Sample records for dry machining processes

  1. MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES

    EPA Science Inventory

    The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...

  2. Effect of the Machined Surfaces of AISI 4337 Steel to Cutting Conditions on Dry Machining Lathe

    NASA Astrophysics Data System (ADS)

    Rahim, Robbi; Napid, Suhardi; Hasibuan, Abdurrozzaq; Rahmah Sibuea, Siti; Yusmartato, Y.

    2018-04-01

    The objective of the research is to obtain a cutting condition which has a good chance of realizing dry machining concept on AISI 4337 steel material by studying surface roughness, microstructure and hardness of machining surface. The data generated from the experiment were then processed and analyzed using the standard Taguchi method L9 (34) orthogonal array. Testing of dry and wet machining used surface test and micro hardness test for each of 27 test specimens. The machining results of the experiments showed that average surface roughness (Raavg) was obtained at optimum cutting conditions when VB 0.1 μm, 0.3 μm and 0.6 μm respectively 1.467 μm, 2.133 μm and 2,800 μm fo r dry machining while which was carried out by wet machining the results obtained were 1,833 μm, 2,667 μm and 3,000 μm. It can be concluded that dry machining provides better surface quality of machinery results than wet machining. Therefore, dry machining is a good choice that may be realized in the manufacturing and automotive industries.

  3. Gelcasting compositions having improved drying characteristics and machinability

    DOEpatents

    Janney, Mark A.; Walls, Claudia A. H.

    2001-01-01

    A gelcasting composition has improved drying behavior, machinability and shelf life in the dried and unfired state. The composition includes an inorganic powder, solvent, monomer system soluble in the solvent, an initiator system for polymerizing the monomer system, and a plasticizer soluble in the solvent. Dispersants and other processing aides to control slurry properties can be added. The plasticizer imparts an ability to dry thick section parts, to store samples in the dried state without cracking under conditions of varying relative humidity, and to machine dry gelcast parts without cracking or chipping. A method of making gelcast parts is also disclosed.

  4. A comparative study on performance of CBN inserts when turning steel under dry and wet conditions

    NASA Astrophysics Data System (ADS)

    Abdullah Bagaber, Salem; Razlan Yusoff, Ahmad

    2017-10-01

    Cutting fluids is the most unsustainable components of machining processes, it is negatively impacting on the environmental and additional energy required. Due to its high strength and corrosion resistance, the machinability of stainless steel has attracted considerable interest. This study aims to evaluate performance of cubic boron nitride (CBN) inserts for the machining parameters includes the power consumption and surface roughness. Due to the high single cutting-edge cost of CBN, the performance of significant is importance for hard finish turning. The present work also deals with a comparative study on power consumption and surface roughness under dry and flood conditions. Turning process of the stainless steel 316 was performed. A response surface methodology based box-behnken design (BBD) was utilized for statistical analysis. The optimum process parameters are determined as the overall performance index. The comparison study has been done between dry and wet stainless-steel cut in terms of minimum value of energy and surface roughness. The result shows the stainless still can be machined under dry condition with 18.57% improvement of power consumption and acceptable quality compare to the wet cutting. The CBN tools under dry cutting stainless steel can be used to reduce the environment impacts in terms of no cutting fluid use and less energy required which is effected in machining productivity and profit.

  5. Modeling and Designing of A Nonlineartemperature-Humidity Controller Using Inmushroom-Drying Machine

    NASA Astrophysics Data System (ADS)

    Wu, Xiuhua; Luo, Haiyan; Shi, Minhui

    Drying-process of many kinds of farm produce in a close room, such as mushroom-drying machine, is generally a complicated nonlinear and timedelay cause, in which the temperature and the humidity are the main controlled elements. The accurate controlling of the temperature and humidity is always an interesting problem. It's difficult and very important to make a more accurate mathematical model about the varying of the two. A math model was put forward after considering many aspects and analyzing the actual working circumstance in this paper. Form the model it can be seen that the changes of temperature and humidity in drying machine are not simple linear but an affine nonlinear process. Controlling the process exactly is the key that influences the quality of the dried mushroom. In this paper, the differential geometry theories and methods are used to analyze and solve the model of these smallenvironment elements. And at last a kind of nonlinear controller which satisfied the optimal quadratic performance index is designed. It can be proved more feasible and practical than the conventional controlling.

  6. Overview of nanofluid application through minimum quantity lubrication (MQL) in metal cutting process

    NASA Astrophysics Data System (ADS)

    Sharif, Safian; Sadiq, Ibrahim Ogu; Suhaimi, Mohd Azlan; Rahim, Shayfull Zamree Abd

    2017-09-01

    Pollution related activities in addition to handling cost of conventional cutting fluid application in metal cutting industry has generated a lot of concern over time. The desire for a green machining environment which will preserve the environment through reduction or elimination of machining related pollution, reduction in oil consumption and safety of the machine operators without compromising an efficient machining process led to search for alternatives to conventional cutting fluid. Amongst the alternatives of dry machining, cryogenic cooling, high pressure cooling, near dry or minimum quantity lubrication (MQL), MQL have shown remarkable performance in terms of cost, machining output, safety of environment and machine operators. However, the MQL under aggressive machining or very high speed machining pose certain restriction as the lubrication media cannot perform efficiently at elevated temperature. In compensating for the shortcomings of MQL technique, high thermal conductivity nanoparticles are introduced in cutting fluids for use in the MQL lubrication process. They have indicated enhanced performance of machining process and significant reduction of loads on the environment. The present work is aimed at evaluating the application and performance of nanofluid in metal cutting process through MQL lubrication technique highlighting their impacts and prospects as lubrication strategy in metal cutting process for sustainable green manufacturing. Enhanced performance of vegetable oil based nanofluids over mineral oil-based nanofluids have been reported and thus highlighted.

  7. Process Capability of High Speed Micro End-Milling of Inconel 718 with Minimum Quantity Lubrication

    NASA Astrophysics Data System (ADS)

    Rahman, Mohamed Abd; Yeakub Ali, Mohammad; Rahman Shah Rosli, Abdul; Banu, Asfana

    2017-03-01

    The demand for micro-parts is expected to grow and micro-machining has been shown to be a viable manufacturing process to produce these products. These micro-products may be produced from hard-to-machine materials such as superalloys under little or no metal cutting fluids to reduce machining cost or drawbacks associated with health and environment. This project aims to investigate the capability of micro end-milling process of Inconel 718 with minimum quantity lubrication (MQL). Microtools DT-110 multi-process micro machine was used to machine 10 micro-channels with MQL and 10 more under dry condition while maintaining the same machining parameters. The width of the micro-channels was measured using digital microscope and used to determine the process capability indices, Cp and Cpk. QI Macros SPC for Excel was used to analyze the resultant machining data. The results indicated that micro end-milling process of Inconel 718 was not capable under both MQL and dry cutting conditions as indicated by the Cp values of less than 1.0. However, the use of MQL helped the process to be more stable and capable. Results obtained showed that the process variation was greatly reduced by using MQL in micro end-milling of Inconel 718.

  8. Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.

    2010-10-04

    Laboratory tests were conducted to determine the fatigue performance of AWJ-machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results not only confirmed the findings of the aluminum dog-bone specimens but also further enhance the fatigue performance. In addition, titanium is known to be notoriously difficult to cutmore » with contact tools while AWJs cut it 34% faster than stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred combination for processing aircraft titanium that is fatigue critical.« less

  9. Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions

    NASA Astrophysics Data System (ADS)

    Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.

    2017-07-01

    This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.

  10. Cutting Zone Temperature Identification During Machining of Nickel Alloy Inconel 718

    NASA Astrophysics Data System (ADS)

    Czán, Andrej; Daniš, Igor; Holubják, Jozef; Zaušková, Lucia; Czánová, Tatiana; Mikloš, Matej; Martikáň, Pavol

    2017-12-01

    Quality of machined surface is affected by quality of cutting process. There are many parameters, which influence on the quality of the cutting process. The cutting temperature is one of most important parameters that influence the tool life and the quality of machined surfaces. Its identification and determination is key objective in specialized machining processes such as dry machining of hard-to-machine materials. It is well known that maximum temperature is obtained in the tool rake face at the vicinity of the cutting edge. A moderate level of cutting edge temperature and a low thermal shock reduce the tool wear phenomena, and a low temperature gradient in the machined sublayer reduces the risk of high tensile residual stresses. The thermocouple method was used to measure the temperature directly in the cutting zone. An original thermocouple was specially developed for measuring of temperature in the cutting zone, surface and subsurface layers of machined surface. This paper deals with identification of temperature and temperature gradient during dry peripheral milling of Inconel 718. The measurements were used to identification the temperature gradients and to reconstruct the thermal distribution in cutting zone with various cutting conditions.

  11. Application of Abrasive-Waterjets for Machining Fatigue-Critical Aircraft Aluminum Parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H T; Hovanski, Yuri; Dahl, Michael E

    2010-08-19

    Current specifications require AWJ-cut aluminum parts for fatigue critical aerospace structures to go through subsequent processing due to concerns of degradation in fatigue performance. The requirement of secondary process for AWJ-machined parts greatly negates the cost effectiveness of waterjet technology. Some cost savings are envisioned if it can be shown that AWJ net cut parts have comparable durability properties as those conventionally machined. To revisit and upgrade the specifications for AWJ machining of aircraft aluminum, “Dog-bone” specimens, with and without secondary processes, were prepared for independent fatigue tests at Boeing and Pacific Northwest National Laboratory (PNNL). Test results show thatmore » the fatigue life is proportional to quality levels of machined edges or inversely proportional to the surface roughness Ra . Even at highest quality level, the average fatigue life of AWJ-machined parts is about 30% shorter than those of conventionally machined counterparts. Between two secondary processes, dry-grit blasting with aluminum oxide abrasives until the striation is removed visually yields excellent result. It actually prolongs the fatigue life of parts at least three times higher than that achievable with conventional machining. Dry-grit blasting is relatively simple and inexpensive to administrate and, equally important, alleviates the concerns of garnet embedment.« less

  12. Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.

    2012-02-01

    Laboratory tests were conducted to determine the fatigue performance of abrasive-waterjet- (AWJ-) machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results of the titanium specimens not only confirmed our previous findings in aluminum dog-bone specimens but in comparison also further enhanced the fatigue performance of the titanium.more » In addition, titanium is known to be difficult to cut, particularly for thick parts, however AWJs cut the material 34% faster han stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred ombination for processing aircraft titanium that is fatigue critical.« less

  13. Fish swarm intelligent to optimize real time monitoring of chips drying using machine vision

    NASA Astrophysics Data System (ADS)

    Hendrawan, Y.; Hawa, L. C.; Damayanti, R.

    2018-03-01

    This study attempted to apply machine vision-based chips drying monitoring system which is able to optimise the drying process of cassava chips. The objective of this study is to propose fish swarm intelligent (FSI) optimization algorithms to find the most significant set of image features suitable for predicting water content of cassava chips during drying process using artificial neural network model (ANN). Feature selection entails choosing the feature subset that maximizes the prediction accuracy of ANN. Multi-Objective Optimization (MOO) was used in this study which consisted of prediction accuracy maximization and feature-subset size minimization. The results showed that the best feature subset i.e. grey mean, L(Lab) Mean, a(Lab) energy, red entropy, hue contrast, and grey homogeneity. The best feature subset has been tested successfully in ANN model to describe the relationship between image features and water content of cassava chips during drying process with R2 of real and predicted data was equal to 0.9.

  14. Development of automated control system for wood drying

    NASA Astrophysics Data System (ADS)

    Sereda, T. G.; Kostarev, S. N.

    2018-05-01

    The article considers the parameters of convective wood drying which allows changing the characteristics of the air that performs drying at different stages: humidity, temperature, speed and direction of air movement. Despite the prevalence of this type of drying equipment, the main drawbacks of it are: the high temperature and humidity, negatively affecting the working conditions of maintenance personnel when they enter the drying chambers. It makes the automation of wood drying process necessary. The synthesis of a finite state of a machine control of wood drying process is implemented on a programmable logic device Omron.

  15. Application of Taguchi Method for Analyzing Factors Affecting the Performance of Coated Carbide Tool When Turning FCD700 in Dry Cutting Condition

    NASA Astrophysics Data System (ADS)

    Ghani, Jaharah A.; Mohd Rodzi, Mohd Nor Azmi; Zaki Nuawi, Mohd; Othman, Kamal; Rahman, Mohd. Nizam Ab.; Haron, Che Hassan Che; Deros, Baba Md

    2011-01-01

    Machining is one of the most important manufacturing processes in these modern industries especially for finishing an automotive component after the primary manufacturing processes such as casting and forging. In this study the turning parameters of dry cutting environment (without air, normal air and chilled air), various cutting speed, and feed rate are evaluated using a Taguchi optimization methodology. An orthogonal array L27 (313), signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these turning parameters on the performance of a coated carbide tool. The results show that the tool life is affected by the cutting speed, feed rate and cutting environment with contribution of 38%, 32% and 27% respectively. Whereas for the surface roughness, the feed rate is significantly controlled the machined surface produced by 77%, followed by the cutting environment of 19%. The cutting speed is found insignificant in controlling the machined surface produced. The study shows that the dry cutting environment factor should be considered in order to produce longer tool life as well as for obtaining a good machined surface.

  16. Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651

    PubMed Central

    Jomaa, Walid; Songmene, Victor; Bocher, Philippe

    2014-01-01

    The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining. PMID:28788534

  17. Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Pradeep Kumar, M.

    2011-09-01

    Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.

  18. Effects of retrofit emission controls and work practices on perchloroethylene exposures in small dry-cleaning shops.

    PubMed

    Ewers, Lynda M; Ruder, Avima M; Petersen, Martin R; Earnest, G Scott; Goldenhar, Linda M

    2002-02-01

    The effectiveness of commercially available interventions for reducing workers' perchloroethylene exposures in three small dry-cleaning shops was evaluated. Depending upon machine configuration, the intervention consisted of the addition of either a refrigerated condenser or a closed-loop carbon adsorber to the existing dry-cleaning machine. These relatively inexpensive (less than $5000) engineering controls were designed to reduce perchloroethylene emissions when dry-cleaning machine doors were opened for loading or unloading. Effectiveness of the interventions was judged by comparing pre- and postintervention perchloroethylene exposures using three types of measurements in each shop: (1) full-shift, personal breathing zone, air monitoring, (2) next-morning, end-exhaled worker breath concentrations of perchloroethylene, and (3) differences in the end-exhaled breath perchloroethylene concentrations before and after opening the dry-cleaning machine door. In general, measurements supported the hypothesis that machine operators' exposures to perchloroethylene can be reduced. However, work practices, especially maintenance practices, influenced exposures more than was originally anticipated. Only owners of dry-cleaning machines in good repair, with few leaks, should consider retrofitting them, and only after consultation with their machine's manufacturer. If machines are in poor condition, a new machine or alternative technology should be considered. Shop owners and employees should never circumvent safety features on dry-cleaning machines.

  19. Machinability of Stellite 6 hardfacing

    NASA Astrophysics Data System (ADS)

    Benghersallah, M.; Boulanouar, L.; Le Coz, G.; Devillez, A.; Dudzinski, D.

    2010-06-01

    This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.

  20. Comparison of machinability of manganese alloyed austempered ductile iron produced using conventional and two step austempering processes

    NASA Astrophysics Data System (ADS)

    Hegde, Ananda; Sharma, Sathyashankara

    2018-05-01

    Austempered Ductile Iron (ADI) is a revolutionary material with high strength and hardness combined with optimum ductility and toughness. The discovery of two step austempering process has lead to the superior combination of all the mechanical properties. However, because of the high strength and hardness of ADI, there is a concern regarding its machinability. In the present study, machinability of ADI produced using conventional and two step heat treatment processes is assessed using tool life and the surface roughness. Speed, feed and depth of cut are considered as the machining parameters in the dry turning operation. The machinability results along with the mechanical properties are compared for ADI produced using both conventional and two step austempering processes. The results have shown that two step austempering process has produced better toughness with good hardness and strength without sacrificing ductility. Addition of 0.64 wt% manganese did not cause any detrimental effect on the machinability of ADI, both in conventional and two step processes. Marginal improvement in tool life and surface roughness were observed in two step process compared to that with conventional process.

  1. A control technology evaluation of state-of-the-art, perchloroethylene dry-cleaning machines.

    PubMed

    Earnest, G Scott

    2002-05-01

    NIOSH researchers evaluated the ability of fifth-generation dry-cleaning machines to control occupational exposure to perchloroethylene (PERC). Use of these machines is mandated in some countries; however, less than 1 percent of all U.S. shops have them. A study was conducted at a U.S. dry-cleaning shop where two fifth-generation machines were used. Both machines had a refrigerated condenser as a primary control and a carbon adsorber as a secondary control to recover PERC vapors during the dry cycle. These machines were designed to lower the PERC concentration in the cylinder at the end of the dry cycle to below 290 ppm. A single-beam infrared photometer continuously monitors the PERC concentration in the machine cylinder, and a door interlock prevents opening until the concentration is below 290 ppm. Personal breathing zone air samples were measured for the machine operator and presser. The operator had time-weighted average (TWA) PERC exposures that were less than 2 ppm. Highest exposures occurred during loading and unloading the machine and when performing routine machine maintenance. All presser samples were below the limit of detection. Real-time video exposure monitoring showed that the operator had peak exposures near 160 ppm during loading and unloading the machine (below the OSHA maximum of 300 ppm). This exposure (160 ppm) is an order of magnitude lower than exposures with more traditional machines that are widely used in the United States. The evaluated machines were very effective at reducing TWA PERC exposures as well as peak exposures that occur during machine loading and unloading. State-of-the-art dry-cleaning machines equipped with refrigerated condensers, carbon adsorbers, drum monitors, and door interlocks can provide substantially better protection than more traditional machines that are widely used in the United States.

  2. Farley Three-Dimensional-Braiding Machine

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1991-01-01

    Process and device known as Farley three-dimensional-braiding machine conceived to fabricate dry continuous fiber-reinforced preforms of complex three-dimensional shapes for subsequent processing into composite structures. Robotic fiber supply dispenses yarn as it traverses braiding surface. Combines many attributes of weaving and braiding processes with other attributes and capabilities. Other applications include decorative cloths, rugs, and other domestic textiles. Concept could lead to large variety of fiber layups and to entirely new products as well as new fiber-reinforcing applications.

  3. Evaluation of Process Performance for Sustainable Hard Machining

    NASA Astrophysics Data System (ADS)

    Rotella, Giovanna; Umbrello, Domenico; , Oscar W. Dillon, Jr.; Jawahir, I. S.

    This paper aims to evaluate the sustainability performance of machining operation of through-hardening steel, AISI 52100, taking into account the impact of the material removal process in its various aspects. Experiments were performed for dry and cryogenic cutting conditions using chamfered cubic boron nitride (CBN) tool inserts at varying cutting conditions (cutting speed and feed rate). Cutting forces, mechanical power, tool wear, white layer thickness, surface roughness and residual stresses were investigated in order to evaluate the effects of extreme in-process cooling on the machined surface. The results indicate that cryogenic cooling has the potential to be used for surface integrity enhancement for improved product life and more sustainable functional performance.

  4. Remelt Ingot Production Technology

    NASA Astrophysics Data System (ADS)

    Grandfield, J. F.

    The technology related to the production of remelt ingots (small ingots, sows and T-Bar) is reviewed. Open mold conveyors, sow casting, wheel and belt casting and VDC and HDC casting are described and compared. Process economics, capacity, product quality and process problems are listed. Trends in casting machine technology such as longer open mold conveyor lines are highlighted. Safety issues related to the operation of these processes are discussed. The advantages and disadvantages of the various machine configurations and options e.g. such as dry filling with the mold out of water and wet filling with the mold in water for open mould conveyors are discussed. The effect of mold design on machine productivity, mold cracking and mold life is also examined.

  5. Analysis Of The Surface Roughness Obtained During The Dry Turning Of UNS A97050-T7 Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    de Agustina, B.; Rubio, E. M.; Villeta, M.; Sebastián, M. A.

    2009-11-01

    Currently, in the aeronautical, aerospace and automotive industries there is high demand of materials such as the aluminium alloys that have high resistance even at high temperatures as well as a low density. For this reason, these alloys are widely used for the production of different elements that compose aircraft and aerospace vehicles. Nevertheless, in spite of the important role these materials have from the competitive point of view, they can commonly show problems of machinability associated with the tool wear. That has made that traditionally cutting fluids had been used in machining processes. However, they can contain environmentally harmful constituents and increase considerably the total cost of the process. Therefore, researches have been focused on the development of cleaner production technologies applications as dry machining. This leads to the search for combinations of cutting parameters and type of tools (types of coatings and different geometries) that could improve the machining under such conditions. The aim of this study is to analyse the relationship between the surface roughness obtained during the dry turning of aluminium UNS A97050-T7 bars and the cutting parameters (cutting speed and feed) using three different tools. As a first conclusion it could be affirmed that the feed was the cutting parameter more influential on the surface roughness and to a lesser extend the cutting speed, the type of tool and the interaction between the type of tool and the feed.

  6. Overview Of Dry-Etch Techniques

    NASA Astrophysics Data System (ADS)

    Salzer, John M.

    1986-08-01

    With pattern dimensions shrinking, dry methods of etching providing controllable degrees of anisotropy become a necessity. A number of different configurations of equipment - inline, hex, planar, barrel - have been offered, and within each type, there are numerous significant variations. Further, each specific type of machine must be perfected over a complex, interactive parameter space to achieve suitable removal of various materials. Among the most critical system parameters are the choice of cathode or anode to hold the wafers, the chamber pressure, the plasma excitation frequency, and the electrode and magnetron structures. Recent trends include the use of vacuum load locks, multiple chambers, multiple electrodes, downstream etching or stripping, and multistep processes. A major percentage of etches in production handle the three materials: polysilicon, oxide and aluminum. Recent process developments have targeted refractory metals, their silicides, and with increasing emphasis, silicon trenching. Indeed, with new VLSI structures, silicon trenching has become the process of greatest interest. For stripping, dry processes provide advantages other than anisotropy. Here, too, new configurations and methods have been introduced recently. While wet processes are less than desirable from a number of viewpoints (handling, safety, disposal, venting, classes of clean room, automatability), dry methods are still being perfected as a direct, universal replacement. The paper will give an overview of these machine structures and process solutions, together with examples of interest. These findings and the trends discussed are based on semiannual survey of manufacturers and users of the various types of equipment.

  7. 25. Paper ready for the calender presses. This picture shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Paper ready for the calender presses. This picture shows the paper after it has been coated and dried, as shown on page 238, and it being rolled at the end of the coating-machine. It is now ready to be sent to the big presses which calender it (or iron it, as popular pariance would have it). The pictures on pages 238 and 239 show a continuous process over a single machine; but on account of the length of teh machine, the process is illustrated in sections. (p.239.) - Champion-International Paper Company, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  8. Sustainable manufacturing by calculating the energy demand during turning of AISI 1045 steel

    NASA Astrophysics Data System (ADS)

    Nur, R.; Nasrullah, B.; Suyuti, M. A.; Apollo

    2018-01-01

    Sustainable development will become important issues for many fields, including production, industry, and manufacturing. In order to achieve sustainable development, industry should be able to perform of sustainable production processes and environmentally friendly. Therefore, there is need to minimize the energy demand in the machining process. This paper presents a calculation method of energy consumption in the machining process, especially turning process which calculated by summing the number of energy consumption, such as the electric energy consumed during the machining preparation, the electrical energy during the cutting processes, and the electrical energy to produce a cutting tool. A case study was performed on dry turning of mild carbon steel using coated carbide. This approach can be used to determine the total amount of electrical energy consumed in the specific machining process. It concluded that the energy consumption will be an increase for using the high cutting speed as well as for the feed rate was increased.

  9. Study of the Productivity and Surface Quality of Hybrid EDM

    NASA Astrophysics Data System (ADS)

    Wankhade, Sandeepkumar Haribhau; Sharma, Sunil Bansilal

    2016-01-01

    The development of new, advanced engineering materials and the need for precise prototypes and low-volume production have made the electric discharge machining (EDM), an important manufacturing process to meet such demands. It is capable of machining geometrically complex and hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, carbides etc. Conversely the low MRR limits its productivity. Abrasive water jet machine (AJM) tools are quick to setup and offer quick turn-around on the machine and could make parts out of virtually any material. They do not heat the material hence no heat affected zone and can make any intricate shape easily. The main advantages are flexibility, low heat production and ability to machine hard and brittle materials. Main disadvantages comprise the process produces a tapered cut and health hazards due to dry abrasives. To overcome the limitations and exploit the best of each of above processes; an attempt has been made to hybridize the processes of AJM and EDM. The appropriate abrasives routed with compressed air through the hollow electrode to construct the hybrid process i.e., abrasive jet electric discharge machining (AJEDM), the high speed abrasives could impinge on the machined surface to remove the recast layer caused by EDM process. The main process parameters were varied to explore their effects and experimental results show that AJEDM enhances the machining efficiency with better surface finish hence can fit the requirements of modern manufacturing applications.

  10. Application of Fuzzy TOPSIS for evaluating machining techniques using sustainability metrics

    NASA Astrophysics Data System (ADS)

    Digalwar, Abhijeet K.

    2018-04-01

    Sustainable processes and techniques are getting increased attention over the last few decades due to rising concerns over the environment, improved focus on productivity and stringency in environmental as well as occupational health and safety norms. The present work analyzes the research on sustainable machining techniques and identifies techniques and parameters on which sustainability of a process is evaluated. Based on the analysis these parameters are then adopted as criteria’s to evaluate different sustainable machining techniques such as Cryogenic Machining, Dry Machining, Minimum Quantity Lubrication (MQL) and High Pressure Jet Assisted Machining (HPJAM) using a fuzzy TOPSIS framework. In order to facilitate easy arithmetic, the linguistic variables represented by fuzzy numbers are transformed into crisp numbers based on graded mean representation. Cryogenic machining was found to be the best alternative sustainable technique as per the fuzzy TOPSIS framework adopted. The paper provides a method to deal with multi criteria decision making problems in a complex and linguistic environment.

  11. Development of Keropok Keping Drying Machine for Small & Medium Enterprises (SMEs)

    NASA Astrophysics Data System (ADS)

    Mohamaddan, S.; Mohd Mohtar, A. M. A. A.; Junaidi, N.; Mohtadzar, N. A. A.; Mohamad Suffian, M. S. Z.

    2016-02-01

    Keropok is a traditional cracker product in Southeast Asia. Keropok is made from fish, squid or shrimp mixed with starch or sago flour and eggs. In Malaysia, keropok industry is widely operated at the coastal areas where the fish/seafood supply can be easily accessed. Keropok need to be dried before the packaging process. At the moment, conventional method was used where the keropok is arranged under the sunlight on a board called pemidai. The method is considered less hygienic since it exposed to the dirt and dust and less practical especially during the raining season. This research is focusing on a new automation technique to solve the problems. Rotary drum with internal holder was developed as the drying machine. Keropok keping (types of keropok) was selected to be experimented using the machine with three different rotating speeds. Preliminary experiment result shows that the broken rate of the keropok keping was around 27% of the total weight. The development of new automation system is hoped to improve the small medium enterprises (SMEs) in Malaysia.

  12. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    NASA Astrophysics Data System (ADS)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting force, temperature and surface roughness data is developed and used to study the deformation mechanisms of porous tungsten under different machining conditions. It is found that when hmax = hc, ductile mode machining of otherwise highly brittle porous tungsten is possible. The value of hc is approximately the same as the average ligament size of the 80% density porous tungsten workpiece.

  13. Control Systems of Rubber Dryer Machinery Components Using Programmable Logic Control (PLC)

    NASA Astrophysics Data System (ADS)

    Hendra; Yulianto, A. S.; Indriani, A.; Hernadewita; Hermiyetti

    2018-02-01

    Application of programmable logic control (PLC) is widely used on the control systems in the many field engineering such as automotive, aviation, food processing and other industries [1-2]. PLC is simply program to control many automatic activity, easy to use, flexible and others. PLC using the ladder program to solve and regulated the control system component. In previous research, PLC was used for control system of rotary dryer machine. In this paper PLC are used for control system of motion component in the rubber dryer machinery. Component of rubber dryer machine is motors, gearbox, sprocket, heater, drying chamber and bearing. Principle working of rubber dryer machinery is wet rubber moving into the drying chamber by sprocket. Sprocket is driven by motors that conducted by PLC to moving and set of wet rubber on the drying chamber. Drying system uses greenhouse effect by making hanger dryer design in the form of line path. In this paper focused on motion control system motors and sensors drying rubber using PLC. The results show that control system of rubber dryer machinery can work in accordance control input and the time required to dry the rubber.

  14. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H. (Inventor); Zalameda, Joseph N. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  15. High speed machinability of the aerospace alloy AA7075 T6 under different cooling conditions

    NASA Astrophysics Data System (ADS)

    Imbrogno, Stano; Rinaldi, Sergio; Suarez, Asier Gurruchaga; Arrazola, Pedro J.; Umbrello, Domenico

    2018-05-01

    This paper describes the results of an experimental investigation aimed to st udy the machinability of AA7075 T6 (160 HV) for aerospace industry at high cutting speeds. The paper investigates the effects of different lubri-cooling strategies (cryogenic, M QL and dry) during high speed turning process on cutting forces, tool wear, chip morphology and cutting temperatures. The cutting speeds selected were 1000m/min, 1250m/min and 1500 m/min, while the feed rate values used were 0.1mm/rev and 0.3 mm/rev. The results of cryogenic and M QL application is compared with dry application. It was found that the cryogenic and M QL lubri-cooling techniques could represent a functional alternative to the common dry cutting application in order to implement a more effect ive high speed turning process. Higher cuttingparameters would be able to increase the productivity and reduce the production costs. The effects of the cutting parameters and on the variables object of study were investigated and the role of the different lubri-cooling conditions was assessed.

  16. Filament winding technique, experiment and simulation analysis on tubular structure

    NASA Astrophysics Data System (ADS)

    Quanjin, Ma; Rejab, M. R. M.; Kaige, Jiang; Idris, M. S.; Harith, M. N.

    2018-04-01

    Filament winding process has emerged as one of the potential composite fabrication processes with lower costs. Filament wound products involve classic axisymmetric parts (pipes, rings, driveshafts, high-pressure vessels and storage tanks), non-axisymmetric parts (prismatic nonround sections and pipe fittings). Based on the 3-axis filament winding machine has been designed with the inexpensive control system, it is completely necessary to make a relative comparison between experiment and simulation on tubular structure. In this technical paper, the aim of this paper is to perform a dry winding experiment using the 3-axis filament winding machine and simulate winding process on the tubular structure using CADWIND software with 30°, 45°, 60° winding angle. The main result indicates that the 3-axis filament winding machine can produce tubular structure with high winding pattern performance with different winding angle. This developed 3-axis winding machine still has weakness compared to CAWIND software simulation results with high axes winding machine about winding pattern, turnaround impact, process error, thickness, friction impact etc. In conclusion, the 3-axis filament winding machine improvements and recommendations come up with its comparison results, which can intuitively understand its limitations and characteristics.

  17. Development of advanced Czochralski growth process to produce low-cost 150 kG silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The modified CG2000 crystal grower construction, installation, and machine check out was completed. The process development check out proceeded with several dry runs and one growth run. Several machine calibrations and functional problems were discovered and corrected. Exhaust gas analysis system alternatives were evaluated and an integrated system approved and ordered. Several growth runs on a development CG2000 RC grower show that complete neck, crown, and body automated growth can be achieved with only one operator input.

  18. Flank wear analysing of high speed end milling for hardened steel D2 using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Hazza Faizi Al-Hazza, Muataz; Ibrahim, Nur Asmawiyah bt; Adesta, Erry T. Y.; Khan, Ahsan Ali; Abdullah Sidek, Atiah Bt.

    2017-03-01

    One of the main challenges for any manufacturer is how to decrease the machining cost without affecting the final quality of the product. One of the new advanced machining processes in industry is the high speed hard end milling process that merges three advanced machining processes: high speed milling, hard milling and dry milling. However, one of the most important challenges in this process is to control the flank wear rate. Therefore a analyzing the flank wear rate during machining should be investigated in order to determine the best cutting levels that will not affect the final quality of the product. In this research Taguchi method has been used to investigate the effect of cutting speed, feed rate and depth of cut and determine the best level s to minimize the flank wear rate up to total length of 0.3mm based on the ISO standard to maintain the finishing requirements.

  19. Influence of Cutting Parameters and Tool Wear on the Surface Integrity of Cobalt-Based Stellite 6 Alloy When Machined Under a Dry Cutting Environment

    NASA Astrophysics Data System (ADS)

    Yingfei, Ge; de Escalona, Patricia Muñoz; Galloway, Alexander

    2017-01-01

    The efficiency of a machining process can be measured by evaluating the quality of the machined surface and the tool wear rate. The research reported herein is mainly focused on the effect of cutting parameters and tool wear on the machined surface defects, surface roughness, deformation layer and residual stresses when dry milling Stellite 6, deposited by overlay on a carbon steel surface. The results showed that under the selected cutting conditions, abrasion, diffusion, peeling, chipping and breakage were the main tool wear mechanisms presented. Also the feed rate was the primary factor affecting the tool wear with an influence of 83%. With regard to the influence of cutting parameters on the surface roughness, the primary factors were feed rate and cutting speed with 57 and 38%, respectively. In addition, in general, as tool wear increased, the surface roughness increased and the deformation layer was found to be influenced more by the cutting parameters rather than the tool wear. Compressive residual stresses were observed in the un-machined surface, and when machining longer than 5 min, residual stress changed 100% from compression to tension. Finally, results showed that micro-crack initiation was the main mechanism for chip formation.

  20. 40 CFR 63.322 - Standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... at each opening at all times that the machine is operating. (b) The owner or operator of each new dry... articles to or from the machine, and shall keep the door closed at all other times. (d) The owner or... existing dry cleaning system and of each new transfer machine system and its ancillary equipment installed...

  1. 40 CFR 63.322 - Standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... at each opening at all times that the machine is operating. (b) The owner or operator of each new dry... articles to or from the machine, and shall keep the door closed at all other times. (d) The owner or... existing dry cleaning system and of each new transfer machine system and its ancillary equipment installed...

  2. Development of Advanced Czochralski Growth Process to produce low cost 150 KG silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The modified CG2000 crystal grower construction, installation, and machine check-out was completed. The process development check-out proceeded with several dry runs and one growth run. Several machine calibrations and functional problems were discovered and corrected. Several exhaust gas analysis system alternatives were evaluated and an integrated system approved and ordered. A contract presentation was made at the Project Integration Meeting at JPL, including cost-projections using contract projected throughput and machine parameters. Several growth runs on a development CG200 RC grower show that complete neck, crown, and body automated growth can be achieved with only one operator input. Work continued for melt level, melt temperature, and diameter sensor development.

  3. Modeling of Particle Emission During Dry Orthogonal Cutting

    NASA Astrophysics Data System (ADS)

    Khettabi, Riad; Songmene, Victor; Zaghbani, Imed; Masounave, Jacques

    2010-08-01

    Because of the risks associated with exposure to metallic particles, efforts are being put into controlling and reducing them during the metal working process. Recent studies by the authors involved in this project have presented the effects of cutting speeds, workpiece material, and tool geometry on particle emission during dry machining; the authors have also proposed a new parameter, named the dust unit ( D u), for use in evaluating the quantity of particle emissions relative to the quantity of chips produced during a machining operation. In this study, a model for predicting the particle emission (dust unit) during orthogonal turning is proposed. This model, which is based on the energy approach combined with the microfriction and the plastic deformation of the material, takes into account the tool geometry, the properties of the worked material, the cutting conditions, and the chip segmentation. The model is validated using experimental results obtained during the orthogonal turning of 6061-T6 aluminum alloy, AISI 1018, AISI 4140 steels, and grey cast iron. A good agreement was found with experimental results. This model can help in designing strategies for reducing particle emission during machining processes, at the source.

  4. Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture

    NASA Astrophysics Data System (ADS)

    Muhammad, Noorhafiza; Li, Lin

    2012-06-01

    Microprofiling of medical coronary stents has been dominated by the use of Nd:YAG lasers with pulse lengths in the range of a few milliseconds, and material removal is based on the melt ejection with a high-pressure gas. As a result, recast and heat-affected zones are produced, and various post-processing procedures are required to remove these defects. This paper reports a new approach of machining stents in submerged conditions using a 100-fs pulsed laser. A comparison is given of dry and underwater femtosecond laser micromachining techniques of nickel-titanium alloy (nitinol) typically used as the material for coronary stents. The characteristics of laser interactions with the material have been studied. A femtosecond Ti:sapphire laser system (wavelength of 800 nm, pulse duration of 100 fs, repetition rate of 1 kHz) was used to perform the cutting process. It is observed that machining under a thin water film resulted in no presence of heat-affected zone, debris, spatter or recast with fine-cut surface quality. At the optimum parameters, the results obtained with dry cutting showed nearly the same cut surface quality as with cutting under water. However, debris and recast formation still appeared on the dry cut, which is based on material vaporization. Physical processes involved during the cutting process in a thin water film, i.e. bubble formation and shock waves, are discussed.

  5. “Investigations on the machinability of Waspaloy under dry environment”

    NASA Astrophysics Data System (ADS)

    Deepu, J.; Kuppan, P.; SBalan, A. S.; Oyyaravelu, R.

    2016-09-01

    Nickel based superalloy, Waspaloy is extensively used in gas turbine, aerospace and automobile industries because of their unique combination of properties like high strength at elevated temperatures, resistance to chemical degradation and excellent wear resistance in many hostile environments. It is considered as one of the difficult to machine superalloy due to excessive tool wear and poor surface finish. The present paper is an attempt for removing cutting fluids from turning process of Waspaloy and to make the processes environmentally safe. For this purpose, the effect of machining parameters such as cutting speed and feed rate on the cutting force, cutting temperature, surface finish and tool wear were investigated barrier. Consequently, the strength and tool wear resistance and tool life increased significantly. Response Surface Methodology (RSM) has been used for developing and analyzing a mathematical model which describes the relationship between machining parameters and output variables. Subsequently ANOVA was used to check the adequacy of the regression model as well as each machining variables. The optimal cutting parameters were determined based on multi-response optimizations by composite desirability approach in order to minimize cutting force, average surface roughness and maximum flank wear. The results obtained from the experiments shown that machining of Waspaloy using coated carbide tool with special ranges of parameters, cutting fluid could be completely removed from machining process

  6. Combined Grinding and Drying of Biomass in One Operation Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, S

    2008-06-26

    First American Scientific Corporation (FASC) has developed a unique and innovative grinder/dryer called KDS Micronex. The KS (Kinetic Disintegration System) combines two operations of grinding and drying into a single operation which reduces dependence on external heat input. The machine captures the heat of comminution and combines it will centrifugal forces to expedite moisture extraction from wet biomass. Because it uses mechanical forces rather than providing direct heat to perform the drying operation, it is a simpler machine and uses less energy than conventional grinding and drying operations which occur as two separate steps. The entire compact unit can bemore » transported on a flatbed trailer to the site where biomass is available. Hence, the KDS Micronex is a technology that enables inexpensive pretreatment of waste materials and biomass. A well prepared biomass can be used as feed, fuel or fertilizer instead of being discarded. Electricity and chemical feedstock produced from such biomass would displace the use of fossil fuels and no net greenhouse gas emissions would result from such bio-based operations. Organic fertilizers resulting from the KS Micronex grinding/drying process will be pathogen-free unlike raw animal manures. The feasibility tests on KS during Phase I showed that a prototype machine can be developed, field tested and the technology demonstrated for commercial applications. The present KDS machine can remove up to 400 kg/h of water from a wet feed material. Since biomass processors demand a finished product that is only 10% moist and most raw materials like corn stover, bagasse, layer manure, cow dung, and waste wood have moisture contents of the order of 50%, this water removal rate translates to a production rate of roughly half a ton per hour. this is too small for most processors who are unwilling to acquire multiple machines because of the added complexity to the feed and product removal systems. The economics suffer due to small production rates, because the labor costs are a much larger fraction of the production cost. The goal for further research and development work is to scale up the KDS technology incorporating findings from Phase I into a machine that has superior performance characteristics.« less

  7. Low-resistive vibratory penetration in granular media.

    PubMed

    Darbois Texier, Baptiste; Ibarra, Alejandro; Melo, Francisco

    2017-01-01

    Non-cohesive materials such as sand, dry snow or cereals are encountered in various common circumstances, from everyday situations to industry. The process of digging into these materials remains a challenge to most animals and machines. Within the animal kingdom, different strategies are employed to overcome this issue, including excavation methods used by ants, the two-anchor strategy employed by soft burrowers such as razor-clams, and undulatory motions exhibited by sandfish lizards. Despite the development of technology to mimic these techniques in diggers and robots, the limitations of animals and machines may differ, and mimicry of natural processes is not necessarily the most efficient technological strategy. This study presents evidence that the resisting force for the penetration of an intruder into a dry granular media can be reduced by one order of magnitude with small amplitude (A ≃ 10 μm) and low frequency (f = 50 - 200 Hz) mechanical vibrations. This observed result is attributed to the local fluidization of the granular bed which induces the rupture of force chains. The drop in resistive force on entering dry granular materials may be relevant in technological development in order to increase the efficiency of diggers and robots.

  8. An evaluation of retrofit engineering control interventions to reduce perchloroethylene exposures in commercial dry-cleaning shops.

    PubMed

    Earnest, G Scott; Ewers, Lynda M; Ruder, Avima M; Petersen, Martin R; Kovein, Ronald J

    2002-02-01

    Real-time monitoring was used to evaluate the ability of engineering control devices retrofitted on two existing dry-cleaning machines to reduce worker exposures to perchloroethylene. In one dry-cleaning shop, a refrigerated condenser was installed on a machine that had a water-cooled condenser to reduce the air temperature, improve vapor recovery, and lower exposures. In a second shop, a carbon adsorber was retrofitted on a machine to adsorb residual perchloroethylene not collected by the existing refrigerated condenser to improve vapor recovery and reduce exposures. Both controls were successful at reducing the perchloroethylene exposures of the dry-cleaning machine operator. Real-time monitoring was performed to evaluate how the engineering controls affected exposures during loading and unloading the dry-cleaning machine, a task generally considered to account for the highest exposures. The real-time monitoring showed that dramatic reductions occurred in exposures during loading and unloading of the dry-cleaning machine due to the engineering controls. Peak operator exposures during loading and unloading were reduced by 60 percent in the shop that had a refrigerated condenser installed on the dry-cleaning machine and 92 percent in the shop that had a carbon adsorber installed. Although loading and unloading exposures were dramatically reduced, drops in full-shift time-weighted average (TWA) exposures were less dramatic. TWA exposures to perchloroethylene, as measured by conventional air sampling, showed smaller reductions in operator exposures of 28 percent or less. Differences between exposure results from real-time and conventional air sampling very likely resulted from other uncontrolled sources of exposure, differences in shop general ventilation before and after the control was installed, relatively small sample sizes, and experimental variability inherent in field research. Although there were some difficulties and complications with installation and maintenance of the engineering controls, this study showed that retrofitting engineering controls may be a feasible option for some dry-cleaning shop owners to reduce worker exposures to perchloroethylene. By installing retrofit controls, a dry-cleaning facility can reduce exposures, in some cases dramatically, and bring operators into compliance with the Occupational Safety and Health Administration (OSHA) peak exposure limit of 300 ppm. Retrofit engineering controls are also likely to enable many dry-cleaning workers to lower their overall personal TWA exposures to perchloroethylene.

  9. Challenges to a blow/fill/seal process with airborne microorganisms having different resistances to dry heat.

    PubMed

    Poisson, Patrick; Sinclair, Colin S; Tallentire, Alan

    2006-01-01

    Controlled challenges with air dispersed microorganisms having widely different resistances to dry heat, carried out on 624 BFS machine processing growth medium, have shown that higher the heat resistance, the greater the extent of vial contamination. Differences in heat resistance affected also the extent of vial contamination when parison and vial formation were knowingly manipulated through changes made to each of three process variables, provision of ballooning air, mould vacuum delay, and parison extrusion rate. The findings demonstrate that, in this investigational system, exposure of challenge micoorganisms to heat inherent in the process has a controlling influence on vial contamination, an influence that could also control microbiological risk in production environments.

  10. Trehalose and sorbitol alter the kinetic pattern of inactivation of glutamate dehydrogenase during drying in levitated microdroplets.

    PubMed

    Lorenzen, Elke; Lee, Geoffrey

    2013-12-01

    A single-droplet acoustic levitator was used to determine the drying rate and the kinetics of inactivation of glutamate dehydrogenase in the presence of added trehalose or sorbitol. The solution was also spray dried under the same process condition of drying gas temperature on a bench-top machine. Both trehalose and sorbitol delay the point of onset of enzyme inactivation which lies after the critical point of drying. Both carbohydrates also reduce the apparent rate constant of inactivation calculated during the subsequent inactivation phase. The carbohydrates stabilise, therefore, the enzyme during droplet drying and particle formation mainly during the falling rate drying period. There is no difference between the stabilising effects of the two carbohydrates when examined as levitated single droplets. This suggests the importance of water replacement as a stabilising mechanism in the levitated droplets/particles. On spray drying, the trehalose stabilises the enzyme better than does the sorbitol at a drying gas (outlet) temperature of 60°C. This suggests glass formation with the trehalose but not the sorbitol during the very rapid drying process of small-atomised droplets in the spray dryer. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. CFD Analysis to Calculate the Optimal Air Velocity in Drying Green Tea Process Using Fluidized Bed Dryer

    NASA Astrophysics Data System (ADS)

    Yohana, Eflita; Nugraha, Afif Prasetya; Diana, Ade Eva; Mahawan, Ilham; Nugroho, Sri

    2018-02-01

    Tea processing is basically distinguished into three types which black tea, green tea, and oolong tea. Green tea is processed by heating and drying the leaves. Green tea factories in Indonesia are generally using the process of drying by panning the leaves. It is more recommended to use the fluidization process to speed up the drying process as the quality of the tea can be maintained. Bubbling fluidization is expected to occur in this research. It is a process of bubbles are formed in the fluidization. The effectiveness of the drying process in a fluidized bed dryer machine needs to be improved by using a CFD simulation method to proof that umf < u < ut, where the average velocity value is limited by the minimum and the maximum velocity of the calculation the experimental data. The minimum and the maximum velocity value of the fluidization is 0.96 m/s and 8.2 m/s. The result of the simulation obtained that the average velocity of the upper bed part is 1.81 m/s. From the results obtained, it can be concluded that the calculation and the simulation data is in accordance with the condition of bubbling fluidization in fluidized bed dryer.

  12. Processing of surrogate nuclear fuel pellets for better dimensional control with dry bag isostatic pressing

    DOE PAGES

    Hoggan, Rita E.; Zuck, Larry D.; Cannon, W. Roger; ...

    2016-05-26

    A study of improved methods of processing fuel pellets was undertaken using ceria and zirconia/yttria/alumina as surrogates. Through proper granulation and vertical vibration (tapping) of the parts bag prior to dry bag isostatic pressing (DBIP), reproducibility of diameter profiles among multiple pellets of ceria was improved by almost an order of magnitude. Reproducibility of sintered pellets was sufficiently good to possibly avoid grinding. Deviation from the mean diameter along the length of multiple pellets, as well as, deviation from roundness, decreased after sintering. This is not generally observed with dry pressed pellets. Thus it is possible to machine to tolerancemore » before sintering if grinding is necessary.« less

  13. 40 CFR 63.322 - Standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-perchloroethylene gas-vapor stream contained within each dry cleaning machine through a refrigerated condenser or an... contained within each dry cleaning machine through a refrigerated condenser or an equivalent control device...' specifications and recommendations. (e) Each refrigerated condenser used for the purposes of complying with...

  14. 40 CFR 63.322 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalent control device. (2) Route the air-perchloroethylene gas-vapor stream contained within each dry... contained within each dry cleaning machine through a refrigerated condenser or an equivalent control device... cleaning machine drum through a carbon adsorber or equivalent control device immediately before or as the...

  15. 40 CFR 63.322 - Standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equivalent control device. (2) Route the air-perchloroethylene gas-vapor stream contained within each dry... contained within each dry cleaning machine through a refrigerated condenser or an equivalent control device... cleaning machine drum through a carbon adsorber or equivalent control device immediately before or as the...

  16. Recent developments in turning hardened steels - A review

    NASA Astrophysics Data System (ADS)

    Sivaraman, V.; Prakash, S.

    2017-05-01

    Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.

  17. Development of an electromechanical principle for wet and dry milling

    NASA Astrophysics Data System (ADS)

    Halbedel, Bernd; Kazak, Oleg

    2018-05-01

    The paper presents a novel electromechanical principle for wet and dry milling of different materials, in which the milling beads are moved under a time- and local-variable magnetic field. A possibility to optimize the milling process in such a milling machine by simulation of the vector gradient distribution of the electromagnetic field in the process room is presented. The mathematical model and simulation methods based on standard software packages are worked out. The results of numerical simulations and experimental measurements of the electromagnetic field in the working chamber of a developed and manufactured laboratory plant correlate well with each other. Using the obtained operating parameters, dry milling experiments with crushed cement clinker and wet milling experiments of organic agents in the laboratory plant are performed and the results are discussed here.

  18. Study of surface integrity AISI 4140 as result of hard, dry and high speed machining using CBN

    NASA Astrophysics Data System (ADS)

    Ginting, B.; Sembiring, R. W.; Manurung, N.

    2017-09-01

    The concept of hard, dry and high speed machining can be combined, to produce high productivity, with lower production costs in manufacturing industry. Hard lathe process can be a solution to reduce production time. In lathe hard alloy steels reported problems relating to the integrity of such surface roughness, residual stress, the white layer and the surface integrity. AISI 4140 material is used for high reliable hydraulic system components. This material includes in cold work tool steel. Consideration election is because this material is able to be hardened up to 55 HRC. In this research, the experimental design using CCD model fit with three factors, each factor is composed of two levels, and six central point, experiments were conducted with 1 replications. The experimental design research using CCD model fit.

  19. Evaluation of Workpiece Temperature during Drilling of GLARE Fiber Metal Laminates Using Infrared Techniques: Effect of Cutting Parameters, Fiber Orientation and Spray Mist Application.

    PubMed

    Giasin, Khaled; Ayvar-Soberanis, Sabino

    2016-07-28

    The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate.

  20. Evaluation of Workpiece Temperature during Drilling of GLARE Fiber Metal Laminates Using Infrared Techniques: Effect of Cutting Parameters, Fiber Orientation and Spray Mist Application

    PubMed Central

    Giasin, Khaled; Ayvar-Soberanis, Sabino

    2016-01-01

    The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate. PMID:28773757

  1. Fundamental investigation on influence of external heat on chip formation during thermal assisted machining

    NASA Astrophysics Data System (ADS)

    Alkali, A. U.; Ginta, T. L.; Abdulrani, A. M.; Elsiti, N. M.

    2018-04-01

    Various heat sources have been investigated by numerous researchers to reveal machinability benefits of thermally assisted machining (TAM) process. Fewer engineering materials have been tested. In the same vein, those researches continue to demonstrate effective performance of TAM in terms of bulk material removal rate, improved surface finish, prolong tool life and reduction of cutting forces among others. Experimental investigation on the strain-hardenability and flow stress of material removed with respect to increase in temperature in TAM has not been given attention in previous studies. This study investigated the pattern of chip morphology and segmentation giving close attention to influence of external heat source responsible for strain – hardenability of the material removed during TAM and dry machining at room temperature. Full immersion down cut milling was used throughout the machining conditions. Machining was conducted on AISI 316L using uncoated tungsten carbide end mill insert at varying cutting speeds (V) of 50, 79, and 100 m/min, and feed rates (f) of 0.15, 0.25, and 0.4 mm/tooth while the depth of cut was maintained at 0.2mm throughout the machining trials. The analyses of chip formation, segmentations and stain hardenability were carried out by using LMU light microscope, field emission microscopy and micro indentation. The study observed that build up edge is formed when a stagnation zone develops in front of tool tip which give rise to poor thermal gradient for conduction heat to be transferred within the bulk material during dry machining. This promotes varying strain – hardening of the material removed with evident high chips hardness and thickness, whereas TAM circumvents such impairment by softening the shear zone through local preheat.

  2. Experimental investigation into effect of cutting parameters on surface integrity of hardened tool steel

    NASA Astrophysics Data System (ADS)

    Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.

    2018-04-01

    Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min

  3. Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Zilong; Cai, Xin; Cao, Wenzhuo; Li, Xibing; Xiong, Cheng

    2016-08-01

    Water content has a pronounced influence on the properties of rock materials, which is responsible for many rock engineering hazards, such as landslides and karst collapse. Meanwhile, water injection is also used for the prevention of some engineering disasters like rock-bursts. To comprehensively investigate the effect of water content on mechanical properties of rocks, laboratory tests were carried out on sandstone specimens with different water contents in both saturation and drying processes. The Nuclear Magnetic Resonance technique was applied to study the water distribution in specimens with variation of water contents. The servo-controlled rock mechanics testing machine and Split Hopkinson Pressure Bar technique were used to conduct both compressive and tensile tests on sandstone specimens with different water contents. From the laboratory tests, reductions of the compressive and tensile strength of sandstone under static and dynamic states in different saturation processes were observed. In the drying process, all of the saturated specimens could basically regain their mechanical properties and recover its strength as in the dry state. However, for partially saturated specimens in the saturation and drying processes, the tensile strength of specimens with the same water content was different, which could be related to different water distributions in specimens.

  4. Experimental Investigation of Minimum Quantity Lubrication in Meso-scale Milling with Varying Tool Diameter

    NASA Astrophysics Data System (ADS)

    Yusof, M. Q. M.; Harun, H. N. S. B.; Bahar, R.

