Sample records for dry machining performance

  1. A comparative study on performance of CBN inserts when turning steel under dry and wet conditions

    NASA Astrophysics Data System (ADS)

    Abdullah Bagaber, Salem; Razlan Yusoff, Ahmad

    2017-10-01

    Cutting fluids is the most unsustainable components of machining processes, it is negatively impacting on the environmental and additional energy required. Due to its high strength and corrosion resistance, the machinability of stainless steel has attracted considerable interest. This study aims to evaluate performance of cubic boron nitride (CBN) inserts for the machining parameters includes the power consumption and surface roughness. Due to the high single cutting-edge cost of CBN, the performance of significant is importance for hard finish turning. The present work also deals with a comparative study on power consumption and surface roughness under dry and flood conditions. Turning process of the stainless steel 316 was performed. A response surface methodology based box-behnken design (BBD) was utilized for statistical analysis. The optimum process parameters are determined as the overall performance index. The comparison study has been done between dry and wet stainless-steel cut in terms of minimum value of energy and surface roughness. The result shows the stainless still can be machined under dry condition with 18.57% improvement of power consumption and acceptable quality compare to the wet cutting. The CBN tools under dry cutting stainless steel can be used to reduce the environment impacts in terms of no cutting fluid use and less energy required which is effected in machining productivity and profit.

  2. A control technology evaluation of state-of-the-art, perchloroethylene dry-cleaning machines.

    PubMed

    Earnest, G Scott

    2002-05-01

    NIOSH researchers evaluated the ability of fifth-generation dry-cleaning machines to control occupational exposure to perchloroethylene (PERC). Use of these machines is mandated in some countries; however, less than 1 percent of all U.S. shops have them. A study was conducted at a U.S. dry-cleaning shop where two fifth-generation machines were used. Both machines had a refrigerated condenser as a primary control and a carbon adsorber as a secondary control to recover PERC vapors during the dry cycle. These machines were designed to lower the PERC concentration in the cylinder at the end of the dry cycle to below 290 ppm. A single-beam infrared photometer continuously monitors the PERC concentration in the machine cylinder, and a door interlock prevents opening until the concentration is below 290 ppm. Personal breathing zone air samples were measured for the machine operator and presser. The operator had time-weighted average (TWA) PERC exposures that were less than 2 ppm. Highest exposures occurred during loading and unloading the machine and when performing routine machine maintenance. All presser samples were below the limit of detection. Real-time video exposure monitoring showed that the operator had peak exposures near 160 ppm during loading and unloading the machine (below the OSHA maximum of 300 ppm). This exposure (160 ppm) is an order of magnitude lower than exposures with more traditional machines that are widely used in the United States. The evaluated machines were very effective at reducing TWA PERC exposures as well as peak exposures that occur during machine loading and unloading. State-of-the-art dry-cleaning machines equipped with refrigerated condensers, carbon adsorbers, drum monitors, and door interlocks can provide substantially better protection than more traditional machines that are widely used in the United States.

  3. Investigations on high speed machining of EN-353 steel alloy under different machining environments

    NASA Astrophysics Data System (ADS)

    Venkata Vishnu, A.; Jamaleswara Kumar, P.

    2018-03-01

    The addition of Nano Particles into conventional cutting fluids enhances its cooling capabilities; in the present paper an attempt is made by adding nano sized particles into conventional cutting fluids. Taguchi Robust Design Methodology is employed in order to study the performance characteristics of different turning parameters i.e. cutting speed, feed rate, depth of cut and type of tool under different machining environments i.e. dry machining, machining with lubricant - SAE 40 and machining with mixture of nano sized particles of Boric acid and base fluid SAE 40. A series of turning operations were performed using L27 (3)13 orthogonal array, considering high cutting speeds and the other machining parameters to measure hardness. The results are compared among the different machining environments, and it is concluded that there is considerable improvement in the machining performance using lubricant SAE 40 and mixture of SAE 40 + boric acid compared with dry machining. The ANOVA suggests that the selected parameters and the interactions are significant and cutting speed has most significant effect on hardness.

  4. Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.

    2010-10-04

    Laboratory tests were conducted to determine the fatigue performance of AWJ-machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results not only confirmed the findings of the aluminum dog-bone specimens but also further enhance the fatigue performance. In addition, titanium is known to be notoriously difficult to cutmore » with contact tools while AWJs cut it 34% faster than stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred combination for processing aircraft titanium that is fatigue critical.« less

  5. Overview of nanofluid application through minimum quantity lubrication (MQL) in metal cutting process

    NASA Astrophysics Data System (ADS)

    Sharif, Safian; Sadiq, Ibrahim Ogu; Suhaimi, Mohd Azlan; Rahim, Shayfull Zamree Abd

    2017-09-01

    Pollution related activities in addition to handling cost of conventional cutting fluid application in metal cutting industry has generated a lot of concern over time. The desire for a green machining environment which will preserve the environment through reduction or elimination of machining related pollution, reduction in oil consumption and safety of the machine operators without compromising an efficient machining process led to search for alternatives to conventional cutting fluid. Amongst the alternatives of dry machining, cryogenic cooling, high pressure cooling, near dry or minimum quantity lubrication (MQL), MQL have shown remarkable performance in terms of cost, machining output, safety of environment and machine operators. However, the MQL under aggressive machining or very high speed machining pose certain restriction as the lubrication media cannot perform efficiently at elevated temperature. In compensating for the shortcomings of MQL technique, high thermal conductivity nanoparticles are introduced in cutting fluids for use in the MQL lubrication process. They have indicated enhanced performance of machining process and significant reduction of loads on the environment. The present work is aimed at evaluating the application and performance of nanofluid in metal cutting process through MQL lubrication technique highlighting their impacts and prospects as lubrication strategy in metal cutting process for sustainable green manufacturing. Enhanced performance of vegetable oil based nanofluids over mineral oil-based nanofluids have been reported and thus highlighted.

  6. Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.

    2012-02-01

    Laboratory tests were conducted to determine the fatigue performance of abrasive-waterjet- (AWJ-) machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results of the titanium specimens not only confirmed our previous findings in aluminum dog-bone specimens but in comparison also further enhanced the fatigue performance of the titanium.more » In addition, titanium is known to be difficult to cut, particularly for thick parts, however AWJs cut the material 34% faster han stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred ombination for processing aircraft titanium that is fatigue critical.« less

  7. Experimental Investigation of Minimum Quantity Lubrication in Meso-scale Milling with Varying Tool Diameter

    NASA Astrophysics Data System (ADS)

    Yusof, M. Q. M.; Harun, H. N. S. B.; Bahar, R.

    2018-01-01

    Minimum quantity lubrication (MQL) is a method that uses a very small amount of liquid to reduce friction between cutting tool and work piece during machining. The implementation of MQL machining has become a viable alternative to flood cooling machining and dry machining. The overall performance has been evaluated during meso-scale milling of mild steel using different diameter milling cutters. Experiments have been conducted under two different lubrication condition: dry and MQL with variable cutting parameters. The tool wear and its surface roughness, machined surfaces microstructure and surface roughness were observed for both conditions. It was found from the results that MQL produced better results compared to dry machining. The 0.5 mm tool has been selected as the most optimum tool diameter to be used with the lowest surface roughness as well as the least flank wear generation. For the workpiece, it was observed that the cutting temperature possesses crucial effect on the microstructure and the surface roughness of the machined surface and bigger diameter tool actually resulted in higher surface roughness. The poor conductivity of the cutting tool may be one of reasons behind.

  8. Application of Taguchi Method for Analyzing Factors Affecting the Performance of Coated Carbide Tool When Turning FCD700 in Dry Cutting Condition

    NASA Astrophysics Data System (ADS)

    Ghani, Jaharah A.; Mohd Rodzi, Mohd Nor Azmi; Zaki Nuawi, Mohd; Othman, Kamal; Rahman, Mohd. Nizam Ab.; Haron, Che Hassan Che; Deros, Baba Md

    2011-01-01

    Machining is one of the most important manufacturing processes in these modern industries especially for finishing an automotive component after the primary manufacturing processes such as casting and forging. In this study the turning parameters of dry cutting environment (without air, normal air and chilled air), various cutting speed, and feed rate are evaluated using a Taguchi optimization methodology. An orthogonal array L27 (313), signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these turning parameters on the performance of a coated carbide tool. The results show that the tool life is affected by the cutting speed, feed rate and cutting environment with contribution of 38%, 32% and 27% respectively. Whereas for the surface roughness, the feed rate is significantly controlled the machined surface produced by 77%, followed by the cutting environment of 19%. The cutting speed is found insignificant in controlling the machined surface produced. The study shows that the dry cutting environment factor should be considered in order to produce longer tool life as well as for obtaining a good machined surface.

  9. An evaluation of retrofit engineering control interventions to reduce perchloroethylene exposures in commercial dry-cleaning shops.

    PubMed

    Earnest, G Scott; Ewers, Lynda M; Ruder, Avima M; Petersen, Martin R; Kovein, Ronald J

    2002-02-01

    Real-time monitoring was used to evaluate the ability of engineering control devices retrofitted on two existing dry-cleaning machines to reduce worker exposures to perchloroethylene. In one dry-cleaning shop, a refrigerated condenser was installed on a machine that had a water-cooled condenser to reduce the air temperature, improve vapor recovery, and lower exposures. In a second shop, a carbon adsorber was retrofitted on a machine to adsorb residual perchloroethylene not collected by the existing refrigerated condenser to improve vapor recovery and reduce exposures. Both controls were successful at reducing the perchloroethylene exposures of the dry-cleaning machine operator. Real-time monitoring was performed to evaluate how the engineering controls affected exposures during loading and unloading the dry-cleaning machine, a task generally considered to account for the highest exposures. The real-time monitoring showed that dramatic reductions occurred in exposures during loading and unloading of the dry-cleaning machine due to the engineering controls. Peak operator exposures during loading and unloading were reduced by 60 percent in the shop that had a refrigerated condenser installed on the dry-cleaning machine and 92 percent in the shop that had a carbon adsorber installed. Although loading and unloading exposures were dramatically reduced, drops in full-shift time-weighted average (TWA) exposures were less dramatic. TWA exposures to perchloroethylene, as measured by conventional air sampling, showed smaller reductions in operator exposures of 28 percent or less. Differences between exposure results from real-time and conventional air sampling very likely resulted from other uncontrolled sources of exposure, differences in shop general ventilation before and after the control was installed, relatively small sample sizes, and experimental variability inherent in field research. Although there were some difficulties and complications with installation and maintenance of the engineering controls, this study showed that retrofitting engineering controls may be a feasible option for some dry-cleaning shop owners to reduce worker exposures to perchloroethylene. By installing retrofit controls, a dry-cleaning facility can reduce exposures, in some cases dramatically, and bring operators into compliance with the Occupational Safety and Health Administration (OSHA) peak exposure limit of 300 ppm. Retrofit engineering controls are also likely to enable many dry-cleaning workers to lower their overall personal TWA exposures to perchloroethylene.

  10. Optimization of machining parameters in dry EDM of EN31 steel

    NASA Astrophysics Data System (ADS)

    Brar, G. S.

    2018-03-01

    Dry electric discharge machining (Dry EDM) is one of the novel EDM technology in which gases namely helium, argon, oxygen, nitrogen etc. are used as a dielectric medium at high pressure instead of oil based liquid dielectric. The present study investigates dry electric discharge machining (with rotary tool) of EN-31 steel to achieve lower tool wear rate (TWR) and better surface roughness (Ra) by performing a set of exploratory experiments with oxygen gas as dielectric. The effect of polarity, discharge current, gas flow pressure, pulse-on time, R.P.M. and gap voltage on the MRR, TWR and surface roughness (Ra) in dry EDM was studied with copper as rotary tool. The significant factors affecting MRR are discharge current and pulse on time. The significant factors affecting TWR are gas flow pressure, pulse on time and R.P.M. TWR was found close to zero in most of the experiments. The significant factors affecting Ra are pulse on time, gas flow pressure and R.P.M. It was found that polarity has nearly zero effect on all the three output variables.

  11. Modeling and Designing of A Nonlineartemperature-Humidity Controller Using Inmushroom-Drying Machine

    NASA Astrophysics Data System (ADS)

    Wu, Xiuhua; Luo, Haiyan; Shi, Minhui

    Drying-process of many kinds of farm produce in a close room, such as mushroom-drying machine, is generally a complicated nonlinear and timedelay cause, in which the temperature and the humidity are the main controlled elements. The accurate controlling of the temperature and humidity is always an interesting problem. It's difficult and very important to make a more accurate mathematical model about the varying of the two. A math model was put forward after considering many aspects and analyzing the actual working circumstance in this paper. Form the model it can be seen that the changes of temperature and humidity in drying machine are not simple linear but an affine nonlinear process. Controlling the process exactly is the key that influences the quality of the dried mushroom. In this paper, the differential geometry theories and methods are used to analyze and solve the model of these smallenvironment elements. And at last a kind of nonlinear controller which satisfied the optimal quadratic performance index is designed. It can be proved more feasible and practical than the conventional controlling.

  12. Effect of the Machined Surfaces of AISI 4337 Steel to Cutting Conditions on Dry Machining Lathe

    NASA Astrophysics Data System (ADS)

    Rahim, Robbi; Napid, Suhardi; Hasibuan, Abdurrozzaq; Rahmah Sibuea, Siti; Yusmartato, Y.

    2018-04-01

    The objective of the research is to obtain a cutting condition which has a good chance of realizing dry machining concept on AISI 4337 steel material by studying surface roughness, microstructure and hardness of machining surface. The data generated from the experiment were then processed and analyzed using the standard Taguchi method L9 (34) orthogonal array. Testing of dry and wet machining used surface test and micro hardness test for each of 27 test specimens. The machining results of the experiments showed that average surface roughness (Raavg) was obtained at optimum cutting conditions when VB 0.1 μm, 0.3 μm and 0.6 μm respectively 1.467 μm, 2.133 μm and 2,800 μm fo r dry machining while which was carried out by wet machining the results obtained were 1,833 μm, 2,667 μm and 3,000 μm. It can be concluded that dry machining provides better surface quality of machinery results than wet machining. Therefore, dry machining is a good choice that may be realized in the manufacturing and automotive industries.

  13. Effects of retrofit emission controls and work practices on perchloroethylene exposures in small dry-cleaning shops.

    PubMed

    Ewers, Lynda M; Ruder, Avima M; Petersen, Martin R; Earnest, G Scott; Goldenhar, Linda M

    2002-02-01

    The effectiveness of commercially available interventions for reducing workers' perchloroethylene exposures in three small dry-cleaning shops was evaluated. Depending upon machine configuration, the intervention consisted of the addition of either a refrigerated condenser or a closed-loop carbon adsorber to the existing dry-cleaning machine. These relatively inexpensive (less than $5000) engineering controls were designed to reduce perchloroethylene emissions when dry-cleaning machine doors were opened for loading or unloading. Effectiveness of the interventions was judged by comparing pre- and postintervention perchloroethylene exposures using three types of measurements in each shop: (1) full-shift, personal breathing zone, air monitoring, (2) next-morning, end-exhaled worker breath concentrations of perchloroethylene, and (3) differences in the end-exhaled breath perchloroethylene concentrations before and after opening the dry-cleaning machine door. In general, measurements supported the hypothesis that machine operators' exposures to perchloroethylene can be reduced. However, work practices, especially maintenance practices, influenced exposures more than was originally anticipated. Only owners of dry-cleaning machines in good repair, with few leaks, should consider retrofitting them, and only after consultation with their machine's manufacturer. If machines are in poor condition, a new machine or alternative technology should be considered. Shop owners and employees should never circumvent safety features on dry-cleaning machines.

  14. MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES

    EPA Science Inventory

    The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...

  15. Development of automated control system for wood drying

    NASA Astrophysics Data System (ADS)

    Sereda, T. G.; Kostarev, S. N.

    2018-05-01

    The article considers the parameters of convective wood drying which allows changing the characteristics of the air that performs drying at different stages: humidity, temperature, speed and direction of air movement. Despite the prevalence of this type of drying equipment, the main drawbacks of it are: the high temperature and humidity, negatively affecting the working conditions of maintenance personnel when they enter the drying chambers. It makes the automation of wood drying process necessary. The synthesis of a finite state of a machine control of wood drying process is implemented on a programmable logic device Omron.

  16. Preliminary study of propyl bromide exposure among New Jersey dry cleaners as a result of a pending ban on perchloroethylene.

    PubMed

    Blando, James D; Schill, Donald P; De La Cruz, Mary Pauline; Zhang, Lin; Zhang, Junfeng

    2010-09-01

    Many states are considering, and some states have actively pursued, banning the use of perchloroethylene (PERC) in dry cleaning establishments. Proposed legislation has led many dry cleaners to consider the use of products that contain greater than 90% n-propyl bromide (n-PB; also called 1-bromopropane or 1-BP). Very little information is known about toxicity and exposure to n-PB. Some n-PB-containing products are marketed as nonhazardous and "green" or "organic." This has resulted in some users perceiving the solvent as nontoxic and has resulted in at least one significant poisoning incident in New Jersey. In addition, many dry cleaning operators may not realize that the machine components and settings must be changed when converting from PERC to n-PB containing products. Not performing these modifications may result in overheating and significant leaks in the dry cleaning equipment. A preliminary investigation was conducted of the potential exposures to n-PB and isopropyl bromide (iso-PB; also called 2-bromopropane or 2-BP) among dry cleaners in New Jersey who have converted their machines from PERC to these new solvent products. Personal breathing zone and area samples were collected using the National Institute for Occupational Safety and Health Sampling and Analytical Method 1025, with a slight modification to gas chromatography conditions to facilitate better separation of n-PB from iso-PB. During the preliminary investigation, exposures to n-PB among some workers in two of three shops were measured that were greater than the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) for n-PB. The highest exposure measured among a dry cleaning machine operator was 54 parts per million (ppm) as an 8-hr time-weighted average, which is more than 5 times the ACGIH TLV of 10 ppm. The preliminary investigation also found that the work tasks most likely to result in the highest short-term exposures included the introduction of solvent to the machine, maintenance of the machine, unloading and handling of recently cleaned clothes, and interrupting the wash cycle of the machine. In addition, this assessment suggested that leaks may have contributed to exposure and may have resulted from normal machine wear over time, ineffective maintenance, and from the incompatibility of n-PB with gasket materials.

  17. Issues on machine learning for prediction of classes among molecular sequences of plants and animals

    NASA Astrophysics Data System (ADS)

    Stehlik, Milan; Pant, Bhasker; Pant, Kumud; Pardasani, K. R.

    2012-09-01

    Nowadays major laboratories of the world are turning towards in-silico experimentation due to their ease, reproducibility and accuracy. The ethical issues concerning wet lab experimentations are also minimal in in-silico experimentations. But before we turn fully towards dry lab simulations it is necessary to understand the discrepancies and bottle necks involved with dry lab experimentations. It is necessary before reporting any result using dry lab simulations to perform in-depth statistical analysis of the data. Keeping same in mind here we are presenting a collaborative effort to correlate findings and results of various machine learning algorithms and checking underlying regressions and mutual dependencies so as to develop an optimal classifier and predictors.

  18. Evaluation of Process Performance for Sustainable Hard Machining

    NASA Astrophysics Data System (ADS)

    Rotella, Giovanna; Umbrello, Domenico; , Oscar W. Dillon, Jr.; Jawahir, I. S.

    This paper aims to evaluate the sustainability performance of machining operation of through-hardening steel, AISI 52100, taking into account the impact of the material removal process in its various aspects. Experiments were performed for dry and cryogenic cutting conditions using chamfered cubic boron nitride (CBN) tool inserts at varying cutting conditions (cutting speed and feed rate). Cutting forces, mechanical power, tool wear, white layer thickness, surface roughness and residual stresses were investigated in order to evaluate the effects of extreme in-process cooling on the machined surface. The results indicate that cryogenic cooling has the potential to be used for surface integrity enhancement for improved product life and more sustainable functional performance.

  19. Gelcasting compositions having improved drying characteristics and machinability

    DOEpatents

    Janney, Mark A.; Walls, Claudia A. H.

    2001-01-01

    A gelcasting composition has improved drying behavior, machinability and shelf life in the dried and unfired state. The composition includes an inorganic powder, solvent, monomer system soluble in the solvent, an initiator system for polymerizing the monomer system, and a plasticizer soluble in the solvent. Dispersants and other processing aides to control slurry properties can be added. The plasticizer imparts an ability to dry thick section parts, to store samples in the dried state without cracking under conditions of varying relative humidity, and to machine dry gelcast parts without cracking or chipping. A method of making gelcast parts is also disclosed.

  20. Combined Grinding and Drying of Biomass in One Operation Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, S

    2008-06-26

    First American Scientific Corporation (FASC) has developed a unique and innovative grinder/dryer called KDS Micronex. The KS (Kinetic Disintegration System) combines two operations of grinding and drying into a single operation which reduces dependence on external heat input. The machine captures the heat of comminution and combines it will centrifugal forces to expedite moisture extraction from wet biomass. Because it uses mechanical forces rather than providing direct heat to perform the drying operation, it is a simpler machine and uses less energy than conventional grinding and drying operations which occur as two separate steps. The entire compact unit can bemore » transported on a flatbed trailer to the site where biomass is available. Hence, the KDS Micronex is a technology that enables inexpensive pretreatment of waste materials and biomass. A well prepared biomass can be used as feed, fuel or fertilizer instead of being discarded. Electricity and chemical feedstock produced from such biomass would displace the use of fossil fuels and no net greenhouse gas emissions would result from such bio-based operations. Organic fertilizers resulting from the KS Micronex grinding/drying process will be pathogen-free unlike raw animal manures. The feasibility tests on KS during Phase I showed that a prototype machine can be developed, field tested and the technology demonstrated for commercial applications. The present KDS machine can remove up to 400 kg/h of water from a wet feed material. Since biomass processors demand a finished product that is only 10% moist and most raw materials like corn stover, bagasse, layer manure, cow dung, and waste wood have moisture contents of the order of 50%, this water removal rate translates to a production rate of roughly half a ton per hour. this is too small for most processors who are unwilling to acquire multiple machines because of the added complexity to the feed and product removal systems. The economics suffer due to small production rates, because the labor costs are a much larger fraction of the production cost. The goal for further research and development work is to scale up the KDS technology incorporating findings from Phase I into a machine that has superior performance characteristics.« less

  1. Application of Abrasive-Waterjets for Machining Fatigue-Critical Aircraft Aluminum Parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H T; Hovanski, Yuri; Dahl, Michael E

    2010-08-19

    Current specifications require AWJ-cut aluminum parts for fatigue critical aerospace structures to go through subsequent processing due to concerns of degradation in fatigue performance. The requirement of secondary process for AWJ-machined parts greatly negates the cost effectiveness of waterjet technology. Some cost savings are envisioned if it can be shown that AWJ net cut parts have comparable durability properties as those conventionally machined. To revisit and upgrade the specifications for AWJ machining of aircraft aluminum, “Dog-bone” specimens, with and without secondary processes, were prepared for independent fatigue tests at Boeing and Pacific Northwest National Laboratory (PNNL). Test results show thatmore » the fatigue life is proportional to quality levels of machined edges or inversely proportional to the surface roughness Ra . Even at highest quality level, the average fatigue life of AWJ-machined parts is about 30% shorter than those of conventionally machined counterparts. Between two secondary processes, dry-grit blasting with aluminum oxide abrasives until the striation is removed visually yields excellent result. It actually prolongs the fatigue life of parts at least three times higher than that achievable with conventional machining. Dry-grit blasting is relatively simple and inexpensive to administrate and, equally important, alleviates the concerns of garnet embedment.« less

  2. Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651

    PubMed Central

    Jomaa, Walid; Songmene, Victor; Bocher, Philippe

    2014-01-01

    The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining. PMID:28788534

  3. Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles.

    NASA Astrophysics Data System (ADS)

    Jadhav, Pavandatta M.; Reddy, Narala Suresh Kumar

    2018-04-01

    Wear mechanism takes predominant role in reducing the tool life during machining of Titanium alloy. Challenges of wear mechanisms such as variation in chip, high pressure loads and spring back are responsible for tool wear. In addition, many tool materials are inapt for machining due to low thermal conductivity and volume specific heat of these materials results in high cutting temperature during machining. To confront this issue Electrostatic Spray Coating (ESC) coating technique is utilized to enhance the tool life to an acceptable level. The Yttria Stabilized Zirconia (YSZ) acts as a thermal barrier coating having high thermal expansion coefficient and thermal shock resistance. This investigation focuses on the influence of YSZ nanocoating on the tungsten carbide tool material and improve the machinability of Ti-6Al-4V alloy. YSZ nano powder was coated on the tungsten carbide pin by using ESC technique. The coatings have been tested for wear and friction behavior by using a pin-on-disc tribological tester. The dry sliding wear test was performed on Titanium alloy (Ti-6Al-4V) disc and YSZ coated tungsten carbide (pin) at ambient atmosphere. The performance parameters like wear rate and temperature rise were considered upon performing the dry sliding test on Ti-6Al-4V alloy disc. The performance parameters were calculated by using coefficient of friction and frictional force values which were obtained from the pin on disc test. Substantial resistance to wear was achieved by the coating.

  4. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    NASA Astrophysics Data System (ADS)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting force, temperature and surface roughness data is developed and used to study the deformation mechanisms of porous tungsten under different machining conditions. It is found that when hmax = hc, ductile mode machining of otherwise highly brittle porous tungsten is possible. The value of hc is approximately the same as the average ligament size of the 80% density porous tungsten workpiece.

  5. Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions

    NASA Astrophysics Data System (ADS)

    Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.

    2017-07-01

    This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.

  6. 40 CFR 63.322 - Standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... at each opening at all times that the machine is operating. (b) The owner or operator of each new dry... articles to or from the machine, and shall keep the door closed at all other times. (d) The owner or... existing dry cleaning system and of each new transfer machine system and its ancillary equipment installed...

  7. 40 CFR 63.322 - Standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... at each opening at all times that the machine is operating. (b) The owner or operator of each new dry... articles to or from the machine, and shall keep the door closed at all other times. (d) The owner or... existing dry cleaning system and of each new transfer machine system and its ancillary equipment installed...

  8. Comparison of tool life and surface roughness with MQL, flood cooling, and dry cutting conditions with P20 and D2 steel

    NASA Astrophysics Data System (ADS)

    Senevirathne, S. W. M. A. I.; Punchihewa, H. K. G.

    2017-09-01

    Minimum quantity lubrication (MQL) is a cutting fluid (CF) application method that has given promising results in improving machining performances. It has shown that, the performance of cutting systems, depends on the work and tool materials used. AISI P20, and D2 are popular in tool making industry. However, the applicability of MQL in machining these two steels has not been studied previously. This experimental study is focused on evaluating performances of MQL compared to dry cutting, and conventional flood cooling method. Trials were carried out with P20, and D2 steels, using coated carbides as tool material, emulsion cutting oil as the CF. Tool nose wear, and arithmetic average surface roughness (Ra) were taken as response variables. Results were statistically analysed for differences in response variables. Although many past literature has suggested that MQL causes improvements in tool wear, and surface finish, this study has found contradicting results. MQL has caused nearly 200% increase in tool nose wear, and nearly 11-13% increase in surface roughness compared flood cooling method with both P20 and D2. Therefore, this study concludes that MQL affects adversely in machining P20, and D2 steels.

  9. Effect of micro-scale texturing on the cutting tool performance

    NASA Astrophysics Data System (ADS)

    Vasumathy, D.; Meena, Anil

    2018-05-01

    The present study is mainly focused on the cutting performance of the micro-scale textured carbide tools while turning AISI 304 austenitic stainless steel under dry cutting environment. The texture on the rake face of the carbide tools was fabricated by laser machining. The cutting performance of the textured tools was further compared with conventional tools in terms of cutting forces, tool wear, machined surface quality and chip curl radius. SEM and EDS analyses have been also performed to better understand the tool surface characteristics. Results show that the grooves help in breaking the tool-chip contact leading to a lesser tool-chip contact area which results in reduced iron (Fe) adhesion to the tool.

  10. The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel

    NASA Astrophysics Data System (ADS)

    Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.

    2018-01-01

    Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.

  11. 40 CFR 63.322 - Standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-perchloroethylene gas-vapor stream contained within each dry cleaning machine through a refrigerated condenser or an... contained within each dry cleaning machine through a refrigerated condenser or an equivalent control device...' specifications and recommendations. (e) Each refrigerated condenser used for the purposes of complying with...

  12. 40 CFR 63.322 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalent control device. (2) Route the air-perchloroethylene gas-vapor stream contained within each dry... contained within each dry cleaning machine through a refrigerated condenser or an equivalent control device... cleaning machine drum through a carbon adsorber or equivalent control device immediately before or as the...

  13. 40 CFR 63.322 - Standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equivalent control device. (2) Route the air-perchloroethylene gas-vapor stream contained within each dry... contained within each dry cleaning machine through a refrigerated condenser or an equivalent control device... cleaning machine drum through a carbon adsorber or equivalent control device immediately before or as the...

  14. Fundamental investigation on influence of external heat on chip formation during thermal assisted machining

    NASA Astrophysics Data System (ADS)

    Alkali, A. U.; Ginta, T. L.; Abdulrani, A. M.; Elsiti, N. M.

    2018-04-01

    Various heat sources have been investigated by numerous researchers to reveal machinability benefits of thermally assisted machining (TAM) process. Fewer engineering materials have been tested. In the same vein, those researches continue to demonstrate effective performance of TAM in terms of bulk material removal rate, improved surface finish, prolong tool life and reduction of cutting forces among others. Experimental investigation on the strain-hardenability and flow stress of material removed with respect to increase in temperature in TAM has not been given attention in previous studies. This study investigated the pattern of chip morphology and segmentation giving close attention to influence of external heat source responsible for strain – hardenability of the material removed during TAM and dry machining at room temperature. Full immersion down cut milling was used throughout the machining conditions. Machining was conducted on AISI 316L using uncoated tungsten carbide end mill insert at varying cutting speeds (V) of 50, 79, and 100 m/min, and feed rates (f) of 0.15, 0.25, and 0.4 mm/tooth while the depth of cut was maintained at 0.2mm throughout the machining trials. The analyses of chip formation, segmentations and stain hardenability were carried out by using LMU light microscope, field emission microscopy and micro indentation. The study observed that build up edge is formed when a stagnation zone develops in front of tool tip which give rise to poor thermal gradient for conduction heat to be transferred within the bulk material during dry machining. This promotes varying strain – hardening of the material removed with evident high chips hardness and thickness, whereas TAM circumvents such impairment by softening the shear zone through local preheat.

  15. Experimental investigation into effect of cutting parameters on surface integrity of hardened tool steel

    NASA Astrophysics Data System (ADS)

    Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.

    2018-04-01

    Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min

  16. Filament winding technique, experiment and simulation analysis on tubular structure

    NASA Astrophysics Data System (ADS)

    Quanjin, Ma; Rejab, M. R. M.; Kaige, Jiang; Idris, M. S.; Harith, M. N.

    2018-04-01

    Filament winding process has emerged as one of the potential composite fabrication processes with lower costs. Filament wound products involve classic axisymmetric parts (pipes, rings, driveshafts, high-pressure vessels and storage tanks), non-axisymmetric parts (prismatic nonround sections and pipe fittings). Based on the 3-axis filament winding machine has been designed with the inexpensive control system, it is completely necessary to make a relative comparison between experiment and simulation on tubular structure. In this technical paper, the aim of this paper is to perform a dry winding experiment using the 3-axis filament winding machine and simulate winding process on the tubular structure using CADWIND software with 30°, 45°, 60° winding angle. The main result indicates that the 3-axis filament winding machine can produce tubular structure with high winding pattern performance with different winding angle. This developed 3-axis winding machine still has weakness compared to CAWIND software simulation results with high axes winding machine about winding pattern, turnaround impact, process error, thickness, friction impact etc. In conclusion, the 3-axis filament winding machine improvements and recommendations come up with its comparison results, which can intuitively understand its limitations and characteristics.

  17. Sustainable manufacturing by calculating the energy demand during turning of AISI 1045 steel

    NASA Astrophysics Data System (ADS)

    Nur, R.; Nasrullah, B.; Suyuti, M. A.; Apollo

    2018-01-01

    Sustainable development will become important issues for many fields, including production, industry, and manufacturing. In order to achieve sustainable development, industry should be able to perform of sustainable production processes and environmentally friendly. Therefore, there is need to minimize the energy demand in the machining process. This paper presents a calculation method of energy consumption in the machining process, especially turning process which calculated by summing the number of energy consumption, such as the electric energy consumed during the machining preparation, the electrical energy during the cutting processes, and the electrical energy to produce a cutting tool. A case study was performed on dry turning of mild carbon steel using coated carbide. This approach can be used to determine the total amount of electrical energy consumed in the specific machining process. It concluded that the energy consumption will be an increase for using the high cutting speed as well as for the feed rate was increased.

  18. Time to B. cereus about hot chocolate.

    PubMed Central

    Nelms, P K; Larson, O; Barnes-Josiah, D

    1997-01-01

    OBJECTIVE: To determine the cause of illnesses experienced by employees of a Minneapolis manufacturing plant after drinking hot chocolate bought from a vending machine and to explore the prevalence of similar vending machine-related illnesses. METHODS: The authors inspected the vending machines at the manufacturing plant where employees reported illnesses and at other locations in the city where hot chocolate beverages were sold in machines. Tests were performed on dry mix, water, and beverage samples and on machine parts. RESULTS: Laboratory analyses confirmed the presence of B. cereus in dispensed beverages at a concentration capable of causing illness (170,000 count/gm). In citywide testing of vending machines dispensing hot chocolate, 7 of the 39 licensed machines were found to be contaminated, with two contaminated machines having B. cereus levels capable of causing illness. CONCLUSIONS: Hot chocolate sold in vending machines may contain organisms capable of producing toxins that under favorable conditions, can induce illness. Such illnesses are likely to be underreported. Even low concentrations of B. cereus may be dangerous for vulnerable populations such as the aged or immunosuppressed. Periodic testing of vending machines is thus warranted. The relationship between cleaning practices and B. cereus contamination is an issue for further study. PMID:9160059

  19. Time to B. cereus about hot chocolate.

    PubMed

    Nelms, P K; Larson, O; Barnes-Josiah, D

    1997-01-01

    To determine the cause of illnesses experienced by employees of a Minneapolis manufacturing plant after drinking hot chocolate bought from a vending machine and to explore the prevalence of similar vending machine-related illnesses. The authors inspected the vending machines at the manufacturing plant where employees reported illnesses and at other locations in the city where hot chocolate beverages were sold in machines. Tests were performed on dry mix, water, and beverage samples and on machine parts. Laboratory analyses confirmed the presence of B. cereus in dispensed beverages at a concentration capable of causing illness (170,000 count/gm). In citywide testing of vending machines dispensing hot chocolate, 7 of the 39 licensed machines were found to be contaminated, with two contaminated machines having B. cereus levels capable of causing illness. Hot chocolate sold in vending machines may contain organisms capable of producing toxins that under favorable conditions, can induce illness. Such illnesses are likely to be underreported. Even low concentrations of B. cereus may be dangerous for vulnerable populations such as the aged or immunosuppressed. Periodic testing of vending machines is thus warranted. The relationship between cleaning practices and B. cereus contamination is an issue for further study.

  20. Investigations on Surface Milling of Hardened AISI 4140 Steel with Pulse Jet MQL Applicator

    NASA Astrophysics Data System (ADS)

    Bashir, Mahmood Al; Mia, Mozammel; Dhar, Nikhil Ranjan

    2018-06-01

    In this article, an experimental investigation was performed in milling hardened AISI 4140 steel of hardness 40 HRC. The machining was performed in both dry and minimal quantity lubricant (MQL) conditions, as part of neat machining, to make a strong comparison of the undertaken machining environments. The MQL was impinged int the form of pulse jet, by using the specially developed pulse-jet-attachment, to ensure that the cutting fluid can be applied in different timed pulses and quantities at critical zones. The tool wear, cutting force and surface roughness were taken as the quality responses while cutting speed, table feed rate and flow rate of the pulse were considered as influential factors. The depth of cut was kept constant at 1.50 mm because of its less significant effects and the straight oil was adopted as cutting fluid in pulse-jet-MQL. The effects of different factors, on the quality responses, are analyzed using ANOVA. It is observed that MQL applicator system exhibits overall better performance when compared to dry milling by reducing surface roughness, cutting force and prolonging tool life but a flow rate of 150 ml/h has tremendous effects on the responses. This investigation and afterward results are expected to aid the industrial practitioner and researcher to adopt the pulse-MQL in high speed milling to prolong tool life, reduce tool wear, diminish cutting force generation and promote better surface finish.

  1. Investigations on Surface Milling of Hardened AISI 4140 Steel with Pulse Jet MQL Applicator

    NASA Astrophysics Data System (ADS)

    Bashir, Mahmood Al; Mia, Mozammel; Dhar, Nikhil Ranjan

    2016-06-01

    In this article, an experimental investigation was performed in milling hardened AISI 4140 steel of hardness 40 HRC. The machining was performed in both dry and minimal quantity lubricant (MQL) conditions, as part of neat machining, to make a strong comparison of the undertaken machining environments. The MQL was impinged int the form of pulse jet, by using the specially developed pulse-jet-attachment, to ensure that the cutting fluid can be applied in different timed pulses and quantities at critical zones. The tool wear, cutting force and surface roughness were taken as the quality responses while cutting speed, table feed rate and flow rate of the pulse were considered as influential factors. The depth of cut was kept constant at 1.50 mm because of its less significant effects and the straight oil was adopted as cutting fluid in pulse-jet-MQL. The effects of different factors, on the quality responses, are analyzed using ANOVA. It is observed that MQL applicator system exhibits overall better performance when compared to dry milling by reducing surface roughness, cutting force and prolonging tool life but a flow rate of 150 ml/h has tremendous effects on the responses. This investigation and afterward results are expected to aid the industrial practitioner and researcher to adopt the pulse-MQL in high speed milling to prolong tool life, reduce tool wear, diminish cutting force generation and promote better surface finish.

  2. Effect of bionic coupling units' forms on wear resistance of gray cast iron under dry linear reciprocating sliding condition

    NASA Astrophysics Data System (ADS)

    Pang, Zuobo; Zhou, Hong; Xie, Guofeng; Cong, Dalong; Meng, Chao; Ren, Luquan

    2015-07-01

    In order to get close to the wear form of guide rails, the homemade linear reciprocating wear testing machine was used for the wear test. In order to improve the wear-resistance of gray cast iron guide rail, bionic coupling units of different forms were manufactured by a laser. Wear behavior of gray-cast-iron with bionic-coupling units has been studied under dry sliding condition at room temperature using the wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that bionic coupling unit could improve the wear resistance of gray cast iron. The wear resistance of gray cast iron with reticulation bionic coupling unit is the best. When the load and speed changed, reticulation bionic coupling unit still has excellent performance in improving the wear resistance of gray cast iron.

  3. Influence of Cooling Condition on the Performance of Grinding Hardened Layer in Grind-hardening

    NASA Astrophysics Data System (ADS)

    Wang, G. C.; Chen, J.; Xu, G. Y.; Li, X.

    2018-02-01

    45# steel was grinded and hardened on a surface grinding machine to study the effect of three different cooling media, including emulsion, dry air and liquid nitrogen, on the microstructure and properties of the hardened layer. The results show that the microstructure of material surface hardened with emulsion is pearlite and no hardened layer. The surface roughness is small and the residual stress is compressive stress. With cooling condition of liquid nitrogen and dry air, the specimen surface are hardened, the organization is martensite, the surface roughness is also not changed, but high hardness of hardened layer and surface compressive stress were obtained when grinding using liquid nitrogen. The deeper hardened layer grinded with dry air was obtained and surface residual stress is tensile stress. This study provides an experimental basis for choosing the appropriate cooling mode to effectively control the performance of grinding hardened layer.

  4. A first French assessment of population exposure to tetrachloroethylene from small dry-cleaning facilities.

    PubMed

    Chiappini, L; Delery, L; Leoz, E; Brouard, B; Fagault, Y

    2009-06-01

    Used as a solvent in the dry-cleaning industry, tetrachloroethylene (C(2)Cl(4)) can be a pollutant of residential indoor air, which can cause long-term harmful exposures because of its neurotoxicity and probable carcinogenicity. In France, dry-cleaning facilities are integrated in urban environments (shopping malls, residential buildings) and can contribute to C(2)Cl(4) exposure for customers and residents. This exploratory work presents the results from five studies carried out in one shopping mall and four residential buildings housing a dry-cleaning facility. These studies involved dry-cleaning machines fitted with a Carbon Adsorber and unfitted, with or without Air Exhaust System. Samples were collected in the cleaning facilities and in the apartments located above with passive samplers allowing measurement of time-integrated concentrations on a 7 days sampling period. It has obviously shown the degradation of indoor air quality in these environments and underlined the contributing role of the machine technology and ventilation system on the amount of released C(2)Cl(4) in the indoor air. To temper these results, it must be pointed out that some parameters (building insulation, amount of solvent used...) which would influence C(2)Cl(4) fugitive release have not been quantified and should be looked at in further studies. In France, dry-cleaning facilities are frequently integrated in urban environments (large shopping malls or residential buildings) and can significantly contribute to tetrachloroethylene (C(2)Cl(4)) population exposure. The amount of fugitive releases in these environments depends on several parameters such as the dry-cleaning machine technology (fitted or unfitted with a carbon adsorber) and the ventilation (air exhaust system). To reduce C(2)Cl(4) exposure in residential buildings and other indoor environments with on-site dry cleaners, carbon adsorber unequipped machine should be replaced by newer technology and dry cleaners should be equipped with mechanical air exhaust systems.

  5. 78 FR 28577 - Notification of Proposed Production Activity: Whirlpool Corporation Subzone 8I; (Washing Machines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ...; refrigeration parts; dishwashing machine parts; drying machine parts; water inlet valves; AC/DC fan motors; AC... harnesses of copper; turbidity sensors; and, sensor--spray arms (duty rate ranges from duty- free to 6.5...

  6. OCONUS Compliance Assessment Protocols -- OEBGD (Air Force and Marine Corps Version)

    DTIC Science & Technology

    2010-06-01

    new and existing perchloroethylene (PCE) dry -cleaning machines must be controlled. • Electroplating and anodizing tanks must comply with one of...and other contaminants from the surfaces of the parts or to dry the parts. Cleaning machines that contain and use heated, nonboiling solvent to clean...cement kilns that combust MSW, internal combustion engines, gas turbines, or other combustion devices that combust landfill gases collected by

  7. Development of an electromechanical principle for wet and dry milling

    NASA Astrophysics Data System (ADS)

    Halbedel, Bernd; Kazak, Oleg

    2018-05-01

    The paper presents a novel electromechanical principle for wet and dry milling of different materials, in which the milling beads are moved under a time- and local-variable magnetic field. A possibility to optimize the milling process in such a milling machine by simulation of the vector gradient distribution of the electromagnetic field in the process room is presented. The mathematical model and simulation methods based on standard software packages are worked out. The results of numerical simulations and experimental measurements of the electromagnetic field in the working chamber of a developed and manufactured laboratory plant correlate well with each other. Using the obtained operating parameters, dry milling experiments with crushed cement clinker and wet milling experiments of organic agents in the laboratory plant are performed and the results are discussed here.

  8. Cutting Zone Temperature Identification During Machining of Nickel Alloy Inconel 718

    NASA Astrophysics Data System (ADS)

    Czán, Andrej; Daniš, Igor; Holubják, Jozef; Zaušková, Lucia; Czánová, Tatiana; Mikloš, Matej; Martikáň, Pavol

    2017-12-01

    Quality of machined surface is affected by quality of cutting process. There are many parameters, which influence on the quality of the cutting process. The cutting temperature is one of most important parameters that influence the tool life and the quality of machined surfaces. Its identification and determination is key objective in specialized machining processes such as dry machining of hard-to-machine materials. It is well known that maximum temperature is obtained in the tool rake face at the vicinity of the cutting edge. A moderate level of cutting edge temperature and a low thermal shock reduce the tool wear phenomena, and a low temperature gradient in the machined sublayer reduces the risk of high tensile residual stresses. The thermocouple method was used to measure the temperature directly in the cutting zone. An original thermocouple was specially developed for measuring of temperature in the cutting zone, surface and subsurface layers of machined surface. This paper deals with identification of temperature and temperature gradient during dry peripheral milling of Inconel 718. The measurements were used to identification the temperature gradients and to reconstruct the thermal distribution in cutting zone with various cutting conditions.

  9. Safe Replacement For Asbestos In Nickel/Hydrogen Cells

    NASA Technical Reports Server (NTRS)

    Scott, William E.

    1993-01-01

    Polyethylene fibers and potassium titanate particles perform as well as asbestos. New material for separators of nickel-hydrogen electrochemical cells offers performance similar to that of asbestos separator material without adverse health effects. In one version, separator contains pure polyethylene fibers, and may or may not contain supplementary latices as bonding agents. In standard wet-laying papermaking process, fibers pressed into mat, then dried. Mat used as is or pressed further in hot calender stack to soften and fuse fibers at crossing points. Treatment reduces porosity and increases resistance of mat to passage of air bubbles under pressure. In alternative version, matrix of 20 to 40 percent polyethylene fibers and 60 to 80 percent potassium titanate particles formed on paper machine, then dried. It, too, can be treated by hot calendering.

  10. Smart Screening System (S3) In Taconite Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daryoush Allaei; Angus Morison; David Tarnowski

    2005-09-01

    The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the process of FE model validation and correlation with experimental data in terms of dynamic performance and predicted stresses. It also detailed efforts into making the supporting structure less important to system performance. Finally, an introduction into the dry application concept was presented. Since then, the design refinement phase was completed. This has resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. Furthermore, this system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota.« less

  11. Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Pradeep Kumar, M.

    2011-09-01

    Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.

  12. Stress and Strain Distributions during Machining of Ti-6Al-4V at Ambient and Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Fahim

    Dry and liquid nitrogen pre-cooled Ti-6Al-4V samples were machined at a cutting speed of 43.2 m/min and at low (0.1 mm/rev) to high (0.4 mm/rev) feed rates for understanding the effects of temperature and strain rate on chip microstructures. During cryogenic machining, it was observed that between feed rates of 0.10 and 0.30 mm/rev, a 25% pressure reduction on tool occurred. Smaller number of chips and low tool/chip contact time and temperature were observed (compared to dry machining under ambient conditions). An in-situ set-up that consisted of a microscope and a lathe was constructed and helped to propose a novel serrated chip formation mechanism when microstructures (strain localization) and surface roughness were considered. Dimpled fracture surfaces observed in high-speed-machined chips were formed due to stable crack propagation that was also recorded during in-situ machining. An instability criterion was developed that showed easier strain localization within the 0.10-0.30mm/rev feed rate range.

  13. Simulation of router action on a lathe to test the cutting tool performance in edge-trimming of graphite/epoxy composite

    NASA Astrophysics Data System (ADS)

    Ramulu, M.; Rogers, E.

    1994-04-01

    The predominant machining application with graphite/epoxy composite materials in aerospace industry is peripheral trimming. The computer numerically controlled (CNC) high speed routers required to do edge trimming work are generally scheduled for production work in industry and are not available for extensive cutter testing. Therefore, an experimental method of simulating the conditions of periphery trim using a lathe is developed in this paper. The validity of the test technique will be demonstrated by conducting carbide tool wear tests under dry cutting conditions. The experimental results will be analyzed to characterize the wear behavior of carbide cutting tools in machining the composite materials.

  14. Applicability Determination Letters for 40 C.F.R. Part 63 Subpart M, National Perchloroethylene Air Emission Standards for Dry Cleaning Facilities

    EPA Pesticide Factsheets

    This pages contains two letters on the applicability of the National Perchloroethylene Air Emission Standards for Dry Cleaning Facilities (40 CFR 63, Subpart M). Both letters clarify what constitutes instillation of a dry cleaning machine.

  15. 7 CFR 29.3548 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3548 Section 29.3548 Agriculture... Type 95) § 29.3548 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [30 FR 9207, July 23, 1965...

  16. 7 CFR 29.1060 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.1060 Section 29.1060 Agriculture... Type 92) § 29.1060 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [42 FR 21092, Apr. 25, 1977...

  17. 7 CFR 29.3058 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3058 Section 29.3058 Agriculture... Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [24 FR 8771, Oct. 29, 1959. Redesignated at 47 FR...

  18. 7 CFR 29.2552 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2552 Section 29.2552 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2552 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam...

  19. Smart Screening System (S3) In Taconite Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daryoush Allaei; Ryan Wartman; David Tarnowski

    2006-03-01

    The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the completion of the design refinement phase. This phase resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. This system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota. Since then, the fabrication of the dry application prototype (incorporating an electromagnetic drive mechanism and a new deblinding concept) has been completed and successfully tested at QRDC's lab.« less

  20. Fish swarm intelligent to optimize real time monitoring of chips drying using machine vision

    NASA Astrophysics Data System (ADS)

    Hendrawan, Y.; Hawa, L. C.; Damayanti, R.

    2018-03-01

    This study attempted to apply machine vision-based chips drying monitoring system which is able to optimise the drying process of cassava chips. The objective of this study is to propose fish swarm intelligent (FSI) optimization algorithms to find the most significant set of image features suitable for predicting water content of cassava chips during drying process using artificial neural network model (ANN). Feature selection entails choosing the feature subset that maximizes the prediction accuracy of ANN. Multi-Objective Optimization (MOO) was used in this study which consisted of prediction accuracy maximization and feature-subset size minimization. The results showed that the best feature subset i.e. grey mean, L(Lab) Mean, a(Lab) energy, red entropy, hue contrast, and grey homogeneity. The best feature subset has been tested successfully in ANN model to describe the relationship between image features and water content of cassava chips during drying process with R2 of real and predicted data was equal to 0.9.

  1. Optimization of Cvd Diamond Coating Type on Micro Drills in Pcb Machining

    NASA Astrophysics Data System (ADS)

    Lei, X. L.; He, Y.; Sun, F. H.

    2016-12-01

    The demand for better tools for machining printed circuit boards (PCBs) is increasing due to the extensive usage of these boards in digital electronic products. This paper is aimed at optimizing coating type on micro drills in order to extend their lifetime in PCB machining. First, the tribotests involving micro crystalline diamond (MCD), nano crystalline diamond (NCD) and bare tungsten carbide (WC-Co) against PCBs show that NCD-PCB tribopair exhibits the lowest friction coefficient (0.35) due to the unique nano structure and low surface roughness of NCD films. Thereafter, the dry machining performance of the MCD- and NCD-coated micro drills on PCBs is systematically studied, using diamond-like coating (DLC) and TiAlN-coated micro drills as comparison. The experiments show that the working lives of these micro drills can be ranked as: NCD>TiAlN>DLC>MCD>bare WC-Co. The superior cutting performance of NCD-coated micro drills in terms of the lowest flank wear growth rate, no tool degradation (e.g. chipping, tool tipping) appearance, the best hole quality as well as the lowest feed force may come from the excellent wear resistance, lower friction coefficient against PCB as well as the high adhesive strength on the underneath substrate of NCD films.

