Sample records for dry mass density

  1. Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy.

    PubMed

    Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J; Marquet, Pierre

    2009-01-01

    Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.

  2. THE SPACE DENSITY EVOLUTION OF WET AND DRY MERGERS IN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Richard C. Y.; Abraham, Roberto G.; Bridge, Carrie R., E-mail: chou@astro.utoronto.ca, E-mail: abraham@astro.utoronto.ca, E-mail: bridge@astro.caltech.edu

    2011-03-15

    We analyze 1298 merging galaxies with redshifts up to z = 0.7 from the Canada-France-Hawaii Telescope Legacy Survey, taken from the catalog presented in the work of Bridge et al. By analyzing the internal colors of these systems, we show that the so-called wet and dry mergers evolve in different senses, and quantify the space densities of these systems. The local space density of wet mergers is essentially identical to the local space density of dry mergers. The evolution in the total merger rate is modest out to z {approx} 0.7, although the wet and dry populations have different evolutionarymore » trends. At higher redshifts, dry mergers make a smaller contribution to the total merging galaxy population, but this is offset by a roughly equivalent increase in the contribution from wet mergers. By comparing the mass density function of early-type galaxies to the corresponding mass density function for merging systems, we show that not all the major mergers with the highest masses (M{sub stellar}>10{sup 11} M{sub sun}) will end up with the most massive early-type galaxies, unless the merging timescale is dramatically longer than that usually assumed. On the other hand, the usually assumed merging timescale of {approx}0.5-1 Gyr is quite consistent with the data if we suppose that only less massive early-type galaxies form via mergers. Since low-intermediate-mass ellipticals are 10-100 times more common than their most massive counterparts, the hierarchical explanation for the origin of early-type galaxies may be correct for the vast majority of early types, even if incorrect for the most massive ones.« less

  3. Purely Dry Mergers do not Explain the Observed Evolution of Massive Early-type Galaxies since z ~ 1

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2014-05-01

    Several studies have suggested that the observed size evolution of massive early-type galaxies (ETGs) can be explained as a combination of dry mergers and progenitor bias, at least since z ~ 1. In this paper we carry out a new test of the dry-merger scenario based on recent lensing measurements of the evolution of the mass density profile of ETGs. We construct a theoretical model for the joint evolution of the size and mass density profile slope γ' driven by dry mergers occurring at rates given by cosmological simulations. Such dry-merger model predicts a strong decrease of γ' with cosmic time, inconsistent with the almost constant γ' inferred from observations in the redshift range 0 < z < 1. We then show with a simple toy model that a modest amount of cold gas in the mergers—consistent with the upper limits on recent star formation in ETGs—is sufficient to reconcile the model with measurements of γ'. By fitting for the amount of gas accreted during mergers, we find that models with dissipation are consistent with observations of the evolution in both size and density slope, if ~4% of the total final stellar mass arises from the gas accreted since z ~ 1. Purely dry merger models are ruled out at >99% CL. We thus suggest a scenario where the outer regions of massive ETGs grow by accretion of stars and dark matter, while small amounts of dissipation and nuclear star formation conspire to keep the mass density profile constant and approximately isothermal.

  4. Mass and size growth of early-type galaxies by dry mergers in cluster environments

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao; Ishiyama, Tomoaki

    2016-02-01

    We perform dry merger simulations to investigate the role of dry mergers in the size growth of early-type galaxies in high-density environments. We replace the virialized dark matter haloes obtained by a large cosmological N-body simulation with N-body galaxy models consisting of two components, a stellar bulge and a dark matter halo, which have higher mass resolution than the cosmological simulation. We then resimulate nine cluster-forming regions, whose masses range from 1 × 1014 to 5 × 1014 M⊙. Masses and sizes of stellar bulges are also assumed to satisfy the stellar mass-size relation of high-z compact massive early-type galaxies. We find that dry major mergers considerably contribute to the mass and size growth of central massive galaxies. One or two dry major mergers double the average stellar mass and quadruple the average size between z = 2 and 0. These growths favourably agree with observations. Moreover, the density distributions of our simulated central massive galaxies grow from the inside-out, which is consistent with recent observations. The mass-size evolution is approximated as R∝ M_{{ast }}^{α }, with α ˜ 2.24. Most of our simulated galaxies are efficiently grown by dry mergers, and their stellar mass-size relations match the ones observed in the local Universe. Our results show that the central galaxies in the cluster haloes are potential descendants of high-z (z ˜ 2-3) compact massive early-type galaxies. This conclusion is consistent with previous numerical studies which investigate the formation and evolution of compact massive early-type galaxies.

  5. True density and apparent density during the drying process for vegetables and fruits: a review.

    PubMed

    Rodríguez-Ramírez, J; Méndez-Lagunas, L; López-Ortiz, A; Torres, S Sandoval

    2012-12-01

    This review presents the concepts involved in determining the density of foodstuffs, and summarizes the volumetric determination techniques used to calculate true density and apparent density in foodstuffs exposed to the drying process. The behavior of density with respect to moisture content (X) and drying temperature (T) is presented and explained with a basis in changes in structure, conformation, chemical composition, and second-order phase changes that occur in the processes of mass and heat transport, as reported to date in the literature. A review of the empirical and theoretical equations that represent density is presented, and their application in foodstuffs is discussed. This review also addresses cases with nonideal density behavior, including variations in ρ(s) and ρ(w) as a function of the inside temperature of the material, depending on drying conditions (X, T). A compilation of studies regarding the density of dehydrated foodstuffs is also presented. © 2012 Institute of Food Technologists®

  6. Network signatures of nuclear and cytoplasmic density alterations in a model of pre and postmetastatic colorectal cancer

    NASA Astrophysics Data System (ADS)

    Damania, Dhwanil; Subramanian, Hariharan; Backman, Vadim; Anderson, Eric C.; Wong, Melissa H.; McCarty, Owen J. T.; Phillips, Kevin G.

    2014-01-01

    Cells contributing to the pathogenesis of cancer possess cytoplasmic and nuclear structural alterations that accompany their aberrant genetic, epigenetic, and molecular perturbations. Although it is known that architectural changes in primary and metastatic tumor cells can be quantified through variations in cellular density at the nanometer and micrometer spatial scales, the interdependent relationships among nuclear and cytoplasmic density as a function of tumorigenic potential has not been thoroughly investigated. We present a combined optical approach utilizing quantitative phase microscopy and partial wave spectroscopic microscopy to perform parallel structural characterizations of cellular architecture. Using the isogenic SW480 and SW620 cell lines as a model of pre and postmetastatic transition in colorectal cancer, we demonstrate that nuclear and cytoplasmic nanoscale disorder, micron-scale dry mass content, mean dry mass density, and shape metrics of the dry mass density histogram are uniquely correlated within and across different cellular compartments for a given cell type. The correlations of these physical parameters can be interpreted as networks whose nodal importance and level of connection independence differ according to disease stage. This work demonstrates how optically derived biophysical parameters are linked within and across different cellular compartments during the architectural orchestration of the metastatic phenotype.

  7. [Characteristics of floor litter and soil arthropod community in different types ot subtropical forest in Ailao Mountain of Yunnan, Southwest China].

    PubMed

    Yang, Zhao; Yang, Xiao-Dong

    2011-11-01

    By using line transect method, an investigation was conducted on the floor litter and soil arthropod community in a mid mountain wet evergreen broad-leaved forest, a mossy dwarf forest, and a Populus bonatii forest in Ailao Mountain of Yunnan in April (dry and hot season), June (rainy season), and December (dry and cold season), 2005. In both dry and rainy seasons, the existing floor litter mass, C storage, and C/N ratio in the three forests all increased in the order of mossy dwarf forest > P. bonatii forest > evergreen broad-leaved forest, but the N storage had less difference. In the floor litter layer of the forests, Acari and Collembola were the dominant groups of soil arthropod community, while Diptera larvae, Coleoptera, ants, and Homoptera were the common groups. The Sorenson coefficients of soil arthropod community in the three forests were extremely great. No significant differences were observed in the soil arthropod density (ind x m(-2)) in the floor litter layer among the three forests, but the relative density (ind x g(-1)) of soil arthropods was higher in the evergreen broad-leaved forest and P. bonatii forest than in the mossy dwarf forest. In the three forests, the density of soil arthropods was significantly higher in dry season than in rainy season, but the Shannon diversity index had less difference. There were significant positive correlations between the existing floor litter mass and the individual density (ind x m(-2)) and dominant groups of soil arthropod communities in dry and hot season (April), but negative correlations between the existing floor litter mass and the relative density (ind x g(-1)) of soil arthropod communities and Acari in dry and cold season (December). The individual densities of Collembola and Coleoptera also had positive correlations with the N storage of the existing floor litter mass in the three forests. It was considered that the floor litter and the development of soil arthropod community in the litter layer of the subtropical forests in Ailao Mountain had a close relation with the vegetation structure of the forests, and the individual density and the diversity of the soil arthropod community were controlled by the floor litter, whereas the environmental factors such as temperature and moisture in the forests also had obvious effects on the seasonal dynamics of the individual density of the soil arthropods.

  8. WHERE DO WET, DRY, AND MIXED GALAXY MERGERS OCCUR? A STUDY OF THE ENVIRONMENTS OF CLOSE GALAXY PAIRS IN THE DEEP2 GALAXY REDSHIFT SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lihwai; Cooper, Michael C.; Willmer, Christopher N. A.

    2010-08-01

    We study the environments of wet, dry, and mixed galaxy mergers at 0.75 < z < 1.2 using close pairs in the DEEP2 Galaxy Redshift Survey. We find that the typical environment of dry and mixed merger candidates is denser than that of wet mergers, mostly due to the color-density relation. While the galaxy companion rate (N{sub c}) is observed to increase with overdensity, using N-body simulations, we find that the fraction of pairs that will eventually merge decreases with the local density, predominantly because interlopers are more common in dense environments. After taking into account the merger probability ofmore » pairs as a function of local density, we find only marginal environment dependence of the galaxy merger rate for wet mergers. On the other hand, the dry and mixed merger rates increase rapidly with local density due to the increased population of red galaxies in dense environments, implying that the dry and mixed mergers are most effective in overdense regions. We also find that the environment distribution of K+A galaxies is similar to that of wet mergers alone and of wet+mixed mergers, suggesting a possible connection between K+A galaxies and wet and/or wet+mixed mergers. Based on our results, we therefore expect that the properties, including structures and masses, of red-sequence galaxies should be different between those in underdense regions and those in overdense regions since the dry mergers are significantly more important in dense environments. We conclude that, as early as z {approx} 1, high-density regions are the preferred environment in which dry mergers occur, and that present-day red-sequence galaxies in overdense environments have, on average, undergone 1.2 {+-} 0.3 dry mergers since this time, accounting for (38 {+-} 10)% of their mass accretion in the last 8 billion years. The main uncertainty in this finding is the conversion from the pair fraction to the galaxy merger rate, which is possibly as large as a factor of 2. Our findings suggest that dry mergers are crucial in the mass assembly of massive red galaxies in dense environments, such as brightest cluster galaxies in galaxy groups and clusters.« less

  9. [The analysis of the causes of variability of the relationship between leaf dry mass and area in plants].

    PubMed

    Vasfilov, S P

    2011-01-01

    The lamina dry mass: area ratio (LMA - Leaf Mass per Area) is a quite variable trait. Leaf dry mass consists of symplast mass (a set of all leaf protoplasts) and apoplast mass (a set of all cell walls in a leaf). The ratio between symplast and apoplast masses is positively related to any functional trait of leaf calculated per unit of dry mass. The value of this ratio is defined by cells size and their number per unit of leaf area, number of mesophyll cells layers and their differentiation between palisade and spongy ones, and also by density of cells packing. The LMA value is defined by leaf thickness and density. The extent and direction of variability in both leaf traits define the extent and direction of variability in LMA. Negative correlation between leaf thickness and density reduces the level of LMA variability. As a consequence of this correlation the following pattern emerges: the thinner a leaf, the denser it is. Changes in the traits that define the LMA value take place both within a species under the influence of environmental factors and between species that differ in leaf structure and functions. Light is the most powerful environmental factor that influences the LMA, increase in illumination leading to increase in LMA. This effect occurs during leaf growth at the expense of structural changes associated with the reduction of symplast/apoplast mass ratio. Under conditions of intense illumination, LMA may increase due to accumulation of starch. With regard to the majority of leaf functions, the mass of starch may be ascribed to apoplast. Starch accumulation in leaves is observed also under conditions of elevated CO2 concentration in the air. Under high illumination, however, LMA increases also due to increased apoplast contribution to leaf dry mass. Scarce mineral nutrition leads to LMA increase due to lowering of growth zones demands for phothosyntates and, therefore, to increase in starch content of leaves. High level of mineral nutrition during leaf growth period leads to LMA increase at the expense of mesophyll thickening where components of photosynthesis system are located. When additional environmental factors are involved, starch accumulation may be partly responsible for increase in LMA. LMA increase at the expense of starch accumulation, unlike that at the expense of mesophyll thickening, is accompanied by increased leaf density. Under conditions of water deficiency LMA increases, which in mature leaf may be caused by starch accumulation. LMA increase during leaf growth period under conditions of water deficiency is associated with decrease in the symplast/apoplast mass ratio.

  10. Environmental conditions and biotic interactions influence ecosystem structure and function in a drying stream

    USGS Publications Warehouse

    Ludlam, J.P.; Magoulick, D.D.

    2010-01-01

    Benthic consumers influence stream ecosystem structure and function, but these interactions depend on environmental context. We experimentally quantified the effects of central stoneroller minnows (Campostoma anomalum (Rafinesque) and Meek's crayfish (Orconectes meeki meeki (Faxon)) on benthic communities using electric exclusion quadrats in Little Mulberry Creek before (June) and during (August) seasonal stream drying. Unglazed ceramic tiles were deployed in June and August to measure periphyton and invertebrate abundance, and leafpack decomposition and primary production were also measured in August. Relationships between stoneroller and crayfish density and the size of consumer effects were evaluated with multiple linear regression models. Average chlorophyll a abundance was greater on exposed than exclusion tiles in August, but not in June. Sediment dry mass, periphyton ash-free dry mass (AFDM), and chironomid densities on tiles did not differ among treatments in either period. Leaf packs decayed faster in exposed than exclusion treatments (kexposed = 0.038 ?? 0.013, kexclusion = 0.007 ?? 0.002), but consumer effects were stronger in some pools than others. Leafpack invertebrate biomass and abundance and tile primary productivity did not differ among treatments. Consumer effects on chlorophyll a were related to crayfish and stoneroller density, and effects on chironomid density were related to stoneroller density. These results contrast with a previous exclusion experiment in Little Mulberry Creek that demonstrated strong consumer effects. The influence of stream drying on consumer effects appears to have been reduced by strong spates, underscoring the importance of conducting multi-year studies to determine the magnitude of variability in ecological interactions. ?? US Government: USGS 2010.

  11. Nitrogen nutrition of tomato plant alters leafminer dietary intake dynamics.

    PubMed

    Coqueret, Victoire; Le Bot, Jacques; Larbat, Romain; Desneux, Nicolas; Robin, Christophe; Adamowicz, Stéphane

    2017-05-01

    The leafminer Tuta absoluta (Meyrick) is a major pest of the tomato crop and its development rate is known to decline when nitrogen availability for crop growth is limited. Because N limitation reduces plant primary metabolism but enhances secondary metabolism, one can infer that the slow larval development arises from lower leaf nutritive value and/or higher plant defence. As an attempt to study the first alternative, we examined the tomato-T. absoluta interaction in terms of resource supply by leaves and intake by larvae. Tomato plants were raised under controlled conditions on N-sufficient vs. N-limited complete nutrient solutions. Plants were kept healthy or artificially inoculated with larvae for seven days. Serial harvests were taken and the N, C, dry mass and water contents were determined in roots, stems and leaves. Leaf and mine areas were also measured and the N, C, dry mass and water surface densities were calculated in order to characterize the diet of the larvae. The infestation of a specific leaf lessened its local biomass by 8-26%, but this effect was undetectable at the whole plant scale. Infestation markedly increased resource density per unit leaf area (water, dry mass, C and N) suggesting that the insect induced changes in leaf composition. Nitrogen limitation lessened whole plant growth (by 50%) and infested leaflet growth (by 32-44%). It produced opposite effects on specific resource density per unit area, increasing that of dry mass and C while decreasing water and N. These changes were ineffective on insect mining activity, but slowed down larval development. Under N limitation, T. absoluta consumed less water and N but more dry mass and C. The resulting consequences were a 50-70% increase of C:N stoichiometry in their diet and the doubling of faeces excretion. The observed limitation of larval development is therefore consistent with a trophic explanation caused by low N and/or water intakes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Understanding cathode flooding and dry-out for water management in air breathing PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Paquin, Mathieu; Fréchette, Luc G.

    An analysis of water management in air breathing small polymer electrolyte membrane fuel cells (PEMFCs) is presented. Comprehensive understanding of flooding and dry-out limiting phenomena is presented through a combination of analytical modeling and experimental investigations using a small PEMFC prototype. Configurations of the fuel cell with different heat and mass transfer properties are experimentally evaluated to assess the impact of thermal resistance and mass transport resistance on water balance. Manifestation of dry-out and flooding problems, as limiting phenomena, are explained through a ratio between these two resistances. Main conclusions are that decreasing the ratio between thermal and mass transport resistance under a certain point leads to flooding problems in air breathing PEMFC. Increasing this ratio leads to dry-out of the polymer electrolyte membrane. However, too high thermal resistance or too low mass transport resistance reduces the limiting current by pushing forward the dry-out problem. This work provides a framework to achieve the proper balance between thermal rejection and mass transport to optimize the maximum current density of free convection fuel cells.

  13. Effects of pulse and press drying disturbance on benthic stream communities

    USGS Publications Warehouse

    Lynch, Dustin T.; Magoulick, Daniel D.

    2016-01-01

    Natural disturbance is an integral component of most ecosystems and occurs in 3 different forms: pulse, press, and ramp. In lotic ecosystems, seasonal drought is a major form of disturbance, particularly in intermittent headwater streams, which often are reduced to pools that serve as refuges for biota. We used simulated intermittent stream pools to compare the effects of control, pulse, and press drying on growth and survival in 3 fish species (Lepomis megalotis, Campostoma anomalum, and Etheostoma spectabile) commonly found together in drought-prone streams in the Ozark Highlands, USA. We also compared effects on benthic community structure, including periphyton and chironomid density and sediment in deep (permanently watered) and shallow (intermittently dewatered) habitat. Only one species, L. megalotis, showed a significant reduction in length and mass growth in press drying compared with control treatments. Drying and type of drying had no effect on survival of any fish species. Drying and type of drying had strong overall effects on periphyton growth in shallow habitats, where ash-free dry mass decreased and the autotrophic index (the ratio of chlorophyll a to total biomass) increased significantly in drying relative to control and in press relative to pulse treatments. Drying negatively affected sediment accumulation in shallow habitat and chironomid density in deep habitat. Drying in intermittent streams has species-dependent effects on fish growth and benthic structure, and pulse and press drying differ in their effects on periphyton in these systems. These effects may have important consequences in seasonally drying streams as anthropogenic influence on stream drying increases.

  14. MineWolf Tiller Test and Evaluation

    DTIC Science & Technology

    2007-11-01

    scale. Reheat and reweigh until no change in mass is recorded. Soil is then dry. Calculations The moisture content of a soil is expressed as a... MOISTURE % WET DENSITY KG/M³ DRY DENSITY KG/M³ 1 07-Sep-06 gravel 10cm 4 2731 2621 2 07-Sep-06 gravel 10cm 4 2653 2541 3 07-Sep-06 gravel 10cm 3...each soil condition. This table also indicates the number of untriggered fuzes which were found separated from their main charges. The notes

  15. Interactions of an insecticide with competition and pond drying in amphibian communities

    USGS Publications Warehouse

    Boone, M.D.; Semlitsch, R.D.

    2002-01-01

    Amphibian populations are often imbedded in agricultural landscapes. Therefore the potential for contamination of their habitat is considerable. Our study examined the effects of an insecticide (carbaryl, a neurotoxin), on larval amphibian communities experiencing natural stresses of competition for resources, predation, and pond drying. In a set of experimental ponds, tadpoles of three anuran species (southern leopard frog [Rana sphenocephala], plains leopard frog [R. blairi], and the Woodhouse's toad [Bufo woodhousii]) were added to 1000-L ponds containing leaf litter, plankton, two newts (Notophthalmus viridescens), and four overwintered green frog (R. clamitans) tadpoles. We manipulated the overall tadpole density (low or high), pond hydroperiod (constant or drying), and chemical exposure (0, 3.5, 5.0, or 7.0 mg/L carbaryl) of the ponds. We measured mass, time, and survival to metamorphosis to determine treatment effects. Carbaryl positively affected Woodhouse's toad survival, although it had a negligible effect on both leopard frog species. Tadpole density interacted with the chemical treatment: Proportionately more Woodhouse's toads survived to metamorphosis in high-density environments than in low-density or control environments. Greater survival may be an indirect effect of increased algal food resources from carbaryl exposure. Most newts lost mass over the course of the experiment, although ponds with drying hydroperiods and high anuran density were the least favorable environments. Overwintered green frogs exposed to carbaryl had longer larval periods on average than did green frogs in control ponds. Our study demonstrated that even sublethal, short-lived contaminants can alter natural communities in ways that cannot be predicted from simple, one-factor studies.

  16. Quantification of the effects of architectural traits on dry mass production and light interception of tomato canopy under different temperature regimes using a dynamic functional–structural plant model

    PubMed Central

    Chen, Tsu-Wei; Nguyen, Thi My Nguyet; Kahlen, Katrin; Stützel, Hartmut

    2014-01-01

    There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional–structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length:width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is ‘ideal’ in a given environment. PMID:25183746

  17. High Capacity Cathode and Carbon Nanotube-Supported Anode for Enhanced Energy Density Batteries

    DTIC Science & Technology

    2017-09-07

    energy density of typical lithium ion cells and enables twice the run time or a reduction of cell mass by 50%. This work investigated a variety of...foil for the anode) by a doctor blade on one or both sides of the foil. The composite is dried in a vacuum oven, then calendared to compress the...composite slurry was coated onto the MWCNT paper using a doctor blade . The electrode was then dried overnight in a vacuum oven at 100°C and

  18. Power ultrasound as a pretreatment to convective drying of mulberry (Morus alba L.) leaves: Impact on drying kinetics and selected quality properties.

    PubMed

    Tao, Yang; Wang, Ping; Wang, Yilin; Kadam, Shekhar U; Han, Yongbin; Wang, Jiandong; Zhou, Jianzhong

    2016-07-01

    The effect of ultrasound pretreatment prior to convective drying on drying kinetics and selected quality properties of mulberry leaves was investigated in this study. Ultrasound pretreatment was carried out at 25.2-117.6 W/L for 5-15 min in a continuous mode. After sonication, mulberry leaves were dried in a hot-air convective dryer at 60 °C. The results revealed that ultrasound pretreatment not only affected the weight of mulberry leaves, it also enhanced the convective drying kinetics and reduced total energy consumption. The drying kinetics was modeled using a diffusion model considering external resistance and effective diffusion coefficient De and mass transfer coefficient hm were identified. Both De and hm during convective drying increased with the increase of acoustic energy density (AED) and ultrasound duration. However, De and hm increased slowly at high AED levels. Furthermore, ultrasound pretreatment had a more profound influence on internal mass transfer resistance than on external mass transfer resistance during drying according to Sherwood numbers. Regarding the quality properties, the color, antioxidant activity and contents of several bioactive compounds of dried mulberry leaves pretreated by ultrasound at 63.0 W/L for 10 min were similar to that of mulberry leaves without any pretreatments. Overall, ultrasound pretreatment is effective to shorten the subsequent drying time of mulberry leaves without damaging the quality of final product. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Optimization of Sour Cherry Juice Spray Drying as
Affected by Carrier Material and Temperature

    PubMed Central

    Zorić, Zoran; Pedisić, Sandra; Dragović-Uzelac, Verica

    2016-01-01

    Summary Response surface methodology was applied for optimization of the sour cherry Marasca juice spray drying process with 20, 30 and 40% of carriers maltodextrin with dextrose equivalent (DE) value of 4–7 and 13–17 and gum arabic, at three drying temperatures: 150, 175 and 200 °C. Increase in carrier mass per volume ratio resulted in lower moisture content and powder hygroscopicity, higher bulk density, solubility and product yield. Higher temperatures decreased the moisture content and bulk density of powders. Temperature of 200 °C and 27% of maltodextrin with 4–7 DE were found to be the most suitable for production of sour cherry Marasca powder. PMID:28115901

  20. Optimization of the aerosolization properties of an inhalation dry powder based on selection of excipients.

    PubMed

    Minne, Antoine; Boireau, Hélène; Horta, Maria Joao; Vanbever, Rita

    2008-11-01

    The aim of this study was to investigate the influence of formulation excipients on physical characteristics of inhalation dry powders prepared by spray-drying. The excipients used were a series of amino acids (glycine, alanine, leucine, isoleucine), trehalose and dipalmitoylphosphatidylcholine (DPPC). The particle diameter and the powder density were assessed by laser diffraction and tap density measurements, respectively. The aerosol behaviour of the powders was studied in a Multi-Stage Liquid Impinger. The nature and the relative proportion of the excipients affected the aerosol performance of the powders, mainly by altering powder tap density and degree of particle aggregation. The alanine/trehalose/DPPC (30/10/60 w/w/w) formulation showed optimal aerodynamic behaviour with a mass median aerodynamic diameter of 4.7 microm, an emitted dose of 94% and a fine particle fraction of 54% at an airflow rate of 100 L/min using a Spinhaler inhaler device. The powder had a tap density of 0.10 g/cm(3). The particles were spherical with a granular surface and had a 4 microm volume median diameter. In conclusion, optimization of the aerosolization properties of inhalation dry powders could be achieved by appropriately selecting the composition of the particles.

  1. Critical soil bulk density for soybean growth in Oxisols

    NASA Astrophysics Data System (ADS)

    Keisuke Sato, Michel; Veras de Lima, Herdjania; Oliveira, Pedro Daniel de; Rodrigues, Sueli

    2015-10-01

    The aim of this study was to evaluate the critical soil bulk density from the soil penetration resistance measurements for soybean root growth in Brazilian Amazon Oxisols. The experiment was carried out in a greenhouse using disturbed soil samples collected from the northwest of Para characterized by different texture. The treatments consisted of a range of soil bulk densities for each soil textural class. Three pots were used for soybean growth of and two for the soil penetration resistance curve. From the fitted model, the critical soil bulk density was determined considering the penetration resistance values of 2 and 3 MPa. After sixty days, plants were cut and root length, dry mass of root, and dry mass of shoots were determined. At higher bulk densities, the increase in soil water content decreased the penetration resistance, allowing unrestricted growth of soybean roots. Regardless of soil texture, the penetration resistance of 2 and 3 MPa had a slight effect on root growth in soil moisture at field capacity and a reduction of 50% in the soybean root growth was achieved at critical soil bulk density of 1.82, 1.75, 1.51, and 1.45 Mg m-3 for the sandy loam, sandy clay loam, clayey, and very clayey soil.

  2. Intraspecific Relationships among Wood Density, Leaf Structural Traits and Environment in Four Co-Occurring Species of Nothofagus in New Zealand

    PubMed Central

    Richardson, Sarah J.; Allen, Robert B.; Buxton, Rowan P.; Easdale, Tomás A.; Hurst, Jennifer M.; Morse, Christopher W.; Smissen, Rob D.; Peltzer, Duane A.

    2013-01-01

    Plant functional traits capture important variation in plant strategy and function. Recent literature has revealed that within-species variation in traits is greater than previously supposed. However, we still have a poor understanding of how intraspecific variation is coordinated among different traits, and how it is driven by environment. We quantified intraspecific variation in wood density and five leaf traits underpinning the leaf economics spectrum (leaf dry matter content, leaf mass per unit area, size, thickness and density) within and among four widespread Nothofagus tree species in southern New Zealand. We tested whether intraspecific relationships between wood density and leaf traits followed widely reported interspecific relationships, and whether variation in these traits was coordinated through shared responses to environmental factors. Sample sites varied widely in environmental variables, including soil fertility (25–900 mg kg–1 total P), precipitation (668–4875 mm yr–1), temperature (5.2–12.4 °C mean annual temperature) and latitude (41–46 °S). Leaf traits were strongly correlated with one another within species, but not with wood density. There was some evidence for a positive relationship between wood density and leaf tissue density and dry matter content, but no evidence that leaf mass or leaf size were correlated with wood density; this highlights that leaf mass per unit area cannot be used as a surrogate for component leaf traits such as tissue density. Trait variation was predicted by environmental factors, but not consistently among different traits; e.g., only leaf thickness and leaf density responded to the same environmental cues as wood density. We conclude that although intraspecific variation in wood density and leaf traits is strongly driven by environmental factors, these responses are not strongly coordinated among functional traits even across co-occurring, closely-related plant species. PMID:23527041

  3. Do we Underestimate the Importance of Leaf Size in Plant Economics? Disproportional Scaling of Support Costs Within the Spectrum of Leaf Physiognomy

    PubMed Central

    Niinemets, Ülo; Portsmuth, Angelika; Tena, David; Tobias, Mari; Matesanz, Silvia; Valladares, Fernando

    2007-01-01

    Background Broad scaling relationships between leaf size and function do not take into account that leaves of different size may contain different fractions of support in petiole and mid-rib. Methods The fractions of leaf biomass in petiole, mid-rib and lamina, and the differences in chemistry and structure among mid-ribs, petioles and laminas were investigated in 122 species of contrasting leaf size, life form and climatic distribution to determine the extent to which differences in support modify whole-lamina and whole-leaf structural and chemical characteristics, and the extent to which size-dependent support investments are affected by plant life form and site climate. Key Results For the entire data set, leaf fresh mass varied over five orders of magnitude. The percentage of dry mass in mid-rib increased strongly with lamina size, reaching more than 40 % in the largest laminas. The whole-leaf percentage of mid-rib and petiole increased with leaf size, and the overall support investment was more than 60 % in the largest leaves. Fractional support investments were generally larger in herbaceous than in woody species and tended to be lower in Mediterranean than in cool temperate and tropical plants. Mid-ribs and petioles had lower N and C percentages, and lower dry to fresh mass ratio, but greater density (mass per unit volume) than laminas. N percentage of lamina without mid-rib was up to 40 % higher in the largest leaves than the total-lamina (lamina and mid-rib) N percentage, and up to 60 % higher than whole-leaf N percentage, while lamina density calculated without mid-rib was up to 80 % less than that with the mid-rib. For all leaf compartments, N percentage was negatively associated with density and dry to fresh mass ratio, while C percentage was positively linked to these characteristics, reflecting the overall inverse scaling between structural and physiological characteristics. However, the correlations between N and C percentages and structural characteristics differed among mid-ribs, petioles and laminas, implying that the mass-weighted average leaf N and C percentage, density, and dry to fresh mass ratio can have different functional values depending on the importance of within-leaf support investments. Conclusions These data demonstrate that variation in leaf size is associated with major changes in within-leaf support investments and in large modifications in integrated leaf chemical and structural characteristics. These size-dependent alterations can importantly affect general leaf structure vs. function scaling relationships. These data further demonstrate important life-form effects on and climatic differentiation in foliage support costs. PMID:17586597

  4. Mango Supplementation Has No Effects on Inflammatory Mediators in Obese Adults

    PubMed Central

    Evans, Shirley F; Beebe, Maureen; Mahmood, Maryam; Janthachotikun, Sawanya; Eldoumi, Heba; Peterson, Sandra; Payton, Mark; Perkins-Veazie, Penelope; Smith, Brenda J; Lucas, Edralin A

    2017-01-01

    This pilot study examined the effects of freeze-dried mango (Mangifera indica L.) supplementation on anthropometric measurements, lipid parameters, and inflammatory mediators in obese individuals. A total of 20 obese (body mass index [BMI]: 30-35 kg/m2) adults (11 men and 9 women), aged 20 to 50 years, received 10 g/d of ground freeze-dried mango pulp for 12 weeks. Anthropometrics, lipids, and inflammatory mediators were assessed at baseline and after 12 weeks of mango supplementation. There were no differences between baseline and final visits in inflammatory mediators, lipids, diet, physical activity, and anthropometrics. Relationships were present at baseline and final visits between adiponectin and high-density lipoprotein cholesterol and between leptin and fat mass. Correlations were found after 12 weeks of mango supplementation between leptin and the following variables: waist-to-height ratio, BMI, percent fat, and fat mass. Our findings demonstrate that 12-week consumption of freeze-dried mango by obese individuals has no impact on obesity-related inflammation. PMID:28983188

  5. Patterns of food abundance for breeding waterbirds in the san luis valley of Colorado

    USGS Publications Warehouse

    Gammonley, J.H.; Laubhan, M.K.

    2002-01-01

    We measured the amount and distribution of macroinvertebrates and seeds in four wetland habitats (short emergent, seasonal open water, semipermanent/permanent open water, and saltgrass [Distichlis spicata]) used by breeding ducks and shorebirds at a wetland complex in the San Luis Valley, Colorado, USA. Density of macroinvertebrates did not differ among habitats or sampling periods (P = 0.45), but dry mass, crude protein, and gross energy production were greater (P < 0.05) in short emergent than in other habitats. These differences were largely due to the greater dry mass of gastropods in short emergent than in other habitats. Total seed density, dry mass, crude protein, and gross energy differed among habitats and periods with interaction effects (P <0.01). Although seed abundance varied among habitats and sampling periods, abundance was greatest in short emergent during all sampling periods. Breeding waterbirds consumed a variety of macroinvertebrates and seeds on the study area. Patterns of abundance among habitats of macroinvertebrates and seeds consumed by six waterbird species were not consistent with patterns of foraging habitat use by most ducks and shorebirds at this wetland complex. Our results indicate that estimates of food or nutrient abundance are useful in assessing the functional role of broad habitat types, but factors other than food abundance also influence avian selection of wetland foraging habitats. ?? 2002, The Society of Wetland Scientists.

