel swells in the presence of water. Expansion of the gel results in cracking when the swelling-induced stress exceeds the fracture toughness of the concrete. As the ASR continues, cracks may grow and eventually coalesce, which results in reduced service life and a decrease safety of concrete structures. Since concrete ismore » widely used as a critical structural component in dry cask storage of used nuclear fuels, ASR damage poses a significant threat to the sustainability of long term dry cask storage systems. Therefore, techniques for effectively detecting, managing and mitigating ASR damage are needed. Currently, there are no nondestructive methods to accurately detect ASR damage in existing concrete structures. The only current way of accurately assessing ASR damage is to drill a core from an existing structure, and conduct microscopy on this drilled cylindrical core. Clearly, such a practice is not applicable to dry cask storage systems. To meet these needs, this research is aimed at developing (1) a suite of nonlinear ultrasonic quantitative nondestructive evaluation (QNDE) techniques to characterize ASR damage, and (2) a physics-based model for ASR damage evolution using the QNDE data. Outcomes of this research will provide a nondestructive diagnostic tool to evaluate the extent of the ASR damage, and a prognostic tool to estimate the future reliability and safety of the concrete structures in dry cask storage systems« less

  6. Effects of acid rain and sulfur dioxide on marble dissolution

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, Susan I.

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO2) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO2 gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  7. Surface etching technologies for monocrystalline silicon wafer solar cells

    NASA Astrophysics Data System (ADS)

    Tang, Muzhi

    With more than 200 GW of accumulated installations in 2015, photovoltaics (PV) has become an important green energy harvesting method. The PV market is dominated by solar cells made from crystalline silicon wafers. The engineering of the wafer surfaces is critical to the solar cell cost reduction and performance enhancement. Therefore, this thesis focuses on the development of surface etching technologies for monocrystalline silicon wafer solar cells. It aims to develop a more efficient alkaline texturing method and more effective surface cleaning processes. Firstly, a rapid, isopropanol alcohol free texturing method is successfully demonstrated to shorten the process time and reduce the consumption of chemicals. This method utilizes the special chemical properties of triethylamine, which can form Si-N bonds with wafer surface atoms. Secondly, a room-temperature anisotropic emitter etch-back process is developed to improve the n+ emitter passivation. Using this method, 19.0% efficient screen-printed aluminium back surface field solar cells are developed that show an efficiency gain of 0.15% (absolute) compared with conventionally made solar cells. Finally, state-of-the-art silicon surface passivation results are achieved using hydrogen plasma etching as a dry alternative to the classical hydrofluoric acid wet-chemical process. The effective native oxide removal and the hydrogenation of the silicon surface are shown to be the reasons for the excellent level of surface passivation achieved with this novel method.

  8. Bioactive Surface Modification of Hydroxyapatite

    PubMed Central

    Okazaki, Yohei; Hiasa, Kyou; Yasuda, Keisuke; Nogami, Keisuke; Mizumachi, Wataru; Hirata, Isao

    2013-01-01

    The purpose of this study was to establish an acid-etching procedure for altering the Ca/P ratio of the nanostructured surface of hydroxyapatite (HAP) by using surface chemical and morphological analyses (XPS, XRD, SEM, surface roughness, and wettability) and to evaluate the in vitro response of osteoblast-like cells (MC3T3-E1 cells) to the modified surfaces. This study utilized HAP and HAP treated with 10%, 20%, 30%, 40%, 50%, or 60% phosphoric acid solution for 10 minutes at 25°C, followed by rinsing 3 times with ultrapure water. The 30% phosphoric acid etching process that provided a Ca/P ratio of 1.50, without destruction of the grain boundary of HAP, was selected as a surface-modification procedure. Additionally, HAP treated by the 30% phosphoric acid etching process was stored under dry conditions at 25°C for 12 hours, and the Ca/P ratio approximated to 1.00 accidentally. The initial adhesion, proliferation, and differentiation (alkaline phosphatase (ALP) activity and relative mRNA level for ALP) of MC3T3-E1 cells on the modified surfaces were significantly promoted (P < 0.05 and 0.01). These findings show that the 30% phosphoric acid etching process for the nanostructured HAP surface can alter the Ca/P ratio effectively and may accelerate the initial adhesion, proliferation, and differentiation of MC3T3-E1 cells. PMID:23862150

  9. Gefarnate stimulates mucin-like glycoprotein secretion in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models.

    PubMed

    Dota, Atsuyoshi; Takaoka-Shichijo, Yuko; Nakamura, Masatsugu

    2013-01-01

    The aim of this study was to evaluate the effect of gefarnate on mucin-like glycoprotein secretion in isolated rabbit conjunctival tissue, and on corneal epithelial damage in rabbit and cat dry-eye models. Conjunctival tissue isolated from rabbits was treated with gefarnate. Mucin-like glycoprotein was detected in the culture supernatant by an enzyme-linked lectin assay. Gefarnate ointment was topically applied to eyes once daily for 7 days in the rabbit dry-eye model, in which the lacrimal glands, Harderian gland, and nictitating membrane were removed, or for 4 weeks in the cat dry-eye model, in which the lacrimal gland and nictitating membrane were removed. Corneal epithelial damage was evaluated by measurement of corneal permeability by rose bengal in the rabbit model or by fluorescein staining in the cat model. Gefarnate stimulated mucin-like glycoprotein secretion in conjunctival tissue in a dose-dependent manner. In the rabbit dry-eye model, application of gefarnate ointment to the eyes resulted in a dose-dependent decrease in rose bengal permeability in the cornea, with the effect being significant at concentrations of ≥0.3%. In the cat dry-eye model, application of gefarnate ointment resulted in a significant decrease in the corneal fluorescein staining score. These results suggest that gefarnate stimulates in vitro secretion of mucin-like glycoprotein in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models. Gefarnate may therefore be effective for treating dry eye.

  10. Fabrication of Hydrogenated Diamond Metal-Insulator-Semiconductor Field-Effect Transistors.

    PubMed

    Liu, Jiangwei; Koide, Yasuo

    2017-01-01

    Diamond is regarded as a promising material for fabrication of high-power and high-frequency electronic devices due to its remarkable intrinsic properties, such as wide band gap energy, high carrier mobility, and high breakdown field. Meanwhile, since diamond has good biocompatibility, long-term durability, good chemical inertness, and a large electron-chemical potential window, it is a suitable candidate for the fabrication of biosensors. Here, we demonstrate the fabrication of hydrogenated diamond (H-diamond) based metal-insulator-semiconductor field-effect transistors (MISFETs). The fabrication is based on the combination of laser lithography, dry-etching, atomic layer deposition (ALD), sputtering deposition (SD), electrode evaporation, and lift-off techniques. The gate insulator is high-k HfO 2 with a SD/ALD bilayer structure. The thin ALD-HfO 2 film (4.0 nm) acts as a buffer layer to prevent the hydrogen surface of the H-diamond from plasma discharge damage during the SD-HfO 2 deposition. The growth of H-diamond epitaxial layer, fabrication of H-diamond MISFETs, and electrical property measurements for the MISFETs is demonstrated. This chapter explains the fabrication of H-diamond FET based biosensors.

  11. AlGaN/GaN high electron mobility transistors with selective area grown p-GaN gates

    NASA Astrophysics Data System (ADS)

    Yuliang, Huang; Lian, Zhang; Zhe, Cheng; Yun, Zhang; Yujie, Ai; Yongbing, Zhao; Hongxi, Lu; Junxi, Wang; Jinmin, Li

    2016-11-01

    We report a selective area growth (SAG) method to define the p-GaN gate of AlGaN/GaN high electron mobility transistors (HEMTs) by metal-organic chemical vapor deposition. Compared with Schottky gate HEMTs, the SAG p-GaN gate HEMTs show more positive threshold voltage (V th) and better gate control ability. The influence of Cp2Mg flux of SAG p-GaN gate on the AlGaN/GaN HEMTs has also been studied. With the increasing Cp2Mg from 0.16 μmol/min to 0.20 μmol/min, the V th raises from -0.67 V to -0.37 V. The maximum transconductance of the SAG HEMT at a drain voltage of 10 V is 113.9 mS/mm while that value of the Schottky HEMT is 51.6 mS/mm. The SAG method paves a promising way for achieving p-GaN gate normally-off AlGaN/GaN HEMTs without dry etching damage. Project supported by the National Natural Sciences Foundation of China (Nos. 61376090, 61306008) and the National High Technology Program of China (No. 2014AA032606).

  12. Relationship between mechanical properties of one-step self-etch adhesives and water sorption.

    PubMed

    Hosaka, Keiichi; Nakajima, Masatoshi; Takahashi, Masahiro; Itoh, Shima; Ikeda, Masaomi; Tagami, Junji; Pashley, David H

    2010-04-01

    The purpose of this study was to evaluate the relationship between changes in the modulus of elasticity and ultimate tensile strength of one-step self-etch adhesives, and their degree of water sorption. Five one-step self-etch adhesives, Xeno IV (Dentsply Caulk), G Bond (GC Corp.), Clearfil S3 Bond (Kuraray Medical Inc.), Bond Force (Tokuyama Dental Corp.), and One-Up Bond F Plus (Tokuyama Dental Corp.) were used. Ten dumbelled-shaped polymers of each adhesive were used to obtain the modulus of elasticity by the three-point flexural bending test and the ultimate tensile strength by microtensile testing. The modulus of elasticity and the ultimate tensile strength were measured in both dry and wet conditions before/after immersion in water for 24h. Water sorption was measured, using a modification of the ISO-4049 standard. Each result of the modulus of elasticity and ultimate tensile strength was statistically analyzed using a two-way ANOVA and the result of water sorption was statistically analyzed using a one-way ANOVA. Regression analyses were used to determine the correlations between the modulus of elasticity and the ultimate tensile strength in dry or wet states, and also the percent decrease in these properties before/after immersion of water vs. water sorption. In the dry state, the moduli of elasticity of the five adhesive polymers varied from 948 to 1530 MPa, while the ultimate tensile strengths varied from 24.4 to 61.5 MPa. The wet specimens gave much lower moduli of elasticity (from 584 to 1073 MPa) and ultimate tensile strengths (from 16.5 to 35.0 MPa). Water sorption varied from 32.1 to 105.8 g mm(-3). The moduli of elasticity and ultimate tensile strengths of the adhesives fell significantly after water-storage. Water sorption depended on the constituents of the adhesive systems. The percent decreases in the ultimate tensile strengths of the adhesives were related to water sorption, while the percent reductions in the moduli of elasticity of the adhesives were not related to water sorption. Copyright (c) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Molecular dynamic simulation study of plasma etching L10 FePt media in embedded mask patterning (EMP) process

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxin; Quarterman, P.; Wang, Jian-Ping

    2017-05-01

    Plasma etching process of single-crystal L10-FePt media [H. Wang et al., Appl. Phys. Lett. 102(5) (2013)] is studied using molecular dynamic simulation. Embedded-Atom Method [M. S. Daw and M. I. Baskes, Phy. Rev. B 29, 6443 (1984); X. W. Zhou, R. A. Johnson and H. N. G. Wadley, Phy. Rev. B 69, 144113 (2004)] is used to calculate the interatomic potential within atoms in FePt alloy, and ZBL potential [J.F. Ziegler, J. P. Biersack and U. Littmark, "The Stopping and Range of Ions in Matter," Volume 1, Pergamon,1985] in comparison with conventional Lennard-Jones "12-6" potential is applied to interactions between etching gas ions and metal atoms. It is shown the post-etch structure defects can include amorphized surface layer and lattice interstitial point defects that caused by etchant ions passed through the surface layer. We show that the amorphized or damaged FePt lattice surface layer (or "magnetic dead-layer") thickness after etching increases with ion energy for Ar ion impacts, but significantly small for He ions at up to 250eV ion energy. However, we showed that He sputtering creates more interstitial defects at lower energy levels and defects are deeper below the surface compared to Ar sputtering. We also calculate the interstitial defect level and depth as dependence on ion energy for both Ar and He ions. Media magnetic property loss due to these defects is also discussed.

  14. Thin silicon-solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1979-01-01

    Flexible silicon slices of uniform thicknesses are fabricated by etching in sodium hydroxide solution. Maintaining uniform thickness across slices during process(fabrication) is important for cell strength and resistance to damage in handling. Slices formed by procedure have reproducible surface with fine orange peel texture, and are far superior to slices prepared by other methods.

  15. Single mode fibers with antireflective surface structures for high power laser applications

    NASA Astrophysics Data System (ADS)

    Busse, Lynda E.; Florea, Catalin M.; Shaw, L. Brandon; Aggarwal, Ishwar D.; Sanghera, Jasbinder S.

    2014-03-01

    We present results for increased transmission of ~99.5% in the near-IR through the end faces of silica single mode fibers by creating a random antireflective microstructure etched into the end face of the fiber. We demonstrate high laser damage thresholds for these fibers with AR structured surfaces.

  16. Insecticide Efficacy and Timing for Control of Western Bean Cutworm (Lepidoptera: Noctuidae) in Dry and Snap Beans.

    PubMed

    Goudis, L A; Trueman, C L; Baute, T S; Hallett, R H; Gillard, C L

    2016-02-01

    The western bean cutworm, Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), is a recent pest of corn, dry,and snap beans, in the Great Lakes region, and best practices for its management in beans need to be established.Insecticide efficacy and application timing field studies, conducted in 2011–2013, determined that lambda-cyhalothrin and chlorantraniliprole were capable of reducing western bean cutworm feeding damage in dry beans from 2.3 to 0.4% in preharvest samples, and in snap beans from 4.8 to 0.1% of marketable pods, respectively. The best application timing in dry beans was determined to be 4–18 d after 50% egg hatch. No economic benefit was found when products were applied to dry beans, and despite high artificial inoculation rates, damage to marketable yield was relatively low. Thiamethoxam, methoxyfenozide, and spinetoram were also found to be effective at reducing western bean cutworm damage in dry bean to as low as 0.3% compared to an untreated control with 2.5% damaged pods. In snap beans, increased return on investment between CAD$400 and CAD$600 was seen with multiple applications of lambda-cyhalothrin, and with chlorantraniliprole applied 4 d after egg mass infestation.

  17. The impact of hydrofluoric acid etching followed by unfilled resin on the biaxial strength of a glass-ceramic.

    PubMed

    Posritong, Sumana; Borges, Alexandre Luiz Souto; Chu, Tien-Min Gabriel; Eckert, George J; Bottino, Marco A; Bottino, Marco C

    2013-11-01

    To evaluate the null hypotheses that hydrofluoric (HF) acid etching time would neither decrease the biaxial flexural strength of a glass-based veneering ceramic nor enhance it after silane and unfilled resin (UR) applications. Disc-shaped IPS e.max ZirPress specimens were allocated into 12 groups: G1-control (no-etching), G2-30 s, G3-60 s, G4-90 s, G5-120 s, G6-60 s+60 s. Groups (G7-G12) were treated in the same fashion as G1-G6, but followed by silane and UR applications. Surface morphology and roughness (Ra and Rq) of the ceramics were assessed by means of scanning electron microscopy (SEM) and profilometry, respectively. Flexural strength was determined by biaxial testing. Data were analyzed by two-way ANOVA and the Sidak test (α=0.05). Weibull statistics were estimated and finite element analysis (FEA) was carried out to verify the stress concentration end areas of fracture. The interaction (etching time vs. surface treatment) was significant for Ra (p=0.008) and Rq (0.0075). Resin-treated groups presented significantly lower Ra and Rq than non-treated groups, except for the 60s group (p<0.005). SEM revealed that etching affected the ceramic microstructure and that the UR was able to penetrate into the irregularities. A significant effect of etching time (p=0.029) on flexural strength was seen. G7-G12 presented higher strength than G1-G6 (p<0.0001). None of experimental groups failed to show 95% confidence intervals of σ0 and m overlapped. FEA showed lower stress concentration after resin treatment. HF acid etching time did not show a damaging effect on the ceramic flexural strength. Moreover, the flexural strength could be enhanced after UR treatment. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Evolution of roughness during the pattern transfer of high-chi, 10nm half-pitch, silicon-containing block copolymer structures

    NASA Astrophysics Data System (ADS)

    Blachut, Gregory; Sirard, Stephen M.; Liang, Andrew; Mack, Chris A.; Maher, Michael J.; Rincon-Delgadillo, Paulina A.; Chan, Boon Teik; Mannaert, Geert; Vandenberghe, Geert; Willson, C. Grant; Ellison, Christopher J.; Hymes, Diane

    2018-03-01

    A pattern transfer study was conducted to monitor the evolution of roughness in sub-10 nm half-pitch lines generated by the directed self-assembly (DSA) of a high-chi, silicon-containing block copolymer, poly(4-trimethylsilylstyrene)-block-poly(4-methoxystyrene). Unbiased roughness measurements were used to characterize the roughness of the structures before and after pattern transfer into silicon nitride. Parameters of the reactive ion etch process used as a dry development were systematically modified to minimize undesired line walking created by the DSA pre-pattern and to determine their impacts on roughness. The results of this study indicate that an optimized dry development can mitigate the effects of pre-pattern inhomogeneity, and that both dry development and pattern transfer steps effect the roughness of the final structures.

  19. A new universal simplified adhesive: 6-month clinical evaluation.

    PubMed

    Mena-Serrano, Alexandra; Kose, Carlos; De Paula, Eloisa Andrade; Tay, Lidia Yileng; Reis, Alessandra; Loguercio, Alessandro D; Perdigão, Jorge

    2013-02-01

    Multimode adhesives, which can be used as etch-and-rinse or as self-etch adhesives, have been recently introduced without clinical data to back their use. To evaluate the 6-month clinical performance of Scotchbond Universal Adhesive (SU; 3M ESPE, St. Paul, MN, USA) in noncarious cervical lesions (NCCLs) using two evaluation criteria. Thirty-nine patients participated in this study. Two hundred restorations were assigned to four groups: SU-TEm: etch-and-rinse + moist dentin; SU-TEd: etch-and-rinse + dry dentin; SU-SEet: selective enamel etching; and SU-SE: self-etch. The composite resin Filtek Supreme Ultra (3M ESPE) was placed incrementally. The restorations were evaluated at baseline and after 6 months using both the World Dental Federation (FDI) and the United States Public Health Service (USPHS) criteria. Statistical analyses were performed with Friedman repeated measures analysis of variance by rank and McNemar test for significance in each pair (α = 0.05). Only four restorations (SU-SE: 3 and SU-TEm: 1) were lost after 6 months (p > 0.05 for either criteria). Marginal discoloration occurred in one restoration in the SU-SE group (p > 0.05 for either criteria). Only 2/200 restorations were scored as bravo for marginal adaptation using the USPHS criteria (one for SU-SE and one for SU-SEet, p > 0.05). However, when using the FDI criteria, the percentage of bravo scores for marginal adaptation at 6 months were 32%, 36%, 42%, and 46% for groups SU-TEm, SU-TEd, SU-SEet, and SU-SE, respectively (p > 0.05). The clinical behavior of the multimode adhesive does not depend on the bonding strategy at 6 months. The FDI evaluation criteria are more sensitive than the USPHS criteria. At 6 months, the clinical behavior of the new multimode adhesive Scotchbond Universal was found to be reliable when used in noncarious cervical lesions and may not depend on the bonding strategy employed. © 2012 Wiley Periodicals, Inc.