    2018-01-01

    Minimum quantity lubrication (MQL) is a method that uses a very small amount of liquid to reduce friction between cutting tool and work piece during machining. The implementation of MQL machining has become a viable alternative to flood cooling machining and dry machining. The overall performance has been evaluated during meso-scale milling of mild steel using different diameter milling cutters. Experiments have been conducted under two different lubrication condition: dry and MQL with variable cutting parameters. The tool wear and its surface roughness, machined surfaces microstructure and surface roughness were observed for both conditions. It was found from the results that MQL produced better results compared to dry machining. The 0.5 mm tool has been selected as the most optimum tool diameter to be used with the lowest surface roughness as well as the least flank wear generation. For the workpiece, it was observed that the cutting temperature possesses crucial effect on the microstructure and the surface roughness of the machined surface and bigger diameter tool actually resulted in higher surface roughness. The poor conductivity of the cutting tool may be one of reasons behind.

  5. Preliminary study of propyl bromide exposure among New Jersey dry cleaners as a result of a pending ban on perchloroethylene.

    PubMed

    Blando, James D; Schill, Donald P; De La Cruz, Mary Pauline; Zhang, Lin; Zhang, Junfeng

    2010-09-01

    Many states are considering, and some states have actively pursued, banning the use of perchloroethylene (PERC) in dry cleaning establishments. Proposed legislation has led many dry cleaners to consider the use of products that contain greater than 90% n-propyl bromide (n-PB; also called 1-bromopropane or 1-BP). Very little information is known about toxicity and exposure to n-PB. Some n-PB-containing products are marketed as nonhazardous and "green" or "organic." This has resulted in some users perceiving the solvent as nontoxic and has resulted in at least one significant poisoning incident in New Jersey. In addition, many dry cleaning operators may not realize that the machine components and settings must be changed when converting from PERC to n-PB containing products. Not performing these modifications may result in overheating and significant leaks in the dry cleaning equipment. A preliminary investigation was conducted of the potential exposures to n-PB and isopropyl bromide (iso-PB; also called 2-bromopropane or 2-BP) among dry cleaners in New Jersey who have converted their machines from PERC to these new solvent products. Personal breathing zone and area samples were collected using the National Institute for Occupational Safety and Health Sampling and Analytical Method 1025, with a slight modification to gas chromatography conditions to facilitate better separation of n-PB from iso-PB. During the preliminary investigation, exposures to n-PB among some workers in two of three shops were measured that were greater than the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) for n-PB. The highest exposure measured among a dry cleaning machine operator was 54 parts per million (ppm) as an 8-hr time-weighted average, which is more than 5 times the ACGIH TLV of 10 ppm. The preliminary investigation also found that the work tasks most likely to result in the highest short-term exposures included the introduction of solvent to the machine, maintenance of the machine, unloading and handling of recently cleaned clothes, and interrupting the wash cycle of the machine. In addition, this assessment suggested that leaks may have contributed to exposure and may have resulted from normal machine wear over time, ineffective maintenance, and from the incompatibility of n-PB with gasket materials.

  6. Smart Screening System (S3) In Taconite Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daryoush Allaei; Ryan Wartman; David Tarnowski

    2006-03-01

    The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the completion of the design refinement phase. This phase resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. This system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota. Since then, the fabrication of the dry application prototype (incorporating an electromagnetic drive mechanism and a new deblinding concept) has been completed and successfully tested at QRDC's lab.« less

  7. Dry Ribbon for Heated Head Automated Fiber Placement

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce; Marchello, Joseph M.; Hinkley, Jeffrey A.; Johnston, Norman J.; Lamontia, Mark A.

    2000-01-01

    Ply-by-ply in situ processes involving automated heated head deposition are being developed for fabrication of high performance, high temperature composite structures from low volatile content polymer matrices. This technology requires (1) dry carbon fiber towpreg, (2) consolidation of towpreg to quality, placement-grade unidirectional ribbon or tape, and (3) rapid, in situ, accurate, ply-by-ply robotic placement and consolidation of this material to fabricate a composite structure. In this study, the physical properties of a candidate thermoplastic ribbon, PIXA/IM7, were evaluated and screened for suitability in robotic placement. Specifically, towpreg was prepared from PIXA powder. Various conditions (temperatures) were used to convert the powder-coated towpreg to ribbons with varying degrees of processability. Ribbon within preset specifications was fabricated at 3 temperatures: 390, 400 and 410 C. Ribbon was also produced out-of-spec by purposely overheating the material to a processing temperature of 450 C. Automated placement equipment at Cincinnati Milacron and NASA Langley was used to fabricate laminates from these experimental ribbons. Ribbons were placed at 405 and 450 C by both sets of equipment. Double cantilever beam and wedge peel tests were used to determine the quality of the laminates and, especially, the interlaminar bond formed during the placement process. Ribbon made under conditions expected to be non-optimal (overheated) resulted in poor placeability and composites with weak interlaminar bond strengths, regardless of placement conditions. Ribbon made under conditions expected to be ideal showed good processability and produced well-consolidated laminates. Results were consistent from machine to machine and demonstrated the importance of ribbon quality in heated-head placement of dry material forms. Preliminary screening criteria for the development and evaluation of ribbon from new matrix materials were validated.

  8. Investigations on high speed machining of EN-353 steel alloy under different machining environments

    NASA Astrophysics Data System (ADS)

    Venkata Vishnu, A.; Jamaleswara Kumar, P.

    2018-03-01

    The addition of Nano Particles into conventional cutting fluids enhances its cooling capabilities; in the present paper an attempt is made by adding nano sized particles into conventional cutting fluids. Taguchi Robust Design Methodology is employed in order to study the performance characteristics of different turning parameters i.e. cutting speed, feed rate, depth of cut and type of tool under different machining environments i.e. dry machining, machining with lubricant - SAE 40 and machining with mixture of nano sized particles of Boric acid and base fluid SAE 40. A series of turning operations were performed using L27 (3)13 orthogonal array, considering high cutting speeds and the other machining parameters to measure hardness. The results are compared among the different machining environments, and it is concluded that there is considerable improvement in the machining performance using lubricant SAE 40 and mixture of SAE 40 + boric acid compared with dry machining. The ANOVA suggests that the selected parameters and the interactions are significant and cutting speed has most significant effect on hardness.

  9. Machine & electrical double control air dryer for vehicle air braking system

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  10. Next Generation Loading System for Detonators and Primers

    DTIC Science & Technology

    Designed , fabricated and installed next generation tooling to provide additional manufacturing capabilities for new detonators and other small...prototype munitions on automated, semi-automated and manual machines. Lead design effort, procured and installed a primary explosive Drying Oven for a pilot...facility. Designed , fabricated and installed a Primary Explosives Waste Treatment System in a pilot environmental processing facility. Designed

  11. Machine learning applications in proteomics research: how the past can boost the future.

    PubMed

    Kelchtermans, Pieter; Bittremieux, Wout; De Grave, Kurt; Degroeve, Sven; Ramon, Jan; Laukens, Kris; Valkenborg, Dirk; Barsnes, Harald; Martens, Lennart

    2014-03-01

    Machine learning is a subdiscipline within artificial intelligence that focuses on algorithms that allow computers to learn solving a (complex) problem from existing data. This ability can be used to generate a solution to a particularly intractable problem, given that enough data are available to train and subsequently evaluate an algorithm on. Since MS-based proteomics has no shortage of complex problems, and since publicly available data are becoming available in ever growing amounts, machine learning is fast becoming a very popular tool in the field. We here therefore present an overview of the different applications of machine learning in proteomics that together cover nearly the entire wet- and dry-lab workflow, and that address key bottlenecks in experiment planning and design, as well as in data processing and analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Optimization of machining parameters in dry EDM of EN31 steel

    NASA Astrophysics Data System (ADS)

    Brar, G. S.

    2018-03-01

    Dry electric discharge machining (Dry EDM) is one of the novel EDM technology in which gases namely helium, argon, oxygen, nitrogen etc. are used as a dielectric medium at high pressure instead of oil based liquid dielectric. The present study investigates dry electric discharge machining (with rotary tool) of EN-31 steel to achieve lower tool wear rate (TWR) and better surface roughness (Ra) by performing a set of exploratory experiments with oxygen gas as dielectric. The effect of polarity, discharge current, gas flow pressure, pulse-on time, R.P.M. and gap voltage on the MRR, TWR and surface roughness (Ra) in dry EDM was studied with copper as rotary tool. The significant factors affecting MRR are discharge current and pulse on time. The significant factors affecting TWR are gas flow pressure, pulse on time and R.P.M. TWR was found close to zero in most of the experiments. The significant factors affecting Ra are pulse on time, gas flow pressure and R.P.M. It was found that polarity has nearly zero effect on all the three output variables.

  13. A first French assessment of population exposure to tetrachloroethylene from small dry-cleaning facilities.

    PubMed

    Chiappini, L; Delery, L; Leoz, E; Brouard, B; Fagault, Y

    2009-06-01

    Used as a solvent in the dry-cleaning industry, tetrachloroethylene (C(2)Cl(4)) can be a pollutant of residential indoor air, which can cause long-term harmful exposures because of its neurotoxicity and probable carcinogenicity. In France, dry-cleaning facilities are integrated in urban environments (shopping malls, residential buildings) and can contribute to C(2)Cl(4) exposure for customers and residents. This exploratory work presents the results from five studies carried out in one shopping mall and four residential buildings housing a dry-cleaning facility. These studies involved dry-cleaning machines fitted with a Carbon Adsorber and unfitted, with or without Air Exhaust System. Samples were collected in the cleaning facilities and in the apartments located above with passive samplers allowing measurement of time-integrated concentrations on a 7 days sampling period. It has obviously shown the degradation of indoor air quality in these environments and underlined the contributing role of the machine technology and ventilation system on the amount of released C(2)Cl(4) in the indoor air. To temper these results, it must be pointed out that some parameters (building insulation, amount of solvent used...) which would influence C(2)Cl(4) fugitive release have not been quantified and should be looked at in further studies. In France, dry-cleaning facilities are frequently integrated in urban environments (large shopping malls or residential buildings) and can significantly contribute to tetrachloroethylene (C(2)Cl(4)) population exposure. The amount of fugitive releases in these environments depends on several parameters such as the dry-cleaning machine technology (fitted or unfitted with a carbon adsorber) and the ventilation (air exhaust system). To reduce C(2)Cl(4) exposure in residential buildings and other indoor environments with on-site dry cleaners, carbon adsorber unequipped machine should be replaced by newer technology and dry cleaners should be equipped with mechanical air exhaust systems.

  14. Experimental investigation on hard turning of AISI 4340 steel using cemented coated carbide insert

    NASA Astrophysics Data System (ADS)

    Pradeep Kumar, J.; Kishore, K. P.; Ranjith Kumar, M.; Saran Karthick, K. R.; Vishnu Gowtham, S.

    2018-02-01

    Hard turning is a developing technology that offers many potential advantages compared to grinding, which remains the standard finishing process for critical hardened surfaces. In this work, an attempt has been made to experimentally investigate hard turning of AISI 4340 steel under wet and dry condition using cemented coated carbide insert. Hardness of the workpiece material is tested using Brinell and Rockwell hardness testers. CNC LATHE and cemented coated carbide inserts of designation CNMG 120408 are used for conducting experimental trials. Significant cutting parameters like cutting speed, feed rate and depth of cut are considered as controllable input parameters and surface roughness (Ra), tool wear are considered as output response parameters. Design of experiments is carried out with the help of Taguchi’s L9 orthogonal array. Results of response parameters like surface roughness and tool wear under wet and dry condition are analysed. It is found that surface roughness and tool wear are higher under dry machining condition when compared to wet machining condition. Feed rate significantly influences the surface roughness followed by cutting speed. Depth of cut significantly influences the tool wear followed by cutting speed.

  15. Efficacy of dry-ice blasting in preventive maintenance of auto robotic assemblies

    NASA Astrophysics Data System (ADS)

    Baluch, Nazim; Mohtar, Shahimi; Abdullah, Che Sobry

    2016-08-01

    Welding robots are extensively applied in the automotive assemblies and `Spot Welding' is the most common welding application found in the auto stamping assembly manufacturing. Every manufacturing process is subject to variations - with resistance welding, these include; part fit up, part thickness variations, misaligned electrodes, variations in coating materials or thickness, sealers, weld force variations, shunting, machine tooling degradation; and slag and spatter damage. All welding gun tips undergo wear; an elemental part of the process. Though adaptive resistance welding control automatically compensates to keep production and quality up to the levels needed as gun tips undergo wear so that the welds remain reliable; the system cannot compensate for deterioration caused by the slag and spatter on the part holding fixtures, sensors, and gun tips. To cleanse welding robots of slag and spatter, dry-ice blasting has proven to be an effective remedy. This paper describes Spot welding process, analyses the slag and spatter formation during robotic welding of stamping assemblies, and concludes that the dry ice blasting process's utility in cleansing of welding robots in auto stamping plant operations is paramount and exigent.

  16. Smart Screening System (S3) In Taconite Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daryoush Allaei; Angus Morison; David Tarnowski

    2005-09-01

    The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the process of FE model validation and correlation with experimental data in terms of dynamic performance and predicted stresses. It also detailed efforts into making the supporting structure less important to system performance. Finally, an introduction into the dry application concept was presented. Since then, the design refinement phase was completed. This has resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. Furthermore, this system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota.« less

  17. 78 FR 28577 - Notification of Proposed Production Activity: Whirlpool Corporation Subzone 8I; (Washing Machines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ...; refrigeration parts; dishwashing machine parts; drying machine parts; water inlet valves; AC/DC fan motors; AC... harnesses of copper; turbidity sensors; and, sensor--spray arms (duty rate ranges from duty- free to 6.5...

  18. Evaluation of moisture reduction in small diameter trees after crushing

    Treesearch

    Donald L. Sirois; Cynthia L. Rawlins; Bryce J. Stokes

    1991-01-01

    Past studies have suggested that processing small diameter whole trees like those foumd on rights-of-way (ROWs) would help reduce transportion costs and increase energy value by lowering stem moisture content. Small stems were crushed by a roller crusher/splitter test bench machine and allowed dry under field conditions in Alabama. Tests were conducted in winter and...

  19. Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.

    PubMed

    Kus, Abdil; Isik, Yahya; Cakir, M Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-12

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  20. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    PubMed Central

    Kus, Abdil; Isik, Yahya; Cakir, M. Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-01

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining. PMID:25587976

  1. OCONUS Compliance Assessment Protocols -- OEBGD (Air Force and Marine Corps Version)

    DTIC Science & Technology

    2010-06-01

    new and existing perchloroethylene (PCE) dry -cleaning machines must be controlled. • Electroplating and anodizing tanks must comply with one of...and other contaminants from the surfaces of the parts or to dry the parts. Cleaning machines that contain and use heated, nonboiling solvent to clean...cement kilns that combust MSW, internal combustion engines, gas turbines, or other combustion devices that combust landfill gases collected by

  2. Detection of Cutting Tool Wear using Statistical Analysis and Regression Model

    NASA Astrophysics Data System (ADS)

    Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin

    2010-10-01

    This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.

  3. Processing of sintered alpha SiC

    NASA Technical Reports Server (NTRS)

    Storm, R. S.

    1984-01-01

    Processing methods of sintered alpha SiC for engine applications are developed in a cost effective manner, using a submicron sized powder blended with sintering aids (boron and carbon). The processes for forming a green powder compact, such as dry pressing, cold isostatic pressing and green machining, slip casting, aqueous extrusion, plastic extrusion, and injection molding, are described. Dry pressing is the simplest route to component fabrication, and is carried out at approximately 10,000 psi pressure, while in the cold isostatic method the pressure could go as high as 20,000 psi. Surfactants are added to control settling rates and casting characteristics in the slip casting. The aqueous extrusion process is accomplished by a hydraulic ram forcing the aqueous mixture through a die. The plastic forming processes of extrusion and injection molding offer the potential of greater diversity in shape capacity. The physical properties of sintered alpha SiC (hardness, Young's modulus, shear modulus, and thermal diffusivity) are extensively tested. Corrosion resistance test results of silicon carbide are included.

  4. Stress and Strain Distributions during Machining of Ti-6Al-4V at Ambient and Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Fahim

    Dry and liquid nitrogen pre-cooled Ti-6Al-4V samples were machined at a cutting speed of 43.2 m/min and at low (0.1 mm/rev) to high (0.4 mm/rev) feed rates for understanding the effects of temperature and strain rate on chip microstructures. During cryogenic machining, it was observed that between feed rates of 0.10 and 0.30 mm/rev, a 25% pressure reduction on tool occurred. Smaller number of chips and low tool/chip contact time and temperature were observed (compared to dry machining under ambient conditions). An in-situ set-up that consisted of a microscope and a lathe was constructed and helped to propose a novel serrated chip formation mechanism when microstructures (strain localization) and surface roughness were considered. Dimpled fracture surfaces observed in high-speed-machined chips were formed due to stable crack propagation that was also recorded during in-situ machining. An instability criterion was developed that showed easier strain localization within the 0.10-0.30mm/rev feed rate range.

  5. Applicability Determination Letters for 40 C.F.R. Part 63 Subpart M, National Perchloroethylene Air Emission Standards for Dry Cleaning Facilities

    EPA Pesticide Factsheets

    This pages contains two letters on the applicability of the National Perchloroethylene Air Emission Standards for Dry Cleaning Facilities (40 CFR 63, Subpart M). Both letters clarify what constitutes instillation of a dry cleaning machine.

  6. 7 CFR 29.3548 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3548 Section 29.3548 Agriculture... Type 95) § 29.3548 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [30 FR 9207, July 23, 1965...

  7. 7 CFR 29.1060 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.1060 Section 29.1060 Agriculture... Type 92) § 29.1060 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [42 FR 21092, Apr. 25, 1977...

  8. 7 CFR 29.3058 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3058 Section 29.3058 Agriculture... Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [24 FR 8771, Oct. 29, 1959. Redesignated at 47 FR...

  9. 7 CFR 29.2552 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2552 Section 29.2552 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2552 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam...

  10. 40 CFR 63.321 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...

  11. 40 CFR 63.321 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...

  12. 40 CFR 63.321 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...

  13. 40 CFR 63.321 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...

  14. 40 CFR 63.321 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...

  15. Issues on machine learning for prediction of classes among molecular sequences of plants and animals

    NASA Astrophysics Data System (ADS)

    Stehlik, Milan; Pant, Bhasker; Pant, Kumud; Pardasani, K. R.

    2012-09-01

    Nowadays major laboratories of the world are turning towards in-silico experimentation due to their ease, reproducibility and accuracy. The ethical issues concerning wet lab experimentations are also minimal in in-silico experimentations. But before we turn fully towards dry lab simulations it is necessary to understand the discrepancies and bottle necks involved with dry lab experimentations. It is necessary before reporting any result using dry lab simulations to perform in-depth statistical analysis of the data. Keeping same in mind here we are presenting a collaborative effort to correlate findings and results of various machine learning algorithms and checking underlying regressions and mutual dependencies so as to develop an optimal classifier and predictors.

  16. Pre-release plastic packaging of MEMS and IMEMS devices

    DOEpatents

    Peterson, Kenneth A.; Conley, William R.

    2002-01-01

    A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.

  17. Optimization of Coolant Technique Conditions for Machining A319 Aluminium Alloy Using Response Surface Method (RSM)

    NASA Astrophysics Data System (ADS)

    Zainal Ariffin, S.; Razlan, A.; Ali, M. Mohd; Efendee, A. M.; Rahman, M. M.

    2018-03-01

    Background/Objectives: The paper discusses about the optimum cutting parameters with coolant techniques condition (1.0 mm nozzle orifice, wet and dry) to optimize surface roughness, temperature and tool wear in the machining process based on the selected setting parameters. The selected cutting parameters for this study were the cutting speed, feed rate, depth of cut and coolant techniques condition. Methods/Statistical Analysis Experiments were conducted and investigated based on Design of Experiment (DOE) with Response Surface Method. The research of the aggressive machining process on aluminum alloy (A319) for automotive applications is an effort to understand the machining concept, which widely used in a variety of manufacturing industries especially in the automotive industry. Findings: The results show that the dominant failure mode is the surface roughness, temperature and tool wear when using 1.0 mm nozzle orifice, increases during machining and also can be alternative minimize built up edge of the A319. The exploration for surface roughness, productivity and the optimization of cutting speed in the technical and commercial aspects of the manufacturing processes of A319 are discussed in automotive components industries for further work Applications/Improvements: The research result also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms. According to the mathematical model and equations, generated by CCD based RSM, experiments were performed and cutting coolant condition technique using size nozzle can reduces tool wear, surface roughness and temperature was obtained. Results have been analyzed and optimization has been carried out for selecting cutting parameters, shows that the effectiveness and efficiency of the system can be identified and helps to solve potential problems.

  18. 40 CFR 63.323 - Test methods and monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air-perchloroethylene gas-vapor stream on the outlet side of the refrigerated condenser on a dry-to-dry machine, dryer, or reclaimer with a temperature sensor to determine if it is equal to or less than 7.2 °C (45 °F) before the end of the cool-down or drying cycle while the gas-vapor stream is flowing...

  19. 40 CFR 63.323 - Test methods and monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air-perchloroethylene gas-vapor stream on the outlet side of the refrigerated condenser on a dry-to-dry machine, dryer, or reclaimer with a temperature sensor to determine if it is equal to or less than 7.2 °C (45 °F) before the end of the cool-down or drying cycle while the gas-vapor stream is flowing...

  20. Effect of mesh-peel ply variation on mechanical properties of E-glas composite by infusion vacuum method

    NASA Astrophysics Data System (ADS)

    Abdurohman, K.; Siahaan, Mabe

    2018-04-01

    Composite materials made of glass fiber EW-135 with epoxy lycal resin with vacuum infusion method have been performed. The dried glass fiber is arranged in a mold then connected to a vacuum machine and a resin tube. Then, the vacuum machine is turned on and at the same time the resin is sucked and flowed into the mold. This paper reports on the effect of using mesh- peel ply singles on upper-side laminates called A and the effect of using double mesh-peel ply on upper and lower-side laminates call B with glass fiber arrangement is normal and ± 450 in vacuum infusion process. Followed by the manufacture of tensile test specimen and tested its tensile strength with universal test machine 100kN Tensilon RTF 2410, at room temperature with constant crosshead speed. From tensile test results using single and double layers showed that double mesh-peel ply can increase tensile strength 14% and Young modulus 17%.

  1. Manufacture of oak furniture, cabinets, and panels

    Treesearch

    Harold C. Moser

    1971-01-01

    Oak is uniquely favored for use in furniture, cabinets, and similar products. The supply is plentiful. Though drying presents some problems, once oak is properly dried it is a stable wood that machines very well, glues well, and accepts a variety of finishes well.

  2. A Science-Based Understanding of Cermet Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cesarano, III, Joseph; Roach, Robert Allen; Kilgo, Alice C.

    2006-04-01

    This report is a summary of the work completed in FY01 for science-based characterization of the processes used to fabricate 1) cermet vias in source feedthrus using slurry and paste-filling techniques and 2) cermet powder for dry pressing. Common defects found in cermet vias were characterized based on the ability of subsequent processing techniques (isopressing and firing) to remove the defects. Non-aqueous spray drying and mist granulation techniques were explored as alternative methods of creating CND50, the powder commonly used for dry pressed parts. Compaction and flow characteristics of these techniques were analyzed and compared to standard dry-ball-milled CND50. Duemore » to processing changes, changes in microstructure can occur. A microstructure characterization technique was developed to numerically describe cermet microstructure. Machining and electrical properties of dry pressed parts were also analyzed and related to microstructure using this analytical technique.3 Executive SummaryThis report outlines accomplishments in the science-based understanding of cermet processing up to fiscal year 2002 for Sandia National Laboratories. The three main areas of work are centered on 1) increasing production yields of slurry-filled cermets, 2) evaluating the viability of high-solids-loading pastes for the same cermet components, and 3) optimizing cermet powder used in pressing processes (CND50). An additional development that was created as a result of the effort to fully understand the impacts of alternative processing techniques is the use of analytical methods to relate microstructure to physical properties. Recommendations are suggested at the end of this report. Summaries of these four efforts are as follows:1.Increase Production Yields of Slurry-Filled Cermet Vias Finalized slurry filling criteria were determined based on three designs of experiments where the following factors were analyzed: vacuum time, solids loading, pressure drop across the filter paper, slurry injection rate, via prewetting, slurry injection angle, filter paper prewetting, and slurry mixing time. Many of these factors did not have an influence on defect formation. In order of decreasing importance, critical factors for defect formation by slurry filling are vacuum time (20 sec. optimal), slurry solids loading (20.0 g of cermet with 13.00 g of DGBEA solvent (21.2 vol%)), filling with the pipette in a vertical position, and faster injection rates (%7E765 l/s) as preferable to slower. No further recommendations for improvement to this process can be suggested. All findings of the slurry filling process have been transferred to CeramTec, the supplier. Paste filling methods appear to show more promise of increasing production yields. The types of flaws commonly found in slurry-filled vias were identified and followed throughout the entire source feedthru process. In general, all sizes of cracks healed during isopressing and firing steps. Additionally, small to medium sized voids (less than 1/3 the via diameter) can be healed. Porosity will usually lead to via necking, which may cause the part to be out of specification. Large voids (greater 4 than 1/3 of the diameter) and partial fills are not healed or produce significant necking. 2.Viability of High-Solids-Loading-Cermet Paste for Filling Source Feedthru ViaThe paste-filling process is easy to implement and easier to use. The high solids loading (>40 vol %) reduces the incidence of drying defects, which are seen in slurry filled (%7E23 vol %) vias. Additionally, the way in which the vias are filled (the paste is pushed from entrance to exit, displacing air as the paste front progresses), reduces the chance of entrapped voids, which are common in the slurry filling process. From the fair number of samples already filled, the likelihood of this process being a viable and reliable process is very good. Issues of concern for the paste process, as with any new process, are any problems that may arise in subsequent manufacturing stages of the neutron tube that may be affected by subtle changes in microstructure. Both MC4277 and MC4300-type source feedthrus were paste-filled by hand. X-ray analysis showed a much lower existence of voids in the green parts as compared to slurry-filled parts. The paste shows improvements in shelf life (weeks) as compared to slurry (minutes). This method of introducing the cermet to the via also lends itself very well to an automated filling process where a machine can either drill vias or, with the aid of a vision system, find pre-drilled vias and fill them with paste. The pastes used in this work prove the concept of this automated filling process as MC4277 sources have been filled using such a prototype machine, however, better performing pastes can be developed which are less hazardous (aqueous systems). The paste process was also used to successfully fill MC4300 "dogleg" type sources.3.Optimize CND50 Two methods of creating granulated cermet powder for comparison with dry-ball milled CND50 were explored. The first method, non-aqueous spray drying, was performed at Niro Inc. used a 40/60 (wt %) ethanol/toluene solvent and three binder systems; polyvinyl butyral (B79), ethylcellulose (Ethocel), and hydroxypropylcellulose (Klucel). Due to the nature of small spray-dry systems, an excess amount of fines was present in the granulated powder, which may have contributed to the low angles of repose (68 to 78). This is a moderate increase in 5 flowability as standard dry-ball milled powder possesses an angle of repose of 79-89. Mist granulated powders were produced with a tert-butanol solvent and polyvinyl butyral binder system. The angles of repose were more promising (28). More investigation into the mist granulation method is required. Also, aqueous spray drying may be possible with cermet and should be explored. Compaction of all granulated powders is much closer to a proven pressing powder (Sandi94 - angle of repose 29) which should allow cermet to be pressed to near net shape where die filling is difficult for non-flowing powders.4.Microstructure Characterization An analytical technique was developed to numerically characterize microstructures in terms of molybdenum dispersion, homogeneity, and percolation indices. This technique was applied to dry-ball-milled samples of various ball-milling times (0.5 to 20 hours). Significant change in the microstructure could be seen with milling time. Increased milling time caused agglomeration of molybdenum particles, increasing the percolation index, whereas short milling times promoted higher dispersion indices. This phenomenon is contrary to conventional understanding of mixing. However, conventional ball milling does not usually incorporate granules with binder and separate particles. This discrepancy may explain the odd mixing behavior. It is important to note that the high percolation index possessed by long ball mill times showed lower electrical resistance than low-percolation-index microstructures. However, machinability of high percolation, low-dispersion-index microstructures were poor as compared to microstructures with high dispersion indices and moderate percolation indices. This trade-off between dispersion and percolation (at constant molybdenum levels) suggests that microstructures can be achieved that posses good mechanical and electrical properties. Coincidentally, microstructures that satisfy this condition are produced by the standard dry-ball-milled CND50 (4 hour ball mill time). The performance and sensitivity of the microstructure characterization technique should be evaluated, specifically for electrical conductivity. Processing techniques to decrease the percolation index (lowering molybdenum content, excess ball milling, 6 larger molybdenum particles, etc.) should be employed to determine the point where cermet is not conductive or falls below electrical conduction specifications.7« less

  3. Single phase space laundry development

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Putnam, David F.; Lunsford, Teddie D.; Streech, Neil D.; Wheeler, Richard R., Jr.; Reimers, Harold

    1993-01-01

    This paper describes a newly designed, 2.7 Kg (6 pound) capacity, laundry machine called the Single Phase Laundry (SPSL). The machine was designed to wash and dry crew clothing in a micro-gravity environment. A prototype unit was fabricated for NASA-JSC under a Small Business Innovated Research (SBIR) contract extending from September 1990 to January 1993. The unit employs liquid jet agitation, microwave vacuum drying, and air jet tumbling, which was perfected by KC-135 zero-g flight testing. Operation is completely automated except for loading and unloading clothes. The unit uses about 20 percent less power than a conventional household appliance.

  4. 16 CFR 423.8 - Exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... washing and drycleaning procedures can safely be used on a product: (1) Machine washing in hot water; (2) Machine drying at a high setting; (3) Ironing at a hot setting; (4) Bleaching with all commercially... National Archives and Records Administration (NARA). For information on the availability of this material...

  5. 16 CFR 423.8 - Exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... washing and drycleaning procedures can safely be used on a product: (1) Machine washing in hot water; (2) Machine drying at a high setting; (3) Ironing at a hot setting; (4) Bleaching with all commercially... National Archives and Records Administration (NARA). For information on the availability of this material...

  6. Influence of non-edible vegetable based oil as cutting fluid on chip, surface roughness and cutting force during drilling operation of Mild Steel

    NASA Astrophysics Data System (ADS)

    Susmitha, M.; Sharan, P.; Jyothi, P. N.

    2016-09-01

    Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.

  7. Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications

    NASA Astrophysics Data System (ADS)

    Sökmen, Ü.; Stranz, A.; Waag, A.; Ababneh, A.; Seidel, H.; Schmid, U.; Peiner, E.

    2010-06-01

    We report on a micro-machined resonator for mass sensing applications which is based on a silicon cantilever excited with a sputter-deposited piezoelectric aluminium nitride (AlN) thin film actuator. An inductively coupled plasma (ICP) cryogenic dry etching process was applied for the micro-machining of the silicon substrate. A shift in resonance frequency was observed, which was proportional to a mass deposited in an e-beam evaporation process on top. We had a mass sensing limit of 5.2 ng. The measurements from the cantilevers of the two arrays revealed a quality factor of 155-298 and a mass sensitivity of 120.34 ng Hz-1 for the first array, and a quality factor of 130-137 and a mass sensitivity of 104.38 ng Hz-1 for the second array. Furthermore, we managed to fabricate silicon cantilevers, which can be improved for the detection in the picogram range due to a reduction of the geometrical dimensions.

  8. Safe Replacement For Asbestos In Nickel/Hydrogen Cells

    NASA Technical Reports Server (NTRS)

    Scott, William E.

    1993-01-01

    Polyethylene fibers and potassium titanate particles perform as well as asbestos. New material for separators of nickel-hydrogen electrochemical cells offers performance similar to that of asbestos separator material without adverse health effects. In one version, separator contains pure polyethylene fibers, and may or may not contain supplementary latices as bonding agents. In standard wet-laying papermaking process, fibers pressed into mat, then dried. Mat used as is or pressed further in hot calender stack to soften and fuse fibers at crossing points. Treatment reduces porosity and increases resistance of mat to passage of air bubbles under pressure. In alternative version, matrix of 20 to 40 percent polyethylene fibers and 60 to 80 percent potassium titanate particles formed on paper machine, then dried. It, too, can be treated by hot calendering.

  9. LTCC Thick Film Process Characterization

    DOE PAGES

    Girardi, M. A.; Peterson, K. A.; Vianco, P. T.

    2016-05-01

    Low temperature cofired ceramic (LTCC) technology has proven itself in military/space electronics, wireless communication, microsystems, medical and automotive electronics, and sensors. The use of LTCC for high frequency applications is appealing due to its low losses, design flexibility and packaging and integration capability. Moreover, we summarize the LTCC thick film process including some unconventional process steps such as feature machining in the unfired state and thin film definition of outer layer conductors. The LTCC thick film process was characterized to optimize process yields by focusing on these factors: 1) Print location, 2) Print thickness, 3) Drying of tapes and panels,more » 4) Shrinkage upon firing, and 5) Via topography. Statistical methods were used to analyze critical process and product characteristics in the determination towards that optimization goal.« less

  10. 7 CFR 29.2300 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2300 Section 29.2300 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2300 Steam... machine or other steam-conditioning equipment. [37 FR 13521, July 11, 1972. Redesignated at 51 FR 40406...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, G.

    Humidity plays a major role in health, comfort, and production. This article is a brief overview of the technologies available and a detailed explanation of how to calculate humidification loads. The problems caused by dry air vary from one building to another and from one area to another. But basically, there are three major problem types: static electricity, poor moisture stability, health and comfort problems. In today's business offices, static electricity can disrupt operations and increase operating costs. In printing facilities, low humidity causes poor ink registration. Also, sheets of paper stick together and jam machines, wasting time and paper.more » In computer rooms and data processing areas, dry air leads to static electric discharges that cause circuit board failure, dust buildup on heads, and storage tape breakage. Moisture stability impacts industrial processes and the materials they use. In many cases, product and material deterioration is directly related to moisture fluctuations and lack of humidity control. Books, antiques, paper, wood and wood products, and fruits and vegetables are a few items that can be ruined by low or changing humidity. The health impact of low humidity shows up in dry nasal and thread membranes, dry and itchy skin, and irritated eyes. For employees, this means greater susceptibility to colds and other viral infections. The results is higher absenteeism when humidity is low, which translates into lost productivity and profits.« less

  12. Drying of fiber webs

    DOEpatents

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  13. Characterization of flotation color by machine vision

    NASA Astrophysics Data System (ADS)

    Siren, Ari

    1999-09-01

    Flotation is the most common industrial method by which valuable minerals are separated from waste rock after crushing and grinding the ore. For process control, flotation plants and devices are equipped with conventional and specialized sensors. However, certain variables are left to the visual observation of the operator, such as the color of the froth and the size of the bubbles in the froth. The ChaCo-Project (EU-Project 24931) was launched in November 1997. In this project a measuring station was built at the Pyhasalmi flotation plant. The system includes an RGB camera and a spectral color measuring instrument for the color inspection of the flotation. The RGB camera or visible spectral range is also measured to compare the operators' comments on the color of the froth relating to the sphalerite concentration and the process balance. Different dried mineral (sphalerite) ratios were studied with iron pyrite to find out about the minerals' typical spectral features. The correlation between sphalerite spectral reflectance and sphalerite concentration over various wavelengths are used to select the proper camera system with filters or to compare the results with the color information from the RGB camera. Various machine vision candidate techniques are discussed for this application and the preprocessed information of the dried mineral colors is used and adapted to the online measuring station. Moving froth bubbles produce total reflections, disturbing the color information. Polarization filters are used and the results are reported. Also the reflectance outside the visible light is studied and reported.

  14. Deposition and micro electrical discharge machining of CVD-diamond layers incorporated with silicon

    NASA Astrophysics Data System (ADS)

    Kühn, R.; Berger, T.; Prieske, M.; Börner, R.; Hackert-Oschätzchen, M.; Zeidler, H.; Schubert, A.

    2017-10-01

    In metal forming, lubricants have to be used to prevent corrosion or to reduce friction and tool wear. From an economical and ecological point of view, the aim is to avoid the usage of lubricants. For dry deep drawing of aluminum sheets it is intended to apply locally micro-structured wear-resistant carbon based coatings onto steel tools. One type of these coatings are diamond layers prepared by chemical vapor deposition (CVD). Due to the high strength of diamond, milling processes are unsuitable for micro-structuring of these layers. In contrast to this, micro electrical discharge machining (micro EDM) is a suitable process for micro-structuring CVD-diamond layers. Due to its non-contact nature and its process principle of ablating material by melting and evaporating, it is independent of the hardness, brittleness or toughness of the workpiece material. In this study the deposition and micro electrical discharge machining of silicon incorporated CVD-diamond (Si-CVD-diamond) layers were presented. For this, 10 µm thick layers were deposited on molybdenum plates by a laser-induced plasma CVD process (LaPlas-CVD). For the characterization of the coatings RAMAN- and EDX-analyses were conducted. Experiments in EDM were carried out with a tungsten carbide tool electrode with a diameter of 90 µm to investigate the micro-structuring of Si-CVD-diamond. The impact of voltage, discharge energy and tool polarity on process speed and resulting erosion geometry were analyzed. The results show that micro EDM is a suitable technology for micro-structuring of silicon incorporated CVD-diamond layers.

  15. Identifying tropical dry forests extent and succession via the use of machine learning techniques

    NASA Astrophysics Data System (ADS)

    Li, Wei; Cao, Sen; Campos-Vargas, Carlos; Sanchez-Azofeifa, Arturo

    2017-12-01

    Information on ecosystem services as a function of the successional stage for secondary tropical dry forests (TDFs) is scarce and limited. Secondary TDFs succession is defined as regrowth following a complete forest clearance for cattle growth or agriculture activities. In the context of large conservation initiatives, the identification of the extent, structure and composition of secondary TDFs can serve as key elements to estimate the effectiveness of such activities. As such, in this study we evaluate the use of a Hyperspectral MAPper (HyMap) dataset and a waveform LIDAR dataset for characterization of different levels of intra-secondary forests stages at the Santa Rosa National Park (SRNP) Environmental Monitoring Super Site located in Costa Rica. Specifically, a multi-task learning based machine learning classifier (MLC-MTL) is employed on the first shortwave infrared (SWIR1) of HyMap in order to identify the variability of aboveground biomass of secondary TDFs along a successional gradient. Our paper recognizes that the process of ecological succession is not deterministic but a combination of transitional forests types along a stochastic path that depends on ecological, edaphic, land use, and micro-meteorological conditions, and our results provide a new way to obtain the spatial distribution of three main types of TDFs successional stages.

  16. Use of history science methods in exposure assessment for occupational health studies

    PubMed Central

    Johansen, K; Tinnerberg, H; Lynge, E

    2005-01-01

    Aims: To show the power of history science methods for exposure assessment in occupational health studies, using the dry cleaning industry in Denmark around 1970 as the example. Methods: Exposure data and other information on exposure status were searched for in unconventional data sources such as the Danish National Archives, the Danish Royal Library, archives of Statistics Denmark, the National Institute of Occupational Health, Denmark, and the Danish Labor Inspection Agency. Individual census forms were retrieved from the Danish National Archives. Results: It was estimated that in total 3267 persons worked in the dry cleaning industry in Denmark in 1970. They typically worked in small shops with an average size of 3.5 persons. Of these, 2645 persons were considered exposed to solvents as they were dry cleaners or worked very close to the dry cleaning process, while 622 persons were office workers, drivers, etc in shops with 10 or more persons. It was estimated that tetrachloroethylene constituted 85% of the dry cleaning solvent used, and that a shop would normally have two machines using 4.6 tons of tetrachloroethylene annually. Conclusion: The history science methods, including retrieval of material from the Danish National Archives and a thorough search in the Royal Library for publications on dry cleaning, turned out to be a very fruitful approach for collection of exposure data on dry cleaning work in Denmark. The history science methods proved to be a useful supplement to the exposure assessment methods normally applied in epidemiological studies. PMID:15961618

  17. Use of history science methods in exposure assessment for occupational health studies.

    PubMed

    Johansen, K; Tinnerberg, H; Lynge, E

    2005-07-01

    To show the power of history science methods for exposure assessment in occupational health studies, using the dry cleaning industry in Denmark around 1970 as the example. Exposure data and other information on exposure status were searched for in unconventional data sources such as the Danish National Archives, the Danish Royal Library, archives of Statistics Denmark, the National Institute of Occupational Health, Denmark, and the Danish Labor Inspection Agency. Individual census forms were retrieved from the Danish National Archives. It was estimated that in total 3267 persons worked in the dry cleaning industry in Denmark in 1970. They typically worked in small shops with an average size of 3.5 persons. Of these, 2645 persons were considered exposed to solvents as they were dry cleaners or worked very close to the dry cleaning process, while 622 persons were office workers, drivers, etc in shops with 10 or more persons. It was estimated that tetrachloroethylene constituted 85% of the dry cleaning solvent used, and that a shop would normally have two machines using 4.6 tons of tetrachloroethylene annually. The history science methods, including retrieval of material from the Danish National Archives and a thorough search in the Royal Library for publications on dry cleaning, turned out to be a very fruitful approach for collection of exposure data on dry cleaning work in Denmark. The history science methods proved to be a useful supplement to the exposure assessment methods normally applied in epidemiological studies.

  18. 22. National Geographic Paper in the making. In this large ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. National Geographic Paper in the making. In this large room, some two hundred feet long, the liquid pulp shown in the previous picture is converted into uncoated paper. At the end of each machine is a tank of the pulp. A film of this pulp flows out upon an endless belt of fine-meshed wire, which is shaken vigorously. The water drops through the wire and gradually the residue solidifies. By the time the endless belt reaches the returning point, this residue is solid enough to hold its form as paper. It is then caught up between two rolls, which squeeze out the remaining water. Thence it passes around a series of iron drums filled with live steam; these dry it. After that is passes between big calender rolls and emerges in the foreground as machine-finish paper, ready for the coating or glazing process. These machines give one an idea of the huge proportions of a modern paper plant. (p.237.) - Champion-International Paper Company, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  19. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition.

    PubMed

    Caggiano, Alessandra

    2018-03-09

    Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features ( k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear ( VB max ) was achieved, with predicted values very close to the measured tool wear values.

  20. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition

    PubMed Central

    2018-01-01

    Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features (k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear (VBmax) was achieved, with predicted values very close to the measured tool wear values. PMID:29522443

  1. Method and technique for installing light-weight, fragile, high-temperature fiber insulation

    NASA Technical Reports Server (NTRS)

    Patel, B. C. (Inventor)

    1983-01-01

    A method of installing fragile, light weight, high temperature fiber insulation, particularly where the insulation is to be used as a seal strip providing a high order of thermal barrier insulation is discussed. The process is based on provision of a strip of the mineral batting cut oversize by a predetermined amount, saturated in a fugitive polymer solution, compressed in a mold, dried and cured to form a rigidized batting material which is machined to required shape. The machine dimensions would normally be at least nominally less than the dimensions of the cavity to be sealed. After insertion in the cavity, which may be a wire-mesh seal enclosure, the apparatus is subjected to baking at a temperature sufficiently high to cause the resin to burn off cleanly, leaving the batting substantially in its original condition and expanded into the cavity or seal enclosure.

  2. A method and technique for installing light-weight fragile, high-temperature fiber insulation

    NASA Technical Reports Server (NTRS)

    Ballantine, T. J. (Inventor)

    1982-01-01

    A method of installing fragile, light-weight, high-temperature fiber insulation, particularly where the insulation is to be used as a seal strip providing a high order of thermal barrier insulation is described. The process is based on provision of a strip of the mineral batting cut oversize by a predetermined amount, saturated in a fugitive polymer solution, compressed in a mold, dried and cured to form a rigidized batting material which may be machined to required shape. The machined dimensions would normally be at least nominally less than the dimensions of the cavity to be sealed. After insertion in the cavity, which may be a wire-mesh seal enclosure, the apparatus is subjected to baking at a temperature sufficiently high to cause the resin to burn off cleanly, leaving the batting substantially in its original condition and expanded into the cavity or seal enclosure.

  3. Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles.

    PubMed

    Ryan, Jason D; Mengistie, Desalegn Alemu; Gabrielsson, Roger; Lund, Anja; Müller, Christian

    2017-03-15

    Durable, electrically conducting yarns are a critical component of electronic textiles (e-textiles). Here, such yarns with exceptional wear and wash resistance are realized through dyeing silk from the silkworm Bombyx mori with the conjugated polymer:polyelectrolyte complex PEDOT:PSS. A high Young's modulus of approximately 2 GPa combined with a robust and scalable dyeing process results in up to 40 m long yarns that maintain their bulk electrical conductivity of approximately 14 S cm -1 when experiencing repeated bending stress as well as mechanical wear during sewing. Moreover, a high degree of ambient stability is paired with the ability to withstand both machine washing and dry cleaning. For the potential use for e-textile applications to be illustrated, an in-plane thermoelectric module that comprises 26 p-type legs is demonstrated by embroidery of dyed silk yarns onto a piece of felted wool fabric.

  4. Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles

    PubMed Central

    2017-01-01

    Durable, electrically conducting yarns are a critical component of electronic textiles (e-textiles). Here, such yarns with exceptional wear and wash resistance are realized through dyeing silk from the silkworm Bombyx mori with the conjugated polymer:polyelectrolyte complex PEDOT:PSS. A high Young’s modulus of approximately 2 GPa combined with a robust and scalable dyeing process results in up to 40 m long yarns that maintain their bulk electrical conductivity of approximately 14 S cm–1 when experiencing repeated bending stress as well as mechanical wear during sewing. Moreover, a high degree of ambient stability is paired with the ability to withstand both machine washing and dry cleaning. For the potential use for e-textile applications to be illustrated, an in-plane thermoelectric module that comprises 26 p-type legs is demonstrated by embroidery of dyed silk yarns onto a piece of felted wool fabric. PMID:28245105

  5. Lightweight Ceramic Insulation

    NASA Technical Reports Server (NTRS)

    Wheeler, W. H.; Creedon, J. F.

    1986-01-01

    Fiber burnout process yields low densities. Low density attained by process of sacrificial burnout. Graphite or carbon fibers mixed into slurry of silica, alumina, and boron-compound fibers in amounts ranging from 25 to 75 percent of total fiber content by weight. Mixture formed into blocks and dried. Blocks placed in kiln and heated to 1,600 degrees F(870 degrees C) for several hours. Graphite or carbon fibers slowly oxidize away, leaving voids and reducing block density. Finally, blocks heated to 2,350 degrees F (1,290 degrees C) for 90 minutes to bond remaining ceramic fibers together. Developed for use on Space Shuttle and other spacecraft, rigid insulation machined to requisite shape and bonded in place.

  6. Protective Coatings

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  7. Drying of fiber webs

    DOEpatents

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  8. Using Support Vector Machines to Automatically Extract Open Water Signatures from POLDER Multi-Angle Data Over Boreal Regions

    NASA Technical Reports Server (NTRS)

    Pierce, J.; Diaz-Barrios, M.; Pinzon, J.; Ustin, S. L.; Shih, P.; Tournois, S.; Zarco-Tejada, P. J.; Vanderbilt, V. C.; Perry, G. L.; Brass, James A. (Technical Monitor)

    2002-01-01

    This study used Support Vector Machines to classify multiangle POLDER data. Boreal wetland ecosystems cover an estimated 90 x 10(exp 6) ha, about 36% of global wetlands, and are a major source of trace gases emissions to the atmosphere. Four to 20 percent of the global emission of methane to the atmosphere comes from wetlands north of 4 degrees N latitude. Large uncertainties in emissions exist because of large spatial and temporal variation in the production and consumption of methane. Accurate knowledge of the areal extent of open water and inundated vegetation is critical to estimating magnitudes of trace gas emissions. Improvements in land cover mapping have been sought using physical-modeling approaches, neural networks, and active microwave, examples that demonstrate the difficulties of separating open water, inundated vegetation and dry upland vegetation. Here we examine the feasibility of using a support vector machine to classify POLDER data representing open water, inundated vegetation and dry upland vegetation.

  9. The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel

    NASA Astrophysics Data System (ADS)

    Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.

    2018-01-01

    Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.

  10. An estimation of the main wetting branch of the soil water retention curve based on its main drying branch using the machine learning method

    NASA Astrophysics Data System (ADS)

    Lamorski, Krzysztof; Šimūnek, Jiří; Sławiński, Cezary; Lamorska, Joanna

    2017-02-01

    In this paper, we estimated using the machine learning methodology the main wetting branch of the soil water retention curve based on the knowledge of the main drying branch and other, optional, basic soil characteristics (particle size distribution, bulk density, organic matter content, or soil specific surface). The support vector machine algorithm was used for the models' development. The data needed by this algorithm for model training and validation consisted of 104 different undisturbed soil core samples collected from the topsoil layer (A horizon) of different soil profiles in Poland. The main wetting and drying branches of SWRC, as well as other basic soil physical characteristics, were determined for all soil samples. Models relying on different sets of input parameters were developed and validated. The analysis showed that taking into account other input parameters (i.e., particle size distribution, bulk density, organic matter content, or soil specific surface) than information about the drying branch of the SWRC has essentially no impact on the models' estimations. Developed models are validated and compared with well-known models that can be used for the same purpose, such as the Mualem (1977) (M77) and Kool and Parker (1987) (KP87) models. The developed models estimate the main wetting SWRC branch with estimation errors (RMSE = 0.018 m3/m3) that are significantly lower than those for the M77 (RMSE = 0.025 m3/m3) or KP87 (RMSE = 0. 047 m3/m3) models.

  11. An experimental assessment on the performance of different lubrication techniques in grinding of Inconel 751.

    PubMed

    Balan, A S S; Vijayaraghavan, L; Krishnamurthy, R; Kuppan, P; Oyyaravelu, R

    2016-09-01

    The application of emulsion for combined heat extraction and lubrication requires continuous monitoring of the quality of emulsion to sustain a desired grinding environment; this is applicable to other grinding fluids as well. Thus to sustain a controlled grinding environment, it is necessary to adopt an effectively lubricated wheel-work interface. The current study was undertaken to assess experimentally the ​ effects of different grinding environments such as dry, minimum quantity lubrication (MQL) and Cryo-MQL on performance, such as grinding force, temperature, surface roughness and chip morphology on Inconel 751, a higher heat resistance material posing thermal problems and wheel loading. The results show that grinding with the combination of both liquid nitrogen (LN2) and MQL lowers temperature, cutting forces, and surface roughness as compared with MQL and dry grinding. Specific cutting energy is widely used as an inverse measure of process efficiency in machining. It is found from the results that specific cutting energy of Cryo-MQL assisted grinding is 50-65% lower than conventional dry grinding. The grindability of Inconel 751 superalloy can be enhanced with Cryo-MQL condition.

  12. Orodispersible films: Product transfer from lab-scale to continuous manufacturing.

    PubMed

    Thabet, Yasmin; Breitkreutz, Joerg

    2018-01-15

    Orodispersible films have been described as new beneficial dosage forms for special patient populations. Due to various production settings, different requirements on film formulations are required for non- continuous and continuous manufacturing. In this study, a continuous coating machine was qualified in regards of the process conditions for film compositions and their effects on the formed films. To investigate differences between both manufacturing processes, various film formulations of hydrochlorothiazide and hydroxypropylcellulose (HPC) or hydroxypropylmethycellulose (HPMC) as film formers were produced and the resulting films were characterized. The qualification of the continuously operating coating machine reveals no uniform heat distribution during drying. Coating solutions for continuous manufacturing should provide at least a dynamic viscosity of 1 Pa*s (wet film thickness of 500 μm, velocity of 15.9 cm/min). HPC films contain higher residuals of ethanol or acetone in bench-scale than in continuous production mode. Continuous production lead to lower drug content of the films. All continuously produced films disintegrate within less than 30 s. There are observed significant effects of the production process on the film characteristics. When transferring film manufacturing from lab-scale to continuous mode, film compositions, processing conditions and suitable characterization methods have to be carefully selected and adopted. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Laser re-manufacturing of failure 18Cr2Ni4WA gear in low-speed heavy-load mining machine transmission

    NASA Astrophysics Data System (ADS)

    Chi, X. F.

    2017-10-01

    This article investigated laser re-manufacturing technology application in mining industry. The research focused on green re-manufacturing of failure spur. Leave the main gear body stay intact after the dirty, rust, fatigue and injured part were removed completely before the green re-manufacturing procedure begin. The optimized laser operating parameters paved the road for excellent mechanical properties and comparatively neat shape which often means less post processing. The laser re-manufactured gear surface was systematically examined, including microstructure observation, and dry wear test at room temperature. The test results were compared with new gear surface and used but not broken gear surface. Finally, it proved that the green re-manufactured gear surface displayed best comprehensive mechanical properties, followed the new gear surface. The resistance of dry wear properties of used but not broken gear surface was the worst.

  14. Using Perturbed Physics Ensembles and Machine Learning to Select Parameters for Reducing Regional Biases in a Global Climate Model

    NASA Astrophysics Data System (ADS)

    Li, S.; Rupp, D. E.; Hawkins, L.; Mote, P.; McNeall, D. J.; Sarah, S.; Wallom, D.; Betts, R. A.

    2017-12-01

    This study investigates the potential to reduce known summer hot/dry biases over Pacific Northwest in the UK Met Office's atmospheric model (HadAM3P) by simultaneously varying multiple model parameters. The bias-reduction process is done through a series of steps: 1) Generation of perturbed physics ensemble (PPE) through the volunteer computing network weather@home; 2) Using machine learning to train "cheap" and fast statistical emulators of climate model, to rule out regions of parameter spaces that lead to model variants that do not satisfy observational constraints, where the observational constraints (e.g., top-of-atmosphere energy flux, magnitude of annual temperature cycle, summer/winter temperature and precipitation) are introduced sequentially; 3) Designing a new PPE by "pre-filtering" using the emulator results. Steps 1) through 3) are repeated until results are considered to be satisfactory (3 times in our case). The process includes a sensitivity analysis to find dominant parameters for various model output metrics, which reduces the number of parameters to be perturbed with each new PPE. Relative to observational uncertainty, we achieve regional improvements without introducing large biases in other parts of the globe. Our results illustrate the potential of using machine learning to train cheap and fast statistical emulators of climate model, in combination with PPEs in systematic model improvement.