  6. Blood Density Is Nearly Equal to Water Density: A Validation Study of the Gravimetric Method of Measuring Intraoperative Blood Loss.

    PubMed

    Vitello, Dominic J; Ripper, Richard M; Fettiplace, Michael R; Weinberg, Guy L; Vitello, Joseph M

    2015-01-01

    Purpose. The gravimetric method of weighing surgical sponges is used to quantify intraoperative blood loss. The dry mass minus the wet mass of the gauze equals the volume of blood lost. This method assumes that the density of blood is equivalent to water (1 gm/mL). This study's purpose was to validate the assumption that the density of blood is equivalent to water and to correlate density with hematocrit. Methods. 50 µL of whole blood was weighed from eighteen rats. A distilled water control was weighed for each blood sample. The averages of the blood and water were compared utilizing a Student's unpaired, one-tailed t-test. The masses of the blood samples and the hematocrits were compared using a linear regression. Results. The average mass of the eighteen blood samples was 0.0489 g and that of the distilled water controls was 0.0492 g. The t-test showed P = 0.2269 and R (2) = 0.03154. The hematocrit values ranged from 24% to 48%. The linear regression R (2) value was 0.1767. Conclusions. The R (2) value comparing the blood and distilled water masses suggests high correlation between the two populations. Linear regression showed the hematocrit was not proportional to the mass of the blood. The study confirmed that the measured density of blood is similar to water.

  7. Variability of bulk density of distillers dried grains with solubles (DDGS) during gravity-driven discharge.

    PubMed

    Clementson, C L; Ileleji, K E

    2010-07-01

    Loading railcars with consistent tonnage has immense cost implications for the shipping of distillers' dried grains with soluble (DDGS) product. Therefore, this study was designed to investigate the bulk density variability of DDGS during filling of railcar hoppers. An apparatus was developed similar to a spinning riffler sampler in order to simulate the filling of railcars at an ethanol plant. There was significant difference (P<0.05) between the initial and final measures of bulk density and particle size as the hoppers were emptied in both mass and funnel flow patterns. Particle segregation that takes place during filling of hoppers contributed to the bulk density variation and was explained by particle size variation. This phenomenon is most likely the same throughout the industry and an appropriate sampling procedure should be adopted for measuring the bulk density of DDGS stored silos or transported in railcar hoppers. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Characterisation of cationic potato starch by asymmetrical flow field-flow fractionation. Influence of ionic strength and degree of substitution.

    PubMed

    Santacruz, Stalin

    2014-06-15

    The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Evaluating energy efficient strategies and product quality for distillers' dried grains with solubles (DDGS) in dry-grind ethanol plants

    NASA Astrophysics Data System (ADS)

    Lan, Tian

    The drying of distillers dried grains with solubles (DDGS), a coproduct of dry-grind corn processing to ethanol utilizes about 30% of the total energy required for the production of a liter of fuel ethanol. Therefore, improving DDGS drying energy efficiency could have significant impact on the economics of the dry-grind corn-to-ethanol process. Drying process improvements must take account into the effects of various drying strategies on the final quality of DDGS which is primarily utilized as a feed ingredient. Previous studies in the literature have shown that physical and chemical properties of DDGS vary according to the ratio of the two primarily feed streams, wet distillers grains (WDG) and condensed distillers solubles (CDS) which make up DDGS. Extensive research using plant-scale and bench-scale experiments have been conducted on the effect of process variables (ratios of WDG, CDS and DDGS add-back) during drying on the physical and chemical properties of DDGS. However, these investigations did not correlate the product characteristics data to drying efficiency. Additionally, it cannot be clearly determined from the literature on DDGS drying that processes used in the industry are optimized for both product quality and energy efficiency. A bench-scale rotary drum dryer heated by an electrically powered heat gun was used to investigate the effects of WDG, CDS and add-back ratios on both energy efficiency, drying performance and DDGS physical and chemical properties. A two stage drying process with the bench-scale rotary dryer was used to simulate the drying of DDGS using ICM (ICM, Inc., Colwich, KS) dry-grind process technology for DDGS drying which uses two rotary drum dryers in series. Effects of drying process variables, CDS content (0, 10, 20 and 40% by mass) and percent DDGS add-back (0, 20, 40 and 60% by mass) on energy performance and product quality were determined. Sixteen different drying strategies based on drying process variable ratios were tested and the response variables were measured which included energy performance (specific power consumption, energy efficiency, drying efficiency, drying rate), physical properties [particle size distribution (PSD), geometric mean particle size (dwg), bulk density, tapped bulk density, true density, color, compressibility index (CI), Hausner ratio (HR)], and chemical properties [acid detergent fiber (ADF), neutral detergent fiber (NDF), oil, crude protein, starch, ash, etc]. The results of the bench-scale study were also compared with data from a previous plant-scale DDGS production process investigation that used similar drying strategies. Results from the experiments indicated that among all 16 drying strategies, the 10% CDS content and 60% DDGS add-back strategy achieved the least specific power consumption (SPC) while the 40% CDS content and 20% DDGS add-back strategy had the highest SPC. The energy efficiency and drying efficiency of the bench-scale data in both drying stage I and drying stage II presented similar trends as process parameters changed. The highest energy and drying efficiencies were achieved in strategies with 10% CDS content while the lowest were in strategies with 40% CDS content. A comparison of the energy and drying efficiencies for the bench-scale strategies conducted in this study with those of similar plant-scale strategies from a previous study showed a similar trend in the data for drying stage 1, even though the actual numbers were quite different for the two experimental scales. On average, the energy and drying efficiencies for the bench-scale study was 40% less than the corresponding plant-scale strategy. CDS content had the most influence on the energy performance during DDGS drying, while percent DDGS add-back had more impact on the SPC given a constant CDS content level. By comparing both the physical properties, bulk density in particular which relates to logistics, and energy performance data, the drying strategy with 20% CDS and 60% add-back performed the best. Therefore, it is not surprising why this is the strategy used by ICM drying process technology for DDGS. The particle size (dwg) and particle size distribution (PSD) of DDGS varied with the drying strategies; by varying CDS content and percent DDGS add-back. It was determined that the percent DDGS add-back had no effect on either PSD or dgw. Under the same drying strategy, drying stage I always had a higher drying rate than stage II. Also, the drying curves under the same CDS content showed similar shapes. As CDS content increased, the color of DDGS became darker; both DDGS bulk density and tapped bulk density increased. In addition, CI and HR values decreased, ADF and NDF contents decreased and oil and ash contents increased with increased CDS content. Changes in percent DDGS add-back had a negligible effect on the DDGS chemical composition. Overall, the physical and chemical composition analysis of DDGS for both bench-scale and plant-scale studies followed similar trends.

  10. Blood Density Is Nearly Equal to Water Density: A Validation Study of the Gravimetric Method of Measuring Intraoperative Blood Loss

    PubMed Central

    Vitello, Dominic J.; Ripper, Richard M.; Fettiplace, Michael R.; Weinberg, Guy L.; Vitello, Joseph M.

    2015-01-01

    Purpose. The gravimetric method of weighing surgical sponges is used to quantify intraoperative blood loss. The dry mass minus the wet mass of the gauze equals the volume of blood lost. This method assumes that the density of blood is equivalent to water (1 gm/mL). This study's purpose was to validate the assumption that the density of blood is equivalent to water and to correlate density with hematocrit. Methods. 50 µL of whole blood was weighed from eighteen rats. A distilled water control was weighed for each blood sample. The averages of the blood and water were compared utilizing a Student's unpaired, one-tailed t-test. The masses of the blood samples and the hematocrits were compared using a linear regression. Results. The average mass of the eighteen blood samples was 0.0489 g and that of the distilled water controls was 0.0492 g. The t-test showed P = 0.2269 and R 2 = 0.03154. The hematocrit values ranged from 24% to 48%. The linear regression R 2 value was 0.1767. Conclusions. The R 2 value comparing the blood and distilled water masses suggests high correlation between the two populations. Linear regression showed the hematocrit was not proportional to the mass of the blood. The study confirmed that the measured density of blood is similar to water. PMID:26464949

  11. Structural characteristics of gels prepared from sonohydrolysis and conventional hydrolysis of TEOS: an emphasis on the mass fractal as determined from the pore size distribution

    NASA Astrophysics Data System (ADS)

    Vollet, D. R.; Torres, R. R.; Donatti, D. A.; Ibañez Ruiz, A.

    2005-11-01

    Silica gels were preparated from fixed proportion mixtures of tetraethoxysilane, water and hydrocloric acid, using either ultrasound stimulation (US) or conventional method (CO) in the hydrolysis step of the process. Wet gels were obtained with the same silica volume concentration and density. According to small-angle X-ray scattering, the structure of the wet gels can be described as mass fractal structures with mass fractal dimension D = 2.20 in a length scale = 7.9 nm, in the case of wet gels US, and D = 2.26 in a length scale = 6.9 nm, in the case of wet gels CO. The mass fractal characteristics of the wet gels US and CO account for the different structures evolved in the drying of the gels US and CO in the obtaining of xerogels and aerogels. The pore structure of the dried gels was studied by nitrogen adsorption as a function of the temperature. Aerogels (US and CO) present high porosity with pore size distribution (PSD) curves in the mesopore region while xerogels (US and CO) present minor porosity with PSD curves mainly in the micropore region. The dried gels US (aerogels and xerogels) generally present pore volume and specific surface area greater than the dried gels CO. The mass fractal structure of the aerogels has been studied from an approach based on the PSD curves exclusively.

  12. Development of a novel dry powder inhalation formulation for the delivery of rivastigmine hydrogen tartrate.

    PubMed

    Simon, Alice; Amaro, Maria Inês; Cabral, Lucio Mendes; Healy, Anne Marie; de Sousa, Valeria Pereira

    2016-03-30

    The purpose of this study was to prepare engineered particles of rivastigmine hydrogen tartrate (RHT) and to characterize the physicochemical and aerodynamic properties, in comparison to a lactose carrier formulation (LCF). Microparticles were prepared from ethanol/water solutions containing RHT with and without the incorporation of L-leucine (Leu), using a spray dryer. Dry powder inhaler formulations prepared were characterized by scanning electron microscopy, powder X-ray diffraction, laser diffraction particle sizing, ATR-FTIR, differential scanning calorimetry, bulk and tapped density, dynamic vapour sorption and in vitro aerosol deposition behaviour using a next generation impactor. The smooth-surfaced spherical morphology of the spray dried microparticles was altered by adding Leu, resulting in particles becoming increasingly wrinkled with increasing Leu. Powders presented low densities. The glass transition temperature was sufficiently high (>90 °C) to suggest good stability at room temperature. As Leu content increased, spray dried powders presented lower residual solvent content, lower particle size, higher fine particle fraction (FPF<5 μm), and lower mass median aerodynamic diameter (MMAD). The LCF showed a lower FPF and higher MMAD, relative to the spray dried formulations containing more than 10% Leu. Spray dried RHT powders presented better aerodynamic properties, constituting a potential drug delivery system for oral inhalation. Copyright © 2016. Published by Elsevier B.V.

  13. The Distinct Build-Up Of Dense And Normal Massive Passive Galaxies In Vipers

    NASA Astrophysics Data System (ADS)

    Gargiulo, Adriana; Vipers Team

    2017-06-01

    At fixed stellar mass, the population of passive galaxies has increased its mean effective radius < Re > by a factor 5 in the last 10 Gyr, decreasing its mean stellar mass density (S = Mstar/(2πRe 2 ) by a factor >> 10. Whether this increase in < Re > is mainly due to the size-growth of individual galaxies through dry mergers, or to the fact that newly quenched galaxies have a larger size, is still matter of debate. A promising approach to shed light on this issue is to investigate the evolution of the number density of passive galaxies as a function of their mass density. In this context, massive (Mstar >10^11 Msun) passive galaxies are the most intriguing systems to study, since, in a hierarchical scenario, they are expected to accrete their stellar mass mainly by mergers. The wide area (˜ 16 sq. deg) and high sampling rate (˜ 40%) of the spectroscopic survey VIPERS allowed us to collect a sample of ˜ 2000 passive massive galaxies over the redshift range 0.5 < z < 1.0 and to study, with unprecedented statistics, the evolution of their number density as function of their mean stellar mass density in this redshift range. Taking advantage of both spectroscopic (D4000) and photometric (SED fitting) data available, we studied the age of the stellar population of passive galaxies as function both of redshift and mass density. This information, combined with the evolution of the number density allowed us to put constraints on the mass accretion scenarios of passive galaxies. In this talk I will present our results and conclusions and how they depend on the environment in which the galaxies reside.

  14. CO2 (dry ice) cleaning system

    NASA Technical Reports Server (NTRS)

    Barnett, Donald M.

    1995-01-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system components include: a dry ice pellet supply, a non-reactive propellant gas source, a pellet and propellant metering device, and a media transport and acceleration hose and nozzle arrangement. Dry ice cleaning system operating parameters include: choice of propellant gas, its pressure and temperature, dry ice mass flow rate, dry ice pellet size and shape, and acceleration nozzle configuration. These parameters may be modified to fit different applications. The growth of the dry ice cleaning industry will depend upon timely data acquisition of the effects that independent changes in these parameters have on cleaning rates, with respect to different surface coating and substrate combinations. With this data, optimization of cleaning rates for particular applications will be possible. The analysis of the applicable range of modulation of these parameters, within system component mechanical constraints, has just begun.

  15. Density of ocular components of the bovine eye.

    PubMed

    Su, Xiao; Vesco, Christina; Fleming, Jacquelyn; Choh, Vivian

    2009-10-01

    Density is essential for acoustic characterization of tissues and provides a basic input for ultrasound backscatter and absorption models. Despite the existence of extensive compilations of acoustic properties, neither unified data on ocular density nor comparisons of the densities between all ocular components can be found. This study was undertaken to determine the mass density of all the ocular components of the bovine eye. Liquid components were measured through mass/volume ratio, whereas solid tissues were measured with two different densitometry techniques based on Archimedes Principle. The first method determines the density by measuring dry and wet weight of the tissues. The second method consists of immersing the tissues in sucrose solutions of varying densities and observing their buoyancy. Although the mean densities for all tissues were found to be within 0.02 g/cm by both methods, only the sucrose solution method offered a consistent relative order for all measured ocular components, as well as a considerably smaller standard deviation (a maximum standard deviation of 0.004 g/cm for cornea). The lens was found to be the densest component, followed by the sclera, cornea, choroid, retina, aqueous, and vitreous humors. The consistent results of the sucrose solution tests suggest that the ocular mass density is a physical property that is more dependent on the compositional and structural characteristics of the tissue and than on population variability.

  16. Response of nutrients, biofilm, and benthic insects to salmon carcass addition.

    Treesearch

    Shannon M. Claeson; Judith L. Li; Jana E. Compton; Peter A. Bisson

    2006-01-01

    Salmon carcass addition to streams is expected to increase stream productivity at multiple trophic levels. This study examined stream nutrient (nitrogen, phosphorus, and carbon), epilithic biofilm (ash-free dry mass and chlorophyll a), leaf-litter decomposition, and macroinvertebrate (density and biomass) responses to carcass addition in three headwater streams of...

  17. [Conversion methods of freshwater snail tissue dry mass and ash free dry mass].

    PubMed

    Zhao, Wei-Hua; Wang, Hai-Jun; Wang, Hong-Zhu; Liu, Xue-Qin

    2009-06-01

    Mollusk biomass is usually expressed as wet mass with shell, but this expression fails to represent real biomass due to the high calcium carbonate content in shells. Tissue dry mass and ash free dry mass are relatively close to real biomass. However, the determination process of these two parameters is very complicated, and thus, it is necessary to establish simple and practical conversion methods for these two parameters. A total of six taxa of freshwater snails (Bellamya sp., Alocinma longicornis, Parafossarulus striatulus, Parafossarulus eximius, Semisulcospira cancellata, and Radix sp.) common in the Yangtze Basin were selected to explore the relations of their five shell dimension parameters, dry and wet mass with shells with their tissue dry mass and ash free dry mass. The regressions of the tissue dry mass and ash free dry mass with the five shell dimension parameters were all exponential (y = ax(b)). Among them, shell width and shell length were more precise (the average percentage error between observed and predicted value being 22.0% and 22.5%, respectively) than the other three parameters in the conversion of dry mass. Wet mass with shell could be directly converted to tissue dry mass and ash free dry mass, with an average percentage error of 21.7%. According to the essence of definition and the errors of conversion, ash free dry mass would be the optimum parameter to express snail biomass.

  18. True Density Prediction of Garlic Slices Dehydrated by Convection.

    PubMed

    López-Ortiz, Anabel; Rodríguez-Ramírez, Juan; Méndez-Lagunas, Lilia

    2016-01-01

    Physiochemical parameters with constant values are employed for the mass-heat transfer modeling of the air drying process. However, structural properties are not constant under drying conditions. Empirical, semi-theoretical, and theoretical models have been proposed to describe true density (ρp). These models only consider the ideal behavior and assume a linear relationship between ρp and moisture content (X); nevertheless, some materials exhibit a nonlinear behavior of ρp as a function of X with a tendency toward being concave-down. This comportment, which can be observed in garlic and carrots, has been difficult to model mathematically. This work proposes a semi-theoretical model for predicting ρp values, taking into account the concave-down comportment that occurs at the end of the drying process. The model includes the ρs dependency on external conditions (air drying temperature (Ta)), the inside temperature of the garlic slices (Ti ), and the moisture content (X) obtained from experimental data on the drying process. Calculations show that the dry solid density (ρs ) is not a linear function of Ta, X, and Ti . An empirical correlation for ρs is proposed as a function of Ti and X. The adjustment equation for Ti is proposed as a function of Ta and X. The proposed model for ρp was validated using experimental data on the sliced garlic and was compared with theoretical and empirical models that are available in the scientific literature. Deviation between the experimental and predicted data was determined. An explanation of the nonlinear behavior of ρs and ρp in the function of X, taking into account second-order phase changes, are then presented. © 2015 Institute of Food Technologists®

  19. Supercritical fluid extraction of fat from ground beef: effects of water on gravimetric and GC-FAME fat determinations.

    PubMed

    Eller, F J; King, J W

    2001-10-01

    This study investigated the supercritical carbon dioxide (SC-CO(2)) extraction of fat from ground beef and the effects of several factors on the gravimetric determination of fat. The use of ethanol modifier with the SC-CO(2) was not necessary for efficient fat extraction; however, the ethanol did increase the coextraction of water. This coextraction of water caused a significant overestimation of gravimetric fat. Oven-drying ground beef samples prior to extraction inhibited the subsequent extraction of fat, whereas oven-drying the extract after collection decreased the subsequent gas chromatographic fatty acid methyl ester (GC-FAME) fat determination. None of the drying agents tested were able to completely prevent the coextraction of water, and silica gel and molecular sieves inhibited the complete extraction of fat. Measurements of collection vial mass indicated that CO(2) extraction/collection causes an initial increase in mass due to the density of CO(2) (relative to displaced air) followed by a decrease in vial mass due to the removal of adsorbed water from the collection vial. Microwave-drying of the empty collection vials removes approximately 3 mg of adsorbed water, approximately 15-20 min is required for readsorption of the displaced water. For collection vials containing collected fat, microwave-drying effectively removed coextracted water, and the vials reached equilibration after approximately 10-15 min. Silanizing collection vials did not significantly affect weight loss during microwave-drying. SC-CO(2) can be used to accurately determine fat gravimetrically for ground beef, and the presented method can also be followed by GC-FAME analysis to provide specific fatty acid information as well.

  20. Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.

    2006-12-01

    Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.

  1. Brown trout and food web interactions in a Minnesota stream

    USGS Publications Warehouse

    Zimmerman, J.K.H.; Vondracek, B.

    2007-01-01

    1. We examined indirect, community-level interactions in a stream that contained non-native brown trout (Salmo trutta Linnaeus), native brook trout (Salvelinus fontinalis Mitchill) and native slimy sculpin (Cottus cognatus Richardson). Our objectives were to examine benthic invertebrate composition and prey selection of fishes (measured by total invertebrate dry mass, dry mass of individual invertebrate taxa and relative proportion of invertebrate taxa in the benthos and diet) among treatments (no fish, juvenile brook trout alone, juvenile brown trout alone, sculpin with brook trout and sculpin with brown trout). 2. We assigned treatments to 1 m2 enclosures/exclosures placed in riffles in Valley Creek, Minnesota, and conducted six experimental trials. We used three designs of fish densities (addition of trout to a constant number of sculpin with unequal numbers of trout and sculpin; addition of trout to a constant number of sculpin with equal numbers of trout and sculpin; and replacement of half the sculpin with an equal number of trout) to investigate the relative strength of interspecific versus intraspecific interactions. 3. Presence of fish (all three species, alone or in combined-species treatments) was not associated with changes in total dry mass of benthic invertebrates or shifts in relative abundance of benthic invertebrate taxa, regardless of fish density design. 4. Brook trout and sculpin diets did not change when each species was alone compared with treatments of both species together. Likewise, we did not find evidence for shifts in brown trout or sculpin diets when each species was alone or together. 5. We suggest that native brook trout and non-native brown trout fill similar niches in Valley Creek. We did not find evidence that either species had an effect on stream communities, potentially due to high invertebrate productivity in Valley Creek. ?? 2007 Blackwell Publishing Ltd.

  2. Energy density of anchovy Engraulis encrasicolus in the Bay of Biscay.

    PubMed

    Dubreuil, J; Petitgas, P

    2009-02-01

    The energy density (E(D)) of anchovy Engraulis encrasicolus in the Bay of Biscay was determined by direct calorimetry and its evolution with size, age and season was investigated. The water content and energy density varied seasonally following opposite trends. The E(D) g(-1) of wet mass (M(W)) was highest at the end of the feeding season (autumn: c. 8 kJ g(-1)M(W)) and lowest in late winter (c. 6 kJ g(-1)M(W)). In winter, the fish lost mass, which was partially replaced by water, and the energy density decreased. These variations in water content and organic matter content may have implications on the buoyancy of the fish. The water content was the major driver of the energy density variations for a M(W) basis. A significant linear relationship was established between E(D) g(-1) (y) and the per cent dry mass (M(D); x): y =-4.937 + 0.411x. In the light of the current literature, this relationship seemed to be not only species specific but also ecosystem specific. Calibration and validation of fish bioenergetics models require energy content measurements on fish samples collected at sea. The present study provides a first reference for the energetics of E. encrasicolus in the Bay of Biscay.

  3. Launch Vehicle Performance for Bipropellant Propulsion Using Atomic Propellants With Oxygen

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2000-01-01

    Atomic propellants for bipropellant launch vehicles using atomic boron, carbon, and hydrogen were analyzed. The gross liftoff weights (GLOW) and dry masses of the vehicles were estimated, and the 'best' design points for atomic propellants were identified. Engine performance was estimated for a wide range of oxidizer to fuel (O/F) ratios, atom loadings in the solid hydrogen particles, and amounts of helium carrier fluid. Rocket vehicle GLOW was minimized by operating at an O/F ratio of 1.0 to 3.0 for the atomic boron and carbon cases. For the atomic hydrogen cases, a minimum GLOW occurred when using the fuel as a monopropellant (O/F = 0.0). The atomic vehicle dry masses are also presented, and these data exhibit minimum values at the same or similar O/F ratios as those for the vehicle GLOW. A technology assessment of atomic propellants has shown that atomic boron and carbon rocket analyses are considered to be much more near term options than the atomic hydrogen rockets. The technology for storing atomic boron and carbon has shown significant progress, while atomic hydrogen is not able to be stored at the high densities needed for effective propulsion. The GLOW and dry mass data can be used to estimate the cost of future vehicles and their atomic propellant production facilities. The lower the propellant's mass, the lower the overall investment for the specially manufactured atomic propellants.

  4. Nitrogen and photosynthetic function of hermatypic corals. Oxygen exchange of Stylophora pistillata coral under artificial feeding.

    PubMed

    Leletkin, V A

    2005-01-01

    The change of Stylophora pistillata coral photosynthetic function (oxygen exchange and biomass of symbionts) under starvation and food enrichment was studied to understand the role of heterotrophy in nitrogen supplements of zooxanthellae. The starvation caused the decrease of frequency of zooxanthellae cells division in 7-10 times. The number of degraded algae cells increased in same proportion and, as a result, the density of zooxanthellae in corals decreased about two times during one-two weeks. Under starvation corals kept their photosynthetic capacity at the level of corals in situ by means of enhancing the zooxanthellae gross photosynthesis. The respiration rate of coral had tendency to increase and the dry mass of polyp tissue to decrease. Under artificial feeding which was following starvation the zooxanthellae density increased in 1.5-2 times, and particular food caused more intensive accumulation of zooxanthellae comparing to dissolved inorganic ammonium. The feeding regime did not affect dry mass of polyp tissue and chlorophyll content as well as respiration and gross productivity of the corals. The conclusion about high effectiveness of particular feeding for supplying symbiotic algae with nitrogen was made and trophic status of zooxanthellae in hospite was determined as unlimited by nitrogen.

  5. Late Quaternary carbonate accumulation along eastern South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Crabill, K.; Slowey, N. C.; Foreman, A. D.; Charles, C.

    2016-12-01

    Water masses originating from both the North Atlantic Ocean and the Southern Ocean intersect the Walvis Ridge and Namibian margin of southwest Africa. Changes in the distribution and properties of these water masses through time are reflected by variations in the nature of the sediments accumulating along this margin. A suite of piston and gravity cores that possess sediment records corresponding to the most recent glacial-interglacial cycles were collected from the water depth range of 550 to 3700 meters. Sediment dry bulk density, XRF analyses and the concentration of CaCO3 were precisely determined at regular depth intervals in these cores. Foraminiferal δ18O along with XRF Fe/Ca data provide an age-depth model for key cores. The age-depth model and dry bulk density will be used with the calcium carbonate contents to calculate the accumulation rates of CaCO3 during each MIS 1-5e. The spatial and temporal variability in both the CaCO3 content and the CaCO3 mass accumulation rates along the Namibian continental slope will be described. Based on comparisons of these two parameters, inferences will be made about how variations of CaCO3 production, dilution of by non-CaCO3 sediment components, and dissolution of CaCO3 due to changes in ocean circulation/climate have occurred during intervals of the last glacial-interglacial cycle.

  6. Extraction of orange peel's essential oil by solvent-free microwave extraction

    NASA Astrophysics Data System (ADS)

    Qadariyah, Lailatul; Amelia, Prilia Dwi; Admiralia, Cininta; Bhuana, Donny S.; Mahfud, Mahfud

    2017-05-01

    Sweet orange peel (Citrus sinensis) is part of orange plant that contains essential oils. Generally, taking essential oil from orange peel is still using hydrodistillation and steam-hydrodistillation method which still needs solvent and takes a long time to produce high quality essential oil. Therefore, the objectives of this experiment are to study the process of orange peel's essential oil extraction using Solvent Free Microwave Extraction (SFME) and to study the operating condition that effect an optimum yield and quality of the essential oil. In this experiment, extraction process with SFME method goes for 60 minutes at atmospheric pressure. Variables for SFME are: variation of orange peel condition (fresh and dry), ratio orange peel mass to distiller volume (0,1; 0,2; 0,3; 0,4 g/mL), orange peel size (±0,5; ±2; ±3,5 cm width), and microwave power (100, 264, 400 Watt). Moisture content of fresh peel is 71,4% and for dry peel is 17,37% which is obtained by sun drying. The result of this experiment will be analyzed with GC-MS, SEM, density, and miscibility in ethanol 90%. The optimum result obtained from this experiment based on the number of the yield under condition of fresh orange peel is at peel mass/distiller volume 0,1 g/mL, orange peel size ±3,5 cm width, and microwave power 400 Watt, results 1,6738% yield. The result of GC-MS for fresh orange peel shows that the dominant compound is Limonene 54,140% and for dry orange peel is Limonene 59,705%. The density obtained is around 0,8282-0,8530 g/mL and miscibility in ethanol 90% is 1:5.

  7. Methods for Tier 2 Modeling Within the Training Range Environmental Evaluation and Characterization System

    DTIC Science & Technology

    2011-03-01

    acre-yr, compared with 54 tons/acre-yr as computed with the Universal Soil Loss Equation ( USLE ). Thus, it appears that the Einstein and Brown equations... USLE that is already needed for soil erosion that exports aqueous phase (adsorbed and dissolved) MC. This will mean that solid phase MC will not affect...phase MC mass to soil mass b = soil dry bulk density, g/m3 A = AOI site area, m2 E = soil erosion rate as determined from the USLE , m/yr It is

  8. WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1979-01-01

    A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.

  9. On-Board Propulsion System Analysis of High Density Propellants

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1998-01-01

    The impact of the performance and density of on-board propellants on science payload mass of Discovery Program class missions is evaluated. A propulsion system dry mass model, anchored on flight-weight system data from the Near Earth Asteroid Rendezvous mission is used. This model is used to evaluate the performance of liquid oxygen, hydrogen peroxide, hydroxylammonium nitrate, and oxygen difluoride oxidizers with hydrocarbon and metal hydride fuels. Results for the propellants evaluated indicate that the state-of-art, Earth Storable propellants with high performance rhenium engine technology in both the axial and attitude control systems has performance capabilities that can only be exceeded by liquid oxygen/hydrazine, liquid oxygen/diborane and oxygen difluoride/diborane propellant combinations. Potentially lower ground operations costs is the incentive for working with nontoxic propellant combinations.

  10. Effects of vial packing density on drying rate during freeze-drying of carbohydrates or a model protein measured using a vial-weighing technique.

    PubMed

    Gieseler, Henning; Lee, Geoffrey

    2008-02-01

    To determine the effects of vial packing density in a laboratory freeze dryer on drying rate profiles of crystalline and amorphous formulations. The Christ freeze-drying balance measured cumulative water loss, m(t), and instantaneous drying rate, m(t), of water, mannitol, sucrose and sucrose/BSA formulations in commercial vials. Crystalline mannitol shows drying rate behaviour indicative of a largely homogeneous dried-product layer. The drying rate behaviour of amorphous sucrose indicates structural heterogeneity, postulated to come from shrinkage or microcollapse. Trehalose dries more slowly than sucrose. Addition of BSA to either disaccharide decreases primary drying time. Higher vial packing density greatly reduces drying rate because of effects of radiation heat transfer from chamber walls to test vial. Plots of m(t) versus radical t and m(t) versus layer thickness (either ice or dried-product) allow interpretation of changes in internal cake morphology during drying. Vial packing density greatly influences these profiles.

  11. Evolution of thermo-physical properties of Akuama (picralima nitida) seed and antioxidants retention capacity during hot air drying

    NASA Astrophysics Data System (ADS)

    Ndukwu, M. C.; Bennamoun, L.; Anozie, O.

    2018-05-01

    Interest in picralima nitida is growing over the years because of its therapeutic application in human and animal medicine. In many countries the dried seed is compounded and sold as drugs but there is limited information on the process variables associated with its thermal processing. The study therefore, is focused on the evolution of physical properties, heat and mass transfer coefficient, specific heat capacity, energy utilization and quality characteristics of the seed during oven and microwave drying. The goal is to generate data using theoretical and empirical steps for process model development that can be applied in dryer design. The results obtained showed that the coefficient of heat and mass transfer varied from 0.0421-1.326 W/m2 K and 1.49 × 10-7 - 8.47 × 10-6 m/s respectively while the specific heat capacity ranged between 1189 and 2531 J/ kg K. The volume of the seed shrank gradually with a non-linear exponential shape for all drying treatments. The intrinsic particle and bulk densities decreased while the porosity of the seed increased with drying period, indicating an increase in internal voids of the seeds. The energy and specific energy utilized for drying peaked after 14 h, 12 h and 7 h of continuous drying at 50, 60 and 70 °C for oven drying treatment. Effective moisture diffusivities for all treatments ranged from 5.37 × 10-10 - 1.45 × 10-7 m/s2 with activation energy of 27.82 kJ/mol and 20 W/g for oven and microwave respectively. Flavonoide was the least stable at high temperature among the screend compound.

  12. [Effects of sediment on the early settlement stage of Sargassum horneri on rocky subtidal reefs].

    PubMed

    Bi, Yuan-Xin; Zhang, Shou-Yu; Wu, Zu-Li

    2013-05-01

    By using sediment trap and suction pump to measure the relative sediment levels across different sites and water depths, and through the in situ measurements of Sargassum horneri density, this paper assessed the relationships between the distribution of S. horneri and the sediment levels and wave exposure on the rocky subtidal platforms around Gouqi Island, China. The laboratory-based experiments were also conducted to test the effects of different sediment levels on the attachment of S. horneri zygote and the survival rate of S. horneri germling after the attachment. S. horneri predominated at the sites with lesser sediment and wave exposure, but less distributed in the sites with high level sediment and wave-exposure. At different water depths, the distribution of S. horneri was negatively correlated with the amount of sediment. A medium dusting (dry mass 10.47 mg x cm(-2), approximate 0.543 mm deep) of sediment on the plate reduced the percentage of S. horneri zygotes attached to the substratum by 4.4%, and a heavy dusting (dry mass 13.96 mg x cm(-2), approximate 0.724 mm deep) of sediment on the plate completely prevented the attachment. One week after the settlement of the zygotes, there were 24% of the germlings still survived when the dry mass sediment coverage was 13.96 mg x cm(-2). However, when the dry mass sediment coverage was up to 34.9 mg x cm(-2) (approximate 1.81 mm deep), 100% of the germlings died. Overall, the distribution of S. horneri was not only related to sediment level, but also restricted by wave exposure to some extent. Sediment level was a critical factor affecting the distribution of S. horneri, particularly at its zygote attachment stage.

  13. 40 CFR 60.1795 - May I conduct stack testing less often?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter... meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter (total mass) for... 15 nanograms per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry...

  14. 40 CFR 60.1795 - May I conduct stack testing less often?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter... meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter (total mass) for... 15 nanograms per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry...

  15. 40 CFR 60.1795 - May I conduct stack testing less often?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter... meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter (total mass) for... 15 nanograms per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry...