  20. Impact of casing damaging on aflatoxin B1 concentration during the ripening of dry-fermented meat sausages.

    PubMed

    Pleadin, Jelka; Kovačević, Dragan; Perković, Irena

    2015-01-01

    The aim of this article is to investigate the impact of casing damaging on the formation of aflatoxin B1 (AFB1) during the ripening of dry-fermented meat sausages. The level of AFB1 contamination was determined in 24 samples using the ELISA immunoassay throughout a six-month production period. While with intact casing samples no contamination was observed throughout the whole production process, in damaged casing samples AFB1 was detected in the ripening end-stages in the range of 1.62-4.49 μg/kg. The results showed that casing damaging occurring during long-term ripening of dry-fermented sausages can cause AFB1 contamination, possibly arising on the grounds of diffusion of this mycotoxin from the product surface to its interior.

  1. Recovery of shallow junction GaAs solar cells damaged by electron irradiation

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Conway, E. J.

    1978-01-01

    Solar cells operated in space are subject to degradation from electron and proton radiation damage. It has been found that for deep junction p-GaAlAs/p-GaAs solar cells some of the electron radiation damage is removed by annealing the cells at 200 C. The reported investigation shows that shallow junction p-GaAlAs/p-GaAs/n-GaAs heteroface solar cells irradiated with 1 MeV electrons show a more complete recovery of short-circuit current than do the deep junction cells. The heteroface p-GaAlAs/p-GaAs/n-GaAs solar cells studied were fabricated using the etch-back epitaxy process.

  2. Gefarnate stimulates mucin-like glycoprotein secretion in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models

    PubMed Central

    Dota, Atsuyoshi; Takaoka-Shichijo, Yuko; Nakamura, Masatsugu

    2013-01-01

    Purpose The aim of this study was to evaluate the effect of gefarnate on mucin-like glycoprotein secretion in isolated rabbit conjunctival tissue, and on corneal epithelial damage in rabbit and cat dry-eye models. Methods Conjunctival tissue isolated from rabbits was treated with gefarnate. Mucin-like glycoprotein was detected in the culture supernatant by an enzyme-linked lectin assay. Gefarnate ointment was topically applied to eyes once daily for 7 days in the rabbit dry-eye model, in which the lacrimal glands, Harderian gland, and nictitating membrane were removed, or for 4 weeks in the cat dry-eye model, in which the lacrimal gland and nictitating membrane were removed. Corneal epithelial damage was evaluated by measurement of corneal permeability by rose bengal in the rabbit model or by fluorescein staining in the cat model. Results Gefarnate stimulated mucin-like glycoprotein secretion in conjunctival tissue in a dose-dependent manner. In the rabbit dry-eye model, application of gefarnate ointment to the eyes resulted in a dose-dependent decrease in rose bengal permeability in the cornea, with the effect being significant at concentrations of ≥0.3%. In the cat dry-eye model, application of gefarnate ointment resulted in a significant decrease in the corneal fluorescein staining score. Conclusion These results suggest that gefarnate stimulates in vitro secretion of mucin-like glycoprotein in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models. Gefarnate may therefore be effective for treating dry eye. PMID:23386781

  3. Dry Ice Etches Terrain

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Every year seasonal carbon dioxide ice, known to us as 'dry ice,' covers the poles of Mars. In the south polar region this ice is translucent, allowing sunlight to pass through and warm the surface below. The ice then sublimes (evaporates) from the bottom of the ice layer, and carves channels in the surface.

    The channels take on many forms. In the subimage shown here (figure 1) the gas from the dry ice has etched wide shallow channels. This region is relatively flat, which may be the reason these channels have a different morphology than the 'spiders' seen in more hummocky terrain.

    Observation Geometry Image PSP_003364_0945 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Apr-2007. The complete image is centered at -85.4 degrees latitude, 104.0 degrees East longitude. The range to the target site was 251.5 km (157.2 miles). At this distance the image scale is 25.2 cm/pixel (with 1 x 1 binning) so objects 75 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel . The image was taken at a local Mars time of 06:57 PM and the scene is illuminated from the west with a solar incidence angle of 75 degrees, thus the sun was about 15 degrees above the horizon. At a solar longitude of 219.6 degrees, the season on Mars is Northern Autumn.

  4. S-MMICs: Sub-mm-Wave Transistors and Integrated Circuits

    DTIC Science & Technology

    2008-09-01

    Research Lab BAA DAAD19-03-R-0017 Research area 2.35: RF devices—Dr. Alfred Hung Submitted by: Mark Rodwell, Department of Electrical and Computer ...MOTIVATION / APPLICATION 3 TECHNOLOGY STATUS 4 TRANSISTOR SCALING LAWS 5 256 NM GENERATION 6 HBT POWER AMPLIFIER DEVELOPMENT 7 DRY-ETCHED EMITTER...TECHNOLOGY: 256 NM GENERATION 9 SCALED EPITAXY 11 CONCLUSIONS 12 20081103013 Executive Summary Transistor and power amplifier IC technology was

  5. Effect of Dentin Wetness on the Bond Strength of Universal Adhesives.

    PubMed

    Choi, An-Na; Lee, Ji-Hye; Son, Sung-Ae; Jung, Kyoung-Hwa; Kwon, Yong Hoon; Park, Jeong-Kil

    2017-10-25

    The effects of dentin wetness on the bond strength and adhesive interface morphology of universal adhesives have been investigated using micro-tensile bond strength (μTBS) testing and confocal laser scanning microscopy (CLSM). Seventy-two human third molars were wet ground to expose flat dentin surfaces. They were divided into three groups according to the air-drying time of the dentin surfaces: 0 (without air drying), 5, and 10 s. The dentin surfaces were then treated with three universal adhesives: G-Premio Bond, Single Bond Universal, and All-Bond Universal in self-etch or etch-and-rinse mode. After composite build up, a μTBS test was performed. One additional tooth was prepared for each group by staining the adhesives with 0.01 wt % of Rhodamine B fluorescent dye for CLSM analysis. The data were analyzed statistically using ANOVA and Tukey's post hoc tests (α = 0.05). Two-way ANOVA showed significant differences among the adhesive systems and dentin moisture conditions. An interaction effect was also observed ( p < 0.05). One-way ANOVA showed that All-Bond Universal was the only material influenced by the wetness of the dentin surfaces. Wetness of the dentin surface is a factor influencing the micro-tensile bond strength of universal adhesives.

  6. Effect of Dentin Wetness on the Bond Strength of Universal Adhesives

    PubMed Central

    Lee, Ji-Hye; Son, Sung-Ae; Jung, Kyoung-Hwa; Kwon, Yong Hoon

    2017-01-01

    The effects of dentin wetness on the bond strength and adhesive interface morphology of universal adhesives have been investigated using micro-tensile bond strength (μTBS) testing and confocal laser scanning microscopy (CLSM). Seventy-two human third molars were wet ground to expose flat dentin surfaces. They were divided into three groups according to the air-drying time of the dentin surfaces: 0 (without air drying), 5, and 10 s. The dentin surfaces were then treated with three universal adhesives: G-Premio Bond, Single Bond Universal, and All-Bond Universal in self-etch or etch-and-rinse mode. After composite build up, a μTBS test was performed. One additional tooth was prepared for each group by staining the adhesives with 0.01 wt % of Rhodamine B fluorescent dye for CLSM analysis. The data were analyzed statistically using ANOVA and Tukey’s post hoc tests (α = 0.05). Two-way ANOVA showed significant differences among the adhesive systems and dentin moisture conditions. An interaction effect was also observed (p < 0.05). One-way ANOVA showed that All-Bond Universal was the only material influenced by the wetness of the dentin surfaces. Wetness of the dentin surface is a factor influencing the micro-tensile bond strength of universal adhesives. PMID:29068404

  7. A thermal microprobe fabricated with wafer-stage processing

    NASA Astrophysics Data System (ADS)

    Zhang, Yongxia; Zhang, Yanwei; Blaser, Juliana; Sriram, T. S.; Enver, Ahsan; Marcus, R. B.

    1998-05-01

    A thermal microprobe has been designed and built for high resolution temperature sensing. The thermal sensor is a thin-film thermocouple junction at the tip of an atomic force microprobe (AFM) silicon probe needle. Only wafer-stage processing steps are used for the fabrication. For high resolution temperature sensing it is essential that the junction be confined to a short distance at the AFM tip. This confinement is achieved by a controlled photoresist coating process. Experiment prototypes have been made with an Au/Pd junction confined to within 0.5 μm of the tip, with the two metals separated elsewhere by a thin insulating oxide layer. Processing begins with double-polished, n-type, 4 in. diameter, 300-μm-thick silicon wafers. Atomically sharp probe tips are formed by a combination of dry and wet chemical etching, and oxidation sharpening. The metal layers are sputtering deposited and the cantilevers are released by a combination of KOH and dry etching. A resistively heated calibration device was made for temperature calibration of the thermal microprobe over the temperature range 25-110 °C. Over this range the thermal outputs of two microprobes are 4.5 and 5.6 μV/K and is linear. Thermal and topographical images are also obtained from a heated tungsten thin film fuse.

  8. Dry stone masonry culvert restoration.

    DOT National Transportation Integrated Search

    2007-05-01

    A damaged dry stone masonry culvert on KY 1268 Jessamine County was restored by the Kentucky Transportation Cabinet. The work was performed by the Dry Stone Conservancy, a non-profit agency promoting dry stone masonry. The work included replacement o...

  9. Elasto-Capillary Folding Using Stop-Programmable Hinges Fabricated by 3D Micro-Machining

    PubMed Central

    Legrain, Antoine; Berenschot, Erwin J. W.; Tas, Niels R.; Abelmann, Leon

    2015-01-01

    We show elasto-capillary folding of silicon nitride objects with accurate folding angles between flaps of (70.6 ± 0.1)° and demonstrate the feasibility of such accurate micro-assembly with a final folding angle of 90°. The folding angle is defined by stop-programmable hinges that are fabricated starting from silicon molds employing accurate three-dimensional corner lithography. This nano-patterning method exploits the conformal deposition and the subsequent timed isotropic etching of a thin film in a 3D shaped silicon template. The technique leaves a residue of the thin film in sharp concave corners which can be used as an inversion mask in subsequent steps. Hinges designed to stop the folding at 70.6° were fabricated batchwise by machining the V-grooves obtained by KOH etching in (110) silicon wafers; 90° stop-programmable hinges were obtained starting from silicon molds obtained by dry etching on (100) wafers. The presented technique has potential to achieve any folding angle and opens a new route towards creating structures with increased complexity, which will ultimately lead to a novel method for device fabrication. PMID:25992886

  10. Diffractive optics fabricated by direct write methods with an electron beam

    NASA Technical Reports Server (NTRS)

    Kress, Bernard; Zaleta, David; Daschner, Walter; Urquhart, Kris; Stein, Robert; Lee, Sing H.

    1993-01-01

    State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics.

  11. 7 CFR 52.3184 - Grades of dried prunes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flesh damage. 2 damage. 2 Fermentation. Insect infestation.Decay. Fermentation. Scars. Scars. Heat.... Skin or flesh. Foreign material. Skin or flesh damage. 2 Inset infestation. damage. 2 Fermentation. Decay. Fermentation. Scars. Scars. Heat damage. Heat damage. Inset injury. Insect injury. Other means...

  12. Effects of moisture, residual thermal curing stresses and mechanical load on the damage development in quasi-isotropic laminates

    NASA Technical Reports Server (NTRS)

    Kriz, R. D.; Stinchcomb, W. W.; Tenney, D. R.

    1980-01-01

    Classical laminate theory and a finite element model were used to predict stress states prior to the first formation of damage in laminates fabricated from T/300/5208. Crack patterns characteristic of the laminate in a wet or dry condition were also predicted using a shear lag model. Development of edge damage was recorded and observed during the test by transferring an image of the damage from the edge surface on to a thin acetate sheet such that the damage imprinted could be immediately viewed on a microfiche card reader. Moisture was shown to significantly alter the interior and edge dry stress states due to swelling and a reduction of elastic properties and to reduce the transverse strength in 90 deg plies. A model was developed in order to predict changes in first ply failure laminate loads due to differences in stacking sequence together with a wet or dry environmental condition.

  13. Two-Dimensional Si-Nanodisk Array Fabricated Using Bio-Nano-Process and Neutral Beam Etching for Realistic Quantum Effect Devices

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Hsien; Igarashi, Makoto; Woné, Michel; Uraoka, Yukiharu; Fuyuki, Takashi; Takeguchi, Masaki; Yamashita, Ichiro; Samukawa, Seiji

    2009-04-01

    A high-density, large-area, and uniform two-dimensional (2D) Si-nanodisk array was successfully fabricated using the bio-nano-process, advanced etching techniques, including a treatment using nitrogen trifluoride and hydrogen radical (NF3 treatment) and a damage-free chlorine neutral beam (NB). By using the surface oxide formed by neutral beam oxidation (NBO) for the preparation of a 2D nanometer-sized iron core array as an etching mask, a well-ordered 2D Si-nanodisk array was obtained owing to the dangling bonds of the surface oxide. By changing the NF3 treatment time without changing the quantum effect of each nanodisk, we could control the gap between adjacent nanodisks. A device with two electrodes was fabricated to investigate the electron transport in a 2D Si-nanodisk array. Current fluctuation and time-dependent currents were clearly observed owing to the charging-discharging of the nanodisks adjacent to the current percolation path. The new structure may have great potential for future novel quantum effect devices.

  14. FIB Plan View Preparation and Electron Tomography of Ga-Containing Droplets Induced by Melt-Back Etching in Si.

    PubMed

    Gries, Katharina I; Werner, Katharina; Beyer, Andreas; Stolz, Wolfgang; Volz, Kerstin

    2016-02-01

    Melt-back etching is an effect that can occur for gallium (Ga) containing III/V semiconductors grown on Si. Since this effect influences interfaces between the two compounds and therefore the physical characteristics of the material composition, it is desirable to understand its driving forces. Therefore, we investigated Ga grown on Si (001) via metal organic chemical vapor deposition using trimethyl Ga as a precursor. As a result of the melt-back etching, Ga-containing droplets formed on the Si surface which reach into the Si wafer. The shape of these structures was analyzed by plan view investigation and cross sectional tomography in a (scanning) transmission electron microscope. For plan view preparation a focused ion beam was used to avoid damage to the Ga-containing structures, which are sensitive to the chemicals normally used during conventional plan view preparation. Combining the results of both investigation methods confirms that the Ga-containing structure within the Si exhibits a pyramid shape with facets along the Si {111} lattice planes.

  15. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Barron, Carole C.; Fleming, James G.; Montague, Stephen

    1999-01-01

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  16. Salivary contamination during bonding procedures with a one-bottle adhesive system.

    PubMed

    Fritz, U B; Finger, W J; Stean, H

    1998-09-01

    The effect of salivary contamination of enamel and dentin on bonding efficacy of an experimental one-bottle resin adhesive was investigated. The adhesive was a light-curing urethane dimethacrylate/hydroxyethyl methacrylate/4-methacryloxyethyl trimellitate anhydride mixture dissolved in acetone. Evaluation parameters were shear bond strength and marginal gap width in a dental cavity. Apart from a control group without contamination (group 1), etched enamel and dentin were (2) contaminated with saliva and air dried; (3) contaminated, rinsed, and blot dried; (4) coated with adhesive, contaminated, rinsed, and blot dried; (5) coated with adhesive, light cured, contaminated, rinsed, and air dried; or (6) treated as in group 5, with additional adhesive application after air drying. There was no negative effect in groups 3 and 4, compared with control. Air drying after salivary contamination (group 2) resulted in low shear bond strengths and wide marginal gaps. Contamination of the cured adhesive layer (groups 5 and 6) had no adverse effect on enamel shear bond strengths, but resulted in 50% reduced dentin shear bond strengths and wide marginal gaps. The one-bottle adhesive system is relatively insensitive to salivary contamination, provided that the contamination occurs prior to light curing of the adhesive and is carefully rinsed and blot dried. Salivary contact after adhesive curing must be avoided.

  17. Manufacturing Methods and Technology Project Summary Reports.

    DTIC Science & Technology

    1980-12-01

    deposition of chrome-copper (Cr- Cu ), dry-film photoresist application, photolithographic masking, spray etching, die bonding, ultrasonic...4) cold roll forging. Of these, the cold roll forging process is the most widely used for the pro- duction of steel and low alloy blades. It provides... sprayed Mo- Al -Ni both provide relatively good wear resistance, see Figure 1. The powder -flame sprayed aluminum bronze did not perform as well. 147 -S t. I

  18. Evaluation of saw damage using diamond-coated wire in crystalline silicon solar cells by photoluminescence imaging

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kosuke; Kojima, Takuto; Suzuki, Ryota; Kawatsu, Tomoyuki; Nakamura, Kyotaro; Ohshita, Yoshio; Ogura, Atsushi

    2018-05-01

    Si ingots were sliced using a diamond-coated wire, and saw damage was observed even after damage removal etching and texturization. Since invisible microscopic damage was observed only under uncontrolled slice conditions, such damage was identified as saw damage. The wafers with saw damage exhibited the degradation of solar cell conversion efficiency (approximately 1–2% absolute). The results of external quantum efficiency (EQE) measurements showed a slight deterioration of EQE in the short wavelength region. Current–voltage characteristic measurements showed similar results that agreed with the EQE measurement results. In addition, EQE mapping measurements were carried out at various irradiation wavelengths between 350 and 1150 nm. Areas with dark contrasts in EQE mapping correspond to saw damage. In the cells with a low conversion efficiency, both EQE mapping and PL images exhibited dark areas and lines. On the other hand, in the cells with a high conversion efficiency, a uniform distribution of saw damage was observed even with the saw damage in the PL images. We believe that sophisticated control to suppress saw damage during sawing is required to realize higher conversion efficiency solar cells in the future.

  19. Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching.

    PubMed

    Chan, Lesley W; Morse, Daniel E; Gordon, Michael J

    2018-05-08

    Near- and sub-wavelength photonic structures are used by numerous organisms (e.g. insects, cephalopods, fish, birds) to create vivid and often dynamically-tunable colors, as well as create, manipulate, or capture light for vision, communication, crypsis, photosynthesis, and defense. This review introduces the physics of moth eye (ME)-like, biomimetic nanostructures and discusses their application to reduce optical losses and improve efficiency of various optoelectronic devices, including photodetectors, photovoltaics, imagers, and light emitting diodes. Light-matter interactions at structured and heterogeneous surfaces over different length scales are discussed, as are the various methods used to create ME-inspired surfaces. Special interest is placed on a simple, scalable, and tunable method, namely colloidal lithography with plasma dry etching, to fabricate ME-inspired nanostructures in a vast suite of materials. Anti-reflective surfaces and coatings for IR devices and enhancing light extraction from visible light emitting diodes are highlighted.

  20. Fabrication of porous nanostructures for Raman signal amplification

    NASA Astrophysics Data System (ADS)

    Mitsai, E. V.; Syubaev, S. A.; Kuchmizhak, A. A.