  2. Dust Emission Induced By Friction Modifications At Tool Chip Interface In Dry Machining In MMCp

    NASA Astrophysics Data System (ADS)

    Kremer, Arnaud; El Mansori, Mohamed

    2011-01-01

    This paper investigates the relationship between dust emission and tribological conditions at the tool-chip interface when machining Metal Matrix composite reinforced with particles (MMCp) in dry mode. Machining generates aerosols that can easily be inhaled by workers. Aerosols may be composed of oil mist, tool material or alloying elements of workpiece material. Bar turning tests were conducted on a 2009 aluminum alloy reinforced with different level of Silicon Carbide particles (15, 25 and 35% of SiCp). Variety of PCD tools and nanostructured diamond coatings were used to analyze their performances on air pollution. A spectrometer was used to detect airborne aerosol particles in the size range between 0.3μm to 20 μm and to sort them in 15 size channels in real time. It was used to compare the effects of test parameters on dust emission. Observations of tool face and chip morphology reveal the importance of friction phenomena. It was demonstrated that level of friction modifies chip curvature and dust emission. The increase of level of reinforcement increase the chip segmentation and decrease the contact length and friction area. A "running in" phenomenon with important dust emission appeared with PCD tool due to the tool rake face flatness. In addition dust generation is more sensitive to edge integrity than power consumption.

  3. 40 CFR 63.321 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...

  4. 40 CFR 63.321 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...

  5. 40 CFR 63.321 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...

  6. 40 CFR 63.321 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...

  7. 40 CFR 63.321 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...

  8. Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture

    NASA Astrophysics Data System (ADS)

    Muhammad, Noorhafiza; Li, Lin

    2012-06-01

    Microprofiling of medical coronary stents has been dominated by the use of Nd:YAG lasers with pulse lengths in the range of a few milliseconds, and material removal is based on the melt ejection with a high-pressure gas. As a result, recast and heat-affected zones are produced, and various post-processing procedures are required to remove these defects. This paper reports a new approach of machining stents in submerged conditions using a 100-fs pulsed laser. A comparison is given of dry and underwater femtosecond laser micromachining techniques of nickel-titanium alloy (nitinol) typically used as the material for coronary stents. The characteristics of laser interactions with the material have been studied. A femtosecond Ti:sapphire laser system (wavelength of 800 nm, pulse duration of 100 fs, repetition rate of 1 kHz) was used to perform the cutting process. It is observed that machining under a thin water film resulted in no presence of heat-affected zone, debris, spatter or recast with fine-cut surface quality. At the optimum parameters, the results obtained with dry cutting showed nearly the same cut surface quality as with cutting under water. However, debris and recast formation still appeared on the dry cut, which is based on material vaporization. Physical processes involved during the cutting process in a thin water film, i.e. bubble formation and shock waves, are discussed.

  9. Process Capability of High Speed Micro End-Milling of Inconel 718 with Minimum Quantity Lubrication

    NASA Astrophysics Data System (ADS)

    Rahman, Mohamed Abd; Yeakub Ali, Mohammad; Rahman Shah Rosli, Abdul; Banu, Asfana

    2017-03-01

    The demand for micro-parts is expected to grow and micro-machining has been shown to be a viable manufacturing process to produce these products. These micro-products may be produced from hard-to-machine materials such as superalloys under little or no metal cutting fluids to reduce machining cost or drawbacks associated with health and environment. This project aims to investigate the capability of micro end-milling process of Inconel 718 with minimum quantity lubrication (MQL). Microtools DT-110 multi-process micro machine was used to machine 10 micro-channels with MQL and 10 more under dry condition while maintaining the same machining parameters. The width of the micro-channels was measured using digital microscope and used to determine the process capability indices, Cp and Cpk. QI Macros SPC for Excel was used to analyze the resultant machining data. The results indicated that micro end-milling process of Inconel 718 was not capable under both MQL and dry cutting conditions as indicated by the Cp values of less than 1.0. However, the use of MQL helped the process to be more stable and capable. Results obtained showed that the process variation was greatly reduced by using MQL in micro end-milling of Inconel 718.

  10. An experimental assessment on the performance of different lubrication techniques in grinding of Inconel 751.

    PubMed

    Balan, A S S; Vijayaraghavan, L; Krishnamurthy, R; Kuppan, P; Oyyaravelu, R

    2016-09-01

    The application of emulsion for combined heat extraction and lubrication requires continuous monitoring of the quality of emulsion to sustain a desired grinding environment; this is applicable to other grinding fluids as well. Thus to sustain a controlled grinding environment, it is necessary to adopt an effectively lubricated wheel-work interface. The current study was undertaken to assess experimentally the ​ effects of different grinding environments such as dry, minimum quantity lubrication (MQL) and Cryo-MQL on performance, such as grinding force, temperature, surface roughness and chip morphology on Inconel 751, a higher heat resistance material posing thermal problems and wheel loading. The results show that grinding with the combination of both liquid nitrogen (LN2) and MQL lowers temperature, cutting forces, and surface roughness as compared with MQL and dry grinding. Specific cutting energy is widely used as an inverse measure of process efficiency in machining. It is found from the results that specific cutting energy of Cryo-MQL assisted grinding is 50-65% lower than conventional dry grinding. The grindability of Inconel 751 superalloy can be enhanced with Cryo-MQL condition.

  11. Development of Keropok Keping Drying Machine for Small & Medium Enterprises (SMEs)

    NASA Astrophysics Data System (ADS)

    Mohamaddan, S.; Mohd Mohtar, A. M. A. A.; Junaidi, N.; Mohtadzar, N. A. A.; Mohamad Suffian, M. S. Z.

    2016-02-01

    Keropok is a traditional cracker product in Southeast Asia. Keropok is made from fish, squid or shrimp mixed with starch or sago flour and eggs. In Malaysia, keropok industry is widely operated at the coastal areas where the fish/seafood supply can be easily accessed. Keropok need to be dried before the packaging process. At the moment, conventional method was used where the keropok is arranged under the sunlight on a board called pemidai. The method is considered less hygienic since it exposed to the dirt and dust and less practical especially during the raining season. This research is focusing on a new automation technique to solve the problems. Rotary drum with internal holder was developed as the drying machine. Keropok keping (types of keropok) was selected to be experimented using the machine with three different rotating speeds. Preliminary experiment result shows that the broken rate of the keropok keping was around 27% of the total weight. The development of new automation system is hoped to improve the small medium enterprises (SMEs) in Malaysia.

  12. 40 CFR 63.323 - Test methods and monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air-perchloroethylene gas-vapor stream on the outlet side of the refrigerated condenser on a dry-to-dry machine, dryer, or reclaimer with a temperature sensor to determine if it is equal to or less than 7.2 °C (45 °F) before the end of the cool-down or drying cycle while the gas-vapor stream is flowing...

  13. 40 CFR 63.323 - Test methods and monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air-perchloroethylene gas-vapor stream on the outlet side of the refrigerated condenser on a dry-to-dry machine, dryer, or reclaimer with a temperature sensor to determine if it is equal to or less than 7.2 °C (45 °F) before the end of the cool-down or drying cycle while the gas-vapor stream is flowing...

  14. Control Systems of Rubber Dryer Machinery Components Using Programmable Logic Control (PLC)

    NASA Astrophysics Data System (ADS)

    Hendra; Yulianto, A. S.; Indriani, A.; Hernadewita; Hermiyetti

    2018-02-01

    Application of programmable logic control (PLC) is widely used on the control systems in the many field engineering such as automotive, aviation, food processing and other industries [1-2]. PLC is simply program to control many automatic activity, easy to use, flexible and others. PLC using the ladder program to solve and regulated the control system component. In previous research, PLC was used for control system of rotary dryer machine. In this paper PLC are used for control system of motion component in the rubber dryer machinery. Component of rubber dryer machine is motors, gearbox, sprocket, heater, drying chamber and bearing. Principle working of rubber dryer machinery is wet rubber moving into the drying chamber by sprocket. Sprocket is driven by motors that conducted by PLC to moving and set of wet rubber on the drying chamber. Drying system uses greenhouse effect by making hanger dryer design in the form of line path. In this paper focused on motion control system motors and sensors drying rubber using PLC. The results show that control system of rubber dryer machinery can work in accordance control input and the time required to dry the rubber.

  15. Manufacture of oak furniture, cabinets, and panels

    Treesearch

    Harold C. Moser

    1971-01-01

    Oak is uniquely favored for use in furniture, cabinets, and similar products. The supply is plentiful. Though drying presents some problems, once oak is properly dried it is a stable wood that machines very well, glues well, and accepts a variety of finishes well.

  16. Single phase space laundry development

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Putnam, David F.; Lunsford, Teddie D.; Streech, Neil D.; Wheeler, Richard R., Jr.; Reimers, Harold

    1993-01-01

    This paper describes a newly designed, 2.7 Kg (6 pound) capacity, laundry machine called the Single Phase Laundry (SPSL). The machine was designed to wash and dry crew clothing in a micro-gravity environment. A prototype unit was fabricated for NASA-JSC under a Small Business Innovated Research (SBIR) contract extending from September 1990 to January 1993. The unit employs liquid jet agitation, microwave vacuum drying, and air jet tumbling, which was perfected by KC-135 zero-g flight testing. Operation is completely automated except for loading and unloading clothes. The unit uses about 20 percent less power than a conventional household appliance.

  17. Effect of mesh-peel ply variation on mechanical properties of E-glas composite by infusion vacuum method

    NASA Astrophysics Data System (ADS)

    Abdurohman, K.; Siahaan, Mabe

    2018-04-01

    Composite materials made of glass fiber EW-135 with epoxy lycal resin with vacuum infusion method have been performed. The dried glass fiber is arranged in a mold then connected to a vacuum machine and a resin tube. Then, the vacuum machine is turned on and at the same time the resin is sucked and flowed into the mold. This paper reports on the effect of using mesh- peel ply singles on upper-side laminates called A and the effect of using double mesh-peel ply on upper and lower-side laminates call B with glass fiber arrangement is normal and ± 450 in vacuum infusion process. Followed by the manufacture of tensile test specimen and tested its tensile strength with universal test machine 100kN Tensilon RTF 2410, at room temperature with constant crosshead speed. From tensile test results using single and double layers showed that double mesh-peel ply can increase tensile strength 14% and Young modulus 17%.

  18. 16 CFR 423.8 - Exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... washing and drycleaning procedures can safely be used on a product: (1) Machine washing in hot water; (2) Machine drying at a high setting; (3) Ironing at a hot setting; (4) Bleaching with all commercially... National Archives and Records Administration (NARA). For information on the availability of this material...

  19. 16 CFR 423.8 - Exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... washing and drycleaning procedures can safely be used on a product: (1) Machine washing in hot water; (2) Machine drying at a high setting; (3) Ironing at a hot setting; (4) Bleaching with all commercially... National Archives and Records Administration (NARA). For information on the availability of this material...

  20. Application of Taguchi-grey method to optimize drilling of EMS 45 steel using minimum quantity lubrication (MQL) with multiple performance characteristics

    NASA Astrophysics Data System (ADS)

    Soepangkat, Bobby O. P.; Suhardjono, Pramujati, Bambang

    2017-06-01

    Machining under minimum quantity lubrication (MQL) has drawn the attention of researchers as an alternative to the traditionally used wet and dry machining conditions with the purpose to minimize the cooling and lubricating cost, as well as to reduce cutting zone temperature, tool wear, and hole surface roughness. Drilling is one of the important operations to assemble machine components. The objective of this study was to optimize drilling parameters such as cutting feed and cutting speed, drill type and drill point angle on the thrust force, torque, hole surface roughness and tool flank wear in drilling EMS 45 tool steel using MQL. In this study, experiments were carried out as per Taguchi design of experiments while an L18 orthogonal array was used to study the influence of various combinations of drilling parameters and tool geometries on the thrust force, torque, hole surface roughness and tool flank wear. The optimum drilling parameters was determined by using grey relational grade obtained from grey relational analysis for multiple-performance characteristics. The drilling experiments were carried out by using twist drill and CNC machining center. This work is useful for optimum values selection of various drilling parameters and tool geometries that would not only minimize the thrust force and torque, but also reduce hole surface roughness and tool flank wear.

  1. Influence of Cutting Parameters and Tool Wear on the Surface Integrity of Cobalt-Based Stellite 6 Alloy When Machined Under a Dry Cutting Environment

    NASA Astrophysics Data System (ADS)

    Yingfei, Ge; de Escalona, Patricia Muñoz; Galloway, Alexander

    2017-01-01

    The efficiency of a machining process can be measured by evaluating the quality of the machined surface and the tool wear rate. The research reported herein is mainly focused on the effect of cutting parameters and tool wear on the machined surface defects, surface roughness, deformation layer and residual stresses when dry milling Stellite 6, deposited by overlay on a carbon steel surface. The results showed that under the selected cutting conditions, abrasion, diffusion, peeling, chipping and breakage were the main tool wear mechanisms presented. Also the feed rate was the primary factor affecting the tool wear with an influence of 83%. With regard to the influence of cutting parameters on the surface roughness, the primary factors were feed rate and cutting speed with 57 and 38%, respectively. In addition, in general, as tool wear increased, the surface roughness increased and the deformation layer was found to be influenced more by the cutting parameters rather than the tool wear. Compressive residual stresses were observed in the un-machined surface, and when machining longer than 5 min, residual stress changed 100% from compression to tension. Finally, results showed that micro-crack initiation was the main mechanism for chip formation.

  2. Performance indicators for carrier-based DPIs: Carrier surface properties for capsule filling and API properties for in vitro aerosolisation.

    PubMed

    Faulhammer, E; Zellnitz, S; Wutscher, T; Stranzinger, S; Zimmer, A; Paudel, A

    2018-01-30

    This study investigates engineered carrier, as well as engineered API particles, and shows that there are distinct performance indicators of particle engineering for carrier-based dry powder inhalers (DPIs). Spray dried (SDSS) and jet-milled (JMSS) salbutamol sulphate (SS) was blended with untreated α-lactose monohydrate (LAC_R) and α-lactose monohydrate engineered (LAC_E). Subsequent capsule filling was performed with different process settings on a dosator nozzle capsule filling machine in order to reach a target fill weight of 20-25 mg. To evaluate the performance of the different mixtures, in vitro lung deposition experiments were carried out with a next generation impactor, the emitted dose (ED) and fine particle fraction (FPF) were calculated based on the specification of the European pharmacopoeia. The FPF of micronised powder blends is significantly higher (20%) compared to the FPF of spray dried blends (5%). Compared to API engineering, carrier engineering had a positive effect on the capsule filling performance (weight variability and mean fill weight) at lower compression ratios (setting 1). Results further showed that higher compression ratios appear to be beneficial in terms of capsule filling performance (higher fill weight and less fill weight variation). Concluding, it can be stated that the carrier engineering, or generally carrier properties, govern downstream processing, whereas the API engineering and API properties govern the aerosolisation performance and thereby significantly affect the dose delivery to the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Experimental and numerical investigations on the temperature distribution in PVD AlTiN coated and uncoated Al2O3/TiCN mixed ceramic cutting tools in hard turning of AISI 52100 steel

    NASA Astrophysics Data System (ADS)

    Sateesh Kumar, Ch; Patel, Saroj Kumar; Das, Anshuman

    2018-03-01

    Temperature generation in cutting tools is one of the major causes of tool failure especially during hard machining where machining forces are quite high resulting in elevated temperatures. Thus, the present work investigates the temperature generation during hard machining of AISI 52100 steel (62 HRC hardness) with uncoated and PVD AlTiN coated Al2O3/TiCN mixed ceramic cutting tools. The experiments were performed on a heavy duty lathe machine with both coated and uncoated cutting tools under dry cutting environment. The temperature of the cutting zone was measured using an infrared thermometer and a finite element model has been adopted to predict the temperature distribution in cutting tools during machining for comparative assessment with the measured temperature. The experimental and numerical results revealed a significant reduction of cutting zone temperature during machining with PVD AlTiN coated cutting tools when compared to uncoated cutting tools during each experimental run. The main reason for decrease in temperature for AlTiN coated tools is the lower coefficient of friction offered by the coating material which allows the free flow of the chips on the rake surface when compared with uncoated cutting tools. Further, the superior wear behaviour of AlTiN coating resulted in reduction of cutting temperature.

  4. Application of Artificial Neural Network and Support Vector Machines in Predicting Metabolizable Energy in Compound Feeds for Pigs.

    PubMed

    Ahmadi, Hamed; Rodehutscord, Markus

    2017-01-01

    In the nutrition literature, there are several reports on the use of artificial neural network (ANN) and multiple linear regression (MLR) approaches for predicting feed composition and nutritive value, while the use of support vector machines (SVM) method as a new alternative approach to MLR and ANN models is still not fully investigated. The MLR, ANN, and SVM models were developed to predict metabolizable energy (ME) content of compound feeds for pigs based on the German energy evaluation system from analyzed contents of crude protein (CP), ether extract (EE), crude fiber (CF), and starch. A total of 290 datasets from standardized digestibility studies with compound feeds was provided from several institutions and published papers, and ME was calculated thereon. Accuracy and precision of developed models were evaluated, given their produced prediction values. The results revealed that the developed ANN [ R 2  = 0.95; root mean square error (RMSE) = 0.19 MJ/kg of dry matter] and SVM ( R 2  = 0.95; RMSE = 0.21 MJ/kg of dry matter) models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR ( R 2  = 0.89; RMSE = 0.27 MJ/kg of dry matter). The developed ANN and SVM models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR; however, there were not obvious differences between performance of ANN and SVM models. Thus, SVM model may also be considered as a promising tool for modeling the relationship between chemical composition and ME of compound feeds for pigs. To provide the readers and nutritionist with the easy and rapid tool, an Excel ® calculator, namely, SVM_ME_pig, was created to predict the metabolizable energy values in compound feeds for pigs using developed support vector machine model.

  5. Evaluating uncertainties in multi-layer soil moisture estimation with support vector machines and ensemble Kalman filtering

    NASA Astrophysics Data System (ADS)

    Liu, Di; Mishra, Ashok K.; Yu, Zhongbo

    2016-07-01

    This paper examines the combination of support vector machines (SVM) and the dual ensemble Kalman filter (EnKF) technique to estimate root zone soil moisture at different soil layers up to 100 cm depth. Multiple experiments are conducted in a data rich environment to construct and validate the SVM model and to explore the effectiveness and robustness of the EnKF technique. It was observed that the performance of SVM relies more on the initial length of training set than other factors (e.g., cost function, regularization parameter, and kernel parameters). The dual EnKF technique proved to be efficient to improve SVM with observed data either at each time step or at a flexible time steps. The EnKF technique can reach its maximum efficiency when the updating ensemble size approaches a certain threshold. It was observed that the SVM model performance for the multi-layer soil moisture estimation can be influenced by the rainfall magnitude (e.g., dry and wet spells).

  6. 7 CFR 29.2300 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2300 Section 29.2300 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2300 Steam... machine or other steam-conditioning equipment. [37 FR 13521, July 11, 1972. Redesignated at 51 FR 40406...

  7. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H. (Inventor); Zalameda, Joseph N. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  8. Machinability of Stellite 6 hardfacing

    NASA Astrophysics Data System (ADS)

    Benghersallah, M.; Boulanouar, L.; Le Coz, G.; Devillez, A.; Dudzinski, D.

    2010-06-01

    This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.

  9. Analysis Of The Surface Roughness Obtained During The Dry Turning Of UNS A97050-T7 Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    de Agustina, B.; Rubio, E. M.; Villeta, M.; Sebastián, M. A.

    2009-11-01

    Currently, in the aeronautical, aerospace and automotive industries there is high demand of materials such as the aluminium alloys that have high resistance even at high temperatures as well as a low density. For this reason, these alloys are widely used for the production of different elements that compose aircraft and aerospace vehicles. Nevertheless, in spite of the important role these materials have from the competitive point of view, they can commonly show problems of machinability associated with the tool wear. That has made that traditionally cutting fluids had been used in machining processes. However, they can contain environmentally harmful constituents and increase considerably the total cost of the process. Therefore, researches have been focused on the development of cleaner production technologies applications as dry machining. This leads to the search for combinations of cutting parameters and type of tools (types of coatings and different geometries) that could improve the machining under such conditions. The aim of this study is to analyse the relationship between the surface roughness obtained during the dry turning of aluminium UNS A97050-T7 bars and the cutting parameters (cutting speed and feed) using three different tools. As a first conclusion it could be affirmed that the feed was the cutting parameter more influential on the surface roughness and to a lesser extend the cutting speed, the type of tool and the interaction between the type of tool and the feed.

  10. Dry sliding behavior of aluminum alloy 8011 with 12% fly ash composites

    NASA Astrophysics Data System (ADS)

    Magibalan, S.; Senthilkumar, P.; Palanivelu, R.; Senthilkumar, C.; Shivasankaran, N.; Prabu, M.

    2018-05-01

    This research focused on the fabrication of aluminum alloy 8011 with 12% fly ash (FA) composite (AA8011%–12% FA) using the stir casting method. A three-level central composite design experiment was developed using response surface methodology with various parameters such as load, time, and sliding velocity varied in the range of 5 to 15 N, 5 to 15 min, and 1.5 to 4.5 m.s‑1, respectively. Dry sliding wear tests were performed as per the experimental design using a pin on disc at room temperature. The obtained regression result indicated that the developed model performed well in relating the wear process parameters and predicted the wear behavior of the composite. The surface plot showed that the wear rate increases with increase in load, time, and sliding velocity. Hardness was evaluated by Vickers hardness testing machine. Moreover, the surface morphology of the worn-out composite was examined using a scanning electron microscope.

  11. Classification of single-trial auditory events using dry-wireless EEG during real and motion simulated flight.

    PubMed

    Callan, Daniel E; Durantin, Gautier; Terzibas, Cengiz

    2015-01-01

    Application of neuro-augmentation technology based on dry-wireless EEG may be considerably beneficial for aviation and space operations because of the inherent dangers involved. In this study we evaluate classification performance of perceptual events using a dry-wireless EEG system during motion platform based flight simulation and actual flight in an open cockpit biplane to determine if the system can be used in the presence of considerable environmental and physiological artifacts. A passive task involving 200 random auditory presentations of a chirp sound was used for evaluation. The advantage of this auditory task is that it does not interfere with the perceptual motor processes involved with piloting the plane. Classification was based on identifying the presentation of a chirp sound vs. silent periods. Evaluation of Independent component analysis (ICA) and Kalman filtering to enhance classification performance by extracting brain activity related to the auditory event from other non-task related brain activity and artifacts was assessed. The results of permutation testing revealed that single trial classification of presence or absence of an auditory event was significantly above chance for all conditions on a novel test set. The best performance could be achieved with both ICA and Kalman filtering relative to no processing: Platform Off (83.4% vs. 78.3%), Platform On (73.1% vs. 71.6%), Biplane Engine Off (81.1% vs. 77.4%), and Biplane Engine On (79.2% vs. 66.1%). This experiment demonstrates that dry-wireless EEG can be used in environments with considerable vibration, wind, acoustic noise, and physiological artifacts and achieve good single trial classification performance that is necessary for future successful application of neuro-augmentation technology based on brain-machine interfaces.

  12. Diagnosis of response and non-response to dry eye treatment using infrared thermography images

    NASA Astrophysics Data System (ADS)

    Acharya, U. Rajendra; Tan, Jen Hong; Vidya, S.; Yeo, Sharon; Too, Cheah Loon; Lim, Wei Jie Eugene; Chua, Kuang Chua; Tong, Louis

    2014-11-01

    The dry eye treatment outcome depends on the assessment of clinical relevance of the treatment effect. The potential approach to assess the clinical relevance of the treatment is to identify the symptoms responders and non-responders to the given treatments using the responder analysis. In our work, we have performed the responder analysis to assess the clinical relevance effect of the dry eye treatments namely, hot towel, EyeGiene®, and Blephasteam® twice daily and 12 min session of Lipiflow®. Thermography is performed at week 0 (baseline), at weeks 4 and 12 after treatment. The clinical parameters such as, change in the clinical irritations scores, tear break up time (TBUT), corneal staining and Schirmer's symptoms tests values are used to obtain the responders and non-responders groups. We have obtained the infrared thermography images of dry eye symptoms responders and non-responders to the three types of warming treatments. The energy, kurtosis, skewness, mean, standard deviation, and various entropies namely Shannon, Renyi and Kapoor are extracted from responders and non-responders thermograms. The extracted features are ranked based on t-values. These ranked features are fed to the various classifiers to get the highest performance using minimum features. We have used decision tree (DT), K nearest neighbour (KNN), Naves Bayesian (NB) and support vector machine (SVM) to classify the features into responder and non-responder classes. We have obtained an average accuracy of 99.88%, sensitivity of 99.7% and specificity of 100% using KNN classifier using ten-fold cross validation.

  13. Adhesive Wear Performance of CFRP Multilayered Polyester Composites Under Dry/wet Contact Conditions

    NASA Astrophysics Data System (ADS)

    Danaelan, D.; Yousif, B. F.

    The tribo-performance of a new engineering composite material based on coconut fibers was investigated. In this work, coconut fibers reinforced polyester (CFRP) composites were developed. The tribo-experiments were conducted by using pin-on-disc machine under dry and wet sliding contact condition against smooth stainless steel counterface. Worn surfaces were observed using optical microscope. Friction coefficient and specific wear rate were presented as a function of sliding distance (0-0.6 km) at different sliding velocities (0.1-0.28 m/s). The effect of applied load and sliding velocity was evaluated. The results showed that all test parameters have significant influence on friction and wear characteristics of the composites. Moreover, friction coefficient increased as the normal load and speed increased, the values were about 0.7-0.9 under dry contact condition. Meanwhile, under wet contact condition, there was a great reduction in the friction coefficient, i.e. the values were about 0.1-0.2. Furthermore, the specific wear rates were found to be around 2-4 (10-3) mm3/Nm under dry contact condition and highly reduced under wet condition. In other words, the presence of water as cleaner and polisher assisted to enhance the adhesive wear performance of CFRP by about 10%. The images from optical microscope showed evidence of adhesive wear mode with transition to abrasive wear mode at higher sliding velocities due to third body abrasion. On the other hand, optical images for wet condition showed less adhesive wear and smooth surfaces.

  14. Positive displacement compounding of a heavy duty diesel engine

    NASA Technical Reports Server (NTRS)

    Sekar, R.; Kamo, R.

    1983-01-01

    A helical screw type positive displacement (PD) compressor and expander was considered as an alternative to the turbocharger and the power turbine in the Cummins advanced turbocompound engine. The Institute of Gas Technology (IGT) completed the design, layout, and performance prediction of the PD machines. The results indicate that a screw compressor-expander system is feasible up to at least 750 HP, dry operation of the rotors is feasible, cost and producibility are uncertain, and the system will yield about 4% improvement in brake specific fuel consumption (BSFC) over the advanced turbocompound engine.

  15. A Comparison of the Compression Response of Thick (6.35mm) and Thin (1.60mm) Dry and Moisture Saturated AS4/3501-6 Laminates

    DTIC Science & Technology

    1990-10-01

    of 1.27 mm/mm/min (0.05 in./in./min.) using a 60 kip Satec universal machine, with a spherically seated compression platen for alignment purposes. At...Task No. 6. AUTHOR(S) R3450SOS, ROOONOO, Work Karin Gipple Unit No. 2802-950 and 2844-220 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) 8... ES ) 10. SPONSORING /MONITOR ING AGENCY REPORT NUMBER DTRC Materials Block, IR 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION /AVAILABILTY STATEMENT 12b

  16. Protective Coatings

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  17. Tool Condition Monitoring and Remaining Useful Life Prognostic Based on a Wireless Sensor in Dry Milling Operations.

    PubMed

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming; Jin, Hong

    2016-05-31

    Tool breakage causes losses of surface polishing and dimensional accuracy for machined part, or possible damage to a workpiece or machine. Tool Condition Monitoring (TCM) is considerably vital in the manufacturing industry. In this paper, an indirect TCM approach is introduced with a wireless triaxial accelerometer. The vibrations in the three vertical directions (x, y and z) are acquired during milling operations, and the raw signals are de-noised by wavelet analysis. These features of de-noised signals are extracted in the time, frequency and time-frequency domains. The key features are selected based on Pearson's Correlation Coefficient (PCC). The Neuro-Fuzzy Network (NFN) is adopted to predict the tool wear and Remaining Useful Life (RUL). In comparison with Back Propagation Neural Network (BPNN) and Radial Basis Function Network (RBFN), the results show that the NFN has the best performance in the prediction of tool wear and RUL.

  18. Using Support Vector Machines to Automatically Extract Open Water Signatures from POLDER Multi-Angle Data Over Boreal Regions

    NASA Technical Reports Server (NTRS)

    Pierce, J.; Diaz-Barrios, M.; Pinzon, J.; Ustin, S. L.; Shih, P.; Tournois, S.; Zarco-Tejada, P. J.; Vanderbilt, V. C.; Perry, G. L.; Brass, James A. (Technical Monitor)

    2002-01-01

    This study used Support Vector Machines to classify multiangle POLDER data. Boreal wetland ecosystems cover an estimated 90 x 10(exp 6) ha, about 36% of global wetlands, and are a major source of trace gases emissions to the atmosphere. Four to 20 percent of the global emission of methane to the atmosphere comes from wetlands north of 4 degrees N latitude. Large uncertainties in emissions exist because of large spatial and temporal variation in the production and consumption of methane. Accurate knowledge of the areal extent of open water and inundated vegetation is critical to estimating magnitudes of trace gas emissions. Improvements in land cover mapping have been sought using physical-modeling approaches, neural networks, and active microwave, examples that demonstrate the difficulties of separating open water, inundated vegetation and dry upland vegetation. Here we examine the feasibility of using a support vector machine to classify POLDER data representing open water, inundated vegetation and dry upland vegetation.

  19. Study on Circular Complex viewed from Environmental Systems

    NASA Astrophysics Data System (ADS)

    Takeguchi, Tomoo; Adachi, Katsushige; Yoshikawa, Akira; Hiratsuka, Akira; Tsujino, Ryoji; Iguchi, Manabu

    In machining processes, cutting fluids are generally used for cooling and lubricating workpieces at the point cutting. However, these fluids frequently include chlorine, sulfur, phosphorus, or other additives. The chemicals not only become a mist affecting the health of workers engaged in the processing but also make the workshop environment worse. In particular, the chlorine becomes one of the causes of global warming by treating waste oil under high temperature conditions. It is furthermore said that huge cost beyond the purchase cost of oil occurs and dioxins (carcinogen) usually exist in the waste oil. Therefore, an environmentally-friendly cooling-air cutting system is required from the standpoint of green manufacturing. This system has been noted as a technique to solve the issues against the environment mentioned above. In the cooling-air cutting processing, the amount of CO2 emission shows a low value compared with the dry cutting one which uses oil. It is therefore thought that the cooling-air cutting system is a very important processing technique as an environmental countermeasure. At present, in strictly economic and environmental situations, the compatibility of the betterment of production efficiency with the improvement of environment is a subject in the actual spot of a cut processing. This study deals with the test results of cooling-air drilling performance from the viewpoint of taking green manufacturing into account. The workpiece made of die steel SKDll was manufactured by the cooling-air drilling performance at a revolution of 840 rpm and a temperature of -20°C with a high-speed steel drill (SKH56). The results were compared with those for the dry cutting performance. The main results obtained in this study are as follows: 1) The tool life for cooling-air drilling performance was about 6 times as long as that for the dry cutting performance. 2) The chip temperature for cooling-air drilling was 220°C lower than that for the dry cutting performance.

  20. An estimation of the main wetting branch of the soil water retention curve based on its main drying branch using the machine learning method

    NASA Astrophysics Data System (ADS)

    Lamorski, Krzysztof; Šimūnek, Jiří; Sławiński, Cezary; Lamorska, Joanna

    2017-02-01

    In this paper, we estimated using the machine learning methodology the main wetting branch of the soil water retention curve based on the knowledge of the main drying branch and other, optional, basic soil characteristics (particle size distribution, bulk density, organic matter content, or soil specific surface). The support vector machine algorithm was used for the models' development. The data needed by this algorithm for model training and validation consisted of 104 different undisturbed soil core samples collected from the topsoil layer (A horizon) of different soil profiles in Poland. The main wetting and drying branches of SWRC, as well as other basic soil physical characteristics, were determined for all soil samples. Models relying on different sets of input parameters were developed and validated. The analysis showed that taking into account other input parameters (i.e., particle size distribution, bulk density, organic matter content, or soil specific surface) than information about the drying branch of the SWRC has essentially no impact on the models' estimations. Developed models are validated and compared with well-known models that can be used for the same purpose, such as the Mualem (1977) (M77) and Kool and Parker (1987) (KP87) models. The developed models estimate the main wetting SWRC branch with estimation errors (RMSE = 0.018 m3/m3) that are significantly lower than those for the M77 (RMSE = 0.025 m3/m3) or KP87 (RMSE = 0. 047 m3/m3) models.

  1. The effect of clothing care activities on textile formaldehyde content.

    PubMed

    Novick, Rachel M; Nelson, Mindy L; McKinley, Meg A; Anderson, Grace L; Keenan, James J

    2013-01-01

    Textiles are commonly treated with formaldehyde-based residues that may potentially induce allergic contact dermatitis in sensitive individuals. This study examined the initial formaldehyde content in clothing and resulting changes due to care activities. Twenty clothing articles were examined and 17 of them did not have detectable levels of formaldehyde. One shirt contained a formaldehyde concentration of 3172 ppm, and two pairs of pants had formaldehyde concentrations of 1391 ppm and 86 ppm. The two highest results represent formaldehyde levels that are up to 40-fold greater than international textile regulations. The two items with the greatest formaldehyde content were washed and dried in a manner similar to that used by consumers, including hand and machine washing in hot or cold water followed by air or machine drying. The washing and drying procedures reduced formaldehyde levels to between 26 and 72% of untreated controls. Differences in the temperature or type of washing and drying did not result in a clear trend in the subsequent formaldehyde content. In addition, samples were hot ironed, which did not affect the formaldehyde content as significantly. Understanding the formaldehyde content in clothing and its potential reduction through care activities may be useful for manufacturers and formaldehyde-sensitive individuals.

  2. 16 CFR 1616.32 - Method for establishment and use of alternate laundering procedures under section 5(c)(4)(ii) of...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... been washed and dried 50 times in machines, using the procedure specified in AATCC Test Method 124-1996... Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to... request of the Commission staff, any other information concerning the procedure and/or any machine used in...

  3. 16 CFR 1615.32 - Method for establishment and use of alternate laundering procedures under section 4(g)(4)(ii) of...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... been washed and dried 50 times in machines, using the procedure specified in AATCC Test Method 124-1996... Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to... request of the Commission staff, any other information concerning the procedure and/or any machine used in...

  4. Rolling Contact Fatigue and Wear Behavior of High-Performance Railway Wheel Steels Under Various Rolling-Sliding Contact Conditions

    NASA Astrophysics Data System (ADS)

    Faccoli, Michela; Petrogalli, Candida; Lancini, Matteo; Ghidini, Andrea; Mazzù, Angelo

    2017-07-01

    An experimental investigation was carried out to study and compare the response to cyclic loading of the high-performance railway wheel steels ER8 EN13262 and SUPERLOS®. Rolling contact tests were performed with the same contact pressure, rolling speed and sliding/rolling ratio, varying the lubrication regime to simulate different climatic conditions. The samples, machined out of wheel rims at two depths within the reprofiling layer, were coupled with UIC 900A rail steel samples. The wear rates, friction coefficients and hardness were correlated with the deformation beneath the contact surface. The crack morphology was studied, and the damage mechanisms were identified. The distribution of crack length and depth at the end of the dry tests was analyzed to quantify the damage. The main difference between the steels lies in the response of the external samples to dry contact: SUPERLOS® is subjected to a higher wear and lower friction coefficient than ER8, and this reduces the density of surface cracks that can propagate under wet contact conditions. The analysis of feedback data from in-service wheels confirmed the experimental results.

  5. Dry Ribbon for Heated Head Automated Fiber Placement

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce; Marchello, Joseph M.; Hinkley, Jeffrey A.; Johnston, Norman J.; Lamontia, Mark A.

    2000-01-01

    Ply-by-ply in situ processes involving automated heated head deposition are being developed for fabrication of high performance, high temperature composite structures from low volatile content polymer matrices. This technology requires (1) dry carbon fiber towpreg, (2) consolidation of towpreg to quality, placement-grade unidirectional ribbon or tape, and (3) rapid, in situ, accurate, ply-by-ply robotic placement and consolidation of this material to fabricate a composite structure. In this study, the physical properties of a candidate thermoplastic ribbon, PIXA/IM7, were evaluated and screened for suitability in robotic placement. Specifically, towpreg was prepared from PIXA powder. Various conditions (temperatures) were used to convert the powder-coated towpreg to ribbons with varying degrees of processability. Ribbon within preset specifications was fabricated at 3 temperatures: 390, 400 and 410 C. Ribbon was also produced out-of-spec by purposely overheating the material to a processing temperature of 450 C. Automated placement equipment at Cincinnati Milacron and NASA Langley was used to fabricate laminates from these experimental ribbons. Ribbons were placed at 405 and 450 C by both sets of equipment. Double cantilever beam and wedge peel tests were used to determine the quality of the laminates and, especially, the interlaminar bond formed during the placement process. Ribbon made under conditions expected to be non-optimal (overheated) resulted in poor placeability and composites with weak interlaminar bond strengths, regardless of placement conditions. Ribbon made under conditions expected to be ideal showed good processability and produced well-consolidated laminates. Results were consistent from machine to machine and demonstrated the importance of ribbon quality in heated-head placement of dry material forms. Preliminary screening criteria for the development and evaluation of ribbon from new matrix materials were validated.

  6. A method for monitoring intensity during aquatic resistance exercises.

    PubMed

    Colado, Juan C; Tella, Victor; Triplett, N Travis

    2008-11-01

    The aims of this study were (i) to check whether monitoring of both the rhythm of execution and the perceived effort is a valid tool for reproducing the same intensity of effort in different sets of the same aquatic resistance exercise (ARE) and (ii) to assess whether this method allows the ARE to be put at the same intensity level as its equivalent carried out on dry land. Four healthy trained young men performed horizontal shoulder abduction and adduction (HSAb/Ad) movements in water and on dry land. Muscle activation was recorded using surface electromyography of 1 stabilizer and several agonist muscles. Before the final tests, the ARE movement cadence was established individually following a rhythmic digitalized sequence of beats to define the alternate HSAb/Ad movements. This cadence allowed the subject to perform 15 repetitions at a perceived exertion of 9-10 using Hydro-Tone Bells. After that, each subject performed 2 nonconsecutive ARE sets. The dry land exercises (1 set of HSAb and 1 set of HSAd) were performed using a dual adjustable pulley cable motion machine, with the previous selection of weights that allowed the same movement cadence to be maintained and the completion of the same repetitions in each of the sets as with the ARE. The average normalized data were compared for the exercises in order to determine possible differences in muscle activity. The results show the validity of this method for reproducing the intensity of effort in different sets of the same ARE, but is not valid for matching the same intensity level as kinematically similar land-based exercises.

  7. Investigation of machinability characteristics on EN47 steel for cutting force and tool wear using optimization technique

    NASA Astrophysics Data System (ADS)

    M, Vasu; Shivananda Nayaka, H.

    2018-06-01

    In this experimental work dry turning process carried out on EN47 spring steel with coated tungsten carbide tool insert with 0.8 mm nose radius are optimized by using statistical technique. Experiments were conducted at three different cutting speeds (625, 796 and 1250 rpm) with three different feed rates (0.046, 0.062 and 0.093 mm/rev) and depth of cuts (0.2, 0.3 and 0.4 mm). Experiments are conducted based on full factorial design (FFD) 33 three factors and three levels. Analysis of variance is used to identify significant factor for each output response. The result reveals that feed rate is the most significant factor influencing on cutting force followed by depth of cut and cutting speed having less significance. Optimum machining condition for cutting force obtained from the statistical technique. Tool wear measurements are performed with optimum condition of Vc = 796 rpm, ap = 0.2 mm, f = 0.046 mm/rev. The minimum tool wear observed as 0.086 mm with 5 min machining. Analysis of tool wear was done by confocal microscope it was observed that tool wear increases with increasing cutting time.

  8. Application of Fuzzy TOPSIS for evaluating machining techniques using sustainability metrics

    NASA Astrophysics Data System (ADS)

    Digalwar, Abhijeet K.

    2018-04-01

    Sustainable processes and techniques are getting increased attention over the last few decades due to rising concerns over the environment, improved focus on productivity and stringency in environmental as well as occupational health and safety norms. The present work analyzes the research on sustainable machining techniques and identifies techniques and parameters on which sustainability of a process is evaluated. Based on the analysis these parameters are then adopted as criteria’s to evaluate different sustainable machining techniques such as Cryogenic Machining, Dry Machining, Minimum Quantity Lubrication (MQL) and High Pressure Jet Assisted Machining (HPJAM) using a fuzzy TOPSIS framework. In order to facilitate easy arithmetic, the linguistic variables represented by fuzzy numbers are transformed into crisp numbers based on graded mean representation. Cryogenic machining was found to be the best alternative sustainable technique as per the fuzzy TOPSIS framework adopted. The paper provides a method to deal with multi criteria decision making problems in a complex and linguistic environment.

  9. Performance evaluation of NEEM oil and HONGE Oil as cutting fluid in drilling operation of mild steel

    NASA Astrophysics Data System (ADS)

    Jyothi, P. N.; Susmitha, M.; Sharan, P.

    2017-04-01

    Cutting fluids are used in machining industries for improving tool life, reducing work piece and thermal deformation, improving surface finish and flushing away chips from the cutting zone. Although the application of cutting fluids increases the tool life and Machining efficiency, but it has many major problems related to environmental impacts and health hazards along with recycling & disposal. These problems gave provision for the introduction of mineral, vegetable and animal oils. These oils play an important role in improving various machining properties, including corrosion protection, lubricity, antibacterial protection, even emulsibility and chemical stability. Compared to mineral oils, vegetable oils in general possess high viscosity index, high flash point, high lubricity and low evaporative losses. Vegetable oils can be edible or non-edible oils and Various researchers have proved that edible vegetable oils viz., palm oil, coconut oil, canola oil, soya bean oil can be effectively used as eco-friendly cutting fluid in machining operations. But in present situations harnessing edible oils for lubricants formation restricts the use due to increased demands of growing population worldwide and availability. In the present work, Non-edible vegetable oil like Neem and Honge are been used as cutting fluid for drilling of Mild steel and its effect on cutting temperature, hardness and surface roughness are been investigated. Results obtained are compared with SAE 20W40 (petroleum based cutting fluid)and dry cutting condition.

  10. Tips for Travel

    EPA Pesticide Factsheets

    Avoid bringing bed bugs home by taking precautions when traveling such as inspecting bedding and luggage racks in hotel rooms, and upon returning home unpacking directly into a washing machine and dry at high temperatures.

  11. High speed machinability of the aerospace alloy AA7075 T6 under different cooling conditions

    NASA Astrophysics Data System (ADS)

    Imbrogno, Stano; Rinaldi, Sergio; Suarez, Asier Gurruchaga; Arrazola, Pedro J.; Umbrello, Domenico

    2018-05-01

    This paper describes the results of an experimental investigation aimed to st udy the machinability of AA7075 T6 (160 HV) for aerospace industry at high cutting speeds. The paper investigates the effects of different lubri-cooling strategies (cryogenic, M QL and dry) during high speed turning process on cutting forces, tool wear, chip morphology and cutting temperatures. The cutting speeds selected were 1000m/min, 1250m/min and 1500 m/min, while the feed rate values used were 0.1mm/rev and 0.3 mm/rev. The results of cryogenic and M QL application is compared with dry application. It was found that the cryogenic and M QL lubri-cooling techniques could represent a functional alternative to the common dry cutting application in order to implement a more effect ive high speed turning process. Higher cuttingparameters would be able to increase the productivity and reduce the production costs. The effects of the cutting parameters and on the variables object of study were investigated and the role of the different lubri-cooling conditions was assessed.

  12. 24. The DryingRoom in the coating mill at Lawrence, Mass. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. The Drying-Room in the coating mill at Lawrence, Mass. After the paper has received its coating from the coating-machine shown in the previous picture, it passes in a continuous web to the drying-room. Blasts of hot air coming out of galvanized ducts beneath support it for a distance of 100 feet, until it reaches the drying-chamber in the rear of the room. Here it hangs in festoons much like those of cotton cloth shown on page 219. In the picture the paper is passing from right to left. After leaving the drying-room it is wound on rolls, as shown in the next picture. (p.238.) - Champion-International Paper Company, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  13. 30 CFR 57.6405 - Firing devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sufficient current to energize all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired...

  14. 30 CFR 57.6405 - Firing devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sufficient current to energize all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired...

  15. 30 CFR 57.6405 - Firing devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sufficient current to energize all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired...

  16. 30 CFR 57.6405 - Firing devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sufficient current to energize all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired...

  17. 30 CFR 57.6405 - Firing devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sufficient current to energize all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired...

  18. Study of surface integrity AISI 4140 as result of hard, dry and high speed machining using CBN

    NASA Astrophysics Data System (ADS)

    Ginting, B.; Sembiring, R. W.; Manurung, N.

    2017-09-01

    The concept of hard, dry and high speed machining can be combined, to produce high productivity, with lower production costs in manufacturing industry. Hard lathe process can be a solution to reduce production time. In lathe hard alloy steels reported problems relating to the integrity of such surface roughness, residual stress, the white layer and the surface integrity. AISI 4140 material is used for high reliable hydraulic system components. This material includes in cold work tool steel. Consideration election is because this material is able to be hardened up to 55 HRC. In this research, the experimental design using CCD model fit with three factors, each factor is composed of two levels, and six central point, experiments were conducted with 1 replications. The experimental design research using CCD model fit.

  19. Tool Condition Monitoring and Remaining Useful Life Prognostic Based on a Wireless Sensor in Dry Milling Operations

    PubMed Central

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming; Jin, Hong

    2016-01-01

    Tool breakage causes losses of surface polishing and dimensional accuracy for machined part, or possible damage to a workpiece or machine. Tool Condition Monitoring (TCM) is considerably vital in the manufacturing industry. In this paper, an indirect TCM approach is introduced with a wireless triaxial accelerometer. The vibrations in the three vertical directions (x, y and z) are acquired during milling operations, and the raw signals are de-noised by wavelet analysis. These features of de-noised signals are extracted in the time, frequency and time–frequency domains. The key features are selected based on Pearson’s Correlation Coefficient (PCC). The Neuro-Fuzzy Network (NFN) is adopted to predict the tool wear and Remaining Useful Life (RUL). In comparison with Back Propagation Neural Network (BPNN) and Radial Basis Function Network (RBFN), the results show that the NFN has the best performance in the prediction of tool wear and RUL. PMID:27258277

  20. Influence of microwave sterilization on the cutting capacity of carbide burs.

    PubMed

    Fais, Laiza Maria Grassi; Pinelli, Lígia Antunes Pereira; Adabo, Gelson Luis; Silva, Regina Helena Barbosa Tavares da; Marcelo, Caroline Canhizares; Guaglianoni, Dalton Geraldo

    2009-01-01

    This study compared the cutting capacity of carbide burs sterilized with microwaves and traditional sterilization methods. Sixty burs were divided into 5 groups according to the sterilization methods: dry heat (G1), autoclave (G2), microwave irradiation (G3), glutaraldehyde (G4) or control - no sterilization (G5). The burs were used to cut glass plates in a cutting machine set for twelve 2.5-min periods and, after each period, they were sterilized (except G5) following the protocol established for each group. The cutting capacity of the burs was determined by a weight-loss method. Data were analyzed statistically by Kruskal-Wallis and Dunn's test. The means of the cutting amount performed by each group after the 12 periods were G1 = 0.2167 +/- 0.0627 g; G2 = 0.2077 +/- 0.0231 g; G3 = 0.1980 +/- 0.0326 g; G4 = 0.1203 +/- 0.0459 g; G5 = 0.2642 +/- 0.0359 g. There were statistically significant differences among the groups (p<0.05); only dry heat sterilization was similar to the control. Sterilization by dry heat was the method that least affected the cutting capacity of the carbide burs and microwave sterilization was not better than traditional sterilization methods.

  1. 25. Paper ready for the calender presses. This picture shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Paper ready for the calender presses. This picture shows the paper after it has been coated and dried, as shown on page 238, and it being rolled at the end of the coating-machine. It is now ready to be sent to the big presses which calender it (or iron it, as popular pariance would have it). The pictures on pages 238 and 239 show a continuous process over a single machine; but on account of the length of teh machine, the process is illustrated in sections. (p.239.) - Champion-International Paper Company, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  2. Quadrilateral Micro-Hole Array Machining on Invar Thin Film: Wet Etching and Electrochemical Fusion Machining

    PubMed Central

    Choi, Woong-Kirl; Kim, Seong-Hyun; Choi, Seung-Geon; Lee, Eun-Sang

    2018-01-01

    Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs) contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks. PMID:29351235

  3. Drying time of tray adhesive for adequate tensile bond strength between polyvinylsiloxane impression and tray resin material.

    PubMed

    Yi, Myong-Hee; Shim, Joon-Sung; Lee, Keun-Woo; Chung, Moon-Kyu

    2009-07-01

    Use of custom tray and tray adhesive is clinically recommended for elastomeric impression material. However there is not clear mention of drying time of tray adhesive in achieving appropriate bonding strength of tray material and impression material. This study is to investigate an appropriate drying time of tray adhesives by evaluating tensile bonding strength between two types of polyvinylsiloxane impression materials and resin tray, according to various drying time intervals of tray adhesives, and with different manufacturing company combination of impression material and tray adhesive. Adhesives used in this study were Silfix (Dentsply Caulk, Milford, Del, USA) and VPS Tray Adhesive (3M ESPE, Seefeld, Germany) and impression materials were Aquasil Ultra (monophase regular set, Dentsply Caulk, Milford, Del, USA) and Imprint II Garant (regular body, 3M ESPE, Seefeld, Germany). They were used combinations from the same manufacture and exchanged combinations of the two. The drying time was designed to air dry, 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 25 minutes. Total 240 of test specimens were prepared by auto-polymerizing tray material (Instant Tray Mix, Lang, Wheeling, Il, USA) with 10 specimens in each group. The specimens were placed in the Universal Testing machine (Instron, model 3366, Instron Corp, University avenue, Nowood, MA, USA) to perform the tensile test (cross head speed 5 mm/min). The statistically efficient drying time was evaluated through ANOVA and Scheffe test. All the tests were performed at 95% confidence level. The results revealed that at least 10 minutes is needed for Silfix-Aquasil, and 15 minutes for VPS Tray Adhesive-Imprint II, to attain an appropriate tensile bonding strength. VPS Tray Adhesive-Imprint II had a superior tensile bonding strength when compared to Silfix-Aquasil over 15 minutes. Silfix-Aquasil had a superior bonding strength to VPS Tray Adhesive-Aquasil, and VPS Tray Adhesive-Imprint II had a superior tensile bonding strength to Silfix-Imprint II at all drying periods. Significant increase in tensile bonding strength with Silfix-Aquasil and VPS Tray adhesive-Imprint II combination until 10 and 15 minutes respectively. Tray adhesive-impression material combination from the same company presented higher tensile bonding strength at all drying time intervals than when using tray adhesive-impression material of different manufactures.

  4. Gram staining with an automatic machine.

    PubMed

    Felek, S; Arslan, A

    1999-01-01

    This study was undertaken to develop a new Gram-staining machine controlled by a micro-controller and to investigate the quality of slides that were stained in the machine. The machine was designed and produced by the authors. It uses standard 220 V AC. Staining, washing, and drying periods are controlled by a timer built in the micro-controller. A software was made that contains a certain algorithm and time intervals for the staining mode. One-hundred and forty smears were prepared from Escherichia coli, Staphylococcus aureus, Neisseria sp., blood culture, trypticase soy broth, direct pus and sputum smears for comparison studies. Half of the slides in each group were stained with the machine, the other half by hand and then examined by four different microbiologists. Machine-stained slides had a higher clarity and less debris than the hand-stained slides (p < 0.05). In hand-stained slides, some Gram-positive organisms showed poor Gram-positive staining features (p < 0.05). In conclusion, we suggest that Gram staining with the automatic machine increases the staining quality and helps to decrease the work load in a busy diagnostic laboratory.