  15. Study on boring hardened materials dryly by ultrasonic vibration cutter

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangzhong; Zhang, Heng; Zhang, Yue

    2011-05-01

    It has been one of the difficulties that high-precision hole on hardened materials is machined. The supersonic vibration boring acoustic system in the lathe in which supersonic wave energy is applied on tool is introduced to create pulse power on the cutting process. The separation vibration cutting is achieved by the pulse force. The comparative tests on boring accuracy and surface quality are carried. The quality of surface machined by this method is compared to that by grinding. This cutting is the green cutting. The boring process system is stability. Under the condition that the cutting speed is less than or equal to 1/3 the tool vibration speed, the cutting force is pulse force and the Cutting energy is of high concentration in time, space and direction. The pulse energy effects on the cutting unit in less than one ten-thousandth second. Traditional cutting of irregular movement elastic compression are eliminated. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Shape precision and surface quality is greatly improved. The regulations of the ultrasonic vibration boring dry cutting of hardened material are also summarized. The test results show that the ultrasonic vibration cutting tool boring is of very superior cutting mechanism and is a high-precision deep-hole machining of hardened materials, efficient cutting methods.

  16. The effect of clothing care activities on textile formaldehyde content.

    PubMed

    Novick, Rachel M; Nelson, Mindy L; McKinley, Meg A; Anderson, Grace L; Keenan, James J

    2013-01-01

    Textiles are commonly treated with formaldehyde-based residues that may potentially induce allergic contact dermatitis in sensitive individuals. This study examined the initial formaldehyde content in clothing and resulting changes due to care activities. Twenty clothing articles were examined and 17 of them did not have detectable levels of formaldehyde. One shirt contained a formaldehyde concentration of 3172 ppm, and two pairs of pants had formaldehyde concentrations of 1391 ppm and 86 ppm. The two highest results represent formaldehyde levels that are up to 40-fold greater than international textile regulations. The two items with the greatest formaldehyde content were washed and dried in a manner similar to that used by consumers, including hand and machine washing in hot or cold water followed by air or machine drying. The washing and drying procedures reduced formaldehyde levels to between 26 and 72% of untreated controls. Differences in the temperature or type of washing and drying did not result in a clear trend in the subsequent formaldehyde content. In addition, samples were hot ironed, which did not affect the formaldehyde content as significantly. Understanding the formaldehyde content in clothing and its potential reduction through care activities may be useful for manufacturers and formaldehyde-sensitive individuals.

  17. Study on Circular Complex viewed from Environmental Systems

    NASA Astrophysics Data System (ADS)

    Takeguchi, Tomoo; Adachi, Katsushige; Yoshikawa, Akira; Hiratsuka, Akira; Tsujino, Ryoji; Iguchi, Manabu

    In machining processes, cutting fluids are generally used for cooling and lubricating workpieces at the point cutting. However, these fluids frequently include chlorine, sulfur, phosphorus, or other additives. The chemicals not only become a mist affecting the health of workers engaged in the processing but also make the workshop environment worse. In particular, the chlorine becomes one of the causes of global warming by treating waste oil under high temperature conditions. It is furthermore said that huge cost beyond the purchase cost of oil occurs and dioxins (carcinogen) usually exist in the waste oil. Therefore, an environmentally-friendly cooling-air cutting system is required from the standpoint of green manufacturing. This system has been noted as a technique to solve the issues against the environment mentioned above. In the cooling-air cutting processing, the amount of CO2 emission shows a low value compared with the dry cutting one which uses oil. It is therefore thought that the cooling-air cutting system is a very important processing technique as an environmental countermeasure. At present, in strictly economic and environmental situations, the compatibility of the betterment of production efficiency with the improvement of environment is a subject in the actual spot of a cut processing. This study deals with the test results of cooling-air drilling performance from the viewpoint of taking green manufacturing into account. The workpiece made of die steel SKDll was manufactured by the cooling-air drilling performance at a revolution of 840 rpm and a temperature of -20°C with a high-speed steel drill (SKH56). The results were compared with those for the dry cutting performance. The main results obtained in this study are as follows: 1) The tool life for cooling-air drilling performance was about 6 times as long as that for the dry cutting performance. 2) The chip temperature for cooling-air drilling was 220°C lower than that for the dry cutting performance.

  18. 16 CFR 1616.32 - Method for establishment and use of alternate laundering procedures under section 5(c)(4)(ii) of...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... been washed and dried 50 times in machines, using the procedure specified in AATCC Test Method 124-1996... Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to... request of the Commission staff, any other information concerning the procedure and/or any machine used in...

  19. 16 CFR 1615.32 - Method for establishment and use of alternate laundering procedures under section 4(g)(4)(ii) of...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... been washed and dried 50 times in machines, using the procedure specified in AATCC Test Method 124-1996... Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to... request of the Commission staff, any other information concerning the procedure and/or any machine used in...

  20. Electroacoustic dewatering of food and other suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, B.C.; Zelinski, M.S.; Criner, C.L.

    1989-05-31

    The food processing industry is a large user of energy for evaporative drying due to limited effectiveness of conventional mechanical dewatering machines. Battelle's Electroacoustic Dewatering (EAD) process improves the performance of mechanical dewatering machines by superimposing electric and ultrasonic fields. A two phase development program to demonstrate the benefits of EAD was carried out in cooperation with the food processing industry, the National Food Processors Association (NFPA) and two equipment vendors. In Phase I, laboratory scale studies were carried out on a variety of food suspensions. The process was scaled up to small commercial scale in Phase II. The technicalmore » feasibility of EAD for a variety of food materials, without adversely affecting the food properties, was successfully demonstrated during this phase, which is the subject of this report. Two Process Research Units (PRUs) were designed and built through joint efforts between Battelle and two equipment vendors. A 0.5-meter wide belt press was tested on apple mash, corn fiber, and corn gluten at sites provided by two food processors. A high speed citrus juice finisher (a hybrid form of screw press and centrifuge) was tested on orange pulp. These tests were carried out jointly by Battelle, equipment vendors, NFPA, and food processors. The apple and citrus juice products were analyzed by food processors and NFPA. 26 figs., 30 tabs.« less

  1. Investigation of machinability characteristics on EN47 steel for cutting force and tool wear using optimization technique

    NASA Astrophysics Data System (ADS)

    M, Vasu; Shivananda Nayaka, H.

    2018-06-01

    In this experimental work dry turning process carried out on EN47 spring steel with coated tungsten carbide tool insert with 0.8 mm nose radius are optimized by using statistical technique. Experiments were conducted at three different cutting speeds (625, 796 and 1250 rpm) with three different feed rates (0.046, 0.062 and 0.093 mm/rev) and depth of cuts (0.2, 0.3 and 0.4 mm). Experiments are conducted based on full factorial design (FFD) 33 three factors and three levels. Analysis of variance is used to identify significant factor for each output response. The result reveals that feed rate is the most significant factor influencing on cutting force followed by depth of cut and cutting speed having less significance. Optimum machining condition for cutting force obtained from the statistical technique. Tool wear measurements are performed with optimum condition of Vc = 796 rpm, ap = 0.2 mm, f = 0.046 mm/rev. The minimum tool wear observed as 0.086 mm with 5 min machining. Analysis of tool wear was done by confocal microscope it was observed that tool wear increases with increasing cutting time.

  2. Modeling of Principal Flank Wear: An Empirical Approach Combining the Effect of Tool, Environment and Workpiece Hardness

    NASA Astrophysics Data System (ADS)

    Mia, Mozammel; Al Bashir, Mahmood; Dhar, Nikhil Ranjan

    2016-10-01

    Hard turning is increasingly employed in machining, lately, to replace time-consuming conventional turning followed by grinding process. An excessive amount of tool wear in hard turning is one of the main hurdles to be overcome. Many researchers have developed tool wear model, but most of them developed it for a particular work-tool-environment combination. No aggregate model is developed that can be used to predict the amount of principal flank wear for specific machining time. An empirical model of principal flank wear (VB) has been developed for the different hardness of workpiece (HRC40, HRC48 and HRC56) while turning by coated carbide insert with different configurations (SNMM and SNMG) under both dry and high pressure coolant conditions. Unlike other developed model, this model includes the use of dummy variables along with the base empirical equation to entail the effect of any changes in the input conditions on the response. The base empirical equation for principal flank wear is formulated adopting the Exponential Associate Function using the experimental results. The coefficient of dummy variable reflects the shifting of the response from one set of machining condition to another set of machining condition which is determined by simple linear regression. The independent cutting parameters (speed, rate, depth of cut) are kept constant while formulating and analyzing this model. The developed model is validated with different sets of machining responses in turning hardened medium carbon steel by coated carbide inserts. For any particular set, the model can be used to predict the amount of principal flank wear for specific machining time. Since the predicted results exhibit good resemblance with experimental data and the average percentage error is <10 %, this model can be used to predict the principal flank wear for stated conditions.

  3. Equipment evaluation for low density polyethylene encapsulated nitrate salt waste at the Rocky Flats Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, W.I.; Faucette, A.M.; Jantzen, R.C.

    1993-08-30

    Mixed wastes at the Rocky Flats Plant (RFP) are subject to regulation by the Resource Conservation and Recovery Act (RCRA). Polymer solidification is being developed as a final treatment technology for several of these mixed wastes, including nitrate salts. Encapsulation nitrate salts with low density polyethylene (LDPE) has been the preliminary focus of the RFP polymer solidification effort. Literature reviews, industry surveys, and lab-scale and pilot-scale tests have been conducted to evaluate several options for encapsulating nitrate salts with LDPE. Most of the effort has focused on identifying compatible drying and extrusion technologies. Other processing options, specifically meltration and non-heatedmore » compounding machines, were also investigated. The best approach appears to be pretreatment of the nitrate salt waste brine in either a vertical or horizontal thin film evaporator followed by compounding of the dried waste with LDPE in an intermeshing, co-rotating, twin-screw extruder. Additional pilot-scale tests planned for the fall of 1993 should further support this recommendation. Preliminary evaluation work indicates that meltration is not possible at atmospheric pressure with the LDPE (Chevron PE-1409) provided by RFP. However, meltration should be possible at atmospheric pressure using another LDPE formulation with altered physical and rheological properties: Lower molecular weight and lower viscosity (Epoline C-15). Contract modifications are now in process to allow a follow-on pilot scale demonstration. Questions regarding changed safety and physical properties of the resultant LDPE waste form due to use of the Epoline C-15 will be addressed. No additional work with non-heated mixer compounder machines is planned at this time.« less

  4. Tips for Travel

    EPA Pesticide Factsheets

    Avoid bringing bed bugs home by taking precautions when traveling such as inspecting bedding and luggage racks in hotel rooms, and upon returning home unpacking directly into a washing machine and dry at high temperatures.

  5. Time to B. cereus about hot chocolate.

    PubMed Central

    Nelms, P K; Larson, O; Barnes-Josiah, D

    1997-01-01

    OBJECTIVE: To determine the cause of illnesses experienced by employees of a Minneapolis manufacturing plant after drinking hot chocolate bought from a vending machine and to explore the prevalence of similar vending machine-related illnesses. METHODS: The authors inspected the vending machines at the manufacturing plant where employees reported illnesses and at other locations in the city where hot chocolate beverages were sold in machines. Tests were performed on dry mix, water, and beverage samples and on machine parts. RESULTS: Laboratory analyses confirmed the presence of B. cereus in dispensed beverages at a concentration capable of causing illness (170,000 count/gm). In citywide testing of vending machines dispensing hot chocolate, 7 of the 39 licensed machines were found to be contaminated, with two contaminated machines having B. cereus levels capable of causing illness. CONCLUSIONS: Hot chocolate sold in vending machines may contain organisms capable of producing toxins that under favorable conditions, can induce illness. Such illnesses are likely to be underreported. Even low concentrations of B. cereus may be dangerous for vulnerable populations such as the aged or immunosuppressed. Periodic testing of vending machines is thus warranted. The relationship between cleaning practices and B. cereus contamination is an issue for further study. PMID:9160059

  6. Time to B. cereus about hot chocolate.

    PubMed

    Nelms, P K; Larson, O; Barnes-Josiah, D

    1997-01-01

    To determine the cause of illnesses experienced by employees of a Minneapolis manufacturing plant after drinking hot chocolate bought from a vending machine and to explore the prevalence of similar vending machine-related illnesses. The authors inspected the vending machines at the manufacturing plant where employees reported illnesses and at other locations in the city where hot chocolate beverages were sold in machines. Tests were performed on dry mix, water, and beverage samples and on machine parts. Laboratory analyses confirmed the presence of B. cereus in dispensed beverages at a concentration capable of causing illness (170,000 count/gm). In citywide testing of vending machines dispensing hot chocolate, 7 of the 39 licensed machines were found to be contaminated, with two contaminated machines having B. cereus levels capable of causing illness. Hot chocolate sold in vending machines may contain organisms capable of producing toxins that under favorable conditions, can induce illness. Such illnesses are likely to be underreported. Even low concentrations of B. cereus may be dangerous for vulnerable populations such as the aged or immunosuppressed. Periodic testing of vending machines is thus warranted. The relationship between cleaning practices and B. cereus contamination is an issue for further study.

  7. Roundness and taper of holes during drilling composites of various thickness by HSS drill bit under dry condition

    NASA Astrophysics Data System (ADS)

    Sakib, M. S.; Rahman, Motiur; Ferdous, M.; Dhar, N. R.

    2017-12-01

    Polymer Matrix Composites are extending a wide range of applications in aviation in recent eras because of their better economics, well established processing, high temperature properties, high resistance to corrosion and fatigue. Directional properties of composites are dependent on the fibre orientation. Composites being anisotropic in nature are difficult to drill and machining and tooling of the composites remained a great challenge over time. This paper addresses the issues of various machining problems such as delamination, fibre pull-out, cracks on varying drilling parameters like feed rate and drilling speed. Experimental drilling was carried out on Fibre Reinforced Plastic composites with HSS drill bit. Results reveal that as the number of holes increases the entry and exit diameter and tapper of holes vary and also varying composite thickness results in a difference in hole roundness and tapper. This experiment summarizes that for achieving acceptable tool life and hole quality demands a drill designed with composites.

  8. 24. The DryingRoom in the coating mill at Lawrence, Mass. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. The Drying-Room in the coating mill at Lawrence, Mass. After the paper has received its coating from the coating-machine shown in the previous picture, it passes in a continuous web to the drying-room. Blasts of hot air coming out of galvanized ducts beneath support it for a distance of 100 feet, until it reaches the drying-chamber in the rear of the room. Here it hangs in festoons much like those of cotton cloth shown on page 219. In the picture the paper is passing from right to left. After leaving the drying-room it is wound on rolls, as shown in the next picture. (p.238.) - Champion-International Paper Company, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  9. Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying.

    PubMed

    Zu, Guoqing; Shimizu, Taiyo; Kanamori, Kazuyoshi; Zhu, Yang; Maeno, Ayaka; Kaji, Hironori; Shen, Jun; Nakanishi, Kazuki

    2018-01-23

    Aerogels have many attractive properties but are usually costly and mechanically brittle, which always limit their practical applications. While many efforts have been made to reinforce the aerogels, most of the reinforcement efforts sacrifice the transparency or superinsulating properties. Here we report superflexible polyvinylpolymethylsiloxane, (CH 2 CH(Si(CH 3 )O 2/2 )) n , aerogels that are facilely prepared from a single precursor vinylmethyldimethoxysilane or vinylmethyldiethoxysilane without organic cross-linkers. The method is based on consecutive processes involving radical polymerization and hydrolytic polycondensation, followed by ultralow-cost, highly scalable, ambient-pressure drying directly from alcohol as a drying medium without any modification or additional solvent exchange. The resulting aerogels and xerogels show a homogeneous, tunable, highly porous, doubly cross-linked nanostructure with the elastic polymethylsiloxane network cross-linked with flexible hydrocarbon chains. An outstanding combination of ultralow cost, high scalability, uniform pore size, high surface area, high transparency, high hydrophobicity, excellent machinability, superflexibility in compression, superflexibility in bending, and superinsulating properties has been achieved in a single aerogel or xerogel. This study represents a significant progress of porous materials and makes the practical applications of transparent flexible aerogel-based superinsulators realistic.

  10. 30 CFR 57.6405 - Firing devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sufficient current to energize all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired...

  11. 30 CFR 57.6405 - Firing devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sufficient current to energize all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired...

  12. 30 CFR 57.6405 - Firing devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sufficient current to energize all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired...

  13. 30 CFR 57.6405 - Firing devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sufficient current to energize all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired...

  14. 30 CFR 57.6405 - Firing devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sufficient current to energize all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired...

  15. Quadrilateral Micro-Hole Array Machining on Invar Thin Film: Wet Etching and Electrochemical Fusion Machining

    PubMed Central

    Choi, Woong-Kirl; Kim, Seong-Hyun; Choi, Seung-Geon; Lee, Eun-Sang

    2018-01-01

    Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs) contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks. PMID:29351235

  16. Machining of AISI D2 Tool Steel with Multiple Hole Electrodes by EDM Process

    NASA Astrophysics Data System (ADS)

    Prasad Prathipati, R.; Devuri, Venkateswarlu; Cheepu, Muralimohan; Gudimetla, Kondaiah; Uzwal Kiran, R.

    2018-03-01

    In recent years, with the increasing of technology the demand for machining processes is increasing for the newly developed materials. The conventional machining processes are not adequate to meet the accuracy of the machining of these materials. The non-conventional machining processes of electrical discharge machining is one of the most efficient machining processes is being widely used to machining of high accuracy products of various industries. The optimum selection of process parameters is very important in machining processes as that of an electrical discharge machining as they determine surface quality and dimensional precision of the obtained parts, even though time consumption rate is higher for machining of large dimension features. In this work, D2 high carbon and chromium tool steel has been machined using electrical discharge machining with the multiple hole electrode technique. The D2 steel has several applications such as forming dies, extrusion dies and thread rolling. But the machining of this tool steel is very hard because of it shard alloyed elements of V, Cr and Mo which enhance its strength and wear properties. However, the machining is possible by using electrical discharge machining process and the present study implemented a new technique to reduce the machining time using a multiple hole copper electrode. In this technique, while machining with multiple holes electrode, fin like projections are obtained, which can be removed easily by chipping. Then the finishing is done by using solid electrode. The machining time is reduced to around 50% while using multiple hole electrode technique for electrical discharge machining.

  17. Application of dragonfly algorithm for optimal performance analysis of process parameters in turn-mill operations- A case study

    NASA Astrophysics Data System (ADS)

    Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT

    2018-02-01

    Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).

  18. Low density microcellular carbon or catalytically impregnated carbon forms and process for their preparation

    DOEpatents

    Hopper, Robert W.; Pekala, Richard W.

    1989-01-01

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  19. Low density microcellular carbon or catalytically impregnated carbon foams and process for their prepartion

    DOEpatents

    Hopper, Robert W.; Pekala, Richard W.

    1988-01-01

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  20. Low density microcellular carbon or catalytically impregnated carbon foams and process for their preparation

    DOEpatents

    Hooper, R.W.; Pekala, R.W.

    1987-04-30

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  1. Silicone absorption of elastomeric closures--an accelerated study.

    PubMed

    Degrazio, F L; Hlobik, T; Vaughan, S

    1998-01-01

    There is a trend in the parenteral industry to move from the use of elastomeric closures which are washed, siliconized, dried and sterilized in-house at the pharmaceutical manufacturers' site to pre-prepared closures purchased from the closure supplier. This preparation can consist of washing to reduce particle-load and bioburden, siliconization, placement in ready-to-sterilize bags and may eventually extend to sterilization by steam autoclave or gamma irradiation. Since silicone oil lubrication is critical to the processability/machinability of closures, research was designed to investigate this phenomenon in closures prepared using the Westar RS (Ready-to-Sterilize) process. This paper presents the data gathered in a study of the characteristic of silicone absorption into elastomeric closures under accelerated conditions. Variables such as silicone viscosity, rubber formulation, effect of sterilization and others are considered.

  2. Finding of Correction Factor and Dimensional Error in Bio-AM Model by FDM Technique

    NASA Astrophysics Data System (ADS)

    Manmadhachary, Aiamunoori; Ravi Kumar, Yennam; Krishnanand, Lanka

    2018-06-01

    Additive Manufacturing (AM) is the swift manufacturing process, in which input data can be provided from various sources like 3-Dimensional (3D) Computer Aided Design (CAD), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 3D scanner data. From the CT/MRI data can be manufacture Biomedical Additive Manufacturing (Bio-AM) models. The Bio-AM model gives a better lead on preplanning of oral and maxillofacial surgery. However manufacturing of the accurate Bio-AM model is one of the unsolved problems. The current paper demonstrates error between the Standard Triangle Language (STL) model to Bio-AM model of dry mandible and found correction factor in Bio-AM model with Fused Deposition Modelling (FDM) technique. In the present work dry mandible CT images are acquired by CT scanner and supplied into a 3D CAD model in the form of STL model. Further the data is sent to FDM machine for fabrication of Bio-AM model. The difference between Bio-AM to STL model dimensions is considered as dimensional error and the ratio of STL to Bio-AM model dimensions considered as a correction factor. This correction factor helps to fabricate the AM model with accurate dimensions of the patient anatomy. These true dimensional Bio-AM models increasing the safety and accuracy in pre-planning of oral and maxillofacial surgery. The correction factor for Dimension SST 768 FDM AM machine is 1.003 and dimensional error is limited to 0.3 %.

  3. Finding of Correction Factor and Dimensional Error in Bio-AM Model by FDM Technique

    NASA Astrophysics Data System (ADS)

    Manmadhachary, Aiamunoori; Ravi Kumar, Yennam; Krishnanand, Lanka

    2016-06-01

    Additive Manufacturing (AM) is the swift manufacturing process, in which input data can be provided from various sources like 3-Dimensional (3D) Computer Aided Design (CAD), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 3D scanner data. From the CT/MRI data can be manufacture Biomedical Additive Manufacturing (Bio-AM) models. The Bio-AM model gives a better lead on preplanning of oral and maxillofacial surgery. However manufacturing of the accurate Bio-AM model is one of the unsolved problems. The current paper demonstrates error between the Standard Triangle Language (STL) model to Bio-AM model of dry mandible and found correction factor in Bio-AM model with Fused Deposition Modelling (FDM) technique. In the present work dry mandible CT images are acquired by CT scanner and supplied into a 3D CAD model in the form of STL model. Further the data is sent to FDM machine for fabrication of Bio-AM model. The difference between Bio-AM to STL model dimensions is considered as dimensional error and the ratio of STL to Bio-AM model dimensions considered as a correction factor. This correction factor helps to fabricate the AM model with accurate dimensions of the patient anatomy. These true dimensional Bio-AM models increasing the safety and accuracy in pre-planning of oral and maxillofacial surgery. The correction factor for Dimension SST 768 FDM AM machine is 1.003 and dimensional error is limited to 0.3 %.

  4. Dry sliding behavior of aluminum alloy 8011 with 12% fly ash composites

    NASA Astrophysics Data System (ADS)

    Magibalan, S.; Senthilkumar, P.; Palanivelu, R.; Senthilkumar, C.; Shivasankaran, N.; Prabu, M.

    2018-05-01

    This research focused on the fabrication of aluminum alloy 8011 with 12% fly ash (FA) composite (AA8011%–12% FA) using the stir casting method. A three-level central composite design experiment was developed using response surface methodology with various parameters such as load, time, and sliding velocity varied in the range of 5 to 15 N, 5 to 15 min, and 1.5 to 4.5 m.s‑1, respectively. Dry sliding wear tests were performed as per the experimental design using a pin on disc at room temperature. The obtained regression result indicated that the developed model performed well in relating the wear process parameters and predicted the wear behavior of the composite. The surface plot showed that the wear rate increases with increase in load, time, and sliding velocity. Hardness was evaluated by Vickers hardness testing machine. Moreover, the surface morphology of the worn-out composite was examined using a scanning electron microscope.

  5. An Investigation of the Influence of Initial Roughness on the Friction and Wear Behavior of Ground Surfaces

    PubMed Central

    Liang, Guoxing; Schmauder, Siegfried; Lyu, Ming; Schneider, Yanling; Zhang, Cheng; Han, Yang

    2018-01-01

    Friction and wear tests were performed on AISI 1045 steel specimens with different initial roughness parameters, machined by a creep-feed dry grinding process, to study the friction and wear behavior on a pin-on-disc tester in dry sliding conditions. Average surface roughness (Ra), root mean square (Rq), skewness (Rsk) and kurtosis (Rku) were involved in order to analyse the influence of the friction and wear behavior. The observations reveal that a surface with initial roughness parameters of higher Ra, Rq and Rku will lead to a longer initial-steady transition period in the sliding tests. The plastic deformation mainly concentrates in the depth of 20–50 μm under the worn surface and the critical plastic deformation is generated on the rough surface. For surfaces with large Ra, Rq, low Rsk and high Rku values, it is easy to lose the C element in, the reciprocating extrusion. PMID:29401703

  6. Development of a paper based roll-to-roll nanoimprinting machine

    NASA Astrophysics Data System (ADS)

    Son, Byungwook

    Nanoimprint lithography (NIL) has been developed and studied since 1995. It is a technique where micro- or nanoscale patterns are transferred to soft materials such as polymer through pressing a stamp with certain patterns into this materials and then solidifying it by cooling at lower temperature or curing under ultra violet excitement. High Cost and low throughput of batch mode nanoimprint lithography (NIL) processes are limiting its wide range of applications in meeting industry manufacturing requirements. The roll-to-roll (R2R) nanoimprinting technology is emerged as a solution to this issue. This thesis study presents the design, build and test of an innovative R2R T-NIL process machine for nanofabrication and MEMS fabrication applications, which consists of individual modules of heating, inking, pressuring, and rotational speed control. The system utilizes PDMS as mold material, PMMA as imprinting material, and paper as substrate material. In order to achieve a uniform pressure on PMMA during imprinting process, an innovative air pressure device (APD) was developed and integrated with R2R machine. The APD replaces the conventional 2-roll line contact pressure approach and can cover one third of the surface of the imprinting roller with a uniform pressure (1-3 psi). During the imprinting experiment, a mixture of PMMA (20w %) and 2-Ethoxyethyl acetate is applied on the paper substrate by an inking roller using capillary force and an IR heater is used for pre-heating and drying of polymer layers before it is fed into the imprinting module. Two 500-Watt cartridge heaters are installed on the roller and provide the heat to raise the PMMA film temperature during the imprinting.

  7. Gram staining with an automatic machine.

    PubMed

    Felek, S; Arslan, A

    1999-01-01

    This study was undertaken to develop a new Gram-staining machine controlled by a micro-controller and to investigate the quality of slides that were stained in the machine. The machine was designed and produced by the authors. It uses standard 220 V AC. Staining, washing, and drying periods are controlled by a timer built in the micro-controller. A software was made that contains a certain algorithm and time intervals for the staining mode. One-hundred and forty smears were prepared from Escherichia coli, Staphylococcus aureus, Neisseria sp., blood culture, trypticase soy broth, direct pus and sputum smears for comparison studies. Half of the slides in each group were stained with the machine, the other half by hand and then examined by four different microbiologists. Machine-stained slides had a higher clarity and less debris than the hand-stained slides (p < 0.05). In hand-stained slides, some Gram-positive organisms showed poor Gram-positive staining features (p < 0.05). In conclusion, we suggest that Gram staining with the automatic machine increases the staining quality and helps to decrease the work load in a busy diagnostic laboratory.

  8. Optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated carbide cutting tool

    NASA Astrophysics Data System (ADS)

    Durga Prasada Rao, V.; Harsha, N.; Raghu Ram, N. S.; Navya Geethika, V.

    2018-02-01

    In this work, turning was performed to optimize the surface finish or roughness (Ra) of stainless steel 304 with uncoated and coated carbide tools under dry conditions. The carbide tools were coated with Titanium Aluminium Nitride (TiAlN) nano coating using Physical Vapour Deposition (PVD) method. The machining parameters, viz., cutting speed, depth of cut and feed rate which show major impact on Ra are considered during turning. The experiments are designed as per Taguchi orthogonal array and machining process is done accordingly. Then second-order regression equations have been developed on the basis of experimental results for Ra in terms of machining parameters used. Regarding the effect of machining parameters, an upward trend is observed in Ra with respect to feed rate, and as cutting speed increases the Ra value increased slightly due to chatter and vibrations. The adequacy of response variable (Ra) is tested by conducting additional experiments. The predicted Ra values are found to be a close match of their corresponding experimental values of uncoated and coated tools. The corresponding average % errors are found to be within the acceptable limits. Then the surface roughness equations of uncoated and coated tools are set as the objectives of optimization problem and are solved by using Differential Evolution (DE) algorithm. Also the tool lives of uncoated and coated tools are predicted by using Taylor’s tool life equation.

  9. Classification of single-trial auditory events using dry-wireless EEG during real and motion simulated flight.

    PubMed

    Callan, Daniel E; Durantin, Gautier; Terzibas, Cengiz

    2015-01-01

    Application of neuro-augmentation technology based on dry-wireless EEG may be considerably beneficial for aviation and space operations because of the inherent dangers involved. In this study we evaluate classification performance of perceptual events using a dry-wireless EEG system during motion platform based flight simulation and actual flight in an open cockpit biplane to determine if the system can be used in the presence of considerable environmental and physiological artifacts. A passive task involving 200 random auditory presentations of a chirp sound was used for evaluation. The advantage of this auditory task is that it does not interfere with the perceptual motor processes involved with piloting the plane. Classification was based on identifying the presentation of a chirp sound vs. silent periods. Evaluation of Independent component analysis (ICA) and Kalman filtering to enhance classification performance by extracting brain activity related to the auditory event from other non-task related brain activity and artifacts was assessed. The results of permutation testing revealed that single trial classification of presence or absence of an auditory event was significantly above chance for all conditions on a novel test set. The best performance could be achieved with both ICA and Kalman filtering relative to no processing: Platform Off (83.4% vs. 78.3%), Platform On (73.1% vs. 71.6%), Biplane Engine Off (81.1% vs. 77.4%), and Biplane Engine On (79.2% vs. 66.1%). This experiment demonstrates that dry-wireless EEG can be used in environments with considerable vibration, wind, acoustic noise, and physiological artifacts and achieve good single trial classification performance that is necessary for future successful application of neuro-augmentation technology based on brain-machine interfaces.

  10. 29 CFR 1910.264 - Laundry machinery and operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of operation of laundry machines. This section does not apply to dry-cleaning operations. (c) Point... against touching the eyes, mouth, or any part of the body on which the skin has been broken by a scratch...

  11. 29 CFR 1910.264 - Laundry machinery and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of operation of laundry machines. This section does not apply to dry-cleaning operations. (c) Point... against touching the eyes, mouth, or any part of the body on which the skin has been broken by a scratch...

  12. 29 CFR 1910.264 - Laundry machinery and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of operation of laundry machines. This section does not apply to dry-cleaning operations. (c) Point... against touching the eyes, mouth, or any part of the body on which the skin has been broken by a scratch...

  13. 29 CFR 1910.264 - Laundry machinery and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of operation of laundry machines. This section does not apply to dry-cleaning operations. (c) Point... against touching the eyes, mouth, or any part of the body on which the skin has been broken by a scratch...

  14. 29 CFR 1910.264 - Laundry machinery and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of operation of laundry machines. This section does not apply to dry-cleaning operations. (c) Point... against touching the eyes, mouth, or any part of the body on which the skin has been broken by a scratch...

  15. Effect of bionic coupling units' forms on wear resistance of gray cast iron under dry linear reciprocating sliding condition

    NASA Astrophysics Data System (ADS)

    Pang, Zuobo; Zhou, Hong; Xie, Guofeng; Cong, Dalong; Meng, Chao; Ren, Luquan

    2015-07-01

    In order to get close to the wear form of guide rails, the homemade linear reciprocating wear testing machine was used for the wear test. In order to improve the wear-resistance of gray cast iron guide rail, bionic coupling units of different forms were manufactured by a laser. Wear behavior of gray-cast-iron with bionic-coupling units has been studied under dry sliding condition at room temperature using the wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that bionic coupling unit could improve the wear resistance of gray cast iron. The wear resistance of gray cast iron with reticulation bionic coupling unit is the best. When the load and speed changed, reticulation bionic coupling unit still has excellent performance in improving the wear resistance of gray cast iron.

  16. Performance indicators for carrier-based DPIs: Carrier surface properties for capsule filling and API properties for in vitro aerosolisation.

    PubMed

    Faulhammer, E; Zellnitz, S; Wutscher, T; Stranzinger, S; Zimmer, A; Paudel, A

    2018-01-30

    This study investigates engineered carrier, as well as engineered API particles, and shows that there are distinct performance indicators of particle engineering for carrier-based dry powder inhalers (DPIs). Spray dried (SDSS) and jet-milled (JMSS) salbutamol sulphate (SS) was blended with untreated α-lactose monohydrate (LAC_R) and α-lactose monohydrate engineered (LAC_E). Subsequent capsule filling was performed with different process settings on a dosator nozzle capsule filling machine in order to reach a target fill weight of 20-25 mg. To evaluate the performance of the different mixtures, in vitro lung deposition experiments were carried out with a next generation impactor, the emitted dose (ED) and fine particle fraction (FPF) were calculated based on the specification of the European pharmacopoeia. The FPF of micronised powder blends is significantly higher (20%) compared to the FPF of spray dried blends (5%). Compared to API engineering, carrier engineering had a positive effect on the capsule filling performance (weight variability and mean fill weight) at lower compression ratios (setting 1). Results further showed that higher compression ratios appear to be beneficial in terms of capsule filling performance (higher fill weight and less fill weight variation). Concluding, it can be stated that the carrier engineering, or generally carrier properties, govern downstream processing, whereas the API engineering and API properties govern the aerosolisation performance and thereby significantly affect the dose delivery to the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Experimental investigation of various surface integrity aspects in hard turning of AISI 4340 alloy steel with coated and uncoated cermet

    NASA Astrophysics Data System (ADS)

    Das, Anshuman; Patel, S. K.; Sateesh Kumar, Ch.; Biswal, B. B.

    2018-03-01

    The newer technological developments are exerting immense pressure on domain of production. These fabrication industries are busy finding solutions to reduce the costs of cutting materials, enhance the machined parts quality and testing different materials, which can be made versatile for cutting materials, which are difficult for machining. High-speed machining has been the domain of paramount importance for mechanical engineering. In this study, the variation of surface integrity parameters of hardened AISI 4340 alloy steel was analyzed. The surface integrity parameters like surface roughness, micro hardness, machined surface morphology and white layer of hardened AISI 4340 alloy steel were compared using coated and uncoated cermet inserts under dry cutting condition. From the results, it was deduced that coated insert outperformed uncoated one in terms of different surface integrity characteristics.

  18. 49 CFR 172.604 - Emergency response telephone number.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vehicle. Carbon dioxide, solid. Castor bean. Castor flake. Castor meal. Castor pomace. Consumer commodity. Dry ice. Engines, internal combustion. Fish meal, stabilized. Fish scrap, stabilized. Refrigerating machine. Vehicle, flammable gas powered. Vehicle, flammable liquid powered. Wheelchair, electric. (3...

  19. Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles.

    NASA Astrophysics Data System (ADS)

    Jadhav, Pavandatta M.; Reddy, Narala Suresh Kumar

    2018-04-01

    Wear mechanism takes predominant role in reducing the tool life during machining of Titanium alloy. Challenges of wear mechanisms such as variation in chip, high pressure loads and spring back are responsible for tool wear. In addition, many tool materials are inapt for machining due to low thermal conductivity and volume specific heat of these materials results in high cutting temperature during machining. To confront this issue Electrostatic Spray Coating (ESC) coating technique is utilized to enhance the tool life to an acceptable level. The Yttria Stabilized Zirconia (YSZ) acts as a thermal barrier coating having high thermal expansion coefficient and thermal shock resistance. This investigation focuses on the influence of YSZ nanocoating on the tungsten carbide tool material and improve the machinability of Ti-6Al-4V alloy. YSZ nano powder was coated on the tungsten carbide pin by using ESC technique. The coatings have been tested for wear and friction behavior by using a pin-on-disc tribological tester. The dry sliding wear test was performed on Titanium alloy (Ti-6Al-4V) disc and YSZ coated tungsten carbide (pin) at ambient atmosphere. The performance parameters like wear rate and temperature rise were considered upon performing the dry sliding test on Ti-6Al-4V alloy disc. The performance parameters were calculated by using coefficient of friction and frictional force values which were obtained from the pin on disc test. Substantial resistance to wear was achieved by the coating.

  20. Study of Tool Wear Mechanisms and Mathematical Modeling of Flank Wear During Machining of Ti Alloy (Ti6Al4V)

    NASA Astrophysics Data System (ADS)

    Chetan; Narasimhulu, A.; Ghosh, S.; Rao, P. V.

    2015-07-01

    Machinability of titanium is poor due to its low thermal conductivity and high chemical affinity. Lower thermal conductivity of titanium alloy is undesirable on the part of cutting tool causing extensive tool wear. The main task of this work is to predict the various wear mechanisms involved during machining of Ti alloy (Ti6Al4V) and to formulate an analytical mathematical tool wear model for the same. It has been found from various experiments that adhesive and diffusion wear are the dominating wear during machining of Ti alloy with PVD coated tungsten carbide tool. It is also clear from the experiments that the tool wear increases with the increase in cutting parameters like speed, feed and depth of cut. The wear model was validated by carrying out dry machining of Ti alloy at suitable cutting conditions. It has been found that the wear model is able to predict the flank wear suitably under gentle cutting conditions.

  1. Detection of Soil Nitrogen Using Near Infrared Sensors Based on Soil Pretreatment and Algorithms

    PubMed Central

    Nie, Pengcheng; Dong, Tao; He, Yong; Qu, Fangfang

    2017-01-01

    Soil nitrogen content is one of the important growth nutrient parameters of crops. It is a prerequisite for scientific fertilization to accurately grasp soil nutrient information in precision agriculture. The information about nutrients such as nitrogen in the soil can be obtained quickly by using a near-infrared sensor. The data can be analyzed in the detection process, which is nondestructive and non-polluting. In order to investigate the effect of soil pretreatment on nitrogen content by near infrared sensor, 16 nitrogen concentrations were mixed with soil and the soil samples were divided into three groups with different pretreatment. The first group of soil samples with strict pretreatment were dried, ground, sieved and pressed. The second group of soil samples were dried and ground. The third group of soil samples were simply dried. Three linear different modeling methods are used to analyze the spectrum, including partial least squares (PLS), uninformative variable elimination (UVE), competitive adaptive reweighted algorithm (CARS). The model of nonlinear partial least squares which supports vector machine (LS-SVM) is also used to analyze the soil reflectance spectrum. The results show that the soil samples with strict pretreatment have the best accuracy in predicting nitrogen content by near-infrared sensor, and the pretreatment method is suitable for practical application. PMID:28492480

  2. Physical Properties of Nyamplung Oil (Calophyllum inophyllum L) for Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Dewang, Syamsir; Suriani; Hadriani, Siti; Bannu; Abdullah, B.

    2017-05-01

    Worldwide energy crisis due to the too high of energy consumption causes the people trying to find alternative energy to support energy requirements. The use of energy from environmentally friendly plant-based materials into an effort to assist communities in sufficient of national energy needs. Some processing of Nyamplung (Calophyllum inophyllum L) oil production is drying and pressing to produce crude oil. Degumming process is then performed to remove the sap contained in the oil. The next process is to remove free fatty acids (FFA) below 2% that can cause corrosion on the machine when in use. The results performed of the density properties quality to produce oil that appropriate with the international standards by time variation of catalyst. The result was obtained the density value of 0.92108 gr/cm3 at the time of 3 hours by trans-esterification process, and the best yield value was measured at 98.2% in 2 hours stirring of transesterification.

  3. Multilayer ultra thick resist development for MEMS

    NASA Astrophysics Data System (ADS)

    Washio, Yasushi; Senzaki, Takahiro; Masuda, Yasuo; Saito, Koji; Obiya, Hiroyuki

    2005-05-01

    MEMS (Micro-Electro-Mechanical Systems) is achieved through a process technology, called Micro-machining. There are two distinct methods to manufacture a MEMS-product. One method is to form permanent film through photolithography, and the other is to form a non-permanent film resist after photolithography proceeded by etch or plating process. The three-dimensional ultra-fine processing technology based on photolithography, and is assembled by processes, such as anode junction, and post lithography processes such as etching and plating. Currently ORDYL PR-100 (Dry Film Type) is used for the permanent resist process. TOK has developed TMMR S2000 (Liquid Type) and TMMF S2000 (Dry Film Type) also. TOK has developed a new process utilizing these resist. The electro-forming method by photolithography is developed as one of the methods for enabling high resolution and high aspect formation. In recent years, it has become possible to manufacture conventionally difficult multilayer through our development with material and equipment project (M&E). As for material for electro-forming, it was checked that chemically amplified resist is optimal from the reaction mechanism as it is easily removed by the clean solution. Moreover, multiple plating formations were enabled with the resist through a new process. As for the equipment, TOK developed Applicator (It can apply 500 or more μms) and Developer, which achieves high throughput and quality. The detailed plating formations, which a path differs, and air wiring are realizable through M&E. From the above results, opposed to metallic mold plating, electro-forming method by resist, enabled to form high resolution and aspect pattern, at low cost. It is thought that the infinite possibility spreads by applying this process.

  4. Dimensional Error in Rapid Prototyping with Open Source Software and Low-cost 3D-printer

    PubMed Central

    Andrade-Delgado, Laura; Telich-Tarriba, Jose E.; Fuente-del-Campo, Antonio; Altamirano-Arcos, Carlos A.

    2018-01-01

    Summary: Rapid prototyping models (RPMs) had been extensively used in craniofacial and maxillofacial surgery, especially in areas such as orthognathic surgery, posttraumatic or oncological reconstructions, and implantology. Economic limitations are higher in developing countries such as Mexico, where resources dedicated to health care are limited, therefore limiting the use of RPM to few selected centers. This article aims to determine the dimensional error of a low-cost fused deposition modeling 3D printer (Tronxy P802MA, Shenzhen, Tronxy Technology Co), with Open source software. An ordinary dry human mandible was scanned with a computed tomography device. The data were processed with open software to build a rapid prototype with a fused deposition machine. Linear measurements were performed to find the mean absolute and relative difference. The mean absolute and relative difference was 0.65 mm and 1.96%, respectively (P = 0.96). Low-cost FDM machines and Open Source Software are excellent options to manufacture RPM, with the benefit of low cost and a similar relative error than other more expensive technologies. PMID:29464171

  5. Dimensional Error in Rapid Prototyping with Open Source Software and Low-cost 3D-printer.

    PubMed

    Rendón-Medina, Marco A; Andrade-Delgado, Laura; Telich-Tarriba, Jose E; Fuente-Del-Campo, Antonio; Altamirano-Arcos, Carlos A

    2018-01-01

    Rapid prototyping models (RPMs) had been extensively used in craniofacial and maxillofacial surgery, especially in areas such as orthognathic surgery, posttraumatic or oncological reconstructions, and implantology. Economic limitations are higher in developing countries such as Mexico, where resources dedicated to health care are limited, therefore limiting the use of RPM to few selected centers. This article aims to determine the dimensional error of a low-cost fused deposition modeling 3D printer (Tronxy P802MA, Shenzhen, Tronxy Technology Co), with Open source software. An ordinary dry human mandible was scanned with a computed tomography device. The data were processed with open software to build a rapid prototype with a fused deposition machine. Linear measurements were performed to find the mean absolute and relative difference. The mean absolute and relative difference was 0.65 mm and 1.96%, respectively ( P = 0.96). Low-cost FDM machines and Open Source Software are excellent options to manufacture RPM, with the benefit of low cost and a similar relative error than other more expensive technologies.

  6. Towards a generalized energy prediction model for machine tools

    PubMed Central

    Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H.; Dornfeld, David A.; Helu, Moneer; Rachuri, Sudarsan

    2017-01-01

    Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process. PMID:28652687

  7. Towards a generalized energy prediction model for machine tools.

    PubMed

    Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H; Dornfeld, David A; Helu, Moneer; Rachuri, Sudarsan

    2017-04-01

    Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.

  8. Near-Net-Shape Processing of Sintered Fibrous Ceramics Achieved

    NASA Technical Reports Server (NTRS)

    Angel, Paul W.

    2000-01-01

    A variety of sintered fibrous ceramic (SFC) materials have been developed over the last 50 years as thermal barrier materials for reentry applications. SFC materials typically exhibit very low thermal conductivities combined with low densities and good thermal stability up to 2500 F. These materials have flown successfully on the space shuttle orbiters since the 1960's. More recently, the McDonnell Douglas Corporation successfully used SFC tiles as a heat shield on the underside of its DC X test vehicle. For both of these applications, tiles are machined from blocks of a specific type of SFC called an alumina-enhanced thermal barrier (AETB). The sizes of these blocks have been limited by the manufacturing process. In addition, as much as 80 to 90 percent of the material can be lost during the machining of tiles with significant amounts of curvature. To address these problems, the NASA Glenn Research Center at Lewis Field entered a cooperative contract with the Boeing Company to develop a vacuum-assisted forming process that can produce large (approximately 4 square feet), severely contoured panels of AETB while saving costs in comparison to the conventional cast-and-machine billet process. For shuttle use, AETB is slurry cast, drained, and fired to form square billets conforming to the shape of the filtration box. The billets are then cut into tiles of the appropriate size for thermally protecting the space shuttle. Processing techniques have limited the maximum size of AETB billets to 21.5 square inches by 6.5-in. thick, but the space shuttles use discrete heat shield tiles no more than 8 to 12 square inches. However, in other applications, large, complex shapes are needed, and the tiling approach is undesirable. For such applications, vacuum-assisted forming can produce large parts with complex shapes while reducing machining waste and eliminating cemented joints between bonded billets. Because it allows contoured shapes to be formed, material utilization is inherently high. Initial estimates show that the amount of material lost during machining can be reduced by 50 percent or more. In addition, a fiber alignment favorable for minimum heat transfer is maintained for all panel shapes since the fibers are aligned parallel to the contoured surface of the forming tool or mold. The vacuum-assisted forming process can complete the entire forming operation in a matter of minutes and can produce multiple parts whose size is limited only by the size of the forming tool. To date, panels as large as 2 square feet have been demonstrated The vacuum-assisted forming process starts with the fabrication of a permeable forming tool, or mold, with the proper part contour. This reusable tool is mounted over an internal rib support structure, as depicted in the diagram, such that a vacuum can be pulled on the bottom portion of the tool. AETB slurry is then poured over and around the tool, liquid is drawn from the slurry, and the part forms over the tool surface. The part is then dried, fired, and finished machined. Future plans include an evaluation of the need for additional coatings and surface-toughness treatments to extend the durability and performance of this material.

  9. Fabrication of Polyimide-Matrix/Carbon and Boron-Fiber Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    2007-01-01

    The term HYCARB denotes a hybrid composite of polyimide matrices reinforced with carbon and boron fibers. HYCARB and an improved process for fabricating dry HYCARB tapes have been invented in a continuing effort to develop lightweight, strong composite materials for aerospace vehicles. Like other composite tapes in this line of development, HYCARB tapes are intended to be used to build up laminated structures having possibly complex shapes by means of automated tow placement (ATP) - a process in which a computer-controlled multiaxis machine lays down prepreg tape or tows. The special significance of the present process for making dry HYCARB for ATP is that it contributes to the reduction of the overall cost of manufacturing boron-reinforced composite-material structures while making it possible to realize increased compression strengths. The present process for making HYCARB tapes incorporates a "wet to dry" process developed previously at Langley Research Center. In the "wet to dry" process, a flattened bundle of carbon fiber tows, pulled along a continuous production line between pairs of rollers, is impregnated with a solution of a poly(amide acid) in N-methyl-2-pyrrolidinone (NMP), then most of the NMP is removed by evaporation in hot air. In the present case, the polyamide acid is, more specifically, that of LaRC. IAX (or equivalent) thermoplastic polyimide, and the fibers are, more specifically, Manganite IM7 (or equivalent) polyacrylonitrile- based carbon filaments that have a diameter of 5.2 m and are supplied in 12,000-filament tows. The present process stands in contrast to a prior process in which HYCARB tape was made by pressing boron fibers into the face of a wet carbon-fiber/ poly(amide acid) prepreg tape . that is, a prepreg tape from which the NMP solvent had not been removed. In the present process, one or more layer(s) of side-by-side boron fibers are pressed between dry prepreg tapes that have been prepared by the aforementioned gwet to dry h process. The multilayer tape is then heated to imidize the matrix material and remove most of the remaining solvent, and is pressed to consolidate the multiple layers into a dense tape. For tests, specimens of HYCARB tapes and laminated composite panels made from HYCARB tape were prepared as follows: HYCARB tapes were fabricated as described above. Each panel was made by laying down ten layers of tape, containing, variously, one, two, or three boron-fiber plies and the remainder carbon- fiber-only plies (see figure). Each panel was made by laying down ten layers of tape. Each panel was then cured by heating to a temperature of 225 C for 15 minutes, then pressing at 200 psi (A1.4 MPa) while heating to 371 C, holding at 371 C for 1 hour, then continuing to hold pressure during cooling. Control specimens that were otherwise identical except that they did not contain boron fibers also were prepared. In room-temperature flexural tests, the HYCARB specimens performed comparably to the control specimens; in room-temperature, open-hole compression tests, the HYCARB specimens performed slightly better, by amounts that increased with boron content.

  10. Multi-objective optimization model of CNC machining to minimize processing time and environmental impact

    NASA Astrophysics Data System (ADS)

    Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad

    2017-11-01

    Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.

  11. 23. In the CoatingRoom. This picture shows the rolls of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. In the Coating-Room. This picture shows the rolls of paper made on the machine shown on page 237, just starting on the coating-machines. The paper passes through a bath of coating material; then through felt-covered rolls; then between vibrating brushes, which lay in the coating material evenly and smoothly on the paper. It then passes outh at the left into the drying-room (see following illustration). (p.238.) - Champion-International Paper Company, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  12. Norovirus Illness: Key Facts

    MedlinePlus

    ... should— • handle soiled items carefully without agitating them, • wear rubber or disposable gloves while handling soiled items and wash your hands after, and wash the items with detergent at the maximum available cycle length then machine dry them. Visit CDC’s Norovirus Web site at ...

  13. Paper surface diffraction to characterize the fiber orientation distribution

    NASA Astrophysics Data System (ADS)

    Pereira, Mario; Teixeira, Jose; Fiadeiro, Paulo T.; Silvy, Jacques

    2001-11-01

    Many paper mills use ultrasonic techniques to measure the Tensile Stiffness Index, TSI, of the paper sheet. They then assume that the TSI value is the same as the fibre orientation anisotropy. This is true if the paper is allowed to dry without any internal tension or elongation, but does not apply to paper manufactured in a paper machine. The paper machine introduces tension and elongation as soon as the fibre is placed on the forming fabric. These factors increase through the press section and are accentuated in the drying section. In order to uniquely measure the fibre orientation anisotropy on the surfaces, the proposed method uses replicas of both paper surfaces to produce a laser diffraction pattern. The obtained pattern reveals an elliptical shape, which is related to the fibre orientation anisotropy of the paper surface. By measuring the ellipticity of the diffraction pattern and the deviation with respect to the machine direction, one can quantify the fibre orientation distribution. Different papers from the bench market have been successfully tested with the developed system. This article describes the new developed optical system and its innovative capabilities in the field to produce maps of the fibre orientation of a complete paper sheet surface. A selection of the obtained results to prove its feasibility is also presented.

  14. Comparison of tool life and surface roughness with MQL, flood cooling, and dry cutting conditions with P20 and D2 steel

    NASA Astrophysics Data System (ADS)

    Senevirathne, S. W. M. A. I.; Punchihewa, H. K. G.

    2017-09-01

    Minimum quantity lubrication (MQL) is a cutting fluid (CF) application method that has given promising results in improving machining performances. It has shown that, the performance of cutting systems, depends on the work and tool materials used. AISI P20, and D2 are popular in tool making industry. However, the applicability of MQL in machining these two steels has not been studied previously. This experimental study is focused on evaluating performances of MQL compared to dry cutting, and conventional flood cooling method. Trials were carried out with P20, and D2 steels, using coated carbides as tool material, emulsion cutting oil as the CF. Tool nose wear, and arithmetic average surface roughness (Ra) were taken as response variables. Results were statistically analysed for differences in response variables. Although many past literature has suggested that MQL causes improvements in tool wear, and surface finish, this study has found contradicting results. MQL has caused nearly 200% increase in tool nose wear, and nearly 11-13% increase in surface roughness compared flood cooling method with both P20 and D2. Therefore, this study concludes that MQL affects adversely in machining P20, and D2 steels.

  15. Woodmetrics: imaging devices and processes in wood inspection at Lulea University of Technology

    NASA Astrophysics Data System (ADS)

    Hagman, Olle

    1999-09-01

    Wood Technology research and education at Lulea University of Technology is located in Skelleftea 800 km north of Stockholm. At the campus about 25 persons are involved in education and research in Wood Technology. We are educating M.Sc. and post- graduate students in Wood Technology. The research at the campus includes the following main fields: -- Wood Machining - - Woodmetrics -- Wood Drying -- Wood Composites/Wood Material Science. Our research strategy is to obtain an individual treatment of every tree, board and piece of wood in order to get highest possible value for the forest products. This shall be accomplished by the aid of advanced scanning technology and computer technology. Woodmetrics means to measure different wood parameters in order to optimize the utilization of the raw material. Today we have the following projects in this field: Automatic wood inspection -- Color changes and moisture flow in drying processes -- Inner quality of logs and lumber - - Stem quality database -- Computer tomography -- Aesthetic properties of wood -- Market/industry/forest relations. In the Woodmetrics field we are using computer tomography, CCD cameras and other sensors in order to find and measure defects in trees and on boards. The signals are analyzed and classified with modern image analyzing techniques and advanced statistical methods.