    2018-01-01

    Pulsed-laser dry printing of noble-metal microrings with a tunable internal porous structure, which can be revealed via an ion-beam etching post-procedure, was demonstrated. Average size of the pores inside the microrings were shown to be tuned in a wide range by varying the incident pulse energy and a nitrogen doping level controlled in the process of magnetron deposition of the gold film in the appropriate gaseous environment. The fabricated porous microrings were shown to provide many-fold near-field enhancement of incident electromagnetic fields, which was confirmed by mapping of the characteristic Raman band of a nanometer-thick covering layer of Rhodamine 6G molecules and supporting calculations. The proposed laser-printing/ion-beam etching approach is demonstrated to be a unique tool aimed at designing and fabricating multifunctional plasmonic structures and metasurfaces for spectroscopic bioidentification based on surface-enhanced Raman scattering and photoluminescence detection schemes.

  1. Current dental adhesives systems. A narrative review.

    PubMed

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  2. ZERODUR - bending strength: review of achievements

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter

    2017-08-01

    Increased demand for using the glass ceramic ZERODUR® with high mechanical loads called for strength data based on larger statistical samples. Design calculations for failure probability target value below 1: 100 000 cannot be made reliable with parameters derived from 20 specimen samples. The data now available for a variety of surface conditions, ground with different grain sizes and acid etched for full micro crack removal, allow stresses by factors four to ten times higher than before. The large sample revealed that breakage stresses of ground surfaces follow the three parameter Weibull distribution instead of the two parameter version. This is more reasonable considering that the micro cracks of such surfaces have a maximum depth which is reflected in the existence of a threshold breakage stress below which breakage probability is zero. This minimum strength allows calculating minimum lifetimes. Fatigue under load can be taken into account by using the stress corrosion coefficient for the actual environmental humidity. For fully etched surfaces Weibull statistics fails. The precondition of the Weibull distribution, the existence of one unique failure mechanism, is not given anymore. ZERODUR® with fully etched surfaces free from damages introduced after etching endures easily 100 MPa tensile stress. The possibility to use ZERODUR® for combined high precision and high stress application was confirmed by the successful launch and continuing operation of LISA Pathfinder the precursor experiment for the gravitational wave antenna satellite array eLISA.

  3. Effect of Drying Moisture Exposed Almonds on the Development of the Quality Defect Concealed Damage.

    PubMed

    Rogel-Castillo, Cristian; Luo, Kathleen; Huang, Guangwei; Mitchell, Alyson E

    2017-10-11

    Concealed damage (CD), is a term used by the nut industry to describe a brown discoloration of kernel nutmeat that becomes visible after moderate heat treatments (e.g., roasting). CD can result in consumer rejection and product loss. Postharvest exposure of almonds to moisture (e.g., rain) is a key factor in the development of CD as it promotes hydrolysis of proteins, carbohydrates, and lipids. The effect of drying moisture-exposed almonds between 45 to 95 °C, prior to roasting was evaluated as a method for controlling CD in roasted almonds. Additionally, moisture-exposed almonds dried at 55 and 75 °C were stored under accelerated shelf life conditions (45 °C/80% RH) and evaluated for headspace volatiles. Results indicate that drying temperatures below 65 °C decreases brown discoloration of nutmeat up to 40% while drying temperatures above 75 °C produce significant increases in brown discoloration and volatiles related to lipid oxidation, and nonsignificant increases in Amadori compounds. Results also demonstrate that raw almonds exposed to moisture and dried at 55 °C prior to roasting, reduce the visual sign of CD and maintain headspace volatiles profiles similar to almonds without moisture damage during accelerated storage.

  4. Peritoneal Tumorigenesis and Inflammation are Ameliorated by Humidified-Warm Carbon Dioxide Insufflation in the Mouse.

    PubMed

    Carpinteri, Sandra; Sampurno, Shienny; Bernardi, Maria-Pia; Germann, Markus; Malaterre, Jordane; Heriot, Alexander; Chambers, Brenton A; Mutsaers, Steven E; Lynch, Andrew C; Ramsay, Robert G

    2015-12-01

    Conventional laparoscopic surgery uses CO2 that is dry and cold, which can damage peritoneal surfaces. It is speculated that disseminated cancer cells may adhere to such damaged peritoneum and metastasize. We hypothesized that insufflation using humidified-warm CO2, which has been shown to reduce mesothelial damage, will also ameliorate peritoneal inflammation and tumor cell implantation compared to conventional dry-cold CO2. Laparoscopic insufflation was modeled in mice along with anesthesia and ventilation. Entry and exit ports were introduced to maintain insufflation using dry-cold or humidified-warm CO2 with a constant flow and pressure for 1 h; then 1000 or 1 million fluorescent-tagged murine colorectal cancer cells (CT26) were delivered into the peritoneal cavity. The peritoneum was collected at intervals up to 10 days after the procedure to measure inflammation, mesothelial damage, and tumor burden using fluorescent detection, immunohistochemistry, and scanning electron microscopy. Rapid temperature control was achieved only in the humidified-warm group. Port-site tumors were present in all mice. At 10 days, significantly fewer tumors on the peritoneum were counted in mice insufflated with humidified-warm compared to dry-cold CO2 (p < 0.03). The inflammatory marker COX-2 was significantly increased in the dry-cold compared to the humidified-warm cohort (p < 0.01), while VEGFA expression was suppressed only in the humidified-warm cohort. Significantly less mesothelial damage and tumor cell implantation was evident from 2 h after the procedure in the humidified-warm cohort. Mesothelial cell damage and inflammation are reduced by using humidified-warm CO2 for laparoscopic oncologic surgery and may translate to reduce patients' risk of developing peritoneal metastasis.

  5. Hybrid Metamaterials for Solar Biofuel Generation

    DTIC Science & Technology

    2014-10-30

    challenging, and their production is environmentally damaging .7 For these reasons, they are unlikely to find commercial application. Artificial proteins...transfer in natural systems has led to an empirical expression known as the Moser-Dutton ruler, further modified by Crofts and Rose37 which describes...photolithography (the deep UV photolithography system at the CNF). Reactive ion etching will be used with a polymerization component Project

  6. Inhibition of endogenous human dentin MMPs by Gluma

    PubMed Central

    Sabatini, Camila; Scheffel, Débora L.S.; Scheffel, Régis H.; Agee, Kelli A.; Rouch, Katelyn; Takahashi, Masahiro; Breschi, Lorenzo; Mazzoni, Annalisa; Tjäderhane, Leo; Tay, Franklin R.; Pashley, David H.

    2014-01-01

    Objective The objective of this study was to determine if Gluma dentin desensitizer (5.0% glutaraldehyde and 35% HEMA in water) can inhibit the endogenous MMPs of dentin matrices in 60 sec. and to evaluate its effect on dentin matrix stiffness and dry mass weight. Methods Dentin beams of 2×1×6 mm were obtained from extracted human third molars coronal dentin. To measure the influence of Gluma treatment time on total MMP activity of dentin, beams were dipped in 37% phosphoric acid (PA) for 15 sec. and rinsed in water. The acid-etched beams were then dipped in Gluma for 5, 15, 30 or 60 sec., rinsed in water and incubated into SensoLyte generic MMP substrate (AnaSpec, Inc.) for 60 min. Controls were dipped in water for 60 sec. Additional beams of 1×1×6 mm were completely demineralized in 37% PA for 18 h, rinsed and used to evaluate changes on the dry weight and modulus of elasticity (E) after 60 sec. of Gluma treatment followed by incubation in simulated body fluid buffer for zero, one or four weeks. E was measured by 3-pt flexure. Results Gluma treatment inhibited total MMP activity of acid-etched dentin by 44, 50, 84, 86 % after 5, 15, 30 or 60 sec. of exposure, respectively. All completely demineralized dentin beams lost stiffness after one and four weeks, with no significant differences between the control and Gluma-treated dentin. Gluma treatment for 60 sec. yielded significantly less dry mass loss than the control after four weeks. Significance The use of Gluma may contribute to the preservation of adhesive interfaces by its cross-linking and inhibitory properties of endogenous dentin MMPs. PMID:24846803

  7. Silylated Acid Hardened Resist [SAHR] Technology: Positive, Dry Developable Deep UV Resists

    NASA Astrophysics Data System (ADS)

    Thackeray, James W.; Bohland, John F.; Pavelchek, , Edward K.; Orsula, George W.; McCullough, Andrew W.; Jones, Susan K.; Bobbio, Stephen M.

    1990-01-01

    This paper describes continuing efforts in the development of Acid Hardened Resist (AHR) systems for use in deep UV photolithography. The Silylated AHR (SAHR) process treats a highly absorbing resist, such as XP-8928, with trimethylsilyldiethylamine. The exposed, crosslinked areas show virtually no reactivity with the silylating agent, and the unexposed areas incorporate 10 to 12% by weight silicon in the film. The silicon appears to incorporate from the exterior in a constant concentration, consistent with Case II diffusion. Subsequent dry etching leads to a positive tone image. The contrast is 5, and the photospeed is ~10 mJ/cm2. Resolution of 0.5 μm line/space pairs has been demonstrated, although substantial proximity effects are encountered.

  8. Influence of Etching Protocol and Silane Treatment with a Universal Adhesive on Lithium Disilicate Bond Strength.

    PubMed

    Kalavacharla, V K; Lawson, N C; Ramp, L C; Burgess, J O

    2015-01-01

    To measure the effects of hydrofluoric acid (HF) etching and silane prior to the application of a universal adhesive on the bond strength between lithium disilicate and a resin. Sixty blocks of lithium disilicate (e.max CAD, Ivoclar Vivadent) were sectioned into coupons and polished. Specimens were divided into six groups (n=10) based on surface pretreatments, as follows: 1) no treatment (control); 2) 5% HF etch for 20 seconds (5HF); 3) 9.5% HF etch for 60 seconds (9.5HF); 4) silane with no HF (S); 5) 5% HF for 20 seconds + silane (5HFS); and 6) 9.5% HF for 60 seconds + silane (9.5HFS). All etching was followed by rinsing, and all silane was applied in one coat for 20 seconds and then dried. The universal adhesive (Scotchbond Universal, 3M ESPE) was applied onto the pretreated ceramic surface, air thinned, and light cured for 10 seconds. A 1.5-mm-diameter plastic tube filled with Z100 composite (3M ESPE) was applied over the bonded ceramic surface and light cured for 20 seconds on all four sides. The specimens were thermocycled for 10,000 cycles (5°C-50°C/15 s dwell time). Specimens were loaded until failure using a universal testing machine at a crosshead speed of 1 mm/min. The peak failure load was used to calculate the shear bond strength. Scanning electron microscopy images were taken of representative e.max specimens from each group. A two-way analysis of variance (ANOVA) determined that there were significant differences between HF etching, silane treatment, and the interaction between HF and silane treatment (p<0.01). Silane treatment provided higher shear bond strength regardless of the use or concentration of the HF etchant. Individual one-way ANOVA and Tukey post hoc analyses were performed for each silane group. Shear bond strength values for each etch time were significantly different (p<0.01) and could be divided into significantly different groups based on silane treatment: no silane treatment: 0 HF < 5% HF < 9.5% HF; and RelyX silane treatment: 0 HF < 5% HF and 9.5% HF. Both HF and silane treatment significantly improved the bond strength between resin and lithium disilicate when used with a universal adhesive.

  9. InGaAsP/InP-air-aperture microcavities for single-photon sources at 1.55-μm telecommunication band

    NASA Astrophysics Data System (ADS)

    Guo, Sijie; Zheng, Yanzhen; Weng, Zhuo; Yao, Haicheng; Ju, Yuhao; Zhang, Lei; Ren, Zhilei; Gao, Ruoyao; Wang, Zhiming M.; Song, Hai-Zhi

    2016-11-01

    InGaAsP/InP-air-aperture micropillar cavities are proposed to serve as 1.55-μm single photon sources, which are indispensable in silica-fiber based quantum information processing. Owing to air-apertures introduced to InP layers, and adiabatically tapered distributed Bragg-reflector structures used in the central cavity layers, the pillar diameters can be less than 1 μm, achieving mode volume as small as (λ/n)3, and the quality factors are more than 104 - 105, sufficient to increase the quantum dot emission rate for 100 times and create strong coupling between the optical mode and the 1.55- μm InAs/InP quantum dot emitter. The mode wavelengths and quality factors are found weakly changing with the cavity size and the deviation from the ideal shape, indicating the robustness against the imperfection of the fabrication technique. The fabrication, simply epitaxial growth, dry and chemical etching, is a damage-free and monolithic process, which is advantageous over previous hybrid cavities. The above properties satisfy the requirements of efficient, photonindistinguishable and coherent 1.55-μm quantum dot single photon sources, so the proposed InGaAsP/InP-air-aperture micropillar cavities are prospective candidates for quantum information devices at telecommunication band.

  10. Infrared Photodiodes Made by Low Energy Ion Etching of Molecular Beam Epitaxy Grown Mercury-Cadmium Alloy

    NASA Astrophysics Data System (ADS)

    Yoo, Sung-Shik

    Ion etching was used to form junctions on the p-type (111)B Hg_{1-x}Cd_ {x}Te grown by Molecular Beam Epitaxy(MBE). When Hg_{1-x}Cd_{x}Te layers are etched by Ar ions at energies ranging between 300 and 450eV, the top Hg_{1 -x}Cd_{x}Te layer is converted to n-type. The converted region is electrically characterized as a defective n^+-region near the surface, and a low doped n^--region exist below the damaged region. The total thickness of the converted n-type layer was found to be considerable. These results suggest that the creation of the n-type layer is due to the filling of mercury vacancies by mercury atoms displaced by the Ar ion irradiation on the surface. For the performance of the resulting photodiodes on MBE grown (111)B Hg_{1-x}Cd _{x}Te using this technique, the dynamic resistances at 80K are one order of magnitude less than those of junctions made on Liquid Phase Epitaxially and Bulk grown Hg_{1 -x}Cd_{x}Te. The ion etching technique was compared with ion implantation technique by fabricating diodes on the same MBE grown (111)B Hg _{1-x}Cd_{x}Te layers. The result of the comparison illustrates that ion etching technique is as good as ion implantation technique for the fabrication of Hg_{1-x}Cd _{x}Te photodiodes. Also it is believed that the performance of the diodes is limited by a relatively large density of twin defects usually found in MBE grown (111)B Hg_{1-x}Cd _{x}Te.

  11. Chemically Modified Microelectrode Arrays. New Kinds of Electronic Devices.

    DTIC Science & Technology

    1987-08-05

    switching. Figure 1 shows a typical process for the fabrication of a microelectrode array consisting of eight, individually addressable Au (or Pt...S4r... -n - 2 ORGANIC CLEAN MRC SPUTTERING PHOTOLITHOGRAPHY _Suttred SI.N, & DRY ETCH _LorVO S1. 1.2 pm Figure 1. Flow chart for fabrication of...microelectrochemical devices, including polypyrrole, 14 poly(N-methylpyrrole), 14b poly(3-methylthiophene), 1 5 and polyaniline .15b,16 These materials can all be made by

  12. Stainless hooks to bond lower lingual retainer.

    PubMed

    Durgekar, Sujala G; Nagaraj, K

    2011-01-01

    We introduced a simple and economical technique for precise placement of lower lingual retainers. Two stainless steel hooks made of 0.6mm wire are placed interdentally in the embrasure area between canine and lateral incisor bilaterally to lock the retainer wire in the correct position. Etch, rinse and dry the enamel surfaces with the retainer passively in place, then bond the retainer with light-cured adhesive. Hooks are simple to fabricate and eliminate the need for a transfer tray.

  13. Limitations of threshold voltage engineering of AlGaN/GaN heterostructures by dielectric interface charge density and manipulation by oxygen plasma surface treatments

    NASA Astrophysics Data System (ADS)

    Lükens, G.; Yacoub, H.; Kalisch, H.; Vescan, A.

    2016-05-01

    The interface charge density between the gate dielectric and an AlGaN/GaN heterostructure has a significant impact on the absolute value and stability of the threshold voltage Vth of metal-insulator-semiconductor (MIS) heterostructure field effect transistor. It is shown that a dry-etching step (as typically necessary for normally off devices engineered by gate-recessing) before the Al2O3 gate dielectric deposition introduces a high positive interface charge density. Its origin is most likely donor-type trap states shifting Vth to large negative values, which is detrimental for normally off devices. We investigate the influence of oxygen plasma annealing techniques of the dry-etched AlGaN/GaN surface by capacitance-voltage measurements and demonstrate that the positive interface charge density can be effectively compensated. Furthermore, only a low Vth hysteresis is observable making this approach suitable for threshold voltage engineering. Analysis of the electrostatics in the investigated MIS structures reveals that the maximum Vth shift to positive voltages achievable is fundamentally limited by the onset of accumulation of holes at the dielectric/barrier interface. In the case of the Al2O3/Al0.26Ga0.74N/GaN material system, this maximum threshold voltage shift is limited to 2.3 V.

  14. Novel single-cell mega-size chambers for electrochemical etching of panorama position-sensitive polycarbonate ion image detectors

    NASA Astrophysics Data System (ADS)

    Sohrabi, Mehdi

    2017-11-01

    A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.

  15. High power blue laser diodes on semipolar (202¯1¯) GaN substrates

    NASA Astrophysics Data System (ADS)

    Pourhashemi, Seyed Arash

    High power blue laser didoes (LDs), among other applications, show the promise of realizing efficient and reliable solid state lighting systems. Since first GaN optoelectronic devices were demonstrated in early 1990s, GaN LDs were traditionally fabricated on polar c-plane. However in recent years there has been a growing interest in nonpolar and semipolar planes. Nonpolar and semipolar devices offer the prospect of achieving higher efficiencies though elimination or reduction of polarization-related electric fields. In this project I investigated semipolar (202 ¯1 ¯) plane of GaN for blue LDs fabrication. Results include blue LD (Lambda=450 nm) with highest output power, differential quantum efficiency (?d) and external quantum efficiency (EQE) reported for a GaN LD on a semipolar plane to date. Output power of 2.52 W, etad=50% and EQE=39% were achieved in pulsed mode and output power of 1.71 W was achieved in true CW mode. Moreover, use of indium tin oxide (ITO) as cladding layer in order to reduce the thickness of Mg-doped p-GaN layer was investigated. Blue LDs with ITO cladding were demonstrated in this work with highest output power, etad and EQE reported for a GaN LD with transparent conducting oxide (TCO) cladding layer to date. The lack of any natural cleavage plane orthogonal to the in-plane projection of the c-axis on semipolar planes has made Cl2-based dry etch processes the most common way to form mirror facets for semipolar LDs. However, mirror facets fabricated by dry etching can be inclined or rough. For this work, mechanical polishing was used to form LD mirror facets. The dependence of output power on current did not change with repeated CW measurements, indicating that the polished facets did not degrade under high power CW operation. These results show that polished facets are a viable alternative to cleaved or etched facets for high power CW semipolar LDs.

  16. Novel single-cell mega-size chambers for electrochemical etching of panorama position-sensitive polycarbonate ion image detectors.

    PubMed

    Sohrabi, Mehdi

    2017-11-01

    A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.