  5. An Investigation of the Influence of Initial Roughness on the Friction and Wear Behavior of Ground Surfaces

    PubMed Central

    Liang, Guoxing; Schmauder, Siegfried; Lyu, Ming; Schneider, Yanling; Zhang, Cheng; Han, Yang

    2018-01-01

    Friction and wear tests were performed on AISI 1045 steel specimens with different initial roughness parameters, machined by a creep-feed dry grinding process, to study the friction and wear behavior on a pin-on-disc tester in dry sliding conditions. Average surface roughness (Ra), root mean square (Rq), skewness (Rsk) and kurtosis (Rku) were involved in order to analyse the influence of the friction and wear behavior. The observations reveal that a surface with initial roughness parameters of higher Ra, Rq and Rku will lead to a longer initial-steady transition period in the sliding tests. The plastic deformation mainly concentrates in the depth of 20–50 μm under the worn surface and the critical plastic deformation is generated on the rough surface. For surfaces with large Ra, Rq, low Rsk and high Rku values, it is easy to lose the C element in, the reciprocating extrusion. PMID:29401703

  6. Modeling of Particle Emission During Dry Orthogonal Cutting

    NASA Astrophysics Data System (ADS)

    Khettabi, Riad; Songmene, Victor; Zaghbani, Imed; Masounave, Jacques

    2010-08-01

    Because of the risks associated with exposure to metallic particles, efforts are being put into controlling and reducing them during the metal working process. Recent studies by the authors involved in this project have presented the effects of cutting speeds, workpiece material, and tool geometry on particle emission during dry machining; the authors have also proposed a new parameter, named the dust unit ( D u), for use in evaluating the quantity of particle emissions relative to the quantity of chips produced during a machining operation. In this study, a model for predicting the particle emission (dust unit) during orthogonal turning is proposed. This model, which is based on the energy approach combined with the microfriction and the plastic deformation of the material, takes into account the tool geometry, the properties of the worked material, the cutting conditions, and the chip segmentation. The model is validated using experimental results obtained during the orthogonal turning of 6061-T6 aluminum alloy, AISI 1018, AISI 4140 steels, and grey cast iron. A good agreement was found with experimental results. This model can help in designing strategies for reducing particle emission during machining processes, at the source.

  7. Optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated carbide cutting tool

    NASA Astrophysics Data System (ADS)

    Durga Prasada Rao, V.; Harsha, N.; Raghu Ram, N. S.; Navya Geethika, V.

    2018-02-01

    In this work, turning was performed to optimize the surface finish or roughness (Ra) of stainless steel 304 with uncoated and coated carbide tools under dry conditions. The carbide tools were coated with Titanium Aluminium Nitride (TiAlN) nano coating using Physical Vapour Deposition (PVD) method. The machining parameters, viz., cutting speed, depth of cut and feed rate which show major impact on Ra are considered during turning. The experiments are designed as per Taguchi orthogonal array and machining process is done accordingly. Then second-order regression equations have been developed on the basis of experimental results for Ra in terms of machining parameters used. Regarding the effect of machining parameters, an upward trend is observed in Ra with respect to feed rate, and as cutting speed increases the Ra value increased slightly due to chatter and vibrations. The adequacy of response variable (Ra) is tested by conducting additional experiments. The predicted Ra values are found to be a close match of their corresponding experimental values of uncoated and coated tools. The corresponding average % errors are found to be within the acceptable limits. Then the surface roughness equations of uncoated and coated tools are set as the objectives of optimization problem and are solved by using Differential Evolution (DE) algorithm. Also the tool lives of uncoated and coated tools are predicted by using Taylor’s tool life equation.

  8. 29 CFR 1910.264 - Laundry machinery and operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of operation of laundry machines. This section does not apply to dry-cleaning operations. (c) Point... against touching the eyes, mouth, or any part of the body on which the skin has been broken by a scratch...

  9. 29 CFR 1910.264 - Laundry machinery and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of operation of laundry machines. This section does not apply to dry-cleaning operations. (c) Point... against touching the eyes, mouth, or any part of the body on which the skin has been broken by a scratch...

  10. 29 CFR 1910.264 - Laundry machinery and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of operation of laundry machines. This section does not apply to dry-cleaning operations. (c) Point... against touching the eyes, mouth, or any part of the body on which the skin has been broken by a scratch...

  11. 29 CFR 1910.264 - Laundry machinery and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of operation of laundry machines. This section does not apply to dry-cleaning operations. (c) Point... against touching the eyes, mouth, or any part of the body on which the skin has been broken by a scratch...

  12. 29 CFR 1910.264 - Laundry machinery and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of operation of laundry machines. This section does not apply to dry-cleaning operations. (c) Point... against touching the eyes, mouth, or any part of the body on which the skin has been broken by a scratch...

  13. Effects of Cutting Edge Microgeometry on Residual Stress in Orthogonal Cutting of Inconel 718 by FEM.

    PubMed

    Shen, Qi; Liu, Zhanqiang; Hua, Yang; Zhao, Jinfu; Lv, Woyun; Mohsan, Aziz Ul Hassan

    2018-06-14

    Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K , and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.

  14. Farley Three-Dimensional-Braiding Machine

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1991-01-01

    Process and device known as Farley three-dimensional-braiding machine conceived to fabricate dry continuous fiber-reinforced preforms of complex three-dimensional shapes for subsequent processing into composite structures. Robotic fiber supply dispenses yarn as it traverses braiding surface. Combines many attributes of weaving and braiding processes with other attributes and capabilities. Other applications include decorative cloths, rugs, and other domestic textiles. Concept could lead to large variety of fiber layups and to entirely new products as well as new fiber-reinforcing applications.

  15. Remelt Ingot Production Technology

    NASA Astrophysics Data System (ADS)

    Grandfield, J. F.

    The technology related to the production of remelt ingots (small ingots, sows and T-Bar) is reviewed. Open mold conveyors, sow casting, wheel and belt casting and VDC and HDC casting are described and compared. Process economics, capacity, product quality and process problems are listed. Trends in casting machine technology such as longer open mold conveyor lines are highlighted. Safety issues related to the operation of these processes are discussed. The advantages and disadvantages of the various machine configurations and options e.g. such as dry filling with the mold out of water and wet filling with the mold in water for open mould conveyors are discussed. The effect of mold design on machine productivity, mold cracking and mold life is also examined.

  16. Experimental investigation on hard turning of AISI 4340 steel using cemented coated carbide insert

    NASA Astrophysics Data System (ADS)

    Pradeep Kumar, J.; Kishore, K. P.; Ranjith Kumar, M.; Saran Karthick, K. R.; Vishnu Gowtham, S.

    2018-02-01

    Hard turning is a developing technology that offers many potential advantages compared to grinding, which remains the standard finishing process for critical hardened surfaces. In this work, an attempt has been made to experimentally investigate hard turning of AISI 4340 steel under wet and dry condition using cemented coated carbide insert. Hardness of the workpiece material is tested using Brinell and Rockwell hardness testers. CNC LATHE and cemented coated carbide inserts of designation CNMG 120408 are used for conducting experimental trials. Significant cutting parameters like cutting speed, feed rate and depth of cut are considered as controllable input parameters and surface roughness (Ra), tool wear are considered as output response parameters. Design of experiments is carried out with the help of Taguchi’s L9 orthogonal array. Results of response parameters like surface roughness and tool wear under wet and dry condition are analysed. It is found that surface roughness and tool wear are higher under dry machining condition when compared to wet machining condition. Feed rate significantly influences the surface roughness followed by cutting speed. Depth of cut significantly influences the tool wear followed by cutting speed.

  17. Low-resistive vibratory penetration in granular media.

    PubMed

    Darbois Texier, Baptiste; Ibarra, Alejandro; Melo, Francisco

    2017-01-01

    Non-cohesive materials such as sand, dry snow or cereals are encountered in various common circumstances, from everyday situations to industry. The process of digging into these materials remains a challenge to most animals and machines. Within the animal kingdom, different strategies are employed to overcome this issue, including excavation methods used by ants, the two-anchor strategy employed by soft burrowers such as razor-clams, and undulatory motions exhibited by sandfish lizards. Despite the development of technology to mimic these techniques in diggers and robots, the limitations of animals and machines may differ, and mimicry of natural processes is not necessarily the most efficient technological strategy. This study presents evidence that the resisting force for the penetration of an intruder into a dry granular media can be reduced by one order of magnitude with small amplitude (A ≃ 10 μm) and low frequency (f = 50 - 200 Hz) mechanical vibrations. This observed result is attributed to the local fluidization of the granular bed which induces the rupture of force chains. The drop in resistive force on entering dry granular materials may be relevant in technological development in order to increase the efficiency of diggers and robots.

  18. Experimental investigation of various surface integrity aspects in hard turning of AISI 4340 alloy steel with coated and uncoated cermet

    NASA Astrophysics Data System (ADS)

    Das, Anshuman; Patel, S. K.; Sateesh Kumar, Ch.; Biswal, B. B.

    2018-03-01

    The newer technological developments are exerting immense pressure on domain of production. These fabrication industries are busy finding solutions to reduce the costs of cutting materials, enhance the machined parts quality and testing different materials, which can be made versatile for cutting materials, which are difficult for machining. High-speed machining has been the domain of paramount importance for mechanical engineering. In this study, the variation of surface integrity parameters of hardened AISI 4340 alloy steel was analyzed. The surface integrity parameters like surface roughness, micro hardness, machined surface morphology and white layer of hardened AISI 4340 alloy steel were compared using coated and uncoated cermet inserts under dry cutting condition. From the results, it was deduced that coated insert outperformed uncoated one in terms of different surface integrity characteristics.

  19. Trehalose and sorbitol alter the kinetic pattern of inactivation of glutamate dehydrogenase during drying in levitated microdroplets.

    PubMed

    Lorenzen, Elke; Lee, Geoffrey

    2013-12-01

    A single-droplet acoustic levitator was used to determine the drying rate and the kinetics of inactivation of glutamate dehydrogenase in the presence of added trehalose or sorbitol. The solution was also spray dried under the same process condition of drying gas temperature on a bench-top machine. Both trehalose and sorbitol delay the point of onset of enzyme inactivation which lies after the critical point of drying. Both carbohydrates also reduce the apparent rate constant of inactivation calculated during the subsequent inactivation phase. The carbohydrates stabilise, therefore, the enzyme during droplet drying and particle formation mainly during the falling rate drying period. There is no difference between the stabilising effects of the two carbohydrates when examined as levitated single droplets. This suggests the importance of water replacement as a stabilising mechanism in the levitated droplets/particles. On spray drying, the trehalose stabilises the enzyme better than does the sorbitol at a drying gas (outlet) temperature of 60°C. This suggests glass formation with the trehalose but not the sorbitol during the very rapid drying process of small-atomised droplets in the spray dryer. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Optimization of Coolant Technique Conditions for Machining A319 Aluminium Alloy Using Response Surface Method (RSM)

    NASA Astrophysics Data System (ADS)

    Zainal Ariffin, S.; Razlan, A.; Ali, M. Mohd; Efendee, A. M.; Rahman, M. M.

    2018-03-01

    Background/Objectives: The paper discusses about the optimum cutting parameters with coolant techniques condition (1.0 mm nozzle orifice, wet and dry) to optimize surface roughness, temperature and tool wear in the machining process based on the selected setting parameters. The selected cutting parameters for this study were the cutting speed, feed rate, depth of cut and coolant techniques condition. Methods/Statistical Analysis Experiments were conducted and investigated based on Design of Experiment (DOE) with Response Surface Method. The research of the aggressive machining process on aluminum alloy (A319) for automotive applications is an effort to understand the machining concept, which widely used in a variety of manufacturing industries especially in the automotive industry. Findings: The results show that the dominant failure mode is the surface roughness, temperature and tool wear when using 1.0 mm nozzle orifice, increases during machining and also can be alternative minimize built up edge of the A319. The exploration for surface roughness, productivity and the optimization of cutting speed in the technical and commercial aspects of the manufacturing processes of A319 are discussed in automotive components industries for further work Applications/Improvements: The research result also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms. According to the mathematical model and equations, generated by CCD based RSM, experiments were performed and cutting coolant condition technique using size nozzle can reduces tool wear, surface roughness and temperature was obtained. Results have been analyzed and optimization has been carried out for selecting cutting parameters, shows that the effectiveness and efficiency of the system can be identified and helps to solve potential problems.

  1. 49 CFR 172.604 - Emergency response telephone number.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vehicle. Carbon dioxide, solid. Castor bean. Castor flake. Castor meal. Castor pomace. Consumer commodity. Dry ice. Engines, internal combustion. Fish meal, stabilized. Fish scrap, stabilized. Refrigerating machine. Vehicle, flammable gas powered. Vehicle, flammable liquid powered. Wheelchair, electric. (3...

  2. Comparison of machinability of manganese alloyed austempered ductile iron produced using conventional and two step austempering processes

    NASA Astrophysics Data System (ADS)

    Hegde, Ananda; Sharma, Sathyashankara

    2018-05-01

    Austempered Ductile Iron (ADI) is a revolutionary material with high strength and hardness combined with optimum ductility and toughness. The discovery of two step austempering process has lead to the superior combination of all the mechanical properties. However, because of the high strength and hardness of ADI, there is a concern regarding its machinability. In the present study, machinability of ADI produced using conventional and two step heat treatment processes is assessed using tool life and the surface roughness. Speed, feed and depth of cut are considered as the machining parameters in the dry turning operation. The machinability results along with the mechanical properties are compared for ADI produced using both conventional and two step austempering processes. The results have shown that two step austempering process has produced better toughness with good hardness and strength without sacrificing ductility. Addition of 0.64 wt% manganese did not cause any detrimental effect on the machinability of ADI, both in conventional and two step processes. Marginal improvement in tool life and surface roughness were observed in two step process compared to that with conventional process.

  3. Study of Tool Wear Mechanisms and Mathematical Modeling of Flank Wear During Machining of Ti Alloy (Ti6Al4V)

    NASA Astrophysics Data System (ADS)

    Chetan; Narasimhulu, A.; Ghosh, S.; Rao, P. V.

    2015-07-01

    Machinability of titanium is poor due to its low thermal conductivity and high chemical affinity. Lower thermal conductivity of titanium alloy is undesirable on the part of cutting tool causing extensive tool wear. The main task of this work is to predict the various wear mechanisms involved during machining of Ti alloy (Ti6Al4V) and to formulate an analytical mathematical tool wear model for the same. It has been found from various experiments that adhesive and diffusion wear are the dominating wear during machining of Ti alloy with PVD coated tungsten carbide tool. It is also clear from the experiments that the tool wear increases with the increase in cutting parameters like speed, feed and depth of cut. The wear model was validated by carrying out dry machining of Ti alloy at suitable cutting conditions. It has been found that the wear model is able to predict the flank wear suitably under gentle cutting conditions.

  4. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.

    PubMed

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-02-06

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.

  5. Applications of NTNU/SINTEF Drillability Indices in Hard Rock Tunneling

    NASA Astrophysics Data System (ADS)

    Zare, S.; Bruland, A.

    2013-01-01

    Drillability indices, i.e., the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), Cutter Life Index™ (CLI), and Vickers Hardness Number Rock (VHNR), are indirect measures of rock drillability. These indices are recognized as providing practical characterization of rock properties used in the Norwegian University of Science and Technology (NTNU) time and cost prediction models available for hard rock tunneling and surface excavation. The tests form the foundation of various hard rock equipment capacity and performance prediction methods. In this paper, application of the tests for tunnel boring machine (TBM) and drill and blast (D&B) tunneling is investigated and the impact of the indices on excavation time and costs is presented.

  6. INFLUENCE OF MICROWAVE STERILIZATION ON THE CUTTING CAPACITY OF CARBIDE BURS

    PubMed Central

    Fais, Laiza Maria Grassi; Pinelli, Lígia Antunes Pereira; Adabo, Gelson Luis; da Silva, Regina Helena Barbosa Tavares; Marcelo, Caroline Canhizares; Guaglianoni, Dalton Geraldo

    2009-01-01

    Objective: This study compared the cutting capacity of carbide burs sterilized with microwaves and traditional sterilization methods. Material and Methods: Sixty burs were divided into 5 groups according to the sterilization methods: dry heat (G1), autoclave (G2), microwave irradiation (G3), glutaraldehyde (G4) or control – no sterilization (G5). The burs were used to cut glass plates in a cutting machine set for twelve 2.5-min periods and, after each period, they were sterilized (except G5) following the protocol established for each group. The cutting capacity of the burs was determined by a weight-loss method. Data were analyzed statistically by Kruskal-Wallis and Dunn's test. Results: The means of the cutting amount performed by each group after the 12 periods were G1 = 0.2167 ± 0.0627 g; G2 = 0.2077 ± 0.0231 g; G3 = 0.1980 ± 0.0326 g; G4 = 0.1203 ± 0.0459 g; G5 = 0.2642 ± 0.0359 g. There were statistically significant differences among the groups (p<0.05); only dry heat sterilization was similar to the control. Conclusion: Sterilization by dry heat was the method that least affected the cutting capacity of the carbide burs and microwave sterilization was not better than traditional sterilization methods. PMID:20027431

  7. Machine learning applications in proteomics research: how the past can boost the future.

    PubMed

    Kelchtermans, Pieter; Bittremieux, Wout; De Grave, Kurt; Degroeve, Sven; Ramon, Jan; Laukens, Kris; Valkenborg, Dirk; Barsnes, Harald; Martens, Lennart

    2014-03-01

    Machine learning is a subdiscipline within artificial intelligence that focuses on algorithms that allow computers to learn solving a (complex) problem from existing data. This ability can be used to generate a solution to a particularly intractable problem, given that enough data are available to train and subsequently evaluate an algorithm on. Since MS-based proteomics has no shortage of complex problems, and since publicly available data are becoming available in ever growing amounts, machine learning is fast becoming a very popular tool in the field. We here therefore present an overview of the different applications of machine learning in proteomics that together cover nearly the entire wet- and dry-lab workflow, and that address key bottlenecks in experiment planning and design, as well as in data processing and analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 23. In the CoatingRoom. This picture shows the rolls of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. In the Coating-Room. This picture shows the rolls of paper made on the machine shown on page 237, just starting on the coating-machines. The paper passes through a bath of coating material; then through felt-covered rolls; then between vibrating brushes, which lay in the coating material evenly and smoothly on the paper. It then passes outh at the left into the drying-room (see following illustration). (p.238.) - Champion-International Paper Company, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  9. Development of advanced Czochralski growth process to produce low-cost 150 kG silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The modified CG2000 crystal grower construction, installation, and machine check out was completed. The process development check out proceeded with several dry runs and one growth run. Several machine calibrations and functional problems were discovered and corrected. Exhaust gas analysis system alternatives were evaluated and an integrated system approved and ordered. Several growth runs on a development CG2000 RC grower show that complete neck, crown, and body automated growth can be achieved with only one operator input.

  10. Development of Advanced Czochralski Growth Process to produce low cost 150 KG silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The modified CG2000 crystal grower construction, installation, and machine check-out was completed. The process development check-out proceeded with several dry runs and one growth run. Several machine calibrations and functional problems were discovered and corrected. Several exhaust gas analysis system alternatives were evaluated and an integrated system approved and ordered. A contract presentation was made at the Project Integration Meeting at JPL, including cost-projections using contract projected throughput and machine parameters. Several growth runs on a development CG200 RC grower show that complete neck, crown, and body automated growth can be achieved with only one operator input. Work continued for melt level, melt temperature, and diameter sensor development.

  11. Overview Of Dry-Etch Techniques

    NASA Astrophysics Data System (ADS)

    Salzer, John M.

    1986-08-01

    With pattern dimensions shrinking, dry methods of etching providing controllable degrees of anisotropy become a necessity. A number of different configurations of equipment - inline, hex, planar, barrel - have been offered, and within each type, there are numerous significant variations. Further, each specific type of machine must be perfected over a complex, interactive parameter space to achieve suitable removal of various materials. Among the most critical system parameters are the choice of cathode or anode to hold the wafers, the chamber pressure, the plasma excitation frequency, and the electrode and magnetron structures. Recent trends include the use of vacuum load locks, multiple chambers, multiple electrodes, downstream etching or stripping, and multistep processes. A major percentage of etches in production handle the three materials: polysilicon, oxide and aluminum. Recent process developments have targeted refractory metals, their silicides, and with increasing emphasis, silicon trenching. Indeed, with new VLSI structures, silicon trenching has become the process of greatest interest. For stripping, dry processes provide advantages other than anisotropy. Here, too, new configurations and methods have been introduced recently. While wet processes are less than desirable from a number of viewpoints (handling, safety, disposal, venting, classes of clean room, automatability), dry methods are still being perfected as a direct, universal replacement. The paper will give an overview of these machine structures and process solutions, together with examples of interest. These findings and the trends discussed are based on semiannual survey of manufacturers and users of the various types of equipment.

  12. Dimensional Error in Rapid Prototyping with Open Source Software and Low-cost 3D-printer

    PubMed Central

    Andrade-Delgado, Laura; Telich-Tarriba, Jose E.; Fuente-del-Campo, Antonio; Altamirano-Arcos, Carlos A.

    2018-01-01

    Summary: Rapid prototyping models (RPMs) had been extensively used in craniofacial and maxillofacial surgery, especially in areas such as orthognathic surgery, posttraumatic or oncological reconstructions, and implantology. Economic limitations are higher in developing countries such as Mexico, where resources dedicated to health care are limited, therefore limiting the use of RPM to few selected centers. This article aims to determine the dimensional error of a low-cost fused deposition modeling 3D printer (Tronxy P802MA, Shenzhen, Tronxy Technology Co), with Open source software. An ordinary dry human mandible was scanned with a computed tomography device. The data were processed with open software to build a rapid prototype with a fused deposition machine. Linear measurements were performed to find the mean absolute and relative difference. The mean absolute and relative difference was 0.65 mm and 1.96%, respectively (P = 0.96). Low-cost FDM machines and Open Source Software are excellent options to manufacture RPM, with the benefit of low cost and a similar relative error than other more expensive technologies. PMID:29464171

  13. Dimensional Error in Rapid Prototyping with Open Source Software and Low-cost 3D-printer.

    PubMed

    Rendón-Medina, Marco A; Andrade-Delgado, Laura; Telich-Tarriba, Jose E; Fuente-Del-Campo, Antonio; Altamirano-Arcos, Carlos A

    2018-01-01

    Rapid prototyping models (RPMs) had been extensively used in craniofacial and maxillofacial surgery, especially in areas such as orthognathic surgery, posttraumatic or oncological reconstructions, and implantology. Economic limitations are higher in developing countries such as Mexico, where resources dedicated to health care are limited, therefore limiting the use of RPM to few selected centers. This article aims to determine the dimensional error of a low-cost fused deposition modeling 3D printer (Tronxy P802MA, Shenzhen, Tronxy Technology Co), with Open source software. An ordinary dry human mandible was scanned with a computed tomography device. The data were processed with open software to build a rapid prototype with a fused deposition machine. Linear measurements were performed to find the mean absolute and relative difference. The mean absolute and relative difference was 0.65 mm and 1.96%, respectively ( P = 0.96). Low-cost FDM machines and Open Source Software are excellent options to manufacture RPM, with the benefit of low cost and a similar relative error than other more expensive technologies.

  14. Comparison of surface roughness and chip characteristics obtained under different modes of lubrication during hard turning of AISI H13 tool work steel.

    NASA Astrophysics Data System (ADS)

    Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.

    2016-09-01

    Surface roughness is one of the important parameters, which not only affects the service life of a component but also serves as a good index of machinability. Near Dry Machining, methods (NDM) are considered as sustainable alternative for workshops trying to bring down their dependence on cutting fluids and the hazards associated with their indiscriminate usage. The present work presents a comparison of the surface roughness and chip characteristics during hard turning of AISI H13 tool work steel using hard metal inserts under two popular NDM techniques namely the minimal fluid application and the Minimum Quantity Lubrication technique(MQL) using an experiment designed based on Taguchi's techniques. The statistical method of analysis of variance (ANOVA) was used to determine the relative significance of input parameters consisting of cutting speed, feed and depth of cut on the attainable surface finish and the chip characteristics. It was observed that the performance during minimal fluid application was better than that during MQL application.

  15. Norovirus Illness: Key Facts

    MedlinePlus

    ... should— • handle soiled items carefully without agitating them, • wear rubber or disposable gloves while handling soiled items and wash your hands after, and wash the items with detergent at the maximum available cycle length then machine dry them. Visit CDC’s Norovirus Web site at ...

  16. Paper surface diffraction to characterize the fiber orientation distribution

    NASA Astrophysics Data System (ADS)

    Pereira, Mario; Teixeira, Jose; Fiadeiro, Paulo T.; Silvy, Jacques

    2001-11-01

    Many paper mills use ultrasonic techniques to measure the Tensile Stiffness Index, TSI, of the paper sheet. They then assume that the TSI value is the same as the fibre orientation anisotropy. This is true if the paper is allowed to dry without any internal tension or elongation, but does not apply to paper manufactured in a paper machine. The paper machine introduces tension and elongation as soon as the fibre is placed on the forming fabric. These factors increase through the press section and are accentuated in the drying section. In order to uniquely measure the fibre orientation anisotropy on the surfaces, the proposed method uses replicas of both paper surfaces to produce a laser diffraction pattern. The obtained pattern reveals an elliptical shape, which is related to the fibre orientation anisotropy of the paper surface. By measuring the ellipticity of the diffraction pattern and the deviation with respect to the machine direction, one can quantify the fibre orientation distribution. Different papers from the bench market have been successfully tested with the developed system. This article describes the new developed optical system and its innovative capabilities in the field to produce maps of the fibre orientation of a complete paper sheet surface. A selection of the obtained results to prove its feasibility is also presented.

  17. Particle size alterations of feedstuffs during in situ neutral detergent fiber incubation.

    PubMed

    Krämer, M; Nørgaard, P; Lund, P; Weisbjerg, M R

    2013-07-01

    Particle size alterations during neutral detergent fiber (NDF) determination and in situ rumen incubation were analyzed by dry sieving and image analysis to evaluate the in situ procedure for estimation of NDF degradation parameters and indigestible NDF concentration in terms of particle size. Early-cut and late-cut grass silages, corn silage, alfalfa silage, rapeseed meal, and dried distillers grains were examined. Treatments were (1) drying and grinding of forage samples and grinding of concentrates; (2) neutral detergent-soluble (NDS) extraction; (3) machine washing and NDS extraction; (4) 24-h rumen incubation, machine washing, and NDS extraction; and (5) 288-h rumen incubation, machine washing, and NDS extraction. Degradation profiles for potentially degradable NDF were determined and image analysis was used to estimate particle size profiles and thereby the risk for particle loss. Particle dimensions changed during NDF determination and in situ rumen incubation and variations depended on feedstuff and treatment. Corn silage and late-cut grass silage varied most in particle area among feedstuffs, with an increase of 139% between 0 and 24h and a decrease of 77% between 24 and 288 h for corn silage and a decrease of 74% for late-cut grass silage between 24- and 288-h in situ rumen incubation. Especially for late-cut grass silage residues after 288 h in situ rumen incubation, a high mass proportion in the critical zone for escape was found. Particle area decreased linearly with increasing incubation time. Particle loss during in situ rumen incubation cannot be excluded and is likely to vary among feedstuffs. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Bond strengths of Scotchbond Multi-Purpose to moist dentin and enamel.

    PubMed

    Swift, E J; Triolo, P T

    1992-12-01

    This in vitro study tested the shear bond strengths of the Scotchbond Multi-Purpose adhesive system to moist and dry enamel and dentin. After the tooth was etched, the surface was either dried with compressed air or blotted with tissue paper, leaving the surface visibly moist. Primer and adhesive were applied according to the manufacturer's directions. Resin composite posts were applied, and the specimens were thermocycled. Shear bond strengths were determined using an Instron universal testing machine. For both enamel and dentin, mean shear bond strengths were higher when the surface was left visibly moist after etching. Bond strengths to moist and dry dentin were 21.8 and 17.8 MPa, respectively. Enamel bond strengths were slightly lower, with values of 17.0 and 14.2 MPa to moist and dry enamel, respectively.

  19. A Novel Multi-Phosphonate Surface Treatment of Titanium Dental Implants: A Study in Sheep

    PubMed Central

    von Salis-Soglio, Marcella; Stübinger, Stefan; Sidler, Michéle; Klein, Karina; Ferguson, Stephen J.; Kämpf, Käthi; Zlinszky, Katalin; Buchini, Sabrina; Curno, Richard; Péchy, Péter; Aronsson, Bjorn-Owe; von Rechenberg, Brigitte

    2014-01-01

    The aim of the present study was to evaluate a new multi-phosphonate surface treatment (SurfLink®) in an unloaded sheep model. Treated implants were compared to control implants in terms of bone to implant contact (BIC), bone formation, and biomechanical stability. The study used two types of implants (rough or machined surface finish) each with either the multi-phosphonate Wet or Dry treatment or no treatment (control) for a total of six groups. Animals were sacrificed after 2, 8, and 52 weeks. No adverse events were observed at any time point. At two weeks, removal torque showed significantly higher values for the multi-phosphonate treated rough surface (+32% and +29%, Dry and Wet, respectively) compared to rough control. At 52 weeks, a significantly higher removal torque was observed for the multi-phosphonate treated machined surfaces (+37% and 23%, Dry and Wet, respectively). The multi-phosphonate treated groups showed a positive tendency for higher BIC with time and increased new-old bone ratio at eight weeks. SEM images revealed greater amounts of organic materials on the multi-phosphonate treated compared to control implants, with the bone fracture (from the torque test) appearing within the bone rather than at the bone to implant interface as it occurred for control implants. PMID:25215424

  20. Small communal laundries in block of flats: Planning, Equipment, Handicap Adaption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedersen, B.

    1980-01-01

    The primary requirements which must be made for a communal laundry is that it must be adapted to the laundry quantities, laundry needs, and available time of the households. In addition, the equipment must be such that the work involved and the and water are kept as low as possible. It is also important that the laundry facility be regarded as an attractive work environment. The following topics are discussed: Small communal laundries offer many advantages (In the same building, Possibilities for unscheduled laundering, Economically advantageous, Easy to agree on laundering times); Calculation of laundry capacity; Equipment in the laundrymore » (Washing machines, Spin dryer, Tumbler dryer and drying cabinets, Work table, Sink unit, Cold mangle); Information on equipment; Energy conservation measures (Heat exchanger, Outdoor drying); Location of equipment; Work areas which also suit the physically handicapped; Work postures are improved if the machines are placed on a higher level; Layouts; Standards for laundries.« less

  1. Use of Machine Learning Techniques for Identification of Robust Teleconnections to East African Rainfall Variability

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, F. R.; Funk, C.

    2014-01-01

    Hidden Markov models can be used to investigate structure of subseasonal variability. East African short rain variability has connections to large-scale tropical variability. MJO - Intraseasonal variations connected with appearance of "wet" and "dry" states. ENSO/IOZM SST and circulation anomalies are apparent during years of anomalous residence time in the subseasonal "wet" state. Similar results found in previous studies, but we can interpret this with respect to variations of subseasonal wet and dry modes. Reveal underlying connections between MJO/IOZM/ENSO with respect to East African rainfall.

  2. Nanocrystalline coating design for extreme applications based on the concept of complex adaptive behavior

    NASA Astrophysics Data System (ADS)

    Fox-Rabinovich, G. S.; Veldhuis, S. C.; Dosbaeva, G. K.; Yamamoto, K.; Kovalev, A. I.; Wainstein, D. L.; Gershman, I. S.; Shuster, L. S.; Beake, B. D.

    2008-04-01

    The development of effective hard coatings for high performance dry machining, which is associated with high stress/temperatures during friction, is a major challenge. Newly developed synergistically alloyed nanocrystalline adaptive Ti0.2Al0.55Cr0.2Si0.03Y0.02N plasma vapor deposited hard coatings exhibit excellent tool life under conditions of high performance dry machining of hardened steel, especially under severe and extreme cutting conditions. The coating is capable of sustaining cutting speeds as high as 600 m/min. Comprehensive investigation of the microstructure and properties of the coating was performed. The structure of the coating before and after service has been characterized by high resolution transmission electron microscopy. Micromechanical characteristics of the coating have been investigated at elevated temperatures. Oxidation resistance of the coating has been studied by using thermogravimetry within a temperature range of 25-1100 °C in air. The coefficient of friction of the coatings was studied within a temperature range of 25-1200 °C. To determine the causes of excellent tool life and improved wear behavior of the TiAlCrSiYN coatings, its surface structure characteristics after service have been investigated by using x-ray photoelectron spectroscopy and extended energy-loss fine spectroscopy. One of the major features of this coating is the dynamic formation of the protective tribo-oxide films (dissipative structures) on the surface during friction with a sapphire and mullite crystal structure. Aluminum- and silicon-rich tribofilms with dangling bonds form on the surface as well. These tribofilms act in synergy and protect the surface so efficiently that it is able to sustain extreme operating conditions. Moreover, the Ti0.2Al0.55Cr0.2Si0.03Y0.02N coating possesses some features of a complex adaptive behavior because it has a number of improved characteristics (tribological adaptability, ultrafine nanocrystalline structure, hot hardness and plasticity, and oxidation stability) that work synergistically as a whole. Due to the complex adaptive behavior, this coating represents a higher ordered system that has an ability to achieve unattainable wear resistance under strongly intensifying and extreme tribological conditions.

  3. “Investigations on the machinability of Waspaloy under dry environment”

    NASA Astrophysics Data System (ADS)

    Deepu, J.; Kuppan, P.; SBalan, A. S.; Oyyaravelu, R.

    2016-09-01

    Nickel based superalloy, Waspaloy is extensively used in gas turbine, aerospace and automobile industries because of their unique combination of properties like high strength at elevated temperatures, resistance to chemical degradation and excellent wear resistance in many hostile environments. It is considered as one of the difficult to machine superalloy due to excessive tool wear and poor surface finish. The present paper is an attempt for removing cutting fluids from turning process of Waspaloy and to make the processes environmentally safe. For this purpose, the effect of machining parameters such as cutting speed and feed rate on the cutting force, cutting temperature, surface finish and tool wear were investigated barrier. Consequently, the strength and tool wear resistance and tool life increased significantly. Response Surface Methodology (RSM) has been used for developing and analyzing a mathematical model which describes the relationship between machining parameters and output variables. Subsequently ANOVA was used to check the adequacy of the regression model as well as each machining variables. The optimal cutting parameters were determined based on multi-response optimizations by composite desirability approach in order to minimize cutting force, average surface roughness and maximum flank wear. The results obtained from the experiments shown that machining of Waspaloy using coated carbide tool with special ranges of parameters, cutting fluid could be completely removed from machining process

  4. 30 CFR 56.6405 - Firing devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Electric Blasting § 56... all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired, and maintained in...

  5. Processing of surrogate nuclear fuel pellets for better dimensional control with dry bag isostatic pressing

    DOE PAGES

    Hoggan, Rita E.; Zuck, Larry D.; Cannon, W. Roger; ...

    2016-05-26

    A study of improved methods of processing fuel pellets was undertaken using ceria and zirconia/yttria/alumina as surrogates. Through proper granulation and vertical vibration (tapping) of the parts bag prior to dry bag isostatic pressing (DBIP), reproducibility of diameter profiles among multiple pellets of ceria was improved by almost an order of magnitude. Reproducibility of sintered pellets was sufficiently good to possibly avoid grinding. Deviation from the mean diameter along the length of multiple pellets, as well as, deviation from roundness, decreased after sintering. This is not generally observed with dry pressed pellets. Thus it is possible to machine to tolerancemore » before sintering if grinding is necessary.« less

  6. Evaluation of Workpiece Temperature during Drilling of GLARE Fiber Metal Laminates Using Infrared Techniques: Effect of Cutting Parameters, Fiber Orientation and Spray Mist Application.

    PubMed

    Giasin, Khaled; Ayvar-Soberanis, Sabino

    2016-07-28

    The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate.

  7. Evaluation of Workpiece Temperature during Drilling of GLARE Fiber Metal Laminates Using Infrared Techniques: Effect of Cutting Parameters, Fiber Orientation and Spray Mist Application

    PubMed Central

    Giasin, Khaled; Ayvar-Soberanis, Sabino

    2016-01-01

    The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate. PMID:28773757

  8. Laser reflectance measurement for the online monitoring of Chlorella sorokiniana biomass concentration.

    PubMed

    López Expósito, Patricio; Blanco Suárez, Angeles; Negro Álvarez, Carlos

    2017-02-10

    Fast and reliable methods to determine biomass concentration are necessary to facilitate the large scale production of microalgae. A method for the rapid estimation of Chlorella sorokiniana biomass concentration was developed. The method translates the suspension particle size spectrum gathered though laser reflectance into biomass concentration by means of two machine learning modelling techniques. In each case, the model hyper-parameters were selected applying a simulated annealing algorithm. The results show that dry biomass concentration can be estimated with a very good accuracy (R 2 =0.87). The presented method seems to be suited to perform fast estimations of biomass concentration in suspensions of microalgae cultivated in moderately turbid media with tendency to aggregate. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Study of the Productivity and Surface Quality of Hybrid EDM

    NASA Astrophysics Data System (ADS)

    Wankhade, Sandeepkumar Haribhau; Sharma, Sunil Bansilal

    2016-01-01

    The development of new, advanced engineering materials and the need for precise prototypes and low-volume production have made the electric discharge machining (EDM), an important manufacturing process to meet such demands. It is capable of machining geometrically complex and hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, carbides etc. Conversely the low MRR limits its productivity. Abrasive water jet machine (AJM) tools are quick to setup and offer quick turn-around on the machine and could make parts out of virtually any material. They do not heat the material hence no heat affected zone and can make any intricate shape easily. The main advantages are flexibility, low heat production and ability to machine hard and brittle materials. Main disadvantages comprise the process produces a tapered cut and health hazards due to dry abrasives. To overcome the limitations and exploit the best of each of above processes; an attempt has been made to hybridize the processes of AJM and EDM. The appropriate abrasives routed with compressed air through the hollow electrode to construct the hybrid process i.e., abrasive jet electric discharge machining (AJEDM), the high speed abrasives could impinge on the machined surface to remove the recast layer caused by EDM process. The main process parameters were varied to explore their effects and experimental results show that AJEDM enhances the machining efficiency with better surface finish hence can fit the requirements of modern manufacturing applications.

  10. Machine & electrical double control air dryer for vehicle air braking system

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  11. Research on computer systems benchmarking

    NASA Technical Reports Server (NTRS)

    Smith, Alan Jay (Principal Investigator)

    1996-01-01

    This grant addresses the topic of research on computer systems benchmarking and is more generally concerned with performance issues in computer systems. This report reviews work in those areas during the period of NASA support under this grant. The bulk of the work performed concerned benchmarking and analysis of CPUs, compilers, caches, and benchmark programs. The first part of this work concerned the issue of benchmark performance prediction. A new approach to benchmarking and machine characterization was reported, using a machine characterizer that measures the performance of a given system in terms of a Fortran abstract machine. Another report focused on analyzing compiler performance. The performance impact of optimization in the context of our methodology for CPU performance characterization was based on the abstract machine model. Benchmark programs are analyzed in another paper. A machine-independent model of program execution was developed to characterize both machine performance and program execution. By merging these machine and program characterizations, execution time can be estimated for arbitrary machine/program combinations. The work was continued into the domain of parallel and vector machines, including the issue of caches in vector processors and multiprocessors. All of the afore-mentioned accomplishments are more specifically summarized in this report, as well as those smaller in magnitude supported by this grant.

  12. 40 CFR 63.461 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the layer of air inside the solvent cleaning machine freeboard located above the solvent/air interface... speed from the initial loading of soiled or wet parts through the removal of the cleaned or dried parts... fresh unused solvent, recycled solvent, or used solvent that has been cleaned of soils (e.g., skimmed of...

  13. 40 CFR 63.461 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the layer of air inside the solvent cleaning machine freeboard located above the solvent/air interface... speed from the initial loading of soiled or wet parts through the removal of the cleaned or dried parts... fresh unused solvent, recycled solvent, or used solvent that has been cleaned of soils (e.g., skimmed of...

  14. 40 CFR 63.461 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the layer of air inside the solvent cleaning machine freeboard located above the solvent/air interface... speed from the initial loading of soiled or wet parts through the removal of the cleaned or dried parts... fresh unused solvent, recycled solvent, or used solvent that has been cleaned of soils (e.g., skimmed of...

  15. 40 CFR 63.461 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the layer of air inside the solvent cleaning machine freeboard located above the solvent/air interface... speed from the initial loading of soiled or wet parts through the removal of the cleaned or dried parts... fresh unused solvent, recycled solvent, or used solvent that has been cleaned of soils (e.g., skimmed of...

  16. A Framework to Guide the Assessment of Human-Machine Systems.

    PubMed

    Stowers, Kimberly; Oglesby, James; Sonesh, Shirley; Leyva, Kevin; Iwig, Chelsea; Salas, Eduardo

    2017-03-01

    We have developed a framework for guiding measurement in human-machine systems. The assessment of safety and performance in human-machine systems often relies on direct measurement, such as tracking reaction time and accidents. However, safety and performance emerge from the combination of several variables. The assessment of precursors to safety and performance are thus an important part of predicting and improving outcomes in human-machine systems. As part of an in-depth literature analysis involving peer-reviewed, empirical articles, we located and classified variables important to human-machine systems, giving a snapshot of the state of science on human-machine system safety and performance. Using this information, we created a framework of safety and performance in human-machine systems. This framework details several inputs and processes that collectively influence safety and performance. Inputs are divided according to human, machine, and environmental inputs. Processes are divided into attitudes, behaviors, and cognitive variables. Each class of inputs influences the processes and, subsequently, outcomes that emerge in human-machine systems. This framework offers a useful starting point for understanding the current state of the science and measuring many of the complex variables relating to safety and performance in human-machine systems. This framework can be applied to the design, development, and implementation of automated machines in spaceflight, military, and health care settings. We present a hypothetical example in our write-up of how it can be used to aid in project success.

  17. Prediction of rainfall anomalies during the dry to wet transition season over the Southern Amazonia using machine learning tools

    NASA Astrophysics Data System (ADS)

    Shan, X.; Zhang, K.; Zhuang, Y.; Fu, R.; Hong, Y.

    2017-12-01

    Seasonal prediction of rainfall during the dry-to-wet transition season in austral spring (September-November) over southern Amazonia is central for improving planting crops and fire mitigation in that region. Previous studies have identified the key large-scale atmospheric dynamic and thermodynamics pre-conditions during the dry season (June-August) that influence the rainfall anomalies during the dry to wet transition season over Southern Amazonia. Based on these key pre-conditions during dry season, we have evaluated several statistical models and developed a Neural Network based statistical prediction system to predict rainfall during the dry to wet transition for Southern Amazonia (5-15°S, 50-70°W). Multivariate Empirical Orthogonal Function (EOF) Analysis is applied to the following four fields during JJA from the ECMWF Reanalysis (ERA-Interim) spanning from year 1979 to 2015: geopotential height at 200 hPa, surface relative humidity, convective inhibition energy (CIN) index and convective available potential energy (CAPE), to filter out noise and highlight the most coherent spatial and temporal variations. The first 10 EOF modes are retained for inputs to the statistical models, accounting for at least 70% of the total variance in the predictor fields. We have tested several linear and non-linear statistical methods. While the regularized Ridge Regression and Lasso Regression can generally capture the spatial pattern and magnitude of rainfall anomalies, we found that that Neural Network performs best with an accuracy greater than 80%, as expected from the non-linear dependence of the rainfall on the large-scale atmospheric thermodynamic conditions and circulation. Further tests of various prediction skill metrics and hindcasts also suggest this Neural Network prediction approach can significantly improve seasonal prediction skill than the dynamic predictions and regression based statistical predictions. Thus, this statistical prediction system could have shown potential to improve real-time seasonal rainfall predictions in the future.

  18. Man/Machine Interaction Dynamics And Performance (MMIDAP) capability

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1991-01-01

    The creation of an ability to study interaction dynamics between a machine and its human operator can be approached from a myriad of directions. The Man/Machine Interaction Dynamics and Performance (MMIDAP) project seeks to create an ability to study the consequences of machine design alternatives relative to the performance of both machine and operator. The class of machines to which this study is directed includes those that require the intelligent physical exertions of a human operator. While Goddard's Flight Telerobotic's program was expected to be a major user, basic engineering design and biomedical applications reach far beyond telerobotics. Ongoing efforts are outlined of the GSFC and its University and small business collaborators to integrate both human performance and musculoskeletal data bases with analysis capabilities necessary to enable the study of dynamic actions, reactions, and performance of coupled machine/operator systems.

  19. Machine characterization based on an abstract high-level language machine

    NASA Technical Reports Server (NTRS)

    Saavedra-Barrera, Rafael H.; Smith, Alan Jay; Miya, Eugene

    1989-01-01

    Measurements are presented for a large number of machines ranging from small workstations to supercomputers. The authors combine these measurements into groups of parameters which relate to specific aspects of the machine implementation, and use these groups to provide overall machine characterizations. The authors also define the concept of pershapes, which represent the level of performance of a machine for different types of computation. A metric based on pershapes is introduced that provides a quantitative way of measuring how similar two machines are in terms of their performance distributions. The metric is related to the extent to which pairs of machines have varying relative performance levels depending on which benchmark is used.

  20. Evaluation of the friction force generated by monocristalyne and policristalyne ceramic brackets in sliding mechanics.

    PubMed

    Pimentel, Roberta Ferreira; de Oliveira, Roberto Sotto Maior Fortes; Chaves, Maria das Graças Afonso Miranda; Elias, Carlos Nelson; Gravina, Marco Abdo

    2013-01-01

    To evaluate and compare "in vitro" the maximum friction force generated by three types of esthetic brackets, two types of polycrystalline conventional ceramic brackets (20/40 and InVu) and one type of sapphire monocrystalline bracket (Radiance) in dry and artificial saliva wet settings. Also, to evaluate the influence exerted by artificial saliva on the friction forces of those brackets. Tests were performed in dry and artificial saliva wet setting (Oral Balance) by using an EMIC DL 10000 testing machine, simulating a 2 mm slide of 0.019 x 0.025-in rectangular stainless steel wires over the pre-angulated and pre-torqued (right superior canine, Roth prescription, slot 0.022 x 0.030-in) brackets (n = 18 for each bracket). In order to compare groups in dry and wet settings, the ANOVA was used. For comparisons related to the dry versus wet setting, the student t test was used for each group. The results showed that in the absence of saliva the Radiance monocrystalline brackets showed the highest friction coefficients, followed by the 20/40 and the InVu polycrystalline brackets. In tests with artificial saliva, the Radiance and the 20/40 brackets had statistically similar friction coefficients and both were greater than that presented by the InVu brackets. The artificial saliva did not change the maximum friction force of the Radiance brackets, but, for the others (20/40 and InVu), an increase of friction was observed in its presence. The InVu brackets showed, in the absence and in the presence of saliva, the lowest friction coefficient.

  1. Flank wear analysing of high speed end milling for hardened steel D2 using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Hazza Faizi Al-Hazza, Muataz; Ibrahim, Nur Asmawiyah bt; Adesta, Erry T. Y.; Khan, Ahsan Ali; Abdullah Sidek, Atiah Bt.

    2017-03-01

    One of the main challenges for any manufacturer is how to decrease the machining cost without affecting the final quality of the product. One of the new advanced machining processes in industry is the high speed hard end milling process that merges three advanced machining processes: high speed milling, hard milling and dry milling. However, one of the most important challenges in this process is to control the flank wear rate. Therefore a analyzing the flank wear rate during machining should be investigated in order to determine the best cutting levels that will not affect the final quality of the product. In this research Taguchi method has been used to investigate the effect of cutting speed, feed rate and depth of cut and determine the best level s to minimize the flank wear rate up to total length of 0.3mm based on the ISO standard to maintain the finishing requirements.

  2. Detection of Cutting Tool Wear using Statistical Analysis and Regression Model

    NASA Astrophysics Data System (ADS)

    Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin

    2010-10-01

    This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.

  3. Machine Learning Assessments of Soil Drying

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Minsker, B. S.; Wenzel, C.; Gilmore, B. J.

    2011-12-01

    Agricultural activities require the use of heavy equipment and vehicles on unpaved farmlands. When soil conditions are wet, equipment can cause substantial damage, leaving deep ruts. In extreme cases, implements can sink and become mired, causing considerable delays and expense to extricate the equipment. Farm managers, who are often located remotely, cannot assess sites before allocating equipment, causing considerable difficulty in reliably assessing conditions of countless sites with any reliability and frequency. For example, farmers often trace serpentine paths of over one hundred miles each day to assess the overall status of various tracts of land spanning thirty, forty, or fifty miles in each direction. One means of assessing the moisture content of a field lies in the strategic positioning of remotely-monitored in situ sensors. Unfortunately, land owners are often reluctant to place sensors across their properties due to the significant monetary cost and complexity. This work aspires to overcome these limitations by modeling the process of wetting and drying statistically - remotely assessing field readiness using only information that is publically accessible. Such data includes Nexrad radar and state climate network sensors, as well as Twitter-based reports of field conditions for validation. Three algorithms, classification trees, k-nearest-neighbors, and boosted perceptrons are deployed to deliver statistical field readiness assessments of an agricultural site located in Urbana, IL. Two of the three algorithms performed with 92-94% accuracy, with the majority of misclassifications falling within the calculated margins of error. This demonstrates the feasibility of using a machine learning framework with only public data, knowledge of system memory from previous conditions, and statistical tools to assess "readiness" without the need for real-time, on-site physical observation. Future efforts will produce a workflow assimilating Nexrad, climate network, and Twitter data to generate a real-time web-map of estimated readiness conditions.

  4. Effect of grinding on the fatigue life of titanium alloy (5 Al-2.5 Sn) under dry and wet conditions

    NASA Technical Reports Server (NTRS)

    Rangaswamy, Partha; Terutung, Hendra; Jeelani, Shaik

    1989-01-01

    The principal factors in the performance of aerospace materials are strength-to-weight ratio, fatigue life, fracture toughness, survivability and, of course, reliability. Machining processes and, in particular, grinding under adverse conditions have been found to cause damage to surface integrity and affect the residual stress distribution in the surface and subsurface region. These effects have a direct bearing on the fatigue life. In this investigation the effects of grinding conditions on the fatigue life of Titanium 5 Al-2.5Sn were studied. This alloy is used in ground form in the manufacturing of some critical components in the space shuttle's main engine. It is essential that materials for such applications be properly characterized for use in severe service conditions. Flat sub-size specimens 0.1 inch thick were ground on a surface grinding machine equipped with a variable speed motor at speeds of 2000 to 6000 rpm using SiC wheels of grit sizes 60 and 120. The grinding parameters used in this investigation were chosen from a separate study. The ground specimens were then fatigued at a selected stress and the resulting lives were compared with that of the virgin material. The surfaces of the specimens were examined under a scanning electron microscope, and the roughness and hardness were measured using a standard profilometer and microhardness tester, respectively. The fatigue life of the ground specimens was found to decrease with the increase in speed for both dry and wet conditions. The fatigue life of specimens ground under wet conditions showed a significant increase at the wheel speed of 2000 rpm for both the grit sizes and thereafter decreased with increase profilometry, microhardness measurements and scanning electron microscopic examination.

  5. A proposal to demonstrate production of salad crops in the Space Station Mockup Facility with particular attention to space, energy, and labor constraints

    NASA Technical Reports Server (NTRS)

    Brooks, Carolyn A.