  16. Silicon etching using only Oxygen at high temperature: An alternative approach to Si micro-machining on 150 mm Si wafers

    NASA Astrophysics Data System (ADS)

    Chai, Jessica; Walker, Glenn; Wang, Li; Massoubre, David; Tan, Say Hwa; Chaik, Kien; Hold, Leonie; Iacopi, Alan

    2015-12-01

    Using a combination of low-pressure oxygen and high temperatures, isotropic and anisotropic silicon (Si) etch rates can be controlled up to ten micron per minute. By varying the process conditions, we show that the vertical-to-lateral etch rate ratio can be controlled from 1:1 isotropic etch to 1.8:1 anisotropic. This simple Si etching technique combines the main respective advantages of both wet and dry Si etching techniques such as fast Si etch rate, stiction-free, and high etch rate uniformity across a wafer. In addition, this alternative O2-based Si etching technique has additional advantages not commonly associated with dry etchants such as avoiding the use of halogens and has no toxic by-products, which improves safety and simplifies waste disposal. Furthermore, this process also exhibits very high selectivity (>1000:1) with conventional hard masks such as silicon carbide, silicon dioxide and silicon nitride, enabling deep Si etching. In these initial studies, etch rates as high as 9.2 μm/min could be achieved at 1150 °C. Empirical estimation for the calculation of the etch rate as a function of the feature size and oxygen flow rate are presented and used as proof of concepts.

  17. Particle size alterations of feedstuffs during in situ neutral detergent fiber incubation.

    PubMed

    Krämer, M; Nørgaard, P; Lund, P; Weisbjerg, M R

    2013-07-01

    Particle size alterations during neutral detergent fiber (NDF) determination and in situ rumen incubation were analyzed by dry sieving and image analysis to evaluate the in situ procedure for estimation of NDF degradation parameters and indigestible NDF concentration in terms of particle size. Early-cut and late-cut grass silages, corn silage, alfalfa silage, rapeseed meal, and dried distillers grains were examined. Treatments were (1) drying and grinding of forage samples and grinding of concentrates; (2) neutral detergent-soluble (NDS) extraction; (3) machine washing and NDS extraction; (4) 24-h rumen incubation, machine washing, and NDS extraction; and (5) 288-h rumen incubation, machine washing, and NDS extraction. Degradation profiles for potentially degradable NDF were determined and image analysis was used to estimate particle size profiles and thereby the risk for particle loss. Particle dimensions changed during NDF determination and in situ rumen incubation and variations depended on feedstuff and treatment. Corn silage and late-cut grass silage varied most in particle area among feedstuffs, with an increase of 139% between 0 and 24h and a decrease of 77% between 24 and 288 h for corn silage and a decrease of 74% for late-cut grass silage between 24- and 288-h in situ rumen incubation. Especially for late-cut grass silage residues after 288 h in situ rumen incubation, a high mass proportion in the critical zone for escape was found. Particle area decreased linearly with increasing incubation time. Particle loss during in situ rumen incubation cannot be excluded and is likely to vary among feedstuffs. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Hybrid micromachining using a nanosecond pulsed laser and micro EDM

    NASA Astrophysics Data System (ADS)

    Kim, Sanha; Kim, Bo Hyun; Chung, Do Kwan; Shin, Hong Shik; Chu, Chong Nam

    2010-01-01

    Micro electrical discharge machining (micro EDM) is a well-known precise machining process that achieves micro structures of excellent quality for any conductive material. However, the slow machining speed and high tool wear are main drawbacks of this process. Though the use of deionized water instead of kerosene as a dielectric fluid can reduce the tool wear and increase the machine speed, the material removal rate (MRR) is still low. In contrast, laser ablation using a nanosecond pulsed laser is a fast and non-wear machining process but achieves micro figures of rather low quality. Therefore, the integration of these two processes can overcome the respective disadvantages. This paper reports a hybrid process of a nanosecond pulsed laser and micro EDM for micromachining. A novel hybrid micromachining system that combines the two discrete machining processes is introduced. Then, the feasibility and characteristics of the hybrid machining process are investigated compared to conventional EDM and laser ablation. It is verified experimentally that the machining time can be effectively reduced in both EDM drilling and milling by rapid laser pre-machining prior to micro EDM. Finally, some examples of complicated 3D micro structures fabricated by the hybrid process are shown.

  19. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  20. Bond strengths of Scotchbond Multi-Purpose to moist dentin and enamel.

    PubMed

    Swift, E J; Triolo, P T

    1992-12-01

    This in vitro study tested the shear bond strengths of the Scotchbond Multi-Purpose adhesive system to moist and dry enamel and dentin. After the tooth was etched, the surface was either dried with compressed air or blotted with tissue paper, leaving the surface visibly moist. Primer and adhesive were applied according to the manufacturer's directions. Resin composite posts were applied, and the specimens were thermocycled. Shear bond strengths were determined using an Instron universal testing machine. For both enamel and dentin, mean shear bond strengths were higher when the surface was left visibly moist after etching. Bond strengths to moist and dry dentin were 21.8 and 17.8 MPa, respectively. Enamel bond strengths were slightly lower, with values of 17.0 and 14.2 MPa to moist and dry enamel, respectively.

  1. Research on the EDM Technology for Micro-holes at Complex Spatial Locations

    NASA Astrophysics Data System (ADS)

    Y Liu, J.; Guo, J. M.; Sun, D. J.; Cai, Y. H.; Ding, L. T.; Jiang, H.

    2017-12-01

    For the demands on machining micro-holes at complex spatial location, several key technical problems are conquered such as micro-Electron Discharge Machining (micro-EDM) power supply system’s development, the host structure’s design and machining process technical. Through developing low-voltage power supply circuit, high-voltage circuit, micro and precision machining circuit and clearance detection system, the narrow pulse and high frequency six-axis EDM machining power supply system is developed to meet the demands on micro-hole discharging machining. With the method of combining the CAD structure design, CAE simulation analysis, modal test, ODS (Operational Deflection Shapes) test and theoretical analysis, the host construction and key axes of the machine tool are optimized to meet the position demands of the micro-holes. Through developing the special deionized water filtration system to make sure that the machining process is stable enough. To verify the machining equipment and processing technical developed in this paper through developing the micro-hole’s processing flow and test on the real machine tool. As shown in the final test results: the efficient micro-EDM machining pulse power supply system, machine tool host system, deionized filtration system and processing method developed in this paper meet the demands on machining micro-holes at complex spatial locations.

  2. A Novel Multi-Phosphonate Surface Treatment of Titanium Dental Implants: A Study in Sheep

    PubMed Central

    von Salis-Soglio, Marcella; Stübinger, Stefan; Sidler, Michéle; Klein, Karina; Ferguson, Stephen J.; Kämpf, Käthi; Zlinszky, Katalin; Buchini, Sabrina; Curno, Richard; Péchy, Péter; Aronsson, Bjorn-Owe; von Rechenberg, Brigitte

    2014-01-01

    The aim of the present study was to evaluate a new multi-phosphonate surface treatment (SurfLink®) in an unloaded sheep model. Treated implants were compared to control implants in terms of bone to implant contact (BIC), bone formation, and biomechanical stability. The study used two types of implants (rough or machined surface finish) each with either the multi-phosphonate Wet or Dry treatment or no treatment (control) for a total of six groups. Animals were sacrificed after 2, 8, and 52 weeks. No adverse events were observed at any time point. At two weeks, removal torque showed significantly higher values for the multi-phosphonate treated rough surface (+32% and +29%, Dry and Wet, respectively) compared to rough control. At 52 weeks, a significantly higher removal torque was observed for the multi-phosphonate treated machined surfaces (+37% and 23%, Dry and Wet, respectively). The multi-phosphonate treated groups showed a positive tendency for higher BIC with time and increased new-old bone ratio at eight weeks. SEM images revealed greater amounts of organic materials on the multi-phosphonate treated compared to control implants, with the bone fracture (from the torque test) appearing within the bone rather than at the bone to implant interface as it occurred for control implants. PMID:25215424

  3. Small communal laundries in block of flats: Planning, Equipment, Handicap Adaption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedersen, B.

    1980-01-01

    The primary requirements which must be made for a communal laundry is that it must be adapted to the laundry quantities, laundry needs, and available time of the households. In addition, the equipment must be such that the work involved and the and water are kept as low as possible. It is also important that the laundry facility be regarded as an attractive work environment. The following topics are discussed: Small communal laundries offer many advantages (In the same building, Possibilities for unscheduled laundering, Economically advantageous, Easy to agree on laundering times); Calculation of laundry capacity; Equipment in the laundrymore » (Washing machines, Spin dryer, Tumbler dryer and drying cabinets, Work table, Sink unit, Cold mangle); Information on equipment; Energy conservation measures (Heat exchanger, Outdoor drying); Location of equipment; Work areas which also suit the physically handicapped; Work postures are improved if the machines are placed on a higher level; Layouts; Standards for laundries.« less

  4. Use of Machine Learning Techniques for Identification of Robust Teleconnections to East African Rainfall Variability

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, F. R.; Funk, C.

    2014-01-01

    Hidden Markov models can be used to investigate structure of subseasonal variability. East African short rain variability has connections to large-scale tropical variability. MJO - Intraseasonal variations connected with appearance of "wet" and "dry" states. ENSO/IOZM SST and circulation anomalies are apparent during years of anomalous residence time in the subseasonal "wet" state. Similar results found in previous studies, but we can interpret this with respect to variations of subseasonal wet and dry modes. Reveal underlying connections between MJO/IOZM/ENSO with respect to East African rainfall.

  5. The research on construction and application of machining process knowledge base

    NASA Astrophysics Data System (ADS)

    Zhao, Tan; Qiao, Lihong; Qie, Yifan; Guo, Kai

    2018-03-01

    In order to realize the application of knowledge in machining process design, from the perspective of knowledge in the application of computer aided process planning(CAPP), a hierarchical structure of knowledge classification is established according to the characteristics of mechanical engineering field. The expression of machining process knowledge is structured by means of production rules and the object-oriented methods. Three kinds of knowledge base models are constructed according to the representation of machining process knowledge. In this paper, the definition and classification of machining process knowledge, knowledge model, and the application flow of the process design based on the knowledge base are given, and the main steps of the design decision of the machine tool are carried out as an application by using the knowledge base.

  6. Energy Survey of Machine Tools: Separating Power Information of the Main Transmission System During Machining Process

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Liu, Fei; Hu, Shaohua; Yin, Zhenbiao

    The major power information of the main transmission system in machine tools (MTSMT) during machining process includes effective output power (i.e. cutting power), input power and power loss from the mechanical transmission system, and the main motor power loss. These information are easy to obtain in the lab but difficult to evaluate in a manufacturing process. To solve this problem, a separation method is proposed here to extract the MTSMT power information during machining process. In this method, the energy flow and the mathematical models of major power information of MTSMT during the machining process are set up first. Based on the mathematical models and the basic data tables obtained from experiments, the above mentioned power information during machining process can be separated just by measuring the real time total input power of the spindle motor. The operation program of this method is also given.

  7. 30 CFR 56.6405 - Firing devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Electric Blasting § 56... all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired, and maintained in...

  8. Traceability of On-Machine Tool Measurement: A Review.

    PubMed

    Mutilba, Unai; Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor; Yagüe-Fabra, Jose A

    2017-07-11

    Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand.

  9. On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process

    NASA Astrophysics Data System (ADS)

    Hongzhi, Zhao; Jian, Zhang

    2018-03-01

    The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.

  10. Tropical land use land cover mapping in Pará (Brazil) using discriminative Markov random fields and multi-temporal TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Hagensieker, Ron; Roscher, Ribana; Rosentreter, Johannes; Jakimow, Benjamin; Waske, Björn

    2017-12-01

    Remote sensing satellite data offer the unique possibility to map land use land cover transformations by providing spatially explicit information. However, detection of short-term processes and land use patterns of high spatial-temporal variability is a challenging task. We present a novel framework using multi-temporal TerraSAR-X data and machine learning techniques, namely discriminative Markov random fields with spatio-temporal priors, and import vector machines, in order to advance the mapping of land cover characterized by short-term changes. Our study region covers a current deforestation frontier in the Brazilian state Pará with land cover dominated by primary forests, different types of pasture land and secondary vegetation, and land use dominated by short-term processes such as slash-and-burn activities. The data set comprises multi-temporal TerraSAR-X imagery acquired over the course of the 2014 dry season, as well as optical data (RapidEye, Landsat) for reference. Results show that land use land cover is reliably mapped, resulting in spatially adjusted overall accuracies of up to 79% in a five class setting, yet limitations for the differentiation of different pasture types remain. The proposed method is applicable on multi-temporal data sets, and constitutes a feasible approach to map land use land cover in regions that are affected by high-frequent temporal changes.

  11. 40 CFR 63.461 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the layer of air inside the solvent cleaning machine freeboard located above the solvent/air interface... speed from the initial loading of soiled or wet parts through the removal of the cleaned or dried parts... fresh unused solvent, recycled solvent, or used solvent that has been cleaned of soils (e.g., skimmed of...

  12. 40 CFR 63.461 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the layer of air inside the solvent cleaning machine freeboard located above the solvent/air interface... speed from the initial loading of soiled or wet parts through the removal of the cleaned or dried parts... fresh unused solvent, recycled solvent, or used solvent that has been cleaned of soils (e.g., skimmed of...

  13. 40 CFR 63.461 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the layer of air inside the solvent cleaning machine freeboard located above the solvent/air interface... speed from the initial loading of soiled or wet parts through the removal of the cleaned or dried parts... fresh unused solvent, recycled solvent, or used solvent that has been cleaned of soils (e.g., skimmed of...

  14. 40 CFR 63.461 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the layer of air inside the solvent cleaning machine freeboard located above the solvent/air interface... speed from the initial loading of soiled or wet parts through the removal of the cleaned or dried parts... fresh unused solvent, recycled solvent, or used solvent that has been cleaned of soils (e.g., skimmed of...

  15. Tool path strategy and cutting process monitoring in intelligent machining

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei

    2018-06-01

    Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.

  16. Parameter optimization of electrochemical machining process using black hole algorithm

    NASA Astrophysics Data System (ADS)

    Singh, Dinesh; Shukla, Rajkamal

    2017-12-01

    Advanced machining processes are significant as higher accuracy in machined component is required in the manufacturing industries. Parameter optimization of machining processes gives optimum control to achieve the desired goals. In this paper, electrochemical machining (ECM) process is considered to evaluate the performance of the considered process using black hole algorithm (BHA). BHA considers the fundamental idea of a black hole theory and it has less operating parameters to tune. The two performance parameters, material removal rate (MRR) and overcut (OC) are considered separately to get optimum machining parameter settings using BHA. The variations of process parameters with respect to the performance parameters are reported for better and effective understanding of the considered process using single objective at a time. The results obtained using BHA are found better while compared with results of other metaheuristic algorithms, such as, genetic algorithm (GA), artificial bee colony (ABC) and bio-geography based optimization (BBO) attempted by previous researchers.

  17. Machine Learning Assessments of Soil Drying

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Minsker, B. S.; Wenzel, C.; Gilmore, B. J.

    2011-12-01

    Agricultural activities require the use of heavy equipment and vehicles on unpaved farmlands. When soil conditions are wet, equipment can cause substantial damage, leaving deep ruts. In extreme cases, implements can sink and become mired, causing considerable delays and expense to extricate the equipment. Farm managers, who are often located remotely, cannot assess sites before allocating equipment, causing considerable difficulty in reliably assessing conditions of countless sites with any reliability and frequency. For example, farmers often trace serpentine paths of over one hundred miles each day to assess the overall status of various tracts of land spanning thirty, forty, or fifty miles in each direction. One means of assessing the moisture content of a field lies in the strategic positioning of remotely-monitored in situ sensors. Unfortunately, land owners are often reluctant to place sensors across their properties due to the significant monetary cost and complexity. This work aspires to overcome these limitations by modeling the process of wetting and drying statistically - remotely assessing field readiness using only information that is publically accessible. Such data includes Nexrad radar and state climate network sensors, as well as Twitter-based reports of field conditions for validation. Three algorithms, classification trees, k-nearest-neighbors, and boosted perceptrons are deployed to deliver statistical field readiness assessments of an agricultural site located in Urbana, IL. Two of the three algorithms performed with 92-94% accuracy, with the majority of misclassifications falling within the calculated margins of error. This demonstrates the feasibility of using a machine learning framework with only public data, knowledge of system memory from previous conditions, and statistical tools to assess "readiness" without the need for real-time, on-site physical observation. Future efforts will produce a workflow assimilating Nexrad, climate network, and Twitter data to generate a real-time web-map of estimated readiness conditions.

  18. Effect of grinding on the fatigue life of titanium alloy (5 Al-2.5 Sn) under dry and wet conditions

    NASA Technical Reports Server (NTRS)

    Rangaswamy, Partha; Terutung, Hendra; Jeelani, Shaik

    1989-01-01

    The principal factors in the performance of aerospace materials are strength-to-weight ratio, fatigue life, fracture toughness, survivability and, of course, reliability. Machining processes and, in particular, grinding under adverse conditions have been found to cause damage to surface integrity and affect the residual stress distribution in the surface and subsurface region. These effects have a direct bearing on the fatigue life. In this investigation the effects of grinding conditions on the fatigue life of Titanium 5 Al-2.5Sn were studied. This alloy is used in ground form in the manufacturing of some critical components in the space shuttle's main engine. It is essential that materials for such applications be properly characterized for use in severe service conditions. Flat sub-size specimens 0.1 inch thick were ground on a surface grinding machine equipped with a variable speed motor at speeds of 2000 to 6000 rpm using SiC wheels of grit sizes 60 and 120. The grinding parameters used in this investigation were chosen from a separate study. The ground specimens were then fatigued at a selected stress and the resulting lives were compared with that of the virgin material. The surfaces of the specimens were examined under a scanning electron microscope, and the roughness and hardness were measured using a standard profilometer and microhardness tester, respectively. The fatigue life of the ground specimens was found to decrease with the increase in speed for both dry and wet conditions. The fatigue life of specimens ground under wet conditions showed a significant increase at the wheel speed of 2000 rpm for both the grit sizes and thereafter decreased with increase profilometry, microhardness measurements and scanning electron microscopic examination.

  19. Information integration and diagnosis analysis of equipment status and production quality for machining process

    NASA Astrophysics Data System (ADS)

    Zan, Tao; Wang, Min; Hu, Jianzhong

    2010-12-01

    Machining status monitoring technique by multi-sensors can acquire and analyze the machining process information to implement abnormity diagnosis and fault warning. Statistical quality control technique is normally used to distinguish abnormal fluctuations from normal fluctuations through statistical method. In this paper by comparing the advantages and disadvantages of the two methods, the necessity and feasibility of integration and fusion is introduced. Then an approach that integrates multi-sensors status monitoring and statistical process control based on artificial intelligent technique, internet technique and database technique is brought forward. Based on virtual instrument technique the author developed the machining quality assurance system - MoniSysOnline, which has been used to monitoring the grinding machining process. By analyzing the quality data and AE signal information of wheel dressing process the reason of machining quality fluctuation has been obtained. The experiment result indicates that the approach is suitable for the status monitoring and analyzing of machining process.

  20. Dust Emission Induced By Friction Modifications At Tool Chip Interface In Dry Machining In MMCp

    NASA Astrophysics Data System (ADS)

    Kremer, Arnaud; El Mansori, Mohamed

    2011-01-01

    This paper investigates the relationship between dust emission and tribological conditions at the tool-chip interface when machining Metal Matrix composite reinforced with particles (MMCp) in dry mode. Machining generates aerosols that can easily be inhaled by workers. Aerosols may be composed of oil mist, tool material or alloying elements of workpiece material. Bar turning tests were conducted on a 2009 aluminum alloy reinforced with different level of Silicon Carbide particles (15, 25 and 35% of SiCp). Variety of PCD tools and nanostructured diamond coatings were used to analyze their performances on air pollution. A spectrometer was used to detect airborne aerosol particles in the size range between 0.3μm to 20 μm and to sort them in 15 size channels in real time. It was used to compare the effects of test parameters on dust emission. Observations of tool face and chip morphology reveal the importance of friction phenomena. It was demonstrated that level of friction modifies chip curvature and dust emission. The increase of level of reinforcement increase the chip segmentation and decrease the contact length and friction area. A "running in" phenomenon with important dust emission appeared with PCD tool due to the tool rake face flatness. In addition dust generation is more sensitive to edge integrity than power consumption.

  1. Machinability of nickel based alloys using electrical discharge machining process

    NASA Astrophysics Data System (ADS)

    Khan, M. Adam; Gokul, A. K.; Bharani Dharan, M. P.; Jeevakarthikeyan, R. V. S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Duraiselvam, M.

    2018-04-01

    The high temperature materials such as nickel based alloys and austenitic steel are frequently used for manufacturing critical aero engine turbine components. Literature on conventional and unconventional machining of steel materials is abundant over the past three decades. However the machining studies on superalloy is still a challenging task due to its inherent property and quality. Thus this material is difficult to be cut in conventional processes. Study on unconventional machining process for nickel alloys is focused in this proposed research. Inconel718 and Monel 400 are the two different candidate materials used for electrical discharge machining (EDM) process. Investigation is to prepare a blind hole using copper electrode of 6mm diameter. Electrical parameters are varied to produce plasma spark for diffusion process and machining time is made constant to calculate the experimental results of both the material. Influence of process parameters on tool wear mechanism and material removal are considered from the proposed experimental design. While machining the tool has prone to discharge more materials due to production of high energy plasma spark and eddy current effect. The surface morphology of the machined surface were observed with high resolution FE SEM. Fused electrode found to be a spherical structure over the machined surface as clumps. Surface roughness were also measured with surface profile using profilometer. It is confirmed that there is no deviation and precise roundness of drilling is maintained.

  2. Process Monitoring Evaluation and Implementation for the Wood Abrasive Machining Process

    PubMed Central

    Saloni, Daniel E.; Lemaster, Richard L.; Jackson, Steven D.

    2010-01-01

    Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading. PMID:22163477

  3. Traceability of On-Machine Tool Measurement: A Review

    PubMed Central

    Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor

    2017-01-01

    Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand. PMID:28696358

  4. A proposal to demonstrate production of salad crops in the Space Station Mockup Facility with particular attention to space, energy, and labor constraints

    NASA Technical Reports Server (NTRS)

    Brooks, Carolyn A.

    1992-01-01

    The Salad Machine Research has continued to be a two path effort with the research at Marshall Space Flight Center (MSFC) focusing on the design, construction, and operation of a semiautomated system (Salad Machine) for the production of salad vegetables within a standard rack. Boeing Corporation in cooperation with NASA MSFC constructed a four drawer Salad Machine which was occasionally placed within the Space Station Freedom Mockup facility for view by selected visitors. Final outfitting of the Salad Machine is awaiting the arrival of parts for the nutrient delivery system. Research at the Alabama A&M facilities focused on compatibility of radish and lettuce plants when grown on the same nutrient solution. Lettuce fresh weight shoot yield was significantly enhanced when lettuce plants were grown on nutrient solution which was shared with radish. Radish tuber production was not significantly affected although there was a trend for radish from shared solutions to be heavier than those grown on separate nutrient solutions. The effect of sharing nutrient solutions on carbohydrate partitioning reflected the effect of sharing solution on fresh weight yield. Lettuce shoot dry weight was significantly greater for plants from shared solutions than from separate. There was no significant effect on sharing nutrient solution on radish tuber dry weight. Partitioning of nitrogen, calcium, magnesium, and potassium was not affected by sharing, there was, however, a disproportionate amount of potassium in the tissues, suggesting luxury consumption of potassium in all plants and tissues. It is concluded that lettuce plants benefit from sharing nutrient solution with radish and that radish is not harmed.

  5. CNC Machining Of The Complex Copper Electrodes

    NASA Astrophysics Data System (ADS)

    Popan, Ioan Alexandru; Balc, Nicolae; Popan, Alina

    2015-07-01

    This paper presents the machining process of the complex copper electrodes. Machining of the complex shapes in copper is difficult because this material is soft and sticky. This research presents the main steps for processing those copper electrodes at a high dimensional accuracy and a good surface quality. Special tooling solutions are required for this machining process and optimal process parameters have been found for the accurate CNC equipment, using smart CAD/CAM software.

  6. Fine-tunable plasma nano-machining for fabrication of 3D hollow nanostructures: SERS application

    NASA Astrophysics Data System (ADS)

    Mehrvar, L.; Hajihoseini, H.; Mahmoodi, H.; Tavassoli, S. H.; Fathipour, M.; Mohseni, S. M.

    2017-08-01

    Novel processing sequences for the fabrication of artificial nanostructures are in high demand for various applications. In this paper, we report on a fine-tunable nano-machining technique for the fabrication of 3D hollow nanostructures. This technique originates from redeposition effects occurring during Ar dry etching of nano-patterns. Different geometries of honeycomb, double ring, nanotube, cone and crescent arrays have been successfully fabricated from various metals such as Au, Ag, Pt and Ti. The geometrical parameters of the 3D hollow nanostructures can be straightforwardly controlled by tuning the discharge plasma pressure and power. The structure and morphology of nanostructures are probed using atomic force microscopy (AFM), scanning electron microscopy (SEM), optical emission spectroscopy (OES) and energy dispersive x-ray spectroscopy (EDS). Finally, a Ag nanotube array was assayed for application in surface enhanced Raman spectroscopy (SERS), resulting in an enhancement factor (EF) of 5.5 × 105, as an experimental validity proof consistent with the presented simulation framework. Furthermore, it was found that the theoretical EF value for the honeycomb array is in the order of 107, a hundred times greater than that found in nanotube array.

  7. Wet-dog shake

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew; Mills, Zack; Hu, David

    2010-11-01

    The drying of wet fur is a critical to mammalian heat regulation. We investigate experimentally the ability of hirsute animals to rapidly oscillate their bodies to shed water droplets, nature's analogy to the spin cycle of a washing machine. High-speed videography and fur-particle tracking is employed to determine the angular position of the animal's shoulder skin as a function of time. We determine conditions for drop ejection by considering the balance of surface tension and centripetal forces on drops adhering to the animal. Particular attention is paid to rationalizing the relationship between animal size and oscillation frequency required to self-dry.

  8. CFD simulation of a screw compressor including leakage flows and rotor heating

    NASA Astrophysics Data System (ADS)

    Spille-Kohoff, Andreas, Dr.; Hesse, Jan; El Shorbagy, Ahmed

    2015-08-01

    Computational Fluid Dynamics (CFD) simulations have promising potential to become an important part in the development process of positive displacement (PD) machines. CFD delivers deep insights into the flow and thermodynamic behaviour of PD machines. However, the numerical simulation of such machines is more complex compared to dynamic pumps like turbines or fans. The fluid transport in size-changing chambers with very small clearances between the rotors, and between rotors and casing, demands complex meshes that change with each time step. Additionally, the losses due to leakage flows and the heat transfer to the rotors need high-quality meshes so that automatic remeshing is almost impossible. In this paper, setup steps and results for the simulation of a dry screw compressor are shown. The rotating parts are meshed with TwinMesh, a special hexahedral meshing program for gear pumps, gerotors, lobe pumps and screw compressors. In particular, these meshes include axial and radial clearances between housing and rotors, and beside the fluid volume the rotor solids are also meshed. The CFD simulation accounts for gas flow with compressibility and turbulence effects, heat transfer between gas and rotors, and leakage flows through the clearances. We show time- resolved results for torques, forces, interlobe pressure, mass flow, and heat flow between gas and rotors, as well as time- and space-resolved results for pressure, velocity, temperature etc. for different discharge ports and working points of the screw compressor. These results are also used as thermal loads for deformation simulations of the rotors.

  9. State machine analysis of sensor data from dynamic processes

    DOEpatents

    Cook, William R.; Brabson, John M.; Deland, Sharon M.

    2003-12-23

    A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.

  10. Machining of bone: Analysis of cutting force and surface roughness by turning process.

    PubMed

    Noordin, M Y; Jiawkok, N; Ndaruhadi, P Y M W; Kurniawan, D

    2015-11-01

    There are millions of orthopedic surgeries and dental implantation procedures performed every year globally. Most of them involve machining of bones and cartilage. However, theoretical and analytical study on bone machining is lagging behind its practice and implementation. This study views bone machining as a machining process with bovine bone as the workpiece material. Turning process which makes the basis of the actually used drilling process was experimented. The focus is on evaluating the effects of three machining parameters, that is, cutting speed, feed, and depth of cut, to machining responses, that is, cutting forces and surface roughness resulted by the turning process. Response surface methodology was used to quantify the relation between the machining parameters and the machining responses. The turning process was done at various cutting speeds (29-156 m/min), depths of cut (0.03 -0.37 mm), and feeds (0.023-0.11 mm/rev). Empirical models of the resulted cutting force and surface roughness as the functions of cutting speed, depth of cut, and feed were developed. Observation using the developed empirical models found that within the range of machining parameters evaluated, the most influential machining parameter to the cutting force is depth of cut, followed by feed and cutting speed. The lowest cutting force was obtained at the lowest cutting speed, lowest depth of cut, and highest feed setting. For surface roughness, feed is the most significant machining condition, followed by cutting speed, and with depth of cut showed no effect. The finest surface finish was obtained at the lowest cutting speed and feed setting. © IMechE 2015.

  11. Machining of Fibre Reinforced Plastic Composite Materials.

    PubMed

    Caggiano, Alessandra

    2018-03-18

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.

  12. Machining of Fibre Reinforced Plastic Composite Materials

    PubMed Central

    2018-01-01

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635

  13. Selection of Wire Electrical Discharge Machining Process Parameters on Stainless Steel AISI Grade-304 using Design of Experiments Approach

    NASA Astrophysics Data System (ADS)

    Lingadurai, K.; Nagasivamuni, B.; Muthu Kamatchi, M.; Palavesam, J.

    2012-06-01

    Wire electrical discharge machining (WEDM) is a specialized thermal machining process capable of accurately machining parts of hard materials with complex shapes. Parts having sharp edges that pose difficulties to be machined by the main stream machining processes can be easily machined by WEDM process. Design of Experiments approach (DOE) has been reported in this work for stainless steel AISI grade-304 which is used in cryogenic vessels, evaporators, hospital surgical equipment, marine equipment, fasteners, nuclear vessels, feed water tubing, valves, refrigeration equipment, etc., is machined by WEDM with brass wire electrode. The DOE method is used to formulate the experimental layout, to analyze the effect of each parameter on the machining characteristics, and to predict the optimal choice for each WEDM parameter such as voltage, pulse ON, pulse OFF and wire feed. It is found that these parameters have a significant influence on machining characteristic such as metal removal rate (MRR), kerf width and surface roughness (SR). The analysis of the DOE reveals that, in general the pulse ON time significantly affects the kerf width and the wire feed rate affects SR, while, the input voltage mainly affects the MRR.

  14. 26. A battery of calender presses at work finishing magazine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. A battery of calender presses at work finishing magazine paper. After the coated paper has been dried and put into rolls, as shown in the preceding pictures, it is brought to the room shown here. A roll is put in the reel at the man's shoulder in the foreground and started through the machine. It passes between the two top rollers and then in and out between the succeeding rollers, until it reaches the bottom. Many tons' pressure have ironed it before it comes out and is rolled up again. This process gives it the finish that the National Geographic must have to maintain its high standard. (p.240.) - Champion-International Paper Company, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  15. An intelligent CNC machine control system architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.J.; Loucks, C.S.

    1996-10-01

    Intelligent, agile manufacturing relies on automated programming of digitally controlled processes. Currently, processes such as Computer Numerically Controlled (CNC) machining are difficult to automate because of highly restrictive controllers and poor software environments. It is also difficult to utilize sensors and process models for adaptive control, or to integrate machining processes with other tasks within a factory floor setting. As part of a Laboratory Directed Research and Development (LDRD) program, a CNC machine control system architecture based on object-oriented design and graphical programming has been developed to address some of these problems and to demonstrate automated agile machining applications usingmore » platform-independent software.« less

  16. Training and generalization of laundry skills: a multiple probe evaluation with handicapped persons.

    PubMed Central

    Thompson, T J; Braam, S J; Fugua, R W

    1982-01-01

    An instructional procedure composed of a graded sequence of prompts and token reinforcement was used to train a complex chain of behaviors which included sorting, washing, and drying clothes. A multiple probe design with sequential instruction across seven major components of the laundering routine was used to demonstrate experimental control. Students were taught to launder clothing using machines located in their school and generalization was assessed later on machines located in the public laundromat. A comparison of students' laundry skills with those of normal peers indicated similar levels of proficiency. Follow-up probes demonstrated maintenance of laundry skills over a 10-month period. PMID:7096228

  17. Training and generalization of laundry skills: a multiple probe evaluation with handicapped persons.

    PubMed

    Thompson, T J; Braam, S J; Fugua, R W

    1982-01-01

    An instructional procedure composed of a graded sequence of prompts and token reinforcement was used to train a complex chain of behaviors which included sorting, washing, and drying clothes. A multiple probe design with sequential instruction across seven major components of the laundering routine was used to demonstrate experimental control. Students were taught to launder clothing using machines located in their school and generalization was assessed later on machines located in the public laundromat. A comparison of students' laundry skills with those of normal peers indicated similar levels of proficiency. Follow-up probes demonstrated maintenance of laundry skills over a 10-month period.

  18. Pre-Finishing of SiC for Optical Applications

    NASA Technical Reports Server (NTRS)

    Rozzi, Jay; Clavier, Odile; Gagne, John

    2011-01-01

    13 Manufacturing & Prototyping A method is based on two unique processing steps that are both based on deterministic machining processes using a single-point diamond turning (SPDT) machine. In the first step, a high-MRR (material removal rate) process is used to machine the part within several microns of the final geometry. In the second step, a low-MRR process is used to machine the part to near optical quality using a novel ductile regime machining (DRM) process. DRM is a deterministic machining process associated with conditions under high hydrostatic pressures and very small depths of cut. Under such conditions, using high negative-rake angle cutting tools, the high-pressure region near the tool corresponds to a plastic zone, where even a brittle material will behave in a ductile manner. In the high-MRR processing step, the objective is to remove material with a sufficiently high rate such that the process is economical, without inducing large-scale subsurface damage. A laser-assisted machining approach was evaluated whereby a CO2 laser was focused in advance of the cutting tool. While CVD (chemical vapor deposition) SiC was successfully machined with this approach, the cutting forces were substantially higher than cuts at room temperature under the same machining conditions. During the experiments, the expansion of the part and the tool due to the heating was carefully accounted for. The higher cutting forces are most likely due to a small reduction in the shear strength of the material compared with a larger increase in friction forces due to the thermal softening effect. The key advantage is that the hybrid machine approach has the potential to achieve optical quality without the need for a separate optical finishing step. Also, this method is scalable, so one can easily progress from machining 50-mm-diameter samples to the 250-mm-diameter mirror that NASA desires.

  19. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bello, Dhimiter; Wardle, Brian L.; Yamamoto, Namiko; Guzman deVilloria, Roberto; Garcia, Enrique J.; Hart, Anastasios J.; Ahn, Kwangseog; Ellenbecker, Michael J.; Hallock, Marilyn

    2009-01-01

    This study investigated airborne exposures to nanoscale particles and fibers generated during dry and wet abrasive machining of two three-phase advanced composite systems containing carbon nanotubes (CNTs), micron-diameter continuous fibers (carbon or alumina), and thermoset polymer matrices. Exposures were evaluated with a suite of complementary instruments, including real-time particle number concentration and size distribution (0.005-20 μm), electron microscopy, and integrated sampling for fibers and respirable particulate at the source and breathing zone of the operator. Wet cutting, the usual procedure for such composites, did not produce exposures significantly different than background whereas dry cutting, without any emissions controls, provided a worst-case exposure and this article focuses here. Overall particle release levels, peaks in the size distribution of the particles, and surface area of released particles (including size distribution) were not significantly different for composites with and without CNTs. The majority of released particle surface area originated from the respirable (1-10 μm) fraction, whereas the nano fraction contributed 10% of the surface area. CNTs, either individual or in bundles, were not observed in extensive electron microscopy of collected samples. The mean number concentration of peaks for dry cutting was composite dependent and varied over an order of magnitude with highest values for thicker laminates at the source being >1 × 106 particles cm-3. Concentration of respirable fibers for dry cutting at the source ranged from 2 to 4 fibers cm-3 depending on the composite type. Further investigation is required and underway to determine the effects of various exposure determinants, such as specimen and tool geometry, on particle release and effectiveness of controls.

  20. Application of Artificial Neural Network and Support Vector Machines in Predicting Metabolizable Energy in Compound Feeds for Pigs.

    PubMed

    Ahmadi, Hamed; Rodehutscord, Markus

    2017-01-01

    In the nutrition literature, there are several reports on the use of artificial neural network (ANN) and multiple linear regression (MLR) approaches for predicting feed composition and nutritive value, while the use of support vector machines (SVM) method as a new alternative approach to MLR and ANN models is still not fully investigated. The MLR, ANN, and SVM models were developed to predict metabolizable energy (ME) content of compound feeds for pigs based on the German energy evaluation system from analyzed contents of crude protein (CP), ether extract (EE), crude fiber (CF), and starch. A total of 290 datasets from standardized digestibility studies with compound feeds was provided from several institutions and published papers, and ME was calculated thereon. Accuracy and precision of developed models were evaluated, given their produced prediction values. The results revealed that the developed ANN [ R 2  = 0.95; root mean square error (RMSE) = 0.19 MJ/kg of dry matter] and SVM ( R 2  = 0.95; RMSE = 0.21 MJ/kg of dry matter) models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR ( R 2  = 0.89; RMSE = 0.27 MJ/kg of dry matter). The developed ANN and SVM models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR; however, there were not obvious differences between performance of ANN and SVM models. Thus, SVM model may also be considered as a promising tool for modeling the relationship between chemical composition and ME of compound feeds for pigs. To provide the readers and nutritionist with the easy and rapid tool, an Excel ® calculator, namely, SVM_ME_pig, was created to predict the metabolizable energy values in compound feeds for pigs using developed support vector machine model.

  1. 40 CFR 63.1543 - Standards for process and process fugitive sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section. (1) Sinter machine; (2) Blast furnace; (3) Dross furnace; (4) Dross furnace charging location; (5) Blast furnace and dross furnace tapping location; (6) Sinter machine charging location; (7) Sinter machine discharge end; (8) Sinter crushing and sizing equipment; and (9) Sinter machine area. (b) The...

  2. Infrared pre-drying and dry-dehulling of walnuts for improved processing efficiency and product quality

    USDA-ARS?s Scientific Manuscript database

    The walnut industry is faced with an urgent need to improve post-harvest processing efficiency, particularly drying and dehulling operations. This research investigated the feasibility of dry-dehulling and infrared (IR) pre-drying of walnuts for improved processing efficiency and dried product quali...

  3. Amputations

    MedlinePlus

    ... powered and non-powered conveyors, printing presses, roll-forming and roll- bending machines, food slicers, meat grinders, ... processing machines, paper products machines, woodworking machines, metal-forming machines, and meat slicers. How can I get ...

  4. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    NASA Astrophysics Data System (ADS)

    Guu, Y. H.

    2005-04-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.

  5. Ambient stable quantitative PCR reagents for the detection of Yersinia pestis.

    PubMed

    Qu, Shi; Shi, Qinghai; Zhou, Lei; Guo, Zhaobiao; Zhou, Dongsheng; Zhai, Junhui; Yang, Ruifu

    2010-03-09

    Although assays for detecting Yersinia pestis using TaqMan probe-based real-time PCR have been developed for years, little is reported on room-temperature-stable PCR reagents, which will be invaluable for field epidemic surveillance, immediate response to public health emergencies, counter-bioterrorism investigation, etc. In this work, a set of real-time PCR reagents for rapid detection of Y. pestis was developed with extraordinary stability at 37 degrees C. TaqMan-based real-time PCR assays were developed using the primers and probes targeting the 3a sequence in the chromosome and the F1 antigen gene caf1 in the plasmid pMT1of Y. pestis, respectively. Then, carbohydrate mixtures were added to the PCR reagents, which were later vacuum-dried for stability evaluation. The vacuum-dried reagents were stable at 37 degrees C for at least 49 days for a lower concentration of template DNA (10 copies/microl), and up to 79 days for higher concentrations (> or =10(2) copies/microl). The reagents were used subsequently to detect soil samples spiked with Y. pestis vaccine strain EV76, and 5x10(4) CFU per gram of soil could be detected by both 3a- and caf1-based PCR reagents. In addition, a simple and efficient method for soil sample processing is presented here. The vacuum-dried reagents for real-time PCR maintain accuracy and reproducibility for at least 49 days at 37 degrees C, indicating that they can be easily transported at room temperature for field application if the machine for performing real-time PCR is available. This dry reagent is of great significance for routine plague surveillance.

  6. Ambient Stable Quantitative PCR Reagents for the Detection of Yersinia pestis

    PubMed Central

    Zhou, Lei; Guo, Zhaobiao; Zhou, Dongsheng; Zhai, Junhui; Yang, Ruifu

    2010-01-01

    Background Although assays for detecting Yersinia pestis using TaqMan probe-based real-time PCR have been developed for years, little is reported on room-temperature-stable PCR reagents, which will be invaluable for field epidemic surveillance, immediate response to public health emergencies, counter-bioterrorism investigation, etc. In this work, a set of real-time PCR reagents for rapid detection of Y. pestis was developed with extraordinary stability at 37°C. Methods/Principal Findings TaqMan-based real-time PCR assays were developed using the primers and probes targeting the 3a sequence in the chromosome and the F1 antigen gene caf1 in the plasmid pMT1of Y. pestis, respectively. Then, carbohydrate mixtures were added to the PCR reagents, which were later vacuum-dried for stability evaluation. The vacuum-dried reagents were stable at 37°C for at least 49 days for a lower concentration of template DNA (10 copies/µl), and up to 79 days for higher concentrations (≥102 copies/µl). The reagents were used subsequently to detect soil samples spiked with Y. pestis vaccine strain EV76, and 5×104 CFU per gram of soil could be detected by both 3a- and caf1-based PCR reagents. In addition, a simple and efficient method for soil sample processing is presented here. Conclusions/Significance The vacuum-dried reagents for real-time PCR maintain accuracy and reproducibility for at least 49 days at 37°C, indicating that they can be easily transported at room temperature for field application if the machine for performing real-time PCR is available. This dry reagent is of great significance for routine plague surveillance. PMID:20231881

  7. Health hazard evaluation report HETA 85-039-1723, E. L. Smithe Machine Company, Duncansville, Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, D.E.

    1986-08-01

    The International Association of Machinists Local 2348 requested an investigation of reported skin rashes and headaches associated with cutting and cooling oils and solvents used in the machine shop. Of 62 employees interviewed, 42 had experienced skin problems occurring on their hands and arms including red skin, dry skin, cracked skin, or itchy skin, related to chemical exposures at the workplace. Xerosis, lichenification, or eczema of the hands and arms were noted on examination of 17 employees of the Lathe Department and 18 of those from the Milling Department. Respiratory and neurological complaints were also found among these employees. Themore » author concluded that the incidence of hand and arm xerosis and eczema in workers in the machining area may be associated with exposure to cutting oils. The author recommends that changes be made to minimize skin exposure and provide adequate ventilation and humidification.« less

  8. 40 CFR 63.1543 - Standards for process and process fugitive sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... paragraphs (a)(1) through (9) of this section. (1) Sinter machine; (2) Blast furnace; (3) Dross furnace; (4... machine charging location; (7) Sinter machine discharge end; (8) Sinter crushing and sizing equipment; and (9) Sinter machine area. (b) No owner or operator of any existing, new, or reconstructed primary lead...

  9. 40 CFR 63.1543 - Standards for process and process fugitive sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... paragraphs (a)(1) through (9) of this section. (1) Sinter machine; (2) Blast furnace; (3) Dross furnace; (4... machine charging location; (7) Sinter machine discharge end; (8) Sinter crushing and sizing equipment; and (9) Sinter machine area. (b) No owner or operator of any existing, new, or reconstructed primary lead...

  10. 40 CFR 63.1543 - Standards for process and process fugitive sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... paragraphs (a)(1) through (9) of this section. (1) Sinter machine; (2) Blast furnace; (3) Dross furnace; (4... machine charging location; (7) Sinter machine discharge end; (8) Sinter crushing and sizing equipment; and (9) Sinter machine area. (b) No owner or operator of any existing, new, or reconstructed primary lead...

  11. Micro-optical fabrication by ultraprecision diamond machining and precision molding

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.

    2017-06-01

    Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.

  12. Investigations on Surface Milling of Hardened AISI 4140 Steel with Pulse Jet MQL Applicator

    NASA Astrophysics Data System (ADS)

    Bashir, Mahmood Al; Mia, Mozammel; Dhar, Nikhil Ranjan

    2018-06-01

    In this article, an experimental investigation was performed in milling hardened AISI 4140 steel of hardness 40 HRC. The machining was performed in both dry and minimal quantity lubricant (MQL) conditions, as part of neat machining, to make a strong comparison of the undertaken machining environments. The MQL was impinged int the form of pulse jet, by using the specially developed pulse-jet-attachment, to ensure that the cutting fluid can be applied in different timed pulses and quantities at critical zones. The tool wear, cutting force and surface roughness were taken as the quality responses while cutting speed, table feed rate and flow rate of the pulse were considered as influential factors. The depth of cut was kept constant at 1.50 mm because of its less significant effects and the straight oil was adopted as cutting fluid in pulse-jet-MQL. The effects of different factors, on the quality responses, are analyzed using ANOVA. It is observed that MQL applicator system exhibits overall better performance when compared to dry milling by reducing surface roughness, cutting force and prolonging tool life but a flow rate of 150 ml/h has tremendous effects on the responses. This investigation and afterward results are expected to aid the industrial practitioner and researcher to adopt the pulse-MQL in high speed milling to prolong tool life, reduce tool wear, diminish cutting force generation and promote better surface finish.

  13. Investigations on Surface Milling of Hardened AISI 4140 Steel with Pulse Jet MQL Applicator

    NASA Astrophysics Data System (ADS)

    Bashir, Mahmood Al; Mia, Mozammel; Dhar, Nikhil Ranjan

    2016-06-01

    In this article, an experimental investigation was performed in milling hardened AISI 4140 steel of hardness 40 HRC. The machining was performed in both dry and minimal quantity lubricant (MQL) conditions, as part of neat machining, to make a strong comparison of the undertaken machining environments. The MQL was impinged int the form of pulse jet, by using the specially developed pulse-jet-attachment, to ensure that the cutting fluid can be applied in different timed pulses and quantities at critical zones. The tool wear, cutting force and surface roughness were taken as the quality responses while cutting speed, table feed rate and flow rate of the pulse were considered as influential factors. The depth of cut was kept constant at 1.50 mm because of its less significant effects and the straight oil was adopted as cutting fluid in pulse-jet-MQL. The effects of different factors, on the quality responses, are analyzed using ANOVA. It is observed that MQL applicator system exhibits overall better performance when compared to dry milling by reducing surface roughness, cutting force and prolonging tool life but a flow rate of 150 ml/h has tremendous effects on the responses. This investigation and afterward results are expected to aid the industrial practitioner and researcher to adopt the pulse-MQL in high speed milling to prolong tool life, reduce tool wear, diminish cutting force generation and promote better surface finish.

  14. Research on intelligent machine self-perception method based on LSTM

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Cheng, Tao

    2018-05-01

    In this paper, we use the advantages of LSTM in feature extraction and processing high-dimensional and complex nonlinear data, and apply it to the autonomous perception of intelligent machines. Compared with the traditional multi-layer neural network, this model has memory, can handle time series information of any length. Since the multi-physical domain signals of processing machines have a certain timing relationship, and there is a contextual relationship between states and states, using this deep learning method to realize the self-perception of intelligent processing machines has strong versatility and adaptability. The experiment results show that the method proposed in this paper can obviously improve the sensing accuracy under various working conditions of the intelligent machine, and also shows that the algorithm can well support the intelligent processing machine to realize self-perception.

  15. Controlling the type and the form of chip when machining steel

    NASA Astrophysics Data System (ADS)

    Gruby, S. V.; Lasukov, A. A.; Nekrasov, R. Yu; Politsinsky, E. V.; Arkhipova, D. A.

    2016-08-01

    The type of the chip produced in the process of machining influences many factors of production process. Controlling the type of chip when cutting metals is important for producing swarf chips and for easing its utilization as well as for protecting the machined surface, cutting tool and the worker. In the given work we provide the experimental data on machining structural steel with implanted tool. The authors show that it is possible to control the chip formation process to produce the required type of chip by selecting the material for machining the tool surface.

  16. Foam-mat drying technology: A review.

    PubMed

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  17. Coefficient of friction of dry slash pine and southern red oak on three tension-grip facings

    Treesearch

    T.J. Lemoine; P. Koch

    1975-01-01

    A urethane material proved to have nine times higher static friction coefficient (0.9) than smooth steel (0.1) on radial and tangential wood surfaces pulled parallel to the grain. It is probably superior to 22O-grit garnet paper or sand coatings for tension-grip facings in lumber testing machines.

  18. Coefficient of friction of dry slash pine and southern red oak on three tension-grip facings

    Treesearch

    Truett J. Lemoine; Peter Koch

    1974-01-01

    A urethane material proved to have nine times higher static friction coefficient (0.9) than smooth steel (0.1) on radial and tangential wood surfaces pulled parallel to the grain. It is probably superior to 220-grit garnet paper or sand coatings for tension-grip facings in lumber testing machines.

  19. Helping STEM Take Flight

    ERIC Educational Resources Information Center

    Scherer, Marge

    2015-01-01

    After watching a shirt being wafted into the air as it dries over a hearth, the tinkerer Joseph Montgolfier decides to try lighting a fire under a balloon--and creates the first flying machine. After observing an art object swinging from a cathedral's ceiling, Galileo mulls over the mechanisms of a pendulum-driven clock--and produces one 50…

  20. Plunge into the Fun World of Local Production. Media Production for the Classroom Teacher.

    ERIC Educational Resources Information Center

    Moll, Hans

    Designed to assist teachers and media professionals in the development of media presentations that can creatively capture learner attention, this manual provides step-by-step instructions for preparing materials using a dry mount press, copy machines, and cassette tape recordings. Sources of visual materials are suggested, the equipment needed,…

  1. 78 FR 11154 - Large Residential Washers From the Republic of Korea: Countervailing Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... externally mounted steel frame at least six inches high that is designed to house a coin/token operated... ``stacked washer-dryers'' denotes distinct washing and drying machines that are built on a unitary frame and... of steel and is assembled with security fasteners;\\8\\ or \\7\\ ``Payment system electronics'' denotes a...

  2. Resin transfer molding of textile preforms for aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Hasko, Gregory H.; Dexter, H. Benson; Weideman, Mark H.

    1992-01-01

    The NASA LaRC is conducting and supporting research to develop cost-effective fabrication methods that are applicable to primary composite aircraft structures. One of the most promising fabrication methods that has evolved is resin transfer molding (RTM) of dry textile material forms. RTM has been used for many years for secondary structures, but has received increased emphasis because it is an excellent method for applying resin to damage-tolerant textile preforms at low cost. Textile preforms based on processes such as weaving, braiding, knitting, stitching, and combinations of these have been shown to offer significant improvements in damage tolerance compared to laminated tape composites. The use of low-cost resins combined with textile preforms could provide a major breakthrough in achieving cost-effective composite aircraft structures. RTM uses resin in its lowest cost form, and storage and spoilage costs are minimal. Near net shape textile preforms are expected to be cost-effective because automated machines can be used to produce the preforms, post-cure operations such as machining and fastening are minimized, and material scrap rate may be reduced in comparison with traditional prepreg molding. The purpose of this paper is to discuss experimental and analytical techniques that are under development at NASA Langley to aid the engineer in developing RTM processes for airframe structural elements. Included are experimental techniques to characterize preform and resin behavior and analytical methods that were developed to predict resin flow and cure kinetics.

  3. Bonded Lubricants

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Another spinoff to the food processing industry involves a dry lubricant developed by General Magnaplate Corp. of Linden, N.J. Used in such spacecraft as Apollo, Skylab and Viking, the lubricant is a coating bonded to metal surfaces providing permanent lubrication and corrosion resistance. The coating lengthens equipment life and permits machinery to be operated at greater speed, thus increasing productivity and reducing costs. Bonded lubricants are used in scores of commercia1 applications. They have proved particularly valuable to food processing firms because, while increasing production efficiency, they also help meet the stringent USDA sanitation codes for food-handling equipment. For example, a cookie manufacturer plagued production interruptions because sticky batter was clogging the cookie molds had the brass molds coated to solve the problem. Similarly, a pasta producer faced USDA action on a sanitation violation because dough was clinging to an automatic ravioli-forming machine; use of the anti-stick coating on the steel forming plates solved the dual problem of sanitation deficiency and production line downtime.