  17. Damage Escape and Repair in Dried Chroococcidiopsis spp. from Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions

    NASA Astrophysics Data System (ADS)

    Billi, Daniela; Viaggiu, Emanuela; Cockell, Charles S.; Rabbow, Elke; Horneck, Gerda; Onofri, Silvano

    2011-01-01

    The cyanobacterium Chroococcidiopsis, overlain by 3mm of Antarctic sandstone, was exposed as dried multilayers to simulated space and martian conditions. Ground-based experiments were conducted in the context of Lichens and Fungi Experiments (EXPOSE-E mission, European Space Agency), which were performed to evaluate, after 1.5 years on the International Space Station, the survival of cyanobacteria (Chroococcidiopsis), lichens, and fungi colonized on Antarctic rock. The survival potential and the role played by protection and repair mechanisms in the response of dried Chroococcidiopsis cells to ground-based experiments were both investigated. Different methods were employed, including evaluation of the colony-forming ability, single-cell analysis of subcellular integrities based on membrane integrity molecular and redox probes, evaluation of the photosynthetic pigment autofluorescence, and assessment of the genomic DNA integrity with a PCR-based assay. Desiccation survivors of strain CCMEE 123 (coastal desert, Chile) were better suited than CCMEE 134 (Beacon Valley, Antarctica) to withstand cellular damage imposed by simulated space and martian conditions. Exposed dried cells of strain CCMEE 123 formed colonies, maintained subcellular integrities, and, depending on the exposure conditions, also escaped DNA damage or repaired the induced damage upon rewetting.

  18. Dry eye disease: an immune-mediated ocular surface disorder

    PubMed Central

    Stevenson, William; Chauhan, Sunil K.; Dana, Reza

    2013-01-01

    Dry eye disease is a multifactorial disorder of the tears and ocular surface characterized by symptoms of dryness and irritation. Although the pathogenesis of dry eye disease is not fully understood, it is recognized that inflammation has a prominent role in the development and propagation of this debilitating condition. Factors that adversely affect tear film stability and osmolarity can induce ocular surface damage and initiate an inflammatory cascade that generates innate and adaptive immune responses. These immunoinflammatory responses lead to further ocular surface damage and the development of a self-perpetuating inflammatory cycle. Herein, we review the fundamental links between inflammation and dry eye disease and discuss the clinical implications of inflammation in disease management. PMID:22232476

  19. Fabrication of high aspect ratio TiO{sub 2} and Al{sub 2}O{sub 3} nanogratings by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkondin, Evgeniy, E-mail: eves@fotonik.dtu.dk; Takayama, Osamu; Lavrinenko, Andrei V.

    The authors report on the fabrication of TiO{sub 2} and Al{sub 2}O{sub 3} nanostructured gratings with an aspect ratio of up to 50. The gratings were made by a combination of atomic layer deposition (ALD) and dry etch techniques. The workflow included fabrication of a Si template using deep reactive ion etching followed by ALD of TiO{sub 2} or Al{sub 2}O{sub 3}. Then, the template was etched away using SF{sub 6} in an inductively coupled plasma tool, which resulted in the formation of isolated ALD coatings, thereby achieving high aspect ratio grating structures. SF{sub 6} plasma removes silicon selectively withoutmore » any observable influence on TiO{sub 2} or Al{sub 2}O{sub 3}, thus revealing high selectivity throughout the fabrication. Scanning electron microscopy was used to analyze every fabrication step. Due to nonreleased stress in the ALD coatings, the top parts of the gratings were observed to bend inward as the Si template was removed, thus resulting in a gradual change in the pitch value of the structures. The pitch on top of the gratings is 400 nm, and it gradually reduces to 200 nm at the bottom. The form of the bending can be reshaped by Ar{sup +} ion beam etching. The chemical purity of the ALD grown materials was analyzed by x-ray photoelectron spectroscopy. The approach presented opens the possibility to fabricate high quality optical metamaterials and functional nanostructures.« less

  20. Degradation of Staphylococcus aureus bacteria by neutral oxygen atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvelbar, U.; Mozetic, M.; Hauptman, N.

    2009-11-15

    The degradation of Staphylococcus aureus bacteria during treatment with neutral oxygen atoms was monitored by scanning electron microscopy. Experiments were performed in an afterglow chamber made from borosilicate glass. The source of oxygen atoms was remote inductively coupled radiofrequency oxygen plasma. The density of atoms at the samples was 8x10{sup 20} m{sup -3}. The treatment was performed at room temperature. The first effect was the removal of dried capsule. Capsule on exposed parts of bacteria was removed after receiving the dose of 6x10{sup 23} at./m{sup 2}, while the parts of capsule filling the gaps between bacteria were removed after receivingmore » the dose of 2.4x10{sup 24} m{sup -2}. After removing the capsule, degradation continued as etching of bacterial cell wall. The etching was rather nonuniform as holes with diameter of several 10 nm were observed. The cell wall was removed after receiving the dose of about 7x10{sup 24} m{sup -2}. The etching probabilities were about 2x10{sup -5} for the capsule and 2x10{sup -6} for the cell wall. The results were explained by different compositions of capsule and the cell wall.« less

  1. Novel ultra-lightweight and high-resolution MEMS x-ray optics

    NASA Astrophysics Data System (ADS)

    Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Takagi, Utako; Mita, Makoto; Riveros, Raul; Yamaguchi, Hitomi; Kato, Fumiki; Sugiyama, Susumu; Fujiwara, Kouzou; Morishita, Kohei; Nakajima, Kazuo; Fujihira, Shinya; Kanamori, Yoshiaki; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Maeda, Ryutaro

    2009-05-01

    We have been developing ultra light-weight X-ray optics using MEMS (Micro Electro Mechanical Systems) technologies.We utilized crystal planes after anisotropic wet etching of silicon (110) wafers as X-ray mirrors and succeeded in X-ray reflection and imaging. Since we can etch tiny pores in thin wafers, this type of optics can be the lightest X-ray telescope. However, because the crystal planes are alinged in certain directions, we must approximate ideal optical surfaces with flat planes, which limits angular resolution of the optics on the order of arcmin. In order to overcome this issue, we propose novel X-ray optics based on a combination of five recently developed MEMS technologies, namely silicon dry etching, X-ray LIGA, silicon hydrogen anneal, magnetic fluid assisted polishing and hot plastic deformation of silicon. In this paper, we describe this new method and report on our development of X-ray mirrors fabricated by these technologies and X-ray reflection experiments of two types of MEMS X-ray mirrors made of silicon and nickel. For the first time, X-ray reflections on these mirrors were detected in the angular response measurements. Compared to model calculations, surface roughness of the silicon and nickel mirrors were estimated to be 5 nm and 3 nm, respectively.

  2. Control of spectral transmission enhancement properties of random anti-reflecting surface structures fabricated using gold masking

    NASA Astrophysics Data System (ADS)

    Peltier, Abigail; Sapkota, Gopal; Potter, Matthew; Busse, Lynda E.; Frantz, Jesse A.; Shaw, L. Brandon; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.; Poutous, Menelaos K.

    2017-02-01

    Random anti-reflecting subwavelength surface structures (rARSS) have been shown to suppress Fresnel reflection and scatter from optical surfaces. The structures effectively function as a gradient-refractive-index at the substrate boundary, and the spectral transmission properties of the boundary have been shown to depend on the structure's statistical properties (diameter, height, and density.) We fabricated rARSS on fused silica substrates using gold masking. A thin layer of gold was deposited on the surface of the substrate and then subjected to a rapid thermal annealing (RTA) process at various temperatures. This RTA process resulted in the formation of gold "islands" on the surface of the substrate, which then acted as a mask while the substrate was dry etched in a reactive ion etching (RIE) process. The plasma etch yielded a fused silica surface covered with randomly arranged "rods" that act as the anti-reflective layer. We present data relating the physical characteristics of the gold "island" statistical populations, and the resulting rARSS "rod" population, as well as, optical scattering losses and spectral transmission properties of the final surfaces. We focus on comparing results between samples processed at different RTA temperatures, as well as samples fabricated without undergoing RTA, to relate fabrication process statistics to transmission enhancement values.

  3. FINAL REPORT: Transformational electrode drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claus Daniel, C.; Wixom, M.

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheatingmore » and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.« less

  4. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Xu; Ptasinska, Sylwia; Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

    2013-06-10

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  5. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Klas, Matej; Liu, Yueying; Sharon Stack, M.; Ptasinska, Sylwia

    2013-06-01

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  6. 7 CFR 52.3184 - Grades of dried prunes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., dirt, foreign material, insect infestation, or decay: Provided, That not more than 1 percent, by weight... flesh damage. 2 damage. 2 Fermentation. Insect infestation.Decay. Fermentation. Scars. Scars. Heat damage. Heat damage. Insect injury. Insect injury. Other means. Other means. Mold. Mold. Dirt. Dirt...

  7. Amorphous indium-gallium-zinc-oxide thin-film transistors using organic-inorganic hybrid films deposited by low-temperature plasma-enhanced chemical vapor deposition for all dielectric layers

    NASA Astrophysics Data System (ADS)

    Hsu, Chao-Jui; Chang, Ching-Hsiang; Chang, Kuei-Ming; Wu, Chung-Chih

    2017-01-01

    We investigated the deposition of high-performance organic-inorganic hybrid dielectric films by low-temperature (close to room temperature) inductively coupled plasma chemical vapor deposition (ICP-CVD) with hexamethyldisiloxane (HMDSO)/O2 precursor gas. The hybrid films exhibited low leakage currents and high breakdown fields, suitable for thin-film transistor (TFT) applications. They were successfully integrated into the gate insulator, the etch-stop layer, and the passivation layer for bottom-gate staggered amorphous In-Ga-Zn-O (a-IGZO) TFTs having the etch-stop configuration. With the double-active-layer configuration having a buffer a-IGZO back-channel layer grown in oxygen-rich atmosphere for better immunity against plasma damage, the etch-stop-type bottom-gate staggered a-IGZO TFTs with good TFT characteristics were successfully demonstrated. The TFTs showed good field-effect mobility (μFE), threshold voltage (V th), subthreshold swing (SS), and on/off ratio (I on/off) of 7.5 cm2 V-1 s-1, 2.38 V, 0.38 V/decade, and 2.2 × 108, respectively, manifesting their usefulness for a-IGZO TFTs.

  8. Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition

    PubMed Central

    Sobel, Nicolas; Lukas, Manuela; Spende, Anne; Stühn, Bernd; Trautmann, Christina

    2015-01-01

    Summary Polycarbonate etched ion-track membranes with about 30 µm long and 50 nm wide cylindrical channels were conformally coated with SiO2 by atomic layer deposition (ALD). The process was performed at 50 °C to avoid thermal damage to the polymer membrane. Analysis of the coated membranes by small angle X-ray scattering (SAXS) reveals a homogeneous, conformal layer of SiO2 in the channels at a deposition rate of 1.7–1.8 Å per ALD cycle. Characterization by infrared and X-ray photoelectron spectroscopy (XPS) confirms the stoichiometric composition of the SiO2 films. Detailed XPS analysis reveals that the mechanism of SiO2 formation is based on subsurface crystal growth. By dissolving the polymer, the silica nanotubes are released from the ion-track membrane. The thickness of the tube wall is well controlled by the ALD process. Because the track-etched channels exhibited diameters in the range of nanometres and lengths in the range of micrometres, cylindrical tubes with an aspect ratio as large as 3000 have been produced. PMID:25821688

  9. Diffusion analysis of one photosensitizer in bovine teeth using fluorescence optical imaging

    NASA Astrophysics Data System (ADS)

    Montanha, S.; Pratavieira, S.; Jacomassi, D. P.; Rastelli, A. N. S.; Bagnato, V. S.

    2012-01-01

    Some photosensitizers (PSs) used for PACT (Antimicrobial Photodynamic Therapy) show an affinity for bacterial walls and can be photo-activated to cause the desired damage. However, on dentine bacterias may be less susceptible to PACT as a result of limited penetration of the PS. The aim of this study was to evaluate the diffusion of one PS based on hematoporphyrin on dentine structures. Twelve bovine incisors were used. Class III cavities (3 x 3 x 1mm) were prepared on the mesial or distal surfaces using a diamond bur. Photogem® solution at 1 mg/mL (10 uL for each cavity) was used. The experimental Groups were divided according to thickness of dentine remaining and etched or no-etched before the PS application. The fluorescence excitation source was a VelScope® system. For image capture a scientific CCD color camera PixelFly® was coupled to VelScope. For image acquisition and processing, a computational routine was developed at Matlab®. Fick's Law was used to obtain the average diffusion coefficient of PS. Differences were found between all Groups. The longitudinal temporal diffusion was influenced by the different times, thickness and acid etching.

  10. Reduction of structural defects in thick 4H-SiC epitaxial layers grown on 4° off-axis substrates

    NASA Astrophysics Data System (ADS)

    Yazdanfar, M.; Ivanov, I. G.; Pedersen, H.; Kordina, O.; Janzén, E.

    2013-06-01

    By carefully controlling the surface chemistry of the chemical vapor deposition process for silicon carbide (SiC), 100 μm thick epitaxial layers with excellent morphology were grown on 4° off-axis SiC substrates at growth rates exceeding 100 μm/h. In order to reduce the formation of step bunching and structural defects, mainly triangular defects, the effect of varying parameters such as growth temperature, C/Si ratio, Cl/Si ratio, Si/H2 ratio, and in situ pre-growth surface etching time are studied. It was found that an in-situ pre growth etch at growth temperature and pressure using 0.6% HCl in hydrogen for 12 min reduced the structural defects by etching preferentially on surface damages of the substrate surface. By then applying a slightly lower growth temperature of 1575 °C, a C/Si ratio of 0.8, and a Cl/Si ratio of 5, 100 μm thick, step-bunch free epitaxial layer with a minimum triangular defect density and excellent morphology could be grown, thus enabling SiC power device structures to be grown on 4° off axis SiC substrates.

  11. Electron and Light Microscopy Techniques Suitable for Studying Fatigue Damage in a Crystallized Glass Ceramic

    NASA Technical Reports Server (NTRS)

    Harrell, Shelley; Zaretsky, Erwin V.

    1961-01-01

    The crystals of Pyroceram are randomly oriented and highly reflective so that standard microscopy techniques are not satisfactory for studying this material. Standard replicating procedures proved difficult to use. New microscopy techniques and procedures have therefore been developed. A method for locating, orienting, and identifying specific areas to be viewed with an electron microscope is described. This method not require any special equipment. Plastic replicas were found to be unsatisfactory because of their tendency to adhere to Pryoceram. This caused them to tear when released or resulted in artifacts. Preshadowed silicon monoxide replicas were satisfactory but required a releasing agent. A method of depositing the releasing agent is described. To polish specimens without evidence of fire-polishing, it was found necessary to use a vibratory polishing technique. Chrome oxide was used as the abrasive and either water or kerosene as the lubricant. Vibratory polishing is extremely slow, but surfaces so polished show no evidence of fire polishing, even when examined by electron microscopy. The most satisfactory etching process used for Pyroceram 9608 consisted of a primary etch of 5 milliliters of hydrochloric acid (concentrated), 5 milliliters of hydrogen fluoride (45 percent), and 45 milliliters of water, and a secondary etch with methyl alcohol replacing the water. Best results were obtained with total etching times from 25 to 30 seconds. Staining of the Pyroceram surface with a Sanford's marker was found to be an expedient way to reduce the glare of reflected light.

  12. Study of Mechano-Chemical Machining of Ceramics and the Effect on Thin Film Behavior.

    DTIC Science & Technology

    1981-06-01

    polished 7 dry on nylon using NaCI 3 Photomicrographs of the etched surfaces of MgO polished 8 .wet on glass using NaCl 4 Surface profile and Nomarski ...micrograph of a Si wafer 10 taken before mechano-chemical polishing 5 Surface profile and Nomarski micrograph of a Si wafer 11 taken after mechano... Nomarski micrographs of mechano-chemically-polished 21 sapphire and tape-cast alumina 14 Surface profiles of mechano-chemically-polished sapphire 22

  13. 7 CFR 52.3188 - Work sheet for dried prunes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... fermentation, scars, heat damage, insect injury, other means, mold, dirt, foreign material, insect infestation... fermentation, scars, heat damage, insect injury, other means, mold, dirt, foreign material, insect infestation, decay 10 percent 2 Skin or flesh damage, 3 fermentation, scars, heat damage, insect injury, other means...

  14. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1988-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  15. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1989-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  16. Arrhenius activation energy of damage to catalase during spray-drying.

    PubMed

    Schaefer, Joachim; Lee, Geoffrey

    2015-07-15

    The inactivation of catalase during spray-drying over a range of outlet gas temperatures could be closely represented by the Arrhenius equation. From this an activation energy for damage to the catalase could be calculated. The close fit to Arrhenius suggests that the thermally-induced part of inactivation of the catalase during the complex drying and particle-formation processes takes place at constant temperature. These processes are rapid compared with the residence time of the powder in the collecting vessel of the cyclone where dried catalase is exposed to a constant temperature equal to approximately the drying gas outlet temperature. A lower activation energy after spray drying with the ultrasonic nozzle was found than with the 2-fluid nozzle under otherwise identical spray drying conditions. It is feasible that the ultrasonic nozzle when mounted in the lid of the spray dryer heats up toward the drying gas inlet temperature much more that the air-cooled 2-fluid nozzle. Calculation of the Arrhenius activation energy also showed how the stabilizing efficacy of trehalose and mannitol on the catalase varies in strength across the range of drying gas inlet and outlet temperatures examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Progress in nanoscale dry processes for fabrication of high-aspect-ratio features: How can we control critical dimension uniformity at the bottom?

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji; Karahashi, Kazuhiro; Ishijima, Tatsuo; Cho, Sung Il; Elliott, Simon; Hausmann, Dennis; Mocuta, Dan; Wilson, Aaron; Kinoshita, Keizo

    2018-06-01

    In this review, we discuss the progress of emerging dry processes for nanoscale fabrication of high-aspect-ratio features, including emerging design technology for manufacturability. Experts in the fields of plasma processing have contributed to addressing the increasingly challenging demands of nanoscale deposition and etching technologies for high-aspect-ratio features. The discussion of our atomic-scale understanding of physicochemical reactions involving ion bombardment and neutral transport presents the major challenges shared across the plasma science and technology community. Focus is placed on advances in fabrication technology that control surface reactions on three-dimensional features, as well as state-of-the-art techniques used in semiconductor manufacturing with a brief summary of future challenges.

  18. Freeze-dried stallion spermatozoa: evaluation of two chelating agents and comparative analysis of three sperm DNA damage assays.