    1992-01-01

    The Salad Machine Research has continued to be a two path effort with the research at Marshall Space Flight Center (MSFC) focusing on the design, construction, and operation of a semiautomated system (Salad Machine) for the production of salad vegetables within a standard rack. Boeing Corporation in cooperation with NASA MSFC constructed a four drawer Salad Machine which was occasionally placed within the Space Station Freedom Mockup facility for view by selected visitors. Final outfitting of the Salad Machine is awaiting the arrival of parts for the nutrient delivery system. Research at the Alabama A&M facilities focused on compatibility of radish and lettuce plants when grown on the same nutrient solution. Lettuce fresh weight shoot yield was significantly enhanced when lettuce plants were grown on nutrient solution which was shared with radish. Radish tuber production was not significantly affected although there was a trend for radish from shared solutions to be heavier than those grown on separate nutrient solutions. The effect of sharing nutrient solutions on carbohydrate partitioning reflected the effect of sharing solution on fresh weight yield. Lettuce shoot dry weight was significantly greater for plants from shared solutions than from separate. There was no significant effect on sharing nutrient solution on radish tuber dry weight. Partitioning of nitrogen, calcium, magnesium, and potassium was not affected by sharing, there was, however, a disproportionate amount of potassium in the tissues, suggesting luxury consumption of potassium in all plants and tissues. It is concluded that lettuce plants benefit from sharing nutrient solution with radish and that radish is not harmed.

  6. Wet-dog shake

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew; Mills, Zack; Hu, David

    2010-11-01

    The drying of wet fur is a critical to mammalian heat regulation. We investigate experimentally the ability of hirsute animals to rapidly oscillate their bodies to shed water droplets, nature's analogy to the spin cycle of a washing machine. High-speed videography and fur-particle tracking is employed to determine the angular position of the animal's shoulder skin as a function of time. We determine conditions for drop ejection by considering the balance of surface tension and centripetal forces on drops adhering to the animal. Particular attention is paid to rationalizing the relationship between animal size and oscillation frequency required to self-dry.

  7. Relative Performance of Hardwood Sawing Machines

    Treesearch

    Philip H. Steele; Michael W. Wade; Steven H. Bullard; Philip A. Araman

    1991-01-01

    Only limited information has been available to hardwood sawmillers on the performance of their sawing machines. This study analyzes a large database of individual machine studies to provide detailed information on 6 machine types. These machine types were band headrig, circular headrig, band linebar resaw, vertical band splitter resaw, single arbor gang resaw and...

  8. Recent developments in turning hardened steels - A review

    NASA Astrophysics Data System (ADS)

    Sivaraman, V.; Prakash, S.

    2017-05-01

    Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.

  9. Smart geo-energy village development by using cascade direct use of geothermal energy in Bonjol, West Sumatera

    NASA Astrophysics Data System (ADS)

    Prasetya, Novrisal; Erwinsyah Umra Lubis, Defry; Raharjo, Dharmawan; Miryani Saptadji, Nenny; Pratama, Heru Berian

    2017-12-01

    West Sumatera is a province which has a huge geothermal potential - approximately 6% of Indonesia’s total geothermal potential which equals to 1,656 MWe. One of the significant reserves located in Bonjol subdistrict which accounts for more than 50 MWe. The energy from geothermal manifestation in Bonjol can be utilized prior to indirect development. Manifestation at the rate 3 kg/s and 87 °C will flow to cascading system consisting several applications, arranged in order from high to low temperature to efficiently use the excessive energy. The direct use application selected is based on the best potential commodities as well as temperature constraint of heat source. The objective of this paper is to perform a conceptual design for the first cascade direct use of geothermal energy in Indonesia to establish Bonjol Smart Geo-Energy Village which will be transformed as the center of agricultural, stockbreeding, tourism as well as cultural site. A comprehenssive research was performed through remote survey area, evaluation featured product, analysis of heat loss and heat exchange in cascade system. From potential commodities, the three applications selected are cocoa drying and egg hatching incubation machine as well as new tourism site called Terapi Panas Bumi. The optimum temperature for cocoa drying is 62°C with the moisture content 7% which consumes 78 kW for one tones cocoa dried. Whereas, egg incubation system consists of two chamber with the same temperature 40°C for each room and relative humidity 55% and 70%. For the last stage, Terapi Panas Bumi works in temperature 40°C. Based on the result technical and economical aspect, it exhibits cascade direct use of geothermal energy is very recommended to develop.

  10. Nanocomposites for Machining Tools

    PubMed Central

    Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny

    2017-01-01

    Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance. PMID:29027926

  11. Training and generalization of laundry skills: a multiple probe evaluation with handicapped persons.

    PubMed Central

    Thompson, T J; Braam, S J; Fugua, R W

    1982-01-01

    An instructional procedure composed of a graded sequence of prompts and token reinforcement was used to train a complex chain of behaviors which included sorting, washing, and drying clothes. A multiple probe design with sequential instruction across seven major components of the laundering routine was used to demonstrate experimental control. Students were taught to launder clothing using machines located in their school and generalization was assessed later on machines located in the public laundromat. A comparison of students' laundry skills with those of normal peers indicated similar levels of proficiency. Follow-up probes demonstrated maintenance of laundry skills over a 10-month period. PMID:7096228

  12. Training and generalization of laundry skills: a multiple probe evaluation with handicapped persons.

    PubMed

    Thompson, T J; Braam, S J; Fugua, R W

    1982-01-01

    An instructional procedure composed of a graded sequence of prompts and token reinforcement was used to train a complex chain of behaviors which included sorting, washing, and drying clothes. A multiple probe design with sequential instruction across seven major components of the laundering routine was used to demonstrate experimental control. Students were taught to launder clothing using machines located in their school and generalization was assessed later on machines located in the public laundromat. A comparison of students' laundry skills with those of normal peers indicated similar levels of proficiency. Follow-up probes demonstrated maintenance of laundry skills over a 10-month period.

  13. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bello, Dhimiter; Wardle, Brian L.; Yamamoto, Namiko; Guzman deVilloria, Roberto; Garcia, Enrique J.; Hart, Anastasios J.; Ahn, Kwangseog; Ellenbecker, Michael J.; Hallock, Marilyn

    2009-01-01

    This study investigated airborne exposures to nanoscale particles and fibers generated during dry and wet abrasive machining of two three-phase advanced composite systems containing carbon nanotubes (CNTs), micron-diameter continuous fibers (carbon or alumina), and thermoset polymer matrices. Exposures were evaluated with a suite of complementary instruments, including real-time particle number concentration and size distribution (0.005-20 μm), electron microscopy, and integrated sampling for fibers and respirable particulate at the source and breathing zone of the operator. Wet cutting, the usual procedure for such composites, did not produce exposures significantly different than background whereas dry cutting, without any emissions controls, provided a worst-case exposure and this article focuses here. Overall particle release levels, peaks in the size distribution of the particles, and surface area of released particles (including size distribution) were not significantly different for composites with and without CNTs. The majority of released particle surface area originated from the respirable (1-10 μm) fraction, whereas the nano fraction contributed 10% of the surface area. CNTs, either individual or in bundles, were not observed in extensive electron microscopy of collected samples. The mean number concentration of peaks for dry cutting was composite dependent and varied over an order of magnitude with highest values for thicker laminates at the source being >1 × 106 particles cm-3. Concentration of respirable fibers for dry cutting at the source ranged from 2 to 4 fibers cm-3 depending on the composite type. Further investigation is required and underway to determine the effects of various exposure determinants, such as specimen and tool geometry, on particle release and effectiveness of controls.

  14. Unmanned tactical autonomous control and collaboration (utacc) human machine integration measures of performance and measures of effectiveness

    DTIC Science & Technology

    2017-06-01

    AUTONOMOUS CONTROL AND COLLABORATION (UTACC) HUMAN-MACHINE INTEGRATION MEASURES OF PERFORMANCE AND MEASURES OF EFFECTIVENESS by Thomas A...TACTICAL AUTONOMOUS CONTROL AND COLLABORATION (UTACC) HUMAN-MACHINE INTEGRATION MEASURES OF PERFORMANCE AND MEASURES OF EFFECTIVENESS 5. FUNDING...Tactical Autonomous Control and Collaboration (UTACC) program seeks to integrate Marines and autonomous machines to address the challenges encountered in

  15. Role of lubricants on friction between self-ligating brackets and archwires.

    PubMed

    Leal, Renata C; Amaral, Flávia L B; França, Fabiana M G; Basting, Roberta T; Turssi, Cecilia P

    2014-11-01

    To evaluate the effect of different lubricants on friction between orthodontic brackets and archwires. Active (Quick, Forestadent) and passive (Damon 3MX, Ormco) self-ligating brackets underwent friction tests in the presence of mucin- and carboxymethylcellulose (CMC)-based artificial saliva, distilled water, and whole human saliva (positive control). Dry friction (no lubricant) was used as the negative control. Bracket/wire samples (0.014 × 0.025 inch, CuNiTi, SDS Ormco) underwent friction tests eight times in a universal testing machine. Two-way analysis of variance showed no significant interaction between bracket type and lubricant (P  =  .324). Friction force obtained with passive self-ligating brackets was lower than that for active brackets (P < .001). Friction observed in the presence of artificial saliva did not differ from that generated under lubrication with natural human saliva, as shown by Tukey test. Higher friction forces were found with the use of distilled water or when the test was performed under dry condition (ie, with no lubricant). Lubrication plays a role in friction forces between self-ligating brackets and CuNiTi wires, with mucin- and CMC-based artificial saliva providing a reliable alternative to human natural saliva.

  16. Role of the primary silicon particle on the dry sliding wear of hypereutectic aluminium-silicon alloy A390

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Moo; Kang, Suk-Bong; Yoon, Sang-Chul

    1999-07-01

    The wear behavior of hypereutectic aluminium-silicon alloy A390 was investigated using a pin-on-disc wear machine under dry sliding conditions. The wear tests were performed within a load range of 10 to 300N at a constant sliding velocity of 0.5 m/sec. The microstructural and compositional changes that took place during wear were characterized by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analysis (EDXA) system. Based on the metallographic observations the role of the primary silicon particles was suggested. In a low pressure region, primary silicon particles supported the applied load and wear occurred mainly in the matrix. Thus the wear loss did not show much variation with the applied load. In the mid-load range, primary silicon particles did not yet fracture and thus supported the applied load in part. Transition from oxidative to metallic wear occurs mainly in the matrix and the increase of wear loss becomes sharper than that in a low pressure region. In the high pressure region, the fractures of primary silicon Particles occurred and wear loss increased sharply.

  17. Health hazard evaluation report HETA 85-039-1723, E. L. Smithe Machine Company, Duncansville, Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, D.E.

    1986-08-01

    The International Association of Machinists Local 2348 requested an investigation of reported skin rashes and headaches associated with cutting and cooling oils and solvents used in the machine shop. Of 62 employees interviewed, 42 had experienced skin problems occurring on their hands and arms including red skin, dry skin, cracked skin, or itchy skin, related to chemical exposures at the workplace. Xerosis, lichenification, or eczema of the hands and arms were noted on examination of 17 employees of the Lathe Department and 18 of those from the Milling Department. Respiratory and neurological complaints were also found among these employees. Themore » author concluded that the incidence of hand and arm xerosis and eczema in workers in the machining area may be associated with exposure to cutting oils. The author recommends that changes be made to minimize skin exposure and provide adequate ventilation and humidification.« less

  18. Ambient stable quantitative PCR reagents for the detection of Yersinia pestis.

    PubMed

    Qu, Shi; Shi, Qinghai; Zhou, Lei; Guo, Zhaobiao; Zhou, Dongsheng; Zhai, Junhui; Yang, Ruifu

    2010-03-09

    Although assays for detecting Yersinia pestis using TaqMan probe-based real-time PCR have been developed for years, little is reported on room-temperature-stable PCR reagents, which will be invaluable for field epidemic surveillance, immediate response to public health emergencies, counter-bioterrorism investigation, etc. In this work, a set of real-time PCR reagents for rapid detection of Y. pestis was developed with extraordinary stability at 37 degrees C. TaqMan-based real-time PCR assays were developed using the primers and probes targeting the 3a sequence in the chromosome and the F1 antigen gene caf1 in the plasmid pMT1of Y. pestis, respectively. Then, carbohydrate mixtures were added to the PCR reagents, which were later vacuum-dried for stability evaluation. The vacuum-dried reagents were stable at 37 degrees C for at least 49 days for a lower concentration of template DNA (10 copies/microl), and up to 79 days for higher concentrations (> or =10(2) copies/microl). The reagents were used subsequently to detect soil samples spiked with Y. pestis vaccine strain EV76, and 5x10(4) CFU per gram of soil could be detected by both 3a- and caf1-based PCR reagents. In addition, a simple and efficient method for soil sample processing is presented here. The vacuum-dried reagents for real-time PCR maintain accuracy and reproducibility for at least 49 days at 37 degrees C, indicating that they can be easily transported at room temperature for field application if the machine for performing real-time PCR is available. This dry reagent is of great significance for routine plague surveillance.

  19. Ambient Stable Quantitative PCR Reagents for the Detection of Yersinia pestis

    PubMed Central

    Zhou, Lei; Guo, Zhaobiao; Zhou, Dongsheng; Zhai, Junhui; Yang, Ruifu

    2010-01-01

    Background Although assays for detecting Yersinia pestis using TaqMan probe-based real-time PCR have been developed for years, little is reported on room-temperature-stable PCR reagents, which will be invaluable for field epidemic surveillance, immediate response to public health emergencies, counter-bioterrorism investigation, etc. In this work, a set of real-time PCR reagents for rapid detection of Y. pestis was developed with extraordinary stability at 37°C. Methods/Principal Findings TaqMan-based real-time PCR assays were developed using the primers and probes targeting the 3a sequence in the chromosome and the F1 antigen gene caf1 in the plasmid pMT1of Y. pestis, respectively. Then, carbohydrate mixtures were added to the PCR reagents, which were later vacuum-dried for stability evaluation. The vacuum-dried reagents were stable at 37°C for at least 49 days for a lower concentration of template DNA (10 copies/µl), and up to 79 days for higher concentrations (≥102 copies/µl). The reagents were used subsequently to detect soil samples spiked with Y. pestis vaccine strain EV76, and 5×104 CFU per gram of soil could be detected by both 3a- and caf1-based PCR reagents. In addition, a simple and efficient method for soil sample processing is presented here. Conclusions/Significance The vacuum-dried reagents for real-time PCR maintain accuracy and reproducibility for at least 49 days at 37°C, indicating that they can be easily transported at room temperature for field application if the machine for performing real-time PCR is available. This dry reagent is of great significance for routine plague surveillance. PMID:20231881

  20. Next Generation Loading System for Detonators and Primers

    DTIC Science & Technology

    Designed , fabricated and installed next generation tooling to provide additional manufacturing capabilities for new detonators and other small...prototype munitions on automated, semi-automated and manual machines. Lead design effort, procured and installed a primary explosive Drying Oven for a pilot...facility. Designed , fabricated and installed a Primary Explosives Waste Treatment System in a pilot environmental processing facility. Designed

  1. Coefficient of friction of dry slash pine and southern red oak on three tension-grip facings

    Treesearch

    T.J. Lemoine; P. Koch

    1975-01-01

    A urethane material proved to have nine times higher static friction coefficient (0.9) than smooth steel (0.1) on radial and tangential wood surfaces pulled parallel to the grain. It is probably superior to 22O-grit garnet paper or sand coatings for tension-grip facings in lumber testing machines.

  2. Coefficient of friction of dry slash pine and southern red oak on three tension-grip facings

    Treesearch

    Truett J. Lemoine; Peter Koch

    1974-01-01

    A urethane material proved to have nine times higher static friction coefficient (0.9) than smooth steel (0.1) on radial and tangential wood surfaces pulled parallel to the grain. It is probably superior to 220-grit garnet paper or sand coatings for tension-grip facings in lumber testing machines.

  3. Helping STEM Take Flight

    ERIC Educational Resources Information Center

    Scherer, Marge

    2015-01-01

    After watching a shirt being wafted into the air as it dries over a hearth, the tinkerer Joseph Montgolfier decides to try lighting a fire under a balloon--and creates the first flying machine. After observing an art object swinging from a cathedral's ceiling, Galileo mulls over the mechanisms of a pendulum-driven clock--and produces one 50…

  4. Plunge into the Fun World of Local Production. Media Production for the Classroom Teacher.

    ERIC Educational Resources Information Center

    Moll, Hans

    Designed to assist teachers and media professionals in the development of media presentations that can creatively capture learner attention, this manual provides step-by-step instructions for preparing materials using a dry mount press, copy machines, and cassette tape recordings. Sources of visual materials are suggested, the equipment needed,…

  5. 78 FR 11154 - Large Residential Washers From the Republic of Korea: Countervailing Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... externally mounted steel frame at least six inches high that is designed to house a coin/token operated... ``stacked washer-dryers'' denotes distinct washing and drying machines that are built on a unitary frame and... of steel and is assembled with security fasteners;\\8\\ or \\7\\ ``Payment system electronics'' denotes a...

  6. Machinability assessment of commercially pure titanium (CP-Ti) during turning operation: Application potential of GRA method

    NASA Astrophysics Data System (ADS)

    Khan, Akhtar; Maity, Kalipada

    2018-03-01

    This paper explores some of the vital machinability characteristics of commercially pure titanium (CP-Ti) grade 2. Experiments were conducted based on Taguchi’s L9 orthogonal array. The selected material was machined on a heavy duty lathe (Model: HMT NH26) using uncoated carbide inserts in dry cutting environment. The selected inserts were designated by ISO as SNMG 120408 (Model: K313) and manufactured by Kennametal. These inserts were rigidly mounted on a right handed tool holder PSBNR 2020K12. Cutting speed, feed rate and depth of cut were selected as three input variables whereas tool wear (VBc) and surface roughness (Ra) were the major attentions. In order to confirm an appreciable machinability of the work part, an optimal parametric combination was attained with the help of grey relational analysis (GRA) approach. Finally, a mathematical model was developed to exhibit the accuracy and acceptability of the proposed methodology using multiple regression equations. The results indicated that, the suggested model is capable of predicting overall grey relational grade within acceptable range.

  7. The effect of moisture on the shear bond strength of gold alloy rods bonded to enamel with a self-adhesive and a hydrophobic resin cement.

    PubMed

    Dursun, Elisabeth; Wiechmann, Dirk; Attal, Jean-Pierre

    2010-06-01

    The aim of this in vitro study was to investigate the influence of enamel moisture on the shear bond strength (SBS) of a hydrophobic resin cement, Maximum Cure (MC), and a self-adhesive resin cement, Multilink Sprint (MLS), after etching of the enamel. Forty cylindrical gold alloy rods were used to simulate the Incognito lingual bracket system. They were bonded to the enamel of 40 human teeth embedded in self-cured acrylic resin. Twenty were bonded with MC (10 on dry and 10 on wet enamel) and 20 with MLS (10 on dry and 10 on wet enamel). The SBS of MC and MLS was determined in a universal testing machine and the site of bond failure was defined by the adhesive remnant index (ARI). A Kruskal-Wallis test was performed followed by Games-Howell post hoc pairwise comparison tests on the SBS results (P < 0.05) and a chi-square test was used for the analysis of ARI scores (P < 0.05). On dry enamel, no significant differences between MC (58 +/- 5 MPa) and MLS (64 +/- 13 MPa) were noted. On wet enamel, the adherence of MC (6 +/- 8 MPa) and MLS (37 +/- 13 MPa) significantly decreased but to a lesser extent for MLS. The ARI scores corroborated these results. In conclusion, MC did not tolerate moisture. MLS was also affected but maintained sufficient adherence.

  8. 40 CFR 63.3960 - By what date must I conduct performance tests and other initial compliance demonstrations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... performance test of one representative magnet wire coating machine for each group of identical or very similar... you complete the performance test of a representative magnet wire coating machine. The requirements in... operations, you may, with approval, conduct a performance test of a single magnet wire coating machine that...

  9. AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment

    PubMed Central

    2011-01-01

    Background Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. Results This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. Conclusions AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements. PMID:21798025

  10. AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment.

    PubMed

    Stålring, Jonna C; Carlsson, Lars A; Almeida, Pedro; Boyer, Scott

    2011-07-28

    Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements.

  11. DARPA Robotics Challenge (DRC) Using Human-Machine Teamwork to Perform Disaster Response with a Humanoid Robot

    DTIC Science & Technology

    2017-02-01

    DARPA ROBOTICS CHALLENGE (DRC) USING HUMAN-MACHINE TEAMWORK TO PERFORM DISASTER RESPONSE WITH A HUMANOID ROBOT FLORIDA INSTITUTE FOR HUMAN AND...AND SUBTITLE DARPA ROBOTICS CHALLENGE (DRC) USING HUMAN-MACHINE TEAMWORK TO PERFORM DISASTER RESPONSE WITH A HUMANOID ROBOT 5a. CONTRACT NUMBER...Human and Machine Cognition (IHMC) from 2012-2016 through three phases of the Defense Advanced Research Projects Agency (DARPA) Robotics Challenge

  12. Method and apparatus for characterizing and enhancing the dynamic performance of machine tools

    DOEpatents

    Barkman, William E; Babelay, Jr., Edwin F

    2013-12-17

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include dynamic one axis positional accuracy of the machine tool, dynamic cross-axis stability of the machine tool, and dynamic multi-axis positional accuracy of the machine tool.

  13. Preparation and tribological behaviors of poly (ether ether ketone) nanocomposite films containing graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Song, Hao-Jie; Li, Na; Yang, Jin; Min, Chun-Ying; Zhang, Zhao-zhu

    2013-02-01

    The composite films of poly (ether ether ketone) (PEEK) filled with different proportions of graphene oxide (GO) nanosheets were prepared by the cast method. The tribological behaviors of the composite films under boundary lubrication (water and liquid paraffin oil lubrication) were investigated and compared with that under dry sliding on an UMT-2 friction and wear machine, by running a steel sphere against the composite films. The results were as follows: GO nanosheets as the filler greatly improve the wear resistance of PEEK under boundary lubrication, though the composites show a different dependence of wear resistance on the filler content. Scanning electron microscopy and optical microscopy performed to analyze the wear scar surfaces after friction confirmed that the outstanding lubrication performance of GO could be attributed to their small size and extremely thin laminated structure, which allow the GO to easily enter the contact area, thereby preventing the rough surfaces from coming into direct contact.

  14. Performance of Metal Cutting on Endmills Manufactured by Cooling-Air and Minimum Quantity Lubrication Grinding

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeru; Aoyama, Tojiro

    Grinding fluids have been commonly used during the grinding of tools for their cooling and lubricating effect since the hard, robust materials used for cutting tools are difficult to grind. Grinding fluids help prevent a drop in hardness due to burning of the cutting edge and keep chipping to an absolute minimum. However, there is a heightened awareness of the need to improve the work environment and protect the global environment. Thus, the present study is aimed at applying dry grinding, cooling-air grinding, cooling-air grinding with minimum quantity lubrication (MQL), and oil-based fluid grinding to manufacturing actual endmills (HSS-Co). Cutting tests were performed by a vertical machining center. The results indicated that the lowest surface inclination values and longest tool life were obtained by cooling-air grinding with MQL. Thus, cooling-air grinding with MQL has been demonstrated to be at least as effective as oil-based fluid grinding.

  15. Fuzzy regression modeling for tool performance prediction and degradation detection.

    PubMed

    Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L

    2010-10-01

    In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.

  16. Physical Properties of Nyamplung Oil (Calophyllum inophyllum L) for Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Dewang, Syamsir; Suriani; Hadriani, Siti; Bannu; Abdullah, B.

    2017-05-01

    Worldwide energy crisis due to the too high of energy consumption causes the people trying to find alternative energy to support energy requirements. The use of energy from environmentally friendly plant-based materials into an effort to assist communities in sufficient of national energy needs. Some processing of Nyamplung (Calophyllum inophyllum L) oil production is drying and pressing to produce crude oil. Degumming process is then performed to remove the sap contained in the oil. The next process is to remove free fatty acids (FFA) below 2% that can cause corrosion on the machine when in use. The results performed of the density properties quality to produce oil that appropriate with the international standards by time variation of catalyst. The result was obtained the density value of 0.92108 gr/cm3 at the time of 3 hours by trans-esterification process, and the best yield value was measured at 98.2% in 2 hours stirring of transesterification.

  17. Application of dragonfly algorithm for optimal performance analysis of process parameters in turn-mill operations- A case study

    NASA Astrophysics Data System (ADS)

    Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT

    2018-02-01

    Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).

  18. Investigation of a less rare-earth permanent-magnet machine with the consequent pole rotor

    NASA Astrophysics Data System (ADS)

    Bai, Jingang; Liu, Jiaqi; Wang, Mingqiao; Zheng, Ping; Liu, Yong; Gao, Haibo; Xiao, Lijun

    2018-05-01

    Due to the rising price of rare-earth materials, permanent-magnet (PM) machines in different applications have a trend of reducing the use of rare-earth materials. Since iron-core poles replace half of PM poles in the consequent pole (CP) rotor, the PM machine with CP rotor can be a promising candidate for less rare-earth PM machine. Additionally, the investigation of CP rotor in special electrical machines, like hybrid excitation permanent-magnet PM machine, bearingless motor, etc., has verified the application feasibility of CP rotor. Therefore, this paper focuses on design and performance of PM machines when traditional PM machine uses the CP rotor. In the CP rotor, all the PMs are of the same polarity and they are inserted into the rotor core. Since the fundamental PM flux density depends on the ratio of PM pole to iron-core pole, the combination rule between them is investigated by analytical and finite-element methods. On this basis, to comprehensively analyze and evaluate PM machine with CP rotor, four typical schemes, i.e., integer-slot machines with CP rotor and surface-mounted PM (SPM) rotor, fractional-slot machines with CP rotor and SPM rotor, are designed to investigate the performance of PM machine with CP rotor, including electromagnetic performance, anti-demagnetization capacity and cost.

  19. Hardware support for software controlled fast multiplexing of performance counters

    DOEpatents

    Salapura, Valentina; Wisniewski, Robert W

    2013-10-01

    Performance counters may be operable to collect one or more counts of one or more selected activities, and registers may be operable to store a set of performance counter configurations. A state machine may be operable to automatically select a register from the registers for reconfiguring the one or more performance counters in response to receiving a first signal. The state machine may be further operable to reconfigure the one or more performance counters based on a configuration specified in the selected register. The state machine yet further may be operable to copy data in selected one or more of the performance counters to a memory location, or to copy data from the memory location to the counters, in response to receiving a second signal. The state machine may be operable to store or restore the counter values and state machine configuration in response to a context switch event.

  20. Hardware support for software controlled fast multiplexing of performance counters

    DOEpatents

    Salapura, Valentina; Wisniewski, Robert W.

    2013-01-01

    Performance counters may be operable to collect one or more counts of one or more selected activities, and registers may be operable to store a set of performance counter configurations. A state machine may be operable to automatically select a register from the registers for reconfiguring the one or more performance counters in response to receiving a first signal. The state machine may be further operable to reconfigure the one or more performance counters based on a configuration specified in the selected register. The state machine yet further may be operable to copy data in selected one or more of the performance counters to a memory location, or to copy data from the memory location to the counters, in response to receiving a second signal. The state machine may be operable to store or restore the counter values and state machine configuration in response to a context switch event.

  1. Influence of non-edible vegetable based oil as cutting fluid on chip, surface roughness and cutting force during drilling operation of Mild Steel

    NASA Astrophysics Data System (ADS)

    Susmitha, M.; Sharan, P.; Jyothi, P. N.

    2016-09-01

    Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.

  2. A Science-Based Understanding of Cermet Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cesarano, III, Joseph; Roach, Robert Allen; Kilgo, Alice C.

    2006-04-01

    This report is a summary of the work completed in FY01 for science-based characterization of the processes used to fabricate 1) cermet vias in source feedthrus using slurry and paste-filling techniques and 2) cermet powder for dry pressing. Common defects found in cermet vias were characterized based on the ability of subsequent processing techniques (isopressing and firing) to remove the defects. Non-aqueous spray drying and mist granulation techniques were explored as alternative methods of creating CND50, the powder commonly used for dry pressed parts. Compaction and flow characteristics of these techniques were analyzed and compared to standard dry-ball-milled CND50. Duemore » to processing changes, changes in microstructure can occur. A microstructure characterization technique was developed to numerically describe cermet microstructure. Machining and electrical properties of dry pressed parts were also analyzed and related to microstructure using this analytical technique.3 Executive SummaryThis report outlines accomplishments in the science-based understanding of cermet processing up to fiscal year 2002 for Sandia National Laboratories. The three main areas of work are centered on 1) increasing production yields of slurry-filled cermets, 2) evaluating the viability of high-solids-loading pastes for the same cermet components, and 3) optimizing cermet powder used in pressing processes (CND50). An additional development that was created as a result of the effort to fully understand the impacts of alternative processing techniques is the use of analytical methods to relate microstructure to physical properties. Recommendations are suggested at the end of this report. Summaries of these four efforts are as follows:1.Increase Production Yields of Slurry-Filled Cermet Vias Finalized slurry filling criteria were determined based on three designs of experiments where the following factors were analyzed: vacuum time, solids loading, pressure drop across the filter paper, slurry injection rate, via prewetting, slurry injection angle, filter paper prewetting, and slurry mixing time. Many of these factors did not have an influence on defect formation. In order of decreasing importance, critical factors for defect formation by slurry filling are vacuum time (20 sec. optimal), slurry solids loading (20.0 g of cermet with 13.00 g of DGBEA solvent (21.2 vol%)), filling with the pipette in a vertical position, and faster injection rates (%7E765 l/s) as preferable to slower. No further recommendations for improvement to this process can be suggested. All findings of the slurry filling process have been transferred to CeramTec, the supplier. Paste filling methods appear to show more promise of increasing production yields. The types of flaws commonly found in slurry-filled vias were identified and followed throughout the entire source feedthru process. In general, all sizes of cracks healed during isopressing and firing steps. Additionally, small to medium sized voids (less than 1/3 the via diameter) can be healed. Porosity will usually lead to via necking, which may cause the part to be out of specification. Large voids (greater 4 than 1/3 of the diameter) and partial fills are not healed or produce significant necking. 2.Viability of High-Solids-Loading-Cermet Paste for Filling Source Feedthru ViaThe paste-filling process is easy to implement and easier to use. The high solids loading (>40 vol %) reduces the incidence of drying defects, which are seen in slurry filled (%7E23 vol %) vias. Additionally, the way in which the vias are filled (the paste is pushed from entrance to exit, displacing air as the paste front progresses), reduces the chance of entrapped voids, which are common in the slurry filling process. From the fair number of samples already filled, the likelihood of this process being a viable and reliable process is very good. Issues of concern for the paste process, as with any new process, are any problems that may arise in subsequent manufacturing stages of the neutron tube that may be affected by subtle changes in microstructure. Both MC4277 and MC4300-type source feedthrus were paste-filled by hand. X-ray analysis showed a much lower existence of voids in the green parts as compared to slurry-filled parts. The paste shows improvements in shelf life (weeks) as compared to slurry (minutes). This method of introducing the cermet to the via also lends itself very well to an automated filling process where a machine can either drill vias or, with the aid of a vision system, find pre-drilled vias and fill them with paste. The pastes used in this work prove the concept of this automated filling process as MC4277 sources have been filled using such a prototype machine, however, better performing pastes can be developed which are less hazardous (aqueous systems). The paste process was also used to successfully fill MC4300 "dogleg" type sources.3.Optimize CND50 Two methods of creating granulated cermet powder for comparison with dry-ball milled CND50 were explored. The first method, non-aqueous spray drying, was performed at Niro Inc. used a 40/60 (wt %) ethanol/toluene solvent and three binder systems; polyvinyl butyral (B79), ethylcellulose (Ethocel), and hydroxypropylcellulose (Klucel). Due to the nature of small spray-dry systems, an excess amount of fines was present in the granulated powder, which may have contributed to the low angles of repose (68 to 78). This is a moderate increase in 5 flowability as standard dry-ball milled powder possesses an angle of repose of 79-89. Mist granulated powders were produced with a tert-butanol solvent and polyvinyl butyral binder system. The angles of repose were more promising (28). More investigation into the mist granulation method is required. Also, aqueous spray drying may be possible with cermet and should be explored. Compaction of all granulated powders is much closer to a proven pressing powder (Sandi94 - angle of repose 29) which should allow cermet to be pressed to near net shape where die filling is difficult for non-flowing powders.4.Microstructure Characterization An analytical technique was developed to numerically characterize microstructures in terms of molybdenum dispersion, homogeneity, and percolation indices. This technique was applied to dry-ball-milled samples of various ball-milling times (0.5 to 20 hours). Significant change in the microstructure could be seen with milling time. Increased milling time caused agglomeration of molybdenum particles, increasing the percolation index, whereas short milling times promoted higher dispersion indices. This phenomenon is contrary to conventional understanding of mixing. However, conventional ball milling does not usually incorporate granules with binder and separate particles. This discrepancy may explain the odd mixing behavior. It is important to note that the high percolation index possessed by long ball mill times showed lower electrical resistance than low-percolation-index microstructures. However, machinability of high percolation, low-dispersion-index microstructures were poor as compared to microstructures with high dispersion indices and moderate percolation indices. This trade-off between dispersion and percolation (at constant molybdenum levels) suggests that microstructures can be achieved that posses good mechanical and electrical properties. Coincidentally, microstructures that satisfy this condition are produced by the standard dry-ball-milled CND50 (4 hour ball mill time). The performance and sensitivity of the microstructure characterization technique should be evaluated, specifically for electrical conductivity. Processing techniques to decrease the percolation index (lowering molybdenum content, excess ball milling, 6 larger molybdenum particles, etc.) should be employed to determine the point where cermet is not conductive or falls below electrical conduction specifications.7« less

  3. Evaluation of moisture reduction in small diameter trees after crushing

    Treesearch

    Donald L. Sirois; Cynthia L. Rawlins; Bryce J. Stokes

    1991-01-01

    Past studies have suggested that processing small diameter whole trees like those foumd on rights-of-way (ROWs) would help reduce transportion costs and increase energy value by lowering stem moisture content. Small stems were crushed by a roller crusher/splitter test bench machine and allowed dry under field conditions in Alabama. Tests were conducted in winter and...

  4. Laser machining of southern pine

    Treesearch

    C. W. McMillin; J. E. Harry

    1971-01-01

    When cutting with an air-jet-assisted carbon-dioxide laser of 240 watts output power, maximum feed speed at the point of full penetration of the beam decreased with increasing workpiece thickness in both wet and dry samples; the trend was curvilinear. Feed speeds averaged 99.1 and 14.6 inches per minute for samples 0.25 and 1.00 inch thick, respectively. Somewhat...

  5. 78 FR 11148 - Large Residential Washers From Mexico and the Republic of Korea: Antidumping Duty Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... contains payment system electronics; \\7\\ (b) it is configured with an externally mounted steel frame at... drying machines that are built on a unitary frame and share a common console that controls both the... selected wash cycle setting; and (d) the console containing the user interface is made of steel and is...

  6. 77 FR 75988 - Notice of Final Determination of Sales at Less Than Fair Value: Large Residential Washers From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... externally mounted steel frame at least six inches high that is designed to house a coin/token operated... washer-dryers'' denotes distinct washing and drying machines that are built on a unitary frame and share... of steel and is assembled with security fasteners;\\7\\ or \\6\\ ``Payment system electronics'' denotes a...

  7. 77 FR 46715 - Large Residential Washers From the Republic of Korea: Amendment to the Scope of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... contains payment system electronics; \\12\\ (b) it is configured with an externally mounted steel frame at... distinct washing and drying machines that are built on a unitary frame and share a common console that... wash cycle setting; and (d) the console containing the user interface is made of steel and is assembled...

  8. 77 FR 76288 - Notice of Final Determination of Sales at Less Than Fair Value: Large Residential Washers from...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-27

    ... externally mounted steel frame at least six inches high that is designed to house a coin/token operated... ``stacked washer-dryers'' denotes distinct washing and drying machines that are built on a unitary frame and... of steel and is assembled with security fasteners;\\7\\ or \\6\\ ``Payment system electronics'' denotes a...

  9. CHARACTERIZATION OF Pro-Beam LOW VOLTAGE ELECTRON BEAM WELDING MACHINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgardt, Paul; Pierce, Stanley W.

    The purpose of this paper is to present and discuss data related to the performance of a newly acquired low voltage electron beam welding machine. The machine was made by Pro-Beam AG &Co. KGaA of Germany. This machine was recently installed at LANL in building SM -39; a companion machine was installed in the production facility. The PB machine is substantially different than the EBW machines typically used at LANL and therefore, it is important to understand its characteristics as well as possible. Our basic purpose in this paper is to present basic machine performance data and to compare thosemore » with similar results from the existing EBW machines. It is hoped that this data will provide a historical record of this machine’s characteristics as well as possibly being helpful for transferring welding processes from the old EBW machines to the PB machine or comparable machines that may be purchased in the future.« less

  10. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  11. An iterative learning control method with application for CNC machine tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D.I.; Kim, S.

    1996-01-01

    A proportional, integral, and derivative (PID) type iterative learning controller is proposed for precise tracking control of industrial robots and computer numerical controller (CNC) machine tools performing repetitive tasks. The convergence of the output error by the proposed learning controller is guaranteed under a certain condition even when the system parameters are not known exactly and unknown external disturbances exist. As the proposed learning controller is repeatedly applied to the industrial robot or the CNC machine tool with the path-dependent repetitive task, the distance difference between the desired path and the actual tracked or machined path, which is one ofmore » the most significant factors in the evaluation of control performance, is progressively reduced. The experimental results demonstrate that the proposed learning controller can improve machining accuracy when the CNC machine tool performs repetitive machining tasks.« less

  12. High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Steve; McDonald, Timothy; Fasina, Oladiran

    In this study, a high-tonnage harvesting system designed specifically to operate efficiently in the expected stand types of a bioenergy scenario was built, deployed, and evaluated in a production setting. Stands on which the system was evaluated exhibited the heavy stocking levels (> 600 stems per acre) and tree size distributions with significant volume in small stems (down to 2” DBH) that were expected in the modified energy plantation silvicultural approach. The harvest system also was designed to be functional in the traditional plantation stands dominating the commercial forestry landscape in the region. The Tigercat 845D feller buncher, which wasmore » a prototype machine designed for the high tonnage harvest system, used a boom-mounted prototype DT1802 shear felling head and incorporated a number of options intended to maximize its small-stem productivity, including: a high-speed shear severing system that was cheaper to operate than a saw; a large-pocket felling head that allowed larger accumulations of small stems to be built before expending the time to drop them for the skidder; efficient, low ground pressure, tracked carrier system to decrease the amount of maneuvering, saving time and minimizing soil disturbance; and various energy-saving devices to lower fuel costs and minimize air quality impacts. Overall, the feller buncher represented a quantum advance in small-stem harvesting technology. Extensive testing showed the machine’s production rate to be relatively insensitive to piece size, much less so than comparable traditional equipment. In plantation stands, the feller buncher was able to produce approximately 100 green tons of biomass per productive machine hour (PMH), and in natural stands, it produced nearly 120 green tons per PMH. The ability of the high tonnage feller buncher to maintain high productivity in stands with smaller diameter stems is something that has not been achieved in previous feller buncher designs. The Tigercat 845D feller buncher is now a production machine for Tigercat and is being sold in their current product line. The high-speed felling system was paired with a Tigercat 630D skidder and high-capacity grapple; one that could match the felling productivity when pulling small stems. The harvesting system minimized hourly costs using a single, high-capacity skidder (with a single operator), rather than two smaller ones, which is the traditional practice. The skidder itself can be considered a mid-range size and had an engine no larger than other machines in its class, but it incorporated a very large capacity 25 ft2 grapple. The large grapple is well suited to grabbing and hauling a large bunch of small-diameter trees, as produced by the high tonnage feller buncher. The grapple worked effectively in larger stems as well, but its ability to carry large numbers of small stems meant the average payload did not drop as stand DBH decreased. Tests with the machine indicated its travel speeds were nearly the same as, or perhaps slightly better than, conventionally equipped skidders, but grapple capacity was 75% larger. Productivity and cost per ton of the new skidder were better than conventional skidders for average skid distances of any length greater than 100 feet. Measured skidder productivity was as high as 143 gt/PMH. Its productivity exceeded that of the high-capacity feller buncher for skid distances out to nearly 700 feet, so system productivity could be expected to remain high for stands of a size typical in the southern U.S. The Tigercat 630D skidder is a production machine for Tigercat and the large grapple can now be ordered by customers using it for small diameter trees. When the feller buncher and skidder are analyzed as a two-machine system, overall productivity is fixed at the level of the least productive machine. Results from a set of side-by-side tests in the same density stand with conventional feller bunchers and skidders showed that the high tonnage system produced 97 gt/PMH versus 68 gt/PMH for a comparable conventional system. Machine rate costs for felling and skidding were $2.31/gt and $3.72/gt for the high tonnage, and conventional systems, respectively. However, the most significant result of the project is that the high tonnage system was shown to be relatively insensitive to tree size. This ability to maintain felling and skidding productivity and cost as tree size decreases is a breakthrough in harvesting systems for southern pine plantations. The concept of transpirational drying of woody biomass was tested at an industrial scale at multiple locations during this project. Felled trees were allowed to dry in two scenarios: 1) in bunches where they were felled, and 2) in roadside piles. Although the wood piled in large piles at roadside did experience drying, the wood left in bunches experienced a greater moisture reduction. Drying times of 72 days in the late summer resulted in mean wood moisture content of 26% for skidder bunches and 39% for the large pile at roadside as compared to moisture contents of 55% to 58% for freshly cut trees. An existing whole-tree chipper, Precision 2675, was modified to allow production of chips smaller than the traditional pulp size chip (i.e. “microchips”). Feed rates and knife placements were retained in the new design, while additional pockets were incorporated in the chipper disk to allow the attachment of either four knives for pulp chips or eight knives for microchips. This design facilitated switching between the energy and pulp chip product options at relatively low expense (about ½ day downtime). Chipping of whole-trees into pulp chips and microchips with the Precision 2675 disk chipper resulted in average productivities of 79.5 gt/PMH and 70.7 gt/PMH, respectively. Production rates of the chipper were lower when producing microchips by about 10% relative to producing pulp chips, but rates were similar to those achievable when making clean pulp chips. Particle size analysis for clean pine microchips revealed 26.6% retention on a 13 mm (slightly less than 3/8-inch) round hole screen and 25.9% retention for whole-tree pine microchips. For comparison, clean pine pulp chips had 52.2% retained. Ash content (% dry basis) was 0.54% for clean pine microchips and 0.62% for whole-tree pine microchips. Ash content for clean pine pulp chips was 0.39%. For transpirationally-dried material there was 38.1% retention for whole-tree microchips on a 13mm screen compared to 70.1% for dried clean pulp chips. Ash content was 0.78% and 0.44% respectively for these two chip types. Clean pine microchips stored at roadside had 25.2% retention on a 13 mm screen and 0.50% ash content. For mixed species (pine and hardwood), whole-tree microchips had 25.1% retention on a 13 mm screen compared to 50.6% for whole-tree pulp chips. Ash content was 2.12% and 2.74% respectively for these two chip types. Clean hardwood microchips stored at roadside had 35.0% retention on a 13 mm screen and an ash content of 1.24%. There are two significant advantages to using transpirational drying: reduced transportation costs, and reduced drying costs (capital and operating costs) for the biorefinery. This project evaluated the potential to reduce transportation costs through transpirational drying, and it included a component that tested higher capacity chip trailers (23% larger volume) to be able to transport dry wood with a lower bulk density. For transpirationally-dried chips at 35% MC, the high-capacity trailers achieved loads with a mean payload of 24 tons with maximum payloads of 29 tons. The typical legal payload on this trailer is 28.5 tons. Therefore, the project demonstrated that it is possible to achieve maximum legal payloads on chip trailers with transpirationally dried wood. Assuming that the truck is loaded to the legal payload limit, the transportation costs of chips can be reduced from $15.91/dry ton (dt) for 56% MC wood to $10.77/dt for transpirationally dried wood at 35% MC (for an example 50-mile haul distance at $0.14 per one-way ton-mile). For longer haul distances, these savings in trucking costs become even more significant. These results have demonstrated how significant savings in transportation costs can be achieved through transpirational drying. Also, these results show that it may be possible to increase the procurement radius for a biorefinery by using transpirational drying. Further cost reductions can be realized by the biorefinery when drying costs are reduced. The goal of this study was development of a timber harvesting system as productive in stands optimized for biomass production as it was in stands grown for roundwood markets. If that goal is achieved, a logger can invest in a single suite of equipment and operate efficiently in any future silvicultural regime that might include energy feedstocks as an output. It was the premise of the study that a future biomass market would shift the age distribution and stem size in stands grown for energy downward, and the key strategy in developing a harvest system for that scenario would be creating one with logging costs relatively insensitive to tree size. Our vision for such a system included a felling machine with a large capacity head to minimize time spent building bunches, plus a skidder capable of moving large volumes of small trees. The study proposed building the system and testing it against existing equipment in stands similar to those envisioned as resulting from biomass-optimized silviculture. As stated previously, the new feller buncher and skidder evaluated on their own merits showed their designs were clearly a step in the right direction - their productivity was indeed high and less sensitive to reductions in stem size. Cost projections based on extensive time and production studies of the high tonnage and benchmark operations showed modest advantages in FOB costs of the new system in both ‘average’ and simulated ‘energy’ stands (7.7% and 9.5%, respectively). But it was clear, when coupled into a traditional logging system, the in-woods productivity advantage of the modified equipment was easily overwhelmed by inefficiencies in chipping or trucking. Some additional savings can be achieved by spreading the cost of the feller buncher over multiple chipping operations (another 7.5%), but generally, in stands with average DBH above 6 inches, the in-woods equipment was not limiting productivity, and costs were driven by chipping and transport. Our results were a positive step in lowering delivered cost of trees grown for energy purposes, but they also argue strongly for a more comprehensive approach in solving this issue. The procurement system in its entirety has to be optimized to take full advantage of the productivity gains achieved with the machines and transpirational drying techniques developed in this project. We have to understand the true costs of all logistical options, particularly those of the choice in chipping strategy and in truck allocation, both of which seemed, in this study, to be the greatest source of variability in cost, and often the most expensive operations as well.« less

  13. Reverse engineering of wörner type drilling machine structure.

    NASA Astrophysics Data System (ADS)

    Wibowo, A.; Belly, I.; llhamsyah, R.; Indrawanto; Yuwana, Y.

    2018-03-01

    A product design needs to be modified based on the conditions of production facilities and existing resource capabilities without reducing the functional aspects of the product itself. This paper describes the reverse engineering process of the main structure of the wörner type drilling machine to obtain a machine structure design that can be made by resources with limited ability by using simple processes. Some structural, functional and the work mechanism analyzes have been performed to understand the function and role of each basic components. The process of dismantling of the drilling machine and measuring each of the basic components was performed to obtain sets of the geometry and size data of each component. The geometric model of each structure components and the machine assembly were built to facilitate the simulation process and machine performance analysis that refers to ISO standard of drilling machine. The tolerance stackup analysis also performed to determine the type and value of geometrical and dimensional tolerances, which could affect the ease of the components to be manufactured and assembled

  14. Detecting Abnormal Machine Characteristics in Cloud Infrastructures

    NASA Technical Reports Server (NTRS)

    Bhaduri, Kanishka; Das, Kamalika; Matthews, Bryan L.

    2011-01-01

    In the cloud computing environment resources are accessed as services rather than as a product. Monitoring this system for performance is crucial because of typical pay-peruse packages bought by the users for their jobs. With the huge number of machines currently in the cloud system, it is often extremely difficult for system administrators to keep track of all machines using distributed monitoring programs such as Ganglia1 which lacks system health assessment and summarization capabilities. To overcome this problem, we propose a technique for automated anomaly detection using machine performance data in the cloud. Our algorithm is entirely distributed and runs locally on each computing machine on the cloud in order to rank the machines in order of their anomalous behavior for given jobs. There is no need to centralize any of the performance data for the analysis and at the end of the analysis, our algorithm generates error reports, thereby allowing the system administrators to take corrective actions. Experiments performed on real data sets collected for different jobs validate the fact that our algorithm has a low overhead for tracking anomalous machines in a cloud infrastructure.

  15. Shock compression of simulated adobe

    NASA Astrophysics Data System (ADS)

    Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.

    2017-01-01

    A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us =2.26up+0.37) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement.

  16. Challenges to a blow/fill/seal process with airborne microorganisms having different resistances to dry heat.

    PubMed

    Poisson, Patrick; Sinclair, Colin S; Tallentire, Alan

    2006-01-01

    Controlled challenges with air dispersed microorganisms having widely different resistances to dry heat, carried out on 624 BFS machine processing growth medium, have shown that higher the heat resistance, the greater the extent of vial contamination. Differences in heat resistance affected also the extent of vial contamination when parison and vial formation were knowingly manipulated through changes made to each of three process variables, provision of ballooning air, mould vacuum delay, and parison extrusion rate. The findings demonstrate that, in this investigational system, exposure of challenge micoorganisms to heat inherent in the process has a controlling influence on vial contamination, an influence that could also control microbiological risk in production environments.

  17. Analysis of machining accuracy during free form surface milling simulation for different milling strategies

    NASA Astrophysics Data System (ADS)

    Matras, A.; Kowalczyk, R.

    2014-11-01

    The analysis results of machining accuracy after the free form surface milling simulations (based on machining EN AW- 7075 alloys) for different machining strategies (Level Z, Radial, Square, Circular) are presented in the work. Particular milling simulations were performed using CAD/CAM Esprit software. The accuracy of obtained allowance is defined as a difference between the theoretical surface of work piece element (the surface designed in CAD software) and the machined surface after a milling simulation. The difference between two surfaces describes a value of roughness, which is as the result of tool shape mapping on the machined surface. Accuracy of the left allowance notifies in direct way a surface quality after the finish machining. Described methodology of usage CAD/CAM software can to let improve a time design of machining process for a free form surface milling by a 5-axis CNC milling machine with omitting to perform the item on a milling machine in order to measure the machining accuracy for the selected strategies and cutting data.

  18. Comparison of effects of overload on parameters and performance of samarium-cobalt and strontium-ferrite radially oriented permanent magnet brushless DC motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demerdash, N.A.; Nehl, T.W.; Nyamusa, T.A.

    1985-08-01

    Effects of high momentary overloads on the samarium-cobalt and strontium-ferrite permanent magnets and the magnetic field in electronically commutated brushless dc machines, as well as their impact on the associated machine parameters were studied. The effect of overload on the machine parameters, and subsequently on the machine system performance was also investigated. This was accomplished through the combined use of finite element analysis of the magnetic field in such machines, perturbation of the magnetic energies to determine machine inductances, and dynamic simulation of the performance of brushless dc machines, when energized from voltage source inverters. These effects were investigated throughmore » application of the above methods to two equivalent 15 hp brushless dc motors, one of which was built with samarium-cobalt magnets, while the other was built with strontium- ferrite magnets. For momentary overloads as high as 4.5 p.u. magnet flux reductions of 29% and 42% of the no load flux were obtained in the samarium-cobalt and strontiumferrite machines, respectively. Corresponding reductions in the line to line armature inductances of 52% and 46% of the no load values were reported for the samarium-cobalt and strontium-ferrite cases, respectively. The overload affected the profiles and magnitudes of armature induced back emfs. Subsequently, the effects of overload on machine parameters were found to have significant impact on the performance of the machine systems, where findings indicate that the samarium-cobalt unit is more suited for higher overload duties than the strontium-ferrite machine.« less

  19. Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data.