  16. Proximate composition and energy density of some North Pacific forage fishes

    USGS Publications Warehouse

    van Pelt, Thomas I.; Piatt, John F.; Lance, Brian K.; Roby, Daniel D.

    1997-01-01

    Mature pelagic forage fish species (capelin, sand lance, squid) had greater lipid concentrations than juvenile age-classes of large demersal and pelagic fish species (walleye pollock, Pacific cod, Atka mackerel, greenling, prowfish, rockfish, sablefish). Myctophids preyed on by puffins have at least twice as much lipid per gram compared to mature capelin, sand lance and squid, and an order of magnitude greater lipid concentrations than juvenile forage fish. Energy density of forage fishes was positively correlated with lipid content, and negatively correlated with water, ash-free lean dry mass (mostly protein), and ash contents.

  17. [Effects of water storage in deeper soil layers on the root growth, root distribution and economic yield of cotton in arid area with drip irrigation under mulch].

    PubMed

    Luo, Hong-Hai; Zhang, Hong-Zhi; Zhang, Ya-Li; Zhang, Wang-Feng

    2012-02-01

    Taking cotton cultivar Xinluzao 13 as test material, a soil column culture expenment was conducted to study the effects of water storage in deeper (> 60 cm) soil layer on the root growth and its relations with the aboveground growth of the cultivar in arid area with drip irrigation under mulch. Two levels of water storage in 60-120 cm soil layer were installed, i. e., well-watered and no watering, and for each, the moisture content in 0-40 cm soil layer during growth period was controlled at two levels, i.e., 70% and 55% of field capacity. It was observed that the total root mass density of the cultivar and its root length density and root activity in 40-120 cm soil layer had significant positive correlations with the aboveground dry mass. When the moisture content in 0-40 cm soil layer during growth season was controlled at 70% of field capacity, the total root mass density under well-watered and no watering had less difference, but the root length density and root activity in 40-120 cm soil layer under well-watered condition increased, which enhanced the water consumption in deeper soil layer, increased the aboveground dry mass, and finally, led to an increased economic yield and higher water use efficiency. When the moisture content in 0-40 cm soil layer during growth season was controlled at 55% of field capacity and the deeper soil layer was well-watered, the root/shoot ratio and root length density in 40-120 cm soil layer and the root activity in 80-120 cm soil layer were higher, the water consumption in deeper soil layer increased, but it was still failed to adequately compensate for the negative effects of water deficit during growth season on the impaired growth of roots and aboveground parts, leading to a significant decrease in the economic yield, as compared with that at 70% of field capacity. Overall, sufficient water storage in deeper soil layer and a sustained soil moisture level of 65% -75% of field capacity during growth period could promote the downward growth of cotton roots, which was essential for achieving water-saving and high-yielding cultivation of cotton with drip irrigation under mulch.

  18. Evaluation of on-board hydrogen storage methods f or high-speed aircraft

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Ates; Akyurtlu, Jale F.

    1991-01-01

    Hydrogen is the fuel of choice for hypersonic vehicles. Its main disadvantage is its low liquid and solid density. This increases the vehicle volume and hence the drag losses during atmospheric flight. In addition, the dry mass of the vehicle is larger due to larger vehicle structure and fuel tankage. Therefore it is very desirable to find a fuel system with smaller fuel storage requirements without deteriorating the vehicle performance substantially. To evaluate various candidate fuel systems, they were first screened thermodynamically with respect to their energy content and cooling capacities. To evaluate the vehicle performance with different fuel systems, a simple computer model is developed to compute the vehicle parameters such as the vehicle volume, dry mass, effective specific impulse, and payload capacity. The results indicate that if the payload capacity (or the gross lift-off mass) is the most important criterion, only slush hydrogen and liquid hydrogen - liquid methane gel shows better performance than the liquid hydrogen vehicle. If all the advantages of a smaller vehicle are considered and a more accurate mass analysis can be performed, other systems using endothermic fuels such as cyclohexane, and some boranes may prove to be worthy of further consideration.

  19. Lateral Mixing DRI Analysis: Submesoscale Water-Mass Spectra

    DTIC Science & Technology

    2013-09-30

    program to determine submesoscale variability in the Sargasso Sea under weak-to-moderate mesoscale conditions. Two sites were examined, a quiet site...anomalies and dye streaks. Hammerhead carries finescale Sea -Bird sensors for temperature, conductivity and pressure as well as Chelsea and WetLab...m of dye-injection target densities. They were embedded in 35-km towyo grid surveys by Craig Lee’s Triaxus and 15-km butterfly surveys by Jody

  20. Disentangling the drivers of coarse woody debris behavior and carbon gas emissions during fire

    NASA Astrophysics Data System (ADS)

    Zhao, Weiwei; van der Werf, Guido R.; van Logtestijn, Richard S. P.; van Hal, Jurgen R.; Cornelissen, Johannes H. C.

    2016-04-01

    The turnover of coarse woody debris, a key terrestrial carbon pool, plays fundamental roles in global carbon cycling. Biological decomposition and fire are two main fates for dead wood turnover. Compared to slow decomposition, fire rapidly transfers organic carbon from the earth surface to the atmosphere. Both a-biotic environmental factors and biotic wood properties determine coarse wood combustion and thereby its carbon gas emissions during fire. Moisture is a key inhibitory environmental factor for fire. The properties of dead wood strongly affect how it burns either directly or indirectly through interacting with moisture. Coarse wood properties vary between plant species and between various decay stages. Moreover, if we put a piece of dead wood in the context of a forest fuel bed, the soil and wood contact might also greatly affect their fire behavior. Using controlled laboratory burns, we disentangled the effects of all these driving factors: tree species (one gymnosperms needle-leaf species, three angiosperms broad-leaf species), wood decay stages (freshly dead, middle decayed, very strongly decayed), moisture content (air-dried, 30% moisture content in mass), and soil-wood contact (on versus 3cm above the ground surface) on dead wood flammability and carbon gas efflux (CO2 and CO released in grams) during fire. Wood density was measured for all coarse wood samples used in our experiment. We found that compared to other drivers, wood decay stages have predominant positive effects on coarse wood combustion (for wood mass burned, R2=0.72 when air-dried and R2=0.52 at 30% moisture content) and associated carbon gas emissions (for CO2andCO (g) released, R2=0.55 when air-dried and R2=0.42 at 30% moisture content) during fire. Thus, wood decay accelerates wood combustion and its CO2 and CO emissions during fire, which can be mainly attributed to the decreasing wood density (for wood mass burned, R2=0.91 when air-dried and R2=0.63 at 30% moisture content) as wood becomes more decomposed. Our results provide quantitative experimental evidence for how several key abiotic and biotic factors, especially moisture content and the key underlying trait wood density, as well as their interactions, together drive coarse wood carbon turnover through fire. Our experimental data on coarse wood behavior and gas efflux during fire will help to improve the predictive power of global vegetation climate models on dead wood turnover and its feedback to climate.

  1. Resistance of Particleboards Made from Fast-Growing Wood Species to Subterranean Termite Attack

    PubMed Central

    Hermawan, Dede; Hadi, Yusuf S.; Fajriani, Esi.; Massijaya, Muhamad Y.; Hadjib, Nurwati

    2012-01-01

    Laboratory-made particleboards were tested for their resistance to subterranean termite, Coptotermes curvignathus Holmgren (Order Isoptera, Family Termitidae) by Indonesian standard SNI 01.7207–2006, during four weeks and at the end of the test their mass loss percentage and feeding rate were determined. Particleboards consisted of: jabon (Anthocephalus cadamba, Family Rubiacea) with a density of 0.41 g/cm3; sungkai (Peronema canescens, Family Verbenaceae) with a density of 0.46 g/cm3; mangium (Acacia mangium, Family Rhamnaceae) with a density of 0.60 g/cm3 separately and the three species mixture at a rate of 1:1:1. Densities of the boards were targetted at 0.60 g/cm3 and 0.80 g/cm3 by using 12% urea formaldehyde as binder with 2% paraffin as additive based on oven dry wood particle weight. The hand-formed mats and hot-pressing at 130 °C and 2.45 MPa for 10 min were applied. The results showed that particleboards density did not affect mass loss and feeding rate, but the particleboards made from higher density wood resulted in higher resistance to subterranean termite attack. The most resistant particleboards were made of magium, followed by sungkai, mixed species, and jabon. PMID:26466542

  2. Resistance of Particleboards Made from Fast-Growing Wood Species to Subterranean Termite Attack.

    PubMed

    Hermawan, Dede; Hadi, Yusuf S; Fajriani, Esi; Massijaya, Muhamad Y; Hadjib, Nurwati

    2012-05-29

    Laboratory-made particleboards were tested for their resistance to subterranean termite, Coptotermes curvignathus Holmgren (Order Isoptera, Family Termitidae) by Indonesian standard SNI 01.7207-2006, during four weeks and at the end of the test their mass loss percentage and feeding rate were determined. Particleboards consisted of: jabon (Anthocephalus cadamba, Family Rubiacea) with a density of 0.41 g/cm³; sungkai (Peronema canescens, Family Verbenaceae) with a density of 0.46 g/cm³; mangium (Acacia mangium, Family Rhamnaceae) with a density of 0.60 g/cm³ separately and the three species mixture at a rate of 1:1:1. Densities of the boards were targetted at 0.60 g/cm³ and 0.80 g/cm³ by using 12% urea formaldehyde as binder with 2% paraffin as additive based on oven dry wood particle weight. The hand-formed mats and hot-pressing at 130 °C and 2.45 MPa for 10 min were applied. The results showed that particleboards density did not affect mass loss and feeding rate, but the particleboards made from higher density wood resulted in higher resistance to subterranean termite attack. The most resistant particleboards were made of magium, followed by sungkai, mixed species, and jabon.

  3. Accurate mass replacement method for the sediment concentration measurement with a constant volume container

    NASA Astrophysics Data System (ADS)

    Ban, Yunyun; Chen, Tianqin; Yan, Jun; Lei, Tingwu

    2017-04-01

    The measurement of sediment concentration in water is of great importance in soil erosion research and soil and water loss monitoring systems. The traditional weighing method has long been the foundation of all the other measuring methods and instrument calibration. The development of a new method to replace the traditional oven-drying method is of interest in research and practice for the quick and efficient measurement of sediment concentration, especially field measurements. A new method is advanced in this study for accurately measuring the sediment concentration based on the accurate measurement of the mass of the sediment-water mixture in the confined constant volume container (CVC). A sediment-laden water sample is put into the CVC to determine its mass before the CVC is filled with water and weighed again for the total mass of the water and sediments in the container. The known volume of the CVC, the mass of sediment-laden water, and sediment particle density are used to calculate the mass of water, which is replaced by sediments, therefore sediment concentration of the sample is calculated. The influence of water temperature was corrected by measuring water density to determine the temperature of water before measurements were conducted. The CVC was used to eliminate the surface tension effect so as to obtain the accurate volume of water and sediment mixture. Experimental results showed that the method was capable of measuring the sediment concentration from 0.5 up to 1200 kg m-3. A good liner relationship existed between the designed and measured sediment concentrations with all the coefficients of determination greater than 0.999 and the averaged relative error less than 0.2%. All of these seem to indicate that the new method is capable of measuring a full range of sediment concentration above 0.5 kg m-3 to replace the traditional oven-drying method as a standard method for evaluating and calibrating other methods.

  4. The co-evolution of total density profiles and central dark matter fractions in simulated early-type galaxies

    NASA Astrophysics Data System (ADS)

    Remus, Rhea-Silvia; Dolag, Klaus; Naab, Thorsten; Burkert, Andreas; Hirschmann, Michaela; Hoffmann, Tadziu L.; Johansson, Peter H.

    2017-01-01

    We present evidence from cosmological hydrodynamical simulations for a co-evolution of the slope of the total (dark and stellar) mass density profile, γtot, and the dark matter fraction within the half-mass radius, fDM, in early-type galaxies. The relation can be described as γtot = A fDM + B for all systems at all redshifts. The trend is set by the decreasing importance of gas dissipation towards lower redshifts and for more massive systems. Early-type galaxies are smaller, more concentrated, have lower fDM and steeper γtot at high redshifts and at lower masses for a given redshift; fDM and γtot are good indicators for growth by `dry' merging. The values for A and B change distinctively for different feedback models, and this relation can be used as a test for such models. A similar correlation exists between γtot and the stellar mass surface density Σ*. A model with weak stellar feedback and feedback from black holes is in best agreement with observations. All simulations, independent of the assumed feedback model, predict steeper γtot and lower fDM at higher redshifts. While the latter is in agreement with the observed trends, the former is in conflict with lensing observations, which indicate constant or decreasing γtot. This discrepancy is shown to be artificial: the observed trends can be reproduced from the simulations using observational methodology to calculate the total density slopes.

  5. Effect of mungbean (Vigna radiate) living mulch on density and dry weight of weeds in corn (Zea mays) field.

    PubMed

    Moghadam, M Bakhtiari; Vazan, S; Darvishi, B; Golzardi, F; Farahani, M Esfini

    2011-01-01

    Living mulch is a suitable solution for weeds ecological management and is considered as an effective method in decreasing of weeds density and dry weight. In order to evaluate of mungbean living mulch effect on density and dry weight of weeds in corn field, an experiment was conducted as a split plot based on randomized complete block design with four blocks in Research Field of Department of Agronomy, Karaj Branch, Islamic Azad University in 2010. Main plots were time of mungbean suppression with 2,4-D herbicide in four levels (4, 6, 8 and 10 leaves stages of corn) and control without weeding and sub plots were densities of mungbean in three levels (50%, 100% and 150% more than optimum density). Density and dry weight of the weeds were measured in all plots with a quadrate (60 x 100 cm) in 10 days after tasseling. Totally, 9 species of weeds were identified in the field, which included 4 broad leave species that were existed in all plots. The results showed that the best time for suppression of mungbean is the 8 leaves stage of corn, which decreased density and dry weight of weeds, 53% and 51% in comparison with control, respectively. Increase of density of mungbean from 50% into 150% more than optimum density, decrease the density and dry weight of weeds, 27.5% and 22%, respectively. It is concluded that the best time and density for suppression mungbean was 8 leaves stage of corn, and 150% more than optimum density, which decreased density and dry weight of the weeds 69% and 63.5% in comparison with control, respectively.

  6. Dry minor mergers and size evolution of high-z compact massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao

    2012-09-01

    Recent observations show evidence that high-z (z ~ 2 - 3) early-type galaxies (ETGs) are quite compact than that with comparable mass at z ~ 0. Dry merger scenario is one of the most probable one that can explain such size evolution. However, previous studies based on this scenario do not succeed to explain both properties of high-z compact massive ETGs and local ETGs, consistently. We investigate effects of sequential, multiple dry minor (stellar mass ratio M2/M1<1/4) mergers on the size evolution of compact massive ETGs. We perform N-body simulations of the sequential minor mergers with parabolic and head-on orbits, including a dark matter component and a stellar component. We show that the sequential minor mergers of compact satellite galaxies are the most efficient in the size growth and in decrease of the velocity dispersion of the compact massive ETGs. The change of stellar size and density of the merger remnant is consistent with the recent observations. Furthermore, we construct the merger histories of candidates of high-z compact massive ETGs using the Millennium Simulation Database, and estimate the size growth of the galaxies by dry minor mergers. We can reproduce the mean size growth factor between z = 2 and z = 0, assuming the most efficient size growth obtained in the case of the sequential minor mergers in our simulations.

  7. Highly reduced mass loss rates and increased litter layer in radioactively contaminated areas.

    PubMed

    Mousseau, Timothy A; Milinevsky, Gennadi; Kenney-Hunt, Jane; Møller, Anders Pape

    2014-05-01

    The effects of radioactive contamination from Chernobyl on decomposition of plant material still remain unknown. We predicted that decomposition rate would be reduced in the most contaminated sites due to an absence or reduced densities of soil invertebrates. If microorganisms were the main agents responsible for decomposition, exclusion of large soil invertebrates should not affect decomposition. In September 2007 we deposited 572 bags with uncontaminated dry leaf litter from four species of trees in the leaf litter layer at 20 forest sites around Chernobyl that varied in background radiation by more than a factor 2,600. Approximately one quarter of these bags were made of a fine mesh that prevented access to litter by soil invertebrates. These bags were retrieved in June 2008, dried and weighed to estimate litter mass loss. Litter mass loss was 40% lower in the most contaminated sites relative to sites with a normal background radiation level for Ukraine. Similar reductions in litter mass loss were estimated for individual litter bags, litter bags at different sites, and differences between litter bags at pairs of neighboring sites differing in level of radioactive contamination. Litter mass loss was slightly greater in the presence of large soil invertebrates than in their absence. The thickness of the forest floor increased with the level of radiation and decreased with proportional loss of mass from all litter bags. These findings suggest that radioactive contamination has reduced the rate of litter mass loss, increased accumulation of litter, and affected growth conditions for plants.

  8. High-density 3D graphene-based monolith and related materials, methods, and devices

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Charnvanichborikarn, Supakit; Kucheyev, Sergei; Montalvo, Elizabeth; Shin, Swanee; Tylski, Elijah

    2017-03-21

    A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm.sup.3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.

  9. In situ microscopy for online monitoring of cell concentration in Pichia pastoris cultivations.

    PubMed

    Marquard, D; Enders, A; Roth, G; Rinas, U; Scheper, T; Lindner, P

    2016-09-20

    In situ Microscopy (ISM) is an optical non-invasive technique to monitor cells in bioprocesses in real-time. Pichia pastoris is one of the most promising protein expression systems. This yeast combines fast growth on simple media and important eukaryotic features such as glycosylation. In this work, the ISM technology was applied to Pichia pastoris cultivations for online monitoring of the cell concentration during cultivation. Different ISM settings were tested. The acquired images were analyzed with two image processing algorithms. In seven cultivations the cell concentration was monitored by the applied algorithms and offline samples were taken to determine optical density (OD) and dry cell mass (DCM). Cell concentrations up to 74g/L dry cell mass could be analyzed via the ISM. Depending on the algorithm and the ISM settings, an accuracy between 0.3 % and 12 % was achieved. The overall results show that for a robust measurement a combination of the two described algorithms is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Bone-Protective Effects of Dried Plum in Postmenopausal Women: Efficacy and Possible Mechanisms

    PubMed Central

    Arjmandi, Bahram H.; Johnson, Sarah A.; Pourafshar, Shirin; Navaei, Negin; George, Kelli S.; Hooshmand, Shirin; Chai, Sheau C.; Akhavan, Neda S.

    2017-01-01

    Osteoporosis is an age-related chronic disease characterized by a loss of bone mass and quality, and is associated with an increased risk of fragility fractures. Postmenopausal women are at the greatest risk of developing osteoporosis due to the cessation in ovarian hormone production, which causes accelerated bone loss. As the demographic shifts to a more aged population, a growing number of postmenopausal women will be afflicted with osteoporosis. Certain lifestyle factors, including nutrition and exercise, are known to reduce the risk of developing osteoporosis and therefore play an important role in bone health. In terms of nutrition, accumulating evidence suggests that dried plum (Prunus domestica L.) is potentially an efficacious intervention for preventing and reversing bone mass and structural loss in an ovariectomized rat model of osteoporosis, as well as in osteopenic postmenopausal women. Here, we provide evidence supporting the efficacy of dried plum in preventing and reversing bone loss associated with ovarian hormone deficiency in rodent models and in humans. We end with the results of a recent follow-up study demonstrating that postmenopausal women who previously consumed 100 g dried plum per day during our one-year clinical trial conducted five years earlier retained bone mineral density to a greater extent than those receiving a comparative control. Additionally, we highlight the possible mechanisms of action by which bioactive compounds in dried plum exert bone-protective effects. Overall, the findings of our studies and others strongly suggest that dried plum in its whole form is a promising and efficacious functional food therapy for preventing bone loss in postmenopausal women, with the potential for long-lasting bone-protective effects. PMID:28505102

  11. [Seedling index of Salvia miltiorrhiza and its simulation model].

    PubMed

    Huang, Shu-Hua; Xu, Fu-Li; Wang, Wei-Ling; Du, Jun-Bo; Ru, Mei; Wang, Jing; Cao, Xian-Yan

    2012-10-01

    Through the correlation analysis on the quantitative traits and their ratios of Salvia miltiorrhiza seedlings and seedling quality, a series of representative indices reflecting the seedling quality of the plant species were determined, and the seedling index suitable to the S. miltiorrhiza seedlings was ascertained by correlation degree analysis. Meanwhile, based on the relationships between the seedling index and the air temperature, solar radiation and air humidity, a simulation model for the seedling index of S. miltiorrhiza was established. The experimental data of different test plots and planting dates were used to validate the model. The results showed that the root diameter, stem diameter, crown dry mass, root dry mass, and plant dry mass had significant positive relationships with the other traits, and could be used as the indicators of the seedling's health. The seedling index of S. miltiorrhiza could be calculated by (stem diameter/root diameter + root dry mass/crown dry mass) x plant dry mass. The stem diameter, root dry mass, crown dry mass and plant dry mass had higher correlations with the seedling index, and thus, the seedling index determined by these indicators could better reflect the seedling's quality. The coefficient of determination (R2) between the predicted and measured values based on 1:1 line was 0.95, and the root mean squared error (RMSE) was 0.15, indicating that the model established in this study could precisely reflect the quantitative relationships between the seedling index of S. miltiorrhiza and the environmental factors.

  12. Effect of Viscous Agents on Corneal Density in Dry Eye Disease.

    PubMed

    Wegener, Alfred R; Meyer, Linda M; Schönfeld, Carl-Ludwig

    2015-10-01

    To investigate the effect of the viscous agents, hydroxypropyl methylcellulose (HPMC), carbomer, povidone, and a combination of HPMC and povidone on corneal density in patients with dry eye disease. In total, 98 eyes of 49 patients suffering from dry eye and 65 eyes of 33 healthy age-matched individuals were included in this prospective, randomized study. Corneal morphology was documented with Scheimpflug photography and corneal density was analyzed in 5 anatomical layers (epithelium, bowman membrane, stroma, descemet's membrane, and endothelium). Corneal density was evaluated for the active ingredients HPMC, carbomer, povidone, and a combination of HPMC and povidone as the viscous agents contained in the artificial tear formulations used by the dry eye patients. Data were compared to the age-matched healthy control group without medication. Corneal density in dry eye patients was reduced in all 5 anatomical layers compared to controls. Corneal density was highest and very close to control in patients treated with HPMC containing ocular lubricants. Patients treated with lubricants, including carbomer as the viscous agent displayed a significant reduction of corneal density in layers 1 and 2 compared to control. HPMC containing ocular lubricants can help to maintain physiological corneal density and may be beneficial in the treatment of dry eye disease.

  13. Freeze drying vs microwave drying-methods for synthesis of sinteractive thoria powders

    NASA Astrophysics Data System (ADS)

    Annie, D.; Chandramouli, V.; Anthonysamy, S.; Ghosh, Chanchal; Divakar, R.

    2017-02-01

    Thoria powders were synthesized by oxalate precipitation from an aqueous solution of the nitrate. The filtered precipitates were freeze dried or microwave dried before being calcined at 1073 K. The thoria powders obtained were characterized for crystallite size, specific surface area, bulk density, particle size distribution and residual carbon. Microstructure of the product was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Sinterability of the synthesized powders was studied by measuring the density of the sintered compacts. Powders that can be consolidated and sintered to densities ∼96% theoretical density (TD) at 1773 K were obtained.

  14. Population density and phenotypic attributes influence the level of nematode parasitism in roe deer.

    PubMed

    Body, Guillaume; Ferté, Hubert; Gaillard, Jean-Michel; Delorme, Daniel; Klein, François; Gilot-Fromont, Emmanuelle

    2011-11-01

    The impact of parasites on population dynamics is well documented, but less is known on how host population density affects parasite spread. This relationship is difficult to assess because of confounding effects of social structure, population density, and environmental conditions that lead to biased among-population comparisons. Here, we analyzed the infestation by two groups of nematodes (gastro-intestinal (GI) strongyles and Trichuris) in the roe deer (Capreolus capreolus) population of Trois Fontaines (France) between 1997 and 2007. During this period, we experimentally manipulated population density through changes in removals. Using measures collected on 297 individuals, we quantified the impact of density on parasite spread after taking into account possible influences of date, age, sex, body mass, and weather conditions. The prevalence and abundance of eggs of both parasites in females were positively related to roe deer density, except Trichuris in adult females. We also found a negative relationship between parasitism and body mass, and strong age and sex-dependent patterns of parasitism. Prime-age adults were less often parasitized and had lower fecal egg counts than fawns or old individuals, and males were more heavily and more often infected than females. Trichuris parasites were not affected by weather, whereas GI strongyles were less present after dry and hot summers. In the range of observed densities, the observed effect of density likely involves a variation of the exposure rate, as opposed to variation in host susceptibility.

  15. Dry minor mergers and size evolution of high-z compact massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao

    2013-01-01

    Recent observations show evidence that high-z (z ˜ 2-3) early-type galaxies (ETGs) are more compact than those with comparable mass at z ˜ 0. Such size evolution is most likely explained by the `dry merger sceanario'. However, previous studies based on this scenario cannot consistently explain the properties of both high-z compact massive ETGs and local ETGs. We investigate the effect of multiple sequential dry minor mergers on the size evolution of compact massive ETGs. From an analysis of the Millennium Simulation Data Base, we show that such minor (stellar mass ratio M2/M1 < 1/4) mergers are extremely common during hierarchical structure formation. We perform N-body simulations of sequential minor mergers with parabolic and head-on orbits, including a dark matter component and a stellar component. Typical mass ratios of these minor mergers are 1/20 < M2/M1 ≤q 1/10. We show that sequential minor mergers of compact satellite galaxies are the most efficient at promoting size growth and decreasing the velocity dispersion of compact massive ETGs in our simulations. The change of stellar size and density of the merger remnants is consistent with recent observations. Furthermore, we construct the merger histories of candidates for high-z compact massive ETGs using the Millennium Simulation Data Base and estimate the size growth of the galaxies through the dry minor merger scenario. We can reproduce the mean size growth factor between z = 2 and z = 0, assuming the most efficient size growth obtained during sequential minor mergers in our simulations. However, we note that our numerical result is only valid for merger histories with typical mass ratios between 1/20 and 1/10 with parabolic and head-on orbits and that our most efficient size-growth efficiency is likely an upper limit.

  16. Mineral accumulation in vegetative and reproductive tissues during seed development in Medicago truncatula

    PubMed Central

    Garcia, Christina B.; Grusak, Michael A.

    2015-01-01

    Enhancing nutrient density in legume seeds is one of several strategies being explored to improve the nutritional quality of the food supply. In order to develop crop varieties with increased seed mineral concentration, a more detailed understanding of mineral translocation within the plant is required. By studying mineral accumulation in different organs within genetically diverse members of the same species, it may be possible to identify variable traits that modulate seed mineral concentration. We utilized two ecotypes (A17 and DZA315.16) of the model legume, Medicago truncatula, to study dry mass and mineral accumulation in the leaves, pod walls, and seeds during reproductive development. The pod wall dry mass was significantly different between the two ecotypes beginning at 12 days after pollination, whereas there was no significant difference in the average dry mass of individual seeds between the two ecotypes at any time point. There were also no significant differences in leaf dry mass between ecotypes; however, we observed expansion of A17 leaves during the first 21 days of pod development, while DZA315.16 leaves did not display a significant increase in leaf area. Mineral profiling of the leaves, pod walls, and seeds highlighted differences in accumulation patterns among minerals within each tissue as well as genotypic differences with respect to individual minerals. Because there were differences in the average seed number per pod, the total seed mineral content per pod was generally higher in A17 than DZA315.16. In addition, mineral partitioning to the seeds tended to be higher in A17 pods. These data revealed that mineral retention within leaves and/or pod walls might attenuate mineral accumulation within the seeds. As a result, strategies to increase seed mineral content should include approaches that will enhance export from these tissues. PMID:26322063

  17. Brick Paving Systems in Expeditionary Environments: Field Testing

    DTIC Science & Technology

    2012-07-01

    specific gravity of 2.7, optimum moisture content of 2.6 percent, and a maximum dry density of 114.2 pcf. Figure 5 shows the Proctor curve developed by...4  Figure 3. Dry density versus moisture content for CH material...6  Figure 5. Dry density versus moisture content for blended GM base course. ..................................... 7  Figure 6

  18. FT-ICR mass spectrometric and density functional theory studies of sulfate prenucleation clusters

    NASA Astrophysics Data System (ADS)

    Lemke, K. H.

    2012-12-01

    Recent mass spectrometric1 and relaxation spectroscopic studies2 of metal sulfate salts have demonstrated that aqueous clusters play an important role in sulfate prenucleation processes. While such studies provide evidence that that ion clusters are nucleation relevant species, ultra-high resolution mass spectrumetry, in particular, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS) can provide additional valuable information about the molecular composition and stability of individual ion clusters. Prompted by the above studies, our group has begun a systematic survey of metal sulfate clusters using FT-ICR mass spectrometry. Here, I report stoichiometries, structures and thermodynamic properties of calcium sulfate ion clusters, both "dry" and microsolvated, using electrospray ionization FT-ICR mass spectrometry in combination with semi-empirical methods and M062X/aug-cc-PVXZ level density functional theory calculations. In electrosprayed dilute aqueous solutions of CaSO4 (1-20mM), droplet desolvation results in the formation of stable doubly-charged clusters of [Ca(CaSO4)m(H2O)n]+2 (m≤10 & n≤9) as well as larger quadruply-charged ion clusters [Ca2(CaSO4)m(H2O)n]+4 with m≤23 and n≤10, demonstrating considerable sulfate nucleation potential in undersaturated electrolyte solutions. An attempt was also made to assess the extent of ion cluster aggregation in solution prior to electrospray ionization by measuring ion mass spectra at different solution concentrations. In brief, an increase in calcium sulfate concentration from 1-10mM results in a continuous increase in polynuclear ion cluster species, while smaller clusters, for instance, Ca[CaSO4]+2 and corresponding hydrated forms, become increasingly less abundant. Building on semi-empirical methods, M062X calculations have been applied to predict calcium sulfate cluster geometries, both "dry" and microsolvated, as well as the size-dependent evolution of clustering and hydration energies. 1Schoeder et al. (2011) J.Am.Chem.Soc., 133, 2444; 2Chen et al. (2005) J.Sol.Chem., 34, 1045;

  19. Effect of ethanol, dry extract and reducing sugars on density and viscosity of Brazilian red wines.

    PubMed

    Neto, Flávia S P P; de Castilhos, Maurício B M; Telis, Vânia R N; Telis-Romero, Javier

    2015-05-01

    Density and viscosity are properties that exert great influence on the body of wines. The present work aimed to evaluate the influence of the alcoholic content, dry extract, and reducing sugar content on density and viscosity of commercial dry red wines at different temperatures. The rheological assays were carried out on a controlled stress rheometer, using concentric cylinder geometry at seven temperatures (2, 8, 14, 16, 18, 20 and 26 °C). Wine viscosity decreased with increasing temperature and density was directly related to the wine alcohol content, whereas viscosity was closely linked to the dry extract. Reducing sugars did not influence viscosity or density. Wines produced from Italian grapes were presented as full-bodied with higher values for density and viscosity, which was linked to the higher alcohol content and dry extract, respectively. The results highlighted the major effects of certain physicochemical properties on the physical properties of wines, which in turn is important for guiding sensory assessments. © 2014 Society of Chemical Industry.

  20. 40 CFR 62.15250 - May I conduct stack testing less often?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 15 nanograms per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter (total mass) for Class II units, for 2 consecutive years. In this case, you may choose... per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic...

  1. 40 CFR 62.15250 - May I conduct stack testing less often?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 15 nanograms per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter (total mass) for Class II units, for 2 consecutive years. In this case, you may choose... per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic...

  2. 40 CFR 62.15250 - May I conduct stack testing less often?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 15 nanograms per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic meter (total mass) for Class II units, for 2 consecutive years. In this case, you may choose... per dry standard cubic meter (total mass) for Class I units, or 30 nanograms per dry standard cubic...

  3. Stem extension and mechanical stability of Xanthium canadense grown in an open or in a dense stand

    PubMed Central

    Watari, Ryoji; Nagashima, Hisae; Hirose, Tadaki

    2014-01-01

    Background and Aims Plants in open, uncrowded habitats typically have relatively short stems with many branches, whereas plants in crowded habitats grow taller and more slender at the expense of mechanical stability. There seems to be a trade-off between height growth and mechanical stability, and this study addresses how stand density influences stem extension and consequently plant safety margins against mechanical failure. Methods Xanthium canadense plants were grown either solitarily (S-plants) or in a dense stand (D-plants) until flowering. Internode dimensions and mechanical properties were measured at the metamer level, and the critical buckling height beyond which the plant elastically buckles under its own weight and the maximum lateral wind force the plant can withstand were calculated. Key Results Internodes were longer in D- than S-plants, but basal diameter did not differ significantly. Relative growth rates of internode length and diameter were negatively correlated to the volumetric solid fraction of the internode. Internode dry mass density was higher in S- than D-plants. Young's modulus of elasticity and the breaking stress were higher in lower metamers, and in D- than in S-plants. Within a stand, however, both moduli were positively related to dry mass density. The buckling safety factor, a ratio of critical buckling height to actual height, was higher in S- than in D-plants. D-plants were found to be approaching the limiting value 1. Lateral wind force resistance was higher in S- than in D-plants, and increased with growth in S-plants. Conclusions Critical buckling height increased with height growth due mainly to an increase in stem stiffness and diameter and a reduction in crown/stem mass ratio. Lateral wind force resistance was enhanced due to increased tissue strength and diameter. The increase in tissue stiffness and strength with height growth plays a crucial role in maintaining a safety margin against mechanical failure in herbaceous species that lack the capacity for secondary growth. PMID:24879768

  4. Entomopathogenic Nematodes and Bacteria Applications for Control of the Pecan Root-Knot Nematode, Meloidogyne partityla, in the Greenhouse

    PubMed Central

    Shapiro-Ilan, David I.; Nyczepir, Andrew P.; Lewis, Edwin E.