    PubMed

    Olaciregui, M; Luño, V; Martí, J I; Aramayona, J; Gil, L

    2016-11-01

    During the freeze-drying procedure, sperm DNA might become damaged by both freezing and drying stresses. Sperm DNA status can be detected using well-established assays; however, most techniques are expensive and involve elaborate protocols and equipment. Indirect assessments can provide alternative strategies. The objective of this study was to compare a simple test of DNA status using Diff-Quik (DQ) with two established procedures: acridine orange test (AOT) and sperm chromatin dispersion (SCD) on freeze-dried (FD) stallion spermatozoa. Ejaculated spermatozoa from three stallions were freeze-dried in basic medium supplemented with two different chelating agents: EGTA or EDTA. After rehydration, the spermatozoa were subjected to DNA damage detection using a SCDt, AOT and DQ stain simultaneously. The results showed that the DNA damage levels in the EGTA group were significantly lower than those in the EDTA group. AOT detected a significantly higher proportion of spermatozoa with fragmented DNA than DQ and SCD. The results of the SCD test and DQ stain exhibited a significant positive correlation for DNA fragmentation (r = 0.528), whereas a negative correlation was observed between SCD, DQ and AOT (r = -0.134 and r = -0.332 respectively). The present study shows that both the SCD test and DQ assay are effective methods for detecting FD stallion sperm DNA fragmentation, whereas using of AOT is questionable. © 2016 Blackwell Verlag GmbH.

  19. Comparative surface studies on wet and dry sacrificial thermal oxidation on silicon carbide

    NASA Astrophysics Data System (ADS)

    Koh, A.; Kestle, A.; Wright, C.; Wilks, S. P.; Mawby, P. A.; Bowen, W. R.

    2001-04-01

    A comparative study on the effect of wet and dry thermal oxidation on 4H-silicon carbide (SiC) and on sacrificial silicon (Si) thermal oxidation on 4H-SiC surface has been conducted using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The AFM images show the formation of 'nano-islands' of varying density on the SiC surface after the removal of thermal oxide using hydrofluoric (HF) acid etch. These nano-islands are resistant to HF acid and have been previously linked to residual carbon [1-3] resulting from the oxidation process. This paper presents the use of a sacrificial silicon oxidation (SSO) step as a form of surface preparation that gives a reproducible clean SiC surface. XPS results show a slight electrical shift in binding energy between the wet and dry thermal oxidation on the standard SiC surface, while the surface produced by the SSO technique shows a minimal shift.

  20. Pathogenesis of the dry eye syndrome observed by optical coherence tomography in vitro

    NASA Astrophysics Data System (ADS)

    Kray, Oya; Lenz, Markus; Spöler, Felix; Kray, Stefan; Kurz, Heinrich

    2011-06-01

    Three dimensional optical coherence tomography (OCT) is introduced as a valuable tool to analyze the pathogenesis of corneal diseases. Here, OCT in combination with a novel in vitro model for the dry eye syndrome enables an improved understanding of the underlying damaging process of the ocular surface. En-face OCT projections indicate a deep structural damage of the epithelium and anterior stroma by osmotic forces.

  1. Imbibitional damage in conidia of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Metarhizium acridum

    USDA-ARS?s Scientific Manuscript database

    When dried organisms are immersed in water, rapid imbibition may cause severe damage to plasma membranes; in unicellular organisms, such damage is usually lethal. This study investigated effects of pre-immersion moisture levels and immersion temperature on imbibitional damage in three insect pathoge...

  2. WSi2/Si multilayer sectioning by reactive ion etching for multilayer Laue lens fabrication

    NASA Astrophysics Data System (ADS)

    Bouet, N.; Conley, R.; Biancarosa, J.; Divan, R.; Macrander, A. T.

    2010-09-01

    Reactive ion etching (RIE) has been employed in a wide range of fields such as semiconductor fabrication, MEMS (microelectromechanical systems), and refractive x-ray optics with a large investment put towards the development of deep RIE. Due to the intrinsic differing chemistries related to reactivity, ion bombardment, and passivation of materials, the development of recipes for new materials or material systems can require intense effort and resources. For silicon in particular, methods have been developed to provide reliable anisotropic profiles with good dimensional control and high aspect ratios1,2,3, high etch rates, and excellent material to mask etch selectivity. A multilayer Laue lens4 is an x-ray focusing optic, which is produced by depositing many layers of two materials with differing electron density in a particular stacking sequence where the each layer in the stack satisfies the Fresnel zone plate law. When this stack is sectioned to allow side-illumination with radiation, the diffracted exiting radiation will constructively interfere at the focal point. Since the first MLLs were developed at Argonne in the USA in 20064, there have been published reports of MLL development efforts in Japan5, and, very recently, also in Germany6. The traditional technique for sectioning multilayer Laue lens (MLL) involves mechanical sectioning and polishing7, which is labor intensive and can induce delamination or structure damage and thereby reduce yield. If a non-mechanical technique can be used to section MLL, it may be possible to greatly shorten the fabrication cycle, create more usable optics from the same amount of deposition substrate, and perhaps develop more advanced structures to provide greater stability or flexibility. Plasma etching of high aspect-ratio multilayer structures will also expand the scope for other types of optics fabrication (such as gratings, zone plates, and so-on). However, well-performing reactive ion etching recipes have been developed for only a small number of materials, and even less recipes exist for concurrent etching of more than one element so a fully material specific process needs to be developed. In this paper, sectioning of WSi2/Si multilayers for MLL fabrication using fluorinated gases is investigated. The main goals were to demonstrate the feasibility of this technique, achievement of high anisotropy, adequate sidewall roughness control and high etching rates. We note that this development for MLL sidewalls should be distinguished from work on improving aspect ratios in traditional Fresnel zone plates. Aspect ratios for MLL sidewalls are not similarly constrained.

  3. Use of flow cytometry to monitor cell damage and predict fermentation activity of dried yeasts.

    PubMed

    Attfield, P V; Kletsas, S; Veal, D A; van Rooijen, R; Bell, P J

    2000-08-01

    Viable dried yeast is used as an inoculum for many fermentations in the baking and wine industries. The fermentative activity of yeast in bread dough or grape must is a critical parameter of process efficiency. Here, it is shown that fluorescent stains and flow cytometry can be used in concert to predict the abilities of populations of dried bakers' and wine yeasts to ferment after rehydration. Fluorescent dyes that stain cells only if they have damaged membrane potential (oxonol) or have increased membrane permeability (propidium iodide) were used to analyse, by flow cytometry, populations of rehydrated yeasts. A strong relationship (r2 = 0.99) was found between the percentages of populations staining with the oxonol and the degree of cell membrane damage as measured by the more traditional method of leakage of intracellular compounds. There were also were good negative relationships (r2 > or = 0.83) between fermentation by rehydrated bakers' or wine dry yeasts and percentage of populations staining with either oxonol or propidium iodide. Fluorescent staining with flow cytometry confirmed that factors such as vigour of dried yeast mixing in water, soaking before stirring, rehydration in water or fermentation medium and temperature of rehydration have profound effects on subsequent yeast vitality. These experiments indicate the potential of flow cytometry as a rapid means of predicting the fermentation performance of dried bakers' and wine yeasts.

  4. Computational nanometrology of line-edge roughness: noise effects, cross-line correlations and the role of etch transfer

    NASA Astrophysics Data System (ADS)

    Constantoudis, Vassilios; Papavieros, George; Lorusso, Gian; Rutigliani, Vito; Van Roey, Frieda; Gogolides, Evangelos

    2018-03-01

    The aim of this paper is to investigate the role of etch transfer in two challenges of LER metrology raised by recent evolutions in lithography: the effects of SEM noise and the cross-line and edge correlations. The first comes from the ongoing scaling down of linewidths, which dictates SEM imaging with less scanning frames to reduce specimen damage and hence with more noise. During the last decade, it has been shown that image noise can be an important budget of the measured LER while systematically affects and alter the PSD curve of LER at high frequencies. A recent method for unbiased LER measurement is based on the systematic Fourier or correlation analysis to decompose the effects of noise from true LER (Fourier-Correlation filtering method). The success of the method depends on the PSD and HHCF curve. Previous experimental and model works have revealed that etch transfer affects the PSD of LER reducing its high frequency values. In this work, we estimate the noise contribution to the biased LER through PSD flat floor at high frequencies and relate it with the differences between the PSDs of lithography and etched LER. Based on this comparison, we propose an improvement of the PSD/HHCF-based method for noise-free LER measurement to include the missed high frequency real LER. The second issue is related with the increased density of lithographic patterns and the special characteristics of DSA and MP lithography patterns exhibits. In a previous work, we presented an enlarged LER characterization methodology for such patterns, which includes updated versions of the old metrics along with new metrics defined and developed to capture cross-edge and cross-line correlations. The fundamental concept has been the Line Center Roughness (LCR), the edge c-factor and the line c-factor correlation function and length quantifying the line fluctuations and the extent of cross-edge and cross-line correlations. In this work, we focus on the role of etch steps on cross-edge and line correlation metrics in SAQP data. We find that the spacer etch steps reduce edge correlations while etch steps with pattern transfer increase these. Furthermore, the density doubling and quadrupling increase edge correlations as well as cross-line correlations.

  5. Comparative study of two negative CAR resists: EN-024M and NEB 31

    NASA Astrophysics Data System (ADS)

    Baik, Ki-Ho; Dean, Robert; Lem, Homer Y.; Osborne, Stephen P.; Mueller, Mark A.; Cole, Damon M.

    2004-08-01

    In this paper, two negative-tone chemically amplified resists (CAR) are evaluated. The methodology and results are compared and discussed. The resists include EN-024M from TOK, and NEB 31 from Sumitomo. Both resists show high contrast, good dry etch selectivity, and high environmental stability. EN-024M showed good coating uniformity while NEB31 showed a coating uniformity problem. This was a round "dimple" approximately one centimeter in diameter of different thickness and density at the center of the plate. We addressed the "dimple" coating problem as described in the paper. Optimum PAB and PEB temperatures and nominal to maximum doses for isolated features were determined by running a matrix of PAB and PEB temperatures along with a dose series. We evaluated the process and compared the lithographic performance in terms of dose sensitivity, dose and bake latitude, resolution, resist profile, OPC (Optical Proximity Correction) pattern fidelity, CD uniformity, environmental stability, Line Edge Roughness (LER) and etching bias and resistance.

  6. Fabrication of 2-inch nano patterned sapphire substrate with high uniformity by two-beam laser interference lithography

    NASA Astrophysics Data System (ADS)

    Dai, LongGui; Yang, Fan; Yue, Gen; Jiang, Yang; Jia, Haiqiang; Wang, Wenxin; Chen, Hong

    2014-11-01

    Generally, nano-scale patterned sapphire substrate (NPSS) has better performance than micro-scale patterned sapphire substrate (MPSS) in improving the light extraction efficiency of LEDs. Laser interference lithography (LIL) is one of the powerful fabrication methods for periodic nanostructures without photo-masks for different designs. However, Lloyd's mirror LIL system has the disadvantage that fabricated patterns are inevitably distorted, especially for large-area twodimensional (2D) periodic nanostructures. Herein, we introduce two-beam LIL system to fabricate consistent large-area NPSS. Quantitative analysis and characterization indicate that the high uniformity of the photoresist arrays is achieved. Through the combination of dry etching and wet etching techniques, the well-defined NPSS with period of 460 nm were prepared on the whole sapphire substrate. The deviation is 4.34% for the bottom width of the triangle truncated pyramid arrays on the whole 2-inch sapphire substrate, which is suitable for the application in industrial production of NPSS.

  7. Hepatoprotective activity of dried- and fermented-processed virgin coconut oil.

    PubMed

    Zakaria, Z A; Rofiee, M S; Somchit, M N; Zuraini, A; Sulaiman, M R; Teh, L K; Salleh, M Z; Long, K

    2011-01-01

    The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study.

  8. Hepatoprotective Activity of Dried- and Fermented-Processed Virgin Coconut Oil

    PubMed Central

    Zakaria, Z. A.; Rofiee, M. S.; Somchit, M. N.; Zuraini, A.; Sulaiman, M. R.; Teh, L. K.; Salleh, M. Z.; Long, K.

    2011-01-01

    The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study. PMID:21318140

  9. Exposure Characteristics of Nanoparticles as Process By-products for the Semiconductor Manufacturing Industry.

    PubMed

    Choi, Kwang-Min; Kim, Jin-Ho; Park, Ju-Hyun; Kim, Kwan-Sick; Bae, Gwi-Nam

    2015-01-01

    This study aims to elucidate the exposure properties of nanoparticles (NPs; <100 nm in diameter) in semiconductor manufacturing processes. The measurements of airborne NPs were mainly performed around process equipment during fabrication processes and during maintenance. The number concentrations of NPs were measured using a water-based condensation particle counter having a size range of 10-3,000 nm. The chemical composition, size, and shape of NPs were determined by scanning electron microscopy and transmission electron microscopy techniques equipped with energy dispersive spectroscopy. The resulting concentrations of NPs ranged from 0.00-11.47 particles/cm(3). The concentration of NPs measured during maintenance showed a tendency to increase, albeit incrementally, compared to that measured during normal conditions (under typical process conditions without maintenance). However, the increment was small. When comparing the mean number concentration and standard deviation (n ± σ) of NPs, the chemical mechanical polishing (CMP) process was the highest (3.45 ± 3.65 particles/cm(3)), and the dry etch (ETCH) process was the lowest (0.11 ± 0.22 particles/cm(3)). The major NPs observed were silica (SiO2) and titania (TiO2) particles, which were mainly spherical agglomerates ranging in size from 25-280 nm. Sampling of semiconductor processes in CMP, chemical vapor deposition, and ETCH reveled NPs were <100 nm in those areas. On the other hand, particle size exceeded 100 nm in diffusion, metallization, ion implantation, and wet cleaning/etching process. The results show that the SiO2 and TiO2 are the major NPs present in semiconductor cleanroom environments.

  10. Effect of evaporation of solvents from one-step, self-etching adhesives.

    PubMed

    Furuse, Adilson Yoshio; Peutzfeldt, Anne; Asmussen, Erik

    2008-02-01

    To investigate whether and to what extent the bonding capacity of one-step, self-etching adhesives is influenced by the degree to which solvent is evaporated. Seven one-step, self-etching adhesives were tested (Adper Prompt L-Pop, Clearfil S3 Bond, Futurabond NR, G-Bond, Hybrid Bond, iBond, Xeno III). The variation in degree of evaporation was obtained by varying the duration of the air-blowing step. The duration required to immobilize the adhesive layer, as established in a pilot study, was used as control. Two experimental air-blowing durations, shorter (half the control duration) and longer (double the control duration) than the control duration, were chosen. The resin composite Herculite XRV was bonded to flat human dentin surfaces treated with one of the adhesives following manufacturer's instructions, except for the air-blowing duration after application. After being stored in water at 37 degrees C for 1 week, the bonded specimens were broken in shear. Failure modes were evaluated under stereomicroscope. Air-blowing duration and brand of adhesive both had an effect on shear bond strength. An interaction was found between adhesive and air-blowing duration. Some adhesives were insensitive to variations in air-drying duration, but in general, air-blowing durations shorter than the control duration produced lower shear bond strengths. Significant effects of adhesive and air-blowing duration were also detected in relation to failure mode. More adhesive failures were observed with shorter air-blowing durations. A significant negative correlation between number of adhesive failures and bond strength was found. On the basis of this in vitro study, it may be concluded that the one-step, self-etching adhesives evaluated were sensitive to degree of evaporation of the solvents.

  11. A new universal simplified adhesive: 18-month clinical evaluation.

    PubMed

    Perdigão, J; Kose, C; Mena-Serrano, A P; De Paula, E A; Tay, L Y; Reis, A; Loguercio, A D

    2014-01-01

    To evaluate the 18-month clinical performance of a multimode adhesive (Scotchbond Universal Adhesive, SU, 3M ESPE, St Paul, MN, USA) in noncarious cervical lesions (NCCLs) using two evaluation criteria. Thirty-nine patients participated in this study. Two-hundred restorations were assigned to four groups: ERm, etch-and-rinse + moist dentin; ERd, etch-and-rinse + dry dentin; Set, selective enamel etching; and SE, self-etch. The composite resin, Filtek Supreme Ultra (3M ESPE), was placed incrementally. The restorations were evaluated at baseline, and at 18 months, using both the World Dental Federation (FDI) and the United States Public Health Service (USPHS) criteria. Statistical analyses were performed using Friedman repeated-measures analysis of variance by rank and McNemar test for significance in each pair (α=0.05). Five restorations (SE: 3; Set: 1; and ERm: 1) were lost after 18 months (p>0.05 for either criteria). Marginal staining occurred in four and 10% of the restorations evaluated (p>0.05), respectively, for USPHS and FDI criteria. Nine restorations were scored as bravo for marginal adaptation using the USPHS criteria and 38%, 40%, 36%, and 44% for groups ERm, ERd, Set, and SE, respectively, when the FDI criteria were applied (p>0.05). However, when semiquantitative scores (or SQUACE) for marginal adaptation were used, SE resulted in a significantly greater number of restorations, with more than 30% of the total length of the interface showing marginal discrepancy (28%) in comparison with the other groups (8%, 6%, and 8%, respectively, for ERm, ERd, and Set). The clinical retention of the multimode adhesive at 18 months does not depend on the bonding strategy. The only differences between strategies were found for the parameter marginal adaptation, for which the FDI criteria were more sensitive than the USPHS criteria.

  12. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.

    PubMed

    Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu

    2017-11-24

    The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.

  13. Method of Making Lightweight, Single Crystal Mirror

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T. (Inventor)

    2015-01-01

    A method of making a mirror from a single crystal blank may include fine grinding top and bottom surfaces of the blank to be parallel. The blank may then be heat treated to near its melting temperature. An optical surface may be created on an optical side of the blank. A protector may be bonded to the optical surface. With the protector in place, the blank may be light weighted by grinding a non-optical surface of the blank using computer controlled grinding. The light weighting may include creating a structure having a substantially minimum mass necessary to maintain distortion of the mirror within a preset limit. A damaged layer of the non-optical surface caused by light weighting may be removed with an isotropic etch and/or repaired by heat treatment. If an oxide layer is present, the entire blank may then be etched using, for example, hydrofluoric acid. A reflecting coating may be deposited on the optical surface.

  14. The automated array assembly task of the low-cost silicon solar array project, phase 2

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Sparks, T. G.; Legge, R.; Saltzman, D. L.

    1980-01-01

    Several specific processing steps as part of a total process sequence for manufacturing silicon solar cells were studied. Ion implantation was identified as the preferred process step for impurity doping. Unanalyzed beam ion implantation was shown to have major cost advantages over analyzed beam implantation. Further, high quality cells were fabricated using a high current unanalyzed beam. Mechanically masked plasma patterning of silicon nitride was shown to be capable of forming fine lines on silicon surfaces with spacings between mask and substrate as great as 250 micrometers. Extensive work was performed on advances in plated metallization. The need for the thick electroless palladium layer was eliminated. Further, copper was successfully utilized as a conductor layer utilizing nickel as a barrier to copper diffusion into the silicon. Plasma etching of silicon for texturing and saw damage removal was shown technically feasible but not cost effective compared to wet chemical etching techniques.