  4. Machinability assessment of commercially pure titanium (CP-Ti) during turning operation: Application potential of GRA method

    NASA Astrophysics Data System (ADS)

    Khan, Akhtar; Maity, Kalipada

    2018-03-01

    This paper explores some of the vital machinability characteristics of commercially pure titanium (CP-Ti) grade 2. Experiments were conducted based on Taguchi’s L9 orthogonal array. The selected material was machined on a heavy duty lathe (Model: HMT NH26) using uncoated carbide inserts in dry cutting environment. The selected inserts were designated by ISO as SNMG 120408 (Model: K313) and manufactured by Kennametal. These inserts were rigidly mounted on a right handed tool holder PSBNR 2020K12. Cutting speed, feed rate and depth of cut were selected as three input variables whereas tool wear (VBc) and surface roughness (Ra) were the major attentions. In order to confirm an appreciable machinability of the work part, an optimal parametric combination was attained with the help of grey relational analysis (GRA) approach. Finally, a mathematical model was developed to exhibit the accuracy and acceptability of the proposed methodology using multiple regression equations. The results indicated that, the suggested model is capable of predicting overall grey relational grade within acceptable range.

  5. Stepwise drying of medicinal plants as alternative to reduce time and energy processing

    NASA Astrophysics Data System (ADS)

    Cuervo-Andrade, S. P.; Hensel, O.

    2016-07-01

    The objective of drying medicinal plants is to extend the shelf life and conserving the fresh characteristics. This is achieved by reducing the water activity (aw) of the product to a value which will inhibit the growth and development of pathogenic and spoilage microorganisms, significantly reducing enzyme activity and the rate at which undesirable chemical reactions occur. The technical drying process requires an enormous amount of thermal and electrical energy. An improvement in the quality of the product to be dried and at the same time a decrease in the drying cost and time are achieved through the utilization of a controlled conventional drying method, which is based on a good utilization of the renewable energy or looking for other alternatives which achieve lower processing times without sacrificing the final product quality. In this work the method of stepwise drying of medicinal plants is presented as an alternative to the conventional drying that uses a constant temperature during the whole process. The objective of stepwise drying is the decrease of drying time and reduction in energy consumption. In this process, apart from observing the effects on decreases the effective drying process time and energy, the influence of the different combinations of drying phases on several characteristics of the product are considered. The tests were carried out with Melissa officinalis L. variety citronella, sowed in greenhouse. For the stepwise drying process different combinations of initial and final temperature, 40/50°C, are evaluated, with different transition points associated to different moisture contents (20, 30, 40% and 50%) of the product during the process. Final quality of dried foods is another important issue in food drying. Drying process has effect in quality attributes drying products. This study was determining the color changes and essential oil loses by reference the measurement of the color and essential oil content of the fresh product was used. Drying curves were obtained to observe the dynamics of the process for different combinations of temperature and points of change, corresponding to different conditions of moisture content of the product.

  6. Space and Industrial Brine Drying Technologies

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  7. Effect of process variables on the quality characteristics of pelleted wheat distiller's dried grains with solubles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaya Shankar Tumuluru; Lope Tabil; Anthony Opoku

    2011-04-01

    The rapid expansion of ethanol processing plants in Canada has resulted in a significant increase in the production of wheat-based distiller's dried grains with solubles (DDGS). Transportation and flowability problems associated with DDGS necessitate investigations on pelleting. In the present study, the effect of process variables like die temperature (T) and feed moisture content (Mw) on the pellet properties like pellet moisture content, durability and pellet density was explored using a single pelleting machine; further studies on pelleting DDGS using a pilot-scale pellet mill were also conducted to understand the effect of die diameter and steam conditioning on durability andmore » bulk density of pellets. Proximate analysis of DDGS indicated that crude protein and dry matter were in the range of 37.37–40.33% and 91.27–92.60%, respectively. Linear regression models developed for pellet quality attributes like pellet moisture content, pellet density and durability adequately described the single pelleting process with R2 value of 0.97, 0.99 and 0.7, respectively. ANOVA results have indicated that linear terms T and Mw and the interaction term T × Mw were statistically significant at P < 0.01 and P < 0.1 for pellet moisture content and pellet density. Based on the trends of the surface plots, a medium T of about 50–80 °C and a low Mw of about 5.1% resulted in maximum pellet density and durability and minimum pellet moisture content. Results from pilot-scale studies indicated that bulk density, durability and throughput values were 436.8–528.9 kg m-3, 60.3–92.7% and 45.52–68.77 kg h-1, respectively. It was observed that both die diameter and steam addition had a significant effect on the bulk density and the durability values. The highest bulk density and durability were achieved with 6.4 mm die diameter with steam addition compared to 7.9 mm die with or without steam addition.« less

  8. Machinability of Green Powder Metallurgy Components: Part I. Characterization of the Influence of Tool Wear

    NASA Astrophysics Data System (ADS)

    Robert-Perron, Etienne; Blais, Carl; Pelletier, Sylvain; Thomas, Yannig

    2007-06-01

    The green machining process is an interesting approach for solving the mediocre machining behavior of high-performance powder metallurgy (PM) steels. This process appears as a promising method for extending tool life and reducing machining costs. Recent improvements in binder/lubricant technologies have led to high green strength systems that enable green machining. So far, tool wear has been considered negligible when characterizing the machinability of green PM specimens. This inaccurate assumption may lead to the selection of suboptimum cutting conditions. The first part of this study involves the optimization of the machining parameters to minimize the effects of tool wear on the machinability in turning of green PM components. The second part of our work compares the sintered mechanical properties of components machined in green state with other machined after sintering.

  9. Drying process strongly affects probiotics viability and functionalities.

    PubMed

    Iaconelli, Cyril; Lemetais, Guillaume; Kechaou, Noura; Chain, Florian; Bermúdez-Humarán, Luis G; Langella, Philippe; Gervais, Patrick; Beney, Laurent

    2015-11-20

    Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Modeling of heat transfer in compacted machining chips during friction consolidation process

    NASA Astrophysics Data System (ADS)

    Abbas, Naseer; Deng, Xiaomin; Li, Xiao; Reynolds, Anthony

    2018-04-01

    The current study aims to provide an understanding of the heat transfer process in compacted aluminum alloy AA6061 machining chips during the friction consolidation process (FCP) through experimental investigations and mathematical modelling and numerical simulation. Compaction and friction consolidation of machining chips is the first stage of the Friction Extrusion Process (FEP), which is a novel method for recycling machining chips to produce useful products such as wires. In this study, compacted machining chips are modelled as a continuum whose material properties vary with density during friction consolidation. Based on density and temperature dependent thermal properties, the temperature field in the chip material and process chamber caused by frictional heating during the friction consolidation process is predicted. The predicted temperature field is found to compare well with temperature measurements at select points where such measurements can be made using thermocouples.

  11. Experimental and numerical investigations on the temperature distribution in PVD AlTiN coated and uncoated Al2O3/TiCN mixed ceramic cutting tools in hard turning of AISI 52100 steel

    NASA Astrophysics Data System (ADS)

    Sateesh Kumar, Ch; Patel, Saroj Kumar; Das, Anshuman

    2018-03-01

    Temperature generation in cutting tools is one of the major causes of tool failure especially during hard machining where machining forces are quite high resulting in elevated temperatures. Thus, the present work investigates the temperature generation during hard machining of AISI 52100 steel (62 HRC hardness) with uncoated and PVD AlTiN coated Al2O3/TiCN mixed ceramic cutting tools. The experiments were performed on a heavy duty lathe machine with both coated and uncoated cutting tools under dry cutting environment. The temperature of the cutting zone was measured using an infrared thermometer and a finite element model has been adopted to predict the temperature distribution in cutting tools during machining for comparative assessment with the measured temperature. The experimental and numerical results revealed a significant reduction of cutting zone temperature during machining with PVD AlTiN coated cutting tools when compared to uncoated cutting tools during each experimental run. The main reason for decrease in temperature for AlTiN coated tools is the lower coefficient of friction offered by the coating material which allows the free flow of the chips on the rake surface when compared with uncoated cutting tools. Further, the superior wear behaviour of AlTiN coating resulted in reduction of cutting temperature.

  12. Prediction and control of the service-related properties of parts at the technological preparation stage and during the manufacture process

    NASA Astrophysics Data System (ADS)

    Bez'iazychnyi, V. F.

    The paper is concerned with the problem of optimizing the machining of aircraft engine parts in order to satisfy certain requirements for tool wear, machining precision and surface layer characteristics, and hardening depth. A generalized multiple-objective function and its computer implementation are developed which make it possible to optimize the machining process without the use of experimental data. Alternative methods of controlling the machining process are discussed.

  13. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    PubMed

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  14. Development of a low energy micro sheet forming machine

    NASA Astrophysics Data System (ADS)

    Razali, A. R.; Ann, C. T.; Shariff, H. M.; Kasim, N. I.; Musa, M. A.; Ahmad, A. F.

    2017-10-01

    It is expected that with the miniaturization of materials being processed, energy consumption is also being `miniaturized' proportionally. The focus of this study was to design a low energy micro-sheet-forming machine for thin sheet metal application and fabricate a low direct current powered micro-sheet-forming machine. A prototype of low energy system for a micro-sheet-forming machine which includes mechanical and electronic elements was developed. The machine was tested for its performance in terms of natural frequency, punching forces, punching speed and capability, energy consumption (single punch and frequency-time based). Based on the experiments, the machine can do 600 stroke per minute and the process is unaffected by the machine's natural frequency. It was also found that sub-Joule of power was required for a single stroke of punching/blanking process. Up to 100micron thick carbon steel shim was successfully tested and punched. It concludes that low power forming machine is feasible to be developed and be used to replace high powered machineries to form micro-products/parts.

  15. Scheduling Jobs with Variable Job Processing Times on Unrelated Parallel Machines

    PubMed Central

    Zhang, Guang-Qian; Wang, Jian-Jun; Liu, Ya-Jing

    2014-01-01

    m unrelated parallel machines scheduling problems with variable job processing times are considered, where the processing time of a job is a function of its position in a sequence, its starting time, and its resource allocation. The objective is to determine the optimal resource allocation and the optimal schedule to minimize a total cost function that dependents on the total completion (waiting) time, the total machine load, the total absolute differences in completion (waiting) times on all machines, and total resource cost. If the number of machines is a given constant number, we propose a polynomial time algorithm to solve the problem. PMID:24982933

  16. Modeling and simulation of five-axis virtual machine based on NX

    NASA Astrophysics Data System (ADS)

    Li, Xiaoda; Zhan, Xianghui

    2018-04-01

    Virtual technology in the machinery manufacturing industry has shown the role of growing. In this paper, the Siemens NX software is used to model the virtual CNC machine tool, and the parameters of the virtual machine are defined according to the actual parameters of the machine tool so that the virtual simulation can be carried out without loss of the accuracy of the simulation. How to use the machine builder of the CAM module to define the kinematic chain and machine components of the machine is described. The simulation of virtual machine can provide alarm information of tool collision and over cutting during the process to users, and can evaluate and forecast the rationality of the technological process.

  17. Experimental Investigation – Magnetic Assisted Electro Discharge Machining

    NASA Astrophysics Data System (ADS)

    Kesava Reddy, Chirra; Manzoor Hussain, M.; Satyanarayana, S.; Krishna, M. V. S. Murali

    2018-04-01

    Emerging technology needs advanced machined parts with high strength and temperature resistance, high fatigue life at low production cost with good surface quality to fit into various industrial applications. Electro discharge machine is one of the extensively used machines to manufacture advanced machined parts which cannot be machined by other traditional machine with high precision and accuracy. Machining of DIN 17350-1.2080 (High Carbon High Chromium steel), using electro discharge machining has been discussed in this paper. In the present investigation an effort is made to use permanent magnet at various positions near the spark zone to improve surface quality of the machined surface. Taguchi methodology is used to obtain optimal choice for each machining parameter such as peak current, pulse duration, gap voltage and Servo reference voltage etc. Process parameters have significant influence on machining characteristics and surface finish. Improvement in surface finish is observed when process parameters are set at optimum condition under the influence of magnetic field at various positions.

  18. Harmony search optimization in dimensional accuracy of die sinking EDM process using SS316L stainless steel

    NASA Astrophysics Data System (ADS)

    Deris, A. M.; Zain, A. M.; Sallehuddin, R.; Sharif, S.

    2017-09-01

    Electric discharge machine (EDM) is one of the widely used nonconventional machining processes for hard and difficult to machine materials. Due to the large number of machining parameters in EDM and its complicated structural, the selection of the optimal solution of machining parameters for obtaining minimum machining performance is remain as a challenging task to the researchers. This paper proposed experimental investigation and optimization of machining parameters for EDM process on stainless steel 316L work piece using Harmony Search (HS) algorithm. The mathematical model was developed based on regression approach with four input parameters which are pulse on time, peak current, servo voltage and servo speed to the output response which is dimensional accuracy (DA). The optimal result of HS approach was compared with regression analysis and it was found HS gave better result y giving the most minimum DA value compared with regression approach.

  19. Effect of micro-scale texturing on the cutting tool performance

    NASA Astrophysics Data System (ADS)

    Vasumathy, D.; Meena, Anil

    2018-05-01

    The present study is mainly focused on the cutting performance of the micro-scale textured carbide tools while turning AISI 304 austenitic stainless steel under dry cutting environment. The texture on the rake face of the carbide tools was fabricated by laser machining. The cutting performance of the textured tools was further compared with conventional tools in terms of cutting forces, tool wear, machined surface quality and chip curl radius. SEM and EDS analyses have been also performed to better understand the tool surface characteristics. Results show that the grooves help in breaking the tool-chip contact leading to a lesser tool-chip contact area which results in reduced iron (Fe) adhesion to the tool.

  20. Simulation of router action on a lathe to test the cutting tool performance in edge-trimming of graphite/epoxy composite

    NASA Astrophysics Data System (ADS)

    Ramulu, M.; Rogers, E.

    1994-04-01

    The predominant machining application with graphite/epoxy composite materials in aerospace industry is peripheral trimming. The computer numerically controlled (CNC) high speed routers required to do edge trimming work are generally scheduled for production work in industry and are not available for extensive cutter testing. Therefore, an experimental method of simulating the conditions of periphery trim using a lathe is developed in this paper. The validity of the test technique will be demonstrated by conducting carbide tool wear tests under dry cutting conditions. The experimental results will be analyzed to characterize the wear behavior of carbide cutting tools in machining the composite materials.

  1. Optimization of processing parameters of UAV integral structural components based on yield response

    NASA Astrophysics Data System (ADS)

    Chen, Yunsheng

    2018-05-01

    In order to improve the overall strength of unmanned aerial vehicle (UAV), it is necessary to optimize the processing parameters of UAV structural components, which is affected by initial residual stress in the process of UAV structural components processing. Because machining errors are easy to occur, an optimization model for machining parameters of UAV integral structural components based on yield response is proposed. The finite element method is used to simulate the machining parameters of UAV integral structural components. The prediction model of workpiece surface machining error is established, and the influence of the path of walking knife on residual stress of UAV integral structure is studied, according to the stress of UAV integral component. The yield response of the time-varying stiffness is analyzed, and the yield response and the stress evolution mechanism of the UAV integral structure are analyzed. The simulation results show that this method is used to optimize the machining parameters of UAV integral structural components and improve the precision of UAV milling processing. The machining error is reduced, and the deformation prediction and error compensation of UAV integral structural parts are realized, thus improving the quality of machining.

  2. Machine Learing Applications on a Radar Wind Profiler Deployment During the ARM GoAmazon2014/5 Campaign

    NASA Astrophysics Data System (ADS)

    Giangrande, S. E.; WANG, D.; Hardin, J. C.; Mitchell, J.

    2017-12-01

    As part of the 2 year Department of Energy Atmospheric Radiation Measurement (ARM) Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign, the ARM Mobile Facility (AMF) collected a unique set of observations in a region of strong climatic significance near Manacapuru, Brazil. An important example for the beneficial observational record obtained by ARM during this campaign was that of the Radar Wind Profiler (RWP). This dataset has been previously documented for providing critical convective cloud vertical air velocity retrievals and precipitation properties (e.g., calibrated reflectivity factor Z, rainfall rates) under a wide variety of atmospheric conditions. Vertical air motion estimates to within deep convective cores such as those available from this RWP system have been previously identified as critical constraints for ongoing global climate modeling activities and deep convective cloud process studies. As an extended deployment within this `green ocean' region, the RWP site and collocated AMF surface gauge instrumentation experienced a unique hybrid of tropical and continental precipitation conditions, including multiple wet and dry season precipitation regimes, convective and organized stratiform storm dynamics and contributions to rainfall accumulation, pristine aerosol conditions of the locale, as well as the effects of the Manaus, Brazil, mega city pollution plume. For hydrological applications and potential ARM products, machine learning methods developed using this dataset are explored to demonstrate advantages in geophysical retrievals when compared to traditional methods. Emphasis is on performance improvements when providing additional information on storm structure and regime or echo type classifications. Since deep convective cloud dynamic insights (core updraft/downdraft properties) are difficult to obtain directly by conventional radars that also observe radar reflectivity factor profiles similar to RWP systems, we also consider possible machine learning applications to inform on (statistical) proxy convective relationships between observed convective core dynamics and radar microphysical properties that are otherwise not easily related by clear physical process paths using existing radar networks.

  3. Discrete-event system simulation on small and medium enterprises productivity improvement

    NASA Astrophysics Data System (ADS)

    Sulistio, J.; Hidayah, N. A.

    2017-12-01

    Small and medium industries in Indonesia is currently developing. The problem faced by SMEs is the difficulty of meeting growing demand coming into the company. Therefore, SME need an analysis and evaluation on its production process in order to meet all orders. The purpose of this research is to increase the productivity of SMEs production floor by applying discrete-event system simulation. This method preferred because it can solve complex problems die to the dynamic and stochastic nature of the system. To increase the credibility of the simulation, model validated by cooperating the average of two trials, two trials of variance and chi square test. Afterwards, Benferroni method applied to development several alternatives. The article concludes that, the productivity of SMEs production floor increased up to 50% by adding the capacity of dyeing and drying machines.

  4. Design and implementation of a system for laser assisted milling of advanced materials

    NASA Astrophysics Data System (ADS)

    Wu, Xuefeng; Feng, Gaocheng; Liu, Xianli

    2016-09-01

    Laser assisted machining is an effective method to machine advanced materials with the added benefits of longer tool life and increased material removal rates. While extensive studies have investigated the machining properties for laser assisted milling(LAML), few attempts have been made to extend LAML to machining parts with complex geometric features. A methodology for continuous path machining for LAML is developed by integration of a rotary and movable table into an ordinary milling machine with a laser beam system. The machining strategy and processing path are investigated to determine alignment of the machining path with the laser spot. In order to keep the material removal temperatures above the softening temperature of silicon nitride, the transformation is coordinated and the temperature interpolated, establishing a transient thermal model. The temperatures of the laser center and cutting zone are also carefully controlled to achieve optimal machining results and avoid thermal damage. These experiments indicate that the system results in no surface damage as well as good surface roughness, validating the application of this machining strategy and thermal model in the development of a new LAML system for continuous path processing of silicon nitride. The proposed approach can be easily applied in LAML system to achieve continuous processing and improve efficiency in laser assisted machining.

  5. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process.

    PubMed

    Grohganz, Holger; Lee, Yan-Ying; Rantanen, Jukka; Yang, Mingshi

    2013-04-15

    Freeze-drying and spray-drying are often applied drying techniques for biopharmaceutical formulations. The formation of different solid forms upon drying is often dependent on the complex interplay between excipient selection and process parameters. The purpose of this study was to investigate the influence of the chosen drying method on the solid state form. Mannitol-lysozyme solutions of 20mg/mL, with the amount of lysozyme varying between 2.5% and 50% (w/w) of total solid content, were freeze-dried and spray-dried, respectively. The resulting solid state of mannitol was analysed by near-infrared spectroscopy in combination with multivariate analysis and further, results were verified with X-ray powder diffraction. It was seen that the prevalence of the mannitol polymorphic form shifted from β-mannitol to δ-mannitol with increasing protein concentration in freeze-dried formulations. In spray-dried formulations an increase in protein concentration resulted in a shift from β-mannitol to α-mannitol. An increase in final drying temperature of the freeze-drying process towards the temperature of the spray-drying process did not lead to significant changes. It can thus be concluded that it is the drying process in itself, rather than the temperature, that leads to the observed solid state changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Reverse engineering of wörner type drilling machine structure.

    NASA Astrophysics Data System (ADS)

    Wibowo, A.; Belly, I.; llhamsyah, R.; Indrawanto; Yuwana, Y.

    2018-03-01

    A product design needs to be modified based on the conditions of production facilities and existing resource capabilities without reducing the functional aspects of the product itself. This paper describes the reverse engineering process of the main structure of the wörner type drilling machine to obtain a machine structure design that can be made by resources with limited ability by using simple processes. Some structural, functional and the work mechanism analyzes have been performed to understand the function and role of each basic components. The process of dismantling of the drilling machine and measuring each of the basic components was performed to obtain sets of the geometry and size data of each component. The geometric model of each structure components and the machine assembly were built to facilitate the simulation process and machine performance analysis that refers to ISO standard of drilling machine. The tolerance stackup analysis also performed to determine the type and value of geometrical and dimensional tolerances, which could affect the ease of the components to be manufactured and assembled

  7. Annual Symposium on Machine Processing of Remotely Sensed Data, 4th, Purdue University, West Lafayette, Ind., June 21-23, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    Morrison, D. B. (Editor); Scherer, D. J.

    1977-01-01

    Papers are presented on a variety of techniques for the machine processing of remotely sensed data. Consideration is given to preprocessing methods such as the correction of Landsat data for the effects of haze, sun angle, and reflectance and to the maximum likelihood estimation of signature transformation algorithm. Several applications of machine processing to agriculture are identified. Various types of processing systems are discussed such as ground-data processing/support systems for sensor systems and the transfer of remotely sensed data to operational systems. The application of machine processing to hydrology, geology, and land-use mapping is outlined. Data analysis is considered with reference to several types of classification methods and systems.

  8. Bidding-based autonomous process planning and scheduling

    NASA Astrophysics Data System (ADS)

    Gu, Peihua; Balasubramanian, Sivaram; Norrie, Douglas H.

    1995-08-01

    Improving productivity through computer integrated manufacturing systems (CIMS) and concurrent engineering requires that the islands of automation in an enterprise be completely integrated. The first step in this direction is to integrate design, process planning, and scheduling. This can be achieved through a bidding-based process planning approach. The product is represented in a STEP model with detailed design and administrative information including design specifications, batch size, and due dates. Upon arrival at the manufacturing facility, the product registered in the shop floor manager which is essentially a coordinating agent. The shop floor manager broadcasts the product's requirements to the machines. The shop contains autonomous machines that have knowledge about their functionality, capabilities, tooling, and schedule. Each machine has its own process planner and responds to the product's request in a different way that is consistent with its capabilities and capacities. When more than one machine offers certain process(es) for the same requirements, they enter into negotiation. Based on processing time, due date, and cost, one of the machines wins the contract. The successful machine updates its schedule and advises the product to request raw material for processing. The concept was implemented using a multi-agent system with the task decomposition and planning achieved through contract nets. The examples are included to illustrate the approach.

  9. Laser machining of southern pine

    Treesearch

    C. W. McMillin; J. E. Harry

    1971-01-01

    When cutting with an air-jet-assisted carbon-dioxide laser of 240 watts output power, maximum feed speed at the point of full penetration of the beam decreased with increasing workpiece thickness in both wet and dry samples; the trend was curvilinear. Feed speeds averaged 99.1 and 14.6 inches per minute for samples 0.25 and 1.00 inch thick, respectively. Somewhat...

  10. 78 FR 11148 - Large Residential Washers From Mexico and the Republic of Korea: Antidumping Duty Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... contains payment system electronics; \\7\\ (b) it is configured with an externally mounted steel frame at... drying machines that are built on a unitary frame and share a common console that controls both the... selected wash cycle setting; and (d) the console containing the user interface is made of steel and is...

  11. 77 FR 75988 - Notice of Final Determination of Sales at Less Than Fair Value: Large Residential Washers From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... externally mounted steel frame at least six inches high that is designed to house a coin/token operated... washer-dryers'' denotes distinct washing and drying machines that are built on a unitary frame and share... of steel and is assembled with security fasteners;\\7\\ or \\6\\ ``Payment system electronics'' denotes a...

  12. 77 FR 46715 - Large Residential Washers From the Republic of Korea: Amendment to the Scope of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... contains payment system electronics; \\12\\ (b) it is configured with an externally mounted steel frame at... distinct washing and drying machines that are built on a unitary frame and share a common console that... wash cycle setting; and (d) the console containing the user interface is made of steel and is assembled...

  13. 77 FR 76288 - Notice of Final Determination of Sales at Less Than Fair Value: Large Residential Washers from...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-27

    ... externally mounted steel frame at least six inches high that is designed to house a coin/token operated... ``stacked washer-dryers'' denotes distinct washing and drying machines that are built on a unitary frame and... of steel and is assembled with security fasteners;\\7\\ or \\6\\ ``Payment system electronics'' denotes a...

  14. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  15. Influence of Cooling Condition on the Performance of Grinding Hardened Layer in Grind-hardening

    NASA Astrophysics Data System (ADS)

    Wang, G. C.; Chen, J.; Xu, G. Y.; Li, X.

    2018-02-01

    45# steel was grinded and hardened on a surface grinding machine to study the effect of three different cooling media, including emulsion, dry air and liquid nitrogen, on the microstructure and properties of the hardened layer. The results show that the microstructure of material surface hardened with emulsion is pearlite and no hardened layer. The surface roughness is small and the residual stress is compressive stress. With cooling condition of liquid nitrogen and dry air, the specimen surface are hardened, the organization is martensite, the surface roughness is also not changed, but high hardness of hardened layer and surface compressive stress were obtained when grinding using liquid nitrogen. The deeper hardened layer grinded with dry air was obtained and surface residual stress is tensile stress. This study provides an experimental basis for choosing the appropriate cooling mode to effectively control the performance of grinding hardened layer.

  16. Pulsed Nd:YAG laser beam drilling: A review

    NASA Astrophysics Data System (ADS)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  17. High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Steve; McDonald, Timothy; Fasina, Oladiran

    In this study, a high-tonnage harvesting system designed specifically to operate efficiently in the expected stand types of a bioenergy scenario was built, deployed, and evaluated in a production setting. Stands on which the system was evaluated exhibited the heavy stocking levels (> 600 stems per acre) and tree size distributions with significant volume in small stems (down to 2” DBH) that were expected in the modified energy plantation silvicultural approach. The harvest system also was designed to be functional in the traditional plantation stands dominating the commercial forestry landscape in the region. The Tigercat 845D feller buncher, which wasmore » a prototype machine designed for the high tonnage harvest system, used a boom-mounted prototype DT1802 shear felling head and incorporated a number of options intended to maximize its small-stem productivity, including: a high-speed shear severing system that was cheaper to operate than a saw; a large-pocket felling head that allowed larger accumulations of small stems to be built before expending the time to drop them for the skidder; efficient, low ground pressure, tracked carrier system to decrease the amount of maneuvering, saving time and minimizing soil disturbance; and various energy-saving devices to lower fuel costs and minimize air quality impacts. Overall, the feller buncher represented a quantum advance in small-stem harvesting technology. Extensive testing showed the machine’s production rate to be relatively insensitive to piece size, much less so than comparable traditional equipment. In plantation stands, the feller buncher was able to produce approximately 100 green tons of biomass per productive machine hour (PMH), and in natural stands, it produced nearly 120 green tons per PMH. The ability of the high tonnage feller buncher to maintain high productivity in stands with smaller diameter stems is something that has not been achieved in previous feller buncher designs. The Tigercat 845D feller buncher is now a production machine for Tigercat and is being sold in their current product line. The high-speed felling system was paired with a Tigercat 630D skidder and high-capacity grapple; one that could match the felling productivity when pulling small stems. The harvesting system minimized hourly costs using a single, high-capacity skidder (with a single operator), rather than two smaller ones, which is the traditional practice. The skidder itself can be considered a mid-range size and had an engine no larger than other machines in its class, but it incorporated a very large capacity 25 ft2 grapple. The large grapple is well suited to grabbing and hauling a large bunch of small-diameter trees, as produced by the high tonnage feller buncher. The grapple worked effectively in larger stems as well, but its ability to carry large numbers of small stems meant the average payload did not drop as stand DBH decreased. Tests with the machine indicated its travel speeds were nearly the same as, or perhaps slightly better than, conventionally equipped skidders, but grapple capacity was 75% larger. Productivity and cost per ton of the new skidder were better than conventional skidders for average skid distances of any length greater than 100 feet. Measured skidder productivity was as high as 143 gt/PMH. Its productivity exceeded that of the high-capacity feller buncher for skid distances out to nearly 700 feet, so system productivity could be expected to remain high for stands of a size typical in the southern U.S. The Tigercat 630D skidder is a production machine for Tigercat and the large grapple can now be ordered by customers using it for small diameter trees. When the feller buncher and skidder are analyzed as a two-machine system, overall productivity is fixed at the level of the least productive machine. Results from a set of side-by-side tests in the same density stand with conventional feller bunchers and skidders showed that the high tonnage system produced 97 gt/PMH versus 68 gt/PMH for a comparable conventional system. Machine rate costs for felling and skidding were $2.31/gt and $3.72/gt for the high tonnage, and conventional systems, respectively. However, the most significant result of the project is that the high tonnage system was shown to be relatively insensitive to tree size. This ability to maintain felling and skidding productivity and cost as tree size decreases is a breakthrough in harvesting systems for southern pine plantations. The concept of transpirational drying of woody biomass was tested at an industrial scale at multiple locations during this project. Felled trees were allowed to dry in two scenarios: 1) in bunches where they were felled, and 2) in roadside piles. Although the wood piled in large piles at roadside did experience drying, the wood left in bunches experienced a greater moisture reduction. Drying times of 72 days in the late summer resulted in mean wood moisture content of 26% for skidder bunches and 39% for the large pile at roadside as compared to moisture contents of 55% to 58% for freshly cut trees. An existing whole-tree chipper, Precision 2675, was modified to allow production of chips smaller than the traditional pulp size chip (i.e. “microchips”). Feed rates and knife placements were retained in the new design, while additional pockets were incorporated in the chipper disk to allow the attachment of either four knives for pulp chips or eight knives for microchips. This design facilitated switching between the energy and pulp chip product options at relatively low expense (about ½ day downtime). Chipping of whole-trees into pulp chips and microchips with the Precision 2675 disk chipper resulted in average productivities of 79.5 gt/PMH and 70.7 gt/PMH, respectively. Production rates of the chipper were lower when producing microchips by about 10% relative to producing pulp chips, but rates were similar to those achievable when making clean pulp chips. Particle size analysis for clean pine microchips revealed 26.6% retention on a 13 mm (slightly less than 3/8-inch) round hole screen and 25.9% retention for whole-tree pine microchips. For comparison, clean pine pulp chips had 52.2% retained. Ash content (% dry basis) was 0.54% for clean pine microchips and 0.62% for whole-tree pine microchips. Ash content for clean pine pulp chips was 0.39%. For transpirationally-dried material there was 38.1% retention for whole-tree microchips on a 13mm screen compared to 70.1% for dried clean pulp chips. Ash content was 0.78% and 0.44% respectively for these two chip types. Clean pine microchips stored at roadside had 25.2% retention on a 13 mm screen and 0.50% ash content. For mixed species (pine and hardwood), whole-tree microchips had 25.1% retention on a 13 mm screen compared to 50.6% for whole-tree pulp chips. Ash content was 2.12% and 2.74% respectively for these two chip types. Clean hardwood microchips stored at roadside had 35.0% retention on a 13 mm screen and an ash content of 1.24%. There are two significant advantages to using transpirational drying: reduced transportation costs, and reduced drying costs (capital and operating costs) for the biorefinery. This project evaluated the potential to reduce transportation costs through transpirational drying, and it included a component that tested higher capacity chip trailers (23% larger volume) to be able to transport dry wood with a lower bulk density. For transpirationally-dried chips at 35% MC, the high-capacity trailers achieved loads with a mean payload of 24 tons with maximum payloads of 29 tons. The typical legal payload on this trailer is 28.5 tons. Therefore, the project demonstrated that it is possible to achieve maximum legal payloads on chip trailers with transpirationally dried wood. Assuming that the truck is loaded to the legal payload limit, the transportation costs of chips can be reduced from $15.91/dry ton (dt) for 56% MC wood to $10.77/dt for transpirationally dried wood at 35% MC (for an example 50-mile haul distance at $0.14 per one-way ton-mile). For longer haul distances, these savings in trucking costs become even more significant. These results have demonstrated how significant savings in transportation costs can be achieved through transpirational drying. Also, these results show that it may be possible to increase the procurement radius for a biorefinery by using transpirational drying. Further cost reductions can be realized by the biorefinery when drying costs are reduced. The goal of this study was development of a timber harvesting system as productive in stands optimized for biomass production as it was in stands grown for roundwood markets. If that goal is achieved, a logger can invest in a single suite of equipment and operate efficiently in any future silvicultural regime that might include energy feedstocks as an output. It was the premise of the study that a future biomass market would shift the age distribution and stem size in stands grown for energy downward, and the key strategy in developing a harvest system for that scenario would be creating one with logging costs relatively insensitive to tree size. Our vision for such a system included a felling machine with a large capacity head to minimize time spent building bunches, plus a skidder capable of moving large volumes of small trees. The study proposed building the system and testing it against existing equipment in stands similar to those envisioned as resulting from biomass-optimized silviculture. As stated previously, the new feller buncher and skidder evaluated on their own merits showed their designs were clearly a step in the right direction - their productivity was indeed high and less sensitive to reductions in stem size. Cost projections based on extensive time and production studies of the high tonnage and benchmark operations showed modest advantages in FOB costs of the new system in both ‘average’ and simulated ‘energy’ stands (7.7% and 9.5%, respectively). But it was clear, when coupled into a traditional logging system, the in-woods productivity advantage of the modified equipment was easily overwhelmed by inefficiencies in chipping or trucking. Some additional savings can be achieved by spreading the cost of the feller buncher over multiple chipping operations (another 7.5%), but generally, in stands with average DBH above 6 inches, the in-woods equipment was not limiting productivity, and costs were driven by chipping and transport. Our results were a positive step in lowering delivered cost of trees grown for energy purposes, but they also argue strongly for a more comprehensive approach in solving this issue. The procurement system in its entirety has to be optimized to take full advantage of the productivity gains achieved with the machines and transpirational drying techniques developed in this project. We have to understand the true costs of all logistical options, particularly those of the choice in chipping strategy and in truck allocation, both of which seemed, in this study, to be the greatest source of variability in cost, and often the most expensive operations as well.« less

  18. Apparatus for electrical-assisted incremental forming and process thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, John; Cao, Jian

    A process and apparatus for forming a sheet metal component using an electric current passing through the component. The process can include providing an incremental forming machine, the machine having at least one arcuate tipped tool and at least electrode spaced a predetermined distance from the arcuate tipped tool. The machine is operable to perform a plurality of incremental deformations on the sheet metal component using the arcuate tipped tool. The machine is also operable to apply an electric direct current through the electrode into the sheet metal component at the predetermined distance from the arcuate tipped tool while themore » machine is forming the sheet metal component.« less

  19. Scheduling algorithm for flow shop with two batch-processing machines and arbitrary job sizes

    NASA Astrophysics Data System (ADS)

    Cheng, Bayi; Yang, Shanlin; Hu, Xiaoxuan; Li, Kai

    2014-03-01

    This article considers the problem of scheduling two batch-processing machines in flow shop where the jobs have arbitrary sizes and the machines have limited capacity. The jobs are processed in batches and the total size of jobs in each batch cannot exceed the machine capacity. Once a batch is being processed, no interruption is allowed until all the jobs in it are completed. The problem of minimising makespan is NP-hard in the strong sense. First, we present a mathematical model of the problem using integer programme. We show the scale of feasible solutions of the problem and provide optimality properties. Then, we propose a polynomial time algorithm with running time in O(nlogn). The jobs are first assigned in feasible batches and then scheduled on machines. For the general case, we prove that the proposed algorithm has a performance guarantee of 4. For the special case where the processing times of each job on the two machines satisfy p 1 j = ap 2 j , the performance guarantee is ? for a > 0.

  20. Using Multiple FPGA Architectures for Real-time Processing of Low-level Machine Vision Functions

    Treesearch

    Thomas H. Drayer; William E. King; Philip A. Araman; Joseph G. Tront; Richard W. Conners

    1995-01-01

    In this paper, we investigate the use of multiple Field Programmable Gate Array (FPGA) architectures for real-time machine vision processing. The use of FPGAs for low-level processing represents an excellent tradeoff between software and special purpose hardware implementations. A library of modules that implement common low-level machine vision operations is presented...

  1. Reversibility in Quantum Models of Stochastic Processes

    NASA Astrophysics Data System (ADS)

    Gier, David; Crutchfield, James; Mahoney, John; James, Ryan

    Natural phenomena such as time series of neural firing, orientation of layers in crystal stacking and successive measurements in spin-systems are inherently probabilistic. The provably minimal classical models of such stochastic processes are ɛ-machines, which consist of internal states, transition probabilities between states and output values. The topological properties of the ɛ-machine for a given process characterize the structure, memory and patterns of that process. However ɛ-machines are often not ideal because their statistical complexity (Cμ) is demonstrably greater than the excess entropy (E) of the processes they represent. Quantum models (q-machines) of the same processes can do better in that their statistical complexity (Cq) obeys the relation Cμ >= Cq >= E. q-machines can be constructed to consider longer lengths of strings, resulting in greater compression. With code-words of sufficiently long length, the statistical complexity becomes time-symmetric - a feature apparently novel to this quantum representation. This result has ramifications for compression of classical information in quantum computing and quantum communication technology.

  2. 14 CFR 1260.57 - New technology.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operate, in case of a machine or system; and, in each case, under such conditions as to establish that the... items include, but are not limited to, new processes, machines, manufactures, and compositions of matter, and improvements to, or new applications of, existing processes, machines, manufactures, and...

  3. 14 CFR 1260.57 - New technology.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operate, in case of a machine or system; and, in each case, under such conditions as to establish that the... items include, but are not limited to, new processes, machines, manufactures, and compositions of matter, and improvements to, or new applications of, existing processes, machines, manufactures, and...

  4. Shock compression of simulated adobe

    NASA Astrophysics Data System (ADS)

    Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.

    2017-01-01

    A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us =2.26up+0.37) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement.

  5. Theoretical study of cut area of reduction of large surfaces of rotation parts on machines with rotary cutters “Extra”

    NASA Astrophysics Data System (ADS)

    Bondarenko, J. A.; Fedorenko, M. A.; Pogonin, A. A.

    2018-03-01

    Large parts can be treated without disassembling machines using “Extra”, having technological and design challenges, which differ from the challenges in the processing of these components on the stationary machine. Extension machines are used to restore large parts up to the condition allowing one to use them in a production environment. To achieve the desired accuracy and surface roughness parameters, the surface after rotary grinding becomes recoverable, which greatly increases complexity. In order to improve production efficiency and productivity of the process, the qualitative rotary processing of the machined surface is applied. The rotary cutting process includes a continuous change of the cutting edge surfaces. The kinematic parameters of a rotary cutting define its main features and patterns, the cutting operation of the rotary cutting instrument.

  6. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    NASA Technical Reports Server (NTRS)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  7. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and... 7 Agriculture 5 2014-01-01 2014-01-01 false Importation of dried, cured, or processed fruits...

  8. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and... 7 Agriculture 5 2013-01-01 2013-01-01 false Importation of dried, cured, or processed fruits...

  9. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and... 7 Agriculture 5 2012-01-01 2012-01-01 false Importation of dried, cured, or processed fruits...

  10. Analysis of maizena drying system using temperature control based fuzzy logic method

    NASA Astrophysics Data System (ADS)

    Arief, Ulfah Mediaty; Nugroho, Fajar; Purbawanto, Sugeng; Setyaningsih, Dyah Nurani; Suryono

    2018-03-01

    Corn is one of the rice subtitution food that has good potential. Corn can be processed to be a maizena, and it can be used to make type of food that has been made from maizena, viz. Brownies cake, egg roll, and other cookies. Generally, maizena obtained by drying process carried out 2-3 days under the sun. However, drying process not possible during the rainy season. This drying process can be done using an automatic drying tool. This study was to analyze the design result and manufacture of maizena drying system with temperature control based fuzzylogic method. The result show that temperature of drying system with set point 40°C - 60°C work in suitable condition. The level of water content in 15% (BSN) and temperatureat 50°C included in good drying process. Time required to reach the set point of temperature in 50°C is 7.05 minutes. Drying time for 500 gr samples with temperature 50°C and power capacity 127.6 watt was 1 hour. Based on the result, drying process using temperature control based fuzzy logic method can improve energy efficiency than the conventional method of drying using a direct sunlight source with a temperature that cannot be directly controlled by human being causing the quality of drying result of flour is erratic.

  11. Stability Analysis of Radial Turning Process for Superalloys

    NASA Astrophysics Data System (ADS)

    Jiménez, Alberto; Boto, Fernando; Irigoien, Itziar; Sierra, Basilio; Suarez, Alfredo

    2017-09-01

    Stability detection in machining processes is an essential component for the design of efficient machining processes. Automatic methods are able to determine when instability is happening and prevent possible machine failures. In this work a variety of methods are proposed for detecting stability anomalies based on the measured forces in the radial turning process of superalloys. Two different methods are proposed to determine instabilities. Each one is tested on real data obtained in the machining of Waspalloy, Haynes 282 and Inconel 718. Experimental data, in both Conventional and High Pressure Coolant (HPC) environments, are set in four different states depending on materials grain size and Hardness (LGA, LGS, SGA and SGS). Results reveal that PCA method is useful for visualization of the process and detection of anomalies in online processes.

  12. 48 CFR 1852.227-70 - New technology.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... method; or to operate, in case of a machine or system; and, in each case, under such conditions as to... contract. Reportable items include, but are not limited to, new processes, machines, manufactures, and compositions of matter, and improvements to, or new applications of, existing processes, machines, manufactures...

  13. 14 CFR § 1260.57 - New technology.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operate, in case of a machine or system; and, in each case, under such conditions as to establish that the... items include, but are not limited to, new processes, machines, manufactures, and compositions of matter, and improvements to, or new applications of, existing processes, machines, manufactures, and...

  14. Un formalisme de systemes a sauts pour la recirculation optimale des casses dans une machine a papier

    NASA Astrophysics Data System (ADS)

    Khanbaghi, Maryam

    Increasing closure of white water circuits is making mill productivity and quality of paper produced increasingly affected by the occurrence of paper breaks. In this thesis the main objective is the development of white water and broke recirculation policies. The thesis consists of three main parts, respectively corresponding to the synthesis of a statistical model of paper breaks in a paper mill, the basic mathematical setup for the formulation of white water and broke recirculation policies in the mill as a jump linear quadratic regulation problem, and finally the tuning of the control law based on first passage-time theory, and its extension to the case of control sensitive paper break rates. More specifically, in the first part a statistical model of paper machine breaks is developed. We start from the hypothesis that the breaks process is a Markov chain with three states: the first state is the operational one, while the two others are associated with the general types of paper-breaks that can take place in the mill (wet breaks and dry breaks). The Markovian hypothesis is empirically validated. We also establish how paper-break rates are correlated with machine speed and broke recirculation ratio. Subsequently, we show how the obtained Markov chain model of paper-breaks can be used to formulate a machine operating speed parameter optimization problem. In the second part, upon recognizing that paper breaks can be modelled as a Markov chain type of process which, when interacting with the continuous mill dynamics, yields a jump Markov model, jump linear theory is proposed as a means of constructing white water and broke recirculation strategies which minimize process variability. Reduced process variability comes at the expense of relatively large swings in white water and broke tanks level. Since the linear design does not specifically account for constraints on the state-space, under the resulting law, damaging events of tank overflow or emptiness can occur. A heuristic simulation-based approach is proposed to choose the performance measure design parameters to keep the mean time between incidents of fluid in broke and white water tanks either overflowing, or reaching dangerously low levels, sufficiently long. In the third part, a methodology, mainly founded on the first passage-time theory of stochastic processes, is proposed to choose the performance measure design parameters to limit process variability while accounting for the possibility of undesirable tank overflows or tank emptiness. The heart of the approach is an approximation technique for evaluating mean first passage-times of the controlled tanks levels. This technique appears to have an applicability which largely exceeds the problem area it was designed for. Furthermore, the introduction of control sensitive break rates and the analysis of the ensuing control problem are presented. This is to account for the experimentally observed increase in breaks concomitant with flow rate variability.

  15. Repurposing mainstream CNC machine tools for laser-based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Jones, Jason B.

    2016-04-01

    The advent of laser technology has been a key enabler for industrial 3D printing, known as Additive Manufacturing (AM). Despite its commercial success and unique technical capabilities, laser-based AM systems are not yet able to produce parts with the same accuracy and surface finish as CNC machining. To enable the geometry and material freedoms afforded by AM, yet achieve the precision and productivity of CNC machining, hybrid combinations of these two processes have started to gain traction. To achieve the benefits of combined processing, laser technology has been integrated into mainstream CNC machines - effectively repurposing them as hybrid manufacturing platforms. This paper reviews how this engineering challenge has prompted beam delivery innovations to allow automated changeover between laser processing and machining, using standard CNC tool changers. Handling laser-processing heads using the tool changer also enables automated change over between different types of laser processing heads, further expanding the breadth of laser processing flexibility in a hybrid CNC. This paper highlights the development, challenges and future impact of hybrid CNCs on laser processing.

  16. Process capability improvement through DMAIC for aluminum alloy wheel machining

    NASA Astrophysics Data System (ADS)

    Sharma, G. V. S. S.; Rao, P. Srinivasa; Babu, B. Surendra

    2017-07-01

    This paper first enlists the generic problems of alloy wheel machining and subsequently details on the process improvement of the identified critical-to-quality machining characteristic of A356 aluminum alloy wheel machining process. The causal factors are traced using the Ishikawa diagram and prioritization of corrective actions is done through process failure modes and effects analysis. Process monitoring charts are employed for improving the process capability index of the process, at the industrial benchmark of four sigma level, which is equal to the value of 1.33. The procedure adopted for improving the process capability levels is the define-measure-analyze-improve-control (DMAIC) approach. By following the DMAIC approach, the C p, C pk and C pm showed signs of improvement from an initial value of 0.66, -0.24 and 0.27, to a final value of 4.19, 3.24 and 1.41, respectively.

  17. Integration of Machining and Inspection in Aerospace Manufacturing

    NASA Astrophysics Data System (ADS)

    Simpson, Bart; Dicken, Peter J.

    2011-12-01

    The main challenge for aerospace manufacturers today is to develop the ability to produce high-quality products on a consistent basis as quickly as possible and at the lowest-possible cost. At the same time, rising material prices are making the cost of scrap higher than ever so making it more important to minimise waste. Proper inspection and quality control methods are no longer a luxury; they are an essential part of every manufacturing operation that wants to grow and be successful. However, simply bolting on some quality control procedures to the existing manufacturing processes is not enough. Inspection must be fully-integrated with manufacturing for the investment to really produce significant improvements. The traditional relationship between manufacturing and inspection is that machining is completed first on the company's machine tools and the components are then transferred to dedicated inspection equipment to be approved or rejected. However, as machining techniques become more sophisticated, and as components become larger and more complex, there are a growing number of cases where closer integration is required to give the highest productivity and the biggest reductions in wastage. Instead of a simple linear progression from CAD to CAM to machining to inspection, a more complicated series of steps is needed, with extra data needed to fill any gaps in the information available at the various stages. These new processes can be grouped under the heading of "adaptive machining". The programming of most machining operations is based around knowing three things: the position of the workpiece on the machine, the starting shape of the material to be machined, and the final shape that needs to be achieved at the end of the operation. Adaptive machining techniques allow successful machining when at least one of those elements is unknown, by using in-process measurement to close the information gaps in the process chain. It also allows any errors to be spotted earlier in the manufacturing process, so helping the problems to be resolved more quickly and at lower cost.

  18. The research progress of perforating gun inner wall blind hole machining method

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Shen, Hongbing

    2018-04-01

    Blind hole processing method has been a concerned technical problem in oil, electronics, aviation and other fields. This paper introduces different methods for blind hole machining, focus on machining method for perforating gun inner wall blind hole processing. Besides, the advantages and disadvantages of different methods are also discussed, and the development trend of blind hole processing were introduced significantly.

  19. 16 CFR Appendix A to Part 423 - Glossary of Standard Terms

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Standard Terms 1. Washing, Machine Methods: a. “Machine wash”—a process by which soil may be removed from.... “Hand wash”—a process by which soil may be manually removed from products or specimens through the use...”—a process by which soil may be removed from products or specimens in a machine which uses any common...

  20. 16 CFR Appendix A to Part 423 - Glossary of Standard Terms

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standard Terms 1. Washing, Machine Methods: a. “Machine wash”—a process by which soil may be removed from.... “Hand wash”—a process by which soil may be manually removed from products or specimens through the use...”—a process by which soil may be removed from products or specimens in a machine which uses any common...

  1. 16 CFR Appendix A to Part 423 - Glossary of Standard Terms

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standard Terms 1. Washing, Machine Methods: a. “Machine wash”—a process by which soil may be removed from.... “Hand wash”—a process by which soil may be manually removed from products or specimens through the use...”—a process by which soil may be removed from products or specimens in a machine which uses any common...

  2. 16 CFR Appendix A to Part 423 - Glossary of Standard Terms

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standard Terms 1. Washing, Machine Methods: a. “Machine wash”—a process by which soil may be removed from.... “Hand wash”—a process by which soil may be manually removed from products or specimens through the use...”—a process by which soil may be removed from products or specimens in a machine which uses any common...

  3. 16 CFR Appendix A to Part 423 - Glossary of Standard Terms

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Standard Terms 1. Washing, Machine Methods: a. “Machine wash”—a process by which soil may be removed from.... “Hand wash”—a process by which soil may be manually removed from products or specimens through the use...”—a process by which soil may be removed from products or specimens in a machine which uses any common...

  4. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    NASA Astrophysics Data System (ADS)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  5. Intelligent image processing for machine safety

    NASA Astrophysics Data System (ADS)

    Harvey, Dennis N.

    1994-10-01

    This paper describes the use of intelligent image processing as a machine guarding technology. One or more color, linear array cameras are positioned to view the critical region(s) around a machine tool or other piece of manufacturing equipment. The image data is processed to provide indicators of conditions dangerous to the equipment via color content, shape content, and motion content. The data from these analyses is then sent to a threat evaluator. The purpose of the evaluator is to determine if a potentially machine-damaging condition exists based on the analyses of color, shape, and motion, and on `knowledge' of the specific environment of the machine. The threat evaluator employs fuzzy logic as a means of dealing with uncertainty in the vision data.

  6. Effect of magnetic polarity on surface roughness during magnetic field assisted EDM of tool steel

    NASA Astrophysics Data System (ADS)

    Efendee, A. M.; Saifuldin, M.; Gebremariam, MA; Azhari, A.

    2018-04-01

    Electrical discharge machining (EDM) is one of the non-traditional machining techniques where the process offers wide range of parameters manipulation and machining applications. However, surface roughness, material removal rate, electrode wear and operation costs were among the topmost issue within this technique. Alteration of magnetic device around machining area offers exciting output to be investigated and the effects of magnetic polarity on EDM remain unacquainted. The aim of this research is to investigate the effect of magnetic polarity on surface roughness during magnetic field assisted electrical discharge machining (MFAEDM) on tool steel material (AISI 420 mod.) using graphite electrode. A Magnet with a force of 18 Tesla was applied to the EDM process at selected parameters. The sparks under magnetic field assisted EDM produced better surface finish than the normal conventional EDM process. At the presence of high magnetic field, the spark produced was squeezed and discharge craters generated on the machined surface was tiny and shallow. Correct magnetic polarity combination of MFAEDM process is highly useful to attain a high efficiency machining and improved quality of surface finish to meet the demand of modern industrial applications.

  7. Combining Machine Learning and Natural Language Processing to Assess Literary Text Comprehension

    ERIC Educational Resources Information Center

    Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S.

    2017-01-01

    This study examined how machine learning and natural language processing (NLP) techniques can be leveraged to assess the interpretive behavior that is required for successful literary text comprehension. We compared the accuracy of seven different machine learning classification algorithms in predicting human ratings of student essays about…

  8. 75 FR 48955 - Arbitration Panel Decision Under the Randolph-Sheppard Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... vending machine facility operated by a blind vendor at the USPS's Chicago Processing and Distribution... cafeteria operations are exempt from the Act and whether the vending machines operated by a private vendor at the Chicago Processing and Distribution Center are in direct competition with the vending machines...

  9. Predictive Modeling and Optimization of Vibration-assisted AFM Tip-based Nanomachining

    NASA Astrophysics Data System (ADS)

    Kong, Xiangcheng

    The tip-based vibration-assisted nanomachining process offers a low-cost, low-effort technique in fabricating nanometer scale 2D/3D structures in sub-100 nm regime. To understand its mechanism, as well as provide the guidelines for process planning and optimization, we have systematically studied this nanomachining technique in this work. To understand the mechanism of this nanomachining technique, we firstly analyzed the interaction between the AFM tip and the workpiece surface during the machining process. A 3D voxel-based numerical algorithm has been developed to calculate the material removal rate as well as the contact area between the AFM tip and the workpiece surface. As a critical factor to understand the mechanism of this nanomachining process, the cutting force has been analyzed and modeled. A semi-empirical model has been proposed by correlating the cutting force with the material removal rate, which was validated using experimental data from different machining conditions. With the understanding of its mechanism, we have developed guidelines for process planning of this nanomachining technique. To provide the guideline for parameter selection, the effect of machining parameters on the feature dimensions (depth and width) has been analyzed. Based on ANOVA test results, the feature width is only controlled by the XY vibration amplitude, while the feature depth is affected by several machining parameters such as setpoint force and feed rate. A semi-empirical model was first proposed to predict the machined feature depth under given machining condition. Then, to reduce the computation intensity, linear and nonlinear regression models were also proposed and validated using experimental data. Given the desired feature dimensions, feasible machining parameters could be provided using these predictive feature dimension models. As the tip wear is unavoidable during the machining process, the machining precision will gradually decrease. To maintain the machining quality, the guideline for when to change the tip should be provided. In this study, we have developed several metrics to detect tip wear, such as tip radius and the pull-off force. The effect of machining parameters on the tip wear rate has been studied using these metrics, and the machining distance before a tip must be changed has been modeled using these machining parameters. Finally, the optimization functions have been built for unit production time and unit production cost subject to realistic constraints, and the optimal machining parameters can be found by solving these functions.