    PubMed

    Held, Elizabeth; Cape, Joshua; Tintle, Nathan

    2016-01-01

    Machine learning methods continue to show promise in the analysis of data from genetic association studies because of the high number of variables relative to the number of observations. However, few best practices exist for the application of these methods. We extend a recently proposed supervised machine learning approach for predicting disease risk by genotypes to be able to incorporate gene expression data and rare variants. We then apply 2 different versions of the approach (radial and linear support vector machines) to simulated data from Genetic Analysis Workshop 19 and compare performance to logistic regression. Method performance was not radically different across the 3 methods, although the linear support vector machine tended to show small gains in predictive ability relative to a radial support vector machine and logistic regression. Importantly, as the number of genes in the models was increased, even when those genes contained causal rare variants, model predictive ability showed a statistically significant decrease in performance for both the radial support vector machine and logistic regression. The linear support vector machine showed more robust performance to the inclusion of additional genes. Further work is needed to evaluate machine learning approaches on larger samples and to evaluate the relative improvement in model prediction from the incorporation of gene expression data.

  20. Method and apparatus for characterizing and enhancing the functional performance of machine tools

    DOEpatents

    Barkman, William E; Babelay, Jr., Edwin F; Smith, Kevin Scott; Assaid, Thomas S; McFarland, Justin T; Tursky, David A; Woody, Bethany; Adams, David

    2013-04-30

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.

  1. Significant improvements of electrical discharge machining performance by step-by-step updated adaptive control laws

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Wu, Jianyang; Xu, Xiaoyi; Mu, Xin; Dou, Yunping

    2018-02-01

    In order to obtain improved electrical discharge machining (EDM) performance, we have dedicated more than a decade to correcting one essential EDM defect, the weak stability of the machining, by developing adaptive control systems. The instabilities of machining are mainly caused by complicated disturbances in discharging. To counteract the effects from the disturbances on machining, we theoretically developed three control laws from minimum variance (MV) control law to minimum variance and pole placements coupled (MVPPC) control law and then to a two-step-ahead prediction (TP) control law. Based on real-time estimation of EDM process model parameters and measured ratio of arcing pulses which is also called gap state, electrode discharging cycle was directly and adaptively tuned so that a stable machining could be achieved. To this end, we not only theoretically provide three proved control laws for a developed EDM adaptive control system, but also practically proved the TP control law to be the best in dealing with machining instability and machining efficiency though the MVPPC control law provided much better EDM performance than the MV control law. It was also shown that the TP control law also provided a burn free machining.

  2. Properties of Free-Machining Aluminum Alloys at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Faltus, Jiří; Karlík, Miroslav; Haušild, Petr

    In areas close to the cutting tool the workpieces being dry machined could be heated up to 350°C and they may be impact loaded. Therefore it is of interest to study mechanical properties of corresponding materials at elevated temperatures. Free-machining alloys of Al-Cu and Al-Mg-Si systems containing Pb, Bi and Sn additions (AA2011, AA2111B, AA6262, and AA6023) were subjected to Charpy U notch impact test at the temperatures ranging from 20 to 350°C. The tested alloys show a sharp drop in notch impact strength KU at different temperatures. This drop of KU is caused by liquid metal embrittlement due to the melting of low-melting point dispersed phases which is documented by differential scanning calorimetry. Fracture surfaces of the specimens were observed using a scanning electron microscope. At room temperature, the fractures of all studied alloys exhibited similar ductile dimple fracture micromorphology, at elevated temperatures, numerous secondary intergranular cracks were observed.

  3. Soft, Conformal Bioelectronics for a Wireless Human-Wheelchair Interface

    PubMed Central

    Mishra, Saswat; Norton, James J. S.; Lee, Yongkuk; Lee, Dong Sup; Agee, Nicolas; Chen, Yanfei; Chun, Youngjae; Yeo, Woon-Hong

    2017-01-01

    There are more than 3 million people in the world whose mobility relies on wheelchairs. Recent advancement on engineering technology enables more intuitive, easy-to-use rehabilitation systems. A human-machine interface that uses non-invasive, electrophysiological signals can allow a systematic interaction between human and devices; for example, eye movement-based wheelchair control. However, the existing machine-interface platforms are obtrusive, uncomfortable, and often cause skin irritations as they require a metal electrode affixed to the skin with a gel and acrylic pad. Here, we introduce a bioelectronic system that makes dry, conformal contact to the skin. The mechanically comfortable sensor records high-fidelity electrooculograms, comparable to the conventional gel electrode. Quantitative signal analysis and infrared thermographs show the advantages of the soft biosensor for an ergonomic human-machine interface. A classification algorithm with an optimized set of features shows the accuracy of 94% with five eye movements. A Bluetooth-enabled system incorporating the soft bioelectronics demonstrates a precise, hands-free control of a robotic wheelchair via electrooculograms. PMID:28152485

  4. Five new machines and six products can triple commodity recovery from southern forests

    Treesearch

    Peter Koch

    1978-01-01

    Mixed southern pine-hardwood stands now yield 20 to 22 percent of their biomass in wood products. A new energy self-sufficient system using tree pullers, wet-fuel burners, mobile chippers, shaping-lathe headrigs, and continuous kilns can convert 67 percent of the biomass (above- and below-ground parts of trees of all species) into products worth about $150 per dry ton...

  5. The development of an inert simulant for HNS/teflon explosive

    NASA Technical Reports Server (NTRS)

    Elban, W. L.

    1972-01-01

    The report describes the development and evaluation of an inert simulant for the thermally stable, heat-resistant plastic-bonded explosive HNS/Teflon. The simulant is made by dry blending vinylidene fluoride, melamine and Teflon which when compared has a pressed density and thermal properties corresponding closely to the explosive. In addition, the machinability and handling characteristics of the simulant are similar to the explosive.

  6. Method and system for fault accommodation of machines

    NASA Technical Reports Server (NTRS)

    Goebel, Kai Frank (Inventor); Subbu, Rajesh Venkat (Inventor); Rausch, Randal Thomas (Inventor); Frederick, Dean Kimball (Inventor)

    2011-01-01

    A method for multi-objective fault accommodation using predictive modeling is disclosed. The method includes using a simulated machine that simulates a faulted actual machine, and using a simulated controller that simulates an actual controller. A multi-objective optimization process is performed, based on specified control settings for the simulated controller and specified operational scenarios for the simulated machine controlled by the simulated controller, to generate a Pareto frontier-based solution space relating performance of the simulated machine to settings of the simulated controller, including adjustment to the operational scenarios to represent a fault condition of the simulated machine. Control settings of the actual controller are adjusted, represented by the simulated controller, for controlling the actual machine, represented by the simulated machine, in response to a fault condition of the actual machine, based on the Pareto frontier-based solution space, to maximize desirable operational conditions and minimize undesirable operational conditions while operating the actual machine in a region of the solution space defined by the Pareto frontier.

  7. Automated diagnosis of dry eye using infrared thermography images

    NASA Astrophysics Data System (ADS)

    Acharya, U. Rajendra; Tan, Jen Hong; Koh, Joel E. W.; Sudarshan, Vidya K.; Yeo, Sharon; Too, Cheah Loon; Chua, Chua Kuang; Ng, E. Y. K.; Tong, Louis

    2015-07-01

    Dry Eye (DE) is a condition of either decreased tear production or increased tear film evaporation. Prolonged DE damages the cornea causing the corneal scarring, thinning and perforation. There is no single uniform diagnosis test available to date; combinations of diagnostic tests are to be performed to diagnose DE. The current diagnostic methods available are subjective, uncomfortable and invasive. Hence in this paper, we have developed an efficient, fast and non-invasive technique for the automated identification of normal and DE classes using infrared thermography images. The features are extracted from nonlinear method called Higher Order Spectra (HOS). Features are ranked using t-test ranking strategy. These ranked features are fed to various classifiers namely, K-Nearest Neighbor (KNN), Nave Bayesian Classifier (NBC), Decision Tree (DT), Probabilistic Neural Network (PNN), and Support Vector Machine (SVM) to select the best classifier using minimum number of features. Our proposed system is able to identify the DE and normal classes automatically with classification accuracy of 99.8%, sensitivity of 99.8%, and specificity if 99.8% for left eye using PNN and KNN classifiers. And we have reported classification accuracy of 99.8%, sensitivity of 99.9%, and specificity if 99.4% for right eye using SVM classifier with polynomial order 2 kernel.

  8. Novel Breast Imaging and Machine Learning: Predicting Breast Lesion Malignancy at Cone-Beam CT Using Machine Learning Techniques.

    PubMed

    Uhlig, Johannes; Uhlig, Annemarie; Kunze, Meike; Beissbarth, Tim; Fischer, Uwe; Lotz, Joachim; Wienbeck, Susanne

    2018-05-24

    The purpose of this study is to evaluate the diagnostic performance of machine learning techniques for malignancy prediction at breast cone-beam CT (CBCT) and to compare them to human readers. Five machine learning techniques, including random forests, back propagation neural networks (BPN), extreme learning machines, support vector machines, and K-nearest neighbors, were used to train diagnostic models on a clinical breast CBCT dataset with internal validation by repeated 10-fold cross-validation. Two independent blinded human readers with profound experience in breast imaging and breast CBCT analyzed the same CBCT dataset. Diagnostic performance was compared using AUC, sensitivity, and specificity. The clinical dataset comprised 35 patients (American College of Radiology density type C and D breasts) with 81 suspicious breast lesions examined with contrast-enhanced breast CBCT. Forty-five lesions were histopathologically proven to be malignant. Among the machine learning techniques, BPNs provided the best diagnostic performance, with AUC of 0.91, sensitivity of 0.85, and specificity of 0.82. The diagnostic performance of the human readers was AUC of 0.84, sensitivity of 0.89, and specificity of 0.72 for reader 1 and AUC of 0.72, sensitivity of 0.71, and specificity of 0.67 for reader 2. AUC was significantly higher for BPN when compared with both reader 1 (p = 0.01) and reader 2 (p < 0.001). Machine learning techniques provide a high and robust diagnostic performance in the prediction of malignancy in breast lesions identified at CBCT. BPNs showed the best diagnostic performance, surpassing human readers in terms of AUC and specificity.

  9. Use of history science methods in exposure assessment for occupational health studies

    PubMed Central

    Johansen, K; Tinnerberg, H; Lynge, E

    2005-01-01

    Aims: To show the power of history science methods for exposure assessment in occupational health studies, using the dry cleaning industry in Denmark around 1970 as the example. Methods: Exposure data and other information on exposure status were searched for in unconventional data sources such as the Danish National Archives, the Danish Royal Library, archives of Statistics Denmark, the National Institute of Occupational Health, Denmark, and the Danish Labor Inspection Agency. Individual census forms were retrieved from the Danish National Archives. Results: It was estimated that in total 3267 persons worked in the dry cleaning industry in Denmark in 1970. They typically worked in small shops with an average size of 3.5 persons. Of these, 2645 persons were considered exposed to solvents as they were dry cleaners or worked very close to the dry cleaning process, while 622 persons were office workers, drivers, etc in shops with 10 or more persons. It was estimated that tetrachloroethylene constituted 85% of the dry cleaning solvent used, and that a shop would normally have two machines using 4.6 tons of tetrachloroethylene annually. Conclusion: The history science methods, including retrieval of material from the Danish National Archives and a thorough search in the Royal Library for publications on dry cleaning, turned out to be a very fruitful approach for collection of exposure data on dry cleaning work in Denmark. The history science methods proved to be a useful supplement to the exposure assessment methods normally applied in epidemiological studies. PMID:15961618

  10. Use of history science methods in exposure assessment for occupational health studies.

    PubMed

    Johansen, K; Tinnerberg, H; Lynge, E

    2005-07-01

    To show the power of history science methods for exposure assessment in occupational health studies, using the dry cleaning industry in Denmark around 1970 as the example. Exposure data and other information on exposure status were searched for in unconventional data sources such as the Danish National Archives, the Danish Royal Library, archives of Statistics Denmark, the National Institute of Occupational Health, Denmark, and the Danish Labor Inspection Agency. Individual census forms were retrieved from the Danish National Archives. It was estimated that in total 3267 persons worked in the dry cleaning industry in Denmark in 1970. They typically worked in small shops with an average size of 3.5 persons. Of these, 2645 persons were considered exposed to solvents as they were dry cleaners or worked very close to the dry cleaning process, while 622 persons were office workers, drivers, etc in shops with 10 or more persons. It was estimated that tetrachloroethylene constituted 85% of the dry cleaning solvent used, and that a shop would normally have two machines using 4.6 tons of tetrachloroethylene annually. The history science methods, including retrieval of material from the Danish National Archives and a thorough search in the Royal Library for publications on dry cleaning, turned out to be a very fruitful approach for collection of exposure data on dry cleaning work in Denmark. The history science methods proved to be a useful supplement to the exposure assessment methods normally applied in epidemiological studies.

  11. EDM machinability of SiCw/Al composites

    NASA Technical Reports Server (NTRS)

    Ramulu, M.; Taya, M.

    1989-01-01

    Machinability of high temperature composites was investigated. Target materials, 15 and 25 vol pct SiC whisker-2124 aluminum composites, were machined by electrodischarge sinker machining and diamond saw. The machined surfaces of these metal matrix composites were examined by SEM and profilometry to determine the surface finish. Microhardness measurements were also performed on the as-machined composites.

  12. Tool simplifies machining of pipe ends for precision welding

    NASA Technical Reports Server (NTRS)

    Matus, S. T.

    1969-01-01

    Single tool prepares a pipe end for precision welding by simultaneously performing internal machining, end facing, and bevel cutting to specification standards. The machining operation requires only one milling adjustment, can be performed quickly, and produces the high quality pipe-end configurations required to ensure precision-welded joints.

  13. Machine Shop. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Hilton, Arthur; Lambert, George

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 13 terminal objectives for a high school basic machine shop course. The materials were developed for a 36-week course (2 hours daily) designed to enable students to become familiar with the operation of machine shop equipment, to become familiar…

  14. Parameter optimization of electrochemical machining process using black hole algorithm

    NASA Astrophysics Data System (ADS)

    Singh, Dinesh; Shukla, Rajkamal

    2017-12-01

    Advanced machining processes are significant as higher accuracy in machined component is required in the manufacturing industries. Parameter optimization of machining processes gives optimum control to achieve the desired goals. In this paper, electrochemical machining (ECM) process is considered to evaluate the performance of the considered process using black hole algorithm (BHA). BHA considers the fundamental idea of a black hole theory and it has less operating parameters to tune. The two performance parameters, material removal rate (MRR) and overcut (OC) are considered separately to get optimum machining parameter settings using BHA. The variations of process parameters with respect to the performance parameters are reported for better and effective understanding of the considered process using single objective at a time. The results obtained using BHA are found better while compared with results of other metaheuristic algorithms, such as, genetic algorithm (GA), artificial bee colony (ABC) and bio-geography based optimization (BBO) attempted by previous researchers.

  15. Predicting competency in automated machine use in an acquired brain injury population using neuropsychological measures.

    PubMed

    Crowe, Simon F; Mahony, Kate; Jackson, Martin

    2004-08-01

    The purpose of the current study was to explore whether performance on standardised neuropsychological measures could predict functional ability with automated machines and services among people with an acquired brain injury (ABI). Participants were 45 individuals who met the criteria for mild, moderate or severe ABI and 15 control participants matched on demographic variables including age- and education. Each participant was required to complete a battery of neuropsychological tests, as well as performing three automated service delivery tasks: a transport automated ticketing machine, an automated teller machine (ATM) and an automated telephone service. The results showed consistently high relationship between the neuropsychological measures, both as single predictors and in combination, and level of competency with the automated machines. Automated machines are part of a relatively new phenomena in service delivery and offer an ecologically valid functional measure of performance that represents a true indication of functional disability.

  16. Evaluation of stress and saturation effects on seismic velocity and electrical resistivity - laboratory testing of rock samples

    NASA Astrophysics Data System (ADS)

    Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav

    2016-04-01

    Repository, located in a deep geological formation, is today considered the most suitable solution for disposal of spent nuclear fuel and high-level waste. The geological formations, in combination with an engineered barrier system, should ensure isolation of the waste from the environment for thousands of years. For long-term monitoring of such underground excavations special monitoring systems are developed. In our research we developed and tested monitoring system based on repeated ultrasonic time of flight measurement and electrical resistivity tomography (ERT). As a test site Bedřichov gallery in the northern Bohemia was selected. This underground gallery in granitic rock was excavated using Tunnel Boring Machine (TBM). The seismic high-frequency measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The ERT measurement is performed also on the rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. An analysis of relation of seismic velocity and electrical resistivity on water saturation and stress state of the granitic rock is necessary for the interpretation of both seismic monitoring and ERT. Laboratory seismic and resistivity measurements were performed. One series of experiments was based on uniaxial loading of dry and saturated granitic samples. The relation between stress state and ultrasonic wave velocities was tested separately for dry and saturated rock samples. Other experiments were focused on the relation between electrical resistivity of the rock sample and its saturation level. Rock samples with different porosities were tested. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  17. Performance Analysis of Abrasive Waterjet Machining Process at Low Pressure

    NASA Astrophysics Data System (ADS)

    Murugan, M.; Gebremariam, MA; Hamedon, Z.; Azhari, A.

    2018-03-01

    Normally, a commercial waterjet cutting machine can generate water pressure up to 600 MPa. This range of pressure is used to machine a wide variety of materials. Hence, the price of waterjet cutting machine is expensive. Therefore, there is a need to develop a low cost waterjet machine in order to make the technology more accessible for the masses. Due to its low cost, such machines may only be able to generate water pressure at a much reduced rate. The present study attempts to investigate the performance of abrasive water jet machining process at low cutting pressure using self-developed low cost waterjet machine. It aims to study the feasibility of machining various materials at low pressure which later can aid in further development of an effective low cost water jet machine. A total of three different materials were machined at a low pressure of 34 MPa. The materials are mild steel, aluminium alloy 6061 and plastics Delrin®. Furthermore, a traverse rate was varied between 1 to 3 mm/min. The study on cutting performance at low pressure for different materials was conducted in terms of depth penetration, kerf taper ratio and surface roughness. It was found that all samples were able to be machined at low cutting pressure with varied qualities. Also, the depth of penetration decreases with an increase in the traverse rate. Meanwhile, the surface roughness and kerf taper ratio increase with an increase in the traverse rate. It can be concluded that a low cost waterjet machine with a much reduced rate of water pressure can be successfully used for machining certain materials with acceptable qualities.

  18. Horizontal-axis clothes washer market poised for expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, K.L.

    1994-12-31

    The availability of energy- and water-efficient horizontal-axis washing machines in the North American market is growing, as US and European manufacturers position for an expected long-term market shift toward horizontal-axis (H-axis) technology. Four of the five major producers of washing machines in the US are developing or considering new H-axis models. New entrants, including US-based Staber Industries and several European manufacturers, are also expected to compete in this market. The intensified interest in H-axis technology is partly driven by speculation that new US energy efficiency standards, to be proposed in 1996 and implemented in 1999, will effectively mandate H-axis machines.more » H-axis washers typically use one-third to two-thirds less energy, water, and detergent than vertical-axis machines. Some models also reduce the energy needed to dry the laundry, since their higher spin speeds extract more water than is typical with vertical-axis designs. H-axis washing machines are the focus of two broadly-based efforts to support coordinated research and incentive programs by electric, gas, and water utilities: The High-Efficiency Laundry Metering/Marketing Analysis (THELMA), and the Consortium for Energy Efficiency (CEE) High-Efficiency Clothes Washer Initiative. These efforts may help to pave the way for new types of marketing partnerships among utilities and other parties that could help to speed adoption of H-axis washers.« less

  19. The Knife Machine. Module 15.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on the knife machine, one in a series dealing with industrial sewing machines, their attachments, and operation, covers one topic: performing special operations on the knife machine (a single needle or multi-needle machine which sews and cuts at the same time). These components are provided: an introduction, directions, an objective,…

  20. A Double-Sided Linear Primary Permanent Magnet Vernier Machine

    PubMed Central

    2015-01-01

    The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed. PMID:25874250

  1. A double-sided linear primary permanent magnet vernier machine.

    PubMed

    Du, Yi; Zou, Chunhua; Liu, Xianxing

    2015-01-01

    The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed.

  2. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60 wt% Ni, 40 wt% Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high Ti content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of Ti and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of Ti alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is presented.

  3. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60wt%Ni, 40wt%Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high titanium content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of titanium and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of titanium alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is studied.

  4. New design opportunities with OVI

    NASA Astrophysics Data System (ADS)

    Bleikolm, Anton F.

    1998-04-01

    Optically Variable Ink (OVITM) chosen for its unique colour shifting properties is applied to the currencies of more than 50 countries. An significant colour difference at viewing angles of 90 degrees and 30 degrees respectively makes colour copying impossible. New manufacturing techniques for the interference pigment (OVP) provide ever better cost/performance ratios. Screen printing presses newly available on the market guarantee production speeds of 8000 sheets/hour or 130 meters/minute in the case of web printing, perfectly in line with the traditional equipment for manufacturing of currency. Specifically developed ink formulations allow UV-curing at high speed or oxidative drying to create highly mechanically and chemically resistant colour shifting prints. The unique colour shifting characteristics together with overprinting in intaglio give design opportunities providing the best protection against colour copying or commercial reprint. Specific designs of OVP together with high security ingredients allow the formulation of machine readable optically variable inks useful for the authentication and sorting of documents.

  5. Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials.

    PubMed

    Dong, Shuliang; Wang, Zhenlong; Wang, Yukui; Bai, Xuelin; Fu, Yong Qing; Guo, Bin; Tan, Chaoliang; Zhang, Jia; Hu, PingAn

    2018-01-17

    Creating a robust superhydrophobic surface on the conventional engineering materials at mass production is of great importance for a self-cleaning, anti-icing, nonwetting surface and low flow resistance in industrial applications. Herein, we report a roll-to-roll strategy to create durable and robust superhydrophobic surfaces with designed micro-/nanoscale hierarchical structures on many conventional engineering materials by combining electrical discharge machining and coating of carbon nanoparticles, followed by oil penetration and drying. The treated surface shows good superhydrophobic properties with a static water contact angle of 170 ± 2° and slide angle of 3 ± 1°. The treated surface also exhibits good resilience and maintains the performance after being tested in various harsh conditions, including water flushing for several days, sand abrasion, scratching with sandpapers, and corrosive solution. Significantly, the superhydrophobic surfaces also show a high efficiency of self-cleaning properties even after oil contamination during applications.

  6. A Catalog of Performance Objectives, Performance Conditions, and Performance Guides for Machine Tool Operations.

    ERIC Educational Resources Information Center

    Stadt, Ronald; And Others

    This catalog provides performance objectives, tasks, standards, and performance guides associated with current occupational information relating to the job content of machinists, specifically tool grinder operators, production lathe operators, and production screw machine operators. The catalog is comprised of 262 performance objectives, tool and…

  7. CFD Analysis to Calculate the Optimal Air Velocity in Drying Green Tea Process Using Fluidized Bed Dryer

    NASA Astrophysics Data System (ADS)

    Yohana, Eflita; Nugraha, Afif Prasetya; Diana, Ade Eva; Mahawan, Ilham; Nugroho, Sri

    2018-02-01

    Tea processing is basically distinguished into three types which black tea, green tea, and oolong tea. Green tea is processed by heating and drying the leaves. Green tea factories in Indonesia are generally using the process of drying by panning the leaves. It is more recommended to use the fluidization process to speed up the drying process as the quality of the tea can be maintained. Bubbling fluidization is expected to occur in this research. It is a process of bubbles are formed in the fluidization. The effectiveness of the drying process in a fluidized bed dryer machine needs to be improved by using a CFD simulation method to proof that umf < u < ut, where the average velocity value is limited by the minimum and the maximum velocity of the calculation the experimental data. The minimum and the maximum velocity value of the fluidization is 0.96 m/s and 8.2 m/s. The result of the simulation obtained that the average velocity of the upper bed part is 1.81 m/s. From the results obtained, it can be concluded that the calculation and the simulation data is in accordance with the condition of bubbling fluidization in fluidized bed dryer.

  8. Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Zilong; Cai, Xin; Cao, Wenzhuo; Li, Xibing; Xiong, Cheng

    2016-08-01

    Water content has a pronounced influence on the properties of rock materials, which is responsible for many rock engineering hazards, such as landslides and karst collapse. Meanwhile, water injection is also used for the prevention of some engineering disasters like rock-bursts. To comprehensively investigate the effect of water content on mechanical properties of rocks, laboratory tests were carried out on sandstone specimens with different water contents in both saturation and drying processes. The Nuclear Magnetic Resonance technique was applied to study the water distribution in specimens with variation of water contents. The servo-controlled rock mechanics testing machine and Split Hopkinson Pressure Bar technique were used to conduct both compressive and tensile tests on sandstone specimens with different water contents. From the laboratory tests, reductions of the compressive and tensile strength of sandstone under static and dynamic states in different saturation processes were observed. In the drying process, all of the saturated specimens could basically regain their mechanical properties and recover its strength as in the dry state. However, for partially saturated specimens in the saturation and drying processes, the tensile strength of specimens with the same water content was different, which could be related to different water distributions in specimens.

  9. Flexible Conformable Clamps for a Machining Cell with Applications to Turbine Blade Machining.

    DTIC Science & Technology

    1983-05-01

    PERIOD COVERED * FLEXIBLE CONFORMABLE CLAMPS FOR A MACHINING CELL Interim WITH APPLICATIONS TO TURBINE BLADE MACHINING 6. PERFORMING ORG. REPORT NUMBER...7. AuTmbR(s) 6. CONTRACT OR GRANT NUMBER(a) Eiki Kurokawa 3. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELE%4NTPROJECT. TASK Carnegie-Mellon...University AREA a WORK UhIT NUMBERS The Robotics Institute Pittsburgh, PA. 15213 II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE May 1983. 13

  10. Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M. A.; Hirshfield, J. L.; Department of Physics, Yale University, P.O. Box 208124, New Haven, Connecticut 06520-8124

    1999-06-10

    Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96%. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications.« less

  11. Shock Compression of Simulated Adobe

    NASA Astrophysics Data System (ADS)

    Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.

    2015-06-01

    A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us = 2.26up + 0.33) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement. The research was funded by DSTL through a WSTC contract.

  12. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images

    PubMed Central

    Srinivasan, Pratul P.; Kim, Leo A.; Mettu, Priyatham S.; Cousins, Scott W.; Comer, Grant M.; Izatt, Joseph A.; Farsiu, Sina

    2014-01-01

    We present a novel fully automated algorithm for the detection of retinal diseases via optical coherence tomography (OCT) imaging. Our algorithm utilizes multiscale histograms of oriented gradient descriptors as feature vectors of a support vector machine based classifier. The spectral domain OCT data sets used for cross-validation consisted of volumetric scans acquired from 45 subjects: 15 normal subjects, 15 patients with dry age-related macular degeneration (AMD), and 15 patients with diabetic macular edema (DME). Our classifier correctly identified 100% of cases with AMD, 100% cases with DME, and 86.67% cases of normal subjects. This algorithm is a potentially impactful tool for the remote diagnosis of ophthalmic diseases. PMID:25360373

  13. Hydraulic Fatigue-Testing Machine

    NASA Technical Reports Server (NTRS)

    Hodo, James D.; Moore, Dennis R.; Morris, Thomas F.; Tiller, Newton G.

    1987-01-01

    Fatigue-testing machine applies fluctuating tension to number of specimens at same time. When sample breaks, machine continues to test remaining specimens. Series of tensile tests needed to determine fatigue properties of materials performed more rapidly than in conventional fatigue-testing machine.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, J.I.; King, C.

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess themore » status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.« less

  15. Solving the Cauchy-Riemann equations on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1987-01-01

    Discussed is the implementation of a single algorithm on three parallel-vector computers. The algorithm is a relaxation scheme for the solution of the Cauchy-Riemann equations; a set of coupled first order partial differential equations. The computers were chosen so as to encompass a variety of architectures. They are: the MPP, and SIMD machine with 16K bit serial processors; FLEX/32, an MIMD machine with 20 processors; and CRAY/2, an MIMD machine with four vector processors. The machine architectures are briefly described. The implementation of the algorithm is discussed in relation to these architectures and measures of the performance on each machine are given. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Conclusions are presented.

  16. Identifying tropical dry forests extent and succession via the use of machine learning techniques

    NASA Astrophysics Data System (ADS)

    Li, Wei; Cao, Sen; Campos-Vargas, Carlos; Sanchez-Azofeifa, Arturo

    2017-12-01

    Information on ecosystem services as a function of the successional stage for secondary tropical dry forests (TDFs) is scarce and limited. Secondary TDFs succession is defined as regrowth following a complete forest clearance for cattle growth or agriculture activities. In the context of large conservation initiatives, the identification of the extent, structure and composition of secondary TDFs can serve as key elements to estimate the effectiveness of such activities. As such, in this study we evaluate the use of a Hyperspectral MAPper (HyMap) dataset and a waveform LIDAR dataset for characterization of different levels of intra-secondary forests stages at the Santa Rosa National Park (SRNP) Environmental Monitoring Super Site located in Costa Rica. Specifically, a multi-task learning based machine learning classifier (MLC-MTL) is employed on the first shortwave infrared (SWIR1) of HyMap in order to identify the variability of aboveground biomass of secondary TDFs along a successional gradient. Our paper recognizes that the process of ecological succession is not deterministic but a combination of transitional forests types along a stochastic path that depends on ecological, edaphic, land use, and micro-meteorological conditions, and our results provide a new way to obtain the spatial distribution of three main types of TDFs successional stages.

  17. A consideration of the operation of automatic production machines.

    PubMed

    Hoshi, Toshiro; Sugimoto, Noboru

    2015-01-01

    At worksites, various automatic production machines are in use to release workers from muscular labor or labor in the detrimental environment. On the other hand, a large number of industrial accidents have been caused by automatic production machines. In view of this, this paper considers the operation of automatic production machines from the viewpoint of accident prevention, and points out two types of machine operation - operation for which quick performance is required (operation that is not permitted to be delayed) - and operation for which composed performance is required (operation that is not permitted to be performed in haste). These operations are distinguished by operation buttons of suitable colors and shapes. This paper shows that these characteristics are evaluated as "asymmetric on the time-axis". Here, in order for workers to accept the risk of automatic production machines, it is preconditioned in general that harm should be sufficiently small or avoidance of harm is easy. In this connection, this paper shows the possibility of facilitating the acceptance of the risk of automatic production machines by enhancing the asymmetric on the time-axis.

  18. Communication Studies of DMP and SMP Machines

    NASA Technical Reports Server (NTRS)

    Sohn, Andrew; Biswas, Rupak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Understanding the interplay between machines and problems is key to obtaining high performance on parallel machines. This paper investigates the interplay between programming paradigms and communication capabilities of parallel machines. In particular, we explicate the communication capabilities of the IBM SP-2 distributed-memory multiprocessor and the SGI PowerCHALLENGEarray symmetric multiprocessor. Two benchmark problems of bitonic sorting and Fast Fourier Transform are selected for experiments. Communication-efficient algorithms are developed to exploit the overlapping capabilities of the machines. Programs are written in Message-Passing Interface for portability and identical codes are used for both machines. Various data sizes and message sizes are used to test the machines' communication capabilities. Experimental results indicate that the communication performance of the multiprocessors are consistent with the size of messages. The SP-2 is sensitive to message size but yields a much higher communication overlapping because of the communication co-processor. The PowerCHALLENGEarray is not highly sensitive to message size and yields a low communication overlapping. Bitonic sorting yields lower performance compared to FFT due to a smaller computation-to-communication ratio.

  19. A consideration of the operation of automatic production machines

    PubMed Central

    HOSHI, Toshiro; SUGIMOTO, Noboru

    2015-01-01

    At worksites, various automatic production machines are in use to release workers from muscular labor or labor in the detrimental environment. On the other hand, a large number of industrial accidents have been caused by automatic production machines. In view of this, this paper considers the operation of automatic production machines from the viewpoint of accident prevention, and points out two types of machine operation − operation for which quick performance is required (operation that is not permitted to be delayed) − and operation for which composed performance is required (operation that is not permitted to be performed in haste). These operations are distinguished by operation buttons of suitable colors and shapes. This paper shows that these characteristics are evaluated as “asymmetric on the time-axis”. Here, in order for workers to accept the risk of automatic production machines, it is preconditioned in general that harm should be sufficiently small or avoidance of harm is easy. In this connection, this paper shows the possibility of facilitating the acceptance of the risk of automatic production machines by enhancing the asymmetric on the time-axis. PMID:25739898

  20. Implementation and performance of parallel Prolog interpreter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, S.; Kale, L.V.; Balkrishna, R.

    1988-01-01

    In this paper, the authors discuss the implementation of a parallel Prolog interpreter on different parallel machines. The implementation is based on the REDUCE--OR process model which exploits both AND and OR parallelism in logic programs. It is machine independent as it runs on top of the chare-kernel--a machine-independent parallel programming system. The authors also give the performance of the interpreter running a diverse set of benchmark pargrams on parallel machines including shared memory systems: an Alliant FX/8, Sequent and a MultiMax, and a non-shared memory systems: Intel iPSC/32 hypercube, in addition to its performance on a multiprocessor simulation system.

  1. AQUAPLEX An Environmentally Aware Model Lunar Settlement

    NASA Astrophysics Data System (ADS)

    Preble, Darel

    2003-01-01

    The construction and operation of a replica Lunar settlement (CELSS), can provide many lessons in in-situ resource utilization, telerobotic operation and reducing the hygiene water demanded by existing models of Lunar operation - a larger settlement may be operated with the same amount of precious water. Hypes and Hall and all other CELSS models found in the literature propose quantities of hygiene water far in excess of what would be needed in actual operation using simple, environmentally aware technologies. By using modern zero water toilets, low water showers, CO2 dry cleaning machines, energy efficient washing machines and other hardware, water use can be slashed. The Space Solar Power Workshop sees great opportunity to advance the prospects for Lunar settlement through involving the environmental community in this fun design exercise.

  2. Mississippi Curriculum Framework for Machine Tool Operation/Machine Shop (Program CIP: 48.0503--Machine Shop Assistant). Secondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for machine tool operation/machine shop I and II. Presented first are a…

  3. Performance study of a data flow architecture

    NASA Technical Reports Server (NTRS)

    Adams, George

    1985-01-01

    Teams of scientists studied data flow concepts, static data flow machine architecture, and the VAL language. Each team mapped its application onto the machine and coded it in VAL. The principal findings of the study were: (1) Five of the seven applications used the full power of the target machine. The galactic simulation and multigrid fluid flow teams found that a significantly smaller version of the machine (16 processing elements) would suffice. (2) A number of machine design parameters including processing element (PE) function unit numbers, array memory size and bandwidth, and routing network capability were found to be crucial for optimal machine performance. (3) The study participants readily acquired VAL programming skills. (4) Participants learned that application-based performance evaluation is a sound method of evaluating new computer architectures, even those that are not fully specified. During the course of the study, participants developed models for using computers to solve numerical problems and for evaluating new architectures. These models form the bases for future evaluation studies.

  4. Currency crisis indication by using ensembles of support vector machine classifiers

    NASA Astrophysics Data System (ADS)

    Ramli, Nor Azuana; Ismail, Mohd Tahir; Wooi, Hooy Chee

    2014-07-01

    There are many methods that had been experimented in the analysis of currency crisis. However, not all methods could provide accurate indications. This paper introduces an ensemble of classifiers by using Support Vector Machine that's never been applied in analyses involving currency crisis before with the aim of increasing the indication accuracy. The proposed ensemble classifiers' performances are measured using percentage of accuracy, root mean squared error (RMSE), area under the Receiver Operating Characteristics (ROC) curve and Type II error. The performances of an ensemble of Support Vector Machine classifiers are compared with the single Support Vector Machine classifier and both of classifiers are tested on the data set from 27 countries with 12 macroeconomic indicators for each country. From our analyses, the results show that the ensemble of Support Vector Machine classifiers outperforms single Support Vector Machine classifier on the problem involving indicating a currency crisis in terms of a range of standard measures for comparing the performance of classifiers.

  5. Electroacoustic dewatering of food and other suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, B.C.; Zelinski, M.S.; Criner, C.L.

    1989-05-31

    The food processing industry is a large user of energy for evaporative drying due to limited effectiveness of conventional mechanical dewatering machines. Battelle's Electroacoustic Dewatering (EAD) process improves the performance of mechanical dewatering machines by superimposing electric and ultrasonic fields. A two phase development program to demonstrate the benefits of EAD was carried out in cooperation with the food processing industry, the National Food Processors Association (NFPA) and two equipment vendors. In Phase I, laboratory scale studies were carried out on a variety of food suspensions. The process was scaled up to small commercial scale in Phase II. The technicalmore » feasibility of EAD for a variety of food materials, without adversely affecting the food properties, was successfully demonstrated during this phase, which is the subject of this report. Two Process Research Units (PRUs) were designed and built through joint efforts between Battelle and two equipment vendors. A 0.5-meter wide belt press was tested on apple mash, corn fiber, and corn gluten at sites provided by two food processors. A high speed citrus juice finisher (a hybrid form of screw press and centrifuge) was tested on orange pulp. These tests were carried out jointly by Battelle, equipment vendors, NFPA, and food processors. The apple and citrus juice products were analyzed by food processors and NFPA. 26 figs., 30 tabs.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angers, Crystal Plume; Bottema, Ryan; Buckley, Les

    Purpose: Treatment unit uptime statistics are typically used to monitor radiation equipment performance. The Ottawa Hospital Cancer Centre has introduced the use of Quality Control (QC) test success as a quality indicator for equipment performance and overall health of the equipment QC program. Methods: Implemented in 2012, QATrack+ is used to record and monitor over 1100 routine machine QC tests each month for 20 treatment and imaging units ( http://qatrackplus.com/ ). Using an SQL (structured query language) script, automated queries of the QATrack+ database are used to generate program metrics such as the number of QC tests executed and themore » percentage of tests passing, at tolerance or at action. These metrics are compared against machine uptime statistics already reported within the program. Results: Program metrics for 2015 show good correlation between pass rate of QC tests and uptime for a given machine. For the nine conventional linacs, the QC test success rate was consistently greater than 97%. The corresponding uptimes for these units are better than 98%. Machines that consistently show higher failure or tolerance rates in the QC tests have lower uptimes. This points to either poor machine performance requiring corrective action or to problems with the QC program. Conclusions: QATrack+ significantly improves the organization of QC data but can also aid in overall equipment management. Complimenting machine uptime statistics with QC test metrics provides a more complete picture of overall machine performance and can be used to identify areas of improvement in the machine service and QC programs.« less

  7. Practical Framework: Implementing OEE Method in Manufacturing Process Environment

    NASA Astrophysics Data System (ADS)

    Maideen, N. C.; Sahudin, S.; Mohd Yahya, N. H.; Norliawati, A. O.

    2016-02-01

    Manufacturing process environment requires reliable machineries in order to be able to satisfy the market demand. Ideally, a reliable machine is expected to be operated and produce a quality product at its maximum designed capability. However, due to some reason, the machine usually unable to achieved the desired performance. Since the performance will affect the productivity of the system, a measurement technique should be applied. Overall Equipment Effectiveness (OEE) is a good method to measure the performance of the machine. The reliable result produced from OEE can then be used to propose a suitable corrective action. There are a lot of published paper mentioned about the purpose and benefit of OEE that covers what and why factors. However, the how factor not yet been revealed especially the implementation of OEE in manufacturing process environment. Thus, this paper presents a practical framework to implement OEE and a case study has been discussed to explain in detail each steps proposed. The proposed framework is beneficial to the engineer especially the beginner to start measure their machine performance and later improve the performance of the machine.

  8. A machine learning model with human cognitive biases capable of learning from small and biased datasets.

    PubMed

    Taniguchi, Hidetaka; Sato, Hiroshi; Shirakawa, Tomohiro

    2018-05-09

    Human learners can generalize a new concept from a small number of samples. In contrast, conventional machine learning methods require large amounts of data to address the same types of problems. Humans have cognitive biases that promote fast learning. Here, we developed a method to reduce the gap between human beings and machines in this type of inference by utilizing cognitive biases. We implemented a human cognitive model into machine learning algorithms and compared their performance with the currently most popular methods, naïve Bayes, support vector machine, neural networks, logistic regression and random forests. We focused on the task of spam classification, which has been studied for a long time in the field of machine learning and often requires a large amount of data to obtain high accuracy. Our models achieved superior performance with small and biased samples in comparison with other representative machine learning methods.

  9. Method and apparatus for monitoring machine performance

    DOEpatents

    Smith, Stephen F.; Castleberry, Kimberly N.

    1996-01-01

    Machine operating conditions can be monitored by analyzing, in either the time or frequency domain, the spectral components of the motor current. Changes in the electric background noise, induced by mechanical variations in the machine, are correlated to changes in the operating parameters of the machine.

  10. Energy Design Guidelines for High Performance Schools: Hot and Dry Climates.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Energy Efficiency and Renewable Energy.

    This guide contains recommendations for designing high performance, energy efficient schools located in hot and dry climates. A high performance checklist for designers is included along with several case studies of projects that successfully demonstrated high performance design solutions for hot and dry climates. The guide's 10 sections…

  11. Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.

    PubMed

    Kus, Abdil; Isik, Yahya; Cakir, M Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-12

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  12. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition.

    PubMed

    Caggiano, Alessandra

    2018-03-09

    Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features ( k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear ( VB max ) was achieved, with predicted values very close to the measured tool wear values.

  13. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition

    PubMed Central

    2018-01-01

    Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features (k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear (VBmax) was achieved, with predicted values very close to the measured tool wear values. PMID:29522443

  14. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    PubMed Central

    Kus, Abdil; Isik, Yahya; Cakir, M. Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-01

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining. PMID:25587976

  15. Applying dynamic data collection to improve dry electrode system performance for a P300-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Clements, J. M.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Collins, L. M.; Throckmorton, C. S.

    2016-12-01

    Objective. Dry electrodes have an advantage over gel-based ‘wet’ electrodes by providing quicker set-up time for electroencephalography recording; however, the potentially poorer contact can result in noisier recordings. We examine the impact that this may have on brain-computer interface communication and potential approaches for mitigation. Approach. We present a performance comparison of wet and dry electrodes for use with the P300 speller system in both healthy participants and participants with communication disabilities (ALS and PLS), and investigate the potential for a data-driven dynamic data collection algorithm to compensate for the lower signal-to-noise ratio (SNR) in dry systems. Main results. Performance results from sixteen healthy participants obtained in the standard static data collection environment demonstrate a substantial loss in accuracy with the dry system. Using a dynamic stopping algorithm, performance may have been improved by collecting more data in the dry system for ten healthy participants and eight participants with communication disabilities; however, the algorithm did not fully compensate for the lower SNR of the dry system. An analysis of the wet and dry system recordings revealed that delta and theta frequency band power (0.1-4 Hz and 4-8 Hz, respectively) are consistently higher in dry system recordings across participants, indicating that transient and drift artifacts may be an issue for dry systems. Significance. Using dry electrodes is desirable for reduced set-up time; however, this study demonstrates that online performance is significantly poorer than for wet electrodes for users with and without disabilities. We test a new application of dynamic stopping algorithms to compensate for poorer SNR. Dynamic stopping improved dry system performance; however, further signal processing efforts are likely necessary for full mitigation.

  16. Using GPS to evaluate productivity and performance of forest machine systems

    Treesearch

    Steven E. Taylor; Timothy P. McDonald; Matthew W. Veal; Ton E. Grift

    2001-01-01

    This paper reviews recent research and operational applications of using GPS as a tool to help monitor the locations, travel patterns, performance, and productivity of forest machines. The accuracy of dynamic GPS data collected on forest machines under different levels of forest canopy is reviewed first. Then, the paper focuses on the use of GPS for monitoring forest...

  17. Effects of Process Parameters and Cryotreated Electrode on the Radial Overcut of Aisi 304 IN SiC Powder Mixed Edm

    NASA Astrophysics Data System (ADS)

    Bhaumik, Munmun; Maity, Kalipada

    Powder mixed electro discharge machining (PMEDM) is further advancement of conventional electro discharge machining (EDM) where the powder particles are suspended in the dielectric medium to enhance the machining rate as well as surface finish. Cryogenic treatment is introduced in this process for improving the tool life and cutting tool properties. In the present investigation, the characterization of the cryotreated tempered electrode was performed. An attempt has been made to study the effect of cryotreated double tempered electrode on the radial overcut (ROC) when SiC powder is mixed in the kerosene dielectric during electro discharge machining of AISI 304. The process performance has been evaluated by means of ROC when peak current, pulse on time, gap voltage, duty cycle and powder concentration are considered as process parameters and machining is performed by using tungsten carbide electrodes (untreated and double tempered electrodes). A regression analysis was performed to correlate the data between the response and the process parameters. Microstructural analysis was carried out on the machined surfaces. Least radial overcut was observed for conventional EDM as compared to powder mixed EDM. Cryotreated double tempered electrode significantly reduced the radial overcut than untreated electrode.

  18. Articulated, Performance-Based Instruction Objectives Guide for Machine Shop Technology.

    ERIC Educational Resources Information Center

    Henderson, William Edward, Jr., Ed.

    This articulation guide contains 21 units of instruction for two years of machine shop. The objectives of the program are to provide the student with the basic terminology and fundamental knowledge and skills in machining (year 1) and to teach him/her to set up and operate machine tools and make or repair metal parts, tools, and machines (year 2).…

  19. Thermal-Hydraulic Results for the Boiling Water Reactor Dry Cask Simulator.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel; Lindgren, Eric R.

    The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internalmore » convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both aboveground and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of this investigation was to produce validation-quality data that can be used to test the validity of the modeling presently used to determine cladding temperatures in modern vertical dry casks. These cladding temperatures are critical to evaluate cladding integrity throughout the storage cycle. To produce these data sets under well-controlled boundary conditions, the dry cask simulator (DCS) was built to study the thermal-hydraulic response of fuel under a variety of heat loads, internal vessel pressures, and external configurations. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplified interpretation of results. Two different arrangements of ducting were used to mimic conditions for aboveground and belowground storage configurations for vertical, dry cask systems with canisters. Transverse and axial temperature profiles were measured throughout the test assembly. The induced air mass flow rate was measured for both the aboveground and belowground configurations. In addition, the impact of cross-wind conditions on the belowground configuration was quantified. Over 40 unique data sets were collected and analyzed for these efforts. Fourteen data sets for the aboveground configuration were recorded for powers and internal pressures ranging from 0.5 to 5.0 kW and 0.3 to 800 kPa absolute, respectively. Similarly, fourteen data sets were logged for the belowground configuration starting at ambient conditions and concluding with thermal-hydraulic steady state. Over thirteen tests were conducted using a custom-built wind machine. The results documented in this report highlight a small, but representative, subset of the available data from this test series. This addition to the dry cask experimental database signifies a substantial addition of first-of-a-kind, high-fidelity transient and steady-state thermal-hydraulic data sets suitable for CFD model validation.« less

  20. Performance of solar refrigerant ejector refrigerating machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Khalidy, N.A.H.

    1997-12-31

    In this work a detailed analysis for the ideal, theoretical, and experimental performance of a solar refrigerant ejector refrigerating machine is presented. A comparison of five refrigerants to select a desirable one for the system is made. The theoretical analysis showed that refrigerant R-113 is more suitable for use in the system. The influence of the boiler, condenser, and evaporator temperatures on system performance is investigated experimentally in a refrigerant ejector refrigerating machine using R-113 as a working refrigerant.

  1. The assisted prediction modelling frame with hybridisation and ensemble for business risk forecasting and an implementation

    NASA Astrophysics Data System (ADS)

    Li, Hui; Hong, Lu-Yao; Zhou, Qing; Yu, Hai-Jie

    2015-08-01

    The business failure of numerous companies results in financial crises. The high social costs associated with such crises have made people to search for effective tools for business risk prediction, among which, support vector machine is very effective. Several modelling means, including single-technique modelling, hybrid modelling, and ensemble modelling, have been suggested in forecasting business risk with support vector machine. However, existing literature seldom focuses on the general modelling frame for business risk prediction, and seldom investigates performance differences among different modelling means. We reviewed researches on forecasting business risk with support vector machine, proposed the general assisted prediction modelling frame with hybridisation and ensemble (APMF-WHAE), and finally, investigated the use of principal components analysis, support vector machine, random sampling, and group decision, under the general frame in forecasting business risk. Under the APMF-WHAE frame with support vector machine as the base predictive model, four specific predictive models were produced, namely, pure support vector machine, a hybrid support vector machine involved with principal components analysis, a support vector machine ensemble involved with random sampling and group decision, and an ensemble of hybrid support vector machine using group decision to integrate various hybrid support vector machines on variables produced from principle components analysis and samples from random sampling. The experimental results indicate that hybrid support vector machine and ensemble of hybrid support vector machines were able to produce dominating performance than pure support vector machine and support vector machine ensemble.

  2. 22. National Geographic Paper in the making. In this large ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. National Geographic Paper in the making. In this large room, some two hundred feet long, the liquid pulp shown in the previous picture is converted into uncoated paper. At the end of each machine is a tank of the pulp. A film of this pulp flows out upon an endless belt of fine-meshed wire, which is shaken vigorously. The water drops through the wire and gradually the residue solidifies. By the time the endless belt reaches the returning point, this residue is solid enough to hold its form as paper. It is then caught up between two rolls, which squeeze out the remaining water. Thence it passes around a series of iron drums filled with live steam; these dry it. After that is passes between big calender rolls and emerges in the foreground as machine-finish paper, ready for the coating or glazing process. These machines give one an idea of the huge proportions of a modern paper plant. (p.237.) - Champion-International Paper Company, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  3. Function library programming to support B89 evaluation of Sheffield Apollo RS50 DCC (Direct Computer Control) CMM (Coordinate Measuring Machine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, R.N.

    1990-02-28

    The Inspection Shop at Lawrence Livermore Lab recently purchased a Sheffield Apollo RS50 Direct Computer Control Coordinate Measuring Machine. The performance of the machine was specified to conform to B89 standard which relies heavily upon using the measuring machine in its intended manner to verify its accuracy (rather than parametric tests). Although it would be possible to use the interactive measurement system to perform these tasks, a more thorough and efficient job can be done by creating Function Library programs for certain tasks which integrate Hewlett-Packard Basic 5.0 language and calls to proprietary analysis and machine control routines. This combinationmore » provides efficient use of the measuring machine with a minimum of keyboard input plus an analysis of the data with respect to the B89 Standard rather than a CMM analysis which would require subsequent interpretation. This paper discusses some characteristics of the Sheffield machine control and analysis software and my use of H-P Basic language to create automated measurement programs to support the B89 performance evaluation of the CMM. 1 ref.« less

  4. Effect of ethanol as a co-solvent on the aerosol performance and stability of spray-dried lysozyme.

    PubMed

    Ji, Shuying; Thulstrup, Peter Waaben; Mu, Huiling; Hansen, Steen Honoré; van de Weert, Marco; Rantanen, Jukka; Yang, Mingshi

    2016-11-20

    In the spray drying process, organic solvents can be added to facilitate drying, accommodate certain functional excipients, and modify the final particle characteristics. In this study, lysozyme was used as a model pharmaceutical protein to study the effect of ethanol as a co-solvent on the stability and aerosol performance of spray-dried protein. Lysozyme was dissolved in solutions with various ratios of ethanol and water, and subsequently spray-dried. A change from spherical particles into wrinkled and folded particles was observed upon increasing the ratio of ethanol in the feed. The aerosol performance of the spray-dried lysozyme from ethanol-water solution was improved compared to that from pure water. The conformation of lysozyme in the ethanol-water solution and spray dried powder was altered, but the native structure of lysozyme was restored upon reconstitution in water after the spray drying process. The enzymatic activities of the spray-dried lysozyme showed no significant impact of ethanol; however, the lysozyme enzymatic activity was ca. 25% lower compared to the starting material. In conclusion, the addition of ethanol as a co-solvent in the spray drying feed for lysozyme did not compromise the conformation of the protein after drying, while it improved the inhaled aerosol performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Machine learning in heart failure: ready for prime time.