  15. Method for Cleaning Laser-Drilled Holes on Printed Wiring Boards by Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Hirogaki, Toshiki; Aoyama, Eiichi; Minagi, Ryu; Ogawa, Keiji; Katayama, Tsutao; Matsuoka, Takashi; Inoue, Hisahiro

    We propose a new method for cleaning blind via holes after laser drilling of PWBs using oxygen plasma treatment. This report dealt with three kinds of PWB materials: epoxy resin and two kinds of aramid fiber reinforced plastics (AFRP: Technora or Kevlar fiber reinforcement). We observed the drilled holes after plasma treatment using both an optical and a scanning electric microscope (SEM). It was confirmed that adequate etching took place in the drilled holes by plasma treatment. We also compared the hole wall and hole bottom after plasma treatment with ones after chemical etching. It was clear that there was no damage to the aramid fiber tip on the hole wall, and that a smooth roughness of the hole wall was obtained by means of plasma treatment. As a result, we demonstrated that the plasma treatment is effective in cleaning the laser drilled holes of PWBs.

  16. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying

    2014-07-07

    We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage currentmore » and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.« less

  17. Dry Eye Disease: Prevalence, Assessment, and Management.

    PubMed

    Rouen, Patricia A; White, Mary L

    Dry eye disease is a chronic condition of the corneal surface marked by persistent symptoms of irritation or burning that can cause inflammatory damage to the cornea and conjunctiva if untreated. Common risk factors for this syndrome include advancing age, female sex, low humidity environments, systemic medications, and autoimmune disorders. Treatments to relieve symptoms include tear replacement, humidification, improved nutrition, and anti-inflammatory ocular agents. Home healthcare nurses can identify signs and symptoms of dry eye syndrome and initiate strategies that range from warm compresses to physician referrals for more aggressive treatment. Consistent management of this condition improves quality of life and minimizes damage to the ocular surface.

  18. Loss of desiccation tolerance in Copaifera langsdorffii Desf. seeds during germination.

    PubMed

    Pereira, W V S; Faria, J M R; Tonetti, O A O; Silva, E A A

    2014-05-01

    This study evaluated the loss of desiccation tolerance in C. langsdorffii seeds during the germination process. Seeds were imbibed for 24, 48, 72, 96, 120 and 144 hours and dried to the initial moisture content, kept in this state for 3 days after which they were submitted to pre-humidification and rehydration. Ultraestructural evaluations were done aiming to observe the cell damage caused by the dry process. Desiccation tolerance was evaluated in terms of the percentage of normal seedlings. Seeds not submitted to the drying process presented 61% of normal seedlings, and after 24 hours of imbibition, followed by drying, the seeds presented the same percentage of survival. However, after 48 hours of imbibition, seeds started to lose the desiccation tolerance. There was twenty six percent of normal seedlings formed from seeds imbibed for 96 hours and later dried and rehydrated. Only 5% of seeds imbibed for 144 hours, dried and rehydrated formed normal seedlings. At 144 hours of imbibition followed the dry process, there was damage into the cell structure, indicating that the seeds were unable to keep the cell structure during the drying process. Copaifera langsdorffii seeds loses the desiccation tolerance at the start of Phase 2 of imbibition.

  19. A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems

    PubMed Central

    Luković, Mladena; Šavija, Branko; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2016-01-01

    Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical simulations combined with experimental observations can be of great use when determining the influence of these parameters on the performance of repair systems. In this work, a lattice type model was used to simulate first the moisture transport inside a repair system and then the resulting damage as a function of time. 3D simulations were performed, and damage patterns were qualitatively verified with experimental results and cracking tendencies in different brittle and ductile materials. The influence of substrate surface preparation, bond strength between the two materials, and thickness of the repair material were investigated. Benefits of using a specially tailored fibre reinforced material, namely strain hardening cementitious composite (SHCC), for controlling the damage development due to drying shrinkage in concrete repairs was also examined. PMID:28773696

  20. A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems.

    PubMed

    Luković, Mladena; Šavija, Branko; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2016-07-14

    Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical simulations combined with experimental observations can be of great use when determining the influence of these parameters on the performance of repair systems. In this work, a lattice type model was used to simulate first the moisture transport inside a repair system and then the resulting damage as a function of time. 3D simulations were performed, and damage patterns were qualitatively verified with experimental results and cracking tendencies in different brittle and ductile materials. The influence of substrate surface preparation, bond strength between the two materials, and thickness of the repair material were investigated. Benefits of using a specially tailored fibre reinforced material, namely strain hardening cementitious composite (SHCC), for controlling the damage development due to drying shrinkage in concrete repairs was also examined.

  1. Tailored Voltage Waveforms in an SF6 /O2 discharge: slope asymmetry and its effect on surface nanotexturing of silicon

    NASA Astrophysics Data System (ADS)

    Fischer, G.; Drahi, E.; Poulain, G.; Bruneau, B.; Johnson, E. V.

    2016-09-01

    The nanotexturing of the surface of a crystalline silicon (c-Si) wafer for improved photovoltaic performance can be achieved through the use of a SF6 /O2 capacitively coupled reactive ion etching plasma. In this study, we attempt to modify the texturing conditions by taking advantage of slope asymmetries of Tailored Voltage Waveform (TVW) excitation. We show that TVW shapes resembling ``sawtooths'', presenting a large slope asymmetry, induce high ionization asymmetries in the discharge, and that the dominance of this effect strongly depends on both gas mixture and pressure. These asymmetries have been previously observed in other electronegative gas and are due to differing plasma sheath dynamics at powered and grounded electrode in a discharge operating in drift-ambipolar mode. The texturing of c-Si in SF6 /O2 occurs through competing mechanisms, including etching by fluorine radicals and in-situ deposition of micro-masking species. The relative fluxes of etching and passivating species are expected to be strongly varied due to the plasma asymmetry. Morphological and optical characterization of textured c-Si surfaces will give more insight into both the plasma properties and the mechanisms involved in dry nanotexturing. This project has been supported by the French Government in the frame of the program of investment for the future (Programme d'Investissement d'Avenir - ANR-IEED-002-01).

  2. Fatigue resistance of bovine teeth restored with resin-bonded fiber posts: effect of post surface conditioning.

    PubMed

    Zamboni, Sandra C; Baldissara, Paolo; Pelogia, Fernanda; Bottino, Marco Antonio; Scotti, Roberto; Valandro, Luiz Felipe

    2008-01-01

    This study evaluated the effect of post surface conditioning on the fatigue resistance of bovine teeth restored with resin-bonded fiber-reinforced composite (FRC). Root canals of 20 single-rooted bovine teeth (16 mm long) were prepared to 12 mm using a preparation drill of a double-tapered fiber post system. Using acrylic resin, each specimen was embedded (up to 3.0 mm from the cervical part of the specimen) in a PVC cylinder and allocated into one of two groups (n = 10) based on the post surface conditioning method: acid etching plus silanization or tribochemical silica coating (30 pm SiO(x) + silanization). The root canal dentin was etched (H2PO3 for 30 seconds), rinsed, and dried. A multi-step adhesive system was applied to the root dentin and the fiber posts were cemented with resin cement. The specimens were submitted to one million fatigue cycles. After fatigue testing, a score was given based on the number of fatigue cycles until fracture. All of the specimens were resistant to fatigue. No fracture of the root or the post and no loss of retention of the post were observed. The methodology and the results of this study indicate that tribochemical silica coating and acid etching performed equally well when dynamic mechanical loading was used.

  3. The relationship between measured moisture conditions and fungal concentrations in water-damaged building materials.

    PubMed

    Pasanen, A L; Rautiala, S; Kasanen, J P; Raunio, P; Rantamäki, J; Kalliokoski, P

    2000-06-01

    We determined the moisture levels, relative humidity (RH) or moisture content (MC) of materials, and concentrations of culturable fungi, actinomycetes and total spores as well as a composition of fungal flora in 122 building material samples collected from 18 moisture problem buildings. The purpose of this work was to clarify if the is any correlation between the moisture parameters and microbial levels or generic composition depending on the type of materials and the time passed after a water damage. The results showed an agreement between the concentrations of total spores and culturable fungi for the wood, wood-based and gypsum board samples (r > 0.47). The concentrations of total spores and/or culturable fungi correlated with RH of materials particularly among the wood and insulation materials (r > 0.79), but not usually with MC (r < 0.45). For the samples collected from ongoing damage, there was a correlation between RH of materials and the concentrations of total spores and culturable fungi (r > 0.51), while such a relationship could not be observed for the samples taken from dry damage. A wide range of fungal species were found in the samples from ongoing damage, whereas Penicillia and in some cases yeasts dominated the fungal flora in the dry samples. This study indicates that fungal contamination can be evaluated on the basis of moisture measurements of constructions in ongoing damage, but the measurements are not solely adequate for estimation of possible microbial growth in dry damage.

  4. Air-drying of Robusta eucalyptus lumber

    Treesearch

    Roger G. Skolmen

    1964-01-01

    A study of air-drying 4/4 Eucalyptus robusta lumber in Hilo, Hawaii showed that during typical summer weather it can be dried to below 20 percent moisture content in 2-1/2 months. Grade reduction in 36 percent of the lumber was caused by end splits, insect damage, warp, and surface checking.

  5. Structural integrity and developmental potential of spermatozoa following microwave-assisted drying in the domestic cat model.

    PubMed

    Patrick, Jennifer L; Elliott, Gloria D; Comizzoli, Pierre

    2017-11-01

    Characterizing the resilience of mammalian cells to non-physiological conditions is necessary to develop preservation and long-term storage strategies at low or ambient temperatures. Using the domestic cat model, the objective of the study was to characterize structural integrity (morphology and DNA damage) as well as functional properties (sperm aster formation and embryo formation after sperm injection) of spermatozoa after microwave-assisted drying to a moisture content compatible with storage in a glassy state at supra-zero temperatures. In Experiment 1, cat epididymal spermatozoa were porated with hemolysin and dried (using a commercial microwave oven set to 20% power) in the presence of trehalose for up to 50 min in a low humidity environment (11%) before measuring moisture content and sample temperature. In Experiment 2, morphology and DNA integrity were evaluated in sperm dried for up to 30 min (using the same method as above) versus fresh spermatozoa. In Experiment 3, the functionality of sperm dried for 30 min versus fresh sperm cells was evaluated after injection into oocytes based on sperm aster formation (5 h post-injection) and embryo development in vitro over 7 days. Moisture contents compatible with dry state storage were reached after 30 min of microwave-assisted drying. After rehydration, sperm morphology was not affected and the percentages of cells with damaged DNA (∼6.5%) was similar to the fresh controls. Sperm aster diameters appeared to be generally smaller for dried-rehydrated cells compared to the fresh controls. This observation was consistent with a lower proportion of blastocyst formation after injection with dried spermatozoa (6.5%) compared to fresh spermatozoa (15%). However, the blastocyst quality based on the total blastomere number was not affected by the sperm treatment. This is the first and encouraging report in any species so far demonstrating that spermatozoa can be dried using microwaves without causing irreversible damage to the cellular structure and function. Published by Elsevier Inc.

  6. Structures Self-Assembled Through Directional Solidification

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2005-01-01

    Nanotechnology has created a demand for new fabrication methods with an emphasis on simple, low-cost techniques. Directional solidification of eutectics (DSE) is an unconventional approach in comparison to low-temperature biomimetic approaches. A technical challenge for DSE is producing microstructural architectures on the nanometer scale. In both processes, the driving force is the minimization of Gibb's free energy. Selfassembly by biomimetic approaches depends on weak interaction forces between organic molecules to define the architectural structure. The architectural structure for solidification depends on strong chemical bonding between atoms. Constituents partition into atomic-level arrangements at the liquid-solid interface to form polyphase structures, and this atomic-level arrangement at the liquid-solid interface is controlled by atomic diffusion and total undercooling due to composition (diffusion), kinetics, and curvature of the boundary phases. Judicious selection of the materials system and control of the total undercooling are the keys to producing structures on the nanometer scale. The silicon-titanium silicide (Si-TiSi2) eutectic forms a rod structure under isothermal cooling conditions. At the NASA Glenn Research Center, directional solidification was employed along with a thermal gradient to promote uniform rods oriented with the thermal gradient. The preceding photomicrograph shows the typical transverse microstructure of a solidified Si-TiSi2 eutectic composition. The dark and light gray regions are Si and TiSi2, respectively. Preferred rod orientation along the thermal gradient was poor. The ordered TiSi2 rods have a narrow distribution in diameter of 2 to 3 m, as shown. The rod diameter showed a weak dependence on process conditions. Anisotropic etch behavior between different phases provides the opportunity to fabricate structures with high aspect ratios. The photomicrographs show the resulting microstructure after a wet chemical etch and a dry plasma etch. The wet chemical etches the silicon away, exposing the TiSi2 rods, whereas plasma etching preferentially etches the Si-TiSi2 interface to form a crater. The porous architectures are applicable to fabricating microdevices or creating templates for part fabrication. The porous rod structure can serve as a platform for fabricating microplasma devices for propulsion or microheat exchangers and for fabricating microfilters for miniatured chemical reactors. Although more work is required, self-assembly from DSE can have a role in microdevice fabrication.

  7. More-reliable SOS ion implantations

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1980-01-01

    Conducting layer prevents static charges from accumulating during implantation of silicon-on-sapphire MOS structures. Either thick conducting film or thinner film transparent to ions is deposited prior to implantation, and gaps are etched in regions to be doped. Grounding path eliminates charge flow that damages film or cracks sapphire wafer. Prevention of charge buildup by simultaneously exposing structure to opposite charges requires equipment modifications less practical and more expensive than deposition of conducting layer.

  8. Mitigating intrinsic defects and laser damage using pulsetrain-burst (>100 MHz) ultrafast laser processing

    NASA Astrophysics Data System (ADS)

    McKinney, Luke; Frank, Felix; Graper, David; Dean, Jesse; Forrester, Paul; Rioblanc, Maxence; Nantel, Marc; Marjoribanks, Robin

    2005-09-01

    Ultrafast-laser micromachining has promise as an approach to trimming and 'healing' small laser-produced damage sites in laser-system optics--a common experience in state-of-the-art high-power laser systems. More-conventional approaches currently include mechanical micromachining, chemical modification, and treatment using cw and long-pulse lasers. Laser-optics materials of interest include fused silica, multilayer dielectric stacks for anti-reflection coatings or high-reflectivity mirrors, and inorganic crystals such as KD*P, used for Pockels cells and frequency-doubling. We report on novel efforts using ultrafast-laser pulsetrain-burst processing (microsecond bursts at 133 MHz) to mitigate damage in fused silica, dielectric coatings, and KD*P crystals. We have established the characteristics of pulsetrain-burst micromachining in fused silica, multilayer mirrors, and KD*P, and determined the etch rates and morphology under different conditions of fluence-delivery. From all of these, we have begun to identify new means to optimize the laser-repair of optics defects and damage.

  9. Neurosurgical patties: adhesion and damage mitigation.

    PubMed

    Stratton-Powell, Ashley A; Anderson, Ian A; Timothy, Jake; Kapur, Nikil; Culmer, Peter

    2015-07-01

    Neurosurgical patties are textile pads used during most neurosurgical operations to protect tissues, manage the fluid environment, control hemostasis, and aid tissue manipulation. Recent research has suggested that, contrary to their aim, patties adhere to brain tissue and cause damage during removal. This study aimed to characterize and quantify the degree of and consequences resulting from adhesion between neurosurgical patties and brain tissue. Using a customized peel apparatus, the authors performed 90° peel tests on 5 patty products: Policot, Telfa, Americot, Delicot, and Ray-Cot (n = 247) from American Surgical Company. They tested 4 conditions: wet patty on glass (control), wet patty on wet brain peeled at 5 mm/sec (wet), dry patty on wet brain peeled at 5 mm/sec (dry), and wet patty on wet brain peeled at 20 mm/sec (speed). The interaction between patty and tissue was analyzed using peel-force traces and pre-peel histological analysis. Adhesion strength differed between patty products (p < 0.001) and conditions (p < 0.001). Adhesion strength was greatest for Delicot patties under wet (2.22 mN/mm) and dry (9.88 mN/mm) conditions. For all patties, damage at the patty-tissue interface was proportional to the degree of fiber contact. When patties were irrigated, mechanical adhesion was reduced by up to 550% compared with dry usage. For all patty products, mechanical (destructive) and liquid-mediated (nondestructive) adhesion caused damage to neural tissue. The greatest adhesion occurred with Delicot patties. To mitigate patty adhesion and neural tissue damage, surgeons should consider regular irrigation to be essential during neurosurgical procedures.

  10. In vitro dentin barrier cytotoxicity testing of some dental restorative materials.

    PubMed

    Jiang, R D; Lin, H; Zheng, G; Zhang, X M; Du, Q; Yang, M

    2017-03-01

    To investigate the cytotoxicity of four dental restorative materials in three-dimensional (3D) L929 cell cultures using a dentin barrier test. The cytotoxicities of light-cured glass ionomer cement (Vitrebond), total-etching adhesive (GLUMA Bond5), and two self-etching adhesives (GLUMA Self Etch and Single Bond Universal) were evaluated. The permeabilities of human dentin disks with thicknesses of 300, 500, and 1000μm were standardized using a hydraulic device. Test materials and controls were applied to the occlusal side of human dentin disks. The 3D-cell scaffolds were placed beneath the dentin disks. After a 24-h contact with the dentin barrier test device, cell viabilities were measured by performing MTT assays. Statistical analysis was performed using the Mann-Whitney U test. The mean (SD) permeabilities of the 300-μm, 500-μm, and 1000-μm dentin disks were 0.626 (0.214), 0.219 (0.0387) and 0.089 (0.028) μlmin -1 cm -2 cm H 2 O -1 . Vitrebond was severely cytotoxic, reducing the cell viability to 10% (300-μm disk), 17% (500μm), and 18% (1000μm). GLUMA Bond5 reduced the cell viability to 40% (300μm), 83% (500μm), and 86% (1000μm), showing moderate cytotoxicity (300-μm) and non-cytotoxicity (500-μm and 1000-μm). Single Bond Universal and GLUMA Self Etch did not significantly reduce cell viability, regardless of the dentin thicknesses, which characterized them as non-cytotoxic. Cytotoxicity varied with the materials tested and the thicknesses of the dentin disks. The tested cytotoxicity of materials applied on 300-, 500-, and 1000-μm dentin disks indicates that the clinical use of the test materials (excepting self-etching adhesives) in deep cavities poses a potential risk of damage to the pulp tissues to an extent, depending on the thickness of the remaining dentin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Development of Functional Surfaces on High-Density Polyethylene (HDPE) via Gas-Assisted Etching (GAE) Using Focused Ion Beams.

    PubMed

    Sezen, Meltem; Bakan, Feray

    2015-12-01

    Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.

  12. Optimization of Gas Composition Used in Plasma Chemical Vaporization Machining for Figuring of Reaction-Sintered Silicon Carbide with Low Surface Roughness.