    2006-01-01

    Meloidogyne partityla is a parasite of pecan and walnut. Our objective was to determine interactions between the entomopathogenic nematode-bacterium complex and M. partityla. Specifically, we investigated suppressive effects of Steinernema feltiae (strain SN) and S. riobrave (strain 7–12) applied as infective juveniles and in infected host insects, as well as application of S. feltiae's bacterial symbiont Xenorhabdus bovienii on M. partityla. In two separate greenhouse trials, the treatments were applied to pecan seedlings that were simultaneously infested with M. partityla eggs; controls received only water and M. partityla eggs. Additionally, all treatment applications were re-applied (without M. partityla eggs) two months later. Four months after initial treatment, plants were assessed for number of galls per root system, number of egg masses per root system, number of eggs per root system, number of eggs per egg mass, number of eggs per gram dry root weight, dry shoot weight, and final population density of M. partityla second-stage juveniles (J2). In the first trial, the number of egg masses per plant was lower in the S. riobrave-infected host treatment than in the control (by approximately 18%). In the second trial, dry root weight was higher in the S. feltiae-infected host treatment than in the control (approximately 80% increase). No other treatment effects were detected. The marginal and inconsistent effects observed in our experiments indicate that the treatments we applied are not sufficient for controlling M. partityla. PMID:19259462

  5. Dynamic quantitative analysis of adherent cell cultures by means of lens-free video microscopy

    NASA Astrophysics Data System (ADS)

    Allier, C.; Vincent, R.; Navarro, F.; Menneteau, M.; Ghenim, L.; Gidrol, X.; Bordy, T.; Hervé, L.; Cioni, O.; Bardin, S.; Bornens, M.; Usson, Y.; Morales, S.

    2018-02-01

    We present our implementation of lens-free video microscopy setup for the monitoring of adherent cell cultures. We use a multi-wavelength LED illumination together with a dedicated holographic reconstruction algorithm that allows for an efficient removal of twin images from the reconstructed phase image for densities up to those of confluent cell cultures (>500 cells/mm2). We thereby demonstrate that lens-free video microscopy, with a large field of view ( 30 mm2) can enable us to capture the images of thousands of cells simultaneously and directly inside the incubator. It is then possible to trace and quantify single cells along several cell cycles. We thus prove that lens-free microscopy is a quantitative phase imaging technique enabling estimation of several metrics at the single cell level as a function of time, for example the area, dry mass, maximum thickness, major axis length and aspect ratio of each cell. Combined with cell tracking, it is then possible to extract important parameters such as the initial cell dry mass (just after cell division), the final cell dry mass (just before cell division), the average cell growth rate, and the cell cycle duration. As an example, we discuss the monitoring of a HeLa cell cultures which provided us with a data-set featuring more than 10 000 cell cycle tracks and more than 2x106 cell morphological measurements in a single time-lapse.

  6. Use of a Tea Infuser to Submerge Low-Density Dry Ice

    ERIC Educational Resources Information Center

    Fictorie, Carl P.; Vitz, Ed

    2004-01-01

    A simple tea infuser is obtained and been used as a container for the dry ice to simulate the effect from high-density dry ice. The tea infuser is a simple, low cost device to allow instructors with access to dry ice makers to effectively use the interesting demonstration.

  7. Development of a compact freeze vacuum drying for jelly fish (Schypomedusae)

    NASA Astrophysics Data System (ADS)

    Alhamid, M. Idrus; Yulianto, M.; Nasruddin

    2012-06-01

    A new design of a freeze vacuum drying with internal cooling and heater from condenser's heat loss was built and tested. The dryer was used to dry jelly fish (schypomedusae), to study the effect of drying parameters such as the temperature within the drying chamber on mass losses (evaporation) during the freezing stage and the moisture ratio at the end of the drying process. The midili thin layer mathematical drying model was used to estimate and predict the moisture ratio curve based on different drying chamber temperatures. This experiment shows that decreasing the drying chamber temperature with constant pressure results in less mass loss during the freezing stage Drying time was reduced with an increase in drying temperature. Decreasing the drying chamber temperature results in lower pressure saturation of the material has no effect of drying chamber pressure on mass transfer.

  8. The Correlation Between Green Density and the Occurrence of Honeycomb in Kiln-Dried

    Treesearch

    Robert A. Harris; Philip A. Araman

    1995-01-01

    Fresh-cut, 5/4 red oak (Quercus sp.) boards were weighed, measured to determine volume and then kiln-dried to determine if the initial green density (green weight/green volume) was correlated to the occurrence of honeycomb. A positive relationship was found between the occurrence of honeycomb during drying and the initial green density. These results...

  9. Influence of Osmotic Drying with an Aqueous Poly(ethylene Glycol) Liquid Desiccant on Alumina Objects Gelcast with Gelatin

    DOE PAGES

    Hammel, E. C.; Campa, J. A.; Armbrister, C. E.; ...

    2017-09-06

    Gelcasting and liquid desiccant drying are novel forming and drying methods used to mitigate common issues associated with the fabrication of complex advanced ceramic objects. Here, the molecular weight and osmotic pressure of aqueous poly(ethylene glycol) (PEG) desiccant solutions were simultaneously varied to understand their influence on the net mass loss rates of gelcast alumina samples prepared using gelatin as a gelling agent. Additionally, the amount of PEG diffusion and water diffusion to and from the ceramic samples after 150 min of immersion in the liquid desiccant was correlated to the solution properties as was the final bulk density ofmore » the sintered samples. Furthermore, solutions with high molecular weight and low osmotic pressure resulted in low PEG gain and low water loss, while solutions with low molecular weight and high osmotic pressure resulted in high PEG gain and high water loss. In some cases, more than 40 wt% of the total water per sample was removed through the liquid desiccant drying process.« less

  10. Dry particle coating of polymer particles for tailor-made product properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blümel, C., E-mail: karl-ernst.wirth@fau.de; Schmidt, J., E-mail: karl-ernst.wirth@fau.de; Dielesen, A., E-mail: karl-ernst.wirth@fau.de

    2014-05-15

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratiomore » and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.« less

  11. Influence of Osmotic Drying with an Aqueous Poly(ethylene Glycol) Liquid Desiccant on Alumina Objects Gelcast with Gelatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammel, E. C.; Campa, J. A.; Armbrister, C. E.

    Gelcasting and liquid desiccant drying are novel forming and drying methods used to mitigate common issues associated with the fabrication of complex advanced ceramic objects. Here, the molecular weight and osmotic pressure of aqueous poly(ethylene glycol) (PEG) desiccant solutions were simultaneously varied to understand their influence on the net mass loss rates of gelcast alumina samples prepared using gelatin as a gelling agent. Additionally, the amount of PEG diffusion and water diffusion to and from the ceramic samples after 150 min of immersion in the liquid desiccant was correlated to the solution properties as was the final bulk density ofmore » the sintered samples. Furthermore, solutions with high molecular weight and low osmotic pressure resulted in low PEG gain and low water loss, while solutions with low molecular weight and high osmotic pressure resulted in high PEG gain and high water loss. In some cases, more than 40 wt% of the total water per sample was removed through the liquid desiccant drying process.« less

  12. Dry chips versus green chips as furnish for medium-density fiberboard

    Treesearch

    Paul H. Short; George E. Woodson; Duane E. Lyon

    1978-01-01

    The fiber characteristics and the physical and mechanical properties of medium-density fiberboard (MDF), manufactured with pressure-refined fiber from green and partially dried raw material, were analyzed to determine if dry wood chips made a better furnish than green wood chips. Pressure-refining dry material produced coarser fiber than those obtained from green...

  13. Dry chips versus green chips as furnish for medium-density fiberboard

    Treesearch

    P.H. Short; G.E. Woodson; D.E. Lyon

    1978-01-01

    The fiber characteristics and the physical and mechanical properties of medium-density fiberboard (MDF), manufactured with pressure-refined fiber from green and partially dried raw material, were analyzed to determine if dry wood chips made a better furnish than green wood chips. Pressure-refined dry material produced coarser fiber than those obtained from green...

  14. Living cell dry mass measurement using quantitative phase imaging with quadriwave lateral shearing interferometry: an accuracy and sensitivity discussion.

    PubMed

    Aknoun, Sherazade; Savatier, Julien; Bon, Pierre; Galland, Frédéric; Abdeladim, Lamiae; Wattellier, Benoit; Monneret, Serge

    2015-01-01

    Single-cell dry mass measurement is used in biology to follow cell cycle, to address effects of drugs, or to investigate cell metabolism. Quantitative phase imaging technique with quadriwave lateral shearing interferometry (QWLSI) allows measuring cell dry mass. The technique is very simple to set up, as it is integrated in a camera-like instrument. It simply plugs onto a standard microscope and uses a white light illumination source. Its working principle is first explained, from image acquisition to automated segmentation algorithm and dry mass quantification. Metrology of the whole process, including its sensitivity, repeatability, reliability, sources of error, over different kinds of samples and under different experimental conditions, is developed. We show that there is no influence of magnification or spatial light coherence on dry mass measurement; effect of defocus is more critical but can be calibrated. As a consequence, QWLSI is a well-suited technique for fast, simple, and reliable cell dry mass study, especially for live cells.

  15. A New Method for the Determination of Annual Sediment Fluxes from Varved Lake Sediments

    NASA Astrophysics Data System (ADS)

    Francus, P.; Massa, C.; Lapointe, F.

    2013-12-01

    Calculation of sediment mass accumulation rates instead of thickness accumulation is preferable for paleoclimatic reconstruction as it eliminates the effects of dilution and compaction. Annually laminated lake sediment sequences (varved) theoretically allow for the estimation of sediment fluxes at annual scale, but the calculation is limited by discrete bulk density measurements, often carried out at a much lower resolution (usually 1 cm) than the varves (ranging from 0.07 to 27.3 mm, average 1.84 mm according to Ojala et al. 2012). Since many years the development of automated logging instruments made available continuous and high resolution sediment property data, in a non-destructive fashion. These techniques can easily be used to extract the physical and chemical parameters of sediments at the varve scale (down to 100 μm). Here we present a robust method to calculate annual sediment fluxes from varved lake sediments by combining varves thickness measurements to core logging data, and provide an example for its applications. Several non-destructive densitometric methods applied to the Strathcona Lake sediment, northern Ellesmere Island, Canada (78°33'N; 82°05'W) were compared: Hounsfield Units from a CT-Scan, coherent/incoherent ratio and X-ray radiography (of both split core and sediment slabs, from an Itrax core Scanner), and gamma ray attenuation density. Core logging data were statistically compared to 400 discrete measurements of dry bulk density, wet bulk density and water content performed at 2 mm contiguous intervals. A very strong relationship was found between X-ray grey level on sediment slab and dry bulk density. Relative X-ray densities, at 100μm resolution, were then successfully calibrated against real densities. The final step consisted in binning the calibrated densities to the corresponding varve thickness and then to calculate the annual mass accumulation rates by multiplying the two parameters for each varve year. Strathcona Lake is located directly downstream of the Agassiz ice cap and contains laminated sediments whose accumulation is directly related to hydrological inputs generated by the melting of the ice cap. Over the last 65 years, annual sediment accumulation rates in Strathcona Lake documented an increase in high-energy hydrologic discharge events from 1990 to 2009. This timing is in agreement with evidence for an increase in the amount of melt on the adjacent Agassiz Ice Cap, as recorded in ice cores. A good correspondence was also found between annual mass accumulation rates and Eureka air temperature records, suggesting that temperature changes affected the extent of summer melting on the Agassiz Ice Cap, leading to high sediment yield to Strathcona Lake. Ojala, A.E.K., Francus, P., Zolitschka, B., Besonen, M. and Lamoureux, S.F. (2012) Characteristics of sedimentary varve chronologies - A review. Quaternary Science Reviews, 43, 45-60.

  16. A Rapid Soils Analysis Kit

    DTIC Science & Technology

    2008-03-01

    behavior of moisture content-dry density Proctor curves......................................... 16 Figure 8. Moisture- density data scatter for an... density . Built-in higher order regression equations allow the user to visua- lize complete curves for Proctor density , as-built California Bearing Ratio...requirements involving soil are optimum moisture content (OMC) and maximum dry density (MDD) as determined from a laboratory compaction or Proctor test

  17. [Density, size structure and reproductive activity of the pink conch Eustrombus gigas (Mesogastropoda: Strombidae) in Banco Chinchorro, Mexico].

    PubMed

    Cala, Yuself R; Navarrete, Alberto de Jesús; Ocaña, Frank A; Rivera, José Oliva

    2013-12-01

    The pink conch Eustrombus gigas is an important fisheries resource. At the regional level in the Caribbean, over-exploitation and habitat destruction have caused a decrease in the abundance of this resource. In order to provide necessary information for the species management in Mexico, this work aimed to analyze the total density, adult density, size structure and reproductive behavior of pink conch population at Banco Chinchorro during 2009-2010. Data from three seasons were obtained (rainy, dry and cold fronts periods) in three areas: Norte (North), Centro (Center) and Sur (South). The organisms were separated into two groups: (a) the criteria based upon legal harvest in Mexico: legal size conchs (siphonal length > 200 mm) and illegal size conchs (siphonal length < 200 mm), and (b) the criteria based upon sexual maturity using the 15 mm lip thickness standard: lip < 15 mm as juvenile conch and lip > or = 15 mm as adult conch. Copulation, spawning, egg masses and aggregations were evaluated as reproductive evidences. The highest total density was observed during the dry season with 384ind./ha, and the lowest during the rainy season with 127ind./ha. The highest density was reported at Sur (385ind./ha) and the lowest at Norte (198ind./ ha). The highest adult density was observed during the rainy season (8.33ind./ha), and the lowest occurred in the dry season (6.1 ind./ha). Adult density values were 5.55, 7.05 and 8.33ind./ha for Centro, Sur and Norte areas, respectively. Adult densities were lower than the threshold needed for reproduction, and 42% of the population may be vulnerable to fishing, as they had the minimum size for catch (Lsi 200 mm). Furthermore, only 2.2% of the population reached a Gl > 15 mm as sexual maturity indicator. During the study period, only six evidences of reproductive activity were observed. The smaller densities reported at Banco Chinchorro may cause reproduction events to be almost absent which in turn is sufficient evidence to show that the Allee Effect is acting on the queen conch population and there is an urgent need of fishery closure. Three important points were proposed for management of queen conch at Banco Chinchorro: total closure of fishing, systematic assessment of the conch population and the implementation of conch fishing refuge.

  18. Preparation and Characterization of Ato Nanoparticles by Coprecipitation with Modified Drying Method

    NASA Astrophysics Data System (ADS)

    Liu, Shimin; Liang, Dongdong; Liu, Jindong; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan

    Antimony-doped tin oxide (ATO) nanoparticles were prepared by coprecipitation by packing drying and traditional direct drying (for comparison) methods. The as-prepared ATO nanoparticles were characterized by TG, XRD, EDS, TEM, HRTEM, BET, bulk density and electrical resistivity measurements. Results indicated that the ATO nanoparticles obtained by coprecipitation with direct drying method featured hard-agglomerated morphology, high bulk density, low surface area and low electrical resistivity, probably due to the direct liquid evaporation during drying, the fast shrinkage of the precipitate, the poor removal efficiency of liquid molecules and the hard agglomerate formation after calcination. Very differently, the ATO product obtained by the packing and drying method featured free-agglomerated morphology, low bulk density, high surface area and high electrical resistivity ascribed probably to the formed vapor cyclone environment and liquid evaporation-resistance, avoiding fast liquid removal and improving the removal efficiency of liquid molecules. The intrinsic formation mechanism of ATO nanoparticles from different drying methods was illustrated based on the dehydration process of ATO precipitates. Additionally, the packing and drying time played key roles in determining the bulk density, morphology and electrical conductivity of ATO nanoparticles.

  19. A novel method for extracting nucleic acids from dried blood spots for ultrasensitive detection of low-density Plasmodium falciparum and Plasmodium vivax infections.

    PubMed

    Zainabadi, Kayvan; Adams, Matthew; Han, Zay Yar; Lwin, Hnin Wai; Han, Kay Thwe; Ouattara, Amed; Thura, Si; Plowe, Christopher V; Nyunt, Myaing M

    2017-09-18

    Greater Mekong Subregion countries are committed to eliminating Plasmodium falciparum malaria by 2025. Current elimination interventions target infections at parasite densities that can be detected by standard microscopy or rapid diagnostic tests (RDTs). More sensitive detection methods have been developed to detect lower density "asymptomatic" infections that may represent an important transmission reservoir. These ultrasensitive polymerase chain reaction (usPCR) tests have been used to identify target populations for mass drug administration (MDA). To date, malaria usPCR tests have used either venous or capillary blood sampling, which entails complex sample collection, processing and shipping requirements. An ultrasensitive method performed on standard dried blood spots (DBS) would greatly facilitate the molecular surveillance studies needed for targeting elimination interventions. A highly sensitive method for detecting Plasmodium falciparum and P. vivax 18S ribosomal RNA from DBS was developed by empirically optimizing nucleic acid extraction conditions. The limit of detection (LoD) was determined using spiked DBS samples that were dried and stored under simulated field conditions. Further, to assess its utility for routine molecular surveillance, two cross-sectional surveys were performed in Myanmar during the wet and dry seasons. The lower LoD of the DBS-based ultrasensitive assay was 20 parasites/mL for DBS collected on Whatman 3MM filter paper and 23 parasites/mL for Whatman 903 Protein Saver cards-equivalent to 1 parasite per 50 µL DBS. This is about 5000-fold more sensitive than standard RDTs and similar to the LoD of ≤16-22 parasites/mL reported for other ultrasensitive methods based on whole blood. In two cross-sectional surveys in Myanmar, nearly identical prevalence estimates were obtained from contemporaneous DBS samples and capillary blood samples collected during the wet and dry season. The DBS-based ultrasensitive method described in this study shows equal sensitivity as previously described methods based on whole blood, both in its limit of detection and prevalence estimates in two field surveys. The reduced cost and complexity of this method will allow for the scale-up of surveillance studies to target MDA and other malaria elimination interventions, and help lead to a better understanding of the epidemiology of low-density malaria infections.

  20. Limits to the use of highly compacted bentonite as a deterrent for microbiologically influenced corrosion in a nuclear fuel waste repository

    NASA Astrophysics Data System (ADS)

    Stroes-Gascoyne, Simcha; Hamon, Connie J.; Maak, Peter

    Recent studies have suggested that microbial activity in highly compacted bentonite (⩾1600 kg/m 3) is severely suppressed. Therefore, it appears that the dry density of emplaced bentonite barriers in a geological repository for nuclear waste may be tailored such that a microbiologically unfavorable environment can be created adjacent to used fuel containers. This would ensure that microbiologically influenced corrosion is a negligible contributor to the overall corrosion process. However, this premise is valid only as long as the emplaced bentonite maintains a uniform high dry density (⩾1600 kg/m 3) because it has been shown that high dry density only suppresses microbial activity but not necessarily eliminates the viable microbial population in bentonite. In a repository, a reduction in the dry density of highly compacted bentonite may occur at a number of interface locations, such as placement gaps, contact regions with materials of different densities and contact points with water-carrying fractures in the rock. Experiments were carried out in our laboratory to examine the effects of a reduction in dry density (from 1600 kg/m 3 to about 1000 kg/m 3) on the recovery of microbial culturability in compacted bentonite. Results showed that upon expansion of compacted bentonite into a void, the resulting reduction in dry density stimulated or restored culturability of indigenous microbes. In a repository this would increase the possibility of in situ activity, which might be detrimental for the longevity of waste containers. Reductions in dry density, therefore, should be minimized or eliminated by adequate design and placement methods of compacted bentonite. Materials compliance models can be used to determine the required as-placed dry densities of bentonite buffer and gap fillings to achieve specific targets for long-term equilibrium dry densities for various container placement room designs. Locations where flowing fractures could be in contact with highly compacted bentonite should either be avoided or grouted adequately to limit contact between bentonite and flowing water. Even if localized enhanced microbial activity at interfaces remains of concern, despite adequate engineering and placement methods, the potential consequences can be assessed and quantified adequately by a combination of in situ activity measurements and modeling calculations.

  1. Predation on exotic zebra mussels by native fishes: Effects on predator and prey

    USGS Publications Warehouse

    Magoulick, D.D.; Lewis, L.C.

    2002-01-01

    1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g-1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (???5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra mussel colonisation, but are ultimately unlikely to limit population density because of zebra mussel reproductive potential.

  2. Changes in corneal epithelial layer inflammatory cells in aqueous tear-deficient dry eye.

    PubMed

    Lin, Hui; Li, Wei; Dong, Nuo; Chen, Wensheng; Liu, Jing; Chen, Lelei; Yuan, Hongxia; Geng, Zhixin; Liu, Zuguo

    2010-01-01

    To investigate the morphology, distribution, and density of inflammatory cells in the corneal epithelium of aqueous tear-deficient dry eye. Thirty-two patients with non-Sjögren's syndrome (NSS) dry eye, 14 patients with Sjögren's syndrome (SS) dry eye, and 33 healthy volunteers were studied. In vivo laser scanning confocal microscopy was used to investigate both Langerhans cell (LCs) and leukocyte distribution and density in the peripheral and central corneal epithelium. LC morphology was also evaluated. Multifactor regression analysis assessed whether there is a correlation between clinical manifestations and inflammatory cell densities. LCs were present in both central (34.9 +/- 5.7 cells/mm(2)) and peripheral (90.7 +/- 8.2 cells/mm(2)) parts of the normal corneal epithelium. Moreover, LC density increased dramatically in the central corneal epithelium in patients with NSS (89.8 +/- 10.8 cells/mm(2)) and SS (127.9 +/- 23.7 cells/mm(2)). The ratio of LCs with obvious processes was much higher in patients with dry eye than in healthy volunteers. LC density also increased in peripheral corneal epithelium in patients with SS, but not in those with NSS. Leukocyte density in normal corneal epithelium was very low, whereas it increased in the central corneal epithelium (4.6 +/- 1.0 cells/mm(2)) in NSS and in both central (49.0 +/- 12.9 cells/mm(2)) and peripheral (84.2 +/- 36.8 cells/mm(2)) corneal epithelium in SS. Densities of LCs and leukocytes showed significant correlation with the severity found in clinical evaluation. The LC and leukocyte changes in the corneal epithelium suggest their involvement in aqueous tear-deficient dry eye pathophysiology. In vivo dynamic assessment of central corneal inflammatory cell density may serve as an indicator of dry eye severity and provide new insight for dry eye treatment.

  3. Spectroscopic analysis of seasonal changes in live fuel moisture content and leaf dry mass

    Treesearch

    Yi Qi; Philip E. Dennison; W. Matt Jolly; Rachael C. Kropp; Simon C. Brewer

    2014-01-01

    Live fuel moisture content (LFMC), the ratio of water mass to dry mass contained in live plant material, is an important fuel property for determining fire danger and for modeling fire behavior. Remote sensing estimation of LFMC often relies on an assumption of changing water and stable dry mass over time. Fundamental understanding of seasonal variation in plant water...

  4. An Integrated Field and Laboratory Study of the Bioavailability of Metal Contaminants in Sediments

    DTIC Science & Technology

    2012-12-01

    investigation using high-performance liquid chromatography with detection by inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 8:1075...exposure experiments consisted of two parts - uptake and efflux. Uptake rate constants (ku) equaled the metal concentration accumulated per body mass ...of dry mass of defecated sediment per dry mass of worm per time (g g-1 d-1), were calculated based on the dry mass of feces that were periodically

  5. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Environmental effects shaping the galaxy stellar mass function

    NASA Astrophysics Data System (ADS)

    Davidzon, I.; Cucciati, O.; Bolzonella, M.; De Lucia, G.; Zamorani, G.; Arnouts, S.; Moutard, T.; Ilbert, O.; Garilli, B.; Scodeggio, M.; Guzzo, L.; Abbas, U.; Adami, C.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; de la Torre, S.; Di Porto, C.; Fritz, A.; Franzetti, P.; Fumana, M.; Granett, B. R.; Guennou, L.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Mellier, Y.; Moscardini, L.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.

    2016-02-01

    We exploit the first public data release of VIPERS to investigate environmental effects in the evolution of galaxies between z ~ 0.5 and 0.9. The large number of spectroscopic redshifts (more than 50 000) over an area of about 10 deg2 provides a galaxy sample with high statistical power. The accurate redshift measurements (σz = 0.00047(1 + zspec)) allow us to robustly isolate galaxies living in the lowest and highest density environments (δ< 0.7 and δ> 4, respectively) as defined in terms of spatial 3D density contrast δ. We estimate the stellar mass function of galaxies residing in these two environments and constrain the high-mass end (ℳ ≳ 1011 ℳ⊙) with unprecedented precision. We find that the galaxy stellar mass function in the densest regions has a different shape than was measured at low densities, with an enhancement of massive galaxies and a hint of a flatter (less negative) slope at z< 0.8. We normalise each mass function to the comoving volume occupied by the corresponding environment and relate estimates from different redshift bins. We observe an evolution of the stellar mass function of VIPERS galaxies in high densities, while the low-density one is nearly constant. We compare these results to semi-analytical models and find consistent environmental signatures in the simulated stellar mass functions. We discuss how the halo mass function and fraction of central/satellite galaxies depend on the environments considered, making intrinsic and environmental properties of galaxies physically coupled, hence difficult to disentangle. The evolution of our low-density regions is described well by the formalism introduced by Peng et al. (2010, ApJ, 721, 193), and is consistent with the idea that galaxies become progressively passive because of internal physical processes. The same formalism could also describe the evolution of the mass function in the high density regions, but only if a significant contribution from dry mergers is considered. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.

  6. Optical volume and mass measurements show that mammalian cells swell during mitosis

    PubMed Central

    Zlotek-Zlotkiewicz, Ewa; Monnier, Sylvain; Cappello, Giovanni; Le Berre, Mael

    2015-01-01

    The extent, mechanism, and function of cell volume changes during specific cellular events, such as cell migration and cell division, have been poorly studied, mostly because of a lack of adequate techniques. Here we unambiguously report that a large range of mammalian cell types display a significant increase in volume during mitosis (up to 30%). We further show that this increase in volume is tightly linked to the mitotic state of the cell and not to its spread or rounded shape and is independent of the presence of an intact actomyosin cortex. Importantly, this volume increase is not accompanied by an increase in dry mass and thus corresponds to a decrease in cell density. This mitotic swelling might have important consequences for mitotic progression: it might contribute to produce strong pushing forces, allowing mitotic cells to round up; it might also, by lowering cytoplasmic density, contribute to the large change of physicochemical properties observed in mitotic cells. PMID:26598614

  7. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest

    PubMed Central

    Fu, Pei-Li; Jiang, Yan-Juan; Wang, Ai-Ying; Brodribb, Tim J.; Zhang, Jiao-Lin; Zhu, Shi-Dan; Cao, Kun-Fang

    2012-01-01

    Background and Aims The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems. Methods A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure–volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations. Key Results It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (Dh) and higher mass-based photosynthetic rate (Am); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π0) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, Am, and dry season π0. Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, Dh, as well as dry season π0. Both wood density and leaf density were closely correlated with leaf water-stress tolerance and Am. Conclusions The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves. PMID:22585930

  8. Boosted structured additive regression for Escherichia coli fed-batch fermentation modeling.

    PubMed

    Melcher, Michael; Scharl, Theresa; Luchner, Markus; Striedner, Gerald; Leisch, Friedrich

    2017-02-01

    The quality of biopharmaceuticals and patients' safety are of highest priority and there are tremendous efforts to replace empirical production process designs by knowledge-based approaches. Main challenge in this context is that real-time access to process variables related to product quality and quantity is severely limited. To date comprehensive on- and offline monitoring platforms are used to generate process data sets that allow for development of mechanistic and/or data driven models for real-time prediction of these important quantities. Ultimate goal is to implement model based feed-back control loops that facilitate online control of product quality. In this contribution, we explore structured additive regression (STAR) models in combination with boosting as a variable selection tool for modeling the cell dry mass, product concentration, and optical density on the basis of online available process variables and two-dimensional fluorescence spectroscopic data. STAR models are powerful extensions of linear models allowing for inclusion of smooth effects or interactions between predictors. Boosting constructs the final model in a stepwise manner and provides a variable importance measure via predictor selection frequencies. Our results show that the cell dry mass can be modeled with a relative error of about ±3%, the optical density with ±6%, the soluble protein with ±16%, and the insoluble product with an accuracy of ±12%. Biotechnol. Bioeng. 2017;114: 321-334. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Pyrolysis of ground pine chip and ground pellet particles

    DOE PAGES

    Rezaei, Hamid; Yazdanpanah, Fahimeh; Lim, C. Jim; ...

    2016-08-04

    In addition to particle size, biomass density influences heat and mass transfer rates during the thermal treatment processes. In this research, thermal behaviour of ground pine chip particles and ground pine pellet particles in the range of 0.25–5 mm was investigated. A single particle from ground pellets was almost 3 to 4 times denser than a single particle from ground chips at a similar size and volume of particle. Temperature was ramped up from room temperature (~25 °C) to 600 °C with heating rates of 10, 20, 30, and 50 °C/min. Pellet particles took 25–88 % longer time to drymore » than the chip particles. Microscopic examination of 3 mm and larger chip particles showed cracks during drying. No cracks were observed for pellet particles. The mass loss due to treatment at temperatures higher than 200 °C was about 80% both for chip and pellet particles. It took 4 min for chip and pellet particles to lose roughly 63% of their dry mass at a heating rate of 50 °C/min. The SEM structural analysis showed enlarged pores and cracks in cell walls of the pyrolyzed wood chips. As a result, these pores were not observed in pyrolyzed pellet particles.« less

  10. Estimating historical snag density in dry forests east of the Cascade Range

    Treesearch

    Richy J. Harrod; William L. Gaines; William E. Hartl; Ann. Camp

    1998-01-01

    Estimating snag densities in pre-European settlement landscapes (i.e., historical conditions) provides land managers with baseline information for comparing current snag densities. We propose a method for determining historical snag densities in the dry forests east of the Cascade Range. Basal area increase was calculated from tree ring measurements of old ponderosa...

  11. Method of altering the effective bulk density of solid material and the resulting product

    DOEpatents

    Kool, Lawrence B.; Nolen, Robert L.; Solomon, David E.

    1983-01-01

    A method of adjustably tailoring the effective bulk density of a solid material in which a mixture comprising the solid material, a film-forming polymer and a volatile solvent are sprayed into a drying chamber such that the solvent evaporates and the polymer dries into hollow shells having the solid material captured within the shell walls. Shell density may be varied as a function of solid/polymer concentration, droplet size and drying temperature.

  12. Effects of drought and prolonged winter on Townsend's ground squirrel demography in shrubsteppe habitats

    USGS Publications Warehouse

    Van Horne, Beatrice; Olson, Gail S.; Schooley, Robert L.; Corn, Janelle G.; Burnham, Kenneth P.

    1997-01-01

    During a mark–recapture study of Townsend's ground squirrels (Spermophilus townsendii) on 20 sites in the Snake River Birds of Prey National Conservation Area, Idaho, in 1991 through 1994, 4407 animals were marked in 17639 capture events. This study of differences in population dynamics of Townsend's ground squirrels among habitats spanned a drought near the extreme of the 130-yr record, followed by prolonged winter conditions.Townsend's ground squirrels have a short active season (≈4 mo) in which to reproduce and store fat for overwintering. Their food consists largely of succulent grasses and forbs in this dry shrubsteppe and grassland habitat. The drought in the latter half of the 1992 active season produced early drying of Sandberg's bluegrass (Poa secunda) and was associated with low adult and juvenile body masses prior to immergence into estivation/hibernation. The following prolonged winter was associated with late emergence of females in 1993. Early-season body masses of adults were low in 1993 relative to 1992, whereas percentage of body fat in males was relatively high. These weather patterns in spring 1992 and winter 1993 also resulted in reduced adult persistence through the ≈7-mo inactive period, especially for adult females, and near-zero persistence of >1200 juveniles. Consequently, densities of Townsend's ground squirrels across the 20 livetrap sites declined.The demographic effects of drought and prolonged winter lasted at least through the subsequent breeding season. Adult females that survived these weather extremes produced fewer emergent young per female than did adult females prior to the event. Prior to the drought/prolonged winter, yearling female body masses were higher than, or indistinguishable from, those of adults. Females produced in 1993 had lower body masses as yearlings than did adult females.Demographic response to the drought and prolonged winter varied with habitat; ground squirrels in sagebrush habitat showed less decline in persistence and density and produced more young per female during the next active season following the drought (1993) than did ground squirrels in grassland habitat, where densities had been significantly higher prior to the drought and prolonged winter.Studies involving habitat comparisons of animal demography should always be placed in the context of long-term weather patterns, because habitat quality rankings based on density, reproduction, and survival may differ with environmental conditions. Physiological effects of environmental “crunches” on consumers may persist beyond the period of influence on food resources, reducing reproductive success and growth rates of future offspring.

  13. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest.

    PubMed

    Klein, Tamir; Hoch, Günter; Yakir, Dan; Körner, Christian

    2014-09-01

    In trees exposed to prolonged drought, both carbon uptake (C source) and growth (C sink) typically decrease. This correlation raises two important questions: (i) to what degree is tree growth limited by C availability; and (ii) is growth limited by concurrent C storage (e.g., as nonstructural carbohydrates, NSC)? To test the relationships between drought, growth and C reserves, we monitored the changes in NSC levels and constructed stem growth chronologies of mature Pinus halepensis Miller trees of three drought stress levels growing in Yatir forest, Israel, at the dry distribution limit of forests. Moderately stressed and stressed trees showed 34 and 14% of the stem growth, 71 and 31% of the sap flux density, and 79 and 66% of the final needle length of healthy trees in 2012. In spite of these large reductions in growth and sap flow, both starch and soluble sugar concentrations in the branches of these trees were similar in all trees throughout the dry season (2-4% dry mass). At the same time, the root starch concentrations of moderately stressed and stressed trees were 47 and 58% of those of healthy trees, but never <2% dry mass. Our results show that all the studied trees maintain a fairly good coordination between C supply and demand, and even during prolonged drought there is more than one way for a tree to maintain a positive C balance. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Microbial development in distillers wet grains produced during fuel ethanol production from corn (Zea mays).