  10. Properties of Free-Machining Aluminum Alloys at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Faltus, Jiří; Karlík, Miroslav; Haušild, Petr

    In areas close to the cutting tool the workpieces being dry machined could be heated up to 350°C and they may be impact loaded. Therefore it is of interest to study mechanical properties of corresponding materials at elevated temperatures. Free-machining alloys of Al-Cu and Al-Mg-Si systems containing Pb, Bi and Sn additions (AA2011, AA2111B, AA6262, and AA6023) were subjected to Charpy U notch impact test at the temperatures ranging from 20 to 350°C. The tested alloys show a sharp drop in notch impact strength KU at different temperatures. This drop of KU is caused by liquid metal embrittlement due to the melting of low-melting point dispersed phases which is documented by differential scanning calorimetry. Fracture surfaces of the specimens were observed using a scanning electron microscope. At room temperature, the fractures of all studied alloys exhibited similar ductile dimple fracture micromorphology, at elevated temperatures, numerous secondary intergranular cracks were observed.

  11. Soft, Conformal Bioelectronics for a Wireless Human-Wheelchair Interface

    PubMed Central

    Mishra, Saswat; Norton, James J. S.; Lee, Yongkuk; Lee, Dong Sup; Agee, Nicolas; Chen, Yanfei; Chun, Youngjae; Yeo, Woon-Hong

    2017-01-01

    There are more than 3 million people in the world whose mobility relies on wheelchairs. Recent advancement on engineering technology enables more intuitive, easy-to-use rehabilitation systems. A human-machine interface that uses non-invasive, electrophysiological signals can allow a systematic interaction between human and devices; for example, eye movement-based wheelchair control. However, the existing machine-interface platforms are obtrusive, uncomfortable, and often cause skin irritations as they require a metal electrode affixed to the skin with a gel and acrylic pad. Here, we introduce a bioelectronic system that makes dry, conformal contact to the skin. The mechanically comfortable sensor records high-fidelity electrooculograms, comparable to the conventional gel electrode. Quantitative signal analysis and infrared thermographs show the advantages of the soft biosensor for an ergonomic human-machine interface. A classification algorithm with an optimized set of features shows the accuracy of 94% with five eye movements. A Bluetooth-enabled system incorporating the soft bioelectronics demonstrates a precise, hands-free control of a robotic wheelchair via electrooculograms. PMID:28152485

  12. Five new machines and six products can triple commodity recovery from southern forests

    Treesearch

    Peter Koch

    1978-01-01

    Mixed southern pine-hardwood stands now yield 20 to 22 percent of their biomass in wood products. A new energy self-sufficient system using tree pullers, wet-fuel burners, mobile chippers, shaping-lathe headrigs, and continuous kilns can convert 67 percent of the biomass (above- and below-ground parts of trees of all species) into products worth about $150 per dry ton...

  13. The development of an inert simulant for HNS/teflon explosive

    NASA Technical Reports Server (NTRS)

    Elban, W. L.

    1972-01-01

    The report describes the development and evaluation of an inert simulant for the thermally stable, heat-resistant plastic-bonded explosive HNS/Teflon. The simulant is made by dry blending vinylidene fluoride, melamine and Teflon which when compared has a pressed density and thermal properties corresponding closely to the explosive. In addition, the machinability and handling characteristics of the simulant are similar to the explosive.

  14. Process Development and Micro-Machining of MARBLE Foam-Cored Rexolite Hemi-Shell Ablator Capsules

    DOE PAGES

    Randolph, Randall Blaine; Oertel, John A.; Schmidt, Derek William; ...

    2016-06-30

    For this study, machined CH hemi-shell ablator capsules have been successfully produced by the MST-7 Target Fabrication Team at Los Alamos National Laboratory. Process development and micro-machining techniques have been developed to produce capsules for both the Omega and National Ignition Facility (NIF) campaigns. These capsules are gas filled up to 10 atm and consist of a machined plastic hemi-shell outer layer that accommodates various specially engineered low-density polystyrene foam cores. Machining and assembly of the two-part, step-jointed plastic hemi-shell outer layer required development of new techniques, processes, and tooling while still meeting very aggressive shot schedules for both campaigns.more » Finally, problems encountered and process improvements will be discussed that describe this very unique, complex capsule design approach through the first Omega proof-of-concept version to the larger NIF version.« less

  15. Numerical simulation of polishing U-tube based on solid-liquid two-phase

    NASA Astrophysics Data System (ADS)

    Li, Jun-ye; Meng, Wen-qing; Wu, Gui-ling; Hu, Jing-lei; Wang, Bao-zuo

    2018-03-01

    As the advanced technology to solve the ultra-precision machining of small hole structure parts and complex cavity parts, the abrasive grain flow processing technology has the characteristics of high efficiency, high quality and low cost. So this technology in many areas of precision machining has an important role. Based on the theory of solid-liquid two-phase flow coupling, a solid-liquid two-phase MIXTURE model is used to simulate the abrasive flow polishing process on the inner surface of U-tube, and the temperature, turbulent viscosity and turbulent dissipation rate in the process of abrasive flow machining of U-tube were compared and analyzed under different inlet pressure. In this paper, the influence of different inlet pressure on the surface quality of the workpiece during abrasive flow machining is studied and discussed, which provides a theoretical basis for the research of abrasive flow machining process.

  16. Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation.

    PubMed

    Segreto, Tiziana; Caggiano, Alessandra; Karam, Sara; Teti, Roberto

    2017-12-12

    Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions.

  17. Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation

    PubMed Central

    Segreto, Tiziana; Karam, Sara; Teti, Roberto

    2017-01-01

    Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions. PMID:29231864

  18. A field survey on coffee beans drying methods of Indonesian small holder farmers

    NASA Astrophysics Data System (ADS)

    Siagian, Parulian; Setyawan, Eko Y.; Gultom, Tumiur; Napitupulu, Farel H.; Ambarita, Himsar

    2017-09-01

    Drying agricultural product is a post-harvest process that consumes significant energy. It can affect the quality of the product. This paper deals with literature review and field survey of drying methods of coffee beans of Indonesia farmers. The objective is to supply the necessary information on developing continuous solar drier. The results show that intermittent characteristic of sun drying results in a better quality of coffee beans in comparison with constant convective drying. In order to use energy efficiently, the drying process should be divided into several stages. In the first stage when the moist content is high, higher drying air temperature is more effective. After this step, where the moist content is low, lower drying air temperature is better. The field survey of drying coffee beans in Sumatera Utara province reveals that the used drying process is very traditional. It can be divided into two modes and depend on the coffee beans type. The Arabica coffee is firstly fermented and dried to moisture content of 80% using sun drying method, then followed by Green House model of drying up to moisture content about 12%. The latter typically spends 3 days of drying time. On the other hand, The Robusta coffee is dried by exposing to the sun directly without any treatment. After the coffee beans dried follow by peeled process. These findings can be considered to develop a continuous solar drying that suitable for coffee beans drying.

  19. Programming and machining of complex parts based on CATIA solid modeling

    NASA Astrophysics Data System (ADS)

    Zhu, Xiurong

    2017-09-01

    The complex parts of the use of CATIA solid modeling programming and simulation processing design, elaborated in the field of CNC machining, programming and the importance of processing technology. In parts of the design process, first make a deep analysis on the principle, and then the size of the design, the size of each chain, connected to each other. After the use of backstepping and a variety of methods to calculate the final size of the parts. In the selection of parts materials, careful study, repeated testing, the final choice of 6061 aluminum alloy. According to the actual situation of the processing site, it is necessary to make a comprehensive consideration of various factors in the machining process. The simulation process should be based on the actual processing, not only pay attention to shape. It can be used as reference for machining.

  20. Effects of Process Parameters and Cryotreated Electrode on the Radial Overcut of Aisi 304 IN SiC Powder Mixed Edm

    NASA Astrophysics Data System (ADS)

    Bhaumik, Munmun; Maity, Kalipada

    Powder mixed electro discharge machining (PMEDM) is further advancement of conventional electro discharge machining (EDM) where the powder particles are suspended in the dielectric medium to enhance the machining rate as well as surface finish. Cryogenic treatment is introduced in this process for improving the tool life and cutting tool properties. In the present investigation, the characterization of the cryotreated tempered electrode was performed. An attempt has been made to study the effect of cryotreated double tempered electrode on the radial overcut (ROC) when SiC powder is mixed in the kerosene dielectric during electro discharge machining of AISI 304. The process performance has been evaluated by means of ROC when peak current, pulse on time, gap voltage, duty cycle and powder concentration are considered as process parameters and machining is performed by using tungsten carbide electrodes (untreated and double tempered electrodes). A regression analysis was performed to correlate the data between the response and the process parameters. Microstructural analysis was carried out on the machined surfaces. Least radial overcut was observed for conventional EDM as compared to powder mixed EDM. Cryotreated double tempered electrode significantly reduced the radial overcut than untreated electrode.

  1. Fatigue Life Variability in Large Aluminum Forgings with Residual Stress

    DTIC Science & Technology

    2011-07-01

    been conducted. A detailed finite element analysis of the forge/ quench /coldwork/machine process was performed in order to predict the bulk residual...forge/ quench /coldwork/machine process was performed in order to predict the bulk residual stresses in a fictitious aluminum bulkhead. The residual...continues to develop the capability for computational simulation of the forge, quench , cold work and machining processes. In order to handle the

  2. Scheduling of flow shop problems on 3 machines in fuzzy environment with double transport facility

    NASA Astrophysics Data System (ADS)

    Sathish, Shakeela; Ganesan, K.

    2016-06-01

    Flow shop scheduling is a decision making problem in production and manufacturing field which has a significant impact on the performance of an organization. When the machines on which jobs are to be processed are placed at different places, the transportation time plays a significant role in production. Further two different transport agents where 1st takes the job from 1st machine to 2nd machine and then returns back to the first machine and the 2nd takes the job from 2nd machine to 3rd machine and then returns back to the 2nd machine are also considered. We propose a method to minimize the total make span; without converting the fuzzy processing time to classical numbers by using a new type of fuzzy arithmetic and a fuzzy ranking method. A numerical example is provided to explain the proposed method.

  3. Scheduling job shop - A case study

    NASA Astrophysics Data System (ADS)

    Abas, M.; Abbas, A.; Khan, W. A.

    2016-08-01

    The scheduling in job shop is important for efficient utilization of machines in the manufacturing industry. There are number of algorithms available for scheduling of jobs which depend on machines tools, indirect consumables and jobs which are to be processed. In this paper a case study is presented for scheduling of jobs when parts are treated on available machines. Through time and motion study setup time and operation time are measured as total processing time for variety of products having different manufacturing processes. Based on due dates different level of priority are assigned to the jobs and the jobs are scheduled on the basis of priority. In view of the measured processing time, the times for processing of some new jobs are estimated and for efficient utilization of the machines available an algorithm is proposed and validated.

  4. Multicutter machining of compound parametric surfaces

    NASA Astrophysics Data System (ADS)

    Hatna, Abdelmadjid; Grieve, R. J.; Broomhead, P.

    2000-10-01

    Parametric free forms are used in industries as disparate as footwear, toys, sporting goods, ceramics, digital content creation, and conceptual design. Optimizing tool path patterns and minimizing the total machining time is a primordial issue in numerically controlled (NC) machining of free form surfaces. We demonstrate in the present work that multi-cutter machining can achieve as much as 60% reduction in total machining time for compound sculptured surfaces. The given approach is based upon the pre-processing as opposed to the usual post-processing of surfaces for the detection and removal of interference followed by precise tracking of unmachined areas.

  5. The development of mixer machine for organic animal feed production: Proposed study

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Wahab, R. Abdul; Zakaria, Supaat; Feriyanto, Dafit; Nor, M. I. F. Che Mohd; Muzarpar, Syafiq

    2017-09-01

    Mixer machine plays a major role in producing homogenous composition of animal feed. Long time production, inhomogeneous and minor agglomeration has been observed by existing mixer. Therefore, this paper proposed continuous mixer to enhance mixing efficiency with shorter time of mixing process in order to abbreviate the whole process in animal feed production. Through calculation of torque, torsion, bending, power and energy consumption will perform in mixer machine process. Proposed mixer machine is designed by two layer buckets with purpose for continuity of mixing process. Mixing process was performed by 4 blades which consists of various arm length such as 50, 100,150 and 225 mm in 60 rpm velocity clockwise rotation. Therefore by using this machine will produce the homogenous composition of animal feed through nutrition analysis and short operation time of mixing process approximately of 5 minutes. Therefore, the production of animal feed will suitable for various animals including poultry and aquatic fish. This mixer will available for various organic material in animal feed production. Therefore, this paper will highlights some areas such as continues animal feed supply chain and bio-based animal feed.

  6. Review on CNC-Rapid Prototyping

    NASA Astrophysics Data System (ADS)

    Z, M. Nafis O.; Y, Nafrizuan M.; A, Munira M.; J, Kartina

    2012-09-01

    This article reviewed developments of Computerized Numerical Control (CNC) technology in rapid prototyping process. Rapid prototyping (RP) can be classified into three major groups; subtractive, additive and virtual. CNC rapid prototyping is grouped under the subtractive category which involves material removal from the workpiece that is larger than the final part. Richard Wysk established the use of CNC machines for rapid prototyping using sets of 2½-D tool paths from various orientations about a rotary axis to machine parts without refixturing. Since then, there are few developments on this process mainly aimed to optimized the operation and increase the process capabilities to stand equal with common additive type of RP. These developments include the integration between machining and deposition process (hybrid RP), adoption of RP to the conventional machine and optimization of the CNC rapid prototyping process based on controlled parameters. The article ended by concluding that the CNC rapid prototyping research area has a vast space for improvement as in the conventional machining processes. Further developments and findings will enhance the usage of this method and minimize the limitation of current approach in building a prototype.

  7. Effects of Cascaded Voltage Collapse and Protection of Many Induction Machine Loads upon Load Characteristics Viewed from Bulk Transmission System

    NASA Astrophysics Data System (ADS)

    Kumano, Teruhisa

    As known well, two of the fundamental processes which give rise to voltage collapse in power systems are the on load tap changers of transformers and dynamic characteristics of loads such as induction machines. It has been well established that, comparing among these two, the former makes slower collapse while the latter makes faster. However, in realistic situations, the load level of each induction machine is not uniform and it is well expected that only a part of loads collapses first, followed by collapse process of each load which did not go into instability during the preceding collapses. In such situations the over all equivalent collapse behavior viewed from bulk transmission level becomes somewhat different from the simple collapse driven by one aggregated induction machine. This paper studies the process of cascaded voltage collapse among many induction machines by time simulation, where load distribution on a feeder line is modeled by several hundreds of induction machines and static impedance loads. It is shown that in some cases voltage collapse really cascades among induction machines, where the macroscopic load dynamics viewed from upper voltage level makes slower collapse than expected by the aggregated load model. Also shown is the effects of machine protection of induction machines, which also makes slower collapse.

  8. A Framework to Guide the Assessment of Human-Machine Systems.

    PubMed

    Stowers, Kimberly; Oglesby, James; Sonesh, Shirley; Leyva, Kevin; Iwig, Chelsea; Salas, Eduardo

    2017-03-01

    We have developed a framework for guiding measurement in human-machine systems. The assessment of safety and performance in human-machine systems often relies on direct measurement, such as tracking reaction time and accidents. However, safety and performance emerge from the combination of several variables. The assessment of precursors to safety and performance are thus an important part of predicting and improving outcomes in human-machine systems. As part of an in-depth literature analysis involving peer-reviewed, empirical articles, we located and classified variables important to human-machine systems, giving a snapshot of the state of science on human-machine system safety and performance. Using this information, we created a framework of safety and performance in human-machine systems. This framework details several inputs and processes that collectively influence safety and performance. Inputs are divided according to human, machine, and environmental inputs. Processes are divided into attitudes, behaviors, and cognitive variables. Each class of inputs influences the processes and, subsequently, outcomes that emerge in human-machine systems. This framework offers a useful starting point for understanding the current state of the science and measuring many of the complex variables relating to safety and performance in human-machine systems. This framework can be applied to the design, development, and implementation of automated machines in spaceflight, military, and health care settings. We present a hypothetical example in our write-up of how it can be used to aid in project success.

  9. A method to identify the main mode of machine tool under operating conditions

    NASA Astrophysics Data System (ADS)

    Wang, Daming; Pan, Yabing

    2017-04-01

    The identification of the modal parameters under experimental conditions is the most common procedure when solving the problem of machine tool structure vibration. However, the influence of each mode on the machine tool vibration in real working conditions remains unknown. In fact, the contributions each mode makes to the machine tool vibration during machining process are different. In this article, an active excitation modal analysis is applied to identify the modal parameters in operational condition, and the Operating Deflection Shapes (ODS) in frequencies of high level vibration that affect the quality of machining in real working conditions are obtained. Then, the ODS is decomposed by the mode shapes which are identified in operational conditions. So, the contributions each mode makes to machine tool vibration during machining process are got by decomposition coefficients. From the previous steps, we can find out the main modes which effect the machine tool more significantly in working conditions. This method was also verified to be effective by experiments.

  10. Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds.

    PubMed

    Slatnar, Ana; Klancar, Urska; Stampar, Franci; Veberic, Robert

    2011-11-09

    Fresh figs were subjected to two different drying processes: sun-drying and oven-drying. To assess their effect on the nutritional and health-related properties of figs, sugars, organic acids, single phenolics, total phenolics, and antioxidant activity were determined before and after processing. Samples were analyzed three times in a year, and phenolic compounds were determined using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). In figs, monomer sugars predominate, which is important nutritional information, and the content of sugars as well as organic acids in fresh figs was lower than in dried fruits. However, the best sugar/organic acid ratio was measured after the sun-drying process. Analysis of individual phenolic compounds revealed a higher content of all phenolic groups determined after the oven-drying process, with the exception of cyanidin-3-O-rutinoside. Similarly, higher total phenolic content and antioxidant activity were detected after the drying process. With these results it can be concluded that the differences in analyzed compounds in fresh and dried figs are significant. The differences between the sun-dried and oven-dried fruits were determined in organic acids, sugars, chlorogenic acid, catechin, epicatechin, kaempferol-3-O-glucoside, luteolin-8-C-glucoside, and total phenolic contents. The results indicate that properly dried figs can be used as a good source of phenolic compounds.

  11. [Effects of post-harvest processing and extraction methods on polysaccharides content of Dendrobium officinale].

    PubMed

    Li, Cong; Ning, Li-Dan; Si, Jin-Ping; Wu, Ling-Shang; Liu, Jing-Jing; Song, Xian-Shui; Yu, Qiao-Xian

    2013-02-01

    To reveal the quality variation of polysaccharide in Dendrobium officinale by post-harvest processing and extraction methods, and provide a basis for post-harvest processing and clinical and hygienical applications of Tiepifengdou (Dendrobii Officinalis Caulis). The content of polysaccharides were studied by 4 post-harvest processing methods, i. e. drying by drying closet, drying after scalding by boiling water, drying while twisting, and drying while twisting after scalding by boiling water. And a series of temperatures were set in each processing procedure. An orthogonal test L9 (3(4)) with crushed degrees, solid-liquid ratio, extraction time and extraction times as factors were designed to analyze the dissolution rate of polysaccharides in Tiepifengdou processed by drying while twisting at 80 degrees C. The content of polysaccharides was ranged from 26.59% to 32.70% in different samples processed by different processing methods, among which drying while twisting at 80 degrees C and 100 degrees C respectively were the best. Crushed degree was the most important influence on the dissolution rate of polysaccharides. The dissolution rate of polysaccharides was extremely low when the sample was boiled directly without crushing and sieving. Drying while twisting at 80 degrees C was the best post-harvest processing method, which can help to dry the fresh herbs and improve the accumulation of polysaccharides. Boiling the uncrushed Tiepifengdou for a long time as traditional method could not fully extract polysaccharides, while boiling the crushed Tiepifengdou can efficiently extract polysaccharides.

  12. Data-driven modeling of hydroclimatic trends and soil moisture: Multi-scale data integration and decision support

    NASA Astrophysics Data System (ADS)

    Coopersmith, Evan Joseph

    The techniques and information employed for decision-making vary with the spatial and temporal scope of the assessment required. In modern agriculture, the farm owner or manager makes decisions on a day-to-day or even hour-to-hour basis for dozens of fields scattered over as much as a fifty-mile radius from some central location. Following precipitation events, land begins to dry. Land-owners and managers often trace serpentine paths of 150+ miles every morning to inspect the conditions of their various parcels. His or her objective lies in appropriate resource usage -- is a given tract of land dry enough to be workable at this moment or would he or she be better served waiting patiently? Longer-term, these owners and managers decide upon which seeds will grow most effectively and which crops will make their operations profitable. At even longer temporal scales, decisions are made regarding which fields must be acquired and sold and what types of equipment will be necessary in future operations. This work develops and validates algorithms for these shorter-term decisions, along with models of national climate patterns and climate changes to enable longer-term operational planning. A test site at the University of Illinois South Farms (Urbana, IL, USA) served as the primary location to validate machine learning algorithms, employing public sources of precipitation and potential evapotranspiration to model the wetting/drying process. In expanding such local decision support tools to locations on a national scale, one must recognize the heterogeneity of hydroclimatic and soil characteristics throughout the United States. Machine learning algorithms modeling the wetting/drying process must address this variability, and yet it is wholly impractical to construct a separate algorithm for every conceivable location. For this reason, a national hydrological classification system is presented, allowing clusters of hydroclimatic similarity to emerge naturally from annual regime curve data and facilitate the development of cluster-specific algorithms. Given the desire to enable intelligent decision-making at any location, this classification system is developed in a manner that will allow for classification anywhere in the U.S., even in an ungauged basin. Daily time series data from 428 catchments in the MOPEX database are analyzed to produce an empirical classification tree, partitioning the United States into regions of hydroclimatic similarity. In constructing a classification tree based upon 55 years of data, it is important to recognize the non-stationary nature of climate data. The shifts in climatic regimes will cause certain locations to shift their ultimate position within the classification tree, requiring decision-makers to alter land usage, farming practices, and equipment needs, and algorithms to adjust accordingly. This work adapts the classification model to address the issue of regime shifts over larger temporal scales and suggests how land-usage and farming protocol may vary from hydroclimatic shifts in decades to come. Finally, the generalizability of the hydroclimatic classification system is tested with a physically-based soil moisture model calibrated at several locations throughout the continental United States. The soil moisture model is calibrated at a given site and then applied with the same parameters at other sites within and outside the same hydroclimatic class. The model's performance deteriorates minimally if the calibration and validation location are within the same hydroclimatic class, but deteriorates significantly if the calibration and validates sites are located in different hydroclimatic classes. These soil moisture estimates at the field scale are then further refined by the introduction of LiDAR elevation data, distinguishing faster-drying peaks and ridges from slower-drying valleys. The inclusion of LiDAR enabled multiple locations within the same field to be predicted accurately despite non-identical topography. This cross-application of parametric calibrations and LiDAR-driven disaggregation facilitates decision-support at locations without proximally-located soil moisture sensors.

  13. Horizontal-axis clothes washer market poised for expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, K.L.

    1994-12-31

    The availability of energy- and water-efficient horizontal-axis washing machines in the North American market is growing, as US and European manufacturers position for an expected long-term market shift toward horizontal-axis (H-axis) technology. Four of the five major producers of washing machines in the US are developing or considering new H-axis models. New entrants, including US-based Staber Industries and several European manufacturers, are also expected to compete in this market. The intensified interest in H-axis technology is partly driven by speculation that new US energy efficiency standards, to be proposed in 1996 and implemented in 1999, will effectively mandate H-axis machines.more » H-axis washers typically use one-third to two-thirds less energy, water, and detergent than vertical-axis machines. Some models also reduce the energy needed to dry the laundry, since their higher spin speeds extract more water than is typical with vertical-axis designs. H-axis washing machines are the focus of two broadly-based efforts to support coordinated research and incentive programs by electric, gas, and water utilities: The High-Efficiency Laundry Metering/Marketing Analysis (THELMA), and the Consortium for Energy Efficiency (CEE) High-Efficiency Clothes Washer Initiative. These efforts may help to pave the way for new types of marketing partnerships among utilities and other parties that could help to speed adoption of H-axis washers.« less

  14. Implementation of a process analytical technology system in a freeze-drying process using Raman spectroscopy for in-line process monitoring.

    PubMed

    De Beer, T R M; Allesø, M; Goethals, F; Coppens, A; Heyden, Y Vander; De Diego, H Lopez; Rantanen, J; Verpoort, F; Vervaet, C; Remon, J P; Baeyens, W R G

    2007-11-01

    The aim of the present study was to propose a strategy for the implementation of a Process Analytical Technology system in freeze-drying processes. Mannitol solutions, some of them supplied with NaCl, were used as models to freeze-dry. Noninvasive and in-line Raman measurements were continuously performed during lyophilization of the solutions to monitor real time the mannitol solid state, the end points of the different process steps (freezing, primary drying, secondary drying), and physical phenomena occurring during the process. At-line near-infrared (NIR) and X-ray powder diffractometry (XRPD) measurements were done to confirm the Raman conclusions and to find out additional information. The collected spectra during the processes were analyzed using principal component analysis and multivariate curve resolution. A two-level full factorial design was used to study the significant influence of process (freezing rate) and formulation variables (concentration of mannitol, concentration of NaCl, volume of freeze-dried sample) upon freeze-drying. Raman spectroscopy was able to monitor (i) the mannitol solid state (amorphous, alpha, beta, delta, and hemihydrate), (ii) several process step end points (end of mannitol crystallization during freezing, primary drying), and (iii) physical phenomena occurring during freeze-drying (onset of ice nucleation, onset of mannitol crystallization during the freezing step, onset of ice sublimation). NIR proved to be a more sensitive tool to monitor sublimation than Raman spectroscopy, while XRPD helped to unravel the mannitol hemihydrate in the samples. The experimental design results showed that several process and formulation variables significantly influence different aspects of lyophilization and that both are interrelated. Raman spectroscopy (in-line) and NIR spectroscopy and XRPD (at-line) not only allowed the real-time monitoring of mannitol freeze-drying processes but also helped (in combination with experimental design) us to understand the process.

  15. Efficient machining of ultra precise steel moulds with freeform surfaces

    NASA Astrophysics Data System (ADS)

    Bulla, B.; Robertson, D. J.; Dambon, O.; Klocke, F.

    2013-09-01

    Ultra precision diamond turning of hardened steel to produce optical quality surfaces can be realized by applying an ultrasonic assisted process. With this technology optical moulds used typically for injection moulding can be machined directly from steel without the requirement to overcoat the mould with a diamond machinable material such as Nickel Phosphor. This has both the advantage of increasing the mould tool lifetime and also reducing manufacture costs by dispensing with the relatively expensive plating process. This publication will present results we have obtained for generating free form moulds in hardened steel by means of ultrasonic assisted diamond turning with a vibration frequency of 80 kHz. To provide a baseline with which to characterize the system performance we perform plane cutting experiments on different steel alloys with different compositions. The baseline machining results provides us information on the surface roughness and on tool wear caused during machining and we relate these to material composition. Moving on to freeform surfaces, we will present a theoretical background to define the machine program parameters for generating free forms by applying slow slide servo machining techniques. A solution for optimal part generation is introduced which forms the basis for the freeform machining experiments. The entire process chain, from the raw material through to ultra precision machining is presented, with emphasis on maintaining surface alignment when moving a component from CNC pre-machining to final machining using ultrasonic assisted diamond turning. The free form moulds are qualified on the basis of the surface roughness measurements and a form error map comparing the machined surface with the originally defined surface. These experiments demonstrate the feasibility of efficient free form machining applying ultrasonic assisted diamond turning of hardened steel.

  16. Localized analysis of paint-coat drying using dynamic speckle interferometry

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, Daniel; Tebaldi, Myrian; Grumel, Eduardo; Rabal, Hector; Elmaghraby, Adel

    2018-07-01

    The paint-coating is part of several industrial processes, including the automotive industry, architectural coatings, machinery and appliances. These paint-coatings must comply with high quality standards, for this reason evaluation techniques from paint-coatings are in constant development. One important factor from the paint-coating process is the drying, as it has influence on the quality of final results. In this work we present an assessment technique based on the optical dynamic speckle interferometry, this technique allows for the temporal activity evaluation of the paint-coating drying process, providing localized information from drying. This localized information is relevant in order to address the drying homogeneity, optimal drying, and quality control. The technique relies in the definition of a new temporal history of the speckle patterns to obtain the local activity; this information is then clustered to provide a convenient indicative of different drying process stages. The experimental results presented were validated using the gravimetric drying curves

  17. Effect of drying parameters on physiochemical and sensory properties of fruit powders processed by PGSS-, Vacuum- and Spray-drying.

    PubMed

    Feguš, Urban; Žigon, Uroš; Petermann, Marcus; Knez, Željko

    2015-01-01

    Aim of this experimental work was to investigate the possibility of producing fruit powders without employing drying aid and to investigate the effect of drying temperatures on the final powder characteristics. Raw fruit materials (banana puree, strawberry puree and blueberry concentrate) were processed using three different drying techniques each operating at a different temperature conditions: vacuum-drying (-27-17 °C), Spray-drying (130-160 °C) and PGSS-drying (112-152 °C). Moisture content, total colour difference, antioxidant activity and sensory characteristics of the processed fruit powders were analysed. The results obtained from the experimental work indicate that investigated fruit powders without or with minimal addition of maltodextrin can be produced. Additionally, it was observed that an increase in process temperature results in a higher loss of colour, antioxidant activity and intensity of the flavour profile.

  18. New Processes for Freeze-Drying in Dual-Chamber Systems.

    PubMed

    Werk, T; Ludwig, I S; Luemkemann, J; Huwyler, J; Mahler, H-C; Haeuser, C R; Hafner, M

    2016-01-01

    Dual-chamber systems can offer self-administration and home care use for lyophilized biologics. Only a few products have been launched in dual-chamber systems so far-presumably due to dual-chamber systems' complex and costly drug product manufacturing process. Within this paper, two improved processes (both based on tray filling technology) for freeze-drying pharmaceuticals in dual-chamber systems are described. Challenges with regards to heat transfer were tackled by (1) performing the freeze-drying step in a needle-down orientation in combination with an aluminum block, or (2) freeze-drying the drug product "externally" in a metal cartridge with subsequent filling of the lyophilized cake into the dual-chamber system. Metal-mediated heat transfer was shown to be efficient in both cases and batch (unit-to-unit) homogeneity with regards to sublimation rate was increased. It was difficult to influence ice crystal size using different methods when in use with an aluminum block due to its heat capacity. Using such a metal carrier implies a large heat capacity leading to relatively small ice crystals. Compared to the established process, drying times were reduced by half using the new processes. The drying time was, however, longer for syringes compared to vials due to the syringe design (long and slim). The differences in drying times were less pronounced for aggressive drying cycles. The proposed processes may help to considerably decrease investment costs into dual-chamber system fill-finish equipment. Dual-chamber syringes offer self-administration and home care use for freeze-dried pharmaceuticals. Only a few products have been launched in dual-chamber syringes so far-presumably due to their complex and costly drug product manufacturing process. In this paper two improved processes for freeze-drying pharmaceuticals in dual-chamber syringes are described. The major challenge of freeze-drying is to transfer heat through a vacuum. The proposed processes cope with this challenge by (1) freeze-drying the drug product in the syringe in an orientation in which the product is closest to the heat source, or (2) freeze-drying the drug product outside the syringe in a metal tube. The latter requires filling the freeze-dried product subsequently into the dual-chamber syringe. Both processes were very efficient and promised to achieve similar freeze-drying conditions for all dual-chamber syringes within one production run. The proposed processes may help to considerably decrease investment costs into dual-chamber syringe fill-finish equipment. © PDA, Inc. 2016.

  19. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits.

    PubMed

    Wojdyło, Aneta; Figiel, Adam; Oszmiański, Jan

    2009-02-25

    The objective of this study was to evaluate the application of vacuum-microwave drying (240, 360, and 480 W) in the production process of dehydrated strawberry and to compare and contrast the quality of these dehydrated strawberries in terms of their polyphenol compounds, concentration of some heat liable components, and color to that of freeze-dried, convective, and vacuum-dried strawberry. Thus, the effect of vacuum-microwave drying and other drying methods on the antioxidant activity of berries was evaluated. Whole fresh and dried fruits were assessed for phenolics (anthocyanins, flavanols, hydroxycinnamic acids, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that ellagic acid and flavanol changes were affected by drying techniques and cultivar. Drying destroyed anthocyanins, flavanols, and ascorbic acid, and there was a significant decrease in antioxidant activity. The most striking result was that conventional and vacuum drying decreased antioxidant activity in both cultivars, whereas contradictory results were found for vacuum-microwave processed strawberry. This study has demonstrated that vacuum-microwave drying, especially at 240 W, can produce high-quality products, with the additional advantage of reduced processing times, compared to other processes such as freeze-drying.

  20. News: Good chemical manufacturing process criteria

    EPA Science Inventory

    This news column covers topics relating to manufacturing criteria, machine to machine technology, novel process windows, green chemistry indices, business resilience, immobilized enzymes, and Bt crops.

  1. Combination process of diamond machining and roll-to-roll UV-replication for thin film micro- and nanostructures

    NASA Astrophysics Data System (ADS)

    Väyrynen, J.; Mönkkönen, K.; Siitonen, S.

    2016-09-01

    Roll-to-roll (R2R) ultraviolet (UV) curable embossing replication process is a highly accurate and cost effective way to replicate large quantities of thin film polymer parts. These structures can be used for microfluidics, LED-optics, light guides, displays, cameras, diffusers, decorative, laser sensing and measuring devices. In the R2R UV-process, plastic thin film coated with UV-curable lacquer, passes through an imprinting embossing drum and is then hardened by an UV-lamp. One key element for mastering this process is the ability to manufacture a rotating drum containing micro- and nanostructures. Depending on the pattern shapes, the drum can be directly machined by diamond machining or it can be done through wafer level lithographical process. Due to the shrinkage of UV-curable lacquer, the R2R drum pattern process needs to be prototyped few times, in order to get the desired performance and shape from the R2R produced part. To speed up the prototyping and overall process we have developed a combination process where planar diamond machining patterns are being turned into a drum roller. Initially diamond machined patterns from a planar surface are replicated on a polymer sheet using UV-replication. Secondly, a nickel stamper shim is grown form the polymer sheet and at the end the stamper is turned into a roller and used in the R2R process. This process allows various micro milled, turned, grooved and ruled structures to be made at thin film products through the R2R process. In this paper, the process flow and examples of fabricating R2R embossed UVcurable thin film micro- and nanostructures from planar diamond machined patterns, is reported.

  2. [Present-day metal-cutting tools and working conditions].

    PubMed

    Kondratiuk, V P

    1990-01-01

    Polyfunctional machine-tools of a processing centre type are characterized by a set of hygienic advantages as compared to universal machine-tools. But low degree of mechanization and automation of some auxiliary processes, and constructional defects which decrease the ergonomic characteristics of the tools, involve labour intensity in multi-machine processing. The article specifies techniques of allowable noise level assessment, and proposes hygienic recommendations, some of which have been introduced into practice.

  3. Heat-Assisted Machining for Material Removal Improvement

    NASA Astrophysics Data System (ADS)

    Mohd Hadzley, A. B.; Hafiz, S. Muhammad; Azahar, W.; Izamshah, R.; Mohd Shahir, K.; Abu, A.

    2015-09-01

    Heat assisted machining (HAM) is a process where an intense heat source is used to locally soften the workpiece material before machined by high speed cutting tool. In this paper, an HAM machine is developed by modification of small CNC machine with the addition of special jig to hold the heat sources in front of the machine spindle. Preliminary experiment to evaluate the capability of HAM machine to produce groove formation for slotting process was conducted. A block AISI D2 tool steel with100mm (width) × 100mm (length) × 20mm (height) size has been cut by plasma heating with different setting of arc current, feed rate and air pressure. Their effect has been analyzed based on distance of cut (DOC).Experimental results demonstrated the most significant factor that contributed to the DOC is arc current, followed by the feed rate and air pressure. HAM improves the slotting process of AISI D2 by increasing distance of cut due to initial cutting groove that formed during thermal melting and pressurized air from the heat source.

  4. Comparison of three different wastewater sludge and their respective drying processes: Solar, thermal and reed beds - Impact on organic matter characteristics.

    PubMed

    Collard, Marie; Teychené, Benoit; Lemée, Laurent

    2017-12-01

    Drying process aims at minimising the volume of wastewater sludge (WWS) before disposal, however it can impact sludge characteristics. Due to its high content in organic matter (OM) and lipids, sludge are mainly valorised by land farming but can also be considered as a feedstock for biodiesel production. As sludge composition is a major parameter for the choice of disposal techniques, the objective of this study was to determine the influence of the drying process. To reach this goal, three sludges obtained from solar, reed beds and thermal drying processes were investigated at the global and molecular scales. Before the drying step the sludges presented similar physico-chemical (OM content, elemental analysis, pH, infrared spectra) characteristics and lipid contents. A strong influence of the drying process on lipids and humic-like substances contents was observed through OM fractionation. Thermochemolysis-GCMS of raw sludge and lipids revealed similar molecular content mainly constituted with steroids and fatty acids. Molecular changes were noticeable for thermal drying through differences in branched to linear fatty acids ratio. Finally the thermal drying induced a weakening of OM whereas the solar drying led to a complexification. These findings show that smooth drying processes such as solar or reed-beds are preferable for amendment production whereas thermal process leads to pellets with a high lipid content which could be considered for fuel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Powder treatment process

    DOEpatents

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  6. Powder treatment process

    DOEpatents

    Weyand, John D.

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  7. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    NASA Astrophysics Data System (ADS)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  8. Spray-drying nanocapsules in presence of colloidal silica as drying auxiliary agent: formulation and process variables optimization using experimental designs.

    PubMed

    Tewa-Tagne, Patrice; Degobert, Ghania; Briançon, Stéphanie; Bordes, Claire; Gauvrit, Jean-Yves; Lanteri, Pierre; Fessi, Hatem

    2007-04-01

    Spray-drying process was used for the development of dried polymeric nanocapsules. The purpose of this research was to investigate the effects of formulation and process variables on the resulting powder characteristics in order to optimize them. Experimental designs were used in order to estimate the influence of formulation parameters (nanocapsules and silica concentrations) and process variables (inlet temperature, spray-flow air, feed flow rate and drying air flow rate) on spray-dried nanocapsules when using silica as drying auxiliary agent. The interactions among the formulation parameters and process variables were also studied. Responses analyzed for computing these effects and interactions were outlet temperature, moisture content, operation yield, particles size, and particulate density. Additional qualitative responses (particles morphology, powder behavior) were also considered. Nanocapsules and silica concentrations were the main factors influencing the yield, particulate density and particle size. In addition, they were concerned for the only significant interactions occurring among two different variables. None of the studied variables had major effect on the moisture content while the interaction between nanocapsules and silica in the feed was of first interest and determinant for both the qualitative and quantitative responses. The particles morphology depended on the feed formulation but was unaffected by the process conditions. This study demonstrated that drying nanocapsules using silica as auxiliary agent by spray drying process enables the obtaining of dried micronic particle size. The optimization of the process and the formulation variables resulted in a considerable improvement of product yield while minimizing the moisture content.

  9. Tribological investigation of oriented HDPE.

    PubMed

    Hoseini, Mohammed; Lausmaa, Jukka; Boldizar, Antal

    2002-09-15

    The possibility to control the wear properties of high-density polyethylene (HDPE) material at an early processing stage is explored. Wear measurements of cold roll-drawn HDPE with two different draw ratios were carried out for three sliding planes, each in two directions. The dependence of the wear properties on the degree and direction of orientation was investigated. The experiments were performed in a pin-on-disc machine in a dry environment. The tribo-couple consisted of HDPE plates versus a standardised diamond coated steel disc. The results show that the wear resistance of cold roll-drawn HDPE differ widely, by a factor up to 6, depending on the sliding direction relative to the drawing direction. The material has a significantly better wear resistance when the sliding direction was perpendicular to the processing direction. The best wear resistance was in the end plane and it was improved by a factor up to 3.6 when the draw ratio was increased from 2 to 4. These results indicate that molecular orientation by polymer processing is a promising method to improve the wear properties and decrease the wear debris production of HDPE. Copyright 2002 Wiley Periodicals, Inc.

  10. Mapping rice ecosystem dynamics and greenhouse gas emissions using multiscale imagery and biogeochemical models

    NASA Astrophysics Data System (ADS)

    Salas, W.; Torbick, N.

    2017-12-01

    Rice greenhouse gas (GHG) emissions in production hot spots have been mapped using multiscale satellite imagery and a processed-based biogeochemical model. The multiscale Synthetic Aperture Radar (SAR) and optical imagery were co-processed and fed into a machine leanring framework to map paddy attributes that are tuned using field observations and surveys. Geospatial maps of rice extent, crop calendar, hydroperiod, and cropping intensity were then used to parameterize the DeNitrification-DeComposition (DNDC) model to estimate emissions. Results, in the Red River Detla for example, show total methane emissions at 345.4 million kgCH4-C equivalent to 11.5 million tonnes CO2e (carbon dioxide equivalent). We further assessed the role of Alternative Wetting and Drying and the impact on GHG and yield across production hot spots with uncertainty estimates. The approach described in this research provides a framework for using SAR to derive maps of rice and landscape characteristics to drive process models like DNDC. These types of tools and approaches will support the next generation of Monitoring, Reporting, and Verification (MRV) to combat climate change and support ecosystem service markets.

  11. Dehydration of Traditional Dried Instant Noodle (Mee Siput) Using Controlled Temperature & Humidity Dryer

    NASA Astrophysics Data System (ADS)

    Mamat, K. A.; Yusof, M. S.; Yusoff, Wan Fauziah Wan; Zulafif Rahim, M.; Hassan, S.; Rahman, M. Qusyairi. A.; Karim, M. A. Abd

    2017-05-01

    Drying process is an essential step to produce instant noodles. Yet, the industries especially Small and Medium Enterprises (SMEs), is seeking for an efficient method to dry the noodles. This paper discusses the performance of an invented drying system which employed heating and humidifying process. The drying system was tested using 30 kilogram of the raw noodle known as “Mee Siput”. Temperature controlled system were used in the study to control the temperature of the drying process and prevent the dried noodles from damage by maintaining the temperature of lower than 80°C. The analysis shows that the system was drastically decreased the humidity from 80% to 40% just after 200 minutes of the drying process. The complete dehydration time of noodle has also decreased to only 4 hours from 16 hours when using traditional drying system without sacrificed the good quality of the dried noodle. In overall, the invented system believed to increase the production capacity of the noodle, reduce cost of production which would highly beneficial for Small Medium Industries (SMEs) in Malaysia.

  12. Single bus star connected reluctance drive and method

    DOEpatents

    Fahimi, Babak; Shamsi, Pourya

    2016-05-10

    A system and methods for operating a switched reluctance machine includes a controller, an inverter connected to the controller and to the switched reluctance machine, a hysteresis control connected to the controller and to the inverter, a set of sensors connected to the switched reluctance machine and to the controller, the switched reluctance machine further including a set of phases the controller further comprising a processor and a memory connected to the processor, wherein the processor programmed to execute a control process and a generation process.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, Robert; McConnell, Elizabeth

    Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes.more » Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.« less

  14. Process simulation of modified dry grind ethanol plant with recycle of pretreated and enzymatically hydrolyzed distillers' grains.

    PubMed

    Kim, Youngmi; Mosier, Nathan; Ladisch, Michael R

    2008-08-01

    Distillers' grains (DG), a co-product of a dry grind ethanol process, is an excellent source of supplemental proteins in livestock feed. Studies have shown that, due to its high polymeric sugar contents and ease of hydrolysis, the distillers' grains have potential as an additional source of fermentable sugars for ethanol fermentation. The benefit of processing the distillers' grains to extract fermentable sugars lies in an increased ethanol yield without significant modification in the current dry grind technology. Three different potential configurations of process alternatives in which pretreated and hydrolyzed distillers' grains are recycled for an enhanced overall ethanol yield are proposed and discussed in this paper based on the liquid hot water (LHW) pretreatment of distillers' grains. Possible limitations of each proposed process are also discussed. This paper presents a compositional analysis of distillers' grains, as well as a simulation of the modified dry grind processes with recycle of distillers' grains. Simulated material balances for the modified dry grind processes are established based on the base case assumptions. These balances are compared to the conventional dry grind process in terms of ethanol yield, compositions of its co-products, and accumulation of fermentation inhibitors. Results show that 14% higher ethanol yield is achievable by processing and hydrolyzing the distillers' grains for additional fermentable sugars, as compared to the conventional dry grind process. Accumulation of fermentation by-products and inhibitory components in the proposed process is predicted to be 2-5 times higher than in the conventional dry grind process. The impact of fermentation inhibitors is reviewed and discussed. The final eDDGS (enhanced dried distillers' grains) from the modified processes has 30-40% greater protein content per mass than DDGS, and its potential as a value-added process is also analyzed. While the case studies used to illustrate the process simulation are based on LHW pretreated DG, the process simulation itself provides a framework for evaluation of the impact of other pretreatments.

  15. [Effect of gas-turbine green discoloring and drying processing methods on herbal quality of tetraploid Lonicerae Japonicae Flos].

    PubMed

    Hu, Xuan; Li, Wei-dong; Li, Ou; Hao, Jiang-bo; Liu, Jia-kun

    2012-09-01

    To study the effect of gas-turbine green discoloring and drying processing method on the quality of various Lonicerae Japonicae Flos herbs. DIKMA DiamonsilTM-C18 column (4.6 mm x 250 mm, 5 microm) was adopted using HPLC Waters 1525 and eluted with acetonitrile and 0.1% phosphate acid as the mobile phase. The flow rate was 1.0 mL x min(-1) , the column temperature was 25 degrees C the detection wavelength was 355 nm. After being processed by the gas-turbine green discoloring and drying method, tetraploid Lonicerae Japonicae Flos showed a green color. The contents of chlorogenic acid and galuteolin were 5.31% and 0.105% , both significantly higher by 18.0% and 32.1% than those of diploid Lonicerae Japonicae Flos processed by the same method. The content of chlorogenic acid in tetraploid Lonicerae Japonicae Flos processed the gas-turbine green discoloring and drying method were also remarkably higher than that of tetraploid and diploid Lonicerae Japonicae Flos processed by traditional processing method of natural drying. The gas-turbine green discoloring and drying processing method is a new-type drying method suitable for tetraploid Lonicerae Japonicae Flos. Under the condition of gas-turbine green discoloring and drying processing, tetraploid Lonicerae Japonicae Flos shows much higher quality than Lonicerae Japonicae Flos, suggesting that it is a good variety worth popularizing and applying.

  16. Evaluating energy efficient strategies and product quality for distillers' dried grains with solubles (DDGS) in dry-grind ethanol plants

    NASA Astrophysics Data System (ADS)

    Lan, Tian

    The drying of distillers dried grains with solubles (DDGS), a coproduct of dry-grind corn processing to ethanol utilizes about 30% of the total energy required for the production of a liter of fuel ethanol. Therefore, improving DDGS drying energy efficiency could have significant impact on the economics of the dry-grind corn-to-ethanol process. Drying process improvements must take account into the effects of various drying strategies on the final quality of DDGS which is primarily utilized as a feed ingredient. Previous studies in the literature have shown that physical and chemical properties of DDGS vary according to the ratio of the two primarily feed streams, wet distillers grains (WDG) and condensed distillers solubles (CDS) which make up DDGS. Extensive research using plant-scale and bench-scale experiments have been conducted on the effect of process variables (ratios of WDG, CDS and DDGS add-back) during drying on the physical and chemical properties of DDGS. However, these investigations did not correlate the product characteristics data to drying efficiency. Additionally, it cannot be clearly determined from the literature on DDGS drying that processes used in the industry are optimized for both product quality and energy efficiency. A bench-scale rotary drum dryer heated by an electrically powered heat gun was used to investigate the effects of WDG, CDS and add-back ratios on both energy efficiency, drying performance and DDGS physical and chemical properties. A two stage drying process with the bench-scale rotary dryer was used to simulate the drying of DDGS using ICM (ICM, Inc., Colwich, KS) dry-grind process technology for DDGS drying which uses two rotary drum dryers in series. Effects of drying process variables, CDS content (0, 10, 20 and 40% by mass) and percent DDGS add-back (0, 20, 40 and 60% by mass) on energy performance and product quality were determined. Sixteen different drying strategies based on drying process variable ratios were tested and the response variables were measured which included energy performance (specific power consumption, energy efficiency, drying efficiency, drying rate), physical properties [particle size distribution (PSD), geometric mean particle size (dwg), bulk density, tapped bulk density, true density, color, compressibility index (CI), Hausner ratio (HR)], and chemical properties [acid detergent fiber (ADF), neutral detergent fiber (NDF), oil, crude protein, starch, ash, etc]. The results of the bench-scale study were also compared with data from a previous plant-scale DDGS production process investigation that used similar drying strategies. Results from the experiments indicated that among all 16 drying strategies, the 10% CDS content and 60% DDGS add-back strategy achieved the least specific power consumption (SPC) while the 40% CDS content and 20% DDGS add-back strategy had the highest SPC. The energy efficiency and drying efficiency of the bench-scale data in both drying stage I and drying stage II presented similar trends as process parameters changed. The highest energy and drying efficiencies were achieved in strategies with 10% CDS content while the lowest were in strategies with 40% CDS content. A comparison of the energy and drying efficiencies for the bench-scale strategies conducted in this study with those of similar plant-scale strategies from a previous study showed a similar trend in the data for drying stage 1, even though the actual numbers were quite different for the two experimental scales. On average, the energy and drying efficiencies for the bench-scale study was 40% less than the corresponding plant-scale strategy. CDS content had the most influence on the energy performance during DDGS drying, while percent DDGS add-back had more impact on the SPC given a constant CDS content level. By comparing both the physical properties, bulk density in particular which relates to logistics, and energy performance data, the drying strategy with 20% CDS and 60% add-back performed the best. Therefore, it is not surprising why this is the strategy used by ICM drying process technology for DDGS. The particle size (dwg) and particle size distribution (PSD) of DDGS varied with the drying strategies; by varying CDS content and percent DDGS add-back. It was determined that the percent DDGS add-back had no effect on either PSD or dgw. Under the same drying strategy, drying stage I always had a higher drying rate than stage II. Also, the drying curves under the same CDS content showed similar shapes. As CDS content increased, the color of DDGS became darker; both DDGS bulk density and tapped bulk density increased. In addition, CI and HR values decreased, ADF and NDF contents decreased and oil and ash contents increased with increased CDS content. Changes in percent DDGS add-back had a negligible effect on the DDGS chemical composition. Overall, the physical and chemical composition analysis of DDGS for both bench-scale and plant-scale studies followed similar trends.

  17. Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M. A.; Hirshfield, J. L.; Department of Physics, Yale University, P.O. Box 208124, New Haven, Connecticut 06520-8124

    1999-06-10

    Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96%. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications.« less

  18. Shock Compression of Simulated Adobe

    NASA Astrophysics Data System (ADS)

    Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.

    2015-06-01

    A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us = 2.26up + 0.33) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement. The research was funded by DSTL through a WSTC contract.

  19. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images

    PubMed Central

    Srinivasan, Pratul P.; Kim, Leo A.; Mettu, Priyatham S.; Cousins, Scott W.; Comer, Grant M.; Izatt, Joseph A.; Farsiu, Sina

    2014-01-01

    We present a novel fully automated algorithm for the detection of retinal diseases via optical coherence tomography (OCT) imaging. Our algorithm utilizes multiscale histograms of oriented gradient descriptors as feature vectors of a support vector machine based classifier. The spectral domain OCT data sets used for cross-validation consisted of volumetric scans acquired from 45 subjects: 15 normal subjects, 15 patients with dry age-related macular degeneration (AMD), and 15 patients with diabetic macular edema (DME). Our classifier correctly identified 100% of cases with AMD, 100% cases with DME, and 86.67% cases of normal subjects. This algorithm is a potentially impactful tool for the remote diagnosis of ophthalmic diseases. PMID:25360373

  20. Influence of ripeness and drying process on the polyphenols and tocopherols of Pistacia vera L.

    PubMed

    Ballistreri, Gabriele; Arena, Elena; Fallico, Biagio

    2009-10-30

    This paper highlights, for the first time, the changes in the phenolics fraction (anthocyanins, flavonoids and stilbenes) and tocopherols of unpeeled Pistacia vera L. var. bianca with ripening, and the effect of the sun-drying process. The total polyphenol levels in pistachios, measured as mg of Gallic Acid Equivalent (GAE), were: 201 +/- 10.1, 349 +/- 18.3 and 184.7 +/- 6.2 mg GAE/100 g DM in unripe, ripe and dried ripe samples, respectively. Most phenolics in ripe pistachios were found to be anthocyanins. They increased with ripening, while the sun drying process caused a susbtantial loss. Flavonoids found in all pistachio samples were daidzein, genistein, daidzin, quercetin, eriodictyol, luteolin, genistin and naringenin, which decreased both with ripening and drying. Before the drying process both unripe and ripe pistachios showed a higher content of trans-resveratrol than dried ripe samples. gamma-Tocopherol was the major vitamin E isomer found in pistachios. The total content (of alpha- and gamma-tocopherols) decreased, both during ripening and during the drying process. These results suggested that unpeeled pistachios can be considered an important source of phenolics, particularly of anthocyanins. Moreover, in order to preserve these healthy characteristics, new and more efficient drying processes should be adopted.