    PubMed

    Awan, Saqib Ejaz; Sohel, Ferdous; Sanfilippo, Frank Mario; Bennamoun, Mohammed; Dwivedi, Girish

    2018-03-01

    The aim of this review is to present an up-to-date overview of the application of machine learning methods in heart failure including diagnosis, classification, readmissions and medication adherence. Recent studies have shown that the application of machine learning techniques may have the potential to improve heart failure outcomes and management, including cost savings by improving existing diagnostic and treatment support systems. Recently developed deep learning methods are expected to yield even better performance than traditional machine learning techniques in performing complex tasks by learning the intricate patterns hidden in big medical data. The review summarizes the recent developments in the application of machine and deep learning methods in heart failure management.

  6. Methods And Systms For Analyzing The Degradation And Failure Of Mechanical Systems

    DOEpatents

    Jarrell, Donald B.; Sisk, Daniel R.; Hatley, Darrel D.; Kirihara, Leslie J.; Peters, Timothy J.

    2005-02-08

    Methods and systems for identifying, understanding, and predicting the degradation and failure of mechanical systems are disclosed. The methods include measuring and quantifying stressors that are responsible for the activation of degradation mechanisms in the machine component of interest. The intensity of the stressor may be correlated with the rate of physical degradation according to some determinable function such that a derivative relationship exists between the machine performance, degradation, and the underlying stressor. The derivative relationship may be used to make diagnostic and prognostic calculations concerning the performance and projected life of the machine. These calculations may be performed in real time to allow the machine operator to quickly adjust the operational parameters of the machinery in order to help minimize or eliminate the effects of the degradation mechanism, thereby prolonging the life of the machine. Various systems implementing the methods are also disclosed.

  7. Stirling Refrigerator

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  8. Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M.A.; Hirshfield, J.L.; Hirshfield, J.L.

    1999-06-01

    Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96{percent}. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications. {copyright} {ital 1999 American Institute of Physics.}« less

  9. An investigation on dry sliding wear behaviour of AA6061-AlNp composite

    NASA Astrophysics Data System (ADS)

    Mahesh Naidu, K.; Mohan Reddy, Chandra

    2018-03-01

    This paper studies the effect of load, sliding distance, reinforcement percentage and temperature on dry sliding wear behaviour of Al-AlNp composites by using pin on disc machine. The wear test was conducted at different loads (1,2,3 & 4 Kg), temperatures (30°C, 100°C, 170°C & 240°C) and sliding distances (500m,1000m,1500m and 2000m). Increase in wear rate has been observed by increasing the load and sliding distance, at the same time it has been decreased by increasing the reinforcement percentage and temperature. At the higher loads, temperatures and sliding distances adhesive wear, abrasive wear and oxidation wear are observed to be dominant modes of wear mechanisms in the composite.

  10. Intraoperative performance and postoperative outcome comparison of longitudinal, torsional, and transversal phacoemulsification machines.

    PubMed

    Christakis, Panos G; Braga-Mele, Rosa M

    2012-02-01

    To compare the intraoperative performance and postoperative outcomes of 3 phacoemulsification machines that use different modes. Kensington Eye Institute, Toronto, Ontario, Canada. Comparative case series. This chart and video review comprised consecutive eligible patients who had phacoemulsification by the same surgeon using a Whitestar Signature Ellips-FX (transversal), Infiniti-Ozil-IP (torsional), or Stellaris (longitudinal) machine. The review included 98 patients. Baseline characteristics in the groups were similar; the mean nuclear sclerosis grade was 2.0 ± 0.8. There were no significant intraoperative complications. The torsional machine averaged less phacoemulsification needle time (83 ± 33 seconds) than the transversal (99 ± 40 seconds; P=.21) or longitudinal (110 ± 45 seconds; P=.02) machines; the difference was accentuated in cases with high-grade nuclear sclerosis. The torsional machine had less chatter and better followability than the transversal or longitudinal machines (P<.001). The torsional and longitudinal machines had better anterior chamber stability than the transversal machine (P<.001). Postoperatively, the torsional machine yielded less central corneal edema than the transversal (P<.001) and longitudinal (P=.04) machines, corresponding to a smaller increase in mean corneal thickness (torsional 5%, transversal 10%, longitudinal 12%; P=.04). Also, the torsional machine had better 1-day postoperative visual acuities (P<.001). All 3 phacoemulsification machines were effective with no significant intraoperative complications. The torsional machine outperformed the transversal and longitudinal machines, with a lower mean needle time, less chatter, and improved followability. This corresponded to less corneal edema 1 day postoperatively and better visual acuity. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Continuous performance measurement in flight systems. [sequential control model

    NASA Technical Reports Server (NTRS)

    Connelly, E. M.; Sloan, N. A.; Zeskind, R. M.

    1975-01-01

    The desired response of many man machine control systems can be formulated as a solution to an optimal control synthesis problem where the cost index is given and the resulting optimal trajectories correspond to the desired trajectories of the man machine system. Optimal control synthesis provides the reference criteria and the significance of error information required for performance measurement. The synthesis procedure described provides a continuous performance measure (CPM) which is independent of the mechanism generating the control action. Therefore, the technique provides a meaningful method for online evaluation of man's control capability in terms of total man machine performance.

  12. The Body of Knowledge & Content Framework. Identifying the Important Knowledge Required for Productive Performance of a Plastics Machine Operator. Blow Molding, Extrusion, Injection Molding, Thermoforming.

    ERIC Educational Resources Information Center

    Society of the Plastics Industry, Inc., Washington, DC.

    Designed to guide training and curriculum development to prepare machine operators for the national certification exam, this publication identifies the important knowledge required for productive performance by a plastics machine operator. Introductory material discusses the rationale for a national standard, uses of the Body of Knowledge,…

  13. Energy Savings and Persistence from an Energy Services Performance Contract at an Army Base

    DTIC Science & Technology

    2011-10-01

    control system upgrades, lighting retrofits, vending machine controls, and cooling tower variable frequency drivers (VFDs). To accomplish the...controls were installed in the vending machines , and for the 87018 thermal plant, cooling tower VFDs were implemented. To develop baseline models...identify the reasons of improved or deteriorated energy performance of the buildings. For example, periodic submetering of the vending machines

  14. Implementing Machine Learning in the PCWG Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Ding, Yu; Stuart, Peter

    The Power Curve Working Group (www.pcwg.org) is an ad-hoc industry-led group to investigate the performance of wind turbines in real-world conditions. As part of ongoing experience-sharing exercises, machine learning has been proposed as a possible way to predict turbine performance. This presentation provides some background information about machine learning and how it might be implemented in the PCWG exercises.

  15. Muscle activity during knee-extension strengthening exercise performed with elastic tubing and isotonic resistance.

    PubMed

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Bandholm, Thomas; Thorborg, Kristian; Zebis, Mette K; Andersen, Lars L

    2012-12-01

    While elastic resistance training, targeting the upper body is effective for strength training, the effect of elastic resistance training on lower body muscle activity remains questionable. The purpose of this study was to evaluate the EMG-angle relationship of the quadriceps muscle during 10-RM knee-extensions performed with elastic tubing and an isotonic strength training machine. 7 women and 9 men aged 28-67 years (mean age 44 and 41 years, respectively) participated. Electromyographic (EMG) activity was recorded in 10 muscles during the concentric and eccentric contraction phase of a knee extension exercise performed with elastic tubing and in training machine and normalized to maximal voluntary isometric contraction (MVC) EMG (nEMG). Knee joint angle was measured during the exercises using electronic inclinometers (range of motion 0-90°). When comparing the machine and elastic resistance exercises there were no significant differences in peak EMG of the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM) during the concentric contraction phase. However, during the eccentric phase, peak EMG was significantly higher (p<0.01) in RF and VM when performing knee extensions using the training machine. In VL and VM the EMG-angle pattern was different between the two training modalities (significant angle by exercise interaction). When using elastic resistance, the EMG-angle pattern peaked towards full knee extension (0°), whereas angle at peak EMG occurred closer to knee flexion position (90°) during the machine exercise. Perceived loading (Borg CR10) was similar during knee extensions performed with elastic tubing (5.7±0.6) compared with knee extensions performed in training machine (5.9±0.5). Knee extensions performed with elastic tubing induces similar high (>70% nEMG) quadriceps muscle activity during the concentric contraction phase, but slightly lower during the eccentric contraction phase, as knee extensions performed using an isotonic training machine. During the concentric contraction phase the two different conditions displayed reciprocal EMG-angle patterns during the range of motion. 5.

  16. Permutation parity machines for neural cryptography.

    PubMed

    Reyes, Oscar Mauricio; Zimmermann, Karl-Heinz

    2010-06-01

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  17. Toward Intelligent Machine Learning Algorithms

    DTIC Science & Technology

    1988-05-01

    Machine learning is recognized as a tool for improving the performance of many kinds of systems, yet most machine learning systems themselves are not...directed systems, and with the addition of a knowledge store for organizing and maintaining knowledge to assist learning, a learning machine learning (L...ML) algorithm is possible. The necessary components of L-ML systems are presented along with several case descriptions of existing machine learning systems

  18. Evaluation of an Integrated Multi-Task Machine Learning System with Humans in the Loop

    DTIC Science & Technology

    2007-01-01

    machine learning components natural language processing, and optimization...was examined with a test explicitly developed to measure the impact of integrated machine learning when used by a human user in a real world setting...study revealed that integrated machine learning does produce a positive impact on overall performance. This paper also discusses how specific machine learning components contributed to human-system

  19. Permutation parity machines for neural cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyes, Oscar Mauricio; Escuela de Ingenieria Electrica, Electronica y Telecomunicaciones, Universidad Industrial de Santander, Bucaramanga; Zimmermann, Karl-Heinz

    2010-06-15

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  20. Early experiences in developing and managing the neuroscience gateway.

    PubMed

    Sivagnanam, Subhashini; Majumdar, Amit; Yoshimoto, Kenneth; Astakhov, Vadim; Bandrowski, Anita; Martone, MaryAnn; Carnevale, Nicholas T

    2015-02-01

    The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway.

  1. Early experiences in developing and managing the neuroscience gateway

    PubMed Central

    Sivagnanam, Subhashini; Majumdar, Amit; Yoshimoto, Kenneth; Astakhov, Vadim; Bandrowski, Anita; Martone, MaryAnn; Carnevale, Nicholas. T.

    2015-01-01

    SUMMARY The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway. PMID:26523124

  2. Influence of different resin cements and surface treatments on microshear bond strength of zirconia-based ceramics

    PubMed Central

    Petrauskas, Anderson; Novaes Olivieri, Karina Andrea; Pupo, Yasmine Mendes; Berger, Guilherme; Gonçalves Betiol, Ederson Áureo

    2018-01-01

    Aim: This study aims to evaluate the microshear bond strength of zirconia-based ceramics with different resin cement systems and surface treatments. Materials and Methods: Forty blocks of zirconia-based ceramic were prepared and embedded in polyvinyl chloride (PVC) tubes with acrylic resin. After polishing, the samples were washed in an ultrasonic bath and dried in an oven for 10 min. Half of the samples were subjected to sandblasting with aluminum oxide. Blocks were divided into four groups (n = 10) in which two resin cements were used as follows: (1) RelyX™ U100 with surface-polished zirconia; (2) RelyX™ U100 with surface-blasted zirconia; (3) Multilink with surface-polished zirconia; and 4) Multilink with surface-blasted zirconia. After performing these surface treatments, translucent tubes (n = 30 per group) were placed on the zirconia specimens, and resin cement was injected into them and light cured. The PVC tubes were adapted in a universal testing machine; a stiletto blade, which was bolted to the machine, was positioned on the cementation interface. The microshear test was performed at a speed of 0.5 mm/min. Failure mode was analyzed in an optical microscope and classified as adhesive, cohesive, or mixed. Results: The null hypothesis of this study was rejected because there was a difference found between the resin cement and the surface treatment. There was a statistical difference (P < 0.005) in RelyX™ U100 with surface-blasted zirconia, in relation to the other three groups. For Multilink groups, there was no statistical difference between them. Conclusion: Self-adhesive resin cement showed a more significant tendency toward bond strength in the ceramic-based zirconium oxide grit-blasted surfaces. PMID:29674825

  3. Modeling of Principal Flank Wear: An Empirical Approach Combining the Effect of Tool, Environment and Workpiece Hardness

    NASA Astrophysics Data System (ADS)

    Mia, Mozammel; Al Bashir, Mahmood; Dhar, Nikhil Ranjan

    2016-10-01

    Hard turning is increasingly employed in machining, lately, to replace time-consuming conventional turning followed by grinding process. An excessive amount of tool wear in hard turning is one of the main hurdles to be overcome. Many researchers have developed tool wear model, but most of them developed it for a particular work-tool-environment combination. No aggregate model is developed that can be used to predict the amount of principal flank wear for specific machining time. An empirical model of principal flank wear (VB) has been developed for the different hardness of workpiece (HRC40, HRC48 and HRC56) while turning by coated carbide insert with different configurations (SNMM and SNMG) under both dry and high pressure coolant conditions. Unlike other developed model, this model includes the use of dummy variables along with the base empirical equation to entail the effect of any changes in the input conditions on the response. The base empirical equation for principal flank wear is formulated adopting the Exponential Associate Function using the experimental results. The coefficient of dummy variable reflects the shifting of the response from one set of machining condition to another set of machining condition which is determined by simple linear regression. The independent cutting parameters (speed, rate, depth of cut) are kept constant while formulating and analyzing this model. The developed model is validated with different sets of machining responses in turning hardened medium carbon steel by coated carbide inserts. For any particular set, the model can be used to predict the amount of principal flank wear for specific machining time. Since the predicted results exhibit good resemblance with experimental data and the average percentage error is <10 %, this model can be used to predict the principal flank wear for stated conditions.

  4. Hardware assisted hypervisor introspection.

    PubMed

    Shi, Jiangyong; Yang, Yuexiang; Tang, Chuan

    2016-01-01

    In this paper, we introduce hypervisor introspection, an out-of-box way to monitor the execution of hypervisors. Similar to virtual machine introspection which has been proposed to protect virtual machines in an out-of-box way over the past decade, hypervisor introspection can be used to protect hypervisors which are the basis of cloud security. Virtual machine introspection tools are usually deployed either in hypervisor or in privileged virtual machines, which might also be compromised. By utilizing hardware support including nested virtualization, EPT protection and #BP, we are able to monitor all hypercalls belongs to the virtual machines of one hypervisor, include that of privileged virtual machine and even when the hypervisor is compromised. What's more, hypercall injection method is used to simulate hypercall-based attacks and evaluate the performance of our method. Experiment results show that our method can effectively detect hypercall-based attacks with some performance cost. Lastly, we discuss our furture approaches of reducing the performance cost and preventing the compromised hypervisor from detecting the existence of our introspector, in addition with some new scenarios to apply our hypervisor introspection system.

  5. Lubricity of well-characterized jet and broad-cut fuels by ball-on-cylinder machine

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Kim, W. S.

    1984-01-01

    A ball-on-cylinder machine (BOCM) was used to measure the lubricity of fuels. The fuels tested were well-characterized fuels available from other programs at the NASA Lewis Research Center plus some in-house mildly hydroprocessed shale fuels from other programs included Jet-A, ERBS fuel, ERBS blends, and blend stock. The BOCM tests were made before and after clay treatment of some of these fuels with both humidified air and dry nitrogen as the preconditioning and cover gas. As expected, clay treatment always reduced fuel lubricity. Using nitrogen preconditioning and cover gas always resulted in a smaller wear scar diameter than when humidified air was used. Also observed was an indication of lower lubricity with lower boiling range fuels and lower aromatic fuels. Gas chromatographic analysis indicted changes in BOCM-stressed fuels.

  6. Evaluation of Fatigue Behavior and Surface Characteristics of Aluminum Alloy 2024 T6 After Electric Discharge Machining

    NASA Astrophysics Data System (ADS)

    Mehmood, Shahid; Shah, Masood; Pasha, Riffat Asim; Sultan, Amir

    2017-10-01

    The effect of electric discharge machining (EDM) on surface quality and consequently on the fatigue performance of Al 2024 T6 is investigated. Five levels of discharge current are analyzed, while all other electrical and nonelectrical parameters are kept constant. At each discharge current level, dog-bone specimens are machined by generating a peripheral notch at the center. The fatigue tests are performed on four-point rotating bending machine at room temperature. For comparison purposes, fatigue tests are also performed on the conventionally machined specimens. Linearized SN curves for 95% failure probability and with four different confidence levels (75, 90, 95 and 99%) are plotted for each discharge current level as well as for conventionally machined specimens. These plots show that the electric discharge machined (EDMed) specimens give inferior fatigue behavior as compared to conventionally machined specimen. Moreover, discharge current inversely affects the fatigue life, and this influence is highly pronounced at lower stresses. The EDMed surfaces are characterized by surface properties that could be responsible for change in fatigue life such as surface morphology, surface roughness, white layer thickness, microhardness and residual stresses. It is found that all these surface properties are affected by changing discharge current level. However, change in fatigue life by discharge current could not be associated independently to any single surface property.

  7. Testing of Anesthesia Machines and Defibrillators in Healthcare Institutions.

    PubMed

    Gurbeta, Lejla; Dzemic, Zijad; Bego, Tamer; Sejdic, Ervin; Badnjevic, Almir

    2017-09-01

    To improve the quality of patient treatment by improving the functionality of medical devices in healthcare institutions. To present the results of the safety and performance inspection of patient-relevant output parameters of anesthesia machines and defibrillators defined by legal metrology. This study covered 130 anesthesia machines and 161 defibrillators used in public and private healthcare institutions, during a period of two years. Testing procedures were carried out according to international standards and legal metrology legislative procedures in Bosnia and Herzegovina. The results show that in 13.84% of tested anesthesia machine and 14.91% of defibrillators device performance is not in accordance with requirements and should either have its results be verified, or the device removed from use or scheduled for corrective maintenance. Research emphasizes importance of independent safety and performance inspections, and gives recommendations for the frequency of inspection based on measurements. Results offer implications for adequacy of preventive and corrective maintenance performed in healthcare institutions. Based on collected data, the first digital electronical database of anesthesia machines and defibrillators used in healthcare institutions in Bosnia and Herzegovina is created. This database is a useful tool for tracking each device's performance over time.

  8. 32 CFR 701.53 - FOIA fee schedule.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... human time) and machine time. (1) Human time. Human time is all the time spent by humans performing the...) Machine time. Machine time involves only direct costs of the central processing unit (CPU), input/output... exist to calculate CPU time, no machine costs can be passed on to the requester. When CPU calculations...

  9. 32 CFR 701.53 - FOIA fee schedule.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... human time) and machine time. (1) Human time. Human time is all the time spent by humans performing the...) Machine time. Machine time involves only direct costs of the central processing unit (CPU), input/output... exist to calculate CPU time, no machine costs can be passed on to the requester. When CPU calculations...

  10. 32 CFR 518.20 - Collection of fees and fee rates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; individual time (hereafter referred to as human time), and machine time. (i) Human time. Human time is all the time spent by humans performing the necessary tasks to prepare the job for a machine to execute..., programmer, database administrator, or action officer). (ii) Machine time. Machine time involves only direct...

  11. 32 CFR 518.20 - Collection of fees and fee rates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; individual time (hereafter referred to as human time), and machine time. (i) Human time. Human time is all the time spent by humans performing the necessary tasks to prepare the job for a machine to execute..., programmer, database administrator, or action officer). (ii) Machine time. Machine time involves only direct...

  12. 32 CFR 518.20 - Collection of fees and fee rates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; individual time (hereafter referred to as human time), and machine time. (i) Human time. Human time is all the time spent by humans performing the necessary tasks to prepare the job for a machine to execute..., programmer, database administrator, or action officer). (ii) Machine time. Machine time involves only direct...

  13. 32 CFR 701.53 - FOIA fee schedule.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... human time) and machine time. (1) Human time. Human time is all the time spent by humans performing the...) Machine time. Machine time involves only direct costs of the central processing unit (CPU), input/output... exist to calculate CPU time, no machine costs can be passed on to the requester. When CPU calculations...

  14. Standard surface grinder for precision machining of thin-wall tubing

    NASA Technical Reports Server (NTRS)

    Jones, A.; Kotora, J., Jr.; Rein, J.; Smith, S. V.; Strack, D.; Stuckey, D.

    1967-01-01

    Standard surface grinder performs precision machining of thin-wall stainless steel tubing by electrical discharge grinding. A related adaptation, a traveling wire electrode fixture, is used for machining slots in thin-walled tubing.

  15. Micro-optical fabrication by ultraprecision diamond machining and precision molding

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.

    2017-06-01

    Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.

  16. Machine characterization and benchmark performance prediction

    NASA Technical Reports Server (NTRS)

    Saavedra-Barrera, Rafael H.

    1988-01-01

    From runs of standard benchmarks or benchmark suites, it is not possible to characterize the machine nor to predict the run time of other benchmarks which have not been run. A new approach to benchmarking and machine characterization is reported. The creation and use of a machine analyzer is described, which measures the performance of a given machine on FORTRAN source language constructs. The machine analyzer yields a set of parameters which characterize the machine and spotlight its strong and weak points. Also described is a program analyzer, which analyzes FORTRAN programs and determines the frequency of execution of each of the same set of source language operations. It is then shown that by combining a machine characterization and a program characterization, we are able to predict with good accuracy the run time of a given benchmark on a given machine. Characterizations are provided for the Cray-X-MP/48, Cyber 205, IBM 3090/200, Amdahl 5840, Convex C-1, VAX 8600, VAX 11/785, VAX 11/780, SUN 3/50, and IBM RT-PC/125, and for the following benchmark programs or suites: Los Alamos (BMK8A1), Baskett, Linpack, Livermore Loops, Madelbrot Set, NAS Kernels, Shell Sort, Smith, Whetstone and Sieve of Erathostenes.

  17. Logic Learning Machine and standard supervised methods for Hodgkin's lymphoma prognosis using gene expression data and clinical variables.

    PubMed

    Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco

    2018-03-01

    This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.

  18. Reverse time migration: A seismic processing application on the connection machine

    NASA Technical Reports Server (NTRS)

    Fiebrich, Rolf-Dieter

    1987-01-01

    The implementation of a reverse time migration algorithm on the Connection Machine, a massively parallel computer is described. Essential architectural features of this machine as well as programming concepts are presented. The data structures and parallel operations for the implementation of the reverse time migration algorithm are described. The algorithm matches the Connection Machine architecture closely and executes almost at the peak performance of this machine.

  19. Fatigue Life Variability in Large Aluminum Forgings with Residual Stress

    DTIC Science & Technology

    2011-07-01

    been conducted. A detailed finite element analysis of the forge/ quench /coldwork/machine process was performed in order to predict the bulk residual...forge/ quench /coldwork/machine process was performed in order to predict the bulk residual stresses in a fictitious aluminum bulkhead. The residual...continues to develop the capability for computational simulation of the forge, quench , cold work and machining processes. In order to handle the

  20. Classifying injury narratives of large administrative databases for surveillance-A practical approach combining machine learning ensembles and human review.

    PubMed

    Marucci-Wellman, Helen R; Corns, Helen L; Lehto, Mark R

    2017-01-01

    Injury narratives are now available real time and include useful information for injury surveillance and prevention. However, manual classification of the cause or events leading to injury found in large batches of narratives, such as workers compensation claims databases, can be prohibitive. In this study we compare the utility of four machine learning algorithms (Naïve Bayes, Single word and Bi-gram models, Support Vector Machine and Logistic Regression) for classifying narratives into Bureau of Labor Statistics Occupational Injury and Illness event leading to injury classifications for a large workers compensation database. These algorithms are known to do well classifying narrative text and are fairly easy to implement with off-the-shelf software packages such as Python. We propose human-machine learning ensemble approaches which maximize the power and accuracy of the algorithms for machine-assigned codes and allow for strategic filtering of rare, emerging or ambiguous narratives for manual review. We compare human-machine approaches based on filtering on the prediction strength of the classifier vs. agreement between algorithms. Regularized Logistic Regression (LR) was the best performing algorithm alone. Using this algorithm and filtering out the bottom 30% of predictions for manual review resulted in high accuracy (overall sensitivity/positive predictive value of 0.89) of the final machine-human coded dataset. The best pairings of algorithms included Naïve Bayes with Support Vector Machine whereby the triple ensemble NB SW =NB BI-GRAM =SVM had very high performance (0.93 overall sensitivity/positive predictive value and high accuracy (i.e. high sensitivity and positive predictive values)) across both large and small categories leaving 41% of the narratives for manual review. Integrating LR into this ensemble mix improved performance only slightly. For large administrative datasets we propose incorporation of methods based on human-machine pairings such as we have done here, utilizing readily-available off-the-shelf machine learning techniques and resulting in only a fraction of narratives that require manual review. Human-machine ensemble methods are likely to improve performance over total manual coding. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Pre-release plastic packaging of MEMS and IMEMS devices

    DOEpatents

    Peterson, Kenneth A.; Conley, William R.

    2002-01-01

    A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.

  2. Final Report: Laboratory Development of a High Capacity Gas-Fired Paper Dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow

    2005-09-30

    Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laperrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. naturalmore » gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300 deg F range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400 deg F were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.« less

  3. Laboratory Development of A High Capacity Gas-Fired paper Dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr; Sherrow, Lester

    2005-09-30

    Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laparrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. naturalmore » gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300ºF range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400ºF were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.« less

  4. Theophylline cocrystals prepared by spray drying: physicochemical properties and aerosolization performance.

    PubMed

    Alhalaweh, Amjad; Kaialy, Waseem; Buckton, Graham; Gill, Hardyal; Nokhodchi, Ali; Velaga, Sitaram P

    2013-03-01

    The purpose of this work was to characterize theophylline (THF) cocrystals prepared by spray drying in terms of the physicochemical properties and inhalation performance when aerosolized from a dry powder inhaler. Cocrystals of theophylline with urea (THF-URE), saccharin (THF-SAC) and nicotinamide (THF-NIC) were prepared by spray drying. Milled THF and THF-SAC cocrystals were also used for comparison. The physical purity, particle size, particle morphology and surface energy of the materials were determined. The in vitro aerosol performance of the spray-dried cocrystals, drug-alone and a drug-carrier aerosol, was assessed. The spray-dried particles had different size distributions, morphologies and surface energies. The milled samples had higher surface energy than those prepared by spray drying. Good agreement was observed between multi-stage liquid impinger and next-generation impactor in terms of assessing spray-dried THF particles. The fine particle fractions of both formulations were similar for THF, but drug-alone formulations outperformed drug-carrier formulations for the THF cocrystals. The aerosolization performance of different THF cocrystals was within the following rank order as obtained from both drug-alone and drug-carrier formulations: THF-NIC>THF-URE>THF-SAC. It was proposed that micromeritic properties dominate over particle surface energy in terms of determining the aerosol performance of THF cocrystals. Spray drying could be a potential technique for preparing cocrystals with modified physical properties.

  5. Prediction of Aerosol Optical Depth in West Asia: Machine Learning Methods versus Numerical Models

    NASA Astrophysics Data System (ADS)

    Omid Nabavi, Seyed; Haimberger, Leopold; Abbasi, Reyhaneh; Samimi, Cyrus

    2017-04-01

    Dust-prone areas of West Asia are releasing increasingly large amounts of dust particles during warm months. Because of the lack of ground-based observations in the region, this phenomenon is mainly monitored through remotely sensed aerosol products. The recent development of mesoscale Numerical Models (NMs) has offered an unprecedented opportunity to predict dust emission, and, subsequently Aerosol Optical Depth (AOD), at finer spatial and temporal resolutions. Nevertheless, the significant uncertainties in input data and simulations of dust activation and transport limit the performance of numerical models in dust prediction. The presented study aims to evaluate if machine-learning algorithms (MLAs), which require much less computational expense, can yield the same or even better performance than NMs. Deep blue (DB) AOD, which is observed by satellites but also predicted by MLAs and NMs, is used for validation. We concentrate our evaluations on the over dry Iraq plains, known as the main origin of recently intensified dust storms in West Asia. Here we examine the performance of four MLAs including Linear regression Model (LM), Support Vector Machine (SVM), Artificial Neural Network (ANN), Multivariate Adaptive Regression Splines (MARS). The Weather Research and Forecasting model coupled to Chemistry (WRF-Chem) and the Dust REgional Atmosphere Model (DREAM) are included as NMs. The MACC aerosol re-analysis of European Centre for Medium-range Weather Forecast (ECMWF) is also included, although it has assimilated satellite-based AOD data. Using the Recursive Feature Elimination (RFE) method, nine environmental features including soil moisture and temperature, NDVI, dust source function, albedo, dust uplift potential, vertical velocity, precipitation and 9-month SPEI drought index are selected for dust (AOD) modeling by MLAs. During the feature selection process, we noticed that NDVI and SPEI are of the highest importance in MLAs predictions. The data set was divided into a training (2003-2010) and a testing (2011-2013) subset. The evaluation using the two subsets shows that ANN outperformed all other MLAs and NMs. Verified to monthly mean MODIS DB AOD, ANN yielded a Spearman correlation coefficient (SCC) of 0.74, whereas SCC of 0.71 was allotted to WRF-chem simulations, as the most successful NM. In terms of simulation accuracy, SVM and MARS have yielded the lowest bias (-0.001) and RMSE (0.16). DREAM showed the poorest performance with a SCC of 0.52, a bias of -0.17 and a RMSE of 0.29.

  6. Cold machining of high density tungsten and other materials

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1969-01-01

    Cold machining process, which uses a sub-zero refrigerated cutting fluid, is used for machining refractory or reactive metals and alloys. Special carbide tools for turning and drilling these alloys further improve the cutting performance.

  7. Estimation of tool wear compensation during micro-electro-discharge machining of silicon using process simulation

    NASA Astrophysics Data System (ADS)

    Muralidhara, .; Vasa, Nilesh J.; Singaperumal, M.

    2010-02-01

    A micro-electro-discharge machine (Micro EDM) was developed incorporating a piezoactuated direct drive tool feed mechanism for micromachining of Silicon using a copper tool. Tool and workpiece materials are removed during Micro EDM process which demand for a tool wear compensation technique to reach the specified depth of machining on the workpiece. An in-situ axial tool wear and machining depth measurement system is developed to investigate axial wear ratio variations with machining depth. Stepwise micromachining experiments on silicon wafer were performed to investigate the variations in the silicon removal and tool wear depths with increase in tool feed. Based on these experimental data, a tool wear compensation method is proposed to reach the desired depth of micromachining on silicon using copper tool. Micromachining experiments are performed with the proposed tool wear compensation method and a maximum workpiece machining depth variation of 6% was observed.

  8. Catalytic aided electrical discharge machining of polycrystalline diamond - parameter analysis of finishing condition

    NASA Astrophysics Data System (ADS)

    Haikal Ahmad, M. A.; Zulafif Rahim, M.; Fauzi, M. F. Mohd; Abdullah, Aslam; Omar, Z.; Ding, Songlin; Ismail, A. E.; Rasidi Ibrahim, M.

    2018-01-01

    Polycrystalline diamond (PCD) is regarded as among the hardest material in the world. Electrical Discharge Machining (EDM) typically used to machine this material because of its non-contact process nature. This investigation was purposely done to compare the EDM performances of PCD when using normal electrode of copper (Cu) and newly proposed graphitization catalyst electrode of copper nickel (CuNi). Two level full factorial design of experiment with 4 center points technique was used to study the influence of main and interaction effects of the machining parameter namely; pulse-on, pulse-off, sparking current, and electrode materials (categorical factor). The paper shows interesting discovery in which the newly proposed electrode presented positive impact to the machining performance. With the same machining parameters of finishing, CuNi delivered more than 100% better in Ra and MRR than ordinary Cu electrode.

  9. Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.

    PubMed

    Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W

    2015-08-01

    Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  10. Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms.

    PubMed

    Ozcift, Akin; Gulten, Arif

    2011-12-01

    Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Machine Learning Based Malware Detection

    DTIC Science & Technology

    2015-05-18

    A TRIDENT SCHOLAR PROJECT REPORT NO. 440 Machine Learning Based Malware Detection by Midshipman 1/C Zane A. Markel, USN...COVERED (From - To) 4. TITLE AND SUBTITLE Machine Learning Based Malware Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...suitably be projected into realistic performance. This work explores several aspects of machine learning based malware detection . First, we

  12. Scale effects and a method for similarity evaluation in micro electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Liu, Qingyu; Zhang, Qinhe; Wang, Kan; Zhu, Guang; Fu, Xiuzhuo; Zhang, Jianhua

    2016-08-01

    Electrical discharge machining(EDM) is a promising non-traditional micro machining technology that offers a vast array of applications in the manufacturing industry. However, scale effects occur when machining at the micro-scale, which can make it difficult to predict and optimize the machining performances of micro EDM. A new concept of "scale effects" in micro EDM is proposed, the scale effects can reveal the difference in machining performances between micro EDM and conventional macro EDM. Similarity theory is presented to evaluate the scale effects in micro EDM. Single factor experiments are conducted and the experimental results are analyzed by discussing the similarity difference and similarity precision. The results show that the output results of scale effects in micro EDM do not change linearly with discharge parameters. The values of similarity precision of machining time significantly increase when scaling-down the capacitance or open-circuit voltage. It is indicated that the lower the scale of the discharge parameter, the greater the deviation of non-geometrical similarity degree over geometrical similarity degree, which means that the micro EDM system with lower discharge energy experiences more scale effects. The largest similarity difference is 5.34 while the largest similarity precision can be as high as 114.03. It is suggested that the similarity precision is more effective in reflecting the scale effects and their fluctuation than similarity difference. Consequently, similarity theory is suitable for evaluating the scale effects in micro EDM. This proposed research offers engineering values for optimizing the machining parameters and improving the machining performances of micro EDM.

  13. Effects of dust accumulation and module cleaning on performance ratio of solar rooftop system and solar power plants

    NASA Astrophysics Data System (ADS)

    Sakarapunthip, Nattakarn; Chenvidhya, Dhirayut; Chuangchote, Surawut; Kirtikara, Krissanapong; Chenvidhya, Tanokkorn; Onreabroy, Wandee

    2017-08-01

    Thailand is an agricultural country, with rice, sugar, and cassava as the major export products. Production of rice, sugar cane, and cassava entails agricultural activities that give rise to significant airborne dusts. In this work, five photovoltaic (PV) units (one solar rooftop and four power plants) are selected for the study. From the study of dust accumulation on glass surface located near rice farms, it was found that opaque areas due to the deposition of dust are 11-14% after 1-2-week exposure. As a consequence, PV system performance is affected. Performance ratio was calculated to determine these effects. Overall results reveal that during the dry and hot seasons, dust deposition significantly affects the performance ratio. The performance ratio reduces by 1.6-3% for 1-month dust accumulation and reduces by 6-8% for 2-month dust accumulation. After cleaning the dust accumulated, the performance ratio greatly increases, resulting in the increase in the energy output by 10%. This increase provides economic and cost benefits of PV cleaning. The performance ratio is not significantly changed during the rainy season, which PV modules are relatively clean as the dust is washed away by rain. It was also found that most of the solar power plants in Thailand still rely on manual cleaning of PV modules with washing water followed by wiping. However, only one power plant, employs a machine for cleaning, resulting in lower cleaning costs.

  14. Spinning-disk generation and drying of monodisperse solid aerosols with output concentrations sufficient for single-breath inhalation studies.

    PubMed

    Byron, P R; Hickey, A J

    1987-01-01

    The air-driven spinning-disk aerosol generator was modified to allow the production of monodisperse dry spherical aerosols of disodium fluorescein (as model solute) in high output concentrations. Output concentrations were determined by filtration. Optical and aerodynamic size distributions were determined microscopically (after electrostatic precipitation) and by cascade impaction. The generator housing allowed the entrainment of 25-microns primary aqueous solution droplets in a 10-L X min-1 downward flow of dry, filtered air. Internal equipment surfaces were machined flush and polished to minimize aerosol losses. Primary droplets were dried within a stainless steel pipe encased in a tube furnace. Water vapor was removed by diffusion drying. Disk-driven air, satellite droplets, and additional dilution air were vented to waste without using a vacuum. Generator yields were increased by reducing the size of the satellite droplet extraction gap. Aerosols were generated reproducibly by delivering aqueous solutions at a rate of 0.2 mL X min-1 to the center of the disk and spinning at 1000 rps. Dry aerosols, with mass median aerodynamic diameters of 2, 4.9, and 9 microns, were produced in concentrations of 0.89, 5.48, and 54.6 micrograms X L-1 from aqueous solutions containing 0.0374, 0.584, and 3.4% solute by weight. Geometric standard deviations were less than 1.2 in all cases. Concentrations are several times higher than others in the literature and are suitable for single-breath inhalation studies of therapeutic aerosol deposition and effect.

  15. A performance study of sparse Cholesky factorization on INTEL iPSC/860

    NASA Technical Reports Server (NTRS)

    Zubair, M.; Ghose, M.

    1992-01-01

    The problem of Cholesky factorization of a sparse matrix has been very well investigated on sequential machines. A number of efficient codes exist for factorizing large unstructured sparse matrices. However, there is a lack of such efficient codes on parallel machines in general, and distributed machines in particular. Some of the issues that are critical to the implementation of sparse Cholesky factorization on a distributed memory parallel machine are ordering, partitioning and mapping, load balancing, and ordering of various tasks within a processor. Here, we focus on the effect of various partitioning schemes on the performance of sparse Cholesky factorization on the Intel iPSC/860. Also, a new partitioning heuristic for structured as well as unstructured sparse matrices is proposed, and its performance is compared with other schemes.

  16. DOE-RCT-0003641 Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Edward; Lesster, Ted

    2014-07-30

    This program studied novel concepts for an Axial Flux Reluctance Machine to capture energy from marine hydrokinetic sources and compared their attributes to a Radial Flux Reluctance Machine which was designed under a prior Department of Energy program for the same application. Detailed electromagnetic and mechanical analyses were performed to determine the validity of the concept and to provide a direct comparison with the existing conventional Radial Flux Switched Reluctance Machine designed during the Advanced Wave Energy Conversion Project, DE-EE0003641. The alternate design changed the machine topology so that the flux that is switched flows axially rather than radially andmore » the poles themselves are long radially, as opposed to the radial flux machine that has pole pieces that are long axially. It appeared possible to build an axial flux machine that should be considerably more compact than the radial machine. In an “apples to apples” comparison, the same rules with regard to generating magnetic force and the fundamental limitations of flux density hold, so that at the heart of the machine the same torque equations hold. The differences are in the mechanical configuration that limits or enhances the change of permeance with rotor position, in the amount of permeable iron required to channel the flux via the pole pieces to the air-gaps, and in the sizing and complexity of the electrical winding. Accordingly it was anticipated that the magnetic component weight would be similar but that better use of space would result in a shorter machine with accompanying reduction in housing and support structure. For the comparison the pole count was kept the same at 28 though it was also expected that the radial tapering of the slots between pole pieces would permit a higher pole count machine, enabling the generation of greater power at a given speed in some future design. The baseline Radial Flux Machine design was established during the previous DOE program. Its characteristics were tabulated for use in comparing to the Axial Flux Machine. Three basic conceptual designs for the Axial Flux Machine were considered: (1) a machine with a single coil at the inner diameter of the machine, (2) a machine with a single coil at the outside diameter of the machine, and (3) a machine with a coil around each tooth. Slight variations of these basic configurations were considered during the study. Analysis was performed on these configurations to determine the best candidate design to advance to preliminary design, based on size, weight, performance, cost and manufacturability. The configuration selected as the most promising was the multi-pole machine with a coil around each tooth. This configuration provided the least complexity with respect to the mechanical configuration and manufacturing, which would yield the highest reliability and lowest cost machine of the three options. A preliminary design was performed on this selected configuration. For this first ever axial design of the multi rotor configuration the 'apples to apples' comparison was based on using the same length of rotor pole as the axial length of rotor pole in the radial machine and making the mean radius of the rotor in the axial machine the same as the air gap radius in the radial machine. The tooth to slot ratio at the mean radius of the axial machine was the same as the tooth to slot ratio of the radial machine. The comparison between the original radial flux machine and the new axial flux machine indicates that for the same torque, the axial flux machine diameter will be 27% greater, but it will have 30% of the length, and 76% of the weight. Based on these results, it is concluded that an axial flux reluctance machine presents a viable option for large generators to be used for the capture of wave energy. In the analysis of Task 4, below, it is pointed out that our selection of dimensional similarity for the 'apples to apples' comparison did not produce an optimum axial flux design. There is torque capability to spare, implying we could reduce the magnetic structure, but the winding area, constrained by the pole separation at the inner pole radius has a higher resistance than desirable, implying we need more room for copper. The recommendation is to proceed via one cycle of optimization and review to correct this unbalance and then proceed to a detailed design phase to produce manufacturing drawings, followed by the construction of a prototype to test the performance of the machine against predicted results.« less

  17. Performance evaluation of the croissant production line with reparable machines

    NASA Astrophysics Data System (ADS)

    Tsarouhas, Panagiotis H.

    2015-03-01

    In this study, the analytical probability models for an automated serial production system, bufferless that consists of n-machines in series with common transfer mechanism and control system was developed. Both time to failure and time to repair a failure are assumed to follow exponential distribution. Applying those models, the effect of system parameters on system performance in actual croissant production line was studied. The production line consists of six workstations with different numbers of reparable machines in series. Mathematical models of the croissant production line have been developed using Markov process. The strength of this study is in the classification of the whole system in states, representing failures of different machines. Failure and repair data from the actual production environment have been used to estimate reliability and maintainability for each machine, workstation, and the entire line is based on analytical models. The analysis provides a useful insight into the system's behaviour, helps to find design inherent faults and suggests optimal modifications to upgrade the system and improve its performance.

  18. Performance Evaluation of the UT Automated Road Maintenance Machine

    DOT National Transportation Integrated Search

    1997-10-01

    This final report focuses mainly on evaluating the overall performance of The University of Texas' Automated Road Maintenance Machine (ARMM). It was concluded that the introduction of automated methods to the pavement crack-sealing process will impro...

  19. Tunnel Boring Machine Performance Study. Final Report

    DOT National Transportation Integrated Search

    1984-06-01

    Full face tunnel boring machine "TBM" performance during the excavation of 6 tunnels in sedimentary rock is considered in terms of utilization, penetration rates and cutter wear. The construction records are analyzed and the results are used to inves...

  20. Efficacy of dry-ice blasting in preventive maintenance of auto robotic assemblies

    NASA Astrophysics Data System (ADS)

    Baluch, Nazim; Mohtar, Shahimi; Abdullah, Che Sobry

    2016-08-01

    Welding robots are extensively applied in the automotive assemblies and `Spot Welding' is the most common welding application found in the auto stamping assembly manufacturing. Every manufacturing process is subject to variations - with resistance welding, these include; part fit up, part thickness variations, misaligned electrodes, variations in coating materials or thickness, sealers, weld force variations, shunting, machine tooling degradation; and slag and spatter damage. All welding gun tips undergo wear; an elemental part of the process. Though adaptive resistance welding control automatically compensates to keep production and quality up to the levels needed as gun tips undergo wear so that the welds remain reliable; the system cannot compensate for deterioration caused by the slag and spatter on the part holding fixtures, sensors, and gun tips. To cleanse welding robots of slag and spatter, dry-ice blasting has proven to be an effective remedy. This paper describes Spot welding process, analyses the slag and spatter formation during robotic welding of stamping assemblies, and concludes that the dry ice blasting process's utility in cleansing of welding robots in auto stamping plant operations is paramount and exigent.

  1. Tribological performance of an H-DLC coating prepared by PECVD

    NASA Astrophysics Data System (ADS)

    Solis, J.; Zhao, H.; Wang, C.; Verduzco, J. A.; Bueno, A. S.; Neville, A.

    2016-10-01

    Carbon-based coatings are of wide interest due to their application in machine elements subjected to continuous contact where fluid lubricant films are not permitted. This paper describes the tribological performance under dry conditions of duplex layered H-DLC coating sequentially deposited by microwave excited plasma enhanced chemical vapour deposition on AISI 52100 steel. The architecture of the coating comprised Cr, WC, and DLC (a-C:H) with a total thickness of 2.8 μm and compressive residual stress very close to 1 GPa. Surface hardness was approximately 22 GPa and its reduced elastic modulus around 180 GPa. Scratch tests indicated a well adhered coating achieving a critical load of 80 N. The effect of normal load on the friction and wear behaviours were investigated with steel pins sliding against the actual coating under dry conditions at room temperature (20 ± 2 °C) and 35-50% RH. The results show that coefficient of friction of the coating decreased from 0.21 to 0.13 values with the increase in the applied loads (10-50 N). Specific wear rates of the surface coating also decrease with the increase in the same range of applied loads. Maximum and minimum values were 14 × 10-8 and 5.5 × 10-8 mm-3/N m, respectively. Through Raman spectroscopy and electron microscopy it was confirmed the carbon-carbon contact, due to the tribolayer formation on the wear scars of the coating and pin. In order to further corroborate the experimental observations regarding the graphitisation behaviour, the existing mathematical relationships to determine the graphitisation temperature of the coating/steel contact as well as the flash temperature were used.

  2. Agglomerated novel spray-dried lactose-leucine tailored as a carrier to enhance the aerosolization performance of salbutamol sulfate from DPI formulations.

    PubMed

    Molina, Carlos; Kaialy, Waseem; Chen, Qiao; Commandeur, Daniel; Nokhodchi, Ali

    2017-12-19

    Spray-drying allows to modify the physicochemical/mechanical properties of particles along with their morphology. In the present study, L -leucine with varying concentrations (0.1, 0.5, 1, 5, and 10% w/v) were incorporated into lactose monohydrate solution for spray-drying to enhance the aerosolization performance of dry powder inhalers containing spray-dried lactose-leucine and salbutamol sulfate. The prepared spray-dried lactose-leucine carriers were analyzed using laser diffraction (particle size), differential scanning calorimetry (thermal behavior), scanning electron microscopy (morphology), powder X-ray diffraction (crystallinity), Fourier transform infrared spectroscopy (interaction at molecular level), and in vitro aerosolization performance (deposition). The results showed that the efficacy of salbutamol sulfate's aerosolization performance was, in part, due to the introduction of L -leucine in the carrier, prior to being spray-dried, accounting for an increase in the fine particle fraction (FPF) of salbutamol sulfate from spray-dried lactose-leucine (0.5% leucine) in comparison to all other carriers. It was shown that all of the spray-dried carriers were spherical in their morphology with some agglomerates and contained a mixture of amorphous, α-lactose, and β-lactose. It was also interesting to note that spray-dried lactose-leucine particles were agglomerated during the spray-drying process to make coarse particles (volume mean diameter of 79 to 87 μm) suitable as a carrier in DPI formulations.

  3. Simplest chronoscope. III. Further comparisons between reaction times obtained by meterstick versus machine.

    PubMed

    Montare, Alberto

    2013-06-01

    The three classical Donders' reaction time (RT) tasks (simple, choice, and discriminative RTs) were employed to compare reaction time scores from college students obtained by use of Montare's simplest chronoscope (meterstick) methodology to scores obtained by use of a digital-readout multi-choice reaction timer (machine). Five hypotheses were tested. Simple RT, choice RT, and discriminative RT were faster when obtained by meterstick than by machine. The meterstick method showed higher reliability than the machine method and was less variable. The meterstick method of the simplest chronoscope may help to alleviate the longstanding problems of low reliability and high variability of reaction time performances; while at the same time producing faster performance on Donders' simple, choice and discriminative RT tasks than the machine method.

  4. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    PubMed

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge machining ZnO/Al2O3 ceramic.

  5. Machine learning to predict the occurrence of bisphosphonate-related osteonecrosis of the jaw associated with dental extraction: A preliminary report.

    PubMed

    Kim, Dong Wook; Kim, Hwiyoung; Nam, Woong; Kim, Hyung Jun; Cha, In-Ho

    2018-04-23

    The aim of this study was to build and validate five types of machine learning models that can predict the occurrence of BRONJ associated with dental extraction in patients taking bisphosphonates for the management of osteoporosis. A retrospective review of the medical records was conducted to obtain cases and controls for the study. Total 125 patients consisting of 41 cases and 84 controls were selected for the study. Five machine learning prediction algorithms including multivariable logistic regression model, decision tree, support vector machine, artificial neural network, and random forest were implemented. The outputs of these models were compared with each other and also with conventional methods, such as serum CTX level. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results. The performance of machine learning models was significantly superior to conventional statistical methods and single predictors. The random forest model yielded the best performance (AUC = 0.973), followed by artificial neural network (AUC = 0.915), support vector machine (AUC = 0.882), logistic regression (AUC = 0.844), decision tree (AUC = 0.821), drug holiday alone (AUC = 0.810), and CTX level alone (AUC = 0.630). Machine learning methods showed superior performance in predicting BRONJ associated with dental extraction compared to conventional statistical methods using drug holiday and serum CTX level. Machine learning can thus be applied in a wide range of clinical studies. Copyright © 2017. Published by Elsevier Inc.

  6. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals.

    PubMed

    Barua, Shaibal; Begum, Shahina; Ahmed, Mobyen Uddin

    2015-01-01

    Machine learning algorithms play an important role in computer science research. Recent advancement in sensor data collection in clinical sciences lead to a complex, heterogeneous data processing, and analysis for patient diagnosis and prognosis. Diagnosis and treatment of patients based on manual analysis of these sensor data are difficult and time consuming. Therefore, development of Knowledge-based systems to support clinicians in decision-making is important. However, it is necessary to perform experimental work to compare performances of different machine learning methods to help to select appropriate method for a specific characteristic of data sets. This paper compares classification performance of three popular machine learning methods i.e., case-based reasoning, neutral networks and support vector machine to diagnose stress of vehicle drivers using finger temperature and heart rate variability. The experimental results show that case-based reasoning outperforms other two methods in terms of classification accuracy. Case-based reasoning has achieved 80% and 86% accuracy to classify stress using finger temperature and heart rate variability. On contrary, both neural network and support vector machine have achieved less than 80% accuracy by using both physiological signals.

  7. Impact of Dry Eye Disease on Work Productivity, and Patients' Satisfaction With Over-the-Counter Dry Eye Treatments.

    PubMed

    Nichols, Kelly K; Bacharach, Jason; Holland, Edward; Kislan, Thomas; Shettle, Lee; Lunacsek, Orsolya; Lennert, Barb; Burk, Caroline; Patel, Vaishali

    2016-06-01

    To assess the effect of dry eye disease on work productivity and performance of non-work-related activities, and patients' satisfaction with over-the-counter (OTC) dry eye treatments. In this prospective, noninterventional, cross-sectional study, conducted at 10 U.S. optometry/ophthalmology practices, 158 symptomatic dry eye patients naïve to prescription medication underwent standard dry eye diagnostic tests and completed Work Productivity and Activity Impairment (WPAI) and Ocular Surface Disease Index (OSDI) questionnaires. Use of OTC dry eye medication, and satisfaction with OTC medication and symptom relief were also assessed. On average, dry eye resulted in loss of 0.36% of work time (∼5 minutes over 7 days) and ∼30% impairment of workplace performance (presenteeism), work productivity, and non-job-related activities. Presenteeism and productivity impairment scores showed significant correlation with OSDI total (r = 0.55) and symptom domain (r = 0.50) scores, but not with dry eye clinical signs. Activity impairment score showed stronger correlation with OSDI total (r = 0.61) and symptom domain (r = 0.53) scores than with clinical signs (r ≤ 0.20). Almost 75% of patients used OTC dry eye medication. Levels of patient satisfaction with OTC medication (64.2%) and symptom relief from OTC (37.3%) were unaffected by administration frequency (≥3 vs. ≤2 times daily). Dry eye causes negligible absenteeism, but markedly reduces workplace and non-job-related performances. Impairment of work performance is more closely linked to dry eye symptoms than to clinical signs. Patients' perceptions of OTC dry eye medication tend to be more positive than their perceptions of symptom relief.