    PubMed

    Lehman, R Michael; Rosentrater, Kurt A

    2007-09-01

    Distillers grains are coproduced with ethanol and carbon dioxide during the production of fuel ethanol from the dry milling and fermentation of corn grain, yet there is little basic microbiological information on these materials. We undertook a replicated field study of the microbiology of distillers wet grains (DWG) over a 9 day period following their production at an industrial fuel ethanol plant. Freshly produced DWG had a pH of about 4.4, a moisture content of about 53.5% (wet mass basis), and 4 x 10(5) total yeast cells/g dry mass, of which about 0.1% were viable. Total bacterial cells were initially below detection limits (ca. 10(6) cells/g dry mass) and then were estimated to be approximately 5 x 10(7) cells/g dry mass during the first 4 days following production. Culturable aerobic heterotrophic organisms (fungi plus bacteria) ranged between 10(4) and 10(5) CFU/g dry mass during the initial 4 day period, and lactic acid bacteria increased from 36 to 10(3) CFU/g dry mass over this same period. At 9 days, total viable bacteria and yeasts and (or) molds topped 10(8) CFU/g dry mass and lactic acid bacteria approached 10(6) CFU/g dry mass. Community phospholipid fatty acid analysis indicated a stable microbial community over the first 4 days of storage. Thirteen morphologically distinct isolates were recovered, of which 10 were yeasts and molds from 6 different genera, 2 were strains of the lactic-acid-producing Pediococcus pentosaceus and only one was an aerobic heterotrophic bacteria, Micrococcus luteus. The microbiology of DWG is fundamental to the assessment of spoilage, deleterious effects (e.g., toxins), or beneficial effects (e.g., probiotics) in its use as feed or in alternative applications.

  15. Ssang Yong 2014 Remote Sensing Experiment

    DTIC Science & Technology

    2016-05-25

    determination of the wet field density of soil. Dry density is calculated after the laboratory measurement of the field moisture content...28 Figure 5-9. Drying ovens used in field laboratory established...seasons. Winters are usually long, cold, and dry . Summers are generally short, hot, and humid. Spring and autumn are pleasant but short in duration

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popenoe, J.

    Long sylleptic shoots produced on apple trees in the nursery result in increased early yields once the trees are planted in the orchard. Spur-type Delicious trees do not naturally produce branches in the nursery. To achieve branched spur-type Delicious trees, applications of combinations of growth regulators benzyladenine (BA) and gibberellic acid 4 + 7 (GA) and leaf removal (LR) techniques were tested. Spacings of 15, 25, 35, and 45 cm and MM.106, M.7, M.26 and seedling rootstocks were tested for their effects on branching. Carbon partitioning changes caused by these treatments were evaluated by dry weight analysis and for benzyladenine,more » leaf removal and tipping treatments by {sup 14}C-photoassimilate labelling. Possible involvement of roots produced cytokinins was examined by {sup 14}C-benzyladenine labeling through the xylem and by analyzing relationships between root mass and branching characteristics. Although partitioning of {sup 14}C-photoassimilate was increased to the top of the plant by BA sprays, and to the bottom of the plant by LR and tipping for up to six days after treatment, final plant weights were not different. No relationship between branching and root mass or {sup 14}C-benzyladenine mobilization was found. This evidence indicates branched trees possessed no greater dry weight than unbranched trees, only a redistribution of the dry weight into a form more suited to early fruit production in high density planting systems.« less

  17. Spray-dried respirable powders containing bacteriophages for the treatment of pulmonary infections.

    PubMed

    Matinkhoo, Sadaf; Lynch, Karlene H; Dennis, Jonathan J; Finlay, Warren H; Vehring, Reinhard

    2011-12-01

    Myoviridae bacteriophages were processed into a dry powder inhalable dosage form using a low-temperature spray-drying process. The phages were incorporated into microparticles consisting of trehalose, leucine, and optionally a third excipient (either a surfactant or casein sodium salt). The particles were designed to have high dispersibility and a respirable particle size, and to preserve the phages during processing. Bacteriophages KS4- M, KS14, and cocktails of phages ΦKZ/D3 and ΦKZ/D3/KS4-M were spray-dried with a processing loss ranging from 0.4 to 0.8 log pfu. The aerosol performance of the resulting dry powders as delivered from an Aerolizer® dry powder inhaler (DPI) exceeded the performance of commercially available DPIs; the emitted mass and the in vitro total lung mass of the lead formulation were 82.7% and 69.7% of filled capsule mass, respectively. The total lung mass had a mass median aerodynamic diameter of 2.5-2.8 µm. The total in vitro lung doses of the phages, delivered from a single actuation of the inhaler, ranged from 10(7) to 10(8) pfu, levels that are expected to be efficacious in vivo. Spray drying of bacteriophages into a respirable dry powder was found to be feasible. Copyright © 2011 Wiley-Liss, Inc.

  18. To determine the end point of wet granulation by measuring powder energies and thermal properties.

    PubMed

    Dave, Rutesh H; Wu, Stephen H; Contractor, Labdhi D

    2012-04-01

    Wet granulation has been widely used in pharmaceutical industry as a tablet manufacturing process. However, end-point determination of wet granulation process has always remained a challenge. Many traditional methods are available for end-point determination, yet accuracy and reproducibility still remain a challenge. Microcrystalline cellulose, widely used as an excipient in pharmaceutical industry, was granulated using water. Wet mass was passed through sieve # 12 and dried till constant percentage loss on drying was obtained and dried granules were obtained. Wet and dried granules collected were subjected to basic flow energy, specific energy, bulk density, pressure drop, differential scanning calorimetry and effusivity measurements. Analysis of data revealed various stages of granule growth from initial seed formation by adding 200-400 g of water, granule growth was observed by adding 600-800 g of water and over wetting was observed at 1155 g of water. In this work, we have justified our work to properly identify and utilize this technique for practical purpose to correctly identify the end-point determination of microcrystalline cellulose and explain various principles underlying energies associated with powder and thermal measurements.

  19. [Reproductive aspects of Pomacea flagellata (Mollusca: Ampullariidae) at Bacalar lagoon, Quintana Roo, México].

    PubMed

    Oliva-Rivera, José J; Ocaña, Frank A; Navarrete, Alberto de Jesús; Carrillo, Rosa M de Jesús; Vargas-Espósitos, Abel A

    2016-12-01

    The freshwater snail Pomacea flagellata is native from Southeastern Mexico. Studies about this species are scarce and none has treated their reproduction. This snail has been exploited at Bacalar lagoon for many years, leading to a significant decrease in their abundance and currently, a permanent ban was proposed by the government. This work aimed to assess the temporal variations of mating frequency and the abundance of egg clutches of P. flagellata at Bacalar lagoon, as well as their relation with snails density and environmental variables. Sampling was done during the three climatic seasons: Rainy (July, August and September/2012), North or Cold fronts (December/2012 and January and February/2013) and Dry (March, April and May/2013) in 12 sampling stations located along the Bacalar lagoon. On each station a transect of 100 m length was set parallel to the edge, and the number of fresh egg clutches (pink color) laid over vegetation, rocks or manmade structures, were counted. In the water, three 50 x 2 m transects were set and the number of snails were counted as well as the mating frequency. Density of snails varied significantly among seasons, decreasing from the rainy to the dry season. There were no significant differences of snail abundance among months, nested in climatic seasons (ANOVA, p>0.05). During the rainy season the mating frequency was significantly higher than in the Norths, meanwhile in the dry season no mating were registered (Kruskal-Wallis, p˂0.05). Eggs clutches appeared from July to March. Density of egg clutches presented no differences between the Rainy and the North seasons (2.72 and 2.93 clutches/m, respectively), nonetheless during the dry season abundance of egg masses was significantly lower (0.1 clutches/m) (H, p˂0.05). Mating frequency was related with snail abundance (rs= 0.26; p<0.05) and water temperature (rs= 0.34; p<0.05) and the abundance of egg masses is related with snail abundance (rs= 0.46; p<0.05). In general, we observed that reproductive activity of P. flagellata at Bacalar lagoon is related with the warmer months and with higher rainfall. This finding is relevant to support the management of this resource in the region, so that to implement any management arrangement they must be aware that a temporal ban is necessary during the reproductive season at least.

  20. Porous membrane utilization in plant nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Hinkle, C. R.; Prince, R. P.; Knott, W. M., III

    1987-01-01

    A spacecraft hydroponic plant growth unit of tubular configuration, employing a microporous membrane as a capilary interface between plant roots and a nutrient solution, is presented. All three of the experimental trials undertaken successfully grew wheat from seed to harvest. Attention is given to the mass/seed, number of seeds/head, ratio of seed dry mass to total plant dry mass, production of tillers, and mass of seed/plant. Dry matter production is found to be reduced with increasing suction pressure; this is true for both average seed and average total dry matter/plant. This may be due to a reduction in water and nutrient availability through the microporous membrane.

  1. [Research about effect of spray drying conditions on hygroscopicity of spray dry powder of gubi compound's water extract and its mechanism].

    PubMed

    Zong, Jie; Shao, Qi; Zhang, Hong-Qing; Pan, Yong-Lan; Zhu, Hua-Xu; Guo, Li-Wei

    2014-02-01

    To investigate moisture content and hygroscopicity of spray dry powder of Gubi compound's water extract obtained at different spray drying conditions and laying a foundation for spray drying process of Chinese herbal compound preparation. In the paper, on the basis of single-factor experiments, the author choose inlet temperature, liquid density, feed rate, air flow rate as investigated factors. The experimental absorption rate-time curve and scanning electron microscopy results showed that under different spray drying conditions the spray-dried powders have different morphology and different adsorption process. At different spray-dried conditions, the morphology and water content of the powder is different, these differences lead to differences in the adsorption process, at the appropriate inlet temperature and feed rate with a higher sample density and lower air flow rate, in the experimental system the optimum conditions is inlet temperature of 150 degrees C, feed density of 1.05 g x mL(-1), feed rate of 20 mL x min(-1) air flow rate of 30 m3 x h(-1).

  2. Defining Winter and Identifying Synoptic Air Mass Change in the Northeast and Northern Plains U.S. since 1950

    NASA Astrophysics Data System (ADS)

    Chapman, C. J.; Pennington, D.; Beitscher, M. R.; Godek, M. L.

    2017-12-01

    Understanding and forecasting the characteristics of winter weather change in the northern U.S. is vital to regional economy, agriculture, tourism and resident life. This is especially true in the Northeast and Northern Plains where substantial changes to the winter season have already been documented in the atmospheric science and biological literature. As there is no single established definition of `winter', this research attempts to identify the winter season in both regions utilizing a synoptic climatological approach with air mass frequencies. The Spatial Synoptic Classification is used to determine the daily air mass/ weather type conditions since 1950 at 40 locations across the two regions. Annual frequencies are first computed as a baseline reference. Then winter air mass frequencies and departures from normal are calculated to define the season along with the statistical significance. Once the synoptic winter is established, long-term regional changes to the season and significance are explored. As evident global changes have occurred after 1975, an Early period of years prior to 1975 and a Late set for all years following this date are compared. Early and Late record synoptic changes are then examined to assess any thermal and moisture condition changes of the regional winter air masses over time. Cold to moderately dry air masses dominate annually in both regions. Northeast winters are also characterized by cold to moderate dry air masses, with coastal locations experiencing more Moist Polar types. The Northern Plains winters are dominated by cold, dry air masses in the east and cold to moderate dry air masses in the west. Prior to 1975, Northeast winters are defined by an increase in cooler and wetter air masses. Dry Tropical air masses only occur in this region after 1975. Northern Plains winters are also characterized by more cold, dry air masses prior to 1975. More Dry Moderate and Moist Moderate air masses have occurred since 1975. These results demonstrate that Northeast winters have air mass conditions that have become warmer and drier in recent decades. Additionally, Northern Plains winters have air mass setups that have become warmer and more moist since the mid 1970s.

  3. Stem extension and mechanical stability of Xanthium canadense grown in an open or in a dense stand.

    PubMed

    Watari, Ryoji; Nagashima, Hisae; Hirose, Tadaki

    2014-07-01

    Plants in open, uncrowded habitats typically have relatively short stems with many branches, whereas plants in crowded habitats grow taller and more slender at the expense of mechanical stability. There seems to be a trade-off between height growth and mechanical stability, and this study addresses how stand density influences stem extension and consequently plant safety margins against mechanical failure. Xanthium canadense plants were grown either solitarily (S-plants) or in a dense stand (D-plants) until flowering. Internode dimensions and mechanical properties were measured at the metamer level, and the critical buckling height beyond which the plant elastically buckles under its own weight and the maximum lateral wind force the plant can withstand were calculated. Internodes were longer in D- than S-plants, but basal diameter did not differ significantly. Relative growth rates of internode length and diameter were negatively correlated to the volumetric solid fraction of the internode. Internode dry mass density was higher in S- than D-plants. Young's modulus of elasticity and the breaking stress were higher in lower metamers, and in D- than in S-plants. Within a stand, however, both moduli were positively related to dry mass density. The buckling safety factor, a ratio of critical buckling height to actual height, was higher in S- than in D-plants. D-plants were found to be approaching the limiting value 1. Lateral wind force resistance was higher in S- than in D-plants, and increased with growth in S-plants. Critical buckling height increased with height growth due mainly to an increase in stem stiffness and diameter and a reduction in crown/stem mass ratio. Lateral wind force resistance was enhanced due to increased tissue strength and diameter. The increase in tissue stiffness and strength with height growth plays a crucial role in maintaining a safety margin against mechanical failure in herbaceous species that lack the capacity for secondary growth. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Transport studies in polymer electrolyte fuel cell with porous metallic flow field at ultra high current density

    NASA Astrophysics Data System (ADS)

    Srouji, Abdul-Kader

    Achieving cost reduction for polymer electrolyte fuel cells (PEFC) requires a simultaneous effort in increasing power density while reducing precious metal loading. In PEFCs, the cathode performance is often limiting due to both the slow oxygen reduction reaction (ORR), and mass transport limitation caused by limited oxygen diffusion and liquid water flooding at high current density. This study is motivated by the achievement of ultra-high current density through the elimination of the channel/land (C/L) paradigm in PEFC flow field design. An open metallic element (OME) flow field capable of operating at unprecedented ultra-high current density (3 A/cm2) introduces new advantages and limitations for PEFC operation. The first part of this study compares the OME with a conventional C/L flow field, through performance and electrochemical diagnostic tools such as electrochemical impedance spectroscopy (EIS). The results indicate the uniqueness of the OME's mass transport improvement. No sign of operation limitation due to flooding is noted. The second part specifically examines water management at high current density using the OME flow field. A unique experimental setup is developed to measure steady-state and transient net water drag across the membrane, in order to characterize the fundamental aspects of water transport at high current density with the OME. Instead of flooding, the new limitation is identified to be anode side dry-out of the membrane, caused by electroosmotic drag. The OME improves water removal from the cathode, which immediately improves oxygen transport and performance. However, the low water content in the cathode reduces back diffusion of water to the membrane, and electroosmotic drag dominates at high current density, leading to dry-out. The third part employs the OME flow field as a tool that avoids C/L effects endemic to a typical flow field, in order to study oxygen transport resistance at the catalyst layer of a PEFC. In open literature, a resistance of unknown origin, was shown to directly or indirectly scale with Pt loading. A lack of understanding of the mechanism responsible for such resistance is noted, and several possible theories have been proposed. This lack of fundamental understanding of the origins of this resistance adds complexity to computational models which are designed to capture performance behavior with ultra-low loading electrodes. By employing the OME flow field as a tool to study this phenomena, the origins of the transport resistance appearing at ultra-low Platinum (Pt) loading is proposed to be an increase in oxygen dilution resistance through water film.

  5. Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters

    NASA Astrophysics Data System (ADS)

    Nadi, Fatemeh; Tzempelikos, Dimitrios

    2018-01-01

    In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick's equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi's model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.

  6. Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters

    NASA Astrophysics Data System (ADS)

    Nadi, Fatemeh; Tzempelikos, Dimitrios

    2018-07-01

    In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick's equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy ( ΔH), entropy ( ΔS) and Gibbs free energy ( ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi's model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.

  7. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.

    2015-08-01

    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

  8. Numerical analysis of single and multiple particles of Belchatow lignite dried in superheated steam

    NASA Astrophysics Data System (ADS)

    Zakrzewski, Marcin; Sciazko, Anna; Komatsu, Yosuke; Akiyama, Taro; Hashimoto, Akira; Kaneko, Shozo; Kimijima, Shinji; Szmyd, Janusz S.; Kobayashi, Yoshinori

    2018-03-01

    Low production costs have contributed to the important role of lignite in the energy mixes of numerous countries worldwide. High moisture content, though, diminishes the applicability of lignite in power generation. Superheated steam drying is a prospective method of raising the calorific value of this fuel. This study describes the numerical model of superheated steam drying of lignite from the Belchatow mine in Poland in two aspects: single and multi-particle. The experimental investigation preceded the numerical analysis and provided the necessary data for the preparation and verification of the model. Spheres of 2.5 to 30 mm in diameter were exposed to the drying medium at the temperature range of 110 to 170 °C. The drying kinetics were described in the form of moisture content, drying rate and temperature profile curves against time. Basic coal properties, such as density or specific heat, as well as the mechanisms of heat and mass transfer in the particular stages of the process laid the foundations for the model construction. The model illustrated the drying behavior of a single particle in the entire range of steam temperature as well as the sample diameter. Furthermore, the numerical analyses of coal batches containing particles of various sizes were conducted to reflect the operating conditions of the dryer. They were followed by deliberation on the calorific value improvement achieved by drying, in terms of coal ingredients, power plant efficiency and dryer input composition. The initial period of drying was found crucial for upgrading the quality of coal. The accuracy of the model is capable of further improvement regarding the process parameters.

  9. Laboratory Characterization of Talley Brick

    DTIC Science & Technology

    2011-08-01

    specimen’s wet, bulk, or “as-tested” density. Results from these determinations are provided in Table 1. Measurements of posttest water content1...ASTM 2005d). Based on the appropriate values of posttest water content, wet density, and an assumed grain density of 2.89 Mg/m3, values of dry... Posttest Axial P Radial P Axial S Radial S Wet Water Dry Degree of ’Wave ’Wave ’Wave \\Vave Test Density Conte-nt, Density, Porosity, Saturation

  10. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  11. [Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize.

    PubMed

    Zhang, Lin Lin; Sun, Shi Jun; Chen, Zhi Jun; Jiang, Hao; Zhang, Xu Dong; Chi, Dao Cai

    2018-01-01

    In order to investigate the effect of different colored plastic film mulching and planting density on spring maize dry matter accumulation and yield in the rain-fed area of the Northeast China, a complete combination field experiment which was comprised by three types of mulching (non-mulching, transparent plastic film mulching and black plastic film mulching) and five densities (60000, 67500, 75000, 82500 and 90000 plants·hm -2 ), was conducted to analyze the water and heat effect, dry matter accumulation and yield of spring maize (Liangyu 99). The results showed that, compared with the other mulching treatments, the black plastic film mulching treatment significantly increased the maize dry matter accumulation and maize biomass by 3.2%-8.2%. In mature stage, the biomass increased firstly and then decreased with the increasing plant density. When planting density was 82500 plants·hm -2 , the biomass was the highest, which was 5.2%-28.3% higher than that of other plant density treatments. The mean soil temperature in prophase of transparent plastic film mulching treatment was 0.4-2.7 ℃ higher than that of other treatments, which accelerated the maize growth process and augmented the dry matter transportation amount (T), dry matter transportation efficiency (TE) and contribution rate of dry matter transportation to the grain yield (TC) of maize stalk and leaf. The T, TE, TC of leaf and leaf-stalk under 60000 plants·hm -2 treatment were the highest. The highest T, TE, TC of stalk were observed under 75000 plants·hm -2 treatment. In heading period, the water consumption and daily water consumption intensity of maize under the treatment of black film mulching were the largest, which were 9.4%-10.6% and 10.6%-24.5% higher than that of other mulching treatments, respectively. The highest water consumption and daily water consumption intensity were both obtained under 90000 plants·hm -2 treatment, which increased by 6.8%-15.7% and 7.0%-20.0% compared with other plant density treatments. The combination of black film mulching and density of 82500 plants·hm -2 significantly improved the water use efficiency of maize, which increased by 4.6%-40.9% compared with other treatments. In addition, it increased yield by 3.0%-39.7% compared with other treatments. At heading stage, the correlation between the dry matter amount of stalk and leaf and the yield and yield components was the biggest. Decreasing 1 kg·hm -2 dry matter amount of stalk and leaf would decrease the population yield by almost 0.79 kg·hm -2 . Decreasing 10% dry matter amount of stalk and leaf would decrease the yield by almost 10%. Based on increasing plant density, black film mulching was beneficial for increasing the dry matter accumulation and improving grain yield and water use efficiency of spring maize.

  12. Diverse patterns of stored water use among saplings in seasonally dry tropical forests.

    PubMed

    Wolfe, Brett T; Kursar, Thomas A

    2015-12-01

    Tree species in seasonally dry tropical forests likely vary in their drought-survival mechanisms. Drought-deciduousness, which reduces water loss, and low wood density, which may permit dependence on stored water, are considered key traits. For saplings of six species at two distinct sites, we studied these and two associated traits: the seasonal amount of water released per stem volume ("water released") and the hydraulic capacitance of the stem (C). Two deciduous species with low stem density, Cavanillesia platanifolia and Bursera simaruba, had high C and high dry-season stem water potential (Ψ(stem)), but differed in dry-season water released. C. platanifolia did not use stored water during the dry season whereas B. simaruba, in a drier forest, released stored water. In both, water released was highest while flushing leaves, suggesting that stored water supports leaf flushing. In contrast, two deciduous species with intermediate stem density, Annona hayesii and Genipa americana, had intermediate C, low dry-season Ψ(stem), and high seasonal change in water released. Meanwhile, two evergreen species with intermediate stem density, Cojoba rufescens and Astronium graveolens, had relatively low C, low dry-season Ψ(stem), and intermediate seasonal change in water released. Thus, at least three, distinct stored-water-use strategies were observed. Additionally, bark relative water content (RWC) decreased along with Ψ(stem) during the dry season while xylem RWC did not change, suggesting that bark-stored water buffers Ψ(stem) seasonally. Together these results suggest that seasonal use of stored water and change in Ψ(stem) are associated with functional groups that are characterized by combinations of deciduousness and stem density.

  13. Using the conservative nature of fresh leaf surface density to measure foliar area

    NASA Astrophysics Data System (ADS)

    Castillo, Omar S.; Zaragoza, Esther M.; Alvarado, Carlos J.; Barrera, Maria G.; Dasgupta-Schubert, Nabanita

    2014-10-01

    For a herbaceous species, the inverse of the fresh leaf surface density, the Hughes constant, is nearly conserved. We apply the Hughes constant to develop an absolute method of leafarea measurement that requires no regression fits, prior calibrations or oven-drying. The Hughes constant was determined in situ using a known geometry and weights of a sub-set obtained from the fresh leaves whose areas are desired. Subsequently, the leaf-areas (at any desired stratification level), were derived by utilizing the Hughes constant and the masses of the fresh leaves. The proof of concept was established for leaf-discs of the plants Mandevilla splendens and Spathiphyllum wallisii. The conservativeness of the Hughes constant over individual leaf-zones and different leaftypes from the leaves of each species was quantitatively validated. Using the globally averaged Hughes constant for each species, the leaf-area of these and additional co-species plants, were obtained. The leaf-area-measurement-by-mass was cross-checked with standard digital image analysis. There were no statistically significant differences between the leaf-area-measurement-by-mass and the digital image analysis measured leaf-areas and the linear correlation between the two methods was very good. Leaf-areameasurement- by-mass was found to be rapid and simple with accuracies comparable to the digital image analysis method. The greatly reduced cost of leaf-area-measurement-by-mass could be beneficial for small agri-businesses in developing countries.

  14. Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications.

    PubMed

    Edris, Amr E; Kalemba, Danuta; Adamiec, Janusz; Piątkowski, Marcin

    2016-08-01

    Oleoresin of Nigella sativa L. (Black cumin) was obtained from the seeds using hexane extraction at room temperature. The oleoresin was emulsified in an aqueous solution containing gum Arabic/maltodextrin (1:1 w/w) and then encapsulated in powder form by spray drying. The characteristics of the obtained powder including moisture content, bulk density, wettability, morphology, encapsulation efficiency were evaluated. The effect of the spray drying on the chemical composition of the volatile oil fraction of N. sativa oleoresin was also evaluated using gas chromatographic-mass spectroscopic analysis. Results indicated that the encapsulation efficiency of the whole oleoresin in the powder can range from 84.2±1.5% to 96.2±0.2% depending on the conditions of extracting the surface oil from the powder. On the other hand the encapsulation efficiency of the volatile oil fraction was 86.2% ±4.7. The formulated N. sativa L. oleoresin powder can be used in the fortification of processed food and nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Powder processing of hybrid titanium neural electrodes

    NASA Astrophysics Data System (ADS)

    Lopez, Jose Luis, Jr.

    A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.

  16. Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels

    DOEpatents

    Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H

    2014-04-01

    A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbon nanotubes and 5 to 95% carbon binder.

  17. Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr, Joe H.

    2016-07-05

    A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbon nanotubes and 5 to 95% carbon binder.

  18. Characteristics and model of sludge adhesion during thermal drying.

    PubMed

    Li, Huan; Zou, Shuxin; Li, Yangyang; Jin, Yiying

    2013-01-01

    During sludge thermal drying, the sludge adhered on the heated surface of drying equipments may affect drying efficiency. Sludge thermal drying experiments were conducted to investigate the effect of different drying conditions on sludge adhesion. The mass of sludge adhered on the heated surface (dryer wall) reached the maximum when sludge water content was about 60%. A high drying temperature would result in more sludge adhered on the heated surface in the temperature range of 80-160 degrees C. The convection heating and rougher surface would also lead to more sludge adhered on the heated surface. The relation between the maximum mass of adherent sludge and drying temperatures could be described by an exponential equation.

  19. Cumulative ventilation air drying potential as an indication of dry mass content in wastewater sludge in a thin-layer solar drying facility

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr

    2013-12-01

    Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.

  20. Mass production of the large-sized nuclear plate for J-PARC E07

    NASA Astrophysics Data System (ADS)

    Ito, Hiroki; Nakazama, Kazuma; Hoshino, Kaoru; Yoshida, Jyunya; Tint, Khin Than; Soe, Mint Kyaw; Kinbara, Shinji; Mishina, Akihiro; Endo, Yoko; Kobayashi, Hidetaka; J-PARC E07 Collaboration

    2014-09-01

    In J-PARC E07, about 102 double lambda hypernuclei will be detected, which is 10 times or more than that of the KEK PS-E373 experiment. Therefore, it is necessary for large-scale emulsion plates to avoid time-consuming job for exchange emulsion stack in beam exposure. We also use huge amount of emulsion gel with weight of 2.1 t, which is about 3 times' quantity used for E373. Nuclear emulsion plate is made of photographic emulsion gel as a dry film. Melted gel in 40°C is poured on a thin polystyrene film in the size of 710 × 700 mm2. These sheets were dried slowly for two days in drying cabinet under 28°C and RH. 75%. After drying, the surface was coated by thin gelatin layer with 0.3 μm thickness. Regarding the 2nd face, it was poured and coated in the same manner. Finally we dry it well under 25°C and RH. 60% and cut into four 350 × 345 mm2 plates. We evaluated the performance about these plates. The length of upper, lower, right-hand and left-hand side are 345.08 +/- 0.05 mm, 345.23 +/- 0.13 mm, 350.03 +/- 0.04 mm, and 350.80 +/- 0.05 mm, respectively. The density is 3.676 +/- 0.032 g/cm3, enough quality for the experiment.

  1. Diet and body mass of wintering ducks in adjacent brackish and freshwater habitats

    USGS Publications Warehouse

    Miller, M.R.; Burns, E.G.; Wickland, B.E.; Eadie, J.M.

    2009-01-01

    Field-collected and hunter-donated ducks obtained during September-January of 1997-98 and 1998-99 were used to determine if food habits and body mass of Northern Pintails (Anas acuta) and Mallards (A. platyrhynchos) wintering in Suisun Marsh (Suisun), California, a managed estuarine brackish marsh, differed from values in the adjacent Sacramento-San Joaquin River Delta (the Delta), a freshwater region of grain fields flooded after harvest. Ducks in Suisun fed primarily on seeds of Sea Purslane (Sesuvium verrucosum), followed by Alkali Bulrush (Schoenoplectus maritimus) and Wild Millet (Echinochloa crusgalli), together forming 73-90% (aggregate % dry mass) of the diets. Ducks in the Delta fed primarily on seeds of Smartweed (Polygonum spp.), followed by corn (Zea mays) and tomato seeds (Lycopersicon esculentum), together forming 62-88% of the diets. Pintails and Mallards collected in Suisun each had similar (5 of 11 seasonal comparisons) or greater (6 of the 11 comparisons) body mass compared to their conspecifics collected from the Delta (90% confidence interval analyses), despite a composite diet in the Delta having about 39% greater metabolizable energy content (ME) and 24% greater protein content than in Suisun. Therefore, diet quality alone was not a predictor of body mass in these two areas. Other factors must have been involved, such as greater food abundance and density, lower waterfowl abundance and density, or lower daily energy costs in Suisun. Direct measurement of these factors should explain the apparent inconsistencies in body mass relative to food quality in these brackish and freshwater habitats.

  2. Two-dimensional CFD modeling of the heat and mass transfer process during sewage sludge drying in a solar dryer

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr; Badyda, Krzysztof

    2011-12-01

    The paper presents key assumptions of the mathematical model which describes heat and mass transfer phenomena in a solar sewage drying process, as well as techniques used for solving this model with the Fluent computational fluid dynamics (CFD) software. Special attention was paid to implementation of boundary conditions on the sludge surface, which is a physical boundary between the gaseous phase - air, and solid phase - dried matter. Those conditions allow to model heat and mass transfer between the media during first and second drying stages. Selection of the computational geometry is also discussed - it is a fragment of the entire drying facility. Selected modelling results are presented in the final part of the paper.

  3. 40 CFR Table 6 to Subpart Cccc of... - Emission Limitations for Energy Recovery Units That Commenced Construction After June 4, 2010, or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... parts per million dry volume Biomass—160 parts per million dry volume 30 day rolling average Carbon... concentration of 300 ppm or less for a biomass-fed boiler. Dioxins/furans (Total Mass Basis) No Total Mass Basis... Biomass—290 parts per million dry volumeCoal—340 parts per million dry volume 3-run average (1 hour...

  4. 40 CFR Table 6 to Subpart Cccc of... - Emission Limitations for Energy Recovery Units That Commenced Construction After June 4, 2010, or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... parts per million dry volume Biomass—160 parts per million dry volume 30 day rolling average Carbon... concentration of 300 ppm or less for a biomass-fed boiler. Dioxins/furans (Total Mass Basis) No Total Mass Basis... Biomass—290 parts per million dry volumeCoal—340 parts per million dry volume 3-run average (1 hour...

  5. Innovative application of the moisture analyzer for determination of dry mass content of processed cheese

    NASA Astrophysics Data System (ADS)

    Kowalska, Małgorzata; Janas, Sławomir; Woźniak, Magdalena

    2018-04-01

    The aim of this work was the presentation of an alternative method of determination of the total dry mass content in processed cheese. The authors claim that the presented method can be used in industry's quality control laboratories for routine testing and for quick in-process control. For the test purposes both reference method of determination of dry mass in processed cheese and moisture analyzer method were used. The tests were carried out for three different kinds of processed cheese. In accordance with the reference method, the sample was placed on a layer of silica sand and dried at the temperature of 102 °C for about 4 h. The moisture analyzer test required method validation, with regard to drying temperature range and mass of the analyzed sample. Optimum drying temperature of 110 °C was determined experimentally. For Hochland cream processed cheese sample, the total dry mass content, obtained using the reference method, was 38.92%, whereas using the moisture analyzer method, it was 38.74%. An average analysis time in case of the moisture analyzer method was 9 min. For the sample of processed cheese with tomatoes, the reference method result was 40.37%, and the alternative method result was 40.67%. For the sample of cream processed cheese with garlic the reference method gave value of 36.88%, and the alternative method, of 37.02%. An average time of those determinations was 16 min. Obtained results confirmed that use of moisture analyzer is effective. Compliant values of dry mass content were obtained for both of the used methods. According to the authors, the fact that the measurement took incomparably less time for moisture analyzer method, is a key criterion of in-process control and final quality control method selection.

  6. Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying

    NASA Astrophysics Data System (ADS)

    Ortuño, Carmen; Pérez-Munuera, Isabel; Puig, Ana; Riera, Enrique; Garcia-Perez, J. V.

    2010-01-01

    Power ultrasound application on convective drying of foodstuffs may be considered an emergent technology. This work deals with the influence of power ultrasound on drying of natural materials addressing the kinetic as well as the product's microstructure. Convective drying kinetics of orange peel slabs (thickness 5.95±0.41 mm) were carried out at 40 ∘C and 1 m/s with (US) and without (AIR) power ultrasound application. A diffusion model considering external resistance to mass transfer was considered to describe drying kinetics. Fresh, US and AIR dried samples were analyzed using Cryo-SEM. Results showed that drying kinetics of orange peel were significantly improved by the application of power ultrasound. From modeling, it was observed a significant (p¡0.05) increase in both mass transfer coefficient and effective moisture diffusivity. The effects on mass transfer properties were confirmed from microestructural observations. In the cuticle surface, the pores were obstructed by wax components scattering, which evidence the ultrasonic effects on the interfaces. The cells of the flavedo were compressed and large intercellular air spaces were generated in the albedo facilitating water transfer through it.