    PubMed

    Sun, Rongyan; Yang, Xu; Ohkubo, Yuji; Endo, Katsuyoshi; Yamamura, Kazuya

    2018-02-05

    In recent years, reaction-sintered silicon carbide (RS-SiC) has been of interest in many engineering fields because of its excellent properties, such as its light weight, high rigidity, high heat conductance and low coefficient of thermal expansion. However, RS-SiC is difficult to machine owing to its high hardness and chemical inertness and because it contains multiple components. To overcome the problem of the poor machinability of RS-SiC in conventional machining, the application of atmospheric-pressure plasma chemical vaporization machining (AP-PCVM) to RS-SiC was proposed. As a highly efficient and damage-free figuring technique, AP-PCVM has been widely applied for the figuring of single-component materials, such as Si, SiC, quartz crystal wafers, and so forth. However, it has not been applied to RS-SiC since it is composed of multiple components. In this study, we investigated the AP-PCVM etching characteristics for RS-SiC by optimizing the gas composition. It was found that the different etching rates of the different components led to a large surface roughness. A smooth surface was obtained by applying the optimum gas composition, for which the etching rate of the Si component was equal to that of the SiC component.

  13. Fabrication of ZnO photonic crystals by nanosphere lithography using inductively coupled-plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the ZnO/GaN heterojunction light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shr-Jia; Chang, Chun-Ming; Kao, Jiann-Shiun

    2010-07-15

    This article reports fabrication of n-ZnO photonic crystal/p-GaN light emitting diode (LED) by nanosphere lithography to further booster the light efficiency. In this article, the fabrication of ZnO photonic crystals is carried out by nanosphere lithography using inductively coupled plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the n-ZnO/p-GaN heterojunction LEDs. The CH{sub 4}/H{sub 2}/Ar mixed gas gives high etching rate of n-ZnO film, which yields a better surface morphology and results less plasma-induced damages of the n-ZnO film. Optimal ZnO lattice parameters of 200 nm and air fill factor from 0.35 to 0.65 were obtained from fittingmore » the spectrum of n-ZnO/p-GaN LED using a MATLAB code. In this article, we will show our recent result that a ZnO photonic crystal cylinder has been fabricated using polystyrene nanosphere mask with lattice parameter of 200 nm and radius of hole around 70 nm. Surface morphology of ZnO photonic crystal was examined by scanning electron microscope.« less

  14. Characterization of plasma processing induced charging damage to MOS devices

    NASA Astrophysics Data System (ADS)

    Ma, Shawming

    1997-12-01

    Plasma processing has become an integral part of the fabrication of integrated circuits and takes at least 30% of whole process steps since it offers advantages in terms of directionality, low temperature and process convenience. However, wafer charging during plasma processes is a significant concern for both thin oxide damage and profile distortion. In this work, the factors affecting this damage will be explained by plasma issues, device structure and oxide quality. The SPORT (Stanford Plasma On-wafer Real Time) charging probe was developed to investigate the charging mechanism of different plasma processes including poly-Si etching, resist ashing and PECVD. The basic idea of this probe is that it simulates a real device structure in the plasma environment and allows measurement of plasma induced charging voltages and currents directly in real time. This measurement is fully compatible with other charging voltage measurement but it is the only one to do in real-time. Effect of magnetic field induced plasma nonuniformity on spatial dependent charging is well understood by this measurement. In addition, the plasma parameters including ion current density and electron temperature can also be extracted from the probe's plasma I-V characteristics using a dc Langmuir probe like theory. It will be shown that the MOS device tunneling current from charging, the dependence on antenna ratio and the etch uniformity can all be predicted by using this measurement. Moreover, the real-time measurement reveals transient and electrode edge effect during processing. Furthermore, high aspect ratio pattern induced electron shading effects can also be characterized by the probe. On the oxide quality issue, wafer temperature during plasma processing has been experimentally shown to be critical to charging damage. Finally, different MOS capacitor testing methods including breakdown voltage, charge-to-breakdown, gate leakage current and voltage-time at constant current bias were compared to find the optimum method for charging device reliability testing.

  15. The effects of PEP-1-FK506BP on dry eye disease in a rat model.

    PubMed

    Kim, Dae Won; Lee, Sung Ho; Ku, Sae Kwang; Lee, Ji Eun; Cha, Hyun Ju; Youn, Jong Kyu; Kwon, Hyeok Yil; Park, Jong Hoon; Park, Eun Young; Cho, Sung-Woo; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2015-03-01

    As FK506 binding proteins (FK506BPs) are known to play an important role in the regulation of a variety of biological processes related to cell survival, this study was designed to examined the protective effects of FK506 binding protein 12 (FK506BP) on low humidity air flow induced dry eye in a rat model using transduced PEP-1-FK506BP. After the topical application of PEP-1-FK506BP, tear volumes were markedly increased and significant prevention of cornea damage was observed compared with dry eye rats. Further, immunohistochemical analysis demonstrated that PEP-1-FK506BP markedly prevented damage to the cornea, the bulbar conjunctiva, and the palpebral conjunctiva epithelial lining compared with dry eye rats. In addition, caspase-3 and PARP expression levels were found to be decreased. These results demonstrated that topical application of PEP-1-FK506BP significantly ameliorates dry eye injury in an animal model. Thus, we suggest that PEP-1-FK506BP can be developed as a new ophthalmic drop to treat dry eye diseases.

  16. Disaccharides Protect Antigens from Drying-Induced Damage in Routinely Processed Tissue Sections

    PubMed Central

    Boi, Giovanna; Scalia, Carla Rossana; Gendusa, Rossella; Ronchi, Susanna; Cattoretti, Giorgio

    2015-01-01

    Drying of the tissue section, partial or total, during immunostaining negatively affects both the staining of tissue antigens and the ability to remove previously deposited antibody layers, particularly during sequential rounds of de-staining and re-staining for multiple antigens. The cause is a progressive loss of the protein-associated water up to the removal of the non-freezable water, a step which abolishes the immunoavailability of the epitope. In order to describe and prevent these adverse effects, we tested, among other substances, sugars, which are known to protect unicellular organisms from freezing and dehydration, and stabilize drugs and reagents in solid state form in medical devices. Disaccharides (lactose, sucrose) prevented the air drying-induced antigen masking and protected tissue-bound antigens and antibodies from air drying-induced damage. Complete removal of the bound antibody layers by chemical stripping was permitted if lactose was present during air drying. Lactose, sucrose and other disaccharides prevent air drying artifacts, allow homogeneous, consistent staining and the reuse of formalin-fixed, paraffin-embedded tissue sections for repeated immunostaining rounds by guaranteeing constant staining quality in suboptimal hydration conditions. PMID:26487185

  17. Cubic GaN quantum dots embedded in zinc-blende AlN microdisks

    NASA Astrophysics Data System (ADS)

    Bürger, M.; Kemper, R. M.; Bader, C. A.; Ruth, M.; Declair, S.; Meier, C.; Förstner, J.; As, D. J.

    2013-09-01

    Microresonators containing quantum dots find application in devices like single photon emitters for quantum information technology as well as low threshold laser devices. We demonstrate the fabrication of 60 nm thin zinc-blende AlN microdisks including cubic GaN quantum dots using dry chemical etching techniques. Scanning electron microscopy analysis reveals the morphology with smooth surfaces of the microdisks. Micro-photoluminescence measurements exhibit optically active quantum dots. Furthermore this is the first report of resonator modes in the emission spectrum of a cubic AlN microdisk.

  18. Distributed-feedback Terahertz Quantum-cascade Lasers with Laterally Corrugated Metal Waveguides

    NASA Technical Reports Server (NTRS)

    Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.

    2005-01-01

    We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.

  19. Low-autofluorescence fluoropolymer membrane filters for cell filtration

    NASA Astrophysics Data System (ADS)

    Kihara, Naoto; Kuboyama, Daiki; Onoshima, Daisuke; Ishikawa, Kenji; Tanaka, Hiromasa; Ozawa, Naoya; Hase, Tetsunari; Koguchi, Ryohei; Yukawa, Hiroshi; Odaka, Hidefumi; Hasegawa, Yoshinori; Baba, Yoshinobu; Hori, Masaru

    2018-06-01

    A fluoropolymer membrane filter with through-holes was fabricated by photolithographic patterning and the dry etching method. 380,000 highly packed through-holes, each with a diameter of 7 µm were able to cover a whole area with a diameter of 13 mm. Ethylene tetrafluoroethylene (ETFE) was used as the membrane, which was suitable for the fluorescence detection of rare cells such as circulating tumor cells (CTCs) in human blood. The device fabrication for the size based capture of rare cells in blood such as CTCs is realized in this study.

  20. Combined Advanced Finishing and UV-Laser Conditioning for Producing UV-Damage-Resistant Fused Silica Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Penetrante, B; Golini, D

    2001-11-01

    Laser induced damage initiation on fused silica optics can limit the lifetime of the components when used in high power UV laser environments. Foe example in inertial confinement fusion research applications, the optics can be exposed to temporal laser pulses of about 3-nsec with average fluences of 8 J/cm{sup 2} and peak fluences between 12 and 15 J/cm{sup 2}. During the past year, we have focused on optimizing the damage performance at a wavelength of 355-nm (3{omega}), 3-nsec pulse length, for optics in this category by examining a variety of finishing technologies with a challenge to improve the laser damagemore » initiation density by at least two orders of magnitude. In this paper, we describe recent advances in improving the 3{omega} damage initiation performance of laboratory-scale zirconium oxide and cerium oxide conventionally finished fused silica optics via application of processes incorporating magnetorheological finishing (MRF), wet chemical etching, and UV laser conditioning. Details of the advanced finishing procedures are described and comparisons are made between the procedures based upon large area 3{omega} damage performance, polishing layer contamination, and optical subsurface damage.« less

  1. Recent advances in drying and dehydration of fruits and vegetables: a review.

    PubMed

    Sagar, V R; Suresh Kumar, P

    2010-01-01

    Fruits and vegetables are dried to enhance storage stability, minimize packaging requirement and reduce transport weight. Preservation of fruits and vegetables through drying based on sun and solar drying techniques which cause poor quality and product contamination. Energy consumption and quality of dried products are critical parameters in the selection of drying process. An optimum drying system for the preparation of quality dehydrated products is cost effective as it shortens the drying time and cause minimum damage to the product. To reduce the energy utilization and operational cost new dimensions came up in drying techniques. Among the technologies osmotic dehydration, vacuum drying, freeze drying, superheated steam drying, heat pump drying and spray drying have great scope for the production of quality dried products and powders.

  2. Role of outer membrane lipopolysaccharides in the protection of Salmonella enterica serovar Typhimurium from desiccation damage.

    PubMed

    Garmiri, Penelope; Coles, Karen E; Humphrey, Tom J; Cogan, Tristan A

    2008-04-01

    The ability to survive desiccation between hosts is often essential to the success of pathogenic bacteria. The bacterial outer membrane is both the cellular interface with hostile environments and the focus of much of the drying-induced damage. This study examined the contribution of outer membrane-associated polysaccharides to the survival of Salmonella enterica serovar Typhimurium in air-dried blood droplets following growth in high and low osmolarity medium and under conditions known to induce expression of these polysaccharides. Strains lacking the O polysaccharide (OPS) element of the outer membrane lipopolysaccharide were more sensitive to desiccation. Lipopolysaccharide core mutation further to OPS loss did not result in increased susceptibility to drying. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed lipopolysaccharide profiles that supported the hypothesis that OPS expression is required for optimal drying resistance in S. Typhimurium. The role of O antigen in Salmonella spp. in maintaining a hydrated layer around the dried cell or in slowing the rate of dehydration and rehydration is discussed.

  3. 3D imaging of neutron tracks using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4 and 10 microns. Thus this study suggests that, using confocal microscopy, 3D imaging of neutron tracks in SSNTDs is feasible. (1) Wertheim D, Gillmore G, Brown L, Petford N. A new method of imaging particle tracks in solid state nuclear track detectors. J Microsc. 2010; 237: 1-6.

  4. Evaluation of ASR potential of quartz-rich rocks by alkaline etching of polished rock sections

    NASA Astrophysics Data System (ADS)

    Šachlová, Šárka; Kuchařová, Aneta; Pertold, Zdeněk; Přikryl, Richard

    2015-04-01

    Damaging effect of alkali-silica reaction (ASR) on concrete structures has been observed in various countries all over the World. Civil engineers and real state owners are demanding reliable methods in the assessment of ASR potential of aggregates before they are used in constructions. Time feasible methods are expected, as well as methods which enable prediction of long-term behaviour of aggregates in concrete. The most frequently employed accelerated mortar bar test (AMBT) quantifies ASR potential of aggregates according to the expansion values of mortar bars measured after fourteen days testing period. Current study aimed to develop a new methodical approach facilitating identification and quantification of ASR potential of aggregates. Polished rock sections of quartz and amorphous SiO2 (coming from orthoquartzite, quartz meta-greywacke, pegmatite, phyllite, chert, and flint) were subjected to experimental leaching in 1M NaOH solution at 80°C. After 14 days of alkaline etching, the rock sections were analyzed employing scanning electron microscope combined with energy dispersive spectrometer. Representative areas were documented in back scattered electron (BSE) images and measured using fully-automatic petrographic image analysis (PIA). Several features connected to alkaline etching were observed on the surface of polished rock sections: deep alkaline etching, partial leach-out of quartz and amorphous particles, alkaline etching connected to quartz grain boundaries, and alkaline etching without any connection to grain boundaries. All features mentioned above had significant influence on grey-scale spectrum of BSE images. A specific part of the grey-scale spectrum (i.e. grey-shade 0-70) was characteristic of areas affected by alkaline etching (ASR area). By measuring such areas we quantified the extent of alkaline etching in studied samples. Very good correlation was found between the ASR area and ASR potential of investigated rocks measured according to the standard AMBT (folowing ASTM C1260). The etching experiment is regarded to be feasible method to quantify ASR potential of quartz- (resp. SiO2-) rich rocks. Employement of the method: (1) decreases potential error from less experienced operator; (2) minimizes the volume of the rock need to be analyzed; (3) enables to visualize microscopic features where ASR originates; and (4) enables to identify alkali-reactive components in the rocks. The main disadvatage of the method is regarded in the restriction to quartz- (resp. SiO2-) rich rocks. If other minerals are included in the rocks their role in ASR should be considered. These minerals can be excluded from the analysis in case they are not reactive and if their content is very low (e.g. accesory minerals). If the minerals contribute to ASR (e.g. albite, micas), these mineral phases should be included in the analysis. Then the application of PIA needs to be modified in respect to different grey shades of individual minerals.

  5. Drying techniques for the visualisation of agarose-based chromatography media by scanning electron microscopy.

    PubMed

    Nweke, Mauryn C; Turmaine, Mark; McCartney, R Graham; Bracewell, Daniel G

    2017-03-01

    The drying of chromatography resins prior to scanning electron microscopy is critical to image resolution and hence understanding of the bead structure at sub-micron level. Achieving suitable drying conditions is especially important with agarose-based chromatography resins, as over-drying may cause artefact formation, bead damage and alterations to ultrastructural properties; and under-drying does not provide sufficient resolution for visualization under SEM. This paper compares and contrasts the effects of two drying techniques, critical point drying and freeze drying, on the morphology of two agarose based resins (MabSelect™/d w ≈85 µm and Capto™ Adhere/d w ≈75 µm) and provides a complete method for both. The results show that critical point drying provides better drying and subsequently clearer ultrastructural visualization of both resins under SEM. Under this protocol both the polymer fibers (thickness ≈20 nm) and the pore sizes (diameter ≈100 nm) are clearly visible. Freeze drying is shown to cause bead damage to both resins, but to different extents. MabSelect resin encounters extensive bead fragmentation, whilst Capto Adhere resin undergoes partial bead disintegration, corresponding with the greater extent of agarose crosslinking and strength of this resin. While freeze drying appears to be the less favorable option for ultrastructural visualization of chromatography resin, it should be noted that the extent of fracturing caused by the freeze drying process may provide some insight into the mechanical properties of agarose-based chromatography media. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Adsorptive conversion of nitrogen dioxide from etching vent gases over activated carbon.

    PubMed

    Fang, Mei-Ling; Wu, Ching-Yi; Chou, Ming-Shean

    2018-04-13

    Some metal etching operations emit limited flow rates of waste gases with reddish-brown NO 2 fume, which may cause visual and acidic-odor complaints, as well as negative health effects. In this study, tests were performed by passing caustic-treated waste gases vented from Al-etching operations through columns packed either with virgin or regenerated granular activated carbon (GAC) to test their adsorptive conversion performance of NO 2 in the gases. The gases contained 5-55 ppm NO 2 and acetic and nitric acids of below 3 ppm. Exhausted carbon was regenerated by scrubbing it with caustic solution and water, and dried for further adsorption tests. Results indicate that with an (empty bed residence time (EBRT) of 0.15 sec for the gas through the GAC-packed space, around 60% of the influent NO 2 of 54 ppm could be removed, and 47% of the removed NO 2 was converted by and desorbed from the carbon as NO. GAC used in the present study could be regenerated at least twice to restore its capacity for NO 2 adsorption. Within EBRTs of 0.076-0.18 sec, the adsorptive conversion capacity was linearly varied with EBRT. In practice, with an EBRT of 0.20 sec, a conversion capacity of 0.80 kg NO 2 (kg GAC) -1 with an influent NO 2 of 40 ppm can be used as a basis for system design. Some metal etching operations emit waste gases with reddish-brown (yellow when diluted) NO 2 fume which may cause visual and acidic-odor complaints, as well as negative health effects. This study provides a simple process for the adsorptive conversion of NO 2 in caustic-treated waste gases vented from metal-etching operations through a GAC column. With an EBRT of 0.20 sec, a conversion capacity of 0.80 kg NO 2 (kg GAC) -1 with an influent NO 2 of 40 ppm can be used as a basis for system design. Saturated GAC can be regenerated at least twice by simply scrubbing it with aqueous caustic solution.

  7. Experimental, theoretical, and device application development of nanoscale focused electron-beam-induced deposition

    NASA Astrophysics Data System (ADS)

    Randolph, Steven Jeffrey

    Electron-beam-induced deposition (EBID) is a highly versatile nanofabrication technique that allows for growth of a variety of materials with nanoscale precision and resolution. While several applications and studies of EBID have been reported and published, there is still a significant lack of understanding of the complex mechanisms involved in the process. Consequently, EBID process control is, in general, limited and certain common experimental results regarding nanofiber growth have yet to be fully explained. Such anomalous results have been addressed in this work both experimentally and by computer simulation. Specifically, a correlation between SiOx nanofiber deposition observations and the phenomenon of electron beam heating (EBH) was shown by comparison of thermal computer models and experimental results. Depending on the beam energy, beam current, and nanostructure geometry, the heat generated can be substantial and may influence the deposition rate. Temperature dependent EBID growth experiments qualitatively verified the results of the EBH model. Additionally, EBID was used to produce surface image layers for maskless, direct-write lithography (MDL). A single layer process used directly written SiOx features as a masking layer for amorphous silicon thin films. A bilayer process implemented a secondary masking layer consisting of standard photoresist into which a pattern---directly written by EBID tungsten---was transferred. The single layer process was found to be extremely sensitive to the etch selectivity of the plasma etch. In the bilayer process, EBID tungsten was written onto photoresist and the pattern transferred by means of oxygen plasma dry development following a brief refractory descum. Conditions were developed to reduce the spatial spread of electrons in the photoresist layer and obtain ˜ 35 nm lines. Finally, an EBID-based technique for field emitter repair was applied to the Digital Electrostatically focused e-beam Array Lithography (DEAL) parallel electron beam lithography configuration to repair damaged or missing carbon nanofiber cathodes. The I-V response and lithography results from EBID tungsten-based devices were comparable to CNF-based DEAL devices indicating a successful repair technique.