  8. Evaluation of the performance during hard turning of OHNS steel with minimal cutting fluid application and its comparison with minimum quantity lubrication

    NASA Astrophysics Data System (ADS)

    Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.

    2016-09-01

    Cutting fluid application plays a significant role in the manufacturing industries that acts as a coolant as well as a lubricant. The conventional flood cooling application of cutting fluids not only increases the production cost on account of the expenses involved in procurement, storage and disposal but also creates serious environmental and health hazards. In order to overcome these negative effects, techniques like Minimum quantity lubrication (MQL) and Minimal Cutting fluid application (MCFA) have increasingly found their way into the area of metal cutting and have already been established as an alternative to conventional wet machining. This paper investigates the effect of minimal Cutting fluid application (MCFA) which involves application of high velocity pulsing jet of proprietary cutting fluids at the contact zones using a special fluid application system. During hard turning of oil hardened non shrinkable steel (OHNS) on cutting temperature and tool wear and to compare the performance with Minimum quantity lubrication (MQL) assisted hard turning in which cutting fluid is carried in a high velocity stream of air. An attempt was also made to compare the performance during Turning with MCFA and MQL application with conventional wet and dry turning by analysing the tool wear pattern using SEM images.

  9. A Micro-Force Sensor with Slotted-Quad-Beam Structure for Measuring the Friction in MEMS Bearings

    PubMed Central

    Liu, Huan; Yang, Shuming; Zhao, Yulong; Jiang, Zhuangde; Liu, Yan; Tian, Bian

    2013-01-01

    Presented here is a slotted-quad-beam structure sensor for the measurement of friction in micro bearings. Stress concentration slots are incorporated into a conventional quad-beam structure to improve the sensitivity of force measurements. The performance comparison between the quad-beam structure sensor and the slotted-quad-beam structure sensor are performed by theoretical modeling and finite element (FE) analysis. A hollow stainless steel probe is attached to the mesa of the sensor chip by a tailor-made organic glass fixture. Concerning the overload protection of the fragile beams, a glass wafer is bonded onto the bottom of sensor chip to limit the displacement of the mesa. The calibration of the packaged device is experimentally performed by a tri-dimensional positioning stage, a precision piezoelectric ceramic and an electronic analytical balance, which indicates its favorable sensitivity and overload protection. To verify the potential of the proposed sensor being applied in micro friction measurement, a measurement platform is established. The output of the sensor reflects the friction of bearing resulting from dry friction and solid lubrication. The results accord with the theoretical modeling and demonstrate that the sensor has the potential application in measuring the micro friction force under stable stage in MEMS machines. PMID:24084112

  10. Quality of Dried Bacillus NP5 and its Effect on Growth Performance of Tilapia (Oreochromis niloticus).

    PubMed

    Utami, Diah Ayu Satyari; Widanarni; Suprayudi, M Agus

    2015-02-01

    The main things that need to be considered in the preparation of probiotics are viability during preparation and storage which are the disadvantages of the use of fresh culture probiotics. Dried probiotic can be applied through the feed, easy to be applied and has a long shelf life but application of dried probiotic in aquaculture is still not widely studied. This study aimed to evaluate the quality of dried Bacillus NP5 as the probiotic through in vitro assays and determine the best dose for the growth performance of tilapia. The treatment of in vitro assays including the production of dried probiotic without using of the coating material and dried by spray drying method (NS); freeze drying method (NF); with using of the coating material and dried by spray drying method (WS); freeze drying method (WF). The treatment which showed the best result at in vitro assays was applied for in vivo assays. The in vivo assays containing 4 treatments and 5 replicates which were control (K) and the administration of dried Bacillus NP5 Rf(R) (10(10) CFU g(-1)) in feed with dose of 0.5% (A), 1% (B) and 2% (C). The fish fed 3 times a day by at satiation for 28 days. Probiotic that encapsulated by maltodextrin and dried by spray drying method that stored in room temperature had the higher percentage product, viability after drying process and storage. The administration of 0.5% dried Bacillus NP5 showed the best growth performance in tilapia.

  11. Analysis and design of asymmetrical reluctance machine

    NASA Astrophysics Data System (ADS)

    Harianto, Cahya A.

    Over the past few decades the induction machine has been chosen for many applications due to its structural simplicity and low manufacturing cost. However, modest torque density and control challenges have motivated researchers to find alternative machines. The permanent magnet synchronous machine has been viewed as one of the alternatives because it features higher torque density for a given loss than the induction machine. However, the assembly and permanent magnet material cost, along with safety under fault conditions, have been concerns for this class of machine. An alternative machine type, namely the asymmetrical reluctance machine, is proposed in this work. Since the proposed machine is of the reluctance machine type, it possesses desirable feature, such as near absence of rotor losses, low assembly cost, low no-load rotational losses, modest torque ripple, and rather benign fault conditions. Through theoretical analysis performed herein, it is shown that this machine has a higher torque density for a given loss than typical reluctance machines, although not as high as the permanent magnet machines. Thus, the asymmetrical reluctance machine is a viable and advantageous machine alternative where the use of permanent magnet machines are undesirable.

  12. Using Microcomputers in Vocational Education to Teach Needed Skills in Machine Shop and Related Occupations. Final Report.

    ERIC Educational Resources Information Center

    Mercer County Schools, Princeton, WV.

    A project was undertaken to identify machine shop occupations requiring workers to use computers, identify the computer skills needed to perform machine shop tasks, and determine which software products are currently being used in machine shop programs. A search of the Dictionary of Occupational Titles revealed that computer skills will become…

  13. Assessment of various supervised learning algorithms using different performance metrics

    NASA Astrophysics Data System (ADS)

    Susheel Kumar, S. M.; Laxkar, Deepak; Adhikari, Sourav; Vijayarajan, V.

    2017-11-01

    Our work brings out comparison based on the performance of supervised machine learning algorithms on a binary classification task. The supervised machine learning algorithms which are taken into consideration in the following work are namely Support Vector Machine(SVM), Decision Tree(DT), K Nearest Neighbour (KNN), Naïve Bayes(NB) and Random Forest(RF). This paper mostly focuses on comparing the performance of above mentioned algorithms on one binary classification task by analysing the Metrics such as Accuracy, F-Measure, G-Measure, Precision, Misclassification Rate, False Positive Rate, True Positive Rate, Specificity, Prevalence.

  14. Using human brain activity to guide machine learning.

    PubMed

    Fong, Ruth C; Scheirer, Walter J; Cox, David D

    2018-03-29

    Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.

  15. Review of Cuttability Indices and A New Rockmass Classification Approach for Selection of Surface Miners

    NASA Astrophysics Data System (ADS)

    Dey, Kaushik; Ghose, A. K.

    2011-09-01

    Rock excavation is carried out either by drilling and blasting or using rock-cutting machines like rippers, bucket wheel excavators, surface miners, road headers etc. Economics of mechanised rock excavation by rock-cutting machines largely depends on the achieved production rates. Thus, assessment of the performance (productivity) is important prior to deploying a rock-cutting machine. In doing so, several researchers have classified rockmass in different ways and have developed cuttability indices to correlate machine performance directly. However, most of these indices were developed to assess the performance of road headers/tunnel-boring machines apart from a few that were developed in the earlier days when the ripper was a popular excavating equipment. Presently, around 400 surface miners are in operation around the world amongst which, 105 are in India. Until now, no rockmass classification system is available to assess the performance of surface miners. Surface miners are being deployed largely on trial and error basis or based on the performance charts provided by the manufacturer. In this context, it is logical to establish a suitable cuttability index to predict the performance of surface miners. In this present paper, the existing cuttability indices are reviewed and a new cuttability indexes proposed. A new relationship is also developed to predict the output from surface miners using the proposed cuttability index.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ang; Song, Shuaiwen; Brugel, Eric

    To continuously comply with Moore’s Law, modern parallel machines become increasingly complex. Effectively tuning application performance for these machines therefore becomes a daunting task. Moreover, identifying performance bottlenecks at application and architecture level, as well as evaluating various optimization strategies, are becoming extremely difficult when the entanglement of numerous correlated factors is being presented. To tackle these challenges, we present a visual analytical model named “X”. It is intuitive and sufficiently flexible to track all the typical features of a parallel machine.

  17. Predicting the Performance of Chain Saw Machines Based on Shore Scleroscope Hardness

    NASA Astrophysics Data System (ADS)

    Tumac, Deniz

    2014-03-01

    Shore hardness has been used to estimate several physical and mechanical properties of rocks over the last few decades. However, the number of researches correlating Shore hardness with rock cutting performance is quite limited. Also, rather limited researches have been carried out on predicting the performance of chain saw machines. This study differs from the previous investigations in the way that Shore hardness values (SH1, SH2, and deformation coefficient) are used to determine the field performance of chain saw machines. The measured Shore hardness values are correlated with the physical and mechanical properties of natural stone samples, cutting parameters (normal force, cutting force, and specific energy) obtained from linear cutting tests in unrelieved cutting mode, and areal net cutting rate of chain saw machines. Two empirical models developed previously are improved for the prediction of the areal net cutting rate of chain saw machines. The first model is based on a revised chain saw penetration index, which uses SH1, machine weight, and useful arm cutting depth as predictors. The second model is based on the power consumed for only cutting the stone, arm thickness, and specific energy as a function of the deformation coefficient. While cutting force has a strong relationship with Shore hardness values, the normal force has a weak or moderate correlation. Uniaxial compressive strength, Cerchar abrasivity index, and density can also be predicted by Shore hardness values.

  18. Organic Rankine cycle - review and research directions in engine applications

    NASA Astrophysics Data System (ADS)

    Panesar, Angad

    2017-11-01

    Waste heat to power conversion using Organic Rankine Cycles (ORC) is expected to play an important role in CO2 reductions from diesel engines. Firstly, a review of automotive ORCs is presented focusing on the pure working fluids, thermal architectures and expanders. The discussion includes, but is not limited to: R245fa, ethanol and water as fluids; series, parallel and cascade as architectures; dry saturated, superheated and supercritical as expansion conditions; and scroll, radial turbine and piston as expansion machines. Secondly, research direction in versatile expander and holistic architecture (NOx + CO2) are proposed. Benefits of using the proposed unconventional approaches are quantified using Ricardo Wave and Aspen HYSYS for diesel engine and ORC modelling. Results indicate that, the implementation of versatile piston expander tolerant to two-phase and using cyclopentane can potentially increase the highway drive cycle power by 8%. Furthermore, holistic architecture offering complete utilisation of charge air and exhaust recirculation heat increased the performance noticeably to 5% of engine power at the design point condition.

  19. Green Turning of FCD 700 Ductile Cast Iron Using Coated Carbide Tool

    NASA Astrophysics Data System (ADS)

    Rodzi, Mohd Nor Azmi Mohd; Ghani, Jaharah A.; Eghawail, A. M.; Othman, Kamal; Rahman, Mohd. Nizam Ab.; Haron, Che Hassan Che

    2010-10-01

    This paper presents the performance of carbide coated cutting insert in turning FCD700 ductile cast iron in various dry machining conditions (without air, using air and chilled air). The turning parameters studied were, cutting speed of 120 m/min., feed rate of 0.15 mm/rev-0.4 mm/rev, and depth of cut of 0.6 mm-1.0 mm. The results show that the tool life was significantly controlled by the type of air coolant used, whereas the cutting force and surface roughness were not influenced by these coolants. Chilled air was found to be significantly improved the tool life by about 30% and 40% respectively when compared with normal air and without air conditions. The wear mechanism was predominantly controlled by the flank and crater wears on the flank and rake faces respectively. Due to the low cutting speed used in the experiment, both flank and crater wears were uniformly formed along the cutting edge and no catastrophic failure was observed under the scanning electron microscope (SEM).

  20. Direct measurement of toxicants inhaled by water pipe users in the natural environment using a real-time in situ sampling technique.

    PubMed

    Katurji, M; Daher, N; Sheheitli, H; Saleh, R; Shihadeh, A

    2010-11-01

    While narghile water pipe smoking has become a global phenomenon, knowledge regarding its toxicant content and delivery, addictive properties, and health consequences is sorely lagging. One challenge in measuring toxicant content of the smoke in the laboratory is the large number of simplifying assumptions that must be made to model a "typical" smoking session using a smoking machine, resulting in uncertainty over the obtained toxicant yields. In this study, we develop an alternative approach in which smoke generated by a human water pipe user is sampled directly during the smoking session. The method, dubbed real-time in situ sampling (RINS), required developing a self-powered portable instrument capable of automatically sampling a fixed fraction of the smoke generated by the user. Instrument performance was validated in the laboratory, and the instrument was deployed in a field study involving 43 ad libitum water pipe use sessions in Beirut area cafés in which we measured inhaled nicotine, carbon monoxide (CO), and water pipe ma'ssel-derived "tar." We found that users drew a mean of 119 L of smoke containing 150 mg of CO, 4 mg of nicotine, and 602 mg of ma'ssel-derived "tar" during a single use session (mean duration = 61 min). These first direct measurements of toxicant delivery demonstrate that ordinary water pipe use involves inhaling large quantities of CO, nicotine, and dry particulate matter. Results are compared with those obtained using the Beirut method smoking machine protocol.

  1. Study of Mechano-Chemical Machining of Ceramics and the Effect on Thin Film Behavior.

    DTIC Science & Technology

    1981-06-01

    polished 7 dry on nylon using NaCI 3 Photomicrographs of the etched surfaces of MgO polished 8 .wet on glass using NaCl 4 Surface profile and Nomarski ...micrograph of a Si wafer 10 taken before mechano-chemical polishing 5 Surface profile and Nomarski micrograph of a Si wafer 11 taken after mechano... Nomarski micrographs of mechano-chemically-polished 21 sapphire and tape-cast alumina 14 Surface profiles of mechano-chemically-polished sapphire 22

  2. The influence of maintenance quality of hemodialysis machines on hemodialysis efficiency.

    PubMed

    Azar, Ahmad Taher

    2009-01-01

    Several studies suggest that there is a correlation between dose of dialysis and machine maintenance. However, in spite of the current practice, there are conflicting reports regarding the relationship between dose of dialysis or patient outcome, and machine maintenance. In order to evaluate the impact of hemodialysis machine maintenance on dialysis adequacy Kt/V and session performance, data were processed on 134 patients on 3-times-per-week dialysis regimens by dividing the patients into four groups and also dividing the hemodialysis machines into four groups according to their year of installation. The equilibrated dialysis dose eq Kt/V, urea reduction ratio (URR) and the overall equipment effectiveness (OEE) were calculated in each group to show the effect hemodialysis machine efficiency on the overall session performance. The average working time per machine per month was 270 hours. The cumulative number of hours according to the year of installation was: 26,122 hours for machines installed in 1998; 21,596 hours for machines installed in 1999, 8362 hours for those installed in 2003 and 2486 hours for those installed in 2005. The mean time between failures (MTBF) was 1.8, 2.1, 4.2 and 6 months between failures for machines installed in 1999, 1998, 2003 and 2005, respectively. Statistical analysis demonstrated that the dialysis dose eq Kt/V and URR were increased as the overall equipment effectiveness (OEE) increases with regular maintenance procedures. Maintenance has become one of the most expedient approaches to guarantee high machine dependability. The efficiency of dialysis machine is relevant in assuring a proper dialysis adequacy.

  3. Machinability of Green Powder Metallurgy Components: Part I. Characterization of the Influence of Tool Wear

    NASA Astrophysics Data System (ADS)

    Robert-Perron, Etienne; Blais, Carl; Pelletier, Sylvain; Thomas, Yannig

    2007-06-01

    The green machining process is an interesting approach for solving the mediocre machining behavior of high-performance powder metallurgy (PM) steels. This process appears as a promising method for extending tool life and reducing machining costs. Recent improvements in binder/lubricant technologies have led to high green strength systems that enable green machining. So far, tool wear has been considered negligible when characterizing the machinability of green PM specimens. This inaccurate assumption may lead to the selection of suboptimum cutting conditions. The first part of this study involves the optimization of the machining parameters to minimize the effects of tool wear on the machinability in turning of green PM components. The second part of our work compares the sintered mechanical properties of components machined in green state with other machined after sintering.

  4. Photonics walking up a human hair

    NASA Astrophysics Data System (ADS)

    Zeng, Hao; Parmeggiani, Camilla; Martella, Daniele; Wasylczyk, Piotr; Burresi, Matteo; Wiersma, Diederik S.

    2016-03-01

    While animals have access to sugars as energy source, this option is generally not available to artificial machines and robots. Energy delivery is thus the bottleneck for creating independent robots and machines, especially on micro- and nano- meter length scales. We have found a way to produce polymeric nano-structures with local control over the molecular alignment, which allowed us to solve the above issue. By using a combination of polymers, of which part is optically sensitive, we can create complex functional structures with nanometer accuracy, responsive to light. In particular, this allowed us to realize a structure that can move autonomously over surfaces (it can "walk") using the environmental light as its energy source. The robot is only 60 μm in total length, thereby smaller than any known terrestrial walking species, and it is capable of random, directional walking and rotating on different dry surfaces.

  5. Method and technique for installing light-weight, fragile, high-temperature fiber insulation

    NASA Technical Reports Server (NTRS)

    Patel, B. C. (Inventor)

    1983-01-01

    A method of installing fragile, light weight, high temperature fiber insulation, particularly where the insulation is to be used as a seal strip providing a high order of thermal barrier insulation is discussed. The process is based on provision of a strip of the mineral batting cut oversize by a predetermined amount, saturated in a fugitive polymer solution, compressed in a mold, dried and cured to form a rigidized batting material which is machined to required shape. The machine dimensions would normally be at least nominally less than the dimensions of the cavity to be sealed. After insertion in the cavity, which may be a wire-mesh seal enclosure, the apparatus is subjected to baking at a temperature sufficiently high to cause the resin to burn off cleanly, leaving the batting substantially in its original condition and expanded into the cavity or seal enclosure.

  6. A method and technique for installing light-weight fragile, high-temperature fiber insulation

    NASA Technical Reports Server (NTRS)

    Ballantine, T. J. (Inventor)

    1982-01-01

    A method of installing fragile, light-weight, high-temperature fiber insulation, particularly where the insulation is to be used as a seal strip providing a high order of thermal barrier insulation is described. The process is based on provision of a strip of the mineral batting cut oversize by a predetermined amount, saturated in a fugitive polymer solution, compressed in a mold, dried and cured to form a rigidized batting material which may be machined to required shape. The machined dimensions would normally be at least nominally less than the dimensions of the cavity to be sealed. After insertion in the cavity, which may be a wire-mesh seal enclosure, the apparatus is subjected to baking at a temperature sufficiently high to cause the resin to burn off cleanly, leaving the batting substantially in its original condition and expanded into the cavity or seal enclosure.

  7. Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles.

    PubMed

    Ryan, Jason D; Mengistie, Desalegn Alemu; Gabrielsson, Roger; Lund, Anja; Müller, Christian

    2017-03-15

    Durable, electrically conducting yarns are a critical component of electronic textiles (e-textiles). Here, such yarns with exceptional wear and wash resistance are realized through dyeing silk from the silkworm Bombyx mori with the conjugated polymer:polyelectrolyte complex PEDOT:PSS. A high Young's modulus of approximately 2 GPa combined with a robust and scalable dyeing process results in up to 40 m long yarns that maintain their bulk electrical conductivity of approximately 14 S cm -1 when experiencing repeated bending stress as well as mechanical wear during sewing. Moreover, a high degree of ambient stability is paired with the ability to withstand both machine washing and dry cleaning. For the potential use for e-textile applications to be illustrated, an in-plane thermoelectric module that comprises 26 p-type legs is demonstrated by embroidery of dyed silk yarns onto a piece of felted wool fabric.

  8. Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles

    PubMed Central

    2017-01-01

    Durable, electrically conducting yarns are a critical component of electronic textiles (e-textiles). Here, such yarns with exceptional wear and wash resistance are realized through dyeing silk from the silkworm Bombyx mori with the conjugated polymer:polyelectrolyte complex PEDOT:PSS. A high Young’s modulus of approximately 2 GPa combined with a robust and scalable dyeing process results in up to 40 m long yarns that maintain their bulk electrical conductivity of approximately 14 S cm–1 when experiencing repeated bending stress as well as mechanical wear during sewing. Moreover, a high degree of ambient stability is paired with the ability to withstand both machine washing and dry cleaning. For the potential use for e-textile applications to be illustrated, an in-plane thermoelectric module that comprises 26 p-type legs is demonstrated by embroidery of dyed silk yarns onto a piece of felted wool fabric. PMID:28245105

  9. 29 CFR 570.34 - Occupations that may be performed by minors 14 and 15 years of age.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... comparative shopping. (e) Price marking and tagging by hand or machine, assembling orders, packing, and... machines shall mean all fixed or portable machines or tools driven by power and used or designed for...

  10. 29 CFR 570.34 - Occupations that may be performed by minors 14 and 15 years of age.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... comparative shopping. (e) Price marking and tagging by hand or machine, assembling orders, packing, and... machines shall mean all fixed or portable machines or tools driven by power and used or designed for...

  11. 29 CFR 570.34 - Occupations that may be performed by minors 14 and 15 years of age.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... comparative shopping. (e) Price marking and tagging by hand or machine, assembling orders, packing, and... machines shall mean all fixed or portable machines or tools driven by power and used or designed for...

  12. 29 CFR 570.34 - Occupations that may be performed by minors 14 and 15 years of age.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... comparative shopping. (e) Price marking and tagging by hand or machine, assembling orders, packing, and... machines shall mean all fixed or portable machines or tools driven by power and used or designed for...

  13. Design Comparison of Inner and Outer Rotor of Permanent Magnet Flux Switching Machine for Electric Bicycle Application

    NASA Astrophysics Data System (ADS)

    Jusoh, L. I.; Sulaiman, E.; Bahrim, F. S.; Kumar, R.

    2017-08-01

    Recent advancements have led to the development of flux switching machines (FSMs) with flux sources within the stators. The advantage of being a single-piece machine with a robust rotor structure makes FSM an excellent choice for speed applications. There are three categories of FSM, namely, the permanent magnet (PM) FSM, the field excitation (FE) FSM, and the hybrid excitation (HE) FSM. The PMFSM and the FEFSM have their respective PM and field excitation coil (FEC) as their key flux sources. Meanwhile, as the name suggests, the HEFSM has a combination of PM and FECs as the flux sources. The PMFSM is a simple and cheap machine, and it has the ability to control variable flux, which would be suitable for an electric bicycle. Thus, this paper will present a design comparison between an inner rotor and an outer rotor for a single-phase permanent magnet flux switching machine with 8S-10P, designed specifically for an electric bicycle. The performance of this machine was validated using the 2D- FEA. As conclusion, the outer-rotor has much higher torque approximately at 54.2% of an innerrotor PMFSM. From the comprehensive analysis of both designs it can be conclude that output performance is lower than the SRM and IPMSM design machine. But, it shows that the possibility to increase the design performance by using “deterministic optimization method”.

  14. Efficient machining of ultra precise steel moulds with freeform surfaces

    NASA Astrophysics Data System (ADS)

    Bulla, B.; Robertson, D. J.; Dambon, O.; Klocke, F.

    2013-09-01

    Ultra precision diamond turning of hardened steel to produce optical quality surfaces can be realized by applying an ultrasonic assisted process. With this technology optical moulds used typically for injection moulding can be machined directly from steel without the requirement to overcoat the mould with a diamond machinable material such as Nickel Phosphor. This has both the advantage of increasing the mould tool lifetime and also reducing manufacture costs by dispensing with the relatively expensive plating process. This publication will present results we have obtained for generating free form moulds in hardened steel by means of ultrasonic assisted diamond turning with a vibration frequency of 80 kHz. To provide a baseline with which to characterize the system performance we perform plane cutting experiments on different steel alloys with different compositions. The baseline machining results provides us information on the surface roughness and on tool wear caused during machining and we relate these to material composition. Moving on to freeform surfaces, we will present a theoretical background to define the machine program parameters for generating free forms by applying slow slide servo machining techniques. A solution for optimal part generation is introduced which forms the basis for the freeform machining experiments. The entire process chain, from the raw material through to ultra precision machining is presented, with emphasis on maintaining surface alignment when moving a component from CNC pre-machining to final machining using ultrasonic assisted diamond turning. The free form moulds are qualified on the basis of the surface roughness measurements and a form error map comparing the machined surface with the originally defined surface. These experiments demonstrate the feasibility of efficient free form machining applying ultrasonic assisted diamond turning of hardened steel.

  15. Lattice-Gas Automata Fluids on Parallel Supercomputers

    DTIC Science & Technology

    1993-11-23

    Kelvin-Helmholtz shear instabil- ity, and the Von Karman vortex shedding instability. Performance of the two machines in terms of both site update... PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Phillips Laboratory,Hanscom Field,MA,01731 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...Helmholtz shear instability, and the Von Karman vortex shedding instability. Performance of the two machines in terms of both site update rate and

  16. Do you remember proposing marriage to the Pepsi machine? False recollections from a campus walk.

    PubMed

    Seamon, John G; Philbin, Morgan M; Harrison, Liza G

    2006-10-01

    During a campus walk, participants were given familiar or bizarre action statements (e.g., "Check the Pepsi machine for change" vs. "Propose marriage to the Pepsi machine") with instructions either to perform the actions or imagine performing the actions (Group 1) or to watch the experimenter perform the actions or imagine the experimenter performing the actions (Group 2). One day later, some actions were repeated, along with new actions, on a second walk. Two weeks later, the participants took a recognition test for actions presented during the first walk, and they specified whether a recognized action was imagined or performed. Imagining themselves or the experimenter performing familiar or bizarre actions just once led to false recollections of performance for both types of actions. This study extends previous research on imagination inflation by demonstrating that these false performance recollections can occur in a natural, real-life setting following just one imagining.

  17. Performance prediction: A case study using a multi-ring KSR-1 machine

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He; Zhu, Jianping

    1995-01-01

    While computers with tens of thousands of processors have successfully delivered high performance power for solving some of the so-called 'grand-challenge' applications, the notion of scalability is becoming an important metric in the evaluation of parallel machine architectures and algorithms. In this study, the prediction of scalability and its application are carefully investigated. A simple formula is presented to show the relation between scalability, single processor computing power, and degradation of parallelism. A case study is conducted on a multi-ring KSR1 shared virtual memory machine. Experimental and theoretical results show that the influence of topology variation of an architecture is predictable. Therefore, the performance of an algorithm on a sophisticated, heirarchical architecture can be predicted and the best algorithm-machine combination can be selected for a given application.

  18. 40 CFR 60.180 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Lead Smelters § 60.180 Applicability and designation of affected facility. (a) The...: sintering machine, sintering machine discharge end, blast furnace, dross reverberatory furnace, electric...

  19. 40 CFR 60.180 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Lead Smelters § 60.180 Applicability and designation of affected facility. (a) The...: sintering machine, sintering machine discharge end, blast furnace, dross reverberatory furnace, electric...

  20. A comparison of machine learning and Bayesian modelling for molecular serotyping.

    PubMed

    Newton, Richard; Wernisch, Lorenz

    2017-08-11

    Streptococcus pneumoniae is a human pathogen that is a major cause of infant mortality. Identifying the pneumococcal serotype is an important step in monitoring the impact of vaccines used to protect against disease. Genomic microarrays provide an effective method for molecular serotyping. Previously we developed an empirical Bayesian model for the classification of serotypes from a molecular serotyping array. With only few samples available, a model driven approach was the only option. In the meanwhile, several thousand samples have been made available to us, providing an opportunity to investigate serotype classification by machine learning methods, which could complement the Bayesian model. We compare the performance of the original Bayesian model with two machine learning algorithms: Gradient Boosting Machines and Random Forests. We present our results as an example of a generic strategy whereby a preliminary probabilistic model is complemented or replaced by a machine learning classifier once enough data are available. Despite the availability of thousands of serotyping arrays, a problem encountered when applying machine learning methods is the lack of training data containing mixtures of serotypes; due to the large number of possible combinations. Most of the available training data comprises samples with only a single serotype. To overcome the lack of training data we implemented an iterative analysis, creating artificial training data of serotype mixtures by combining raw data from single serotype arrays. With the enhanced training set the machine learning algorithms out perform the original Bayesian model. However, for serotypes currently lacking sufficient training data the best performing implementation was a combination of the results of the Bayesian Model and the Gradient Boosting Machine. As well as being an effective method for classifying biological data, machine learning can also be used as an efficient method for revealing subtle biological insights, which we illustrate with an example.

  1. Rotordynamic Instability Problems in High-Performance Turbomachinery

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Rotordynamics and predictions on the stability of characteristics of high performance turbomachinery were discussed. Resolutions of problems on experimental validation of the forces that influence rotordynamics were emphasized. The programs to predict or measure forces and force coefficients in high-performance turbomachinery are illustrated. Data to design new machines with enhanced stability characteristics or upgrading existing machines are presented.

  2. Power electromagnetic strike machine for engineering-geological surveys

    NASA Astrophysics Data System (ADS)

    Usanov, K. M.; Volgin, A. V.; Chetverikov, E. A.; Kargin, V. A.; Moiseev, A. P.; Ivanova, Z. I.

    2017-10-01

    When implementing the processes of dynamic sensing of soils and pulsed nonexplosive seismic exploration, the most common and effective method is the strike one, which is provided by a variety of structure and parameters of pneumatic, hydraulic, electrical machines of strike action. The creation of compact portable strike machines which do not require transportation and use of mechanized means is important. A promising direction in the development of strike machines is the use of pulsed electromagnetic actuator characterized by relatively low energy consumption, relatively high specific performance and efficiency, and providing direct conversion of electrical energy into mechanical work of strike mass with linear movement trajectory. The results of these studies allowed establishing on the basis of linear electromagnetic motors the electromagnetic pulse machines with portable performance for dynamic sensing of soils and land seismic pulse of small depths.

  3. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.

    PubMed

    Ma, Xiao H; Jia, Jia; Zhu, Feng; Xue, Ying; Li, Ze R; Chen, Yu Z

    2009-05-01

    Machine learning methods have been explored as ligand-based virtual screening tools for facilitating drug lead discovery. These methods predict compounds of specific pharmacodynamic, pharmacokinetic or toxicological properties based on their structure-derived structural and physicochemical properties. Increasing attention has been directed at these methods because of their capability in predicting compounds of diverse structures and complex structure-activity relationships without requiring the knowledge of target 3D structure. This article reviews current progresses in using machine learning methods for virtual screening of pharmacodynamically active compounds from large compound libraries, and analyzes and compares the reported performances of machine learning tools with those of structure-based and other ligand-based (such as pharmacophore and clustering) virtual screening methods. The feasibility to improve the performance of machine learning methods in screening large libraries is discussed.

  4. Evaluating the Security of Machine Learning Algorithms

    DTIC Science & Technology

    2008-05-20

    Two far-reaching trends in computing have grown in significance in recent years. First, statistical machine learning has entered the mainstream as a...computing applications. The growing intersection of these trends compels us to investigate how well machine learning performs under adversarial conditions... machine learning has a structure that we can use to build secure learning systems. This thesis makes three high-level contributions. First, we develop a

  5. 24 CFR 3280.607 - Plumbing fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... two or more compartments, dishwashers, clothes washing machines, laundry tubs, bath tubs, and not less... for Safety Performance Specifications and Methods of Test for Safety Glazing Materials Used in...) Dishwashing machines. (i) A dishwashing machine shall not be directly connected to any waste piping, but shall...

  6. Ergonomics for enhancing detection of machine abnormalities.

    PubMed

    Illankoon, Prasanna; Abeysekera, John; Singh, Sarbjeet

    2016-10-17

    Detecting abnormal machine conditions is of great importance in an autonomous maintenance environment. Ergonomic aspects can be invaluable when detection of machine abnormalities using human senses is examined. This research outlines the ergonomic issues involved in detecting machine abnormalities and suggests how ergonomics would improve such detections. Cognitive Task Analysis was performed in a plant in Sri Lanka where Total Productive Maintenance is being implemented to identify sensory types that would be used to detect machine abnormalities and relevant Ergonomic characteristics. As the outcome of this research, a methodology comprising of an Ergonomic Gap Analysis Matrix for machine abnormality detection is presented.

  7. Initial planetary base construction techniques and machine implementation

    NASA Technical Reports Server (NTRS)

    Crockford, William W.

    1987-01-01

    Conceptual designs of (1) initial planetary base structures, and (2) an unmanned machine to perform the construction of these structures using materials local to the planet are presented. Rock melting is suggested as a possible technique to be used by the machine in fabricating roads, platforms, and interlocking bricks. Identification of problem areas in machine design and materials processing is accomplished. The feasibility of the designs is contingent upon favorable results of an analysis of the engineering behavior of the product materials. The analysis requires knowledge of several parameters for solution of the constitutive equations of the theory of elasticity. An initial collection of these parameters is presented which helps to define research needed to perform a realistic feasibility study. A qualitative approach to estimating power and mass lift requirements for the proposed machine is used which employs specifications of currently available equipment. An initial, unmanned mission scenario is discussed with emphasis on identifying uncompleted tasks and suggesting design considerations for vehicles and primitive structures which use the products of the machine processing.

  8. Superconductor Armature Winding for High Performance Electrical Machines

    DTIC Science & Technology

    2016-12-05

    Vol. 3, pp.489-507 [Kalsi1] S. S. Kalsi, ‘Superconducting Wind Turbine Generator Employing MgB2 Windings Both on Rotor and Stator’, IEEE Trans. on...Contract  Number:  N00014-­‐14-­‐1-­‐0272   Contract  Title:  Superconductor  armature   winding  for  high  performance  electrical...an all-superconducting machine. Superconductor armature windings in electrical machines bring many design challenges that need to be addressed en

  9. Design, characterization, and aerosol dispersion performance modeling of advanced spray-dried microparticulate/nanoparticulate mannitol powders for targeted pulmonary delivery as dry powder inhalers.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-04-01

    The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns.

  10. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers

    PubMed Central

    Li, Xiaojian; Vogt, Frederick G.; Hayes, Don

    2014-01-01

    Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451

  11. Improved Saturated Hydraulic Conductivity Pedotransfer Functions Using Machine Learning Methods

    NASA Astrophysics Data System (ADS)

    Araya, S. N.; Ghezzehei, T. A.

    2017-12-01

    Saturated hydraulic conductivity (Ks) is one of the fundamental hydraulic properties of soils. Its measurement, however, is cumbersome and instead pedotransfer functions (PTFs) are often used to estimate it. Despite a lot of progress over the years, generic PTFs that estimate hydraulic conductivity generally don't have a good performance. We develop significantly improved PTFs by applying state of the art machine learning techniques coupled with high-performance computing on a large database of over 20,000 soils—USKSAT and the Florida Soil Characterization databases. We compared the performance of four machine learning algorithms (k-nearest neighbors, gradient boosted model, support vector machine, and relevance vector machine) and evaluated the relative importance of several soil properties in explaining Ks. An attempt is also made to better account for soil structural properties; we evaluated the importance of variables derived from transformations of soil water retention characteristics and other soil properties. The gradient boosted models gave the best performance with root mean square errors less than 0.7 and mean errors in the order of 0.01 on a log scale of Ks [cm/h]. The effective particle size, D10, was found to be the single most important predictor. Other important predictors included percent clay, bulk density, organic carbon percent, coefficient of uniformity and values derived from water retention characteristics. Model performances were consistently better for Ks values greater than 10 cm/h. This study maximizes the extraction of information from a large database to develop generic machine learning based PTFs to estimate Ks. The study also evaluates the importance of various soil properties and their transformations in explaining Ks.

  12. Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement.

    PubMed

    Zhang, Xiaodong; Zeng, Zhen; Liu, Xianlei; Fang, Fengzhou

    2015-09-21

    Freeform surface is promising to be the next generation optics, however it needs high form accuracy for excellent performance. The closed-loop of fabrication-measurement-compensation is necessary for the improvement of the form accuracy. It is difficult to do an off-machine measurement during the freeform machining because the remounting inaccuracy can result in significant form deviations. On the other side, on-machine measurement may hides the systematic errors of the machine because the measuring device is placed in situ on the machine. This study proposes a new compensation strategy based on the combination of on-machine and off-machine measurement. The freeform surface is measured in off-machine mode with nanometric accuracy, and the on-machine probe achieves accurate relative position between the workpiece and machine after remounting. The compensation cutting path is generated according to the calculated relative position and shape errors to avoid employing extra manual adjustment or highly accurate reference-feature fixture. Experimental results verified the effectiveness of the proposed method.

  13. Teaching Machines, Programming, Computers, and Instructional Technology: The Roots of Performance Technology.

    ERIC Educational Resources Information Center

    Deutsch, William

    1992-01-01

    Reviews the history of the development of the field of performance technology. Highlights include early teaching machines, instructional technology, learning theory, programed instruction, the systems approach, needs assessment, branching versus linear program formats, programing languages, and computer-assisted instruction. (LRW)

  14. Surface Coating of Plastic Parts for Business Machines (Industrial Surface Coating): New Source Performance Standards (NSPS)

    EPA Pesticide Factsheets

    Learn more about the new source performance standards (NSPS) for surface coating of plastic parts for business machines by reading the rule summary and history and finding the code of federal regulations as well as related rules.

  15. Machine Learing Applications on a Radar Wind Profiler Deployment During the ARM GoAmazon2014/5 Campaign

    NASA Astrophysics Data System (ADS)

    Giangrande, S. E.; WANG, D.; Hardin, J. C.; Mitchell, J.

    2017-12-01

    As part of the 2 year Department of Energy Atmospheric Radiation Measurement (ARM) Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign, the ARM Mobile Facility (AMF) collected a unique set of observations in a region of strong climatic significance near Manacapuru, Brazil. An important example for the beneficial observational record obtained by ARM during this campaign was that of the Radar Wind Profiler (RWP). This dataset has been previously documented for providing critical convective cloud vertical air velocity retrievals and precipitation properties (e.g., calibrated reflectivity factor Z, rainfall rates) under a wide variety of atmospheric conditions. Vertical air motion estimates to within deep convective cores such as those available from this RWP system have been previously identified as critical constraints for ongoing global climate modeling activities and deep convective cloud process studies. As an extended deployment within this `green ocean' region, the RWP site and collocated AMF surface gauge instrumentation experienced a unique hybrid of tropical and continental precipitation conditions, including multiple wet and dry season precipitation regimes, convective and organized stratiform storm dynamics and contributions to rainfall accumulation, pristine aerosol conditions of the locale, as well as the effects of the Manaus, Brazil, mega city pollution plume. For hydrological applications and potential ARM products, machine learning methods developed using this dataset are explored to demonstrate advantages in geophysical retrievals when compared to traditional methods. Emphasis is on performance improvements when providing additional information on storm structure and regime or echo type classifications. Since deep convective cloud dynamic insights (core updraft/downdraft properties) are difficult to obtain directly by conventional radars that also observe radar reflectivity factor profiles similar to RWP systems, we also consider possible machine learning applications to inform on (statistical) proxy convective relationships between observed convective core dynamics and radar microphysical properties that are otherwise not easily related by clear physical process paths using existing radar networks.

  16. Computer network defense system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urias, Vincent; Stout, William M. S.; Loverro, Caleb

    A method and apparatus for protecting virtual machines. A computer system creates a copy of a group of the virtual machines in an operating network in a deception network to form a group of cloned virtual machines in the deception network when the group of the virtual machines is accessed by an adversary. The computer system creates an emulation of components from the operating network in the deception network. The components are accessible by the group of the cloned virtual machines as if the group of the cloned virtual machines was in the operating network. The computer system moves networkmore » connections for the group of the virtual machines in the operating network used by the adversary from the group of the virtual machines in the operating network to the group of the cloned virtual machines, enabling protecting the group of the virtual machines from actions performed by the adversary.« less

  17. Automation Applications in an Advanced Air Traffic Management System : Volume 3. Methodology for Man-Machine Task Allocation

    DOT National Transportation Integrated Search

    1974-08-01

    Volume 3 describes the methodology for man-machine task allocation. It contains a description of man and machine performance capabilities and an explanation of the methodology employed to allocate tasks to human or automated resources. It also presen...

  18. Evaluation of food drying with air dehumidification system: a short review

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Utari, F. D.; Sasongko, S. B.; Kumoro, A. C.

    2018-01-01

    Energy efficient drying for food and agriculture products resulting high quality products has been an important issue. Currently, about 50% of total energy for postharvest treatment was used for drying. This paper presents the evaluation of new approach namely air dehumidification system with zeolite for food drying. Zeolite is a material having affinity to water in which reduced the moisture in air. With low moisture content and relative humidity, the air can improve driving force for drying even at low temperature. Thus, the energy efficiency can be potentially enhanced and the product quality can be well retained. For proving the hypothesis, the paddy and onion have been dried using dehumidified air. As performance indicators, the drying time, product quality, and heat efficiency were evaluated. Results indicated that the drying with zeolite improved the performances significantly. At operating temperature ranging 50 - 60°C, the efficiency of drying system can reach 75% with reasonable product quality.

  19. Scheduling of hybrid types of machines with two-machine flowshop as the first type and a single machine as the second type

    NASA Astrophysics Data System (ADS)

    Hsiao, Ming-Chih; Su, Ling-Huey

    2018-02-01

    This research addresses the problem of scheduling hybrid machine types, in which one type is a two-machine flowshop and another type is a single machine. A job is either processed on the two-machine flowshop or on the single machine. The objective is to determine a production schedule for all jobs so as to minimize the makespan. The problem is NP-hard since the two parallel machines problem was proved to be NP-hard. Simulated annealing algorithms are developed to solve the problem optimally. A mixed integer programming (MIP) is developed and used to evaluate the performance for two SAs. Computational experiments demonstrate the efficiency of the simulated annealing algorithms, the quality of the simulated annealing algorithms will also be reported.

  20. Intelligence-Augmented Rat Cyborgs in Maze Solving.

    PubMed

    Yu, Yipeng; Pan, Gang; Gong, Yongyue; Xu, Kedi; Zheng, Nenggan; Hua, Weidong; Zheng, Xiaoxiang; Wu, Zhaohui

    2016-01-01

    Cyborg intelligence is an emerging kind of intelligence paradigm. It aims to deeply integrate machine intelligence with biological intelligence by connecting machines and living beings via neural interfaces, enhancing strength by combining the biological cognition capability with the machine computational capability. Cyborg intelligence is considered to be a new way to augment living beings with machine intelligence. In this paper, we build rat cyborgs to demonstrate how they can expedite the maze escape task with integration of machine intelligence. We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in fourteen diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains.

  1. Intelligence-Augmented Rat Cyborgs in Maze Solving

    PubMed Central

    Yu, Yipeng; Pan, Gang; Gong, Yongyue; Xu, Kedi; Zheng, Nenggan; Hua, Weidong; Zheng, Xiaoxiang; Wu, Zhaohui

    2016-01-01

    Cyborg intelligence is an emerging kind of intelligence paradigm. It aims to deeply integrate machine intelligence with biological intelligence by connecting machines and living beings via neural interfaces, enhancing strength by combining the biological cognition capability with the machine computational capability. Cyborg intelligence is considered to be a new way to augment living beings with machine intelligence. In this paper, we build rat cyborgs to demonstrate how they can expedite the maze escape task with integration of machine intelligence. We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in fourteen diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains. PMID:26859299

  2. Online Sequential Projection Vector Machine with Adaptive Data Mean Update

    PubMed Central

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958

  3. Online Sequential Projection Vector Machine with Adaptive Data Mean Update.

    PubMed

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM.

  4. Statistical machine translation for biomedical text: are we there yet?

    PubMed

    Wu, Cuijun; Xia, Fei; Deleger, Louise; Solti, Imre

    2011-01-01

    In our paper we addressed the research question: "Has machine translation achieved sufficiently high quality to translate PubMed titles for patients?". We analyzed statistical machine translation output for six foreign language - English translation pairs (bi-directionally). We built a high performing in-house system and evaluated its output for each translation pair on large scale both with automated BLEU scores and human judgment. In addition to the in-house system, we also evaluated Google Translate's performance specifically within the biomedical domain. We report high performance for German, French and Spanish -- English bi-directional translation pairs for both Google Translate and our system.

  5. 40 CFR 60.720 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Industrial Surface Coating: Surface Coating of Plastic Parts for Business Machines § 60.720... in which plastic parts for use in the manufacture of business machines receive prime coats, color...

  6. V-TECS Guide for Machine Shop (Machinist).

    ERIC Educational Resources Information Center

    Gregory, Margaret R.; Benson, Robert T.

    This curriculum guide is intended to train trade and industrial education students in the hands-on aspects of the occupation of machinist. Included in the guide are course outlines that deal with the following topics: following safety procedures; performing mathematical calculations; designing and planning machine work; performing precision…

  7. Adaptive Training of Manual Control: 1. Comparison of Three Adaptive Variables and Two Logic Schemes.

    ERIC Educational Resources Information Center

    Norman, D. A.; And Others

    "Machine controlled adaptive training is a promising concept. In adaptive training the task presented to the trainee varies as a function of how well he performs. In machine controlled training, adaptive logic performs a function analogous to that performed by a skilled operator." This study looks at the ways in which gain-effective time…

  8. Analysis of NREL Cold-Drink Vending Machines for Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deru, M.; Torcellini, P.; Bottom, K.

    NREL Staff, as part of Sustainable NREL, an initiative to improve the overall energy and environmental performance of the lab, decided to control how its vending machines used energy. The cold-drink vending machines across the lab were analyzed for potential energy savings opportunities. This report gives the monitoring and the analysis of two energy conservation measures applied to the cold-drink vending machines at NREL.

  9. Reliability Centred Maintenance (RCM) Analysis of Laser Machine in Filling Lithos at PT X

    NASA Astrophysics Data System (ADS)

    Suryono, M. A. E.; Rosyidi, C. N.

    2018-03-01

    PT. X used automated machines which work for sixteen hours per day. Therefore, the machines should be maintained to keep the availability of the machines. The aim of this research is to determine maintenance tasks according to the cause of component’s failure using Reliability Centred Maintenance (RCM) and determine the amount of optimal inspection frequency which must be performed to the machine at filling lithos process. In this research, RCM is used as an analysis tool to determine the critical component and find optimal inspection frequencies to maximize machine’s reliability. From the analysis, we found that the critical machine in filling lithos process is laser machine in Line 2. Then we proceed to determine the cause of machine’s failure. Lastube component has the highest Risk Priority Number (RPN) among other components such as power supply, lens, chiller, laser siren, encoder, conveyor, and mirror galvo. Most of the components have operational consequences and the others have hidden failure consequences and safety consequences. Time-directed life-renewal task, failure finding task, and servicing task can be used to overcome these consequences. The results of data analysis show that the inspection must be performed once a month for laser machine in the form of preventive maintenance to lowering the downtime.

  10. Exploring the influence of constitutive models and associated parameters for the orthogonal machining of Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Pervaiz, S.; Anwar, S.; Kannan, S.; Almarfadi, A.

    2018-04-01

    Ti6Al4V is known as difficult-to-cut material due to its inherent properties such as high hot hardness, low thermal conductivity and high chemical reactivity. Though, Ti6Al4V is utilized by industrial sectors such as aeronautics, energy generation, petrochemical and bio-medical etc. For the metal cutting community, competent and cost-effective machining of Ti6Al4V is a challenging task. To optimize cost and machining performance for the machining of Ti6Al4V, finite element based cutting simulation can be a very useful tool. The aim of this paper is to develop a finite element machining model for the simulation of Ti6Al4V machining process. The study incorporates material constitutive models namely Power Law (PL) and Johnson – Cook (JC) material models to mimic the mechanical behaviour of Ti6Al4V. The study investigates cutting temperatures, cutting forces, stresses, and plastic strains with respect to different PL and JC material models with associated parameters. In addition, the numerical study also integrates different cutting tool rake angles in the machining simulations. The simulated results will be beneficial to draw conclusions for improving the overall machining performance of Ti6Al4V.

  11. Assessing and comparison of different machine learning methods in parent-offspring trios for genotype imputation.

    PubMed

    Mikhchi, Abbas; Honarvar, Mahmood; Kashan, Nasser Emam Jomeh; Aminafshar, Mehdi

    2016-06-21

    Genotype imputation is an important tool for prediction of unknown genotypes for both unrelated individuals and parent-offspring trios. Several imputation methods are available and can either employ universal machine learning methods, or deploy algorithms dedicated to infer missing genotypes. In this research the performance of eight machine learning methods: Support Vector Machine, K-Nearest Neighbors, Extreme Learning Machine, Radial Basis Function, Random Forest, AdaBoost, LogitBoost, and TotalBoost compared in terms of the imputation accuracy, computation time and the factors affecting imputation accuracy. The methods employed using real and simulated datasets to impute the un-typed SNPs in parent-offspring trios. The tested methods show that imputation of parent-offspring trios can be accurate. The Random Forest and Support Vector Machine were more accurate than the other machine learning methods. The TotalBoost performed slightly worse than the other methods.The running times were different between methods. The ELM was always most fast algorithm. In case of increasing the sample size, the RBF requires long imputation time.The tested methods in this research can be an alternative for imputation of un-typed SNPs in low missing rate of data. However, it is recommended that other machine learning methods to be used for imputation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Miniaturisation of Pressure-Sensitive Paint Measurement Systems Using Low-Cost, Miniaturised Machine Vision Cameras.

    PubMed

    Quinn, Mark Kenneth; Spinosa, Emanuele; Roberts, David A

    2017-07-25

    Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access.

  13. Miniaturisation of Pressure-Sensitive Paint Measurement Systems Using Low-Cost, Miniaturised Machine Vision Cameras

    PubMed Central

    Spinosa, Emanuele; Roberts, David A.

    2017-01-01

    Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access. PMID:28757553

  14. Implementation of an ADI method on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1987-01-01

    The implementation of an ADI method for solving the diffusion equation on three parallel/vector computers is discussed. The computers were chosen so as to encompass a variety of architectures. They are: the MPP, an SIMD machine with 16K bit serial processors; FLEX/32, an MIMD machine with 20 processors; and CRAY/2, an MIMD machine with four vector processors. The Gaussian elimination algorithm is used to solve a set of tridiagonal systems on the FLEX/32 and CRAY/2 while the cyclic elimination algorithm is used to solve these systems on the MPP. The implementation of the method is discussed in relation to these architectures and measures of the performance on each machine are given. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally, conclusions are presented.

  15. Implementation of an ADI method on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1987-01-01

    In this paper the implementation of an ADI method for solving the diffusion equation on three parallel/vector computers is discussed. The computers were chosen so as to encompass a variety of architectures. They are the MPP, an SIMD machine with 16-Kbit serial processors; Flex/32, an MIMD machine with 20 processors; and Cray/2, an MIMD machine with four vector processors. The Gaussian elimination algorithm is used to solve a set of tridiagonal systems on the Flex/32 and Cray/2 while the cyclic elimination algorithm is used to solve these systems on the MPP. The implementation of the method is discussed in relation to these architectures and measures of the performance on each machine are given. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally conclusions are presented.