  7. Improved compaction of dried tannery wastewater sludge.

    PubMed

    Della Zassa, M; Zerlottin, M; Refosco, D; Santomaso, A C; Canu, P

    2015-12-01

    We quantitatively studied the advantages of improving the compaction of a powder waste by several techniques, including its pelletization. The goal is increasing the mass storage capacity in a given storage volume, and reducing the permeability of air and moisture, that may trigger exothermic spontaneous reactions in organic waste, particularly as powders. The study is based on dried sludges from a wastewater treatment, mainly from tanneries, but the indications are valid and useful for any waste in the form of powder, suitable to pelletization. Measurements of bulk density have been carried out at the industrial and laboratory scale, using different packing procedures, amenable to industrial processes. Waste as powder, pellets and their mixtures have been considered. The bulk density of waste as powder increases from 0.64 t/m(3) (simply poured) to 0.74 t/m(3) (tapped) and finally to 0.82 t/m(3) by a suitable, yet simple, packing procedure that we called dispersion filling, with a net gain of 28% in the compaction by simply modifying the collection procedure. Pelletization increases compaction by definition, but the packing of pellets is relatively coarse. Some increase in bulk density of pellets can be achieved by tapping; vibration and dispersion filling are not efficient with pellets. Mixtures of powder and pellets is the optimal packing policy. The best compaction result was achieved by controlled vibration of a 30/70 wt% mixture of powders and pellets, leading to a final bulk density of 1t/m(3), i.e. an improvement of compaction by more than 54% with respect to simply poured powders, but also larger than 35% compared to just pellets. That means increasing the mass storage capacity by a factor of 1.56. Interestingly, vibration can be the most or the least effective procedure to improve compaction of mixtures, depending on characteristics of vibration. The optimal packing (30/70 wt% powders/pellets) proved to effectively mitigate the onset of smouldering, leading to self-heating, according to standard tests, whereas the pure pelletization totally removes the self-heating hazard. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Evaluation of the mass transfer process on thin layer drying of papaya seeds from the perspective of diffusive models

    NASA Astrophysics Data System (ADS)

    Dotto, Guilherme Luiz; Meili, Lucas; Tanabe, Eduardo Hiromitsu; Chielle, Daniel Padoin; Moreira, Marcos Flávio Pinto

    2018-02-01

    The mass transfer process that occurs in the thin layer drying of papaya seeds was studied under different conditions. The external mass transfer resistance and the dependence of effective diffusivity ( D EFF ) in relation to the moisture ratio ( \\overline{MR} ) and temperature ( T) were investigated from the perspective of diffusive models. It was verified that the effective diffusivity was affected by the moisture content and temperature. A new correlation was proposed for drying of papaya seeds in order to describe these influences. Regarding the use of diffusive models, the results showed that, at conditions of low drying rates ( T ≤ 70 °C), the external mass transfer resistance, as well as the dependence of the effective diffusivity with respect to the temperature and moisture content should be considered. At high drying rates ( T > 90 °C), the dependence of the effective diffusivity with respect to the temperature and moisture content can be neglected, but the external mass transfer resistance was still considerable in the range of air velocities used in this work.

  9. A generalized model for estimating the energy density of invertebrates

    USGS Publications Warehouse

    James, Daniel A.; Csargo, Isak J.; Von Eschen, Aaron; Thul, Megan D.; Baker, James M.; Hayer, Cari-Ann; Howell, Jessica; Krause, Jacob; Letvin, Alex; Chipps, Steven R.

    2012-01-01

    Invertebrate energy density (ED) values are traditionally measured using bomb calorimetry. However, many researchers rely on a few published literature sources to obtain ED values because of time and sampling constraints on measuring ED with bomb calorimetry. Literature values often do not account for spatial or temporal variability associated with invertebrate ED. Thus, these values can be unreliable for use in models and other ecological applications. We evaluated the generality of the relationship between invertebrate ED and proportion of dry-to-wet mass (pDM). We then developed and tested a regression model to predict ED from pDM based on a taxonomically, spatially, and temporally diverse sample of invertebrates representing 28 orders in aquatic (freshwater, estuarine, and marine) and terrestrial (temperate and arid) habitats from 4 continents and 2 oceans. Samples included invertebrates collected in all seasons over the last 19 y. Evaluation of these data revealed a significant relationship between ED and pDM (r2  =  0.96, p < 0.0001), where ED (as J/g wet mass) was estimated from pDM as ED  =  22,960pDM − 174.2. Model evaluation showed that nearly all (98.8%) of the variability between observed and predicted values for invertebrate ED could be attributed to residual error in the model. Regression of observed on predicted values revealed that the 97.5% joint confidence region included the intercept of 0 (−103.0 ± 707.9) and slope of 1 (1.01 ± 0.12). Use of this model requires that only dry and wet mass measurements be obtained, resulting in significant time, sample size, and cost savings compared to traditional bomb calorimetry approaches. This model should prove useful for a wide range of ecological studies because it is unaffected by taxonomic, seasonal, or spatial variability.

  10. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Li, Dijie; Arfat, Yasir; Chen, Zhihao; Liu, Zonglin; Lin, Yu; Ding, Chong; Sun, Yulong; Hu, Lifang; Shang, Peng; Qian, Airong

    2014-12-01

    Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones. After HLU for 4 weeks, the rats were then subjected to reloading for 1 week, 2 weeks and 3 weeks, and then the BMD of the femur, tibia and lumbar spine in rats were assessed by dual energy X-ray absorptiometry (DXA) every week. The mechanical properties of the femur were determined by three-point bending test. Dry bone and bone ash of femur were obtained through Oven-Drying method and were weighed respectively. Serum alkaline phosphatase (ALP) and serum calcium were examined through ELISA and Atomic Absorption Spectrometry. The results showed that 4 weeks of HLU significantly decreased body weight of rats and reloading for 1 week, 2 weeks or 3 weeks did not recover the weight loss induced by HLU. However, after 2 weeks of reloading, BMD of femur and tibia of HLU rats partly recovered (+10.4%, +2.3%). After 3 weeks of reloading, the reduction of BMD, energy absorption, bone mass and mechanical properties of bone induced by HLU recovered to some extent. The changes in serum ALP and serum calcium induced by HLU were also recovered after reloading. Our results indicate that a short period of reloading could not completely recover bone after a period of unloading, thus some interventions such as mechanical vibration or pharmaceuticals are necessary to help bone recovery.

  11. Dried Blood Spot Proteomics: Surface Extraction of Endogenous Proteins Coupled with Automated Sample Preparation and Mass Spectrometry Analysis

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas J.; Bunch, Josephine; Cooper, Helen J.

    2013-08-01

    Dried blood spots offer many advantages as a sample format including ease and safety of transport and handling. To date, the majority of mass spectrometry analyses of dried blood spots have focused on small molecules or hemoglobin. However, dried blood spots are a potentially rich source of protein biomarkers, an area that has been overlooked. To address this issue, we have applied an untargeted bottom-up proteomics approach to the analysis of dried blood spots. We present an automated and integrated method for extraction of endogenous proteins from the surface of dried blood spots and sample preparation via trypsin digestion by use of the Advion Biosciences Triversa Nanomate robotic platform. Liquid chromatography tandem mass spectrometry of the resulting digests enabled identification of 120 proteins from a single dried blood spot. The proteins identified cross a concentration range of four orders of magnitude. The method is evaluated and the results discussed in terms of the proteins identified and their potential use as biomarkers in screening programs.

  12. In Vivo Confocal Microscopic Evaluation of Corneal Langerhans Cells in Dry Eye Patients§

    PubMed Central

    Machetta, Federica; Fea, Antonio M; Actis, Alessandro G; de Sanctis, Ugo; Dalmasso, Paola; Grignolo, Federico M

    2014-01-01

    Purpose. To assess inflammatory involvement of cornea in dry eye by means of confocal microscopy, evaluating the presence and distribution of Langherans cells (LCs). Methods: 98 eyes of 49 subjects were enrolled: 18 subjects affected by Sjögren Syndrome Dry Eye (SSDE), 17 with Non-Sjögren Syndrome Dry Eye (NSSDE), 14 healthy volunteeers. Dry eye symptoms, tear film, ocular surface damage and corneal confocal microscopy were analized. Results: A significant increase of LCs density was observed at sub-basal nerve plexus (SSDE = 79 cells/mm2 andNDE = 22 cells/mm2; p = 0,0031) and sub-epithelial nerve plexus (SSDE = 38 cells/mm2 and NDE = 3 cells/mm2; p = 0,0169) in central cornea of SSDE group. An increased number of LCs from the center to the periphery of the cornea was observed, significant only in healthy volunteers group. In dry eye patients there was an increase in LCs density in both peripheral and central cornea with a significant difference between NDE (14,66 cells/mm2) and SSDE (56,66 cells/mm2) only in central cornea (p = 0,0028). In SSDE group, mean density of LCs in central cornea results also superior to NSSDE group (29,33 cells/mm2). There was no correlation between LCs density and dry eye symptoms, tear film deficiency and ocular surface damage. Conclusion: This study demonstrates the activation of an inflammatory and immunological reaction in cornea of NSSDE and SSDE patients. Confocal microscopy can be an important diagnostic tool in evaluation and follow-up of dry eye disease. PMID:25317216

  13. Density of Diadema antillarum (Echinodermata: Echinoidea) on live coral patch reefs and dead Acropora cervicornis rubble patches near Loggerhead Key, Dry Tortugas National Park, Florida, USA

    EPA Science Inventory

    Density of adult Diadema antillarum was assessed on live coral patch reefs and dead Acropora cervicornis rubble patches next to Loggerhead Key, Dry Tortugas National Park, Florida, USA in June 2009. Mean density on live coral patch reefs (0.49 individuals m-2) was not statistical...

  14. Biocompatibility of sweetpotato and peanut in a hydroponic system

    NASA Technical Reports Server (NTRS)

    Mortley, D. G.; Loretan, P. A.; Hill, W. A.; Bonsi, C. K.; Morris, C. E.; Hall, R.; Sullen, D.

    1998-01-01

    'Georgia Red' peanut (Arachis hypogaea L.) and TU-82-155 sweetpotato [Ipomoea batatas (L.) Lam] were grown in monocultured or intercropped recirculating hydroponic systems in a greenhouse using the nutrient film technique (NFT). The objective was to determine whether growth and subsequent yield would be affected by intercropping. Treatments were sweetpotato monoculture (SP), peanut monoculture (PN), and sweetpotato and peanut grown in separate NFT channels but sharing a common nutrient solution (SP-PN). Greenhouse conditions ranged from 24 to 33 degrees C, 60% to 90% relative humidity (RH), and photosynthetic photon flux (PPF) of 200 to 1700 micromoles m-2 s-1. Sweetpotato cuttings (15 cm long) and 14-day-old seedlings of peanuts were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart within and 25 cm apart between growing channels. A modified half-Hoagland solution with a 1 N: 2.4 K ratio was used. Solution pH was maintained between 5.5 and 6.0 for treatments involving SP and 6.4 and 6.7 for PN. Electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. The number of storage roots per sweetpotato plant was similar for both SP and SP-PN. Storage root fresh and dry mass were 29% and 36% greater, respectively, for plants in the SP-PN treatment than for plants in the SP treatment. The percent dry mass of the storage roots, dry mass of fibrous and pencil roots, and the length-to-diameter ratio of storage roots were similar for SP and SP-PN sweetpotato plants. Likewise, foliage fresh and dry mass and harvest index were not significantly influenced by treatment. Total dry mass was 37% greater for PN than for SP-PN peanut plants, and pod dry mass was 82% higher. Mature and total seed dry mass and fibrous root dry mass were significantly greater for PN than for SP-PN plants. Harvest index (HI) was similar for both treatments. Root length tended to be lower for seedlings grown in the nutrient solution from the SP-PN treatment.

  15. Biomass drying in a pulsed fluidized bed without inert bed particles

    DOE PAGES

    Jia, Dening; Bi, Xiaotao; Lim, C. Jim; ...

    2016-08-29

    Batch drying was performed in the pulsed fluidized bed with various species of biomass particles as an indicator of gas–solid contact efficiency and mass transfer rate under different operating conditions including pulsation duty cycle and particle size distribution. The fluidization of cohesive biomass particles benefited from the shorter opening time of pulsed gas flow and increased peak pressure drop. The presence of fines enhanced gas–solid contact of large and irregular biomass particles, as well as the mass transfer efficiency. A drying model based on two-phase theory was proposed, from which effective diffusivity was calculated for various gas flow rates, temperaturemore » and pulsation frequency. Intricate relationship was discovered between pulsation frequency and effective diffusivity, as mass transfer was deeply connected with the hydrodynamics. Effective diffusivity was also found to be proportional to gas flow rate and drying temperature. In conclusion, operating near the natural frequency of the system also favored drying and mass transfer.« less

  16. Mass transfer parameters of celeriac during vacuum drying

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2017-04-01

    An accurate prediction of moisture transfer parameters is very important for efficient mass transfer analysis, accurate modelling of drying process, and better designing of new dryers and optimization of existing drying process. The present study aimed to investigate the influence of temperature (e.g., 55, 65 and 75 °C) and chamber pressure (e.g., 0.1, 3, 7, 10, 13 and 17 kPa) on effective diffusivity and convective mass transfer coefficient of celeriac slices during vacuum drying. The obtained Biot number indicated that the moisture transfer in the celeriac slices was controlled by both internal and external resistance. The effective diffusivity obtained to be in the ranges of 7.5231 × 10-10-3.8015 × 10-9 m2 s-1. The results showed that the diffusivity increased with increasing temperature and decreasing pressure. The mass transfer coefficient values varied from 4.6789 × 10-7 to 1.0059 × 10-6 m s-1, and any increment in drying temperature and pressure caused an increment in the coefficient.

  17. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes

    NASA Astrophysics Data System (ADS)

    Nam, Young Jin; Oh, Dae Yang; Jung, Sung Hoo; Jung, Yoon Seok

    2018-01-01

    Owing to their potential for greater safety, higher energy density, and scalable fabrication, bulk-type all-solid-state lithium-ion batteries (ASLBs) employing deformable sulfide superionic conductors are considered highly promising for applications in battery electric vehicles. While fabrication of sheet-type electrodes is imperative from the practical point of view, reports on relevant research are scarce. This might be attributable to issues that complicate the slurry-based fabrication process and/or issues with ionic contacts and percolation. In this work, we systematically investigate the electrochemical performance of conventional dry-mixed electrodes and wet-slurry fabricated electrodes for ASLBs, by varying the different fractions of solid electrolytes and the mass loading. This information calls for a need to develop well-designed electrodes with better ionic contacts and to improve the ionic conductivity of solid electrolytes. As a scalable proof-of-concept to achieve better ionic contacts, a premixing process for active materials and solid electrolytes is demonstrated to significantly improve electrochemical performance. Pouch-type 80 × 60 mm2 all-solid-state LiNi0·6Co0·2Mn0·2O2/graphite full-cells fabricated by the slurry process show high cell-based energy density (184 W h kg-1 and 432 W h L-1). For the first time, their excellent safety is also demonstrated by simple tests (cutting with scissors and heating at 110 °C).

  18. [Quantitative analysis of the corneal subbasal nerves in different degrees of dry eye with AutoCAD].

    PubMed

    Cheng, Y; Wu, J; Zhu, H F; Cheng, Y; Zhu, X P

    2016-03-01

    To evaluate the practical value of AutoCAD in quantitative analysis of corneal subbasal epithelial nerves with different degrees of dry eye. Ninety patients were divided into groups of mild, moderate, and severe dry eye, 30 patients (60 eyes) in each group. And 30 healthy volunteers were recruited as the normal control group. Confocal microscopy was used to observe the length of the subbasal epithelial nerve plexus. The images were analyzed by AutoCAD software to determine the density (mm/mm(2)), the number of branches, and the curvature score of the subbasal epithelial nerves. These data of patients with dry eye and the controls were statistically compared, by analysis of variance(ANOV). By AutoCAD software, quantitative analysis of the corneal subbasal epithelial nerves was successfully performed. The nerve density in the patients with mild dry eye[(16.70±3.43) mm/mm(2)] was not significantly different from the controls[(15.87 ± 2.75) mm/mm(2)] (P=0.880), but the number of nerval branches 13.43±2.46 and the curvature 3.10±0.80 increased significantly (P<0.001). The nerve density in the patients with moderate and severe dry eye was significantly different from that in the normal control group (F=114.739, P<0.001). The neural density was significantly lower in the patients with severe dry eye than the controls, but there was no significant difference in the curvature scores between the two groups (P= 0.557). AutoCAD software is useful in the quantitative analysis of corneal nerve images under a confocal microscope. The corneal subbasal epithelial nerve density, the number of branches, and the curvature of the nerves are related to the degree of dry eye, and may be used as clinical indicators.

  19. Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska

    USGS Publications Warehouse

    Mack, M.C.; Treseder, K.K.; Manies, K.L.; Harden, J.W.; Schuur, E.A.G.; Vogel, J.G.; Randerson, J.T.; Chapin, F. S.

    2008-01-01

    Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ???116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ?? 21 g m-2 (mean ?? 1SE) and vascular ANPP had recovered to 138 ?? 32 g m-2 y -1, which was not different than that of a nearby unburned stand (160 ?? 48 g m-2 y-1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ?? 180 (dry) and 4008 ?? 233 g m-2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ?? 68 g m-2 y -1 in the mature site, but in the dry chronosequence it peaked at 410 ?? 43 g m-2 y-1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls over these factors will help predict how changes in climate and fire regime will affect the carbon balance of Interior Alaska. ?? 2008 Springer Science+Business Media, LLC.

  20. Nanoporous mannitol carrier prepared by non-organic solvent spray drying technique to enhance the aerosolization performance for dry powder inhalation

    PubMed Central

    Peng, Tingting; Zhang, Xuejuan; Huang, Ying; Zhao, Ziyu; Liao, Qiuying; Xu, Jing; Huang, Zhengwei; Zhang, Jiwen; Wu, Chuan-yu; Pan, Xin; Wu, Chuanbin

    2017-01-01

    An optimum carrier rugosity is essential to achieve a satisfying drug deposition efficiency for the carrier based dry powder inhalation (DPI). Therefore, a non-organic spray drying technique was firstly used to prepare nanoporous mannitol with small asperities to enhance the DPI aerosolization performance. Ammonium carbonate was used as a pore-forming agent since it decomposed with volatile during preparation. It was found that only the porous structure, and hence the specific surface area and carrier density were changed at different ammonium carbonate concentration. Furthermore, the carrier density was used as an indication of porosity to correlate with drug aerosolization. A good correlation between the carrier density and fine particle fraction (FPF) (r2 = 0.9579) was established, suggesting that the deposition efficiency increased with the decreased carrier density. Nanoporous mannitol with a mean pore size of about 6 nm exhibited 0.24-fold carrier density while 2.16-fold FPF value of the non-porous mannitol. The enhanced deposition efficiency was further confirmed from the pharmacokinetic studies since the nanoporous mannitol exhibited a significantly higher AUC0-8h value than the non-porous mannitol and commercial product Pulmicort. Therefore, surface modification by preparing nanoporous carrier through non-organic spray drying showed to be a facile approach to enhance the DPI aerosolization performance. PMID:28462948

  1. Estimation of tiger densities in the tropical dry forests of Panna, Central India, using photographic capture-recapture sampling

    USGS Publications Warehouse

    Karanth, K.Ullas; Chundawat, Raghunandan S.; Nichols, James D.; Kumar, N. Samba

    2004-01-01

    Tropical dry-deciduous forests comprise more than 45% of the tiger (Panthera tigris) habitat in India. However, in the absence of rigorously derived estimates of ecological densities of tigers in dry forests, critical baseline data for managing tiger populations are lacking. In this study tiger densities were estimated using photographic capture–recapture sampling in the dry forests of Panna Tiger Reserve in Central India. Over a 45-day survey period, 60 camera trap sites were sampled in a well-protected part of the 542-km2 reserve during 2002. A total sampling effort of 914 camera-trap-days yielded photo-captures of 11 individual tigers over 15 sampling occasions that effectively covered a 418-km2 area. The closed capture–recapture model Mh, which incorporates individual heterogeneity in capture probabilities, fitted these photographic capture history data well. The estimated capture probability/sample, p̂= 0.04, resulted in an estimated tiger population size and standard error (N̂(SÊN̂)) of 29 (9.65), and a density (D̂(SÊD̂)) of 6.94 (3.23) tigers/100 km2. The estimated tiger density matched predictions based on prey abundance. Our results suggest that, if managed appropriately, the available dry forest habitat in India has the potential to support a population size of about 9000 wild tigers.

  2. Common relationships among proximate composition components in fishes

    USGS Publications Warehouse

    Hartman, K.J.; Margraf, F.J.

    2008-01-01

    Relationships between the various body proximate components and dry matter content were examined for five species of fishes, representing anadromous, marine and freshwater species: chum salmon Oncorhynchus keta, Chinook salmon Oncorhynchus tshawytscha, brook trout Salvelinus fontinalis, bluefish Pomatomus saltatrix and striped bass Morone saxatilis. The dry matter content or per cent dry mass of these fishes can be used to reliably predict the per cent composition of the other components. Therefore, with validation it is possible to estimate fat, protein and ash content of fishes from per cent dry mass information, reducing the need for costly and time-consuming laboratory proximate analysis. This approach coupled with new methods of non-lethal estimation of per cent dry mass, such as from bioelectrical impedance analysis, can provide non-destructive measurements of proximate composition of fishes. ?? 2008 The Authors.

  3. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2017-01-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  4. Associations between ozone and morbidity using the Spatial Synoptic Classification system

    PubMed Central

    2011-01-01

    Background Synoptic circulation patterns (large-scale tropospheric motion systems) affect air pollution and, potentially, air-pollution-morbidity associations. We evaluated the effect of synoptic circulation patterns (air masses) on the association between ozone and hospital admissions for asthma and myocardial infarction (MI) among adults in North Carolina. Methods Daily surface meteorology data (including precipitation, wind speed, and dew point) for five selected cities in North Carolina were obtained from the U.S. EPA Air Quality System (AQS), which were in turn based on data from the National Climatic Data Center of the National Oceanic and Atmospheric Administration. We used the Spatial Synoptic Classification system to classify each day of the 9-year period from 1996 through 2004 into one of seven different air mass types: dry polar, dry moderate, dry tropical, moist polar, moist moderate, moist tropical, or transitional. Daily 24-hour maximum 1-hour ambient concentrations of ozone were obtained from the AQS. Asthma and MI hospital admissions data for the 9-year period were obtained from the North Carolina Department of Health and Human Services. Generalized linear models were used to assess the association of the hospitalizations with ozone concentrations and specific air mass types, using pollutant lags of 0 to 5 days. We examined the effect across cities on days with the same air mass type. In all models we adjusted for dew point and day-of-the-week effects related to hospital admissions. Results Ozone was associated with asthma under dry tropical (1- to 5-day lags), transitional (3- and 4-day lags), and extreme moist tropical (0-day lag) air masses. Ozone was associated with MI only under the extreme moist tropical (5-day lag) air masses. Conclusions Elevated ozone levels are associated with dry tropical, dry moderate, and moist tropical air masses, with the highest ozone levels being associated with the dry tropical air mass. Certain synoptic circulation patterns/air masses in conjunction with ambient ozone levels were associated with increased asthma and MI hospitalizations. PMID:21609456

  5. Structural and functional changes in corneal innervation after laser in situ keratomileusis and their relationship with dry eye.

    PubMed

    Chao, Cecilia; Stapleton, Fiona; Zhou, Xiangtian; Chen, Shihao; Zhou, Shi; Golebiowski, Blanka

    2015-11-01

    The most likely etiology of post-LASIK dry eye is corneal nerve damage; however, no direct relationship between post-LASIK dry eye symptoms and nerve damage has been established, and limited information is available about the relationship between dry eye signs and corneal reinnervation after LASIK. Tear neuropeptides (SP and CGRP) are important in the maintenance of corneal nerve health, but the impact of LASIK has not yet been studied. This study evaluated changes in nerve morphology, tear neuropeptide, and dry eye, so as to establish the relationship between reinnervation and dry eye and to assess the role of tear neuropeptides in reinnervation post-LASIK. Twenty non-dry eye volunteers who had undergone bilateral myopic-LASIK completed this study. Corneal nerve morphology (density, width, interconnections, and tortuosity), SP and CGRP concentration, and dry eye were monitored over time prior to, 1 day, 1 week, 1, 3, and 6 months post-LASIK. Dry eye symptoms and tear function, except for osmolarity (P = 0.003), remained unchanged post-LASIK. Corneal nerve morphology decreased immediately, and did not return to preoperative levels by 6 months post-LASIK (P < 0.001). Increased tear SP concentration was observed 3 months post-LASIK (P < 0.001). Associations between reinnervation as measured by increased density and lower tear SP (P = 0.03), and between increased density and decreased dry eye symptoms (P = 0.01) were found post-LASIK. An inverse relationship between reinnervation post-LASIK and dry eye symptoms was found, confirming that post-LASIK dry eye is a neuropathic disease. This study is the first to demonstrate an association between tear SP and post-LASIK reinnervation, suggesting that strategies for manipulating neuropeptide concentration to improve reinnervation may improve ocular comfort post-LASIK.

  6. Preparation and drug controlled release of porous octyl-dextran microspheres.

    PubMed

    Hou, Xin; Liu, Yanfei

    2015-01-01

    In this work, porous octyl-dextran microspheres with excellent properties were prepared by two steps. Firstly, dextran microspheres were synthesized by reversed-phase suspension polymerization. Secondly, octyl-dextran microspheres were prepared by the reaction between dextran microspheres and ethylhexyl glycidyl ether and freezing-drying method. Porous structure of microspheres was formed through the interaction between octyl groups and organic solvents. The structure, morphology, dry density, porosity and equilibrium water content of porous octyl-dextran microspheres were systematically investigated. The octyl content affected the properties of microspheres. The results showed that the dry density of microspheres decreased from 2.35 to 1.21 g/ml, porosity increased from 80.68 to 95.05% with the octyl content increasing from 0.49 to 2.28 mmol/g. Meanwhile, the equilibrium water content presented a peak value (90.18%) when the octyl content was 2.25 mmol/g. Octyl-dextran microspheres showed high capacity. Naturally drug carriers play an important role in drug-delivery systems for their biodegradability, wide raw materials sources and nontoxicity. Doxorubicin (DOX) was used as a drug model to examine the drug-loading capacity of porous octyl-dextran microspheres. The drug-loading efficiency increased with the increase in microspheres/drug ratio, while the encapsulation efficiency decreased. When microspheres/drug mass ratio was 4/1, the drug-loading efficiency and encapsulation efficiency were 10.20 and 51.00%, respectively. The release rate of DOX increased as drug content and porosity increased. In conclusion, porous octyl-dextran microspheres were synthesized successfully and have the potential to serve as an effective delivery system in drug controlled release.

  7. Titanium dioxide nanoparticle exposure reduces algal biomass and alters algal assemblage composition in wastewater effluent-dominated stream mesocosms.

    PubMed

    Wright, Moncie V; Matson, Cole W; Baker, Leanne F; Castellon, Benjamin T; Watkins, Preston S; King, Ryan S

    2018-06-01

    A 5-week mesocosm experiment was conducted to investigate the toxicity of titanium dioxide nanoparticles (TiO 2 NPs) to periphytic algae in an environmentally-realistic scenario. We used outdoor experimental streams to simulate the characteristics of central Texas streams receiving large discharges of wastewater treatment plant effluent during prolonged periods of drought. The streams were continually dosed and maintained at two concentrations. The first represents an environmentally relevant concentration of 0.05 mg L -1 (low concentration). The second treatment of 5 mg L -1 (high concentration) was selected to represent a scenario where TiO 2 NPs are used for photocatalytic degradation of pharmaceuticals in wastewater. Algal cell density, chlorophyll-a, ash-free dry mass, algal assemblage composition, and Ti accumulation were determined for the periphyton in the riffle sections of each stream. The high concentration treatment of TiO 2 NPs significantly decreased algal cell density, ash-free dry mass, and chlorophyll-a, and altered algal assemblage composition. Decreased abundance of three typically pollution-sensitive taxa and increased abundance of two genera associated with heavy metal sorption and organic pollution significantly contributed to algal assemblage composition changes in response to TiO 2 NPs. Benefits of the use of TiO 2 NPs in wastewater treatment plants will need to be carefully weighed against the demonstrated ability of these NPs to cause large changes in periphyton that would likely propagate significant effects throughout the stream ecosystem, even in the absence of direct toxicity to higher trophic level organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Leaf dynamics in growth and reproduction of Xanthium canadense as influenced by stand density

    PubMed Central

    Ogawa, Takahiro; Oikawa, Shimpei; Hirose, Tadaki

    2015-01-01

    Background and Aims Leaf longevity is controlled by the light gradient in the canopy and also by the nitrogen (N) sink strength in the plant. Stand density may influence leaf dynamics through its effects on light gradient and on plant growth and reproduction. This study tests the hypothesis that the control by the light gradient is manifested more in the vegetative period, whereas the opposite is true when the plant becomes reproductive and develops a strong N sink. Methods Stands of Xanthium canadense were established at two densities. Emergence, growth and death of every leaf on the main stem and branches, and plant growth and N uptake were determined from germination to full senescence. Mean residence time and dry mass productivity were calculated per leaf number, leaf area, leaf mass and leaf N (collectively termed ‘leaf variables’) in order to analyse leaf dynamics and its effect on plant growth. Key Results Branching and reproductive activities were higher at low than at high density. Overall there was no significant difference in mean residence time of leaf variables between the two stands. However, early leaf cohorts on the main stem had a longer retention time at low density, whereas later cohorts had a longer retention time at high density. Branch leaves emerged earlier and tended to live longer at low than at high density. Leaf efficiencies, defined as carbon export per unit investment of leaf variables, were higher at low density in all leaf variables except for leaf number. Conclusions In the vegetative phase of plant growth, the light gradient strongly controls leaf longevity, whereas later the effects of branching and reproductive activities become stronger and over-rule the effect of light environment. As leaf N supports photosynthesis and also works as an N source for plant development, N use is pivotal in linking leaf dynamics with plant growth and reproduction. PMID:26248476

  9. An evaluation of fluid bed drying of aqueous granulations.

    PubMed

    Hlinak, A J; Saleki-Gerhardt, A

    2000-01-01

    The purpose of the work described was twofold: (a) to apply heat and mass balance approaches to evaluate the fluid bed drying cycle of an aqueous granulation, and (b) to determine the effect of the temperature and relative humidity of the drying air on the ability to meet a predetermined moisture content specification. Water content determinations were performed using Karl Fischer titration, and Computrac and Mark 1 moisture analyzers. The water vapor sorption isotherms were measured using a gravimetric moisture sorption apparatus with vacuum-drying capability. Temperature, relative humidity, and air flow were measured during the drying cycle of a production-scale fluid bed dryer. Heat and mass balance equations were used to calculate the evaporation rates. Evaporation rates calculated from heat and mass balance equations agreed well with the experimental data, whereas equilibrium moisture content values provided useful information for determination of the upper limit for inlet air humidity. Increasing the air flow rate and inlet temperature reduced the drying time through the effect on the primary driving force. As expected, additional drying of granules during the equilibration period did not show a significant impact on reducing the final moisture content of granules. Reducing the drying temperature resulted in measurement of higher equilibrium moisture content for the granules, which was in good agreement with the water vapor sorption data. Heat and mass balance equations can be used to successfully model the fluid bed drying cycle of aqueous granulations. The water vapor sorption characteristics of granules dictate the final moisture content at a given temperature and relative humidity.

  10. Dehydration of seabird prey during transport to the colony: Effects on wet weight energy densities

    USGS Publications Warehouse

    Montevecchi, W.A.; Piatt, John F.

    1987-01-01

    We present evidence to indicate that dehydration of prey transported by seabirds from capture sites at sea to chicks at colonies inflates estimates of wet weight energy densities. These findings and a comparison of wet and dry weight energy densities reported in the literature emphasize the importance of (i) accurate measurement of the fresh weight and water content of prey, (ii) use of dry weight energy densities in comparisons among species, seasons, and regions, and (iii) cautious interpretation and extrapolation of existing data sets.

  11. Dry Pressed Holey Graphene Composites for Li-air Battery Cathodes

    NASA Astrophysics Data System (ADS)

    Lacey, Steven; Lin, Yi; Hu, Liangbing

    Graphene is considered an ``omnipotent'' material due to its unique structural characteristics and chemical properties. By heating graphene powder in an open-ended tube furnace, a novel compressible carbon material, holey graphene (hG), can be created with controlled porosity and be further decorated with nanosized catalysts to increase electrocatalytic activity. All hG-based materials were characterized using various microscopic and spectroscopic techniques to obtain morphological, topographical, and chemical information as well as to identify any disordered/crystalline phases. In this work, an additive-free dry press method was employed to press the hG composite materials into high mass loading mixed, sandwich, and double-decker Li-air cathode architectures using a hydraulic press. The sandwich and double-decker (i.e. Big Mac) cathode architectures are the first of its kind and can be discharged for more than 200 hours at a current density of 0.2 mA/cm2. The scalable, binderless, and solventless dry press method and unique Li-air cathode architectures presented here greatly advance electrode fabrication possibilities and could promote future energy storage advancements. Support appreciated from the NASA Internships Fellowships Scholarships (NIFS) Program.

  12. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer.