  1. Effect of drying process assisted by high-pressure impregnation on protein quality and digestibility in red abalone (Haliotis rufescens).

    PubMed

    Cepero-Betancourt, Yamira; Oliva-Moresco, Patricio; Pasten-Contreras, Alexis; Tabilo-Munizaga, Gipsy; Pérez-Won, Mario; Moreno-Osorio, Luis; Lemus-Mondaca, Roberto

    2017-10-01

    Abalone (Haliotis spp.) is an exotic seafood product recognized as a protein source of high biological value. Traditional methods used to preserve foods such as drying technology can affect their nutritional quality (protein quality and digestibility). A 28-day rat feeding study was conducted to evaluate the effects of the drying process assisted by high-pressure impregnation (HPI) (350, 450, and 500 MPa × 5 min) on chemical proximate and amino acid compositions and nutritional parameters, such as protein efficiency ratio (PER), true digestibility (TD), net protein ratio, and protein digestibility corrected amino acid score (PDCAAS) of dried abalone. The HPI-assisted drying process ensured excellent protein quality based on PER values, regardless of the pressure level. At 350 and 500 MPa, the HPI-assisted drying process had no negative effect on TD and PDCAAS then, based on nutritional parameters analysed, we recommend HPI-assisted drying process at 350 MPa × 5 min as the best process condition to dry abalone. Variations in nutritional parameters compared to casein protein were observed; nevertheless, the high protein quality and digestibility of HPI-assisted dried abalones were maintained to satisfy the metabolic demands of human beings.

  2. [Analysis of variation of monoterpene glycosides and polyhydroxy compounds in paeoniae radix alba during preliminary processing].

    PubMed

    Xu, Yuan; Liu, Pei; Yan, Hui; Qian, Da-Wei; Duan, Jin-Ao

    2014-05-01

    To investigate variation of monoterpene glycosides and polyhydroxy compounds in Paeoniae Radix Alba dried by different processing methods. The crude drugs were processed sequentially as washed, removed the head, tail, fine roots and dried. The samples were divided into eight groups by whether peeled and decocted or not. Each group was dried by 35, 45, 60, 80,100, 120 degrees C, sun-dried and shade-dried. HPLC-PDA method was adopted to determine the content of monoterpene glycosides compounds (paeoniflorin alibiflorin, oxypaeoniflorin and benzoylpaeoniflorin), polyhydroxy compounds (catechin and gallic acid) and benzoic acid. Chromatographic conditions: Phecad C18 column (250 mm x 4.6 mm, 5 microm). A principal component analysis (PCA) method was used subsequently to get data processed. The retained content of seven constituents decreased in those peeled crude drug, and after cooked, monoterpene glycosides and polyhydroxy compounds increased while the benzoic acid decreased. It was believed that rele- vant enzymes were inactivated while being cooked so that drying temperature showed little influence on the biotransformation. Contents of effective ingredients in Paeoniae Radix Alba are influenced by drying processing. The preferable method shows to be that crude drug should be cooked before being peeled and dried. As a matter of processing convtence, it is suggested to be peeled and sliced before being dried.

  3. Biomachining - A new approach for micromachining of metals

    NASA Astrophysics Data System (ADS)

    Vigneshwaran, S. C. Sakthi; Ramakrishnan, R.; Arun Prakash, C.; Sashank, C.

    2018-04-01

    Machining is the process of removal of material from workpiece. Machining can be done by physical, chemical or biological methods. Though physical and chemical methods have been widely used in machining process, they have their own disadvantages such as development of heat affected zone and usage of hazardous chemicals. Biomachining is the machining process in which bacteria is used to remove material from the metal parts. Chemolithotrophic bacteria such as Acidothiobacillus ferroxidans has been used in biomachining of metals like copper, iron etc. These bacteria are used because of their property of catalyzing the oxidation of inorganic substances. Biomachining is a suitable process for micromachining of metals. This paper reviews the biomachining process and various mechanisms involved in biomachining. This paper also briefs about various parameters/factors to be considered in biomachining and also the effect of those parameters on metal removal rate.

  4. A small-angle x-ray scattering system with a vertical layout.

    PubMed

    Wang, Zhen; Chen, Xiaowei; Meng, Lingpu; Cui, Kunpeng; Wu, Lihui; Li, Liangbin

    2014-12-01

    A small-angle x-ray scattering (SAXS) system with a vertical layout (V-SAXS) has been designed and constructed for in situ detection on nanostructures, which is well suitable for in situ study on self-assembly of nanoparticles at liquid interface and polymer processing. A steel-tower frame on a reinforced basement is built as the supporting skeleton for scattering beam path and detector platform, ensuring the system a high working stability and a high operating accuracy. A micro-focus x-ray source combining parabolic three-dimensional multi-layer mirror and scatteringless collimation system provides a highly parallel beam, which allows us to detect the very small angle range. With a sample-to-detector distance of 7 m, the largest measurable length scale is 420 nm in real space. With a large sample zone, it is possible to install different experimental setups such as film stretching machine, which makes the system perfect to follow the microstructures evolution of materials during processing. The capability of the V-SAXS on in situ study is tested with a drying experiment of a free latex droplet, which confirms our initial design.

  5. Multi-methodological investigation of the variability of the microstructure of HPMC hard capsules.

    PubMed

    Faulhammer, E; Kovalcik, A; Wahl, V; Markl, D; Stelzer, F; Lawrence, S; Khinast, J G; Paudel, A

    2016-09-25

    The objective of this study was to analyze differences in the subtle microstructure of three different grades of HMPC hard capsule shells using mechanical, spectroscopic, microscopic and tomographic approaches. Dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), vibrational spectroscopic, X-Ray scattering techniques as well as environmental scanning electron microscopy (ESEM) and optical coherence tomography (OCT) were used. Two HPMC capsules manufactured via chemical gelling, one capsule shell manufactured via thermal gelling and one thermally gelled transparent capsule were included. Characteristic micro-structural alterations (associated manufacturing processes) such as mechanical and physical properties relevant to capsule performance and processability were thoroughly elucidated with the integration of data obtained from multi-methodological investigations. The physico-chemical and physico-mechanical data obtained from a gamut of techniques implied that thermally gelled HPMC hard capsule shells could offer an advantage in terms of machinability during capsule filling, owing to their superior micro- and macroscopic structure as well as specifically the mechanical stability under dry or humid conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Processing and Testing of Thermoplastic Composite Cylindrical Shells Fabricated by Automated Fiber Placement

    NASA Technical Reports Server (NTRS)

    Hulcher, Anthony Bruce; McGowan, David M.; Grimsley, Brian W.; Johnston, Norman J.; Gordon, Gail H. (Technical Monitor)

    2001-01-01

    Two 61-cm-diameter eight-ply quasi-isotropic IM7/PEEK cylindrical shells were fabricated by automated fiber placement the NASA Langley Research Center using only infrared radiant heat to preheat the substrate and incoming composite uni-tape. The shells were characterized by ultrasonic c-scans for overall consolidation quality, and by optical microscopy and acid digestion for void content. Compression tests were also performed. Although the material used in the study was of generally poor quality due to numerous splits and dry fiber regions, the process was able to achieve a net reduction in void content in the as-placed component. Microscopy of the composite shells revealed well-consolidated, void-free interfaces. The two cylinders were then tested in uni-axial compression in a 1334 kN-capacity hydraulic test machine until buckling occurred. A geometrically nonlinear finite element analysis was conducted, and the differences between the predicted and measured values were 18.0 and 25.8%, respectively. Inclusion of measured imperfections of the cylinder into the analysis is expected to reduce these differences.

  7. A comprehensive review of thin-layer drying models used in agricultural products.

    PubMed

    Ertekin, Can; Firat, M Ziya

    2017-03-04

    Drying is one of the widely used methods of grain, fruit, and vegetable preservation. The important aim of drying is to reduce the moisture content and thereby increase the lifetime of products by limiting enzymatic and oxidative degradation. In addition, by reducing the amount of water, drying reduces the crop losses, improves the quality of dried products, and facilitates its transportation, handling, and storage requirements. Drying is a process comprising simultaneous heat and mass transfer within the material, and between the surface of the material and the surrounding media. Many models have been used to describe the drying process for different agricultural products. These models are used to estimate drying time of several products under different drying conditions, and how to increase the drying process efficiency and also to generalize drying curves, for the design and operation of dryers. Several investigators have proposed numerous mathematical models for thin-layer drying of many agricultural products. This study gives a comprehensive review of more than 100 different semitheoretical and empirical thin-layer drying models used in agricultural products and evaluates the statistical criteria for the determination of appropriate model.

  8. Single droplet drying step characterization in microsphere preparation.

    PubMed

    Al Zaitone, Belal; Lamprecht, Alf

    2013-05-01

    Spray drying processes are difficult to characterize since process parameters are not directly accessible. Acoustic levitation was used to investigate microencapsulation by spray drying on one single droplet facilitating the analyses of droplet behavior upon drying. Process parameters were simulated on a poly(lactide-co-glycolide)/ethyl acetate combination for microencapsulation. The results allowed quantifying the influence of process parameters such as temperature (0-40°C), polymer concentration (5-400 mg/ml), and droplet size (0.5-1.37 μl) on the drying time and drying kinetics as well as the particle morphology. The drying of polymer solutions at temperature of 21°C and concentration of 5 mg/ml, shows that the dimensionless particle diameter (Dp/D0) approaches 0.25 and the particle needs 350 s to dry. At 400 mg/ml, Dp/D0=0.8 and the drying time increases to one order of magnitude and a hollow particle is formed. The study demonstrates the benefit of using the acoustic levitator as a lab scale method to characterize and study the microparticle formation. This method can be considered as a helpful tool to mimic the full scale spray drying process by providing identical operational parameters such as air velocity, temperature, and variable droplet sizes. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Automated Composites Processing Technology: Film Module

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce

    2004-01-01

    NASA's Marshall Space Flight Center (MSFC) has developed a technology that combines a film/adhesive laydown module with fiber placement technology to enable the processing of composite prepreg tow/tape and films, foils or adhesives on the same placement machine. The development of this technology grew out of NASA's need for lightweight, permeation-resistant cryogenic propellant tanks. Autoclave processing of high performance composites results in thermally-induced stresses due to differences in the coefficients of thermal expansion of the fiber and matrix resin components. These stresses, together with the reduction in temperature due to cryogen storage, tend to initiate microcracking within the composite tank wall. One way in which to mitigate this problem is to introduce a thin, crack-resistant polymer film or foil into the tank wall. Investigation into methods to automate the processing of thin film or foil materials into composites led to the development of this technology. The concept employs an automated film supply and feed module that may be designed to fit existing fiber placement machines, or may be designed as integral equipment to new machines. This patent-pending technology can be designed such that both film and foil materials may be processed simultaneously, leading to a decrease in part build cycle time. The module may be designed having a compaction device independent of the host machine, or may utilize the host machine's compactor. The film module functions are controlled by a dedicated system independent of the fiber placement machine controls. The film, foil, or adhesive is processed via pre-existing placement machine run programs, further reducing operational expense.

  10. Single product lot-sizing on unrelated parallel machines with non-decreasing processing times

    NASA Astrophysics Data System (ADS)

    Eremeev, A.; Kovalyov, M.; Kuznetsov, P.

    2018-01-01

    We consider a problem in which at least a given quantity of a single product has to be partitioned into lots, and lots have to be assigned to unrelated parallel machines for processing. In one version of the problem, the maximum machine completion time should be minimized, in another version of the problem, the sum of machine completion times is to be minimized. Machine-dependent lower and upper bounds on the lot size are given. The product is either assumed to be continuously divisible or discrete. The processing time of each machine is defined by an increasing function of the lot volume, given as an oracle. Setup times and costs are assumed to be negligibly small, and therefore, they are not considered. We derive optimal polynomial time algorithms for several special cases of the problem. An NP-hard case is shown to admit a fully polynomial time approximation scheme. An application of the problem in energy efficient processors scheduling is considered.

  11. A study on noodle dough rheology and product quality characteristics of fresh and dried noodles as influenced by low glycemic index ingredient.

    PubMed

    Bharath Kumar, S; Prabhasankar, P

    2015-03-01

    Low Glycemic Index (LGI) foods help to maintain blood glucose level in diabetic individuals. Pea flour (PF) is known to be one of LGI ingredients used in the food industry. To assess the influence of PF in noodle processing, thermally processed pea flour was incorporated at 20 % and 40 % in the preparation of noodles using Lab scale Noodle Making Machine. Evaluation for Physico-chemical, rheological and noodle making characteristics, in vitro starch digestibility (IVSD) and microstructure of noodles were carried out. Cooking quality did not show any significant difference among the samples, with solid leach out ranging from 6.7 to 7.2 % against control (6.5 %). Colour measurement showed the presence of greenish colour in PF incorporated samples. Texture was firmer in fresh noodles (FN) (5.52 Newton (N), 6.00 N) and dried noodles (DN) (7.60 N, 7.86 N) compared to control (4.38 N-FN, 6.88 N-DN). Sensory analysis of noodles revealed that the samples (FN, DN) were acceptable at 20 % and 40 % levels with overall quality score (>8.5). In vitro analysis revealed that with increase in PF content there was a significant decrease in the availability of glucose in DN followed by FN compared to control. Overall RDS was reduced and SDS was increased in 40 % PF incorporated FN. Scanning-electron microscopy revealed the presence of fiber matrix around the starch granules.

  12. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM).

    PubMed

    Šumić, Zdravko; Vakula, Anita; Tepić, Aleksandra; Čakarević, Jelena; Vitas, Jasmina; Pavlić, Branimir

    2016-07-15

    Fresh red currants were dried by vacuum drying process under different drying conditions. Box-Behnken experimental design with response surface methodology was used for optimization of drying process in terms of physical (moisture content, water activity, total color change, firmness and rehydratation power) and chemical (total phenols, total flavonoids, monomeric anthocyanins and ascorbic acid content and antioxidant activity) properties of dried samples. Temperature (48-78 °C), pressure (30-330 mbar) and drying time (8-16 h) were investigated as independent variables. Experimental results were fitted to a second-order polynomial model where regression analysis and analysis of variance were used to determine model fitness and optimal drying conditions. The optimal conditions of simultaneously optimized responses were temperature of 70.2 °C, pressure of 39 mbar and drying time of 8 h. It could be concluded that vacuum drying provides samples with good physico-chemical properties, similar to lyophilized sample and better than conventionally dried sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effects of drying processes on starch-related physicochemical properties, bioactive components and antioxidant properties of yam flours.

    PubMed

    Chen, Xuetao; Li, Xia; Mao, Xinhui; Huang, Hanhan; Wang, Tingting; Qu, Zhuo; Miao, Jing; Gao, Wenyuan

    2017-06-01

    The effects of five different drying processes, air drying (AD), sulphur fumigation drying (SFD), hot air drying (HAD), freeze drying (FD) and microwave drying (MWD) for yams in terms of starch-related properties and antioxidant activity were studied. From the results of scanning electron microscopy (SEM), polarized optical microscopy (POM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR), the MWD sample was found to contain gelatinized starch granules. The FD yam had more slow digestible (SDS) and resistant starches (RS) compared with those processed with other modern drying methods. The bioactive components and the reducing power of the dried yams, were lower than those of fresh yam. When five dried samples were compared by principal component analysis, the HAD and SFD samples were observed to have the highest comprehensive principal component values. Based on our results, HAD would be a better method for yam drying than the more traditional SFD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Influence of the Regime of Electropulsing-Assisted Machining on the Plastic Deformation of the Layer Being Cut.

    PubMed

    Hameed, Saqib; González Rojas, Hernán A; Perat Benavides, José I; Nápoles Alberro, Amelia; Sánchez Egea, Antonio J

    2018-05-25

    In this article, the influence of electropulsing on the machinability of steel S235 and aluminium 6060 has been studied during conventional and electropulsing-assisted turning processes. The machinability indices such as chip compression ratio ξ , shear plane angle ϕ and specific cutting energy (SCE) are investigated by using different cutting parameters such as cutting speed, cutting feed and depth of cut during electrically-assisted turning process. The results and analysis of this work indicated that the electrically-assisted turning process improves the machinability of steel S235, whereas the machinability of aluminium 6060 gets worse. Finally, due to electropluses (EPs), the chip compression ratio ξ increases with the increase in cutting speed during turning of aluminium 6060 and the SCE decreases during turning of steel S235.

  15. Evaporator fouling tendencies of thin stillage and concentrates from the dry grind process

    USDA-ARS?s Scientific Manuscript database

    In the US, more than 200 maize processing plants use multiple effect evaporators to remove water from thin stillage and steepwater during dry grind and wet milling processes, respectively. During the dry grind process, unfermentables are centrifuged and the liquid fraction, thin stillage, is concen...

  16. Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.

    1983-01-01

    The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.

  17. Determination of end point of primary drying in freeze-drying process control.

    PubMed

    Patel, Sajal M; Doen, Takayuki; Pikal, Michael J

    2010-03-01

    Freeze-drying is a relatively expensive process requiring long processing time, and hence one of the key objectives during freeze-drying process development is to minimize the primary drying time, which is the longest of the three steps in freeze-drying. However, increasing the shelf temperature into secondary drying before all of the ice is removed from the product will likely cause collapse or eutectic melt. Thus, from product quality as well as process economics standpoint, it is very critical to detect the end of primary drying. Experiments were conducted with 5% mannitol and 5% sucrose as model systems. The apparent end point of primary drying was determined by comparative pressure measurement (i.e., Pirani vs. MKS Baratron), dew point, Lyotrack (gas plasma spectroscopy), water concentration from tunable diode laser absorption spectroscopy, condenser pressure, pressure rise test (manometric temperature measurement or variations of this method), and product thermocouples. Vials were pulled out from the drying chamber using a sample thief during late primary and early secondary drying to determine percent residual moisture either gravimetrically or by Karl Fischer, and the cake structure was determined visually for melt-back, collapse, and retention of cake structure at the apparent end point of primary drying (i.e., onset, midpoint, and offset). By far, the Pirani is the best choice of the methods tested for evaluation of the end point of primary drying. Also, it is a batch technique, which is cheap, steam sterilizable, and easy to install without requiring any modification to the existing dryer.

  18. A system framework of inter-enterprise machining quality control based on fractal theory

    NASA Astrophysics Data System (ADS)

    Zhao, Liping; Qin, Yongtao; Yao, Yiyong; Yan, Peng

    2014-03-01

    In order to meet the quality control requirement of dynamic and complicated product machining processes among enterprises, a system framework of inter-enterprise machining quality control based on fractal was proposed. In this system framework, the fractal-specific characteristic of inter-enterprise machining quality control function was analysed, and the model of inter-enterprise machining quality control was constructed by the nature of fractal structures. Furthermore, the goal-driven strategy of inter-enterprise quality control and the dynamic organisation strategy of inter-enterprise quality improvement were constructed by the characteristic analysis on this model. In addition, the architecture of inter-enterprise machining quality control based on fractal was established by means of Web service. Finally, a case study for application was presented. The result showed that the proposed method was available, and could provide guidance for quality control and support for product reliability in inter-enterprise machining processes.

  19. Accurate Micro-Tool Manufacturing by Iterative Pulsed-Laser Ablation

    NASA Astrophysics Data System (ADS)

    Warhanek, Maximilian; Mayr, Josef; Dörig, Christian; Wegener, Konrad

    2017-12-01

    Iterative processing solutions, including multiple cycles of material removal and measurement, are capable of achieving higher geometric accuracy by compensating for most deviations manifesting directly on the workpiece. Remaining error sources are the measurement uncertainty and the repeatability of the material-removal process including clamping errors. Due to the lack of processing forces, process fluids and wear, pulsed-laser ablation has proven high repeatability and can be realized directly on a measuring machine. This work takes advantage of this possibility by implementing an iterative, laser-based correction process for profile deviations registered directly on an optical measurement machine. This way efficient iterative processing is enabled, which is precise, applicable for all tool materials including diamond and eliminates clamping errors. The concept is proven by a prototypical implementation on an industrial tool measurement machine and a nanosecond fibre laser. A number of measurements are performed on both the machine and the processed workpieces. Results show production deviations within 2 μm diameter tolerance.

  20. Key composition optimization of meat processed protein source by vacuum freeze-drying technology.

    PubMed

    Ma, Yan; Wu, Xingzhuang; Zhang, Qi; Giovanni, Vigna; Meng, Xianjun

    2018-05-01

    Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined.

  1. Assessing the effects of different dielectrics on environmentally conscious powder-mixed EDM of difficult-to-machine material (WC-Co)

    NASA Astrophysics Data System (ADS)

    Singh, Jagdeep; Sharma, Rajiv Kumar

    2016-12-01

    Electrical discharge machining (EDM) is a well-known nontraditional manufacturing process to machine the difficult-to-machine (DTM) materials which have unique hardness properties. Researchers have successfully performed hybridization to improve this process by incorporating powders into the EDM process known as powder-mixed EDM process. This process drastically improves process efficiency by increasing material removal rate, micro-hardness, as well as reducing the tool wear rate and surface roughness. EDM also has some input parameters, including pulse-on time, dielectric levels and its type, current setting, flushing pressure, and so on, which have a significant effect on EDM performance. However, despite their positive influence, investigating the effects of these parameters on environmental conditions is necessary. Most studies demonstrate the use of kerosene oil as dielectric fluid. Nevertheless, in this work, the authors highlight the findings with respect to three different dielectric fluids, including kerosene oil, EDM oil, and distilled water using one-variable-at-a-time approach for machining as well as environmental aspects. The hazard and operability analysis is employed to identify the inherent safety factors associated with powder-mixed EDM of WC-Co.

  2. Study on Electro-polymerization Nano-micro Wiring System Imitating Axonal Growth of Artificial Neurons towards Machine Learning

    NASA Astrophysics Data System (ADS)

    Dang, Nguyen Tuan; Akai-Kasada, Megumi; Asai, Tetsuya; Saito, Akira; Kuwahara, Yuji; Hokkaido University Collaboration

    2015-03-01

    Machine learning using the artificial neuron network research is supposed to be the best way to understand how the human brain trains itself to process information. In this study, we have successfully developed the programs using supervised machine learning algorithm. However, these supervised learning processes for the neuron network required the very strong computing configuration. Derivation from the necessity of increasing in computing ability and in reduction of power consumption, accelerator circuits become critical. To develop such accelerator circuits using supervised machine learning algorithm, conducting polymer micro/nanowires growing process was realized and applied as a synaptic weigh controller. In this work, high conductivity Polypyrrole (PPy) and Poly (3, 4 - ethylenedioxythiophene) PEDOT wires were potentiostatically grown crosslinking the designated electrodes, which were prefabricated by lithography, when appropriate square wave AC voltage and appropriate frequency were applied. Micro/nanowire growing process emulated the neurotransmitter release process of synapses inside a biological neuron and wire's resistance variation during the growing process was preferred to as the variation of synaptic weigh in machine learning algorithm. In a cooperation with Graduate School of Information Science and Technology, Hokkaido University.

  3. Effect of Aging Process and Time on Physicochemical and Sensory Evaluation of Raw Beef Top Round and Shank Muscles Using an Electronic Tongue.

    PubMed

    Kim, Ji-Han; Kim, Dong-Han; Ji, Da-Som; Lee, Hyun-Jin; Yoon, Dong-Kyu; Lee, Chi-Ho

    2017-01-01

    The objective of this study was to determine the effect of aging method (dry or wet) and time (20 d or 40 d) on physical, chemical, and sensory properties of two different muscles (top round and shank) from steers (n=12) using an electronic tongue (ET). Moisture content was not affected by muscle types and aging method ( p >0.05). Shear force of dry aged beef was significantly decreased compared to that of wet aged beef. Most fatty acids of dry aged beef were significantly lower than those of wet aged beef. Dry aged shank muscles had more abundant free amino acids than top round muscles. Dry-aging process enhanced tastes such as umami and saltiness compared to wet-aging process according to ET results. Dry-aging process could enhance the instrumental tenderness and umami taste of beef. In addition, the taste of shank muscle was more affected by dry-aging process than that of round muscle.

  4. Effect of Aging Process and Time on Physicochemical and Sensory Evaluation of Raw Beef Top Round and Shank Muscles Using an Electronic Tongue

    PubMed Central

    2017-01-01

    The objective of this study was to determine the effect of aging method (dry or wet) and time (20 d or 40 d) on physical, chemical, and sensory properties of two different muscles (top round and shank) from steers (n=12) using an electronic tongue (ET). Moisture content was not affected by muscle types and aging method (p>0.05). Shear force of dry aged beef was significantly decreased compared to that of wet aged beef. Most fatty acids of dry aged beef were significantly lower than those of wet aged beef. Dry aged shank muscles had more abundant free amino acids than top round muscles. Dry-aging process enhanced tastes such as umami and saltiness compared to wet-aging process according to ET results. Dry-aging process could enhance the instrumental tenderness and umami taste of beef. In addition, the taste of shank muscle was more affected by dry-aging process than that of round muscle. PMID:29725203

  5. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision

    PubMed Central

    Wu, Dung-Sheng

    2018-01-01

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time. PMID:29565303

  6. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision.

    PubMed

    Ho, Chao-Ching; Wu, Dung-Sheng

    2018-03-22

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  7. AQUAPLEX An Environmentally Aware Model Lunar Settlement

    NASA Astrophysics Data System (ADS)

    Preble, Darel

    2003-01-01

    The construction and operation of a replica Lunar settlement (CELSS), can provide many lessons in in-situ resource utilization, telerobotic operation and reducing the hygiene water demanded by existing models of Lunar operation - a larger settlement may be operated with the same amount of precious water. Hypes and Hall and all other CELSS models found in the literature propose quantities of hygiene water far in excess of what would be needed in actual operation using simple, environmentally aware technologies. By using modern zero water toilets, low water showers, CO2 dry cleaning machines, energy efficient washing machines and other hardware, water use can be slashed. The Space Solar Power Workshop sees great opportunity to advance the prospects for Lunar settlement through involving the environmental community in this fun design exercise.

  8. Application of grey-fuzzy approach in parametric optimization of EDM process in machining of MDN 300 steel

    NASA Astrophysics Data System (ADS)

    Protim Das, Partha; Gupta, P.; Das, S.; Pradhan, B. B.; Chakraborty, S.

    2018-01-01

    Maraging steel (MDN 300) find its application in many industries as it exhibits high hardness which are very difficult to machine material. Electro discharge machining (EDM) is an extensively popular machining process which can be used in machining of such materials. Optimization of response parameters are essential for effective machining of these materials. Past researchers have already used Taguchi for obtaining the optimal responses of EDM process for this material with responses such as material removal rate (MRR), tool wear rate (TWR), relative wear ratio (RWR), and surface roughness (SR) considering discharge current, pulse on time, pulse off time, arc gap, and duty cycle as process parameters. In this paper, grey relation analysis (GRA) with fuzzy logic is applied to this multi objective optimization problem to check the responses by an implementation of the derived parametric setting. It was found that the parametric setting derived by the proposed method results in better a response than those reported by the past researchers. Obtained results are also verified using the technique for order of preference by similarity to ideal solution (TOPSIS). The predicted result also shows that there is a significant improvement in comparison to the results of past researchers.

  9. A Review on Parametric Analysis of Magnetic Abrasive Machining Process

    NASA Astrophysics Data System (ADS)

    Khattri, Krishna; Choudhary, Gulshan; Bhuyan, B. K.; Selokar, Ashish

    2018-03-01

    The magnetic abrasive machining (MAM) process is a highly developed unconventional machining process. It is frequently used in manufacturing industries for nanometer range surface finishing of workpiece with the help of Magnetic abrasive particles (MAPs) and magnetic force applied in the machining zone. It is precise and faster than conventional methods and able to produce defect free finished components. This paper provides a comprehensive review on the recent advancement of MAM process carried out by different researcher till date. The effect of different input parameters such as rotational speed of electromagnet, voltage, magnetic flux density, abrasive particles size and working gap on the performances of Material Removal Rate (MRR) and surface roughness (Ra) have been discussed. On the basis of review, it is observed that the rotational speed of electromagnet, voltage and mesh size of abrasive particles have significant impact on MAM process.

  10. Apparatus and method for fluid analysis

    DOEpatents

    Wilson, Bary W.; Peters, Timothy J.; Shepard, Chester L.; Reeves, James H.

    2004-11-02

    The present invention is an apparatus and method for analyzing a fluid used in a machine or in an industrial process line. The apparatus has at least one meter placed proximate the machine or process line and in contact with the machine or process fluid for measuring at least one parameter related to the fluid. The at least one parameter is a standard laboratory analysis parameter. The at least one meter includes but is not limited to viscometer, element meter, optical meter, particulate meter, and combinations thereof.

  11. FINAL REPORT: Transformational electrode drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claus Daniel, C.; Wixom, M.

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheatingmore » and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.« less

  12. A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine.

    PubMed

    Kanojia, Gaurav; Willems, Geert-Jan; Frijlink, Henderik W; Kersten, Gideon F A; Soema, Peter C; Amorij, Jean-Pierre

    2016-09-25

    Spray dried vaccine formulations might be an alternative to traditional lyophilized vaccines. Compared to lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The current study provides an approach that utilizes Design of Experiments for spray drying process to stabilize whole inactivated influenza virus (WIV) vaccine. The approach included systematically screening and optimizing the spray drying process variables, determining the desired process parameters and predicting product quality parameters. The process parameters inlet air temperature, nozzle gas flow rate and feed flow rate and their effect on WIV vaccine powder characteristics such as particle size, residual moisture content (RMC) and powder yield were investigated. Vaccine powders with a broad range of physical characteristics (RMC 1.2-4.9%, particle size 2.4-8.5μm and powder yield 42-82%) were obtained. WIV showed no significant loss in antigenicity as revealed by hemagglutination test. Furthermore, descriptive models generated by DoE software could be used to determine and select (set) spray drying process parameter. This was used to generate a dried WIV powder with predefined (predicted) characteristics. Moreover, the spray dried vaccine powders retained their antigenic stability even after storage for 3 months at 60°C. The approach used here enabled the generation of a thermostable, antigenic WIV vaccine powder with desired physical characteristics that could be potentially used for pulmonary administration. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. A modified dynamical model of drying process of polymer blend solution coated on a flat substrate

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2008-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication. And for example numerical simulation of the model reproduces a typical thickness profile of the polymer film formed after drying. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of numerical simulations. Then we drove nonlinear equations of drying process from the dynamical model and the fruits were reported. The subject of above studies was limited to solution having one kind of solute though the model could essentially deal with solution having some kinds of solutes. But nowadays discussion of drying process of a solution having some kinds of solutes is needed because drying process of solution having some kinds of solutes appears in many industrial scenes. Polymer blend solution is one instance. And typical resist consists of a few kinds of polymers. Then we introduced a dynamical model of drying process of polymer blend solution coated on a flat substrate and results of numerical simulations of the dynamical model. But above model was the simplest one. In this study, we modify above dynamical model of drying process of polymer blend solution adding effects that some parameters change with time as functions of some variables to it. Then we consider essence of drying process of polymer blend solution through comparison between results of numerical simulations of the modified model and those of the former model.

  14. Soviet Patent Bulletin Processing: A Particular Application of Machine Translation.

    ERIC Educational Resources Information Center

    Bostad, Dale A.

    1985-01-01

    Describes some of the processes involved in the data structure manipulation and machine translation of a specific text form, namely, Soviet patent bulletins. The effort to modify this system in order to do specialized processing and translation is detailed. (Author/SED)

  15. Simulation of the process kinetics and analysis of physicochemical properties in the freeze drying of kale

    NASA Astrophysics Data System (ADS)

    Dziki, Dariusz; Polak, Renata; Rudy, Stanisław; Krzykowski, Andrzej; Gawlik-Dziki, Urszula; Różyło, Renata; Miś, Antoni; Combrzyński, Maciej

    2018-01-01

    Investigations were performed to study the freeze-drying process of kale (Brassica oleracea L. var acephala). The process of freeze-drying was performed at temperatures of 20, 40, and 60°C for whole pieces of leaves and for pulped leaves. The kinetics of the freeze-drying of both kale leaves and kale pulp were best described by the Page model. The increasing freeze-drying temperature from 20 to 60°C induced an approximately two-fold decrease in the drying time. Freeze-drying significantly increased the value of the lightness, delta Chroma, and browning index of kale, and had little influence on the hue angle. The highest increase in the lightness and delta Chroma was observed for whole leaves freeze-dried at 20°C. An increase in the drying temperature brought about a slight decrease in the lightness, delta Chroma and the total colour difference. Pulping decreased the lightness and hue angle, and increased browning index. Freeze-drying engendered a slight decrease in the total phenolics content and antioxidant activity, in comparison to fresh leaves. The temperature of the process and pulping had little influence on the total phenolics content and antioxidant activity of dried kale, but significantly decreased the contents of chlorophyll a and chlorophyll b.

  16. The Improvement of the Closed Bounded Volume (CBV) Evaluation Methods to Compute a Feasible Rough Machining Area Based on Faceted Models

    NASA Astrophysics Data System (ADS)

    Hadi Sutrisno, Himawan; Kiswanto, Gandjar; Istiyanto, Jos

    2017-06-01

    The rough machining is aimed at shaping a workpiece towards to its final form. This process takes up a big proportion of the machining time due to the removal of the bulk material which may affect the total machining time. In certain models, the rough machining has limitations especially on certain surfaces such as turbine blade and impeller. CBV evaluation is one of the concepts which is used to detect of areas admissible in the process of machining. While in the previous research, CBV area detection used a pair of normal vectors, in this research, the writer simplified the process to detect CBV area with a slicing line for each point cloud formed. The simulation resulted in three steps used for this method and they are: 1. Triangulation from CAD design models, 2. Development of CC point from the point cloud, 3. The slicing line method which is used to evaluate each point cloud position (under CBV and outer CBV). The result of this evaluation method can be used as a tool for orientation set-up on each CC point position of feasible areas in rough machining.

  17. The application of machine learning techniques in the clinical drug therapy.

    PubMed

    Meng, Huan-Yu; Jin, Wan-Lin; Yan, Cheng-Kai; Yang, Huan

    2018-05-25

    The development of a novel drug is an extremely complicated process that includes the target identification, design and manufacture, and proper therapy of the novel drug, as well as drug dose selection, drug efficacy evaluation, and adverse drug reaction control. Due to the limited resources, high costs, long duration, and low hit-to-lead ratio in the development of pharmacogenetics and computer technology, machine learning techniques have assisted novel drug development and have gradually received more attention by researchers. According to current research, machine learning techniques are widely applied in the process of the discovery of new drugs and novel drug targets, the decision surrounding proper therapy and drug dose, and the prediction of drug efficacy and adverse drug reactions. In this article, we discussed the history, workflow, and advantages and disadvantages of machine learning techniques in the processes mentioned above. Although the advantages of machine learning techniques are fairly obvious, the application of machine learning techniques is currently limited. With further research, the application of machine techniques in drug development could be much more widespread and could potentially be one of the major methods used in drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Effect of drying conditions on crystallinity of amylose nanoparticles prepared by nanoprecipitation.

    PubMed

    Yan, Xiaoxia; Chang, Yanjiao; Wang, Qian; Fu, Youjia; Zhou, Jiang

    2017-04-01

    In this study, amylose nanoparticles prepared by nanoprecipitation were dried at different conditions. The crystalline structure, crystallinity, re-dispersibility and morphological characteristic of the amylose nanoparticles after drying were investigated. X-ray diffraction analysis revealed that the V-type crystalline structure of the amylose nanoparticles formed in the drying process instead of the precipitation process, and drying condition significantly affects the crystallinity. The temperature cycles drying at 4°C and 40°C considerably increased crystallinity of the amylose nanoparticles, 24h (4/40°C, 12h/12h) drying under 11% relative humidity could give rise to a crystallinity up to 50.05%. The applied drying procedures had no obvious effect on the appearance of the amylose nanoparticles. The Z average-size (d. nm) and polydispersity index (PDI) obtained from dynamic light scattering analysis suggested that the drying processes caused some aggregates, but the dried amylose nanoparticles could be well dispersed in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Simulation of roller compaction with subsequent tableting and characterization of lactose and microcrystalline cellulose.

    PubMed

    Hein, Stephanie; Picker-Freyer, Katharina M; Langridge, John

    2008-01-01

    Tablets are by far the most common solid oral dosage forms, and many drugs need to be granulated before they can be tableted. Increasingly roller compaction is being used as a dry granulation technique; however it is a very time and material intensive method. Thus some mini roller compactors and simulations of the roller compaction process have been developed as a means of studying the technique at small scale. An important factor in the selection of materials for roller compaction is their ability to be recompressed into tablets after the initial roller compaction and milling steps. In this paper the roller compaction process was simulated on the basis of some models by Gereg and Cappola (2002) and Zinchuk et al. (2004). An eccentric tableting machine was used to make compacts from alpha-lactose monohydrate, anhydrous beta-lactose, spray-dried lactose and microcrystalline cellulose at different maximum relative densities (rho rel,max 0.6-0.9). These compacts were milled immediately to granules with a rotary granulator. The properties of the granules were analyzed and compared to the properties of the original powders. These granules and powders were then tableted at different maximum relative densities (rho rel,max 0.75-0.95) and their properties including elastic recovery, crushing force and 3D-model were analyzed. The properties of the tablets made from the granules were compared to the properties of the tablets made from the powders to determine which excipients are most suitable for the roller compaction process. The study showed that anhydrous beta-lactose is the preferred form of lactose for use in roller compaction since compaction did not affect tablet crushing force to a large extent. With the simulation of roller compaction process one is able to find qualified materials for use in roller compaction without the necessity of a great deal of material and time.

  20. A study on the effect of tool electrode thickness on MRR, and TWR in electrical discharge turning process

    NASA Astrophysics Data System (ADS)

    Gohil, Vikas; Puri, YM

    2018-04-01

    Turning by electrical discharge machining (EDM) is an emerging area of research. Generally, wire-EDM is used in EDM turning because it is not concerned with electrode tooling cost. In EDM turning wire electrode leaves cusps on the machined surface because of its small diameters and wire breakage which greatly affect the surface finish of the machined part. Moreover, one of the limitations of the process is low machining speed as compared to constituent processes. In this study, conventional EDM was employed for turning purpose in order to generate free-form cylindrical geometries on difficult-to-cut materials. Therefore, a specially designed turning spindle was mounted on a conventional die-sinking EDM machine to rotate the work piece. A conductive preshaped strip of copper as a forming tool is fed (reciprocate) continuously against the rotating work piece; thus, a mirror image of the tool is formed on the circumference of the work piece. In this way, an axisymmetric work piece can be made with small tools. The developed process is termed as the electrical discharge turning (EDT). In the experiments, the effect of machining parameters, such as pulse-on time, peak current, gap voltage and tool thickness on the MRR, and TWR were investigated and practical machining was carried out by turning of SS-304 stainless steel work piece.

  1. Real-Time Deflection Monitoring for Milling of a Thin-Walled Workpiece by Using PVDF Thin-Film Sensors with a Cantilevered Beam as a Case Study

    PubMed Central

    Luo, Ming; Liu, Dongsheng; Luo, Huan

    2016-01-01

    Thin-walled workpieces, such as aero-engine blisks and casings, are usually made of hard-to-cut materials. The wall thickness is very small and it is easy to deflect during milling process under dynamic cutting forces, leading to inaccurate workpiece dimensions and poor surface integrity. To understand the workpiece deflection behavior in a machining process, a new real-time nonintrusive method for deflection monitoring is presented, and a detailed analysis of workpiece deflection for different machining stages of the whole machining process is discussed. The thin-film polyvinylidene fluoride (PVDF) sensor is attached to the non-machining surface of the workpiece to copy the deflection excited by the dynamic cutting force. The relationship between the input deflection and the output voltage of the monitoring system is calibrated by testing. Monitored workpiece deflection results show that the workpiece experiences obvious vibration during the cutter entering the workpiece stage, and vibration during the machining process can be easily tracked by monitoring the deflection of the workpiece. During the cutter exiting the workpiece stage, the workpiece experiences forced vibration firstly, and free vibration exists until the amplitude reduces to zero after the cutter exits the workpiece. Machining results confirmed the suitability of the deflection monitoring system for machining thin-walled workpieces with the application of PVDF sensors. PMID:27626424

  2. [Effects of different drying methods on processing performance and quality in bulbus of Tulipa edulis].

    PubMed

    Yang, Xiao-hua; Guo, Qiao-sheng; Zhu, Zai-biao; Chen, Jun; Miao, Yuan-yuan; Yang, Ying; Sun, Yuan

    2015-10-01

    Effects of different drying methods including sun drying, steamed, boiled, constant temperature drying (at 40, 50, 60 °C) on appearance, hardness, rehydration ratio, dry rate, moisture, total ash, extractive and polysaccharides contents were studied to provide the basis of standard processing method for Tulipa edulis bulbus. The results showed that the treatments of sun drying and 40 °C drying showed higher rehydration ratios, but lower dry rate, higher hardness, worse color, longer time and obvious distortion and shrinkage in comparison with other drying methods. The treatments of 60 °C constant temperature drying resulted in shorter drying time, lower water and higher polysaccharides content. Drying time is shorter and appearance quality is better in the treatment of steaming and boiling compared with other treatments, but the content of extractive and polysaccharides decreased significantly. The treatments of 50 °C constant temperature drying led to similar appearance quality of bulb to commercial bulb, and it resulted in lowest hardness and highest dry rate as well as higher rehydration ratio, extractive and polysaccharides content, moderate moisture and total ash contents among these treatments. Based on the results obtained, 50 °C constant temperature drying is the better way for the processing of T. edulis bulbus.

  3. Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality.

    PubMed

    Rodríguez, Óscar; Eim, Valeria; Rosselló, Carmen; Femenia, Antoni; Cárcel, Juan A; Simal, Susana

    2018-03-01

    Drying gives rise to products with a long shelf life by reducing the water activity to a level that is sufficiently low to inhibit the growth of microorganisms, enzymatic reactions and other deteriorative reactions. Despite the benefits of this operation, the quality of heat sensitive products is diminished when high temperatures are used. The use of low drying temperatures reduces the heat damage but, because of a longer drying time, oxidation reactions occur and a reduction of the quality is also observed. Thus, drying is a method that lends itself to being intensified. For this reason, alternative techniques are being studied. Power ultrasound is considered as an emerging and promising technology in the food industry. The potential of this technology relies on its ability to accelerate the mass transfer processes in solid-liquid and solid-gas systems. Intensification of the drying process with power ultrasound can be achieved by modifying the product behavior during drying, using pre-treatments such as soaking in a liquid medium assisted acoustically or, during the drying process itself, by applying power ultrasound in the gaseous medium. This review summarises the effects of the application of the power ultrasound on the quality of different dried products, such as fruits and vegetables, when the acoustic energy is intended to intensify the drying process, either when the application is performed before pretreatment or during the drying process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Sensory profiles for dried fig (Ficus carica L.) cultivars commercially grown and processed in California.

    PubMed

    Haug, Megan T; King, Ellena S; Heymann, Hildegarde; Crisosto, Carlos H

    2013-08-01

    A trained sensory panel evaluated the 6 fig cultivars currently sold in the California dried fig market. The main flavor and aroma attributes determined by the sensory panel were "caramel," "honey," "raisin," and "fig," with additional aroma attributes: "common date," "dried plum," and "molasses." Sensory differences were observed between dried fig cultivars. All figs were processed by 2 commercial handlers. Processing included potassium sorbate as a preservative and SO2 application as an antibrowning agent for white cultivars. As a consequence of SO2 use during processing, high sulfite residues affected the sensory profiles of the white dried fig cultivars. Significant differences between dried fig cultivars and sources demonstrate perceived differences between processing and storage methods. The panel-determined sensory lexicon can help with California fig marketing. © 2013 The Regents of California, Davis Campus Department of Plant Sciences.

  5. Machine Maintenance Scheduling with Reliability Engineering Method and Maintenance Value Stream Mapping

    NASA Astrophysics Data System (ADS)

    Sembiring, N.; Nasution, A. H.

    2018-02-01

    Corrective maintenance i.e replacing or repairing the machine component after machine break down always done in a manufacturing company. It causes the production process must be stopped. Production time will decrease due to the maintenance team must replace or repair the damage machine component. This paper proposes a preventive maintenance’s schedule for a critical component of a critical machine of an crude palm oil and kernel company due to increase maintenance efficiency. The Reliability Engineering & Maintenance Value Stream Mapping is used as a method and a tool to analize the reliability of the component and reduce the wastage in any process by segregating value added and non value added activities.

  6. [Intensification of the penicillin drying process based on the theory of short-term contact of material with a heat-exchange surface].

    PubMed

    Sadykov, R A; Migunov, V V

    1987-01-01

    The process of potassium benzylpenicillin vacuum drying was investigated. The kinetics of the process showed that a larger period of the drying process was needed for eliminating bound moisture. The influence of the angular velocity of the drier drum rotation on drying duration was studied in a short-term contact model. It was shown that intensity of drying increased with increasing velocity of the drum rotation. Experimental trials confirmed the conclusion and revealed adequacy of the relationship between the drying time and dispersion intensity in the short-term contact model. A qualitative dependence of the coefficient of convective heat exchange between the heating surface and the product on the angular velocity of the drier drum rotation was constructed.

  7. Optimization of Cvd Diamond Coating Type on Micro Drills in Pcb Machining

    NASA Astrophysics Data System (ADS)

    Lei, X. L.; He, Y.; Sun, F. H.

    2016-12-01

    The demand for better tools for machining printed circuit boards (PCBs) is increasing due to the extensive usage of these boards in digital electronic products. This paper is aimed at optimizing coating type on micro drills in order to extend their lifetime in PCB machining. First, the tribotests involving micro crystalline diamond (MCD), nano crystalline diamond (NCD) and bare tungsten carbide (WC-Co) against PCBs show that NCD-PCB tribopair exhibits the lowest friction coefficient (0.35) due to the unique nano structure and low surface roughness of NCD films. Thereafter, the dry machining performance of the MCD- and NCD-coated micro drills on PCBs is systematically studied, using diamond-like coating (DLC) and TiAlN-coated micro drills as comparison. The experiments show that the working lives of these micro drills can be ranked as: NCD>TiAlN>DLC>MCD>bare WC-Co. The superior cutting performance of NCD-coated micro drills in terms of the lowest flank wear growth rate, no tool degradation (e.g. chipping, tool tipping) appearance, the best hole quality as well as the lowest feed force may come from the excellent wear resistance, lower friction coefficient against PCB as well as the high adhesive strength on the underneath substrate of NCD films.

  8. Characterisation of Aronia powders obtained by different drying processes.

    PubMed

    Horszwald, Anna; Julien, Heritier; Andlauer, Wilfried

    2013-12-01

    Nowadays, food industry is facing challenges connected with the preservation of the highest possible quality of fruit products obtained after processing. Attention has been drawn to Aronia fruits due to numerous health promoting properties of their products. However, processing of Aronia, like other berries, leads to difficulties that stem from the preparation process, as well as changes in the composition of bioactive compounds. Consequently, in this study, Aronia commercial juice was subjected to different drying techniques: spray drying, freeze drying and vacuum drying with the temperature range of 40-80 °C. All powders obtained had a high content of total polyphenols. Powders gained by spray drying had the highest values which corresponded to a high content of total flavonoids, total monomeric anthocyanins, cyaniding-3-glucoside and total proanthocyanidins. Analysis of the results exhibited a correlation between selected bioactive compounds and their antioxidant capacity. In conclusion, drying techniques have an impact on selected quality parameters, and different drying techniques cause changes in the content of bioactives analysed. Spray drying can be recommended for preservation of bioactives in Aronia products. Powder quality depends mainly on the process applied and parameters chosen. Therefore, Aronia powders production should be adapted to the requirements and design of the final product. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Controlled English to facilitate human/machine analytical processing

    NASA Astrophysics Data System (ADS)

    Braines, Dave; Mott, David; Laws, Simon; de Mel, Geeth; Pham, Tien

    2013-06-01

    Controlled English is a human-readable information representation format that is implemented using a restricted subset of the English language, but which is unambiguous and directly accessible by simple machine processes. We have been researching the capabilities of CE in a number of contexts, and exploring the degree to which a flexible and more human-friendly information representation format could aid the intelligence analyst in a multi-agent collaborative operational environment; especially in cases where the agents are a mixture of other human users and machine processes aimed at assisting the human users. CE itself is built upon a formal logic basis, but allows users to easily specify models for a domain of interest in a human-friendly language. In our research we have been developing an experimental component known as the "CE Store" in which CE information can be quickly and flexibly processed and shared between human and machine agents. The CE Store environment contains a number of specialized machine agents for common processing tasks and also supports execution of logical inference rules that can be defined in the same CE language. This paper outlines the basic architecture of this approach, discusses some of the example machine agents that have been developed, and provides some typical examples of the CE language and the way in which it has been used to support complex analytical tasks on synthetic data sources. We highlight the fusion of human and machine processing supported through the use of the CE language and CE Store environment, and show this environment with examples of highly dynamic extensions to the model(s) and integration between different user-defined models in a collaborative setting.

  10. Description of saturation curves and boiling process of dry air

    NASA Astrophysics Data System (ADS)

    Vestfálová, Magda; Petříková, Markéta; Šimko, Martin

    2018-06-01

    Air is a mixture of gases forming the gas wrap of Earth. It is formed by dry air, moisture and other pollutants. Dry air is a substance whose thermodynamic properties in gaseous state, as well as the thermodynamic properties of its main constituents in gaseous state, are generally known and described in detail in the literature. The liquid air is a bluish liquid and is industrially used to produce oxygen, nitrogen, argon and helium by distillation. The transition between the gaseous and liquid state (the condensation process, resp. boiling process), is usually displayed in the basic thermodynamic diagrams using the saturation curves. The saturation curves of all pure substances are of a similar shape. However, since the dry air is a mixture, the shapes of its saturation curves are modified relative to the shapes corresponding to the pure substances. This paper deals with the description of the dry air saturation curves as a mixture, i.e. with a description of the process of phase change of dry air (boiling process). The dry air saturation curves are constructed in the basic thermodynamic charts based on the values obtained from the literature. On the basis of diagrams, data appearing in various publications are interpreted and put into context with boiling process of dry air.

  11. Effects of drying process on the physicochemical properties of nopal cladodes at different maturity stages.

    PubMed

    Contreras-Padilla, Margarita; Gutiérrez-Cortez, Elsa; Valderrama-Bravo, María Del Carmen; Rojas-Molina, Isela; Espinosa-Arbeláez, Diego Germán; Suárez-Vargas, Raúl; Rodríguez-García, Mario Enrique

    2012-03-01

    Chemical proximate analysis was done in order to determine the changes of nutritional characteristics of nopal powders from three different maturity stages 50, 100, and 150 days and obtained by three different drying processes: freeze dried, forced air oven, and tunnel. Results indicate that nopal powder obtained by the process of freeze dried retains higher contents of protein, soluble fiber, and fat than the other two processes. Also, freeze dried process had less effect on color hue variable. No changes were observed in insoluble fiber content, chroma and lightness with the three different drying processes. Furthermore, the soluble fibers decreased with the age of nopal while insoluble fibers and ash content shows an opposite trend. In addition, the luminosity and hue values did not show differences among the maturity stages studied. The high content of dietary fibers of nopal pad powder could to be an interesting source of these important components for human diets and also could be used in food, cosmetics and pharmaceutical industry.

  12. 77 FR 61307 - New Postal Product

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ...: Transfer Mail Processing Cost Model for Machinable and Irregular Standard Mail Parcels to the Mail Processing Cost Model for Parcel Select/Parcel Return Service. The Postal Service proposes to move the machinable and irregular cost worksheets contained in the Standard Mail parcel mail processing cost model to...

  13. Loss of desiccation tolerance in Copaifera langsdorffii Desf. seeds during germination.

    PubMed

    Pereira, W V S; Faria, J M R; Tonetti, O A O; Silva, E A A

    2014-05-01

    This study evaluated the loss of desiccation tolerance in C. langsdorffii seeds during the germination process. Seeds were imbibed for 24, 48, 72, 96, 120 and 144 hours and dried to the initial moisture content, kept in this state for 3 days after which they were submitted to pre-humidification and rehydration. Ultraestructural evaluations were done aiming to observe the cell damage caused by the dry process. Desiccation tolerance was evaluated in terms of the percentage of normal seedlings. Seeds not submitted to the drying process presented 61% of normal seedlings, and after 24 hours of imbibition, followed by drying, the seeds presented the same percentage of survival. However, after 48 hours of imbibition, seeds started to lose the desiccation tolerance. There was twenty six percent of normal seedlings formed from seeds imbibed for 96 hours and later dried and rehydrated. Only 5% of seeds imbibed for 144 hours, dried and rehydrated formed normal seedlings. At 144 hours of imbibition followed the dry process, there was damage into the cell structure, indicating that the seeds were unable to keep the cell structure during the drying process. Copaifera langsdorffii seeds loses the desiccation tolerance at the start of Phase 2 of imbibition.