  8. Increasing the rate of drying reduces metabolic imbalance, lipid peroxidation and critical water content in radicles of garden pea (Pisum sativum L.).

    PubMed

    Ntuli, Tobias M; Pammenter, Norman W; Berjak, Patricia

    2013-01-01

    Orthodox seeds become desiccation-sensitive as they undergo germination. As a result, germinating seeds serve as a model to study desiccation sensitivity in plant tissues. The effects of the rate of drying on the viability, respiratory metabolism and free radical processes were thus studied during dehydration and wet storage of radicles of Pisum sativum. For both drying regimes desiccation could be described by exponential and inverse modified functions. Viability, as assessed by germination capacity and tetrazolium staining, remained at 100% during rapid (< 24 h) desiccation. However, it declined sharply at c. 0.26 g g¹ dm following slow (c. 5 days) drying. Increasing the rate of dehydration thus lowered the critical water content for survival. Rapid desiccation was also associated with higher activities and levels of malate dehydrogenase and the oxidized form of nicotinamide adenine dinucleotide. It was also accompanied by lower hydroperoxide levels and membrane damage. In addition, the activitiy of glutathione reductase was greater during rapid drying. Ageing may have contributed to increased damage during slow dehydration, since viability declined even in wet storage after two weeks. The results presented are consistent with rapid desiccation reducing the accumulation of damage resulting from desiccation-induced aqueous-based deleterious reactions. In addition, they show that radicles are a useful model to study desiccation sensitivity in plant tissues.

  9. Drilling force and temperature of bone under dry and physiological drilling conditions

    NASA Astrophysics Data System (ADS)

    Xu, Linlin; Wang, Chengyong; Jiang, Min; He, Huiyu; Song, Yuexian; Chen, Hanyuan; Shen, Jingnan; Zhang, Jiayong

    2014-11-01

    Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systematic study of mid- and high-speed drilling under dry and physiological conditions(injection of saline). Furthermore, there is no consensus on optimal drilling parameters. To study these parameters under dry and physiological drilling conditions, pig humerus bones are drilled with medical twist drills operated using a wide range of drilling speeds and feed rates. Drilling force and temperature are measured using a YDZ-II01W dynamometer and a NEC TVS-500EX thermal infrared imager, respectively, to evaluate internal bone damage. To evaluate drilling quality, bone debris and hole morphology are observed by SEM(scanning electron microscopy). Changes in drilling force and temperature give similar results during drilling such that the value of each parameter peaks just before the drill penetrates through the osteon of the compact bone into the trabeculae of the spongy bone. Drilling temperatures under physiological conditions are much lower than those observed under dry conditions, while a larger drilling force occurs under physiological conditions than dry conditions. Drilling speed and feed rate have a significant influence on drilling force, temperature, bone debris and hole morphology. The investigation of the effect of drilling force and temperature on internal bone damage reveals that a drilling speed of 4500 r/min and a feed rate of 50 mm/min are recommended for bone drilling under physiological conditions. Drilling quality peaks under these optimal parameter conditions. This paper proposes the optimal drilling parameters under mid- and high-speed surgical drilling, considering internal bone damage and drilling quality, which can be looked as a reference for surgeons performing orthopedic operations.

  10. Plasmid Stability in Dried Cells of the Desert Cyanobacterium Chroococcidiopsis and its Potential for GFP Imaging of Survivors on Earth and in Space

    NASA Astrophysics Data System (ADS)

    Billi, Daniela

    2012-06-01

    Two GFP-based plasmids, namely pTTQ18-GFP-pDU1mini and pDUCA7-GFP, of about 7 kbp and 15 kbp respectively, able to replicate in Chroococcidiopsis sp. CCMEE 029 and CCMEE 123, were developed. Both plasmids were maintained in Chroococcidiopsis cells after 18 months of dry storage as demonstrated by colony PCR, plasmid restriction analysis, GFP imaging and colony-forming ability under selection of dried transformants; thus suggesting that strategies employed by this cyanobacterium to stabilize dried chromosomal DNA, must have protected plasmid DNA. The suitability of pDU1mini-plasmid for GFP tagging in Chroococcidiopsis was investigated by using the RecA homolog of Synechocystis sp. PCC 6803. After 2 months of dry storage, the presence of dried cells with a GFP-RecASyn distribution resembling that of hydrated cells, supported its capability of preventing desiccation-induced genome damage, whereas the rewetted cells with filamentous GFP-RecASyn structures revealed sub-lethal DNA damage. The long-term stability of plasmid DNA in dried Chroococcidiopsis has implication for space research, for example when investigating the recovery of dried cells after Martian and space simulations or when developing life support systems based on phototrophs with genetically enhanced stress tolerance and stored in the dry state for prolonged periods.

  11. Plasmid stability in dried cells of the desert cyanobacterium Chroococcidiopsis and its potential for GFP imaging of survivors on Earth and in space.

    PubMed

    Billi, Daniela

    2012-06-01

    Two GFP-based plasmids, namely pTTQ18-GFP-pDU1(mini) and pDUCA7-GFP, of about 7 kbp and 15 kbp respectively, able to replicate in Chroococcidiopsis sp. CCMEE 029 and CCMEE 123, were developed. Both plasmids were maintained in Chroococcidiopsis cells after 18 months of dry storage as demonstrated by colony PCR, plasmid restriction analysis, GFP imaging and colony-forming ability under selection of dried transformants; thus suggesting that strategies employed by this cyanobacterium to stabilize dried chromosomal DNA, must have protected plasmid DNA. The suitability of pDU1(mini)-plasmid for GFP tagging in Chroococcidiopsis was investigated by using the RecA homolog of Synechocystis sp. PCC 6803. After 2 months of dry storage, the presence of dried cells with a GFP-RecA(Syn) distribution resembling that of hydrated cells, supported its capability of preventing desiccation-induced genome damage, whereas the rewetted cells with filamentous GFP-RecA(Syn) structures revealed sub-lethal DNA damage. The long-term stability of plasmid DNA in dried Chroococcidiopsis has implication for space research, for example when investigating the recovery of dried cells after Martian and space simulations or when developing life support systems based on phototrophs with genetically enhanced stress tolerance and stored in the dry state for prolonged periods.

  12. A parameterization of nuclear track profiles in CR-39 detector

    NASA Astrophysics Data System (ADS)

    Azooz, A. A.; Al-Nia'emi, S. H.; Al-Jubbori, M. A.

    2012-11-01

    In this work, the empirical parameterization describing the alpha particles’ track depth in CR-39 detectors is extended to describe longitudinal track profiles against etching time for protons and alpha particles. MATLAB based software is developed for this purpose. The software calculates and plots the depth, diameter, range, residual range, saturation time, and etch rate versus etching time. The software predictions are compared with other experimental data and with results of calculations using the original software, TRACK_TEST, developed for alpha track calculations. The software related to this work is freely downloadable and performs calculations for protons in addition to alpha particles. Program summary Program title: CR39 Catalog identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENA_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Copyright (c) 2011, Aasim Azooz Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met • Redistributions of source code must retain the above copyright, this list of conditions and the following disclaimer. • Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution This software is provided by the copyright holders and contributors “as is” and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright owner or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage. No. of lines in distributed program, including test data, etc.: 15598 No. of bytes in distributed program, including test data, etc.: 3933244 Distribution format: tar.gz Programming language: MATLAB. Computer: Any Desktop or Laptop. Operating system: Windows 1998 or above (with MATLAB R13 or above installed). RAM: 512 Megabytes or higher Classification: 17.5. Nature of problem: A new semispherical parameterization of charged particle tracks in CR-39 SSNTD is carried out in a previous paper. This parameterization is developed here into a MATLAB based software to calculate the track length and track profile for any proton or alpha particle energy or etching time. This software is intended to compete with the TRACK_TEST [1] and TRACK_VISION [2] software currently in use by all people working in the field of SSNTD. Solution method: Based on fitting of experimental results of protons and alpha particles track lengths for various energies and etching times to a new semispherical formula with four free fitting parameters, the best set of energy independent parameters were found. These parameters are introduced into the software and the software is programmed to solve the set of equations to calculate the track depth, track etching rate as a function of both time and residual range for particles of normal and oblique incidence, the track longitudinal profile at both normal and oblique incidence, and the three dimensional track profile at normal incidence. Running time: 1-8 s on Pentium (4) 2 GHz CPU, 3 GB of RAM depending on the etching time value References: [1] ADWT_v1_0 Track_Test Computer program TRACK_TEST for calculating parameters and plotting profiles for etch pits in nuclear track materials. D. Nikezic, K.N. Yu Comput. Phys. Commun. 174(2006)160 [2] AEAF_v1_0 TRACK_VISION Computer program TRACK_VISION for simulating optical appearance of etched tracks in CR-39 nuclear track detectors. D. Nikezic, K.N. Yu Comput. Phys. Commun. 178(2008)591

  13. TiN-Coating Effects on Stainless Steel Tribological Behavior Under Dry and Lubricated Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiang; Yang, Huisheng; Pang, Xiaolu; Gao, Kewei; Tran, Hai T.; Volinsky, Alex A.

    2014-04-01

    The tribological properties of magnetron sputtered titanium nitride coating on 316L steel, sliding against Si3N4 ceramic ball under dry friction and synthetic perspiration lubrication, were investigated. The morphology of the worn surface and the elemental composition of the wear debris were examined by scanning electron microscopy and energy dispersive spectroscopy. TiN coatings and 316L stainless steel had better tribological properties under synthetic perspiration lubrication than under dry friction. Among the three tested materials (316L, 1.6 and 2.4 μm TiN coatings), 2.4 μm TiN coating exhibits the best wear resistance. The difference in wear damage of the three materials is essentially due to the wear mechanisms. For the TiN coating, the damage is attributed to abrasive wear under synthetic perspiration lubrication and the complex interactive mechanisms, including abrasive and adhesive wear, along with plastic deformation, under dry friction.

  14. Nanostructuring of conduction channels in (In,Ga)As-InP heterostructures: Overcoming carrier generation caused by Ar ion milling

    NASA Astrophysics Data System (ADS)

    Hortelano, V.; Weidlich, H.; Semtsiv, M. P.; Masselink, W. T.; Ramsteiner, M.; Jahn, U.; Biermann, K.; Takagaki, Y.

    2018-04-01

    Nanometer-sized channels are fabricated in (In,Ga)As-InP heterostructures using Ar ion milling. The ion milling causes spontaneous creation of nanowires, and moreover, electrical conduction of the surface as carriers is generated by sputtering-induced defects. We demonstrate a method to restore electrical isolation in the etched area that is compatible with the presence of the nanochannels. We remove the heavily damaged surface layer using a diluted HCl solution and subsequently recover the crystalline order in the moderately damaged part by annealing. We optimize the HCl concentration to make the removal stop on its own before reaching the conduction channel part. The lateral depletion in the channels is shown to be almost absent.

  15. DDR process and materials for novel tone reverse technique

    NASA Astrophysics Data System (ADS)

    Shigaki, Shuhei; Shibayama, Wataru; Takeda, Satoshi; Tamura, Mamoru; Nakajima, Makoto; Sakamoto, Rikimaru

    2018-03-01

    We developed the novel process and material which can be created reverse-tone pattern without any collapse. The process was Dry Development Rinse (DDR) process, and the material used in this process was DDR material. DDR material was containing siloxane polymer which could be replaced the space area of the photo resist pattern. And finally, the reverse-tone pattern could be obtained by dry etching process without any pattern collapse issue. DDR process could be achieved fine line and space patterning below hp14nm without any pattern collapse by combination of PTD or NTD photo resist. DDR materials were demonstrated with latest coater track at imec. DDR process was fully automated and good CD uniformity was achieved after dry development. Detailed evaluation could be achieved with whole wafer such a study of CD uniformity (CDU). CDU of DDR pattern was compared to pre-pattern's CDU. Lower CDU was achieved and CDU healing was observed with special DDR material. By further evaluation, special DDR material showed relatively small E-slope compared to another DDR material. This small E-slope caused CDU improvement.

  16. Study of Photosensitive Dry Films Absorption for Printed Circuit Boards by Photoacoustic Technique

    NASA Astrophysics Data System (ADS)

    Hernández, R.; Zaragoza, J. A. Barrientos; Jiménez-Pérez, J. L.; Orea, A. Cruz; Correa-Pacheco, Z. N.

    2017-08-01

    In this work, the study of photosensitive dry-type films by photoacoustic technique is proposed. The dry film photoresist is resistant to chemical etching for printed circuit boards such as ferric chloride, sodium persulfate or ammonium, hydrochloric acid. It is capable of faithfully reproducing circuit pattern exposed to ultraviolet light (UV) through a negative. Once recorded, the uncured portion is removed with alkaline solution. It is possible to obtain good results in surface mount circuits with tracks of 5 mm. Furthermore, the solid resin films are formed by three layers, two protective layers and a UV-sensitive optical absorption layer in the range of 325 nm to 405 nm. By means of optical absorption of UV-visible rays emitted by a low-power Xe lamp, the films transform this energy into thermal waves generated by the absorption of optical radiation and subsequently no-radiative de-excitation occurs. The photoacoustic spectroscopy is a useful technique to measure the transmittance and absorption directly. In this study, the optical absorption spectra of the three layers of photosensitive dry-type films were obtained as a function of the wavelength, in order to have a knowledge of the absorber layer and the protective layers. These analyses will give us the physical properties of the photosensitive film, which are very important in curing the dry film for applications in printed circuit boards.

  17. 6. 'ROCKFILLED CRIB 350 FEET LONG, REPAIRING DAMAGES CAUSED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. 'ROCK-FILLED CRIB 350 FEET LONG, REPAIRING DAMAGES CAUSED BY FLOODS DURING SEASON OF 1927 TO THE DRY GULCH CANAL HEADING.' 1928 - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT

  18. Effect of Er:YAG laser pulse duration on the shear bond strength of bleached dentin

    NASA Astrophysics Data System (ADS)

    Yu, Ping; Yu, Dandan; Zhao, Peng; Xu, Zhou; Gao, Shanshan

    2017-11-01

    The influence of different Er:YAG laser pulse durations on the shear bond strength (SBS) of bleached dentin was investigated in this study. In total, 176 crowns of extracted human premolars were cut horizontally, embedded and ground to expose the sound dentin. Of these, 132 specimens were bleached with 12% hydrogen peroxide (HP) and divided into three groups, irradiated by an Er:YAG laser with different pulse lengths of 50 µs super short pulse (SSP), 100 µs moderate short pulse (MSP) and 300 µs short pulse (SP), respectively. The energy density of the three groups was the same at about 15.73 J cm-2 for each. Then, each group was further divided into two subgroups according to whether it had been etched with 37% phosphoric acid or not. The control group (N  =  22) was bleached and etched with acid while the blank group (N  =  22) was just etched with acid. The surface morphology of the dentin was observed using scanning electron microscopy (SEM). The SBS of the composite resin to the conditioned dentin was tested with a universal testing machine. It was found that the SBS of the dentin significantly decreased after bleaching treatment, while it was possible to restore it using Er:YAG laser irradiation. Lasers with various pulse durations led to different surface morphologies but had no effect on the SBS. The SSP laser was more suitable on account of it resulting in less thermal damage, and additional acid etching was not necessary for the irradiated bleached dentin in the clinic because it could not further improve the SBS value.

  19. Fiberoptic microneedles: novel optical diffusers for interstitial delivery of therapeutic light.

    PubMed

    Kosoglu, Mehmet A; Hood, Robert L; Rossmeisl, John H; Grant, David C; Xu, Yong; Robertson, John L; Rylander, Marissa Nichole; Rylander, Christopher G

    2011-11-01

    Photothermal therapies have limited efficacy and application due to the poor penetration depth of light inside tissue. In earlier work, we described the development of novel fiberoptic microneedles to provide a means to mechanically penetrate dermal tissue and deliver light directly into a localized target area.This paper presents an alternate fiberoptic microneedle design with the capability of delivering more diffuse, but therapeutically useful photothermal energy. Laser lipolysis is envisioned as a future clinical application for this design. A novel fiberoptic microneedle was developed using hydrofluoric acid etching of optical fiber to permit diffuse optical delivery. Microneedles etched for 10, 30, and 50 minutes, and an optical fiber control were compared with three techniques. First, red light delivery from the microneedles was evaluated by imaging the reflectance of the light from a white paper.Second, spatial temperature distribution of the paper in response to near-IR light (1,064 nm, 1 W CW) was recorded using infrared thermography. Third, ex vivo adipose tissue response during 1,064 nm, (5 W CW)irradiation was recorded with bright field microscopy. Acid etching exposed a 3 mm length of the fiber core, allowing circumferential delivery of light along this length. Increasing etching time decreased microneedle diameter, resulting in increased uniformity of red and 1,064 nm light delivery along the microneedle axis. For equivalent total energy delivery, thinner microneedles reduced carbonization in the adipose tissue experiments. We developed novel microscale optical diffusers that provided a more homogeneous light distribution from their surfaces, and compared performance to a flat-cleaved fiber, a device currently utilized in clinical practice. These fiberoptic microneedles can potentially enhance clinical laser procedures by providing direct delivery of diffuse light to target chromophores, while minimizing undesirable photothermal damage in adjacent, non-target tissue. Copyright © 2011 Wiley Periodicals, Inc.

  20. p-n Junction Diodes Fabricated on Si-Si/Ge Heteroepitaxial Films

    NASA Technical Reports Server (NTRS)

    Das, K.; Mazumder, M. D. A.; Hall, H.; Alterovitz, Samuel A. (Technical Monitor)

    2000-01-01

    A set of photolithographic masks was designed for the fabrication of diodes in the Si-Si/Ge material system. Fabrication was performed on samples obtained from two different wafers: (1) a complete HBT structure with an n (Si emitter), p (Si/Ge base), and an n/n+ (Si collector/sub-collector) deposited epitaxially (MBE) on a high resistivity p-Si substrate, (2) an HBT structure where epitaxial growth was terminated after the p-type base (Si/Ge) layer deposition. Two different process runs were attempted for the fabrication of Si-Si/Ge (n-p) and Si/Ge-Si (p-n) junction diodes formed between the emitter-base and base-collector layers, respectively, of the Si-Si/Ge-Si HBT structure. One of the processes employed a plasma etching step to expose the p-layer in the structure (1) and to expose the e-layer in structure (2). The Contact metallization used for these diodes was a Cu-based metallization scheme that was developed during the first year of the grant. The plasma-etched base-collector diodes on structure (2) exhibited well-behaved diode-like characteristics. However, the plasma-etched emitter-base diodes demonstrated back-to-back diode characteristics. These back-to back characteristics were probably due to complete etching of the base-layer, yielding a p-n-p diode. The deep implantation process yielded rectifying diodes with asymmetric forward and reverse characteristics. The ideality factor of these diodes were between 1.6 -2.1, indicating that the quality of the MBE grown epitaxial films was not sufficiently high, and also incomplete annealing of the implantation damage. Further study will be conducted on CVD grown films, which are expected to have higher epitaxial quality.

Top