    PubMed

    Tang, Xiaolin Charlie; Nail, Steven L; Pikal, Michael J

    2005-04-01

    To develop a procedure based on manometric temperature measurement (MTM) and an expert system for good practices in freeze drying that will allow development of an optimized freeze-drying process during a single laboratory freeze-drying experiment. Freeze drying was performed with a FTS Dura-Stop/Dura-Top freeze dryer with the manometric temperature measurement software installed. Five percent solutions of glycine, sucrose, or mannitol with 2 ml to 4 ml fill in 5 ml vials were used, with all vials loaded on one shelf. Details of freezing, optimization of chamber pressure, target product temperature, and some aspects of secondary drying are determined by the expert system algorithms. MTM measurements were used to select the optimum shelf temperature, to determine drying end points, and to evaluate residual moisture content in real-time. MTM measurements were made at 1 hour or half-hour intervals during primary drying and secondary drying, with a data collection frequency of 4 points per second. The improved MTM equations were fit to pressure-time data generated by the MTM procedure using Microcal Origin software to obtain product temperature and dry layer resistance. Using heat and mass transfer theory, the MTM results were used to evaluate mass and heat transfer rates and to estimate the shelf temperature required to maintain the target product temperature. MTM product dry layer resistance is accurate until about two-thirds of total primary drying time is over, and the MTM product temperature is normally accurate almost to the end of primary drying provided that effective thermal shielding is used in the freeze-drying process. The primary drying times can be accurately estimated from mass transfer rates calculated very early in the run, and we find the target product temperature can be achieved and maintained with only a few adjustments of shelf temperature. The freeze-dryer overload conditions can be estimated by calculation of heat/mass flow at the target product temperature. It was found that the MTM results serve as an excellent indicator of the end point of primary drying. Further, we find that the rate of water desorption during secondary drying may be accurately measured by a variation of the basic MTM procedure. Thus, both the end point of secondary drying and real-time residual moisture may be obtained during secondary drying. Manometric temperature measurement and the expert system for good practices in freeze drying does allow development of an optimized freeze-drying process during a single laboratory freeze-drying experiment.

  13. De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content

    Treesearch

    W. Matt Jolly; Ann M. Hadlow; Kathleen Huguet

    2014-01-01

    Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples from Pinus contorta for...

  14. 40 CFR 75.19 - Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (or group of identical units) equipped with SCR (or SNCR) and uses dry low-NOX technology to control... with add-on NOX emission controls, and for units that use dry low-NOX technology, the owner or operator... mass emissions unit that uses dry low-NOX premix technology to control NOX emissions, proper operation...

  15. Mass transfer characteristics during convective, microwave and combined microwave-convective drying of lemon slices.

    PubMed

    Sadeghi, Morteza; Mirzabeigi Kesbi, Omid; Mireei, Seyed Ahmad

    2013-02-01

    The investigation of drying kinetics and mass transfer phenomena is important for selecting optimum operating conditions, and obtaining a high quality dried product. Two analytical models, conventional solution of the diffusion equation and the Dincer and Dost model, were used to investigate mass transfer characteristics during combined microwave-convective drying of lemon slices. Air temperatures of 50, 55 and 60 °C, and specific microwave powers of 0.97 and 2.04 W g(-1) were the process variables. Kinetics curves for drying indicated one constant rate period followed by one falling rate period in convective and microwave drying methods, and only one falling rate period with the exception of a very short accelerating period at the beginning of microwave-convective treatments. Applying the conventional method, the effective moisture diffusivity varied from 2.4 × 10(-11) to 1.2 × 10(-9) m(2) s(-1). The Biot number, the moisture transfer coefficient, and the moisture diffusivity, respectively in the ranges of 0.2 to 3.0 (indicating simultaneous internal and external mass transfer control), 3.7 × 10(-8) to 4.3 × 10(-6) m s(-1), and 2.2 × 10(-10) to 4.2 × 10(-9) m(2) s(-1) were also determined using the Dincer and Dost model. The higher degree of prediction accuracy was achieved by using the Dincer and Dost model for all treatments. Therefore, this model could be applied as an effective tool for predicting mass transfer characteristics during the drying of lemon slices. Copyright © 2012 Society of Chemical Industry.

  16. Advantages and Challenges of Dried Blood Spot Analysis by Mass Spectrometry Across the Total Testing Process.

    PubMed

    Zakaria, Rosita; Allen, Katrina J; Koplin, Jennifer J; Roche, Peter; Greaves, Ronda F

    2016-12-01

    Through the introduction of advanced analytical techniques and improved throughput, the scope of dried blood spot testing utilising mass spectrometric methods, has broadly expanded. Clinicians and researchers have become very enthusiastic about the potential applications of dried blood spot based mass spectrometric applications. Analysts on the other hand face challenges of sensitivity, reproducibility and overall accuracy of dried blood spot quantification. In this review, we aim to bring together these two facets to discuss the advantages and current challenges of non-newborn screening applications of dried blood spot quantification by mass spectrometry. To address these aims we performed a key word search of the PubMed and MEDLINE online databases in conjunction with individual manual searches to gather information. Keywords for the initial search included; "blood spot" and "mass spectrometry"; while excluding "newborn"; and "neonate". In addition, databases were restricted to English language and human specific. There was no time period limit applied. As a result of these selection criteria, 194 references were identified for review. For presentation, this information is divided into: 1) clinical applications; and 2) analytical considerations across the total testing process; being pre-analytical, analytical and post-analytical considerations. DBS analysis using MS applications is now broadly applied, with drug monitoring for both therapeutic and toxicological analysis being the most extensively reported. Several parameters can affect the accuracy of DBS measurement and further bridge experiments are required to develop adjustment rules for comparability between dried blood spot measures and the equivalent serum/plasma values. Likewise, the establishment of independent reference intervals for dried blood spot sample matrix is required.

  17. Above-ground biomass and structure of 260 African tropical forests

    PubMed Central

    Lewis, Simon L.; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K.; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M. F.; Phillips, Oliver L.; Affum-Baffoe, Kofi; Baker, Timothy R.; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J.; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K.; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E. N.; Fauset, Sophie; Feldpausch, Ted R.; Foli, Ernest G.; Gillet, Jean-François; Hamilton, Alan C.; Harris, David J.; Hart, Terese B.; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J.; Kearsley, Elizabeth; Leal, Miguel E.; Lloyd, Jon; Lovett, Jon C.; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R.; Ojo, Lucas; Peh, Kelvin S.-H.; Pickavance, Georgia; Poulsen, John R.; Reitsma, Jan M.; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E.; Talbot, Joey; Taplin, James R. D.; Taylor, David; Thomas, Sean C.; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J. T.; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha−1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha−1) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha−1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes. PMID:23878327

  18. Freeze-drying in novel container system: Characterization of heat and mass transfer in glass syringes.

    PubMed

    Patel, Sajal M; Pikal, Michael J

    2010-07-01

    This study is aimed at characterizing and understanding different modes of heat and mass transfer in glass syringes to develop a robust freeze-drying process. Two different holder systems were used to freeze-dry in syringes: an aluminum (Al) block and a plexiglass holder. The syringe heat transfer coefficient was characterized by a sublimation test using pure water. Mannitol and sucrose (5% w/v) were also freeze-dried, as model systems, in both the assemblies. Dry layer resistance was determined from manometric temperature measurement (MTM) and product temperature was measured using thermocouples, and was also determined from MTM. Further, freeze-drying process was also designed using Smart freeze-dryer to assess its application for freeze-drying in novel container systems. Heat and mass transfer in syringes were compared against the traditional container system (i.e., glass tubing vial). In the Al block, the heat transfer was via three modes: contact conduction, gas conduction, and radiation with gas conduction being the dominant mode of heat transfer. In the plexiglass holder, the heat transfer was mostly via radiation; convection was not involved. Also, MTM/Smart freeze-drying did work reasonably well for freeze-drying in syringes. When compared to tubing vials, product temperature decreases and hence drying time increases in syringes. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  19. Convective drying of osmo-dehydrated apple slices: kinetics and spatial behavior of effective mass diffusivity and moisture content

    NASA Astrophysics Data System (ADS)

    de Farias Aires, Juarez Everton; da Silva, Wilton Pereira; de Almeida Farias Aires, Kalina Lígia Cavalcante; da Silva Júnior, Aluízio Freire; da Silva e Silva, Cleide Maria Diniz Pereira

    2018-04-01

    The main objective of this study is the presentation of a numerical model of liquid diffusion for the description of the convective drying of apple slices submitted to pretreatment of osmotic dehydration able of predicting the spatial distribution of effective mass diffusivity values in apple slabs. Two models that use numerical solutions of the two-dimensional diffusion equation in Cartesian coordinates with the boundary condition of third kind were proposed to describe drying. The first one does not consider the shrinkage of the product and assumes that the process parameters remain constant along the convective drying. The second one considers the shrinkage of the product and assumes that the effective mass diffusivity of water varies according to the local value of the water content in the apple samples. Process parameters were estimated from experimental data through an optimizer coupled to the numerical solutions. The osmotic pretreatment did not reduce the drying time in relation to the fresh fruits when the drying temperature was equal to 40 °C. The use of the temperature of 60 °C led to a reduction in the drying time. The model that considers the variations in the dimensions of the product and the variation in the effective mass diffusivity proved to be more adequate to describe the process.

  20. Mechanical and thermal properties of high density polyethylene – dried distillers grains with solubles composites

    USDA-ARS?s Scientific Manuscript database

    Dried Distillers Grain with Solubles (DDGS) is evaluated as a bio-based fiber reinforcement. Injection molded composites of high density polyethylene (HDPE), 25% by weight of DDGS, and either 5% of 0% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding and injection mo...

  1. Bushy-tailed woodrat abundance in dry forests of eastern Washington.

    Treesearch

    John F. Lehmkuhl; Keith D. Kistler; James S. Begley

    2006-01-01

    We studied bushy-tailed woodrats (Neotonza cinerea occidentalis) in the eastern Washington Cascade Range to estimate their density and survival in 3 typical dry forest cover types. We predicted woodrat density to be high, moderate, and low in mature mixed-conifer forests, young mixed-conifer forests, and open ponderosa pine forests, respectively....

  2. Hydrological disturbance diminishes predator control in wetlands.

    PubMed

    Dorn, Nathan J; Cook, Mark I

    2015-11-01

    Effects of predators on prey populations can be especially strong in aquatic ecosystems, but disturbances may mediate the strength of predator limitation and even allow outbreaks of some prey populations. In a two-year study we investigated the numerical responses of crayfish (Procambarus fallax) and small fishes (Poeciliidae and Fundulidae) to a brief hydrological disturbance in replicated freshwater wetlands with an experimental drying and large predatory fish reduction. The experiment and an in situ predation assay tested the component of the consumer stress model positing that disturbances release prey from predator limitation. In the disturbed wetlands, abundances of large predatory fish were seasonally reduced, similar to dynamics in the Everglades (southern Florida). Densities of small fish were unaffected by the disturbance, but crayfish densities, which were similar across all wetlands before drying, increased almost threefold in the year after the disturbance. Upon re-flooding, juvenile crayfish survival was inversely related to the abundance of large fish across wetlands, but we found no evidence for enhanced algal food quality. At a larger landscape scale (500 km2 of the Everglades), crayfish densities over eight years were positively correlated with the severity of local dry disturbances (up to 99 days dry) during the preceding dry season. In contrast, densities of small-bodied fishes in the same wetlands were seasonally depressed by dry disturbances. The results from our experimental wetland drought and the observations of crayfish densities in the Everglades represent a large-scale example of prey population release following a hydrological disturbance in a freshwater ecosystem. The conditions producing crayfish pulses in the Everglades appear consistent with the mechanics of the consumer stress model, and we suggest crayfish pulses may influence the number of nesting wading birds in the Everglades.

  3. Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water. I. Water hyacinth, water lettuce, and pennywort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, K.R.; DeBusk, W.F.

    Seasonal growth characteristics and biomass yield potential of 3 floating aquatic macrophytes cultured in nutrient nonlimiting conditions were evaluated in central Florida's climatic conditions. Growth cycle (growth curve) of the plants was found to be complete when maximum plant density was reached and no additional increase in growth was recorded. Biomass yield per unit area and time was found to be maximum in the linear phase of the growth curve; plant density in this phase was defined as ''operational plant density,'' a density range in which a biomass production system is operated to obtain the highest possible yields. Biomass yieldsmore » were found to be 106, 72, and 41 t(dry wt) ha/sup -1/yr/sup -1/, respectively, for water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), and pennywort (Hydrocotyle umbellata). Operational plant density was found to be in the range of 500-2000 g dry wt m/sup -2/ for water hyacinth, 200-700 g dry wt m/sup -2/ for water lettuce, and 250-650 g dry wt/sup -2/ for pennywort. Seasonality was observed in growth rates but not in operational plant density. Specific growth rate (% increase per day) was found to maximum at low plant densities and decreased as the plant density increased. Results show that water hyacinth and water lettuce can be successfully grown for a period of about 10 mo, while pennywort, a cool season plant, can be integrated into water hyacinth/water lettuce biomass production system to obtain high yields in the winter.« less

  4. Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water. I. Water hyacinth, water lettuce, and pennywort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, K.R.; DeBusk, W.F.

    Seasonal growth characteristics and biomass yield potential of 3 floating aquatic macrophytes cultured in nutrient nonlimiting conditions were evaluated in central Florida's climatic conditions. Growth cycle (growth curve) of the plants was found to be complete when maximum plant density was reached and no additional increase in growth was recorded. Biomass yield per unit area and time was found to be maximum in the linear phase of the growth curve; plant density in this phase was defined as operational plant density, a density range in which a biomass production system is operated to obtain the highest possible yields. Biomass yieldsmore » were found to be 106, 72, and 41 t (dry wt) ha/sup -1/ yr/sup -1/, respectively, for water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), and pennywort (Hydrocotyle umbellata). Operational plant density was found to be in the range of 500-2,000 g dry wt m/sup -2/ for water hyacinth, 200-700 g dry wt m/sup -2/ for water lettuce, and 250-650 g dry wt m/sup -2/ for pennywort. Seasonality was observed in growth rates but not in operational plant density. Specific growth rate (% increase per day) was found to maximum at low plant densities and decreased as the plant density increased. Results show that water hyacinth and water lettuce can be successfully grown for a period of about 10 mo, while pennywort, a cool season plant, can be integrated into water hyacinth/water lettuce biomass production system to obtain high yields in the winter.« less

  5. High density of tree-cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient.

    PubMed

    Vázquez, Leopoldo; Renton, Katherine

    2015-01-01

    It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.

  6. High Density of Tree-Cavities and Snags in Tropical Dry Forest of Western Mexico Raises Questions for a Latitudinal Gradient

    PubMed Central

    Vázquez, Leopoldo; Renton, Katherine

    2015-01-01

    It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters. PMID:25615612

  7. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.

    PubMed

    Lin, Yi; Moitoso, Brandon; Martinez-Martinez, Chalynette; Walsh, Evan D; Lacey, Steven D; Kim, Jae-Woo; Dai, Liming; Hu, Liangbing; Connell, John W

    2017-05-10

    Lithium-oxygen (Li-O 2 ) batteries have the highest theoretical energy density of all the Li-based energy storage systems, but many challenges prevent them from practical use. A major obstacle is the sluggish performance of the air cathode, where both oxygen reduction (discharge) and oxygen evolution (charge) reactions occur. Recently, there have been significant advances in the development of graphene-based air cathode materials with a large surface area and catalytically active for both oxygen reduction and evolution reactions, especially with additional catalysts or dopants. However, most studies reported so far have examined air cathodes with a limited areal mass loading rarely exceeding 1 mg/cm 2 . Despite the high gravimetric capacity values achieved, the actual (areal) capacities of those batteries were far from sufficient for practical applications. Here, we present the fabrication, performance, and mechanistic investigations of high-mass-loading (up to 10 mg/cm 2 ) graphene-based air electrodes for high-performance Li-O 2 batteries. Such air electrodes could be easily prepared within minutes under solvent-free and binder-free conditions by compression-molding holey graphene materials because of their unique dry compressibility associated with in-plane holes on the graphene sheet. Li-O 2 batteries with high air cathode mass loadings thus prepared exhibited excellent gravimetric capacity as well as ultrahigh areal capacity (as high as ∼40 mAh/cm 2 ). The batteries were also cycled at a high curtailing areal capacity (2 mAh/cm 2 ) and showed a better cycling stability for ultrathick cathodes than their thinner counterparts. Detailed post-mortem analyses of the electrodes clearly revealed the battery failure mechanisms under both primary and secondary modes, arising from the oxygen diffusion blockage and the catalytic site deactivation, respectively. These results strongly suggest that the dry-pressed holey graphene electrodes are a highly viable architectural platform for high-capacity, high-performance air cathodes in Li-O 2 batteries of practical significance.

  8. Small Spacecraft System-Level Design and Optimization for Interplanetary Trajectories

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Ben

    2014-01-01

    The feasibility of an interplanetary mission for a CubeSat, a type of miniaturized spacecraft, that uses an emerging technology, the CubeSat Ambipolar Thruster (CAT) is investigated. CAT is a large delta-V propulsion system that uses a high-density plasma source that has been miniaturized for small spacecraft applications. An initial feasibility assessment that demonstrated escaping Low Earth Orbit (LEO) and achieving Earth-escape trajectories with a 3U CubeSat and this thruster technology was demonstrated in previous work. We examine a mission architecture with a trajectory that begins in Earth orbits such as LEO and Geostationary Earth Orbit (GEO) which escapes Earth orbit and travels to Mars, Jupiter, or Saturn. The goal was to minimize travel time to reach the destinations and considering trade-offs between spacecraft dry mass, fuel mass, and solar power array size. Sensitivities to spacecraft dry mass and available power are considered. CubeSats are extremely size, mass, and power constrained, and their subsystems are tightly coupled, limiting their performance potential. System-level modeling, simulation, and optimization approaches are necessary to find feasible and optimal operational solutions to ensure system-level interactions are modeled. Thus, propulsion, power/energy, attitude, and orbit transfer models are integrated to enable systems-level analysis and trades. The CAT technology broadens the possible missions achievable with small satellites. In particular, this technology enables more sophisticated maneuvers by small spacecraft such as polar orbit insertion from an equatorial orbit, LEO to GEO transfers, Earth-escape trajectories, and transfers to other interplanetary bodies. This work lays the groundwork for upcoming CubeSat launch opportunities and supports future development of interplanetary and constellation CubeSat and small satellite mission concepts.

  9. Modelling the mid-infrared drying of sweet potato: kinetics, mass and heat transfer parameters, and energy consumption

    NASA Astrophysics Data System (ADS)

    Onwude, Daniel I.; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan

    2018-04-01

    This study investigated the drying kinetics, mass and heat transfer characteristics of sweet potato slices (0.4-0.6 cm thickness) during drying based on mid-infrared experimental set-up (intensity of 1100-1400 W/m2). Thin layer drying models were used to evaluate the drying kinetics of sweet potato slices. Two analytical models (Fick's diffusion model, and Dincer and Dost model) were used to study the mass transfer behaviour of sweet potato slices with and without shrinkage during mid-infrared drying. The heat transfer flux between the emitter and sweet potato slices was also investigated. Results demonstrated that an increase in infrared intensity from 1100 W/m2 to 1400 W/m2 resulted in increased in average radiation heat flux by 3.4 times and a 15% reduction in the overall drying time. The two-term exponential model was found to be the best in predicting the drying kinetics of sweet potato slices during mid-infrared drying. The specific heat consumption varied from 0.91-4.82 kWh/kg. The effective moisture diffusivity with and without shrinkage using the Fick's diffusion model varied from 2.632 × 10-9 to 1.596 × 10-8 m2/s, and 1.24 × 10-8 to 2.4 × 10-8 m2/s using Dincer and Dost model, respectively. The obtained values of mass transfer coefficient, Biot number and activation energy varied from 5.99 × 10-6 to 1.17 × 10-5 m/s, 0.53 to 2.62, and 12.83 kJ/mol to 34.64 kJ/mol, respectively. The values obtained for Biot number implied the existence of simultaneous internal and external resistances. The findings further explained that mid-infrared intensity of 1100 W/m2 did not significantly affect the quality of sweet potato during drying, demonstrating a great potential of applying low intensity mid-infrared radiation in the drying of agricultural crops.

  10. Product mass transfer resistance directly determined during freeze-drying cycle runs using tunable diode laser absorption spectroscopy (TDLAS) and pore diffusion model.

    PubMed

    Kuu, Wei Y; O'Bryan, Kevin R; Hardwick, Lisa M; Paul, Timothy W

    2011-08-01

    The pore diffusion model is used to express the dry layer mass transfer resistance, [Formula: see text], as a function of the ratio r(e)/?, where r(e) is the effective pore radius and ? is the tortuosity factor of the dry layer. Using this model, the effective pore radius of the dry layer can be estimated from the sublimation rate and product temperature profiles measured during primary drying. Freeze-drying cycle runs were performed using the LyoStar II dryer (FTS Systems), with real-time sublimation rate profiles during freeze drying continuously measured by tunable diode laser absorption spectroscopy (TDLAS). The formulations chosen for demonstration of the proposed approach include 5% mannitol, 5% sucrose, 5% lactose, 3% mannitol plus 2% sucrose, and a parenteral nutrition formulation denoted VitaM12. The three different methods used for determination of the product resistance are: (1) Using both the sublimation rate and product temperature profiles, (2) using the sublimation rate profile alone, and (3) using the product temperate profile alone. Unlike the second and third methods, the computation procedure of first method does not need solution of the complex heat and mass transfer equations.

  11. Drying of Durum Wheat Pasta and Enriched Pasta: A Review of Modeling Approaches.

    PubMed

    Mercier, Samuel; Mondor, Martin; Moresoli, Christine; Villeneuve, Sébastien; Marcos, Bernard

    2016-05-18

    Models on drying of durum wheat pasta and enriched pasta were reviewed to identify avenues for improvement according to consumer needs, product formulation and processing conditions. This review first summarized the fundamental phenomena of pasta drying, mass transfer, heat transfer, momentum, chemical changes, shrinkage and crack formation. The basic equations of the current models were then presented, along with methods for the estimation of pasta transport and thermodynamic properties. The experimental validation of these models was also presented and highlighted the need for further model validation for drying at high temperatures (>-100°C) and for more accurate estimation of the pasta diffusion and mass transfer coefficients. This review indicates the need for the development of mechanistic models to improve our understanding of the mass and heat transfer mechanisms involved in pasta drying, and to consider the local changes in pasta transport properties and relaxation time for more accurate description of the moisture transport near glass transition conditions. The ability of current models to describe dried pasta quality according to the consumers expectations or to predict the impact of incorporating ingredients high in nutritional value on the drying of these enriched pasta was also discussed.

  12. Homogeneous Matrix Deposition on Dried Agar for MALDI Imaging Mass Spectrometry of Microbial Cultures

    NASA Astrophysics Data System (ADS)

    Hoffmann, Thomas; Dorrestein, Pieter C.

    2015-11-01

    Matrix deposition on agar-based microbial colonies for MALDI imaging mass spectrometry is often complicated by the complex media on which microbes are grown. This Application Note demonstrates how consecutive short spray pulses of a matrix solution can form an evenly closed matrix layer on dried agar. Compared with sieving dry matrix onto wet agar, this method supports analyte cocrystallization, which results in significantly more signals, higher signal-to-noise ratios, and improved ionization efficiency. The even matrix layer improves spot-to-spot precision of measured m/z values when using TOF mass spectrometers. With this technique, we established reproducible imaging mass spectrometry of myxobacterial cultures on nutrient-rich cultivation media, which was not possible with the sieving technique.

  13. Advantages and Challenges of Dried Blood Spot Analysis by Mass Spectrometry Across the Total Testing Process

    PubMed Central

    Zakaria, Rosita; Allen, Katrina J.; Koplin, Jennifer J.; Roche, Peter

    2016-01-01

    Introduction Through the introduction of advanced analytical techniques and improved throughput, the scope of dried blood spot testing utilising mass spectrometric methods, has broadly expanded. Clinicians and researchers have become very enthusiastic about the potential applications of dried blood spot based mass spectrometric applications. Analysts on the other hand face challenges of sensitivity, reproducibility and overall accuracy of dried blood spot quantification. In this review, we aim to bring together these two facets to discuss the advantages and current challenges of non-newborn screening applications of dried blood spot quantification by mass spectrometry. Methods To address these aims we performed a key word search of the PubMed and MEDLINE online databases in conjunction with individual manual searches to gather information. Keywords for the initial search included; “blood spot” and “mass spectrometry”; while excluding “newborn”; and “neonate”. In addition, databases were restricted to English language and human specific. There was no time period limit applied. Results As a result of these selection criteria, 194 references were identified for review. For presentation, this information is divided into: 1) clinical applications; and 2) analytical considerations across the total testing process; being pre-analytical, analytical and post-analytical considerations. Conclusions DBS analysis using MS applications is now broadly applied, with drug monitoring for both therapeutic and toxicological analysis being the most extensively reported. Several parameters can affect the accuracy of DBS measurement and further bridge experiments are required to develop adjustment rules for comparability between dried blood spot measures and the equivalent serum/plasma values. Likewise, the establishment of independent reference intervals for dried blood spot sample matrix is required. PMID:28149263

  14. Modelling and simulation of a moving interface problem: freeze drying of black tea extract

    NASA Astrophysics Data System (ADS)

    Aydin, Ebubekir Sıddık; Yucel, Ozgun; Sadikoglu, Hasan

    2017-06-01

    The moving interface separates the material that is subjected to the freeze drying process as dried and frozen. Therefore, the accurate modeling the moving interface reduces the process time and energy consumption by improving the heat and mass transfer predictions during the process. To describe the dynamic behavior of the drying stages of the freeze-drying, a case study of brewed black tea extract in storage trays including moving interface was modeled that the heat and mass transfer equations were solved using orthogonal collocation method based on Jacobian polynomial approximation. Transport parameters and physical properties describing the freeze drying of black tea extract were evaluated by fitting the experimental data using Levenberg-Marquardt algorithm. Experimental results showed good agreement with the theoretical predictions.

  15. Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest

    NASA Astrophysics Data System (ADS)

    Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo

    2018-02-01

    The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community and species levels, which can have significant implications for the ecosystem functioning of SDTF under increasing levels of disturbance, climate change and soil nutrient depletion.

  16. Stochastic modeling of soil salinity

    NASA Astrophysics Data System (ADS)

    Suweis, S.; Porporato, A. M.; Daly, E.; van der Zee, S.; Maritan, A.; Rinaldo, A.

    2010-12-01

    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The equations for the probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equations to a single stochastic differential equation (generalized Langevin equation) driven by multiplicative Poisson noise. Generalized Langevin equations with multiplicative white Poisson noise pose the usual Ito (I) or Stratonovich (S) prescription dilemma. Different interpretations lead to different results and then choosing between the I and S prescriptions is crucial to describe correctly the dynamics of the model systems. We show how this choice can be determined by physical information about the timescales involved in the process. We also show that when the multiplicative noise is at most linear in the random variable one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We then apply these results to the generalized Langevin equation that drives the salt mass dynamics. The stationary analytical solutions for the probability density functions of salt mass and concentration provide insight on the interplay of the main soil, plant and climate parameters responsible for long term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in longterm soil salinization trends, with significant consequences, e.g. for climate change impacts on rain fed agriculture.

  17. The variation of polar firn subject to percolation - characterizing processes and glacier mass budget uncertainty using high-resolution instruments

    NASA Astrophysics Data System (ADS)

    Demuth, M. N.; Marshall, H.; Morris, E. M.; Burgess, D. O.; Gray, L.

    2009-12-01

    As the Earth's glaciers and ice sheets are subjected to the effects of recent and predicted warming, the distribution of their glaciological facies zones will alter. Percolation and wet snow facies zones will, in general, move upwards; encroaching upon, for some glacier configurations, regions of dry snow facies. Meltwater percolation and internal accumulation processes that characterize these highly variable facies may confound reliable estimates of surface mass budgets based on traditional point measurements alone. If the extents of these zones are indeed increasing, as has been documented through recent analysis of QuickScat data for the ice caps of the Canadian Arctic, then the certainty of glacier mass budget estimates using traditional techniques may be degraded to an as yet un-quantified degree. Indeed, the application of remote sensing, in particular that utilizing repeat altimetry to retrieve surface mass budget estimates, is also subject to the complexity of glacier facies from the standpoint of their near-surface stratigraphy, density variations and rates of compaction. We first review the problem of measuring glacier mass budgets in the context of nested scales of variability, where auto-correlation structure varies with the scale of observation. We then consider specifically firn subject to percolation and describe the application of high-resolution instruments to characterize variability at the field-scale. The data collected include measurements of micro-topography, snow hardness, and snow density and texture; retrieved using airborne scanning lidar, a snow micro-penetrometer, neutron probe and ground-penetrating radars. The analysis suggests corresponding scales of correlation as it concerns the influence of antecedent conditions (surface roughness and hardness, and stratigraphic variability) and post-depositional processes (percolation and refreezing of surface melt water).

  18. Correlation of laboratory and production freeze drying cycles.

    PubMed

    Kuu, Wei Y; Hardwick, Lisa M; Akers, Michael J

    2005-09-30

    The purpose of this study was to develop the correlation of cycle parameters between a laboratory and a production freeze-dryer. With the established correlation, key cycle parameters obtained using a laboratory dryer may be converted to those for a production dryer with minimal experimental efforts. In order to develop the correlation, it was important to consider the contributions from the following freeze-drying components: (1) the dryer, (2) the vial, and (3) the formulation. The critical parameters for the dryer are the shelf heat transfer coefficient and shelf surface radiation emissivity. The critical parameters for the vial are the vial bottom heat transfer coefficients (the contact parameter Kcs and separation distance lv), and vial top heat transfer coefficient. The critical parameter of the formulation is the dry layer mass transfer coefficient. The above heat and mass transfer coefficients were determined by freeze-drying experiments in conjunction with mathematical modeling. With the obtained heat and mass transfer coefficients, the maximum product temperature, Tbmax, during primary drying was simulated using a primary drying subroutine as a function of the shelf temperature and chamber pressure. The required shelf temperature and chamber pressure, in order to perform a successful cycle run without product collapse, were then simulated based on the resulting values of Tbmax. The established correlation approach was demonstrated by the primary drying of the model formulation 5% mannitol solution. The cycle runs were performed using a LyoStar dryer as the laboratory dryer and a BOC Edwards dryer as the production dryer. The determined normalized dried layer mass transfer resistance for 5% mannitol is expressed as RpN=0.7313+17.19l, where l is the receding dry layer thickness. After demonstrating the correlation approach using the model formulation 5% mannitol, a practical comparison study was performed for the actual product, the lactate dehydrogenase (LDH) formulation. The determined normalized dried layer mass transfer resistance for the LDH formulation is expressed as RpN=4.344+10.85l. The operational templates Tbmax and primary drying time were also generated by simulation. The cycle run for the LDH formulation using the Edwards production dryer verified that the cycle developed in a laboratory freeze-dryer was transferable at the production scale.

  19. [Investigation of Acaroid mites breeding in stored dry fruits].

    PubMed

    Tao, Ning; Zhan, Xiao-dong; Sun, En-tao; Li, Chao-pin

    2015-12-01

    To study the species and density of Acaroid mites breeding in stored dry fruits. The samples from the dried fruit stores and warehouses were collected, and the mites breeding in them were separated, then the slides with mites were prepared and observed by a light microscope for species identification and counting. The indexes such as the breeding density, species richness index, diversity index and evenness index were calculated. Totally 12 species of Acaroid mites belonging to 6 families and 10 genera were obtained from the total 49 samples. The dominant mite species were Carpoglyphus lactis, Tyrophagus putrescentiae, Acarus siro, and Caloglyphus berlesei. The breeding densities of mites in longans, filberts and plum candies were 79.78, 48.91, 35.73 mites/g, respectively, which were higher than those in other dry fruits. The seasonal variation experiment of mites found that the average breeding density of acaroid mites was higher in July and October, the richness index and diversity index reached the highest value in July, and the evenness index was higher in January and April. The observation of the growth and decline of Acaroid mites under the artificial condition found the number of Caloglyphus berlesei declined sharply and Tyrophagus putrescentiae first increased and then decreased. The pollution of Acaroid mites is serious in the stored dried fruits, for which the positive prevention and control measures to the mite breeding should be taken to reduce the harm.

  20. Solid Lipid Nanoparticle assemblies (SLNas) for an anti-TB inhalation treatment-A Design of Experiments approach to investigate the influence of pre-freezing conditions on the powder respirability.

    PubMed

    Maretti, Eleonora; Rustichelli, Cecilia; Romagnoli, Marcello; Balducci, Anna Giulia; Buttini, Francesca; Sacchetti, Francesca; Leo, Eliana; Iannuccelli, Valentina

    2016-09-10

    For direct intramacrophagic antitubercular therapy, pulmonary administration through Dry Powder Inhaler (DPI) devices is a reasonable option. For the achievement of efficacious aerosolisation, rifampicin-loaded Solid Lipid Nanoparticle assemblies (SLNas) were developed using the melt emulsifying technique followed by freeze-drying. Indeed, this drying method can cause freezing or drying stresses compromising powder respirability. It is the aim of this research to offer novel information regarding pre-freezing variables. These included type and concentration of cryoprotectants, pre-freezing temperature, and nanoparticle concentration in the suspension. In particular, the effects of such variables were observed at two main levels. First of all, on SLNas characteristics - i.e., size, polydispersity index, zeta-potential, circularity, density, and drug loading. Secondly, on powder respirability, taking into account aerodynamic diameter, emitted dose, and respirable fraction. Considering the complexity of the factors involved in a successful respirable powder, a Design of Experiments (DoE) approach was adopted as a statistical tool for evaluating the effect of pre-freezing conditions. Interestingly, the most favourable impact on powder respirability was exerted by quick-freezing combined with a certain grade of sample dilution before the pre-freezing step without the use of cryoprotectants. In such conditions, a very high SLNas respirable fraction (>50%) was achieved, along with acceptable yields in the final dry powder as well as a reduction of powder mass to be introduced into DPI capsules with benefits in terms of administered drug dose feasibility. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Compaction Characteristics of Earth-Rock Mixtures. Report 1. Vicksburg Silty Clay and Degray Dam Clayey Sandy Gravel

    DTIC Science & Technology

    1973-05-01

    dry density of total sample Yf = dry unit weight of finer fraction G = bulk specific gravity of coarser fraction (based on ovendry weightq). Same as G...ttl~o o 40 oe o Fig. ii. Theoretical and experimental densities of eclayey sandy gravel (GC) DeGray meterial expressions require tests performed on

  2. Pressing of three-layer, dry-formed MDF with binderless hardboard faces

    Treesearch

    Otto Suchsland; George E. Woodson; Charles W. McMillin

    1986-01-01

    Severely cooked Masonite pulp was used as face material in three-layer experimental medium-density fiberboard (MDF). The core layer consisted of conventional MDF furnish with resin binder added. The faces were formed absolutely dry without additives of any kind. The three-layer mat was hot-pressed to overall densities ranging from 44 to 56 pcf. The faces had hardboard-...