  16. Effect of pigment concentration on fastness and color values of thermal and UV curable pigment printing

    NASA Astrophysics Data System (ADS)

    Baysal, Gulcin; Kalav, Berdan; Karagüzel Kayaoğlu, Burçak

    2017-10-01

    In the current study, it is aimed to determine the effect of pigment concentration on fastness and colour values of thermal and ultraviolet (UV) curable pigment printing on synthetic leather. For this purpose, thermal curable solvent-based and UV curable water-based formulations were prepared with different pigment concentrations (3, 5 and 7%) separately and applied by screen printing technique using a screen printing machine. Samples printed with solvent-based formulations were thermally cured and samples printed with water-based formulations were cured using a UV curing machine equipped with gallium and mercury (Ga/Hg) lamps at room temperature. The crock fastness values of samples printed with solvent-based formulations showed that increase in pigment concentration was not effective on both dry and wet crock fastness values. On the other hand, in samples printed with UV curable water-based formulations, dry crock fastness was improved and evaluated as very good for all pigment concentrations. However, increasing the pigment concentration affected the wet crock fastness values adversely and lower values were observed. As the energy level increased for each irradiation source, the fastness values were improved. In comparison with samples printed with solvent-based formulations, samples printed with UV curable water-based formulations yielded higher K/S values at all pigment concentrations. The results suggested that, higher K/S values can be obtained in samples printed with UV curable water-based formulations at a lower pigment concentration compared to samples printed with solvent-based formulations.

  17. Finding of Correction Factor and Dimensional Error in Bio-AM Model by FDM Technique

    NASA Astrophysics Data System (ADS)

    Manmadhachary, Aiamunoori; Ravi Kumar, Yennam; Krishnanand, Lanka

    2018-06-01

    Additive Manufacturing (AM) is the swift manufacturing process, in which input data can be provided from various sources like 3-Dimensional (3D) Computer Aided Design (CAD), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 3D scanner data. From the CT/MRI data can be manufacture Biomedical Additive Manufacturing (Bio-AM) models. The Bio-AM model gives a better lead on preplanning of oral and maxillofacial surgery. However manufacturing of the accurate Bio-AM model is one of the unsolved problems. The current paper demonstrates error between the Standard Triangle Language (STL) model to Bio-AM model of dry mandible and found correction factor in Bio-AM model with Fused Deposition Modelling (FDM) technique. In the present work dry mandible CT images are acquired by CT scanner and supplied into a 3D CAD model in the form of STL model. Further the data is sent to FDM machine for fabrication of Bio-AM model. The difference between Bio-AM to STL model dimensions is considered as dimensional error and the ratio of STL to Bio-AM model dimensions considered as a correction factor. This correction factor helps to fabricate the AM model with accurate dimensions of the patient anatomy. These true dimensional Bio-AM models increasing the safety and accuracy in pre-planning of oral and maxillofacial surgery. The correction factor for Dimension SST 768 FDM AM machine is 1.003 and dimensional error is limited to 0.3 %.

  18. Finding of Correction Factor and Dimensional Error in Bio-AM Model by FDM Technique

    NASA Astrophysics Data System (ADS)

    Manmadhachary, Aiamunoori; Ravi Kumar, Yennam; Krishnanand, Lanka

    2016-06-01

    Additive Manufacturing (AM) is the swift manufacturing process, in which input data can be provided from various sources like 3-Dimensional (3D) Computer Aided Design (CAD), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 3D scanner data. From the CT/MRI data can be manufacture Biomedical Additive Manufacturing (Bio-AM) models. The Bio-AM model gives a better lead on preplanning of oral and maxillofacial surgery. However manufacturing of the accurate Bio-AM model is one of the unsolved problems. The current paper demonstrates error between the Standard Triangle Language (STL) model to Bio-AM model of dry mandible and found correction factor in Bio-AM model with Fused Deposition Modelling (FDM) technique. In the present work dry mandible CT images are acquired by CT scanner and supplied into a 3D CAD model in the form of STL model. Further the data is sent to FDM machine for fabrication of Bio-AM model. The difference between Bio-AM to STL model dimensions is considered as dimensional error and the ratio of STL to Bio-AM model dimensions considered as a correction factor. This correction factor helps to fabricate the AM model with accurate dimensions of the patient anatomy. These true dimensional Bio-AM models increasing the safety and accuracy in pre-planning of oral and maxillofacial surgery. The correction factor for Dimension SST 768 FDM AM machine is 1.003 and dimensional error is limited to 0.3 %.

  19. Characterization of flotation color by machine vision

    NASA Astrophysics Data System (ADS)

    Siren, Ari

    1999-09-01

    Flotation is the most common industrial method by which valuable minerals are separated from waste rock after crushing and grinding the ore. For process control, flotation plants and devices are equipped with conventional and specialized sensors. However, certain variables are left to the visual observation of the operator, such as the color of the froth and the size of the bubbles in the froth. The ChaCo-Project (EU-Project 24931) was launched in November 1997. In this project a measuring station was built at the Pyhasalmi flotation plant. The system includes an RGB camera and a spectral color measuring instrument for the color inspection of the flotation. The RGB camera or visible spectral range is also measured to compare the operators' comments on the color of the froth relating to the sphalerite concentration and the process balance. Different dried mineral (sphalerite) ratios were studied with iron pyrite to find out about the minerals' typical spectral features. The correlation between sphalerite spectral reflectance and sphalerite concentration over various wavelengths are used to select the proper camera system with filters or to compare the results with the color information from the RGB camera. Various machine vision candidate techniques are discussed for this application and the preprocessed information of the dried mineral colors is used and adapted to the online measuring station. Moving froth bubbles produce total reflections, disturbing the color information. Polarization filters are used and the results are reported. Also the reflectance outside the visible light is studied and reported.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, J.M.

    The theory and methodology of design of general-purpose machines that may be controlled by a computer to perform all the tasks of a set of special-purpose machines is the focus of modern machine design research. These seventeen contributions chronicle recent activity in the analysis and design of robot manipulators that are the prototype of these general-purpose machines. They focus particularly on kinematics, the geometry of rigid-body motion, which is an integral part of machine design theory. The challenges to kinematics researchers presented by general-purpose machines such as the manipulator are leading to new perspectives in the design and control ofmore » simpler machines with two, three, and more degrees of freedom. Researchers are rethinking the uses of gear trains, planar mechanisms, adjustable mechanisms, and computer controlled actuators in the design of modern machines.« less

  1. Performance Study of Fluidized Bed Dryer with Immersed Heater for Paddy Drying

    NASA Astrophysics Data System (ADS)

    Suherman, S.; Azaria, N. F.; Karami, S.

    2018-03-01

    This paper investigated the performance of fluidized bed dryer with immersed heater for paddy drying. The influence of drying temperature and the temperature of immersed heater on drying curve, thermal efficiency, and quality of paddy was investigated. The fixed operating conditions are drying time of 60 minutes, paddy weight of 200 grams and the air velocity of 0.4 m/s. The variables are drying temperature and the temperature immersed heater namely 50, 60, 70, 80, 90 (°C). The results show addition immersed heater will increase drying rates. No constant drying rate was found. Increasing the temperature will decrease the utilized energy. The thermal efficiency decreases with increasing temperature. The increasing temperature and use immersed heater will decrease the residual moisture content, increase damaged and yellow paddy grain, and increase red paddy grain.

  2. Drilling Machines: Vocational Machine Shop.

    ERIC Educational Resources Information Center

    Thomas, John C.

    The lessons and supportive information in this field tested instructional block provide a guide for teachers in developing a machine shop course of study in drilling. The document is comprised of operation sheets, information sheets, and transparency masters for 23 lessons. Each lesson plan includes a performance objective, material and tools,…

  3. Flexible drive allows blind machining and welding in hard-to-reach areas

    NASA Technical Reports Server (NTRS)

    Harvey, D. E.; Rohrberg, R. G.

    1966-01-01

    Flexible power and control unit performs welding and machining operations in confined areas. A machine/weld head is connected to the unit by a flexible transmission shaft, and a locking- indexing collar is incorporated onto the head to allow it to be placed and held in position.

  4. Machine Shop. Criterion-Referenced Test (CRT) Item Bank.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    This drafting criterion-referenced test item bank is keyed to the machine shop competency profile developed by industry and education professionals in Missouri. The 16 references used for drafting the test items are listed. Test items are arranged under these categories: orientation to machine shop; performing mathematical calculations; performing…

  5. Influence of water-miscible cutting fluid on tool wear behavior of various coated high-speed steel tools in hobbing

    NASA Astrophysics Data System (ADS)

    Sato, Yuta; Matsuoka, Hironori; Kubo, Akio; Ono, Hajime; Ryu, Takahiro; Qiu, Hua; Nakae, Takashi; Shuto, Shuichi; Watanabe, Suguru; Anan, Ruito

    2017-04-01

    This paper deals with the influence of water-miscible cutting fluid on tool life (flank wear) compared with that with dry cutting and water-insoluble cutting oil in hobbing. Experiments were conducted by simulating hobbing by fly tool cutting on a milling machine. The following results were clarified. (1) The water-miscible cutting fluid used in the test prolongs the tool life for TiN-, TiAlN-, TiSiN- and AlCrSiN-coated tools in comparison with that obtained by dry cutting and water-insoluble cutting oil. (2) It was presumed that the tool wear decreases and the tool life is improved by the lubrication effect of the synthetic lubrication additive, mineral oil and sulfuric EP additive contained in the water-miscible cutting fluid, and also by the cooling effect.

  6. Laser re-manufacturing of failure 18Cr2Ni4WA gear in low-speed heavy-load mining machine transmission

    NASA Astrophysics Data System (ADS)

    Chi, X. F.

    2017-10-01

    This article investigated laser re-manufacturing technology application in mining industry. The research focused on green re-manufacturing of failure spur. Leave the main gear body stay intact after the dirty, rust, fatigue and injured part were removed completely before the green re-manufacturing procedure begin. The optimized laser operating parameters paved the road for excellent mechanical properties and comparatively neat shape which often means less post processing. The laser re-manufactured gear surface was systematically examined, including microstructure observation, and dry wear test at room temperature. The test results were compared with new gear surface and used but not broken gear surface. Finally, it proved that the green re-manufactured gear surface displayed best comprehensive mechanical properties, followed the new gear surface. The resistance of dry wear properties of used but not broken gear surface was the worst.

  7. High performance cutting of aircraft and turbine components

    NASA Astrophysics Data System (ADS)

    Krämer, A.; Lung, D.; Klocke, F.

    2012-04-01

    Titanium and nickel-based alloys belong to the group of difficult-to-cut materials. The machining of these high-temperature alloys is characterized by low productivity and low process stability as a result of their physical and mechanical properties. Major problems during the machining of these materials are low applicable cutting speeds due to excessive tool wear, long machining times, and thus high manufacturing costs, as well as the formation of ribbon and snarled chips. Under these conditions automation of the production process is limited. This paper deals with strategies to improve machinability of titanium and nickel-based alloys. Using the example of the nickel-based alloy Inconel 718 high performance cutting with advanced cutting materials, such as PCBN and cutting ceramics, is presented. Afterwards the influence of different cooling strategies, like high-pressure lubricoolant supply and cryogenic cooling, during machining of TiAl6V4 is shown.

  8. Large robotized turning centers described

    NASA Astrophysics Data System (ADS)

    Kirsanov, V. V.; Tsarenko, V. I.

    1985-09-01

    The introduction of numerical control (NC) machine tools has made it possible to automate machining in series and small series production. The organization of automated production sections merged NC machine tools with automated transport systems. However, both the one and the other require the presence of an operative at the machine for low skilled operations. Industrial robots perform a number of auxiliary operations, such as equipment loading-unloading and control, changing cutting and auxiliary tools, controlling workpieces and parts, and cleaning of location surfaces. When used with a group of equipment they perform transfer operations between the machine tools. Industrial robots eliminate the need for workers to form auxiliary operations. This underscores the importance of developing robotized manufacturing centers providing for minimal human participation in production and creating conditions for two and three shift operation of equipment. Work carried out at several robotized manufacturing centers for series and small series production is described.

  9. Correct machine learning on protein sequences: a peer-reviewing perspective.

    PubMed

    Walsh, Ian; Pollastri, Gianluca; Tosatto, Silvio C E

    2016-09-01

    Machine learning methods are becoming increasingly popular to predict protein features from sequences. Machine learning in bioinformatics can be powerful but carries also the risk of introducing unexpected biases, which may lead to an overestimation of the performance. This article espouses a set of guidelines to allow both peer reviewers and authors to avoid common machine learning pitfalls. Understanding biology is necessary to produce useful data sets, which have to be large and diverse. Separating the training and test process is imperative to avoid over-selling method performance, which is also dependent on several hidden parameters. A novel predictor has always to be compared with several existing methods, including simple baseline strategies. Using the presented guidelines will help nonspecialists to appreciate the critical issues in machine learning. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Performance evaluation of two black nickel and two black chrome solar collectors

    NASA Technical Reports Server (NTRS)

    Losey, R.

    1977-01-01

    The test program was based on the evaluation of four unique solar collectors described below: (1) black nickel collector surface with a desiccant drying bed, (2) black nickel collector surface without a desiccant drying bed, (3) black chrome collector surface with a dessicant drying bed, and (4) black chrome collector surface without a desiccant drying bed. The test program included three distinct phases: Initial performance evaluation, natural environmental aging, and post-aging performance evaluation. Results of Phase III testing conclusively indicated a higher normalized efficiency for Black Chrome surfaces when compared to Black Nickel.

  11. Effect of through-plane polytetrafluoroethylene distribution in gas diffusion layers on performance of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Iwamura, Takuya; Someya, Satoshi; Munakata, Tetsuo; Nakano, Akihiro; Heo, Yun; Ishida, Masayoshi; Nakajima, Hironori; Kitahara, Tatsumi

    2016-02-01

    This experimental study identifies the effect of through-plane polytetrafluoroethylene (PTFE) distribution in gas diffusion backing (GDB) on the performance of proton exchange membrane fuel cells (PEMFC). PTFE-drying under vacuum pressure created a relatively uniform PTFE distribution in GDB compared to drying under atmospheric pressure. Carbon paper samples with different PTFE distributions due to the difference in drying conditions were prepared and used for the cathode gas diffusion layer (GDL) of PEMFCs. Also investigated is the effect of MPL application on the performance for those samples. The current density (i) - voltage (V) characteristics of these PEMFCs measured under high relative humidity conditions clearly showed that, with or without MPL, the cell using the GDL with PTFE dried under vacuum condition showed better performance than that dried under atmospheric condition. It is suggested that this improved performance is caused by the efficient transport of liquid water through the GDB due to the uniform distribution of PTFE.

  12. Business Machine Maintenance. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    McMinn, Robert

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 28 terminal objectives presented in this guide for an intermediate business machine maintenance course at the secondary level. (For the basic course guide see CE 010 949.) Titles of the 28 terminal objective sections are Career Opportunities,…

  13. STATISTICAL EVALUATION OF CONFOCAL MICROSCOPY IMAGES

    EPA Science Inventory

    Abstract

    In this study the CV is defined as the Mean/SD of the population of beads or pixels. Flow cytometry uses the CV of beads to determine if the machine is aligned correctly and performing properly. This CV concept to determine machine performance has been adapted to...

  14. 40 CFR 60.185 - Monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Lead... reverberatory furnace, or sintering machine discharge end. The span of this system shall be set at 80 to 100... discharged into the atmosphere from any sintering machine, electric furnace or converter subject to § 60.183...

  15. Business Machine Maintenance. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    McMinn, Robert

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 25 terminal objectives presented in this guide for a basic business machine maintenance course at the secondary level. (For the intermediate course guide see CE 010 948.) The materials were developed for a two-semester (2 hour daily) course…

  16. Influence of Electrical Resistivity and Machining Parameters on Electrical Discharge Machining Performance of Engineering Ceramics

    PubMed Central

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge machining ZnO/Al2O3 ceramic. PMID:25364912

  17. An efficient synthesis strategy for metal-organic frameworks: Dry-gel synthesis of MOF-74 framework with high yield and improved performance

    DOE PAGES

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; ...

    2016-06-16

    Here, vapor-assisted dry-gel synthesis of MOF-74 structure, specifically NiMOF-74 from its synthetic precursors, was conducted with high yield and improved performance showing promise for gas (CO 2) and water adsorption applications. Unlike conventional synthesis, which takes 72 h, this kinetic study showed that NiMOF-74 forms within 12 h under dry-gel conditions with similar performance characteristics and exhibits the best performance characteristics after 48 h of heating.

  18. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward K. Levy; Nenad Sarunac; Harun Bilirgen

    2006-03-01

    U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissionsmore » and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.« less

  19. Improving the performance of extreme learning machine for hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Li, Jiaojiao; Du, Qian; Li, Wei; Li, Yunsong

    2015-05-01

    Extreme learning machine (ELM) and kernel ELM (KELM) can offer comparable performance as the standard powerful classifier―support vector machine (SVM), but with much lower computational cost due to extremely simple training step. However, their performance may be sensitive to several parameters, such as the number of hidden neurons. An empirical linear relationship between the number of training samples and the number of hidden neurons is proposed. Such a relationship can be easily estimated with two small training sets and extended to large training sets so as to greatly reduce computational cost. Other parameters, such as the steepness parameter in the sigmodal activation function and regularization parameter in the KELM, are also investigated. The experimental results show that classification performance is sensitive to these parameters; fortunately, simple selections will result in suboptimal performance.

  20. Control system software, simulation, and robotic applications

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1991-01-01

    All essential existing capabilities needed to create a man-machine interaction dynamics and performance (MMIDAP) capability are reviewed. The multibody system dynamics software program Order N DISCOS will be used for machine and musculo-skeletal dynamics modeling. The program JACK will be used for estimating and animating whole body human response to given loading situations and motion constraints. The basic elements of performance (BEP) task decomposition methodologies associated with the Human Performance Institute database will be used for performance assessment. Techniques for resolving the statically indeterminant muscular load sharing problem will be used for a detailed understanding of potential musculotendon or ligamentous fatigue, pain, discomfort, and trauma. The envisioned capacity is to be used for mechanical system design, human performance assessment, extrapolation of man/machine interaction test data, biomedical engineering, and soft prototyping within a concurrent engineering (CE) system.

  1. Motion Simulation Analysis of Rail Weld CNC Fine Milling Machine

    NASA Astrophysics Data System (ADS)

    Mao, Huajie; Shu, Min; Li, Chao; Zhang, Baojun

    CNC fine milling machine is a new advanced equipment of rail weld precision machining with high precision, high efficiency, low environmental pollution and other technical advantages. The motion performance of this machine directly affects its machining accuracy and stability, which makes it an important consideration for its design. Based on the design drawings, this article completed 3D modeling of 60mm/kg rail weld CNC fine milling machine by using Solidworks. After that, the geometry was imported into Adams to finish the motion simulation analysis. The displacement, velocity, angular velocity and some other kinematical parameters curves of the main components were obtained in the post-processing and these are the scientific basis for the design and development for this machine.

  2. Large-Scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation

    DTIC Science & Technology

    2016-08-10

    AFRL-AFOSR-JP-TR-2016-0073 Large-scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation ...2016 4.  TITLE AND SUBTITLE Large-scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation 5a...performances on various machine learning tasks and it naturally lends itself to fast parallel implementations . Despite this, very little work has been

  3. Pocket-sized versus standard ultrasound machines in abdominal imaging.

    PubMed

    Tse, K H; Luk, W H; Lam, M C

    2014-06-01

    The pocket-sized ultrasound machine has emerged as an invaluable tool for quick assessment in emergency and general practice settings. It is suitable for instant and quick assessment in cardiac imaging. However, its applicability in the imaging of other body parts has yet to be established. In this pictorial review, we compared the performance of the pocketsized ultrasound machine against the standard ultrasound machine for its image quality in common abdominal pathology.

  4. Operational results for the experimental DOE/NASA Mod-OA wind turbine project

    NASA Astrophysics Data System (ADS)

    Shaltens, R. K.; Birchenough, A. G.

    The Mod-OA wind turbine project which was to gain early experience in the operation of large wind turbines in a utility environment is discussed. The Mod-OA wind turbines were a first generation design, and even though not cost effective, the operating experience and performance characteristics had a significant effect on the design and development of the second and third generation machines. The Mod-OA machines were modified as a result of the operational experience, particularly the blade development and control system strategy. The results of study to investigate the interaction of a Mod-OA wind turbine with an isolated diesel generation system are discussed. The machine configuration, its advantages and disadvantages and the machine performance and availability are discussed.

  5. Operational results for the experimental DOE/NASA Mod-OA wind turbine project

    NASA Technical Reports Server (NTRS)

    Shaltens, R. K.; Birchenough, A. G.

    1983-01-01

    The Mod-OA wind turbine project which was to gain early experience in the operation of large wind turbines in a utility environment is discussed. The Mod-OA wind turbines were a first generation design, and even though not cost effective, the operating experience and performance characteristics had a significant effect on the design and development of the second and third generation machines. The Mod-OA machines were modified as a result of the operational experience, particularly the blade development and control system strategy. The results of study to investigate the interaction of a Mod-OA wind turbine with an isolated diesel generation system are discussed. The machine configuration, its advantages and disadvantages and the machine performance and availability are discussed.

  6. Three dimensional magnetic fields in extra high speed modified Lundell alternators computed by a combined vector-scalar magnetic potential finite element method

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Wang, R.; Secunde, R.

    1992-01-01

    A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.

  7. Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach.

    PubMed

    Hussain, Lal

    2018-06-01

    Epilepsy is a neurological disorder produced due to abnormal excitability of neurons in the brain. The research reveals that brain activity is monitored through electroencephalogram (EEG) of patients suffered from seizure to detect the epileptic seizure. The performance of EEG detection based epilepsy require feature extracting strategies. In this research, we have extracted varying features extracting strategies based on time and frequency domain characteristics, nonlinear, wavelet based entropy and few statistical features. A deeper study was undertaken using novel machine learning classifiers by considering multiple factors. The support vector machine kernels are evaluated based on multiclass kernel and box constraint level. Likewise, for K-nearest neighbors (KNN), we computed the different distance metrics, Neighbor weights and Neighbors. Similarly, the decision trees we tuned the paramours based on maximum splits and split criteria and ensemble classifiers are evaluated based on different ensemble methods and learning rate. For training/testing tenfold Cross validation was employed and performance was evaluated in form of TPR, NPR, PPV, accuracy and AUC. In this research, a deeper analysis approach was performed using diverse features extracting strategies using robust machine learning classifiers with more advanced optimal options. Support Vector Machine linear kernel and KNN with City block distance metric give the overall highest accuracy of 99.5% which was higher than using the default parameters for these classifiers. Moreover, highest separation (AUC = 0.9991, 0.9990) were obtained at different kernel scales using SVM. Additionally, the K-nearest neighbors with inverse squared distance weight give higher performance at different Neighbors. Moreover, to distinguish the postictal heart rate oscillations from epileptic ictal subjects, and highest performance of 100% was obtained using different machine learning classifiers.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, G.

    Humidity plays a major role in health, comfort, and production. This article is a brief overview of the technologies available and a detailed explanation of how to calculate humidification loads. The problems caused by dry air vary from one building to another and from one area to another. But basically, there are three major problem types: static electricity, poor moisture stability, health and comfort problems. In today's business offices, static electricity can disrupt operations and increase operating costs. In printing facilities, low humidity causes poor ink registration. Also, sheets of paper stick together and jam machines, wasting time and paper.more » In computer rooms and data processing areas, dry air leads to static electric discharges that cause circuit board failure, dust buildup on heads, and storage tape breakage. Moisture stability impacts industrial processes and the materials they use. In many cases, product and material deterioration is directly related to moisture fluctuations and lack of humidity control. Books, antiques, paper, wood and wood products, and fruits and vegetables are a few items that can be ruined by low or changing humidity. The health impact of low humidity shows up in dry nasal and thread membranes, dry and itchy skin, and irritated eyes. For employees, this means greater susceptibility to colds and other viral infections. The results is higher absenteeism when humidity is low, which translates into lost productivity and profits.« less

  9. Drying of fiber webs

    DOEpatents

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  10. Performance of Color Camera Machine Vision in Automated Furniture Rough Mill Systems

    Treesearch

    D. Earl Kline; Agus Widoyoko; Janice K. Wiedenbeck; Philip A. Araman

    1998-01-01

    The objective of this study was to evaluate the performance of color camera machine vision for lumber processing in a furniture rough mill. The study used 134 red oak boards to compare the performance of automated gang-rip-first rough mill yield based on a prototype color camera lumber inspection system developed at Virginia Tech with both estimated optimum rough mill...

  11. Expanding the Scope of High-Performance Computing Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uram, Thomas D.; Papka, Michael E.

    The high-performance computing centers of the future will expand their roles as service providers, and as the machines scale up, so should the sizes of the communities they serve. National facilities must cultivate their users as much as they focus on operating machines reliably. The authors present five interrelated topic areas that are essential to expanding the value provided to those performing computational science.

  12. Core Muscle Activity, Exercise Preference, and Perceived Exertion during Core Exercise with Elastic Resistance versus Machine.

    PubMed

    Vinstrup, Jonas; Sundstrup, Emil; Brandt, Mikkel; Jakobsen, Markus D; Calatayud, Joaquin; Andersen, Lars L

    2015-01-01

    Objectives. To investigate core muscle activity, exercise preferences, and perceived exertion during two selected core exercises performed with elastic resistance versus a conventional training machine. Methods. 17 untrained men aged 26-67 years participated in surface electromyography (EMG) measurements of five core muscles during torso-twists performed from left to right with elastic resistance and in the machine, respectively. The order of the exercises was randomized and each exercise consisted of 3 repetitions performed at a 10 RM load. EMG amplitude was normalized (nEMG) to maximum voluntary isometric contraction (MVC). Results. A higher right erector spinae activity in the elastic exercise compared with the machine exercise (50% [95% CI 36-64] versus 32% [95% CI 18-46] nEMG) was found. By contrast, the machine exercise, compared with the elastic exercise, showed higher left external oblique activity (77% [95% CI 64-90] versus 54% [95% CI 40-67] nEMG). For the rectus abdominis, right external oblique, and left erector spinae muscles there were no significant differences. Furthermore, 76% preferred the torso-twist with elastic resistance over the machine exercise. Perceived exertion (Borg CR10) was not significantly different between machine (5.8 [95% CI 4.88-6.72]) and elastic exercise (5.7 [95% CI 4.81-6.59]). Conclusion. Torso-twists using elastic resistance showed higher activity of the erector spinae, whereas torso-twist in the machine resulted in higher activity of the external oblique. For the remaining core muscles the two training modalities induced similar muscular activation. In spite of similar perceived exertion the majority of the participants preferred the exercise using elastic resistance.

  13. Subcutaneous ICD screening with the Boston Scientific ZOOM programmer versus a 12-lead ECG machine.

    PubMed

    Chang, Shu C; Patton, Kristen K; Robinson, Melissa R; Poole, Jeanne E; Prutkin, Jordan M

    2018-02-24

    The subcutaneous implantable cardioverter-defibrillator (S-ICD) requires preimplant screening to ensure appropriate sensing and reduce risk of inappropriate shocks. Screening can be performed using either an ICD programmer or a 12-lead electrocardiogram (ECG) machine. It is unclear whether differences in signal filtering and digital sampling change the screening success rate. Subjects were recruited if they had a transvenous single-lead ICD without pacing requirements or were candidates for a new ICD. Screening was performed using both a Boston Scientific ZOOM programmer (Marlborough, MA, USA) and General Electric MAC 5000 ECG machine (Fairfield, CT, USA). A pass was defined as having at least one lead that fit within the screening template in both supine and sitting positions. A total of 69 subjects were included and 27 sets of ECG leads had differing screening results between the two machines (7%). Of these sets, 22 (81%) passed using the ECG machine but failed using the programmer and five (19%) passed using the ECG machine but failed using the programmer (P < 0.001). Four subjects (6%) passed screening using the ECG machine but failed using the programmer. No subject passed screening with the programmer but failed with the ECG machine. There can be occasional disagreement in S-ICD patient screening between an ICD programmer and ECG machine, all of whom passed with the ECG machine but failed using the programmer. On a per lead basis, the ECG machine passes more subjects. It is unknown what the inappropriate shock rate would be if an S-ICD was implanted. Clinical judgment should be used in borderline cases. © 2018 Wiley Periodicals, Inc.

  14. Dry stone masonry culvert restoration.

    DOT National Transportation Integrated Search

    2007-05-01

    A damaged dry stone masonry culvert on KY 1268 Jessamine County was restored by the Kentucky Transportation Cabinet. The work was performed by the Dry Stone Conservancy, a non-profit agency promoting dry stone masonry. The work included replacement o...

  15. Effects of pole flux distribution in a homopolar linear synchronous machine

    NASA Astrophysics Data System (ADS)

    Balchin, M. J.; Eastham, J. F.; Coles, P. C.

    1994-05-01

    Linear forms of synchronous electrical machine are at present being considered as the propulsion means in high-speed, magnetically levitated (Maglev) ground transportation systems. A homopolar form of machine is considered in which the primary member, which carries both ac and dc windings, is supported on the vehicle. Test results and theoretical predictions are presented for a design of machine intended for driving a 100 passenger vehicle at a top speed of 400 km/h. The layout of the dc magnetic circuit is examined to locate the best position for the dc winding from the point of view of minimum core weight. Measurements of flux build-up under the machine at different operating speeds are given for two types of secondary pole: solid and laminated. The solid pole results, which are confirmed theoretically, show that this form of construction is impractical for high-speed drives. Measured motoring characteristics are presented for a short length of machine which simulates conditions at the leading and trailing ends of the full-sized machine. Combination of the results with those from a cylindrical version of the machine make it possible to infer the performance of the full-sized traction machine. This gives 0.8 pf and 0.9 efficiency at 300 km/h, which is much better than the reported performance of a comparable linear induction motor (0.52 pf and 0.82 efficiency). It is therefore concluded that in any projected high-speed Maglev systems, a linear synchronous machine should be the first choice as the propulsion means.

  16. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  17. Predictive Surface Roughness Model for End Milling of Machinable Glass Ceramic

    NASA Astrophysics Data System (ADS)

    Mohan Reddy, M.; Gorin, Alexander; Abou-El-Hossein, K. A.

    2011-02-01

    Advanced ceramics of Machinable glass ceramic is attractive material to produce high accuracy miniaturized components for many applications in various industries such as aerospace, electronics, biomedical, automotive and environmental communications due to their wear resistance, high hardness, high compressive strength, good corrosion resistance and excellent high temperature properties. Many research works have been conducted in the last few years to investigate the performance of different machining operations when processing various advanced ceramics. Micro end-milling is one of the machining methods to meet the demand of micro parts. Selecting proper machining parameters are important to obtain good surface finish during machining of Machinable glass ceramic. Therefore, this paper describes the development of predictive model for the surface roughness of Machinable glass ceramic in terms of speed, feed rate by using micro end-milling operation.

  18. Tribological performance of Zinc soft metal coatings in solid lubrication

    NASA Astrophysics Data System (ADS)

    Regalla, Srinivasa Prakash; Krishnan Anirudh, V.; Reddy Narala, Suresh Kumar

    2018-04-01

    Solid lubrication by soft coatings is an important technique for superior tribological performance in machine contacts involving high pressures. Coating with soft materials ensures that the subsurface machine component wear decreases, ensuring longer life. Several soft metal coatings have been studied but zinc coatings have not been studied much. This paper essentially deals with the soft coating by zinc through electroplating on hard surfaces, which are subsequently tested in sliding experiments for tribological performance. The hardness and film thickness values have been found out, the coefficient of friction of the zinc coating has been tested using a pin on disc wear testing machine and the results of the same have been presented.

  19. Machine cost analysis using the traditional machine-rate method and ChargeOut!

    Treesearch

    E. M. (Ted) Bilek

    2009-01-01

    Forestry operations require ever more use of expensive capital equipment. Mechanization is frequently necessary to perform cost-effective and safe operations. Increased capital should mean more sophisticated capital costing methodologies. However the machine rate method, which is the costing methodology most frequently used, dates back to 1942. CHARGEOUT!, a recently...

  20. An Analysis of the Billing and Bookkeeping Machine Operator Occupation.

    ERIC Educational Resources Information Center

    Six, Joseph E., Jr.

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the billing and bookkeeping machine operating occupation. The analysis was written in general terms due to the diversity in bookkeeping machines on the market, increasing number and variation of the tasks…

  1. Production Machine Shop Employment Competencies. Part One: Practices and Principles.

    ERIC Educational Resources Information Center

    Bishart, Gus; Werner, Claire

    Competencies for production machine shop are provided for the first of four topic areas: principles and practice of machine shop. Each competency appears in a one-page format. It is presented as a goal statement followed by one or more "indicator" statements, which are performance objectives describing an ability that, upon attainment,…

  2. Learning About Climate and Atmospheric Models Through Machine Learning

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.

    2017-12-01

    From the analysis of ensemble variability to improving simulation performance, machine learning algorithms can play a powerful role in understanding the behavior of atmospheric and climate models. To learn about model behavior, we create training and testing data sets through ensemble techniques that sample different model configurations and values of input parameters, and then use supervised machine learning to map the relationships between the inputs and outputs. Following this procedure, we have used support vector machines, random forests, gradient boosting and other methods to investigate a variety of atmospheric and climate model phenomena. We have used machine learning to predict simulation crashes, estimate the probability density function of climate sensitivity, optimize simulations of the Madden Julian oscillation, assess the impacts of weather and emissions uncertainty on atmospheric dispersion, and quantify the effects of model resolution changes on precipitation. This presentation highlights recent examples of our applications of machine learning to improve the understanding of climate and atmospheric models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Bypassing the Kohn-Sham equations with machine learning.

    PubMed

    Brockherde, Felix; Vogt, Leslie; Li, Li; Tuckerman, Mark E; Burke, Kieron; Müller, Klaus-Robert

    2017-10-11

    Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields. Machine learning holds the promise of learning the energy functional via examples, bypassing the need to solve the Kohn-Sham equations. This should yield substantial savings in computer time, allowing larger systems and/or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. We perform the first molecular dynamics simulation with a machine-learned density functional on malonaldehyde and are able to capture the intramolecular proton transfer process. Learning density models now allows the construction of accurate density functionals for realistic molecular systems.Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.

  4. Scheduling algorithm for flow shop with two batch-processing machines and arbitrary job sizes

    NASA Astrophysics Data System (ADS)

    Cheng, Bayi; Yang, Shanlin; Hu, Xiaoxuan; Li, Kai

    2014-03-01

    This article considers the problem of scheduling two batch-processing machines in flow shop where the jobs have arbitrary sizes and the machines have limited capacity. The jobs are processed in batches and the total size of jobs in each batch cannot exceed the machine capacity. Once a batch is being processed, no interruption is allowed until all the jobs in it are completed. The problem of minimising makespan is NP-hard in the strong sense. First, we present a mathematical model of the problem using integer programme. We show the scale of feasible solutions of the problem and provide optimality properties. Then, we propose a polynomial time algorithm with running time in O(nlogn). The jobs are first assigned in feasible batches and then scheduled on machines. For the general case, we prove that the proposed algorithm has a performance guarantee of 4. For the special case where the processing times of each job on the two machines satisfy p 1 j = ap 2 j , the performance guarantee is ? for a > 0.

  5. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures weremore » varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.« less

  6. Design study and performance analysis of 12S-14P field excitation flux switching motor for hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Husin, Zhafir Aizat; Sulaiman, Erwan; Khan, Faisal; Mazlan, Mohamed Mubin Aizat; Othman, Syed Muhammad Naufal Syed

    2015-05-01

    This paper presents a new structure of 12slot-14pole field excitation flux switching motor (FEFSM) as an alternative candidate of non-Permanent Magnet (PM) machine for HEV drives. Design study, performance analysis and optimization of field excitation flux switching machine with non-rare-earth magnet for hybrid electric vehicle drive applications is done. The stator of projected machine consists of iron core made of electromagnetic steels, armature coils and field excitation coils as the only field mmf source. The rotor is consisted of only stack of iron and hence, it is reliable and appropriate for high speed operation. The design target is a machine with the maximum torque, power and power density, more than 210Nm, 123kW and 3.5kW/kg, respectively, which competes with interior permanent magnet synchronous machine used in existing hybrid electric vehicle. Some design feasibility studies on FEFSM based on 2D-FEA and deterministic optimization method will be applied to design the proposed machine.

  7. Data-driven modeling of hydroclimatic trends and soil moisture: Multi-scale data integration and decision support

    NASA Astrophysics Data System (ADS)

    Coopersmith, Evan Joseph

    The techniques and information employed for decision-making vary with the spatial and temporal scope of the assessment required. In modern agriculture, the farm owner or manager makes decisions on a day-to-day or even hour-to-hour basis for dozens of fields scattered over as much as a fifty-mile radius from some central location. Following precipitation events, land begins to dry. Land-owners and managers often trace serpentine paths of 150+ miles every morning to inspect the conditions of their various parcels. His or her objective lies in appropriate resource usage -- is a given tract of land dry enough to be workable at this moment or would he or she be better served waiting patiently? Longer-term, these owners and managers decide upon which seeds will grow most effectively and which crops will make their operations profitable. At even longer temporal scales, decisions are made regarding which fields must be acquired and sold and what types of equipment will be necessary in future operations. This work develops and validates algorithms for these shorter-term decisions, along with models of national climate patterns and climate changes to enable longer-term operational planning. A test site at the University of Illinois South Farms (Urbana, IL, USA) served as the primary location to validate machine learning algorithms, employing public sources of precipitation and potential evapotranspiration to model the wetting/drying process. In expanding such local decision support tools to locations on a national scale, one must recognize the heterogeneity of hydroclimatic and soil characteristics throughout the United States. Machine learning algorithms modeling the wetting/drying process must address this variability, and yet it is wholly impractical to construct a separate algorithm for every conceivable location. For this reason, a national hydrological classification system is presented, allowing clusters of hydroclimatic similarity to emerge naturally from annual regime curve data and facilitate the development of cluster-specific algorithms. Given the desire to enable intelligent decision-making at any location, this classification system is developed in a manner that will allow for classification anywhere in the U.S., even in an ungauged basin. Daily time series data from 428 catchments in the MOPEX database are analyzed to produce an empirical classification tree, partitioning the United States into regions of hydroclimatic similarity. In constructing a classification tree based upon 55 years of data, it is important to recognize the non-stationary nature of climate data. The shifts in climatic regimes will cause certain locations to shift their ultimate position within the classification tree, requiring decision-makers to alter land usage, farming practices, and equipment needs, and algorithms to adjust accordingly. This work adapts the classification model to address the issue of regime shifts over larger temporal scales and suggests how land-usage and farming protocol may vary from hydroclimatic shifts in decades to come. Finally, the generalizability of the hydroclimatic classification system is tested with a physically-based soil moisture model calibrated at several locations throughout the continental United States. The soil moisture model is calibrated at a given site and then applied with the same parameters at other sites within and outside the same hydroclimatic class. The model's performance deteriorates minimally if the calibration and validation location are within the same hydroclimatic class, but deteriorates significantly if the calibration and validates sites are located in different hydroclimatic classes. These soil moisture estimates at the field scale are then further refined by the introduction of LiDAR elevation data, distinguishing faster-drying peaks and ridges from slower-drying valleys. The inclusion of LiDAR enabled multiple locations within the same field to be predicted accurately despite non-identical topography. This cross-application of parametric calibrations and LiDAR-driven disaggregation facilitates decision-support at locations without proximally-located soil moisture sensors.

  8. A comparative study of spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions.

    PubMed

    Dontireddy, Rakesh; Crean, Abina M

    2011-10-01

    Poor water solubility of new chemical entities (NCEs) is one of the major challenges the pharmaceutical industry currently faces. The purpose of this study was to investigate the feasibility of freeze-drying as an alternative technique to spray-drying to produce solid dispersions of poorly water-soluble drugs. Also investigated was the use of aqueous solvent mixtures in place of pure solvent for the production of solid dispersions. Aqueous solvent systems would reduce the environmental impact of pure organic solvent systems. Spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions exhibited differences in dissolution behavior. Freeze-dried dispersions exhibited faster dissolution rates than the corresponding spray-dried dispersions. Spray-dried systems prepared using both solvent systems (20% v/v and 96% v/v ethanol) displayed similar dissolution performance despite displaying differences in glass transition temperatures (T(g)) and surface areas. All dispersions showed drug/polymer interactions indicated by positive deviations in T(g) from the predicted values calculated using the Couchman-Karasz equation. Fourier transform infrared (FTIR) spectroscopic results confirmed the conversion of crystalline drug to the amorphous in the dispersions. Stability studies were preformed at 40°C and 75% relative humidity to investigate the physical stability of prepared dispersions. Recrystallization was observed after a month and the resultant dispersions were tested for their dissolution performance to compare with the dissolution performance of the dispersions prior to the stability study. The dissolution rate of the freeze-dried dispersions remained higher than both spray-dried dispersions after storage.

  9. The thin-layer drying characteristics of sewage sludge by the appropriate foaming pretreatment.

    PubMed

    Wang, Hui-Ling; Yang, Zhao-Hui; Huang, Jing; Wang, Li-Ke; Gou, Cheng-Liu; Yan, Jing-Wu; Yang, Jian

    2014-01-01

    As dewatered sludge is highly viscous and sticky, the combination of foaming pretreatment and drying process seems to be an alternative method to improve the drying performance of dewatered sludge. In this study, CaO addition followed by mechanical whipping was employed for foaming the dewatered sludge. It was found that the foams were stable and the diameters of bubbles mainly ranged from 0.1 to 0.3 mm. The drying experiments were carried out in a drying oven in the convective mode. The results indicated that foamed sludge at 0.70 g/cm(3) had the best drying performance at each level of temperature, which could save 35-45% drying time to reach 20% moisture content compared with the non-foamed sludge. The drying rate of foamed sludge at 0.70 g/cm(3) was improved with the increasing of drying temperature. The impact of sample thickness on drying rate was not obvious when the sample thickness increased from 2 to 8 mm. Different mathematical models were used for the simulation of foamed sludge drying curves. The Wang and Singh model represented the drying characteristics better than other models with coefficient of determination values over 0.99.

  10. Feed rate affecting surface roughness and tool wear in dry hard turning of AISI 4140 steel automotive parts using TiN+AlCrN coated inserts

    NASA Astrophysics Data System (ADS)

    Paengchit, Phacharadit; Saikaew, Charnnarong

    2018-02-01

    This work aims to investigate the effects of feed rate on surface roughness (Ra) and tool wear (VB) and to obtain the optimal operating condition of the feed rate in dry hard turning of AISI 4140 chromium molybdenum steel for automotive industry applications using TiN+AlCrN coated inserts. AISI 4140 steel bars were employed in order to carry out the dry hard turning experiments by varying the feed rates of 0.06, 0.08 and 0.1 mm/rev based on experimental design technique that can be analyzed by analysis of variance (ANOVA). In addition, the cutting tool inserts were examined after machining experiments by SEM to evaluate the effect of turning operations on tool wear. The results showed that averages Ra and VB were significantly affected by the feed rate at the level of significance of 0.05. Averages Ra and VB values at the feed rate of 0.06 mm/rev were lowest compared to average values at the feed rates of 0.08 and 0.1 mm/rev, based on the main effect plot.

  11. Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying.

    PubMed

    Zu, Guoqing; Shimizu, Taiyo; Kanamori, Kazuyoshi; Zhu, Yang; Maeno, Ayaka; Kaji, Hironori; Shen, Jun; Nakanishi, Kazuki

    2018-01-23

    Aerogels have many attractive properties but are usually costly and mechanically brittle, which always limit their practical applications. While many efforts have been made to reinforce the aerogels, most of the reinforcement efforts sacrifice the transparency or superinsulating properties. Here we report superflexible polyvinylpolymethylsiloxane, (CH 2 CH(Si(CH 3 )O 2/2 )) n , aerogels that are facilely prepared from a single precursor vinylmethyldimethoxysilane or vinylmethyldiethoxysilane without organic cross-linkers. The method is based on consecutive processes involving radical polymerization and hydrolytic polycondensation, followed by ultralow-cost, highly scalable, ambient-pressure drying directly from alcohol as a drying medium without any modification or additional solvent exchange. The resulting aerogels and xerogels show a homogeneous, tunable, highly porous, doubly cross-linked nanostructure with the elastic polymethylsiloxane network cross-linked with flexible hydrocarbon chains. An outstanding combination of ultralow cost, high scalability, uniform pore size, high surface area, high transparency, high hydrophobicity, excellent machinability, superflexibility in compression, superflexibility in bending, and superinsulating properties has been achieved in a single aerogel or xerogel. This study represents a significant progress of porous materials and makes the practical applications of transparent flexible aerogel-based superinsulators realistic.

  12. Harvesting small trees for bio-energy

    Treesearch

    John Klepac; Robert Rummer; Jason Thompson

    2011-01-01

    A conventional whole-tree logging operation consisting of 4-wheeled and 3-wheeled saw-head feller-bunchers, two grapple skidders and a chipper that produces dirty chips was monitored across several stands and machine performance evaluated. Stands were inventoried to determine density, volume, and basal area per acre and will be used to relate machine performance to...

  13. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: APPLICATIONS FOR IMAGING MORPHOLOGY AND DEATH IN EMBRYOS AND REPRODUCTIVE TISSUE/ORGANS

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. It is remarkable that procedures to test the performance of these machines are not done routinely by most investigators and thus many of the machines in the field are working at level...

  14. A SYSTEMS APPROACH UTILIZING GENERAL-PURPOSE AND SPECIAL-PURPOSE TEACHING MACHINES.

    ERIC Educational Resources Information Center

    SILVERN, LEONARD C.

    IN ORDER TO IMPROVE THE EMPLOYEE TRAINING-EVALUATION METHOD, TEACHING MACHINES AND PERFORMANCE AIDS MUST BE PHYSICALLY AND OPERATIONALLY INTEGRATED INTO THE SYSTEM, THUS RETURNING TRAINING TO THE ACTUAL JOB ENVIRONMENT. GIVEN THESE CONDITIONS, TRAINING CAN BE MEASURED, CALIBRATED, AND CONTROLLED WITH RESPECT TO ACTUAL JOB PERFORMANCE STANDARDS AND…

  15. Performance evaluation of various classifiers for color prediction of rice paddy plant leaf

    NASA Astrophysics Data System (ADS)

    Singh, Amandeep; Singh, Maninder Lal

    2016-11-01

    The food industry is one of the industries that uses machine vision for a nondestructive quality evaluation of the produce. These quality measuring systems and softwares are precalculated on the basis of various image-processing algorithms which generally use a particular type of classifier. These classifiers play a vital role in making the algorithms so intelligent that it can contribute its best while performing the said quality evaluations by translating the human perception into machine vision and hence machine learning. The crop of interest is rice, and the color of this crop indicates the health status of the plant. An enormous number of classifiers are available to solve the purpose of color prediction, but choosing the best among them is the focus of this paper. Performance of a total of 60 classifiers has been analyzed from the application point of view, and the results have been discussed. The motivation comes from the idea of providing a set of classifiers with excellent performance and implementing them on a single algorithm for the improvement of machine vision learning and, hence, associated applications.

  16. In vivo and in vitro performance of a China-made hemodialysis machine: a multi-center prospective controlled study.

    PubMed

    Wang, Yong; Chen, Xiang-Mei; Cai, Guang-Yan; Li, Wen-Ge; Zhang, Ai-Hua; Hao, Li-Rong; Shi, Ming; Wang, Rong; Jiang, Hong-Li; Luo, Hui-Min; Zhang, Dong; Sun, Xue-Feng

    2017-08-02

    To evaluate the in vivo and in vitro performance of a China-made dialysis machine (SWS-4000). This was a multi-center prospective controlled study consisting of both long-term in vitro evaluations and cross-over in vivo tests in 132 patients. The China-made SWS-4000 dialysis machine was compared with a German-made dialysis machine (Fresenius 4008) with regard to Kt/V values, URR values, and dialysis-related adverse reactions in patients on maintenance hemodialysis, as well as the ultrafiltration rate, the concentration of electrolytes in the proportioned dialysate, the rate of heparin injection, the flow rate of the blood pump, and the rate of malfunction. The Kt/V and URR values at the 1st and 4th weeks of dialysis as well as the incidence of adverse effects did not differ between the two groups in cross-over in vivo tests (P > 0.05). There were no significant differences between the two groups in the error values of the ultrafiltration rate, the rate of heparin injection or the concentrations of electrolytes in the proportioned dialysate at different time points under different parameter settings. At weeks 2 and 24, with the flow rate of the blood pump set at 300 mL/min, the actual error of the SWS-4000 dialysis machine was significantly higher than that of the Fresenius 4008 dialysis machine (P < 0.05), but there was no significant difference at other time points or under other settings (P > 0.05). The malfunction rate was higher in the SWS-4000 group than in the Fresenius 4008 group (P < 0.05). The in vivo performance of the SWS-4000 dialysis machine is roughly comparable to that of the Fresenius 4008 dialysis machine; however, the malfunction rate of the former is higher than that of the latter in in vitro tests. The stability and long-term accuracy of the SWS-4000 dialysis machine remain to be improved.

  17. Cutting the Cord: Discrimination and Command Responsibility in Autonomous Lethal Weapons

    DTIC Science & Technology

    2014-02-13

    machine responses to identical stimuli, and it was the job of a third party human “witness” to determine which participant was man and which was...machines may be error free, but there are potential benefits to be gained through autonomy if machines can meet or exceed human performance in...lieu of human operators and reap the benefits that autonomy provides. Human and Machine Error It would be foolish to assert that either humans

  18. An efficient annealing in Boltzmann machine in Hopfield neural network

    NASA Astrophysics Data System (ADS)

    Kin, Teoh Yeong; Hasan, Suzanawati Abu; Bulot, Norhisam; Ismail, Mohammad Hafiz

    2012-09-01

    This paper proposes and implements Boltzmann machine in Hopfield neural network doing logic programming based on the energy minimization system. The temperature scheduling in Boltzmann machine enhancing the performance of doing logic programming in Hopfield neural network. The finest temperature is determined by observing the ratio of global solution and final hamming distance using computer simulations. The study shows that Boltzmann Machine model is more stable and competent in term of representing and solving difficult combinatory problems.

  19. Wear of carbide inserts with complex surface treatment when milling nickel alloy

    NASA Astrophysics Data System (ADS)

    Fedorov, Sergey; Swe, Min Htet; Kapitanov, Alexey; Egorov, Sergey

    2018-03-01

    One of the effective ways of strengthening hard alloys is the creating structure layers on their surface with the gradient distribution of physical and mechanical properties between the wear-resistant coating and the base material. The article discusses the influence of the near-surface layer which is modified by low-energy high-current electron-beam alloying and the upper anti-friction layer in a multi-component coating on the wear mechanism of the replaceable multifaceted plates in the dry milling of the difficult to machine nickel alloys.

  20. The Effects of Operational Parameters on a Mono-wire Cutting System: Efficiency in Marble Processing

    NASA Astrophysics Data System (ADS)

    Yilmazkaya, Emre; Ozcelik, Yilmaz

    2016-02-01

    Mono-wire block cutting machines that cut with a diamond wire can be used for squaring natural stone blocks and the slab-cutting process. The efficient use of these machines reduces operating costs by ensuring less diamond wire wear and longer wire life at high speeds. The high investment costs of these machines will lead to their efficient use and reduce production costs by increasing plant efficiency. Therefore, there is a need to investigate the cutting performance parameters of mono-wire cutting machines in terms of rock properties and operating parameters. This study aims to investigate the effects of the wire rotational speed (peripheral speed) and wire descending speed (cutting speed), which are the operating parameters of a mono-wire cutting machine, on unit wear and unit energy, which are the performance parameters in mono-wire cutting. By using the obtained results, cuttability charts for each natural stone were created on the basis of unit wear and unit energy values, cutting optimizations were performed, and the relationships between some physical and mechanical properties of rocks and the optimum cutting parameters obtained as a result of the optimization were investigated.

Top