  14. Advancing microwave technology for dehydration processing of biologics.

    PubMed

    Cellemme, Stephanie L; Van Vorst, Matthew; Paramore, Elisha; Elliott, Gloria D

    2013-10-01

    Our prior work has shown that microwave processing can be effective as a method for dehydrating cell-based suspensions in preparation for anhydrous storage, yielding homogenous samples with predictable and reproducible drying times. In the current work an optimized microwave-based drying process was developed that expands upon this previous proof-of-concept. Utilization of a commercial microwave (CEM SAM 255, Matthews, NC) enabled continuous drying at variable low power settings. A new turntable was manufactured from Ultra High Molecular Weight Polyethylene (UHMW-PE; Grainger, Lake Forest, IL) to provide for drying of up to 12 samples at a time. The new process enabled rapid and simultaneous drying of multiple samples in containment devices suitable for long-term storage and aseptic rehydration of the sample. To determine sample repeatability and consistency of drying within the microwave cavity, a concentration series of aqueous trehalose solutions were dried for specific intervals and water content assessed using Karl Fischer Titration at the end of each processing period. Samples were dried on Whatman S-14 conjugate release filters (Whatman, Maidestone, UK), a glass fiber membrane used currently in clinical laboratories. The filters were cut to size for use in a 13 mm Swinnex(®) syringe filter holder (Millipore(™), Billerica, MA). Samples of 40 μL volume could be dehydrated to the equilibrium moisture content by continuous processing at 20% with excellent sample-to-sample repeatability. The microwave-assisted procedure enabled high throughput, repeatable drying of multiple samples, in a manner easily adaptable for drying a wide array of biological samples. Depending on the tolerance for sample heating, the drying time can be altered by changing the power level of the microwave unit.

  15. A review of supervised machine learning applied to ageing research.

    PubMed

    Fabris, Fabio; Magalhães, João Pedro de; Freitas, Alex A

    2017-04-01

    Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind. Not surprisingly, the diversity of the supervised machine learning algorithms applied to answer biological questions reflects the complexities of the underlying ageing processes being studied. Many works using supervised machine learning to study the ageing process have been recently published, so it is timely to review these works, to discuss their main findings and weaknesses. In summary, the main findings of the reviewed papers are: the link between specific types of DNA repair and ageing; ageing-related proteins tend to be highly connected and seem to play a central role in molecular pathways; ageing/longevity is linked with autophagy and apoptosis, nutrient receptor genes, and copper and iron ion transport. Additionally, several biomarkers of ageing were found by machine learning. Despite some interesting machine learning results, we also identified a weakness of current works on this topic: only one of the reviewed papers has corroborated the computational results of machine learning algorithms through wet-lab experiments. In conclusion, supervised machine learning has contributed to advance our knowledge and has provided novel insights on ageing, yet future work should have a greater emphasis in validating the predictions.

  16. Evaluation of an Integrated Multi-Task Machine Learning System with Humans in the Loop

    DTIC Science & Technology

    2007-01-01

    machine learning components natural language processing, and optimization...was examined with a test explicitly developed to measure the impact of integrated machine learning when used by a human user in a real world setting...study revealed that integrated machine learning does produce a positive impact on overall performance. This paper also discusses how specific machine learning components contributed to human-system

  17. Investigation of approximate models of experimental temperature characteristics of machines

    NASA Astrophysics Data System (ADS)

    Parfenov, I. V.; Polyakov, A. N.

    2018-05-01

    This work is devoted to the investigation of various approaches to the approximation of experimental data and the creation of simulation mathematical models of thermal processes in machines with the aim of finding ways to reduce the time of their field tests and reducing the temperature error of the treatments. The main methods of research which the authors used in this work are: the full-scale thermal testing of machines; realization of various approaches at approximation of experimental temperature characteristics of machine tools by polynomial models; analysis and evaluation of modelling results (model quality) of the temperature characteristics of machines and their derivatives up to the third order in time. As a result of the performed researches, rational methods, type, parameters and complexity of simulation mathematical models of thermal processes in machine tools are proposed.

  18. In-process fault detection for textile fabric production: onloom imaging

    NASA Astrophysics Data System (ADS)

    Neumann, Florian; Holtermann, Timm; Schneider, Dorian; Kulczycki, Ashley; Gries, Thomas; Aach, Til

    2011-05-01

    Constant and traceable high fabric quality is of high importance both for technical and for high-quality conventional fabrics. Usually, quality inspection is carried out by trained personal, whose detection rate and maximum period of concentration are limited. Low resolution automated fabric inspection machines using texture analysis were developed. Since 2003, systems for the in-process inspection on weaving machines ("onloom") are commercially available. With these defects can be detected, but not measured quantitative precisely. Most systems are also prone to inevitable machine vibrations. Feedback loops for fault prevention are not established. Technology has evolved since 2003: Camera and computer prices dropped, resolutions were enhanced, recording speeds increased. These are the preconditions for real-time processing of high-resolution images. So far, these new technological achievements are not used in textile fabric production. For efficient use, a measurement system must be integrated into the weaving process; new algorithms for defect detection and measurement must be developed. The goal of the joint project is the development of a modern machine vision system for nondestructive onloom fabric inspection. The system consists of a vibration-resistant machine integration, a high-resolution machine vision system, and new, reliable, and robust algorithms with quality database for defect documentation. The system is meant to detect, measure, and classify at least 80 % of economically relevant defects. Concepts for feedback loops into the weaving process will be pointed out.

  19. Micro Fluidic Channel Machining on Fused Silica Glass Using Powder Blasting

    PubMed Central

    Jang, Ho-Su; Cho, Myeong-Woo; Park, Dong-Sam

    2008-01-01

    In this study, micro fluid channels are machined on fused silica glass via powder blasting, a mechanical etching process, and the machining characteristics of the channels are experimentally evaluated. In the process, material removal is performed by the collision of micro abrasives injected by highly compressed air on to the target surface. This approach can be characterized as an integration of brittle mode machining based on micro crack propagation. Fused silica glass, a high purity synthetic amorphous silicon dioxide, is selected as a workpiece material. It has a very low thermal expansion coefficient and excellent optical qualities and exceptional transmittance over a wide spectral range, especially in the ultraviolet range. The powder blasting process parameters affecting the machined results are injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns. In this study, the influence of the number of nozzle scanning, abrasive particle size, and pattern size on the formation of micro channels is investigated. Machined shapes and surface roughness are measured using a 3-dimensional vision profiler and the results are discussed. PMID:27879730

  20. Prosthetic EMG control enhancement through the application of man-machine principles

    NASA Technical Reports Server (NTRS)

    Simcox, W. A.

    1977-01-01

    An area in medicine that appears suitable to man-machine principles is rehabilitation research, particularly when the motor aspects of the body are involved. If one considers the limb, whether functional or not, as the machine, the brain as the controller and the neuromuscular system as the man-machine interface, the human body is reduced to a man-machine system that can benefit from the principles behind such systems. The area of rehabilitation that this paper deals with is that of an arm amputee and his prosthetic device. Reducing this area to its man-machine basics, the problem becomes one of attaining natural multiaxis prosthetic control using Electromyographic activity (EMG) as the means of communication between man and prothesis. In order to use EMG as the communication channel it must be amplified and processed to yield a high information signal suitable for control. The most common processing scheme employed is termed Mean Value Processing. This technique for extracting the useful EMG signal consists of a differential to single ended conversion to the surface activity followed by a rectification and smoothing.

  1. Grinding, Machining Morphological Studies on C/SiC Composites

    NASA Astrophysics Data System (ADS)

    Xiao, Chun-fang; Han, Bing

    2018-05-01

    C/SiC composite is a typical material difficult to machine. It is hard and brittle. In machining, the cutting force is large, the material removal rate is low, the edge is prone to collapse, and the tool wear is serious. In this paper, the grinding of C/Si composites material along the direction of fiber distribution is studied respectively. The surface microstructure and mechanical properties of C/SiC composites processed by ultrasonic machining were evaluated. The change of surface quality with the change of processing parameters has also been studied. By comparing the performances of conventional grinding and ultrasonic grinding, the surface roughness and functional characteristics of the material can be improved by optimizing the processing parameters.

  2. Machine Learning: A Crucial Tool for Sensor Design

    PubMed Central

    Zhao, Weixiang; Bhushan, Abhinav; Santamaria, Anthony D.; Simon, Melinda G.; Davis, Cristina E.

    2009-01-01

    Sensors have been widely used for disease diagnosis, environmental quality monitoring, food quality control, industrial process analysis and control, and other related fields. As a key tool for sensor data analysis, machine learning is becoming a core part of novel sensor design. Dividing a complete machine learning process into three steps: data pre-treatment, feature extraction and dimension reduction, and system modeling, this paper provides a review of the methods that are widely used for each step. For each method, the principles and the key issues that affect modeling results are discussed. After reviewing the potential problems in machine learning processes, this paper gives a summary of current algorithms in this field and provides some feasible directions for future studies. PMID:20191110

  3. Management of processes of electrochemical dimensional processing

    NASA Astrophysics Data System (ADS)

    Akhmetov, I. D.; Zakirova, A. R.; Sadykov, Z. B.

    2017-09-01

    In different industries a lot high-precision parts are produced from hard-processed scarce materials. Forming such details can only be acting during non-contact processing, or a minimum of effort, and doable by the use, for example, of electro-chemical processing. At the present stage of development of metal working processes are important management issues electrochemical machining and its automation. This article provides some indicators and factors of electrochemical machining process.

  4. Exergetic simulation of a combined infrared-convective drying process

    NASA Astrophysics Data System (ADS)

    Aghbashlo, Mortaza

    2016-04-01

    Optimal design and performance of a combined infrared-convective drying system with respect to the energy issue is extremely put through the application of advanced engineering analyses. This article proposes a theoretical approach for exergy analysis of the combined infrared-convective drying process using a simple heat and mass transfer model. The applicability of the developed model to actual drying processes was proved using an illustrative example for a typical food.

  5. [Investigation on Spray Drying Technology of Auricularia auricular Extract].

    PubMed

    Zhou, Rong; Chen, Hui; Xie, Yuan; Chen, Peng; Wang, Luo-lin

    2015-07-01

    To investigate the feasibility of spray drying technology of Auricularia auricular extract and its optimum process. On the basis of single factor test, with the yield of dry extract and the content of polysaccharide as indexes, orthogonal test method was used to optimize the spray drying technology on the inlet air temperature, injection speed and crude drug content. Using ultraviolet spectrophotometry, thin layer chromatography(TLC) and pharmacodynamics as indicators, extracts prepared by traditional alcohol precipitation drying process and spray drying process were compared. Compared with the traditional preparation method, the extract prepared by spray drying had little differences from the polysaccharide content, TLC and the function of reducing TG and TC, and its optimum technology condition were as follows: The inlet air temperature was 180 °C, injection speed was 10 ml/min and crude drugs content was 0. 4 g/mL. Auricularia auricular extract by spray drying technology is stable and feasible with high economic benefit.

  6. Development of a sterilizing in-place application for a production machine using Vaporized Hydrogen Peroxide.

    PubMed

    Mau, T; Hartmann, V; Burmeister, J; Langguth, P; Häusler, H

    2004-01-01

    The use of steam in sterilization processes is limited by the implementation of heat-sensitive components inside the machines to be sterilized. Alternative low-temperature sterilization methods need to be found and their suitability evaluated. Vaporized Hydrogen Peroxide (VHP) technology was adapted for a production machine consisting of highly sensitive pressure sensors and thermo-labile air tube systems. This new kind of "cold" surface sterilization, known from the Barrier Isolator Technology, is based on the controlled release of hydrogen peroxide vapour into sealed enclosures. A mobile VHP generator was used to generate the hydrogen peroxide vapour. The unit was combined with the air conduction system of the production machine. Terminal vacuum pumps were installed to distribute the gas within the production machine and for its elimination. In order to control the sterilization process, different physical process monitors were incorporated. The validation of the process was based on biological indicators (Geobacillus stearothermophilus). The Limited Spearman Karber Method (LSKM) was used to statistically evaluate the sterilization process. The results show that it is possible to sterilize surfaces in a complex tube system with the use of gaseous hydrogen peroxide. A total microbial reduction of 6 log units was reached.

  7. Evaluating the electrical discharge machining (EDM) parameters with using carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sari, M. M.; Noordin, M. Y.; Brusa, E.

    2012-09-01

    Electrical discharge machining (EDM) is one of the most accurate non traditional manufacturing processes available for creating tiny apertures, complex or simple shapes and geometries within parts and assemblies. Performance of the EDM process is usually evaluated in terms of surface roughness, existence of cracks, voids and recast layer on the surface of product, after machining. Unfortunately, the high heat generated on the electrically discharged material during the EDM process decreases the quality of products. Carbon nanotubes display unexpected strength and unique electrical and thermal properties. Multi-wall carbon nanotubes are therefore on purpose added to the dielectric used in the EDM process to improve its performance when machining the AISI H13 tool steel, by means of copper electrodes. Some EDM parameters such as material removal rate, electrode wear rate, surface roughness and recast layer are here first evaluated, then compared to the outcome of EDM performed without using nanotubes mixed to the dielectric. Independent variables investigated are pulse on time, peak current and interval time. Experimental evidences show that EDM process operated by mixing multi-wall carbon nanotubes within the dielectric looks more efficient, particularly if machining parameters are set at low pulse of energy.

  8. Proposed algorithm to improve job shop production scheduling using ant colony optimization method

    NASA Astrophysics Data System (ADS)

    Pakpahan, Eka KA; Kristina, Sonna; Setiawan, Ari

    2017-12-01

    This paper deals with the determination of job shop production schedule on an automatic environment. On this particular environment, machines and material handling system are integrated and controlled by a computer center where schedule were created and then used to dictate the movement of parts and the operations at each machine. This setting is usually designed to have an unmanned production process for a specified interval time. We consider here parts with various operations requirement. Each operation requires specific cutting tools. These parts are to be scheduled on machines each having identical capability, meaning that each machine is equipped with a similar set of cutting tools therefore is capable of processing any operation. The availability of a particular machine to process a particular operation is determined by the remaining life time of its cutting tools. We proposed an algorithm based on the ant colony optimization method and embedded them on matlab software to generate production schedule which minimize the total processing time of the parts (makespan). We test the algorithm on data provided by real industry and the process shows a very short computation time. This contributes a lot to the flexibility and timelines targeted on an automatic environment.

  9. Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M.A.; Hirshfield, J.L.; Hirshfield, J.L.

    1999-06-01

    Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96{percent}. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications. {copyright} {ital 1999 American Institute of Physics.}« less

  10. An investigation on dry sliding wear behaviour of AA6061-AlNp composite

    NASA Astrophysics Data System (ADS)

    Mahesh Naidu, K.; Mohan Reddy, Chandra

    2018-03-01

    This paper studies the effect of load, sliding distance, reinforcement percentage and temperature on dry sliding wear behaviour of Al-AlNp composites by using pin on disc machine. The wear test was conducted at different loads (1,2,3 & 4 Kg), temperatures (30°C, 100°C, 170°C & 240°C) and sliding distances (500m,1000m,1500m and 2000m). Increase in wear rate has been observed by increasing the load and sliding distance, at the same time it has been decreased by increasing the reinforcement percentage and temperature. At the higher loads, temperatures and sliding distances adhesive wear, abrasive wear and oxidation wear are observed to be dominant modes of wear mechanisms in the composite.

  11. Process and formulation effects on solar thermal drum dried prune pomace

    USDA-ARS?s Scientific Manuscript database

    The processing of dried plums into prune juice and concentrate yields prune pomace as a coproduct; the pomace could potentially be utilized as a food ingredient but requires stabilization for long-term storage. Drum drying is one method that could be used to dry and stabilize prune pomace, and a dru...

  12. 29 CFR 570.61 - Occupations in the operation of power-driven meat-processing machines and occupations involving...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... machines. (3) All occupations involved in tankage or rendering of dead animals, animal offal, animal fats..., and hashing machines; and presses (except belly-rolling machines). Except, the provisions of this.... Rendering plants means establishments engaged in the conversion of dead animals, animal offal, animal fats...

  13. 32 CFR 701.53 - FOIA fee schedule.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... human time) and machine time. (1) Human time. Human time is all the time spent by humans performing the...) Machine time. Machine time involves only direct costs of the central processing unit (CPU), input/output... exist to calculate CPU time, no machine costs can be passed on to the requester. When CPU calculations...

  14. 32 CFR 701.53 - FOIA fee schedule.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... human time) and machine time. (1) Human time. Human time is all the time spent by humans performing the...) Machine time. Machine time involves only direct costs of the central processing unit (CPU), input/output... exist to calculate CPU time, no machine costs can be passed on to the requester. When CPU calculations...

  15. 32 CFR 701.53 - FOIA fee schedule.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... human time) and machine time. (1) Human time. Human time is all the time spent by humans performing the...) Machine time. Machine time involves only direct costs of the central processing unit (CPU), input/output... exist to calculate CPU time, no machine costs can be passed on to the requester. When CPU calculations...

  16. Research on the tool holder mode in high speed machining

    NASA Astrophysics Data System (ADS)

    Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao

    2018-03-01

    High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.

  17. Lean energy analysis of CNC lathe

    NASA Astrophysics Data System (ADS)

    Liana, N. A.; Amsyar, N.; Hilmy, I.; Yusof, MD

    2018-01-01

    The industrial sector in Malaysia is one of the main sectors that have high percentage of energy demand compared to other sector and this problem may lead to the future power shortage and increasing the production cost of a company. Suitable initiatives should be implemented by the industrial sectors to solve the issues such as by improving the machining system. In the past, the majority of the energy consumption in industry focus on lighting, HVAC and office section usage. Future trend, manufacturing process is also considered to be included in the energy analysis. A study on Lean Energy Analysis in a machining process is presented. Improving the energy efficiency in a lathe machine by enhancing the cutting parameters of turning process is discussed. Energy consumption of a lathe machine was analyzed in order to identify the effect of cutting parameters towards energy consumption. It was found that the combination of parameters for third run (spindle speed: 1065 rpm, depth of cut: 1.5 mm, feed rate: 0.3 mm/rev) was the most preferred and ideal to be used during the turning machining process as it consumed less energy usage.

  18. Application of Electro Chemical Machining for materials used in extreme conditions

    NASA Astrophysics Data System (ADS)

    Pandilov, Z.

    2018-03-01

    Electro-Chemical Machining (ECM) is the generic term for a variety of electrochemical processes. ECM is used to machine work pieces from metal and metal alloys irrespective of their hardness, strength or thermal properties, through the anodic dissolution, in aerospace, automotive, construction, medical equipment, micro-systems and power supply industries. The Electro Chemical Machining is extremely suitable for machining of materials used in extreme conditions. General overview of the Electro-Chemical Machining and its application for different materials used in extreme conditions is presented.

  19. Multiresponse Optimization of Process Parameters in Turning of GFRP Using TOPSIS Method

    PubMed Central

    Parida, Arun Kumar; Routara, Bharat Chandra

    2014-01-01

    Taguchi's design of experiment is utilized to optimize the process parameters in turning operation with dry environment. Three parameters, cutting speed (v), feed (f), and depth of cut (d), with three different levels are taken for the responses like material removal rate (MRR) and surface roughness (R a). The machining is conducted with Taguchi L9 orthogonal array, and based on the S/N analysis, the optimal process parameters for surface roughness and MRR are calculated separately. Considering the larger-the-better approach, optimal process parameters for material removal rate are cutting speed at level 3, feed at level 2, and depth of cut at level 3, that is, v 3-f 2-d 3. Similarly for surface roughness, considering smaller-the-better approach, the optimal process parameters are cutting speed at level 1, feed at level 1, and depth of cut at level 3, that is, v 1-f 1-d 3. Results of the main effects plot indicate that depth of cut is the most influencing parameter for MRR but cutting speed is the most influencing parameter for surface roughness and feed is found to be the least influencing parameter for both the responses. The confirmation test is conducted for both MRR and surface roughness separately. Finally, an attempt has been made to optimize the multiresponses using technique for order preference by similarity to ideal solution (TOPSIS) with Taguchi approach. PMID:27437503

  20. Surface structuring of boron doped CVD diamond by micro electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Schubert, A.; Berger, T.; Martin, A.; Hackert-Oschätzchen, M.; Treffkorn, N.; Kühn, R.

    2018-05-01

    Boron doped diamond materials, which are generated by Chemical Vapor Deposition (CVD), offer a great potential for the application on highly stressed tools, e. g. in cutting or forming processes. As a result of the CVD process rough surfaces arise, which require a finishing treatment in particular for the application in forming tools. Cutting techniques such as milling and grinding are hardly applicable for the finish machining because of the high strength of diamond. Due to its process principle of ablating material by melting and evaporating, Electrical Discharge Machining (EDM) is independent of hardness, brittleness or toughness of the workpiece material. EDM is a suitable technology for machining and structuring CVD diamond, since boron doped CVD diamond is electrically conductive. In this study the ablation characteristics of boron doped CVD diamond by micro electrical discharge machining are investigated. Experiments were carried out to investigate the influence of different process parameters on the machining result. The impact of tool-polarity, voltage and discharge energy on the resulting erosion geometry and the tool wear was analyzed. A variation in path overlapping during the erosion of planar areas leads to different microstructures. The results show that micro EDM is a suitable technology for finishing of boron doped CVD diamond.

  1. A 3D Human-Machine Integrated Design and Analysis Framework for Squat Exercises with a Smith Machine.

    PubMed

    Lee, Haerin; Jung, Moonki; Lee, Ki-Kwang; Lee, Sang Hun

    2017-02-06

    In this paper, we propose a three-dimensional design and evaluation framework and process based on a probabilistic-based motion synthesis algorithm and biomechanical analysis system for the design of the Smith machine and squat training programs. Moreover, we implemented a prototype system to validate the proposed framework. The framework consists of an integrated human-machine-environment model as well as a squat motion synthesis system and biomechanical analysis system. In the design and evaluation process, we created an integrated model in which interactions between a human body and machine or the ground are modeled as joints with constraints at contact points. Next, we generated Smith squat motion using the motion synthesis program based on a Gaussian process regression algorithm with a set of given values for independent variables. Then, using the biomechanical analysis system, we simulated joint moments and muscle activities from the input of the integrated model and squat motion. We validated the model and algorithm through physical experiments measuring the electromyography (EMG) signals, ground forces, and squat motions as well as through a biomechanical simulation of muscle forces. The proposed approach enables the incorporation of biomechanics in the design process and reduces the need for physical experiments and prototypes in the development of training programs and new Smith machines.

  2. Study on intelligent processing system of man-machine interactive garment frame model

    NASA Astrophysics Data System (ADS)

    Chen, Shuwang; Yin, Xiaowei; Chang, Ruijiang; Pan, Peiyun; Wang, Xuedi; Shi, Shuze; Wei, Zhongqian

    2018-05-01

    A man-machine interactive garment frame model intelligent processing system is studied in this paper. The system consists of several sensor device, voice processing module, mechanical parts and data centralized acquisition devices. The sensor device is used to collect information on the environment changes brought by the body near the clothes frame model, the data collection device is used to collect the information of the environment change induced by the sensor device, voice processing module is used for speech recognition of nonspecific person to achieve human-machine interaction, mechanical moving parts are used to make corresponding mechanical responses to the information processed by data collection device.it is connected with data acquisition device by a means of one-way connection. There is a one-way connection between sensor device and data collection device, two-way connection between data acquisition device and voice processing module. The data collection device is one-way connection with mechanical movement parts. The intelligent processing system can judge whether it needs to interact with the customer, realize the man-machine interaction instead of the current rigid frame model.

  3. Method for rapidly producing microporous and mesoporous materials

    DOEpatents

    Coronado, Paul R.; Poco, John F.; Hrubesh, Lawrence W.; Hopper, Robert W.

    1997-01-01

    An improved, rapid process is provided for making microporous and mesoporous materials, including aerogels and pre-ceramics. A gel or gel precursor is confined in a sealed vessel to prevent structural expansion of the gel during the heating process. This confinement allows the gelation and drying processes to be greatly accelerated, and significantly reduces the time required to produce a dried aerogel compared to conventional methods. Drying may be performed either by subcritical drying with a pressurized fluid to expel the liquid from the gel pores or by supercritical drying. The rates of heating and decompression are significantly higher than for conventional methods.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Mary Ann; Dombrowski, David E.; Clarke, Kester Diederik

    U-10 wt. % Mo (U-10Mo) alloys are being developed as low enrichment monolithic fuel for the CONVERT program. Optimization of processing for the monolithic fuel is being pursued with the use of electrical discharge machining (EDM) under CONVERT HPRR WBS 1.2.4.5 Optimization of Coupon Preparation. The process is applicable to manufacturing experimental fuel plate specimens for the Mini-Plate-1 (MP-1) irradiation campaign. The benefits of EDM are reduced machining costs, ability to achieve higher tolerances, stress-free, burr-free surfaces eliminating the need for milling, and the ability to machine complex shapes. Kerf losses are much smaller with EDM (tenths of mm) comparedmore » to conventional machining (mm). Reliable repeatability is achievable with EDM due to its computer-generated machining programs.« less

  5. Effect of High-speed Milling tool path strategies on the surface roughness of Stavax ESR mold insert machining

    NASA Astrophysics Data System (ADS)

    Mebrahitom, A.; Rizuan, D.; Azmir, M.; Nassif, M.

    2016-02-01

    High speed milling is one of the recent technologies used to produce mould inserts due to the need for high surface finish. It is a faster machining process where it uses a small side step and a small down step combined with very high spindle speed and feed rate. In order to effectively use the HSM capabilities, optimizing the tool path strategies and machining parameters is an important issue. In this paper, six different tool path strategies have been investigated on the surface finish and machining time of a rectangular cavities of ESR Stavax material. CAD/CAM application of CATIA V5 machining module for pocket milling of the cavities was used for process planning.

  6. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    PubMed Central

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  7. A field programmable gate array-based reconfigurable smart-sensor network for wireless monitoring of new generation computer numerically controlled machines.

    PubMed

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.

  8. Charging machine

    DOEpatents

    Medlin, John B.

    1976-05-25

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine.

  9. Position feedback control system

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-01-01

    Disclosed is a system and method for independently evaluating the spatial positional performance of a machine having a movable member, comprising an articulated coordinate measuring machine comprising: a first revolute joint; a probe arm, having a proximal end rigidly attached to the first joint, and having a distal end with a probe tip attached thereto, wherein the probe tip is pivotally mounted to the movable machine member; a second revolute joint; a first support arm serially connecting the first joint to the second joint; and coordinate processing means, operatively connected to the first and second revolute joints, for calculating the spatial coordinates of the probe tip; means for kinematically constraining the articulated coordinate measuring machine to a working surface; and comparator means, in operative association with the coordinate processing means and with the movable machine, for comparing the true position of the movable machine member, as measured by the true position of the probe tip, with the desired position of the movable machine member.

  10. Application of exopolysaccharides to improve the performance of ceramic bodies in the unidirectional dry pressing process

    NASA Astrophysics Data System (ADS)

    Caneira, Inês; Machado-Moreira, Bernardino; Dionísio, Amélia; Godinho, Vasco; Neves, Orquídia; Dias, Diamantino; Saiz-Jimenez, Cesareo; Miller, Ana Z.

    2015-04-01

    Ceramic industry represents an important sector of economic activity in the European countries and involves complex and numerous manufacturing processes. The unidirectional dry pressing process includes milling and stirring of raw materials (mainly clay and talc minerals) in aqueous suspensions, followed by spray drying to remove excess water obtaining spray-dried powders further subjected to dry pressing process (conformation). However, spray-dried ceramic powders exhibit an important variability in their performance when subjected to the dry pressing process, particularly in the adhesion to the mold and mechanical strength, affecting the quality of the final conformed ceramic products. Therefore, several synthetic additives (deflocculants, antifoams, binders, lubricants and plasticizers) are introduced in the ceramic slips to achieve uniform and homogeneous pastes, conditioning their rheological properties. However, an important variability associated with the performance of the conformed products is still reported. Exopolysaccharides or Extracellular Polymeric Substances (EPS) are polymers excreted by living organisms, such as bacteria, fungi and algae, which may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation. Polysaccharides, such as pullulan, gellan, carrageenan and xanthan have found a wide range of applications in food, pharmaceutical, petroleum, and in other industries. The aim of this study was the assessment of exopolysaccharides as natural additives to optimize the performance of spray-dried ceramic powders during the unidirectional dry pressing process, replacing the synthetic additives used in the ceramic production process. Six exopolysaccharides, namely pullulan, gellan, xanthan gum, κappa- and iota-carrageenan, and guar gum were tested in steatite-based spray-dried ceramic powders at different concentrations. Subsequently, these ceramic powders were submitted to unidirectional dry pressing process (conformation) and the green conformed bodies were tested on the following properties: mechanical flexural strength and adhesion/disaggregation of the conformed material. The binding state of polysaccharides and mineral grains was evaluated by field emission scanning electron microscopy (FESEM). Our data showed that xanthan gum and pullulan were the most effective polysaccharides in improving the performance of spray-dried ceramic powders during unidirectional dry pressing process, in comparison to the control steatite-based ceramic bodies containing synthetic additives. In addition, these polysaccharides yielded the best cost-benefit relationship, representing an eco-friendly and cost-effective alternative to synthetic additives used in technical ceramics industry. Hence, this study has contributed to define a new and sustainable strategy to improve the performance of ceramic materials during unidirectional dry pressing process, reduce production costs and minimize environmental impact. Acknowledgments: This study was financed by Portuguese funds through FCT- Fundação para a Ciência e a Tecnologia (project EXPL/CTM-CER/0637/2012) and supported by Rauschert Portuguesa, SA.

  11. Reverse time migration: A seismic processing application on the connection machine

    NASA Technical Reports Server (NTRS)

    Fiebrich, Rolf-Dieter

    1987-01-01

    The implementation of a reverse time migration algorithm on the Connection Machine, a massively parallel computer is described. Essential architectural features of this machine as well as programming concepts are presented. The data structures and parallel operations for the implementation of the reverse time migration algorithm are described. The algorithm matches the Connection Machine architecture closely and executes almost at the peak performance of this machine.

  12. Identification of Tool Wear when Machining of Austenitic Steels and Titatium by Miniature Machining

    NASA Astrophysics Data System (ADS)

    Pilc, Jozef; Kameník, Roman; Varga, Daniel; Martinček, Juraj; Sadilek, Marek

    2016-12-01

    Application of miniature machining is currently rapidly increasing mainly in biomedical industry and machining of hard-to-machine materials. Machinability of materials with increased level of toughness depends on factors that are important in the final state of surface integrity. Because of this, it is necessary to achieve high precision (varying in microns) in miniature machining. If we want to guarantee machining high precision, it is necessary to analyse tool wear intensity in direct interaction with given machined materials. During long-term cutting process, different cutting wedge deformations occur, leading in most cases to a rapid wear and destruction of the cutting wedge. This article deal with experimental monitoring of tool wear intensity during miniature machining.

  13. Linear- and Repetitive Feature Detection Within Remotely Sensed Imagery

    DTIC Science & Technology

    2017-04-01

    applicable to Python or other pro- gramming languages with image- processing capabilities. 4.1 Classification machine learning The first methodology uses...remotely sensed images that are in panchromatic or true-color formats. Image- processing techniques, in- cluding Hough transforms, machine learning, and...data fusion .................................................................................................... 44 6.3 Context-based processing

  14. Innovative model of business process reengineering at machine building enterprises

    NASA Astrophysics Data System (ADS)

    Nekrasov, R. Yu; Tempel, Yu A.; Tempel, O. A.

    2017-10-01

    The paper provides consideration of business process reengineering viewed as amanagerial innovation accepted by present day machine building enterprises, as well as waysto improve its procedure. A developed innovative model of reengineering measures isdescribed and is based on the process approach and other principles of company management.

  15. Microstructural and bulk property changes in hardened cement paste during the first drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Ippei, E-mail: ippei@dali.nuac.nagoya-u.ac.jp; Nishioka, Yukiko; Igarashi, Go

    2014-04-01

    This paper reports the microstructural changes and resultant bulk physical property changes in hardened cement paste (hcp) during the first desorption process. The microstructural changes and solid-phase changes were evaluated by water vapor sorption, nitrogen sorption, ultrasonic velocity, and {sup 29}Si and {sup 27}Al nuclear magnetic resonance. Strength, Young's modulus, and drying shrinkage were also examined. The first drying process increased the volume of macropores and decreased the volume of mesopores and interlayer spaces. Furthermore, in the first drying process globule clusters were interconnected. During the first desorption, the strength increased for samples cured at 100% to 90% RH, decreasedmore » for 90% to 40% RH, and increased again for 40% to 11% RH. This behavior is explained by both microstructural changes in hcp and C–S–H globule densification. The drying shrinkage strains during rapid drying and slow drying were compared and the effects of the microstructural changes and evaporation were separated.« less

  16. Resource recovery of organic sludge as refuse derived fuel by fry-drying process.

    PubMed

    Chang, Fang-Chih; Ko, Chun-Han; Wu, Jun-Yi; Wang, H Paul; Chen, Wei-Sheng

    2013-08-01

    The organic sludge and waste oil were collected from the industries of thin film transistor liquid crystal display and the recycled cooking oil. The mixing ratio of waste cooking oil and organic sludge, fry-drying temperatures, fry-drying time, and the characteristics of the organic sludge pellet grain were investigated. After the fry-drying process, the moisture content of the organic sludge pellet grain was lower than 5% within 25 min and waste cooking oil was absorbed on the dry solid. The fry-drying organic sludge pellet grain was easy to handle and odor free. Additionally, it had a higher calorific value than the derived fuel standards and could be processed into organic sludge derived fuels. Thus, the granulation and fry-drying processes of organic sludge with waste cooking oil not only improves the calorific value of organic sludge and becomes more valuable for energy recovery, but also achieves waste material disposal and cost reduction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Process Damping and Cutting Tool Geometry in Machining

    NASA Astrophysics Data System (ADS)

    Taylor, C. M.; Sims, N. D.; Turner, S.

    2011-12-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  18. Prediction of porosity of food materials during drying: Current challenges and directions.

    PubMed

    Joardder, Mohammad U H; Kumar, C; Karim, M A

    2017-07-18

    Pore formation in food samples is a common physical phenomenon observed during dehydration processes. The pore evolution during drying significantly affects the physical properties and quality of dried foods. Therefore, it should be taken into consideration when predicting transport processes in the drying sample. Characteristics of pore formation depend on the drying process parameters, product properties and processing time. Understanding the physics of pore formation and evolution during drying will assist in accurately predicting the drying kinetics and quality of food materials. Researchers have been trying to develop mathematical models to describe the pore formation and evolution during drying. In this study, existing porosity models are critically analysed and limitations are identified. Better insight into the factors affecting porosity is provided, and suggestions are proposed to overcome the limitations. These include considerations of process parameters such as glass transition temperature, sample temperature, and variable material properties in the porosity models. Several researchers have proposed models for porosity prediction of food materials during drying. However, these models are either very simplistic or empirical in nature and failed to consider relevant significant factors that influence porosity. In-depth understanding of characteristics of the pore is required for developing a generic model of porosity. A micro-level analysis of pore formation is presented for better understanding, which will help in developing an accurate and generic porosity model.

  19. Use of IT platform in determination of efficiency of mining machines

    NASA Astrophysics Data System (ADS)

    Brodny, Jarosław; Tutak, Magdalena

    2018-01-01

    Determination of effective use of mining devices has very significant meaning for mining enterprises. High costs of their purchase and tenancy cause that these enterprises tend to the best use of possessed technical potential. However, specifics of mining production causes that this process not always proceeds without interferences. Practical experiences show that determination of objective measure of utilization of machine in mining enterprise is not simple. In the paper a proposition for solution of this problem is presented. For this purpose an IT platform and overall efficiency model OEE were used. This model enables to evaluate the machine in a range of its availability performance and quality of product, and constitutes a quantitative tool of TPM strategy. Adapted to the specificity of mining branch the OEE model together with acquired data from industrial automatic system enabled to determine the partial indicators and overall efficiency of tested machines. Studies were performed for a set of machines directly use in coal exploitation process. They were: longwall-shearer and armoured face conveyor, and beam stage loader. Obtained results clearly indicate that degree of use of machines by mining enterprises are unsatisfactory. Use of IT platforms will significantly facilitate the process of registration, archiving and analytical processing of the acquired data. In the paper there is presented methodology of determination of partial indices and total OEE together with a practical example of its application for investigated machines set. Also IT platform was characterized for its construction, function and application.

  20. Design of freeze-drying processes for pharmaceuticals: practical advice.

    PubMed

    Tang, Xiaolin; Pikal, Michael J

    2004-02-01

    Design of freeze-drying processes is often approached with a "trial and error" experimental plan or, worse yet, the protocol used in the first laboratory run is adopted without further attempts at optimization. Consequently, commercial freeze-drying processes are often neither robust nor efficient. It is our thesis that design of an "optimized" freeze-drying process is not particularly difficult for most products, as long as some simple rules based on well-accepted scientific principles are followed. It is the purpose of this review to discuss the scientific foundations of the freeze-drying process design and then to consolidate these principles into a set of guidelines for rational process design and optimization. General advice is given concerning common stability issues with proteins, but unusual and difficult stability issues are beyond the scope of this review. Control of ice nucleation and crystallization during the freezing step is discussed, and the impact of freezing on the rest of the process and final product quality is reviewed. Representative freezing protocols are presented. The significance of the collapse temperature and the thermal transition, denoted Tg', are discussed, and procedures for the selection of the "target product temperature" for primary drying are presented. Furthermore, guidelines are given for selection of the optimal shelf temperature and chamber pressure settings required to achieve the target product temperature without thermal and/or mass transfer overload of the freeze dryer. Finally, guidelines and "rules" for optimization of secondary drying and representative secondary drying protocols are presented.

  1. Experimental Study in Taguchi Method on Surface Quality Predication of HSM

    NASA Astrophysics Data System (ADS)

    Ji, Yan; Li, Yueen

    2018-05-01

    Based on the study of ball milling mechanism and machining surface formation mechanism, the formation of high speed ball-end milling surface is a time-varying and cumulative Thermos-mechanical coupling process. The nature of this problem is that the uneven stress field and temperature field affect the machined surface Process, the performance of the processing parameters in the processing interaction in the elastic-plastic materials produced by the elastic recovery and plastic deformation. The surface quality of machining surface is characterized by multivariable nonlinear system. It is still an indispensable and effective method to study the surface quality of high speed ball milling by experiments.

  2. Cold machining of high density tungsten and other materials

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1969-01-01

    Cold machining process, which uses a sub-zero refrigerated cutting fluid, is used for machining refractory or reactive metals and alloys. Special carbide tools for turning and drilling these alloys further improve the cutting performance.

  3. Alumina-zirconia machinable abutments for implant-supported single-tooth anterior crowns.

    PubMed

    Sadoun, M; Perelmuter, S

    1997-01-01

    Innovative materials and application techniques are constantly being developed in the ongoing search for improved restorations. This article describes a new material and the fabrication process of aesthetic machinable ceramic anterior implant abutments. The ceramic material utilized is a mixture of alumina (aluminum oxide) and ceria (cerium oxide) with partially stabilized zirconia (zirconium oxide). The initial core material is a cylinder with a 9-mm diameter and a 15-mm height, obtained by ceramic injection and presintering processes. The resultant alumina-zirconia core is porous and readily machinable. It is secured to the analog, and its design is customized by machining the abutment to suit the particular clinical circumstances. The machining is followed by glass infiltration, and the crown is finalized. The learning objective of this article is to gain a basic knowledge of the fabrication and clinical application of the custom machinable abutments.

  4. Estimation of tool wear compensation during micro-electro-discharge machining of silicon using process simulation

    NASA Astrophysics Data System (ADS)

    Muralidhara, .; Vasa, Nilesh J.; Singaperumal, M.

    2010-02-01

    A micro-electro-discharge machine (Micro EDM) was developed incorporating a piezoactuated direct drive tool feed mechanism for micromachining of Silicon using a copper tool. Tool and workpiece materials are removed during Micro EDM process which demand for a tool wear compensation technique to reach the specified depth of machining on the workpiece. An in-situ axial tool wear and machining depth measurement system is developed to investigate axial wear ratio variations with machining depth. Stepwise micromachining experiments on silicon wafer were performed to investigate the variations in the silicon removal and tool wear depths with increase in tool feed. Based on these experimental data, a tool wear compensation method is proposed to reach the desired depth of micromachining on silicon using copper tool. Micromachining experiments are performed with the proposed tool wear compensation method and a maximum workpiece machining depth variation of 6% was observed.

  5. Impact of technical and technological changes on energy efficiency of production company - case study

    NASA Astrophysics Data System (ADS)

    Szwedzka, K.; Gruszka, J.; Szafer, P.

    2016-08-01

    Improving energy efficiency is one of the strategic objectives of the European Union for rational energy economy. To make efforts to improve energy efficiency have been obliged both small and large end-users. This article aims to show the possibilities of improving energy efficiency by introducing technical and technological process changes of pine lumber drying. The object of the research is process of drying lumber implemented in a production company, which is a key supplier of large furniture manufacturer. Pine lumber drying chamber consume about 45% of total electricity in sawmill. According to various sources, drying of 1m3 of lumber uses about 3060kWh and is dependent of inter alia: the drying process itself, the factors affecting the processing time and the desired output moisture content of the timber. The article proposals for changes in the process of drying lumber pine have been positively validated in the company, and as a result their energy consumption per 1 m3 of product declined by 18%.

  6. Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation.

    PubMed

    Zhang, Dong-Qing; He, Pin-Jing; Jin, Tai-Feng; Shao, Li-Ming

    2008-12-01

    To improve the water content reduction of municipal solid waste with high water content, the operations of supplementing a hydrolytic stage prior to aerobic degradation and inoculating the bio-drying products were conducted. A 'bio-drying index' was used to evaluate the bio-drying performance. For the aerobic processes, the inoculation accelerated organics degradation, enhanced the lignocelluloses degradation rate by 10.4%, and lowered water content by 7.0%. For the combined hydrolytic-aerobic processes, the inoculum addition had almost no positive effect on the bio-drying efficiency, but it enhanced the lignocelluloses degradation rate by 9.6% and strengthened the acidogenesis in the hydrolytic stage. Compared with the aerobic processes, the combined processes had a higher bio-drying index (4.20 for non-inoculated and 3.67 for the inoculated trials). Moreover, the lowest final water content occurred in the combined process without inoculation (50.5% decreased from an initial 72.0%).

  7. Lubricity of well-characterized jet and broad-cut fuels by ball-on-cylinder machine

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Kim, W. S.

    1984-01-01

    A ball-on-cylinder machine (BOCM) was used to measure the lubricity of fuels. The fuels tested were well-characterized fuels available from other programs at the NASA Lewis Research Center plus some in-house mildly hydroprocessed shale fuels from other programs included Jet-A, ERBS fuel, ERBS blends, and blend stock. The BOCM tests were made before and after clay treatment of some of these fuels with both humidified air and dry nitrogen as the preconditioning and cover gas. As expected, clay treatment always reduced fuel lubricity. Using nitrogen preconditioning and cover gas always resulted in a smaller wear scar diameter than when humidified air was used. Also observed was an indication of lower lubricity with lower boiling range fuels and lower aromatic fuels. Gas chromatographic analysis indicted changes in BOCM-stressed fuels.

  8. Automation of peanut drying with a sensor network including an in-shell kernel moisture sensor

    USDA-ARS?s Scientific Manuscript database

    Peanut drying is an essential task in the processing and handling of peanuts. Peanuts leave the fields with kernel moisture contents > 20% wet basis and need to be dried to < 10.5% w.b. for grading and storage purposes. Current peanut drying processes utilize decision support software based on model...

  9. Leaders in Future and Current Technology Teaming Up to Improve Ethanol

    Science.gov Websites

    and NREL expertise to: Develop improvements in process throughput and water management for dry mill , Complete an overall process engineering model of the dry mill technology that identifies new ways to and operation of "dry mill" plants that currently produce ethanol from corn starch. Dry

  10. Evaluation of the impact of food matrix change on the in vitro bioaccessibility of carotenoids in pumpkin (Cucurbita moschata) slices during two drying processes.

    PubMed

    Zhang, Zhongyuan; Wang, Xiaoyan; Li, Yixiang; Wei, Qiuyu; Liu, Chunju; Nie, Meimei; Li, Dajing; Xiao, Yadong; Liu, Chunquan; Xu, Lang; Zhang, Min; Jiang, Ning

    2017-12-13

    The food matrix is a limiting factor in determining the bioaccessibility of carotenoids. The impact of food matrix change on the bioaccessibility of carotenoids during drying processes is still unknown. The effect of intermittent microwave vacuum-assisted drying (IMVD) and hot air drying (HAD) on the in vitro liberation and micellization of carotenoids in pumpkin slices was studied. This variable depended on the changes of the matrix driven by the drying process. Different changes in the cell morphology and carotenoid distribution of pumpkin slices during the two processing methods were observed. For IMVD, cell wall degradation and complete chromoplast organelle disruption contributed to the improvement in the liberation and micellization of carotenoids. In the HAD-dried sample, large pigment aggregates hindered the liberation of carotenoids. The carotenoid level in the micellar fraction appeared to be lower than that in the aqueous supernatant during the two processes, suggesting that the new obstacles formed during processing and/or digestion hindered the incorporation of carotenoids in mixed micelles.

  11. Physical-chemical quality of onion analyzed under drying temperature

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Arifin, U. F.; Sasongko, S. B.

    2017-03-01

    Drying is one of conventional processes to enhance shelf life of onion. However, the active compounds such as vitamin and anthocyanin (represented in red color), degraded due to the introduction of heat during the process. The objective of this research was to evaluate thiamine content as well as color in onion drying under different temperature. As an indicator, the thiamine and color was observed every 30 minutes for 2 hours. Results showed that thiamine content and color were sensitvely influenced by the temperature change. For example, at 50°C for 2 hours drying process, the thiamine degradation was 55.37 %, whereas, at 60°C with same drying time, the degradation was 74.01%. The quality degradation also increased by prolonging drying time.

  12. Emerging freeze-drying process development and scale-up issues.

    PubMed

    Patel, Sajal Manubhai; Pikal, Michael J

    2011-03-01

    Although several guidelines do exist for freeze-drying process development and scale-up, there are still a number of issues that require additional attention. The objective of this review article is to discuss some emerging process development and scale-up issue with emphasis on effect of load condition and freeze-drying in novel container systems such as syringes, Lyoguard trays, ampoules, and 96-well plates. Understanding the heat and mass transfer under different load conditions and for freeze-drying in these novel container systems will help in developing a robust freeze-drying process which is also easier to scale-up. Further research and development needs in these emerging areas have also been addressed. © 2011 American Association of Pharmaceutical Scientists

  13. Research of Tool Durability in Surface Plastic Deformation Processing by Burnishing of Steel Without Metalworking Fluids

    NASA Astrophysics Data System (ADS)

    Grigoriev, S. N.; Bobrovskij, N. M.; Melnikov, P. A.; Bobrovskij, I. N.

    2017-05-01

    Modern vector of development of machining technologies aimed at the transition to environmentally safe technologies - “green” technologies. The concept of “green technology” includes a set of signs of knowledge intended for practical use (“technology”). One of the ways to improve the quality of production is the use of surface plastic deformation (SPD) processing methods. The advantage of the SPD is a capability to combine effects of finishing and strengthening treatment. The SPD processing can replace operations: fine turning, grinding or polishing. The SPD is a forceful contact impact of indentor on workpiece’s surface in condition of their relative motion. It is difficult to implement the core technology of the SPD (burnishing, roller burnishing, etc.) while maintaining core technological advantages without the use of lubricating and cooling technology (metalworking fluids, MWF). The “green” SPD technology was developed by the authors for dry processing and has not such shortcomings. When processing with SPD without use of MWF requirements for tool’s durability is most significant, especially in the conditions of mass production. It is important to determine the period of durability of tool at the design stage of the technological process with the purpose of wastage preventing. This paper represents the results of durability research of natural and synthetic diamonds (polycrystalline diamond - ASPK) as well as precision of polycrystalline superabrasive tools made of dense boron nitride (DBN) during SPD processing without application of MWF.

  14. Spray drying formulation of amorphous solid dispersions.

    PubMed

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Modeling of electrohydrodynamic drying process using response surface methodology

    PubMed Central

    Dalvand, Mohammad Jafar; Mohtasebi, Seyed Saeid; Rafiee, Shahin

    2014-01-01

    Energy consumption index is one of the most important criteria for judging about new, and emerging drying technologies. One of such novel and promising alternative of drying process is called electrohydrodynamic (EHD) drying. In this work, a solar energy was used to maintain required energy of EHD drying process. Moreover, response surface methodology (RSM) was used to build a predictive model in order to investigate the combined effects of independent variables such as applied voltage, field strength, number of discharge electrode (needle), and air velocity on moisture ratio, energy efficiency, and energy consumption as responses of EHD drying process. Three-levels and four-factor Box–Behnken design was employed to evaluate the effects of independent variables on system responses. A stepwise approach was followed to build up a model that can map the entire response surface. The interior relationships between parameters were well defined by RSM. PMID:24936289

  16. Innovative application of the moisture analyzer for determination of dry mass content of processed cheese

    NASA Astrophysics Data System (ADS)

    Kowalska, Małgorzata; Janas, Sławomir; Woźniak, Magdalena

    2018-04-01

    The aim of this work was the presentation of an alternative method of determination of the total dry mass content in processed cheese. The authors claim that the presented method can be used in industry's quality control laboratories for routine testing and for quick in-process control. For the test purposes both reference method of determination of dry mass in processed cheese and moisture analyzer method were used. The tests were carried out for three different kinds of processed cheese. In accordance with the reference method, the sample was placed on a layer of silica sand and dried at the temperature of 102 °C for about 4 h. The moisture analyzer test required method validation, with regard to drying temperature range and mass of the analyzed sample. Optimum drying temperature of 110 °C was determined experimentally. For Hochland cream processed cheese sample, the total dry mass content, obtained using the reference method, was 38.92%, whereas using the moisture analyzer method, it was 38.74%. An average analysis time in case of the moisture analyzer method was 9 min. For the sample of processed cheese with tomatoes, the reference method result was 40.37%, and the alternative method result was 40.67%. For the sample of cream processed cheese with garlic the reference method gave value of 36.88%, and the alternative method, of 37.02%. An average time of those determinations was 16 min. Obtained results confirmed that use of moisture analyzer is effective. Compliant values of dry mass content were obtained for both of the used methods. According to the authors, the fact that the measurement took incomparably less time for moisture analyzer method, is a key criterion of in-process control and final quality control method selection.

  17. New numerical approach for the modelling of machining applied to aeronautical structural parts

    NASA Astrophysics Data System (ADS)

    Rambaud, Pierrick; Mocellin, Katia

    2018-05-01

    The manufacturing of aluminium alloy structural aerospace parts involves several steps: forming (rolling, forging …etc), heat treatments and machining. Before machining, the manufacturing processes have embedded residual stresses into the workpiece. The final geometry is obtained during this last step, when up to 90% of the raw material volume is removed by machining. During this operation, the mechanical equilibrium of the part is in constant evolution due to the redistribution of the initial stresses. This redistribution is the main cause for workpiece deflections during machining and for distortions - after unclamping. Both may lead to non-conformity of the part regarding the geometrical and dimensional specifications and therefore to rejection of the part or additional conforming steps. In order to improve the machining accuracy and the robustness of the process, the effect of the residual stresses has to be considered for the definition of the machining process plan and even in the geometrical definition of the part. In this paper, the authors present two new numerical approaches concerning the modelling of machining of aeronautical structural parts. The first deals with the use of an immersed volume framework to model the cutting step, improving the robustness and the quality of the resulting mesh compared to the previous version. The second is about the mechanical modelling of the machining problem. The authors thus show that in the framework of rolled aluminium parts the use of a linear elasticity model is functional in the finite element formulation and promising regarding the reduction of computation times.

  18. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces and burr formations through intermittent cutting. Combining the AFM probe based machining with vibration-assisted machining enhanced nano mechanical machining processes by improving the accuracy, productivity and surface finishes. In this study, several scratching tests are performed with a single crystal diamond AFM probe to investigate the cutting characteristics and model the ploughing cutting forces. Calibration of the probe for lateral force measurements, which is essential, is also extended through the force balance method. Furthermore, vibration-assisted machining system is developed and applied to fabricate different materials to overcome some of the limitations of the AFM probe based single point nano mechanical machining. The novelty of this study includes the application of vibration-assisted AFM probe based nano scale machining to fabricate micro/nano scale features, calibration of an AFM by considering different factors, and the investigation of the nano scale material removal process from a different perspective.

  19. Study on the Optimization and Process Modeling of the Rotary Ultrasonic Machining of Zerodur Glass-Ceramic

    NASA Astrophysics Data System (ADS)

    Pitts, James Daniel

    Rotary ultrasonic machining (RUM), a hybrid process combining ultrasonic machining and diamond grinding, was created to increase material removal rates for the fabrication of hard and brittle workpieces. The objective of this research was to experimentally derive empirical equations for the prediction of multiple machined surface roughness parameters for helically pocketed rotary ultrasonic machined Zerodur glass-ceramic workpieces by means of a systematic statistical experimental approach. A Taguchi parametric screening design of experiments was employed to systematically determine the RUM process parameters with the largest effect on mean surface roughness. Next empirically determined equations for the seven common surface quality metrics were developed via Box-Behnken surface response experimental trials. Validation trials were conducted resulting in predicted and experimental surface roughness in varying levels of agreement. The reductions in cutting force and tool wear associated with RUM, reported by previous researchers, was experimentally verified to also extended to helical pocketing of Zerodur glass-ceramic.

  20. Modelling of human-machine interaction in equipment design of manufacturing cells

    NASA Astrophysics Data System (ADS)

    Cochran, David S.; Arinez, Jorge F.; Collins, Micah T.; Bi, Zhuming

    2017-08-01

    This paper proposes a systematic approach to model human-machine interactions (HMIs) in supervisory control of machining operations; it characterises the coexistence of machines and humans for an enterprise to balance the goals of automation/productivity and flexibility/agility. In the proposed HMI model, an operator is associated with a set of behavioural roles as a supervisor for multiple, semi-automated manufacturing processes. The model is innovative in the sense that (1) it represents an HMI based on its functions for process control but provides the flexibility for ongoing improvements in the execution of manufacturing processes; (2) it provides a computational tool to define functional requirements for an operator in HMIs. The proposed model can be used to design production systems at different levels of an enterprise architecture, particularly at the machine level in a production system where operators interact with semi-automation to accomplish the goal of 'autonomation' - automation that augments the capabilities of human beings.

Top