  3. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    PubMed

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity.

  4. Microwave drying of wood strands

    Treesearch

    Guanben Du; Siqun Wang; Zhiyong Cai

    2005-01-01

    Characteristics of microwave drying of wood strands with different initial moisture contents and geometries were investigated using a commercial small microwave oven under different power inputs. Temperature and moisture changes along with the drying efficiency were examined at different drying scenarios. Extractives were analyzed using gas chromatography=mass...

  5. Processes of heat and mass transfer in straw bales using flue gasses as a drying medium

    NASA Astrophysics Data System (ADS)

    Goryl, Wojciech; Szubel, Mateusz; Filipowicz, Mariusz

    2016-03-01

    Moisture content is a main problem of using straw in form of bales for energy production. The paper presents possibility of straw drying in dedicated, innovative and patented in Poland straw dryers which using flue gasses as a drying medium. Paper presents an improved way of drying which proved to be very sufficient. Temperature and humidity of straw during the process of drying were measured. The measurements helped understand and perform numerical model of heat and mass transfer inside the straw bale. By using CFD codes it was possible to perform analysis of phenomenon occurring inside the dried straw bale. Based on the CFD model, proposals of the optimization and improvement process of drying have been discussed. Experimental and computational data have been compared in terms of convergence. A satisfying degree of agreement has been achieved. Applying improved drying method, homogenous field of moisture content and temperature in the straw bale is achieved in a very cost effective way.

  6. Homogeneous matrix deposition on dried agar for MALDI imaging mass spectrometry of microbial cultures.

    PubMed

    Hoffmann, Thomas; Dorrestein, Pieter C

    2015-11-01

    Matrix deposition on agar-based microbial colonies for MALDI imaging mass spectrometry is often complicated by the complex media on which microbes are grown. This Application Note demonstrates how consecutive short spray pulses of a matrix solution can form an evenly closed matrix layer on dried agar. Compared with sieving dry matrix onto wet agar, this method supports analyte cocrystallization, which results in significantly more signals, higher signal-to-noise ratios, and improved ionization efficiency. The even matrix layer improves spot-to-spot precision of measured m/z values when using TOF mass spectrometers. With this technique, we established reproducible imaging mass spectrometry of myxobacterial cultures on nutrient-rich cultivation media, which was not possible with the sieving technique. Graphical Abstract ᅟ.

  7. [Study on nano-CaCO3 applicated in Xin Yue Shu Capsules preliminarily].

    PubMed

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Cui, Li; He, Jun-Jie; Hu, Shao-Ying; Jia, Xiao-Bin

    2012-11-01

    To investigate the characteristics of nano-CaCO3 applicated in Xin Yue Shu Capsules. Studied the effect of different dosages of aerosil or nano-CaCO3 on fluidity, bulk density, moisture absorption of Xin Yue Shu capsules spray drying powder. In vitro dissolution and ferulic acid stability of Xin Yue Shu capsules was observed. It significantly improved powder fluidity and bulk density of Xin Yue Shu spray drying powder when aerosil or nano-CaCO3 was added. But there was no significant effect on powder moisture absorption, ferulic acid in vitro dissolution and ferulic acid stability. The effect of Nano-CaCO3 on improving powder fluidity and bulk density applicated in the spray drying powder of traditional Chinese medicine deserves studying further.

  8. Local Variability in Firn Layering and Compaction Rates Using GPR Data, Depth-Density Profiles, and In-Situ Reflectors in the Dry Snow Zone Near Summit Station, Greenland

    NASA Astrophysics Data System (ADS)

    Lines, A.; Elliott, J.; Ray, L.; Albert, M. R.

    2017-12-01

    Understanding the surface mass balance (SMB) of the Greenland ice sheet is critical to evaluating its response to a changing climate. A key factor in translating satellite and airborne elevation measurements of the ice sheet to SMB is understanding natural variability of firn layer depth and the relative compaction rate of these layers. A site near Summit Station, Greenland was chosen to investigate the variation in layering across a 100m by 100m grid using a 900 MHz and a 2.6 GHz ground penetrating radar (GPR) antenna. These radargrams were ground truthed by taking depth density profiles of five 2m snow pits and five 5m firn cores within the 100m by 100m grid. Combining these measurements with the accumulation data from the nearby ICECAPS weekly bamboo forest measurements, it's possible to see how the snow deposition from individual storm events can vary over a small area. Five metal reflectors were also placed on the surface of the snow in the bounds of the grid to serve as reference reflectors for similar measurements that will be taken in the 2018 field season at Summit Station. This will assist in understanding how one year of accumulation in the dry snow zone impacts compaction and how this rate can vary over a small area.

  9. Is natural defense capacity correlated with allocation of dry mass to the stem in loblolly pine?

    Treesearch

    Mary Anne Sword Sayer; Michael C. Tyree; Michael A. Blazier; Shi-Jean Susana Sung; Lori G. Eckhardt

    2016-01-01

    In addition to selecting loblolly pine (Pinus taeda L.) genotypes for superior growth, the concept of customized genetic selection may apply where tree vigor is threatened by insects and disease. A study conducted with seedlings from 15 loblolly pine genotypes found significant correlation between phenolic production and foliage mass when dry mass allocation to the...

  10. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying.

    PubMed

    Scutellà, Bernadette; Trelea, Ioan Cristian; Bourlès, Erwan; Fonseca, Fernanda; Passot, Stephanie

    2018-07-01

    During the primary drying step of the freeze-drying process, mass transfer resistance strongly affects the product temperature, and consequently the final product quality. The main objective of this study was to evaluate the variability of the mass transfer resistance resulting from the dried product layer (R p ) in a manufacturing batch of vials, and its potential effect on the product temperature, from data obtained in a pilot scale freeze-dryer. Sublimation experiments were run at -25 °C and 10 Pa using two different freezing protocols: with spontaneous or controlled ice nucleation. Five repetitions of each condition were performed. Global (pressure rise test) and local (gravimetric) methods were applied as complementary approaches to estimate R p . The global method allowed to assess variability of the evolution of R p with the dried layer thickness between different experiments whereas the local method informed about R p variability at a fixed time within the vial batch. A product temperature variability of approximately ±4.4 °C was defined for a product dried layer thickness of 5 mm. The present approach can be used to estimate the risk of failure of the process due to mass transfer variability when designing freeze-drying cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  12. Influence of deposition and spray pattern of nasal powders on insulin bioavailability.

    PubMed

    Pringels, E; Callens, C; Vervaet, C; Dumont, F; Slegers, G; Foreman, P; Remon, J P

    2006-03-09

    The influence of the deposition pattern and spray characteristics of nasal powder formulations on the insulin bioavailability was investigated in rabbits. The formulations were prepared by freeze drying a dispersion containing a physical mixture of drum dried waxy maize starch (DDWM)/Carbopol 974P (90/10, w/w) or a spray-dried mixture of Amioca starch/Carbopol 974P (25/75, w/w). The deposition in the nasal cavity of rabbits and in a silicone human nose model after actuation of three nasal delivery devices (Monopowder, Pfeiffer and experimental system) was compared and related to the insulin bioavailability. Posterior deposition of the powder formulation in the nasal cavity lowered the insulin bioavailability. To study the spray pattern, the shape and cross-section of the emitted powder cloud were analysed. It was concluded that the powder bulk density of the formulation influenced the spray pattern. Consequently, powders of different bulk density were prepared by changing the solid fraction of the freeze dried dispersion and by changing the freezing rate during freeze drying. After nasal delivery of these powder formulations no influence of the powder bulk density and of the spray pattern on the insulin bioavailability was observed.

  13. Nondestructive microimaging during preclinical pin-on-plate testing of novel materials for arthroplasty.

    PubMed

    Teeter, Matthew G; Langohr, G Daniel G; Medley, John B; Holdsworth, David W

    2014-02-01

    The purpose of this study was to determine the ability of micro-computed tomography to quantify wear in preclinical pin-on-plate testing of materials for use in joint arthroplasty. Wear testing of CoCr pins articulating against six polyetheretherketone plates was performed using a pin-on-plate apparatus over 2 million cycles. Change in volume due to wear was quantified with gravimetric analysis and with micro-computed tomography, and the volumes were compared. Separately, the volume of polyetheretherketone pin-on-plate specimens that had been soaking in fluid for 52 weeks was quantified with both gravimetric analysis and micro-computed tomography, and repeated after drying. The volume change with micro-computed tomography was compared to the mass change with gravimetric analysis. The mean wear volume measured was 8.02 ± 6.38 mm(3) with gravimetric analysis and 6.76 ± 5.38 mm(3) with micro-computed tomography (p = 0.06). Micro-computed tomography volume measurements did not show a statistically significant change with drying for either the plates (p = 0.60) or the pins (p = 0.09), yet drying had a significant effect on the gravimetric mass measurements for both the plates (p = 0.03) and the pins (p = 0.04). Micro-computed tomography provided accurate measurements of wear in polyetheretherketone pin-on-plate test specimens, and no statistically significant change was caused by fluid uptake. Micro-computed tomography quantifies wear depth and wear volume, mapped to the specific location of damage on the specimen, and is also capable of examining subsurface density as well as cracking. Its noncontact, nondestructive nature makes it ideal for preclinical testing of materials, in which further additional analysis techniques may be utilized.

  14. Modeling the Secondary Drying Stage of Freeze Drying: Development and Validation of an Excel-Based Model.

    PubMed

    Sahni, Ekneet K; Pikal, Michael J

    2017-03-01

    Although several mathematical models of primary drying have been developed over the years, with significant impact on the efficiency of process design, models of secondary drying have been confined to highly complex models. The simple-to-use Excel-based model developed here is, in essence, a series of steady state calculations of heat and mass transfer in the 2 halves of the dry layer where drying time is divided into a large number of time steps, where in each time step steady state conditions prevail. Water desorption isotherm and mass transfer coefficient data are required. We use the Excel "Solver" to estimate the parameters that define the mass transfer coefficient by minimizing the deviations in water content between calculation and a calibration drying experiment. This tool allows the user to input the parameters specific to the product, process, container, and equipment. Temporal variations in average moisture contents and product temperatures are outputs and are compared with experiment. We observe good agreement between experiments and calculations, generally well within experimental error, for sucrose at various concentrations, temperatures, and ice nucleation temperatures. We conclude that this model can serve as an important process development tool for process design and manufacturing problem-solving. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Quantitative real-time monitoring of dryer effluent using fiber optic near-infrared spectroscopy.

    PubMed

    Harris, S C; Walker, D S

    2000-09-01

    This paper describes a method for real-time quantitation of the solvents evaporating from a dryer. The vapor stream in the vacuum line of a dryer was monitored in real time using a fiber optic-coupled acousto-optic tunable filter near-infrared (AOTF-NIR) spectrometer. A balance was placed in the dryer, and mass readings were recorded for every scan of the AOTF-NIR. A partial least-squares (PLS) calibration was subsequently built based on change in mass over change in time for solvents typically used in a chemical manufacturing plant. Controlling software for the AOTF-NIR was developed. The software collects spectra, builds the PLS calibration model, and continuously fits subsequently collected spectra to the calibration, allowing the operator to follow the mass loss of solvent from the dryer. The results indicate that solvent loss can be monitored and quantitated in real time using NIR for the optimization of drying times. These time-based mass loss values have also been used to calculate "dynamic" vapor density values for the solvents. The values calculated are in agreement with values determined from the ideal gas law and could prove valuable as tools to measure temperature or pressure indirectly.

  16. Evaluation of supercritical CO2 dried cellulose aerogels as nano-biomaterials

    NASA Astrophysics Data System (ADS)

    Lee, Sinah; Kang, Kyu-Young; Jeong, Myung-Joon; Potthast, Antje; Liebner, Falk

    2017-10-01

    Cellulose is the renewable, biodegradable and abundant resource and is suggested as an alternative material to silica due to the high price and environmental load of silica. The first step for cellulose aerogel production is to dissolve cellulose, and hydrated calcium thiocyanate molten salt is one of the most effective solvents for preparing porous material. Cellulose aerogels were prepared from dissolved cellulose samples of different degree of polymerization (DP) and drying methods, and tested with shrinkage, density and mechanical strength. Supercritical CO2 dried cellulose aerogels shrank less compared to freeze-dried cellulose aerogels, whereas the densities were increased according to the DP increases in both cellulose aerogels. Furthermore, scanning electron microscope (SEM) images showed that the higher DP cellulose aerogels were more uniform with micro-porous structure. Regarding the mechanical strength of cellulose aerogels, supercritical CO2 dried cellulose aerogels with higher molecular weight were much more solid.

  17. Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets

    NASA Astrophysics Data System (ADS)

    Yang, Zusing; Chen, Chia-Ying; Chang, Huan-Tsung

    We have prepared hollow cobalt sulfide (CoS) hexagonal nanosheets (HNSs) from Co(NO 3) 2 and thioacetamide in the presence of poly(vinylpyrrolidone) (PVP) at 100 °C under alkaline condition. The as-prepared hollow CoS HNSs have an average edge length ca. 110 ± 27 nm and an outer shell of 16 ± 4 nm in thickness from 500 counts. The CoS HNSs are deposited onto transparent fluorine-doped tin oxide (FTO) substrates through a drop-dry process to prepare two types of supercapacitors (SCs); high rate and large per-area capacitance. The electrolyte used in this study is KOH (aq). The CoS HNSs (8 μg cm -2) electrodes exhibit excellent capacity properties, including high energy density (13.2 h kg -1), power density (17.5 kW kg -1), energy deliverable efficiency (81.3-85.3%), and stable cycle life (over 10,000 cycles) at a high discharge current density of 64.6 A g -1. With their fast charging and discharging rates (<3 s), the CoS HNSs show characteristics of high-rate SCs. The CoS HNS SCs having high mass loading (9.7 mg cm -2) provide high per-area capacitance of 1.35 F cm -2 and per-mass capacitance of 138 F g -1, respectively, showing characteristics of SCs with large per-area capacitance. Our results have demonstrated the potential of the CoS HNS electrodes hold great practical potential in many fields such as automobile and computer industries.

  18. Effect of different drying techniques on flowability characteristics and chemical properties of natural carbohydrate-protein Gum from durian fruit seed

    PubMed Central

    2013-01-01

    Background A natural carbohydrate biopolymer was extracted from the agricultural biomass waste (durian seed). Subsequently, the crude biopolymer was purified by using the saturated barium hydroxide to minimize the impurities. Finally, the effect of different drying techniques on the flow characteristics and functional properties of the purified biopolymer was investigated. The present study elucidated the main functional characteristics such as flow characteristics, water- and oil-holding capacity, solubility, and foaming capacity. Results In most cases except for oven drying, the bulk density decreased, thus increasing the porosity. This might be attributed to the increase in the inter-particle voids of smaller sized particles with larger contact surface areas per unit volume. The current study revealed that oven-dried gum and freeze-dried gum had the highest and lowest compressibility index, thus indicating the weakest and strongest flowability among all samples. In the present work, the freeze-dried gum showed the lowest angle of repose, bulk, tapped and true density. This indicates the highest porosity degree of freeze dried gum among dried seed gums. It also exhibited the highest solubility, and foaming capacity thus providing the most desirable functional properties and flow characteristics among all drying techniques. Conclusion The present study revealed that freeze drying among all drying techniques provided the most desirable functional properties and flow characteristics for durian seed gum. PMID:23289739

  19. Small-Scale Production of High-Density Dry Ice: A Variant Combination of Two Classic Demonstrations

    ERIC Educational Resources Information Center

    Flowers, Paul A.

    2009-01-01

    Easily recoverable, thumb-sized pieces of high-density dry ice are conveniently produced by deposition of carbon dioxide within a test tube submerged in liquid nitrogen. A carbon dioxide-filled balloon sealed over the mouth of the test tube serves as a gas reservoir, and further permits a dramatic demonstration of both the gas-to-solid phase…

  20. Botanical and ecological basis for the resilience of Antillean dry forests

    Treesearch

    A.E. Lugo; E. Medina; J. Carlos Trejo Torres; E. Helmer

    2006-01-01

    Dry forest environments limit the number of species that can survive there. Antillean dry forests have low floristic diversity and stature, high density of small and medium-sized trees, and are among the least conserved of the tropical forests. Their canopies are smooth with no emergent trees and have high species dominance. Antillean dry forests occur mostly on...

  1. Invasive crayfish as vectors of mercury in freshwater food webs of the Pacific Northwest

    USGS Publications Warehouse

    Johnson, Branden L.; Willacker, James J.; Eagles-Smith, Collin A.; Pearl, Christopher A.; Adams, Michael J.

    2014-01-01

    Invasive species are important drivers of environmental change in aquatic ecosystems and can alter habitat characteristics, community composition, and ecosystem energetics. Such changes have important implications for many ecosystem processes, including the bioaccumulation and biomagnification of contaminants through food webs. Mercury concentrations were measured in 2 nonnative and 1 native crayfish species from western Oregon (USA). Nonnative red swamp crayfish had mercury concentrations similar to those in native signal crayfish (0.29 ± 0.05 µg/g dry wt and 0.36 ± 0.06 µg/g dry wt, respectively), whereas the nonnative ringed crayfish had lower mercury concentrations (0.10 ± 0.02 µg/g dry wt) than either of the other species. The mean energy content of muscle was similar between the native signal crayfish and nonnative ringed crayfish but was significantly higher in the nonnative red swamp crayfish. Across species, mercury concentrations were negatively correlated with energy density. Such energetic differences could exacerbate changes in mercury transfer through trophic pathways of food webs, especially via alterations to the growth dynamics of consumers. Thus, it is important to consider the role of energy content in determining effective mercury exposure even when mercury concentrations on a per-unit mass basis do not differ between species.

  2. Inflating bacterial cells by increased protein synthesis

    PubMed Central

    Basan, Markus; Zhu, Manlu; Dai, Xiongfeng; Warren, Mya; Sévin, Daniel; Wang, Yi-Ping; Hwa, Terence

    2015-01-01

    Understanding how the homeostasis of cellular size and composition is accomplished by different organisms is an outstanding challenge in biology. For exponentially growing Escherichia coli cells, it is long known that the size of cells exhibits a strong positive relation with their growth rates in different nutrient conditions. Here, we characterized cell sizes in a set of orthogonal growth limitations. We report that cell size and mass exhibit positive or negative dependences with growth rate depending on the growth limitation applied. In particular, synthesizing large amounts of “useless” proteins led to an inversion of the canonical, positive relation, with slow growing cells enlarged 7- to 8-fold compared to cells growing at similar rates under nutrient limitation. Strikingly, this increase in cell size was accompanied by a 3- to 4-fold increase in cellular DNA content at slow growth, reaching up to an amount equivalent to ∼8 chromosomes per cell. Despite drastic changes in cell mass and macromolecular composition, cellular dry mass density remained constant. Our findings reveal an important role of protein synthesis in cell division control. PMID:26519362

  3. Reduced energy density of close-up diets decrease ruminal pH and increase concentration of volatile fatty acids postpartum in Holstein cows.

    PubMed

    Huang, Wenming; Tian, Yujia; Li, Shengli; Wu, Zhaohai; Cao, Zhijun

    2017-11-01

    The objective of this study was to determine the effect of reduced energy density of close-up diets on ruminal fermentation parameters in transition cows. Fourteen Holstein dry cows were blocked and assigned randomly to three groups fed a high energy density diet (HD, 1.62 Mcal of net energy for lactation (NE L )/kg dry matter (DM)), or a middle energy density diet (MD, 1.47 Mcal NE L /kg DM), or a low energy density diet (LD, 1.30 Mcal NE L /kg DM) prepartum, and were fed the same diet postpartum. The reduced energy density diets decreased the average dry matter intake (DMI) prepartum and tended to increase the DMI postpartum. The ruminal pH of the LD group was significantly higher prepartum and lower during the first week of lactation compared with the other two groups. The reduced energy density diet depressed the average ruminal concentration of propionate and butyrate prepartum, and increased the average concentration of total volatile fatty acids (VFA) postpartum. The LD group had higher populations of Butyrivibrio fibrisolvens and Ruminococcus flavefaciens relative to HD and MD groups on 7 days in milk. In conclusion, the cows fed reduced energy density diet prepartum had higher VFA concentration, but were more susceptible to subacute ruminal acidosis postpartum. © 2017 Japanese Society of Animal Science.

  4. Separate and combined sewer systems: a long-term modelling approach.

    PubMed

    Mannina, Giorgio; Viviani, Gaspare

    2009-01-01

    Sewer systems convey mostly dry weather flow, coming from domestic and industrial sanitary sewage as well as infiltration flow, and stormwater due to meteoric precipitations. Traditionally, in urban drainage two types of sewer systems are adopted: separate and combined sewers. The former convey dry and wet weather flow separately into two different networks, while the latter convey dry and wet weather flow together. Which is the best solution in terms of cost-benefit analysis still remains a controversial subject. The present study was aimed at comparing the pollution loads discharged to receiving bodies by Wastewater Treatment Plant (WWTP) and Combined Sewer Overflow (CSO) for different kinds of sewer systems (combined and separate). To accomplish this objective, a comparison between the two systems was carried out using results from simulations of catchments characterised by different dimensions, population densities and water supply rate. The analysis was based on a parsimonious mathematical model able to simulate the sewer system as well as the WWTP during both dry and wet weather. The rain series employed for the simulations was six years long. Several pollutants, both dissolved and particulate, were modelled. The results confirmed the uncertainties in the choice of one system versus the other, emphasising the concept that case-by-case solutions have to be undertaken. Further, the compared systems showed different responses in terms of effectiveness in reducing the discharged mass to the RWB in relation to the particular pollutant taken into account.

  5. Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory

    NASA Astrophysics Data System (ADS)

    Evans, Robert; Stewart, Maria C.; Wilding, Nigel B.

    2017-07-01

    We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν∥, which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.

  6. Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory.

    PubMed

    Evans, Robert; Stewart, Maria C; Wilding, Nigel B

    2017-07-28

    We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν ∥ , which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.

  7. Improvement of flow and bulk density of pharmaceutical powders using surface modification.

    PubMed

    Jallo, Laila J; Ghoroi, Chinmay; Gurumurthy, Lakxmi; Patel, Utsav; Davé, Rajesh N

    2012-02-28

    Improvement in flow and bulk density, the two most important properties that determine the ease with which pharmaceutical powders can be handled, stored and processed, is done through surface modification. A limited design of experiment was conducted to establish a standardized dry coating procedure that limits the extent of powder attrition, while providing the most consistent improvement in angle of repose (AOR). The magnetically assisted impaction coating (MAIC) was considered as a model dry-coater for pharmaceutical powders; ibuprofen, acetaminophen, and ascorbic acid. Dry coated drug powders were characterized by AOR, particle size as a function of dispersion pressure, particle size distribution, conditioned bulk density (CBD), Carr index (CI), flow function coefficient (FFC), cohesion coefficient using different instruments, including a shear cell in the Freeman FT4 powder rheometer, and Hansen flowability index. Substantial improvement was observed in all the measured properties after dry coating relative to the uncoated powders, such that each powder moved from a poorer to a better flow classification and showed improved dispersion. The material intrinsic property such as cohesion, plotted as a function of particle size, gave a trend similar to those of bulk flow properties, AOR and CI. Property improvement is also illustrated in a phase map of inverse cohesion (or FFC) as a function of bulk density, which also indicated a significant positive shift due to dry coating. It is hoped that such phase maps are useful in manufacturing decisions regarding the need for dry coating, which will allow moving from wet granulation to roller compaction or to direct compression based formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Small intestinal growth measures are correlated with feed efficiency in market weight cattle, despite minimal effects of maternal nutrition during early to midgestation.

    PubMed

    Meyer, A M; Hess, B W; Paisley, S I; Du, M; Caton, J S

    2014-09-01

    We hypothesized that gestational nutrition would affect calf feed efficiency and small intestinal biology, which would be correlated with feed efficiency. Multiparous beef cows (n = 36) were individually fed 1 of 3 diets from d 45 to 185 of gestation: native grass hay and supplement to meet NRC recommendations (control [CON]), 70% of CON NEm (nutrient restricted [NR]), or a NR diet with a RUP supplement (NR+RUP) to provide similar essential AA as CON. After d 185 of gestation, cows were managed as a single group, and calf individual feed intake was measured with the GrowSafe System during finishing. At slaughter, the small intestine was dissected and sampled. Data were analyzed with calf sex as a block. There was no effect (P ≥ 0.33) of maternal treatment on residual feed intake, G:F, DMI, ADG, or final BW. Small intestinal mass did not differ (P ≥ 0.38) among treatments, although calf small intestinal length tended (P = 0.07) to be greater for NR than NR+RUP. There were no differences (P ≥ 0.20) in calf small intestinal density or jejunal cellularity, proliferation, or vascularity among treatments. Jejunal soluble guanylate cyclase mRNA was greater (P < 0.03) for NR+RUP than CON and NR. Residual feed intake was positively correlated (P ≤ 0.09) with small intestinal mass and relative mass and jejunal RNA content but was negatively correlated (P ≤ 0.09) with jejunal mucosal density and DNA concentration. Gain:feed was positively correlated (P ≤ 0.09) with jejunal mucosal density, DNA, protein, and total cells and was negatively correlated (P ≤ 0.05) with small intestinal relative mass, jejunal RNA, and RNA:DNA. Dry matter intake was positively correlated (P ≤ 0.09) with small intestinal mass, relative mass, length, and density as well as jejunal DNA and protein content, total cells, total vascularity, and kinase insert domain receptor and endothelial nitric oxide synthase 3 mRNA and was negatively correlated (P = 0.02) with relative small intestinal length. In this study, calf performance and efficiency during finishing as well as most measures of small intestinal growth were not affected by maternal nutrient restriction during early and midgestation. Results indicate that offspring small intestinal gene expression may be affected by gestational nutrition even when apparent tissue growth is unchanged. Furthermore, small intestinal size and growth may explain some variation in efficiency of nutrient utilization in feedlot cattle.

  9. EFFECT OF ENVIRONMENT ON GALAXIES' MASS-SIZE DISTRIBUTION: UNVEILING THE TRANSITION FROM OUTSIDE-IN TO INSIDE-OUT EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappellari, Michele

    2013-11-20

    The distribution of galaxies on the mass-size plane as a function of redshift or environment is a powerful test for galaxy formation models. Here we use integral-field stellar kinematics to interpret the variation of the mass-size distribution in two galaxy samples spanning extreme environmental densities. The samples are both identically and nearly mass-selected (stellar mass M {sub *} ≳ 6 × 10{sup 9} M {sub ☉}) and volume-limited. The first consists of nearby field galaxies from the ATLAS{sup 3D} parent sample. The second consists of galaxies in the Coma Cluster (Abell 1656), one of the densest environments for which good, resolvedmore » spectroscopy can be obtained. The mass-size distribution in the dense environment differs from the field one in two ways: (1) spiral galaxies are replaced by bulge-dominated disk-like fast-rotator early-type galaxies (ETGs), which follow the same mass-size relation and have the same mass distribution as in the field sample; (2) the slow-rotator ETGs are segregated in mass from the fast rotators, with their size increasing proportionally to their mass. A transition between the two processes appears around the stellar mass M {sub crit} ≈ 2 × 10{sup 11} M {sub ☉}. We interpret this as evidence for bulge growth (outside-in evolution) and bulge-related environmental quenching dominating at low masses, with little influence from merging. In contrast, significant dry mergers (inside-out evolution) and halo-related quenching drives the mass and size growth at the high-mass end. The existence of these two processes naturally explains the diverse size evolution of galaxies of different masses and the separability of mass and environmental quenching.« less

  10. 24. The DryingRoom in the coating mill at Lawrence, Mass. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. The Drying-Room in the coating mill at Lawrence, Mass. After the paper has received its coating from the coating-machine shown in the previous picture, it passes in a continuous web to the drying-room. Blasts of hot air coming out of galvanized ducts beneath support it for a distance of 100 feet, until it reaches the drying-chamber in the rear of the room. Here it hangs in festoons much like those of cotton cloth shown on page 219. In the picture the paper is passing from right to left. After leaving the drying-room it is wound on rolls, as shown in the next picture. (p.238.) - Champion-International Paper Company, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  11. Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and Chlorella vulgaris

    PubMed Central

    Chioccioli, Maurizio; Hankamer, Ben; Ross, Ian L.

    2014-01-01

    Dry weight biomass is an important parameter in algaculture. Direct measurement requires weighing milligram quantities of dried biomass, which is problematic for small volume systems containing few cells, such as laboratory studies and high throughput assays in microwell plates. In these cases indirect methods must be used, inducing measurement artefacts which vary in severity with the cell type and conditions employed. Here, we utilise flow cytometry pulse width data for the estimation of cell density and biomass, using Chlorella vulgaris and Chlamydomonas reinhardtii as model algae and compare it to optical density methods. Measurement of cell concentration by flow cytometry was shown to be more sensitive than optical density at 750 nm (OD750) for monitoring culture growth. However, neither cell concentration nor optical density correlates well to biomass when growth conditions vary. Compared to the growth of C. vulgaris in TAP (tris-acetate-phosphate) medium, cells grown in TAP + glucose displayed a slowed cell division rate and a 2-fold increased dry biomass accumulation compared to growth without glucose. This was accompanied by increased cellular volume. Laser scattering characteristics during flow cytometry were used to estimate cell diameters and it was shown that an empirical but nonlinear relationship could be shown between flow cytometric pulse width and dry weight biomass per cell. This relationship could be linearised by the use of hypertonic conditions (1 M NaCl) to dehydrate the cells, as shown by density gradient centrifugation. Flow cytometry for biomass estimation is easy to perform, sensitive and offers more comprehensive information than optical density measurements. In addition, periodic flow cytometry measurements can be used to calibrate OD750 measurements for both convenience and accuracy. This approach is particularly useful for small samples and where cellular characteristics, especially cell size, are expected to vary during growth. PMID:24832156

  12. Method of producing optical quality glass having a selected refractive index

    DOEpatents

    Poco, John F.; Hrubesh, Lawrence W.

    2000-01-01

    Optical quality glass having a selected refractive index is produced by a two stage drying process. A gel is produced using sol-gel chemistry techniques and first dried by controlled evaporation until the gel volume reaches a pre-selected value. This pre-selected volume determines the density and refractive index of the finally dried gel. The gel is refilled with solvent in a saturated vapor environment, and then dried again by supercritical extraction of the solvent to form a glass. The glass has a refractive index less than the full density of glass, and the range of achievable refractive indices depends on the composition of the glass. Glasses having different refractive indices chosen from an uninterrupted range of values can be produced from a single precursor solution.

  13. Prediction of dry ice mass for firefighting robot actuation

    NASA Astrophysics Data System (ADS)

    Ajala, M. T.; Khan, Md R.; Shafie, A. A.; Salami, MJE; Mohamad Nor, M. I.

    2017-11-01

    The limitation in the performance of electric actuated firefighting robots in high-temperature fire environment has led to research on the alternative propulsion system for the mobility of firefighting robots in such environment. Capitalizing on the limitations of these electric actuators we suggested a gas-actuated propulsion system in our earlier study. The propulsion system is made up of a pneumatic motor as the actuator (for the robot) and carbon dioxide gas (self-generated from dry ice) as the power source. To satisfy the consumption requirement (9cfm) of the motor for efficient actuation of the robot in the fire environment, the volume of carbon dioxide gas, as well as the corresponding mass of the dry ice that will produce the required volume for powering and actuation of the robot, must be determined. This article, therefore, presents the computational analysis to predict the volumetric requirement and the dry ice mass sufficient to power a carbon dioxide gas propelled autonomous firefighting robot in a high-temperature environment. The governing equation of the sublimation of dry ice to carbon dioxide is established. An operating time of 2105.53s and operating pressure ranges from 137.9kPa to 482.65kPa were achieved following the consumption rate of the motor. Thus, 8.85m3 is computed as the volume requirement of the CAFFR while the corresponding dry ice mass for the CAFFR actuation ranges from 21.67kg to 75.83kg depending on the operating pressure.

  14. Influence of effective stress and dry density on the permeability of municipal solid waste.

    PubMed

    Zhang, Zhenying; Wang, Yingfeng; Xu, Hui; Fang, Yuehua; Wu, Dazhi

    2018-05-01

    A landfill is one of the main sites for disposal of municipal solid waste and the current landfill disposal system faces several problems. For instance, excessive leachate water is an important factor leading to landfill instability. Understanding the permeability characteristics of municipal solid waste is a relevant topic in the field of environmental geotechnical engineering. In this paper, the current research progress on permeability characteristics of municipal solid waste is discussed. A review of recent studies indicates that the research in this field is divided into two categories based on the experimental method employed: field tests and laboratory tests. This paper summarizes test methods, landfill locations, waste ages, dry densities and permeability coefficients across different studies that focus on permeability characteristics. Additionally, an experimental study on compressibility and permeability characteristics of fresh municipal solid waste under different effective stresses and compression times was carried out. Moreover, the relationships between the permeability coefficient and effective stress as well as dry density were obtained and a permeability prediction model was established. Finally, the experimental results from the existing literature and this paper were compared and the effects of effective stress and dry density on the permeability characteristics of municipal solid waste were summarized. This study provides the basis for analysis of leachate production in a landfill.

  15. Validating the absolute reliability of a fat free mass estimate equation in hemodialysis patients using near-infrared spectroscopy.

    PubMed

    Kono, Kenichi; Nishida, Yusuke; Moriyama, Yoshihumi; Taoka, Masahiro; Sato, Takashi

    2015-06-01

    The assessment of nutritional states using fat free mass (FFM) measured with near-infrared spectroscopy (NIRS) is clinically useful. This measurement should incorporate the patient's post-dialysis weight ("dry weight"), in order to exclude the effects of any change in water mass. We therefore used NIRS to investigate the regression, independent variables, and absolute reliability of FFM in dry weight. The study included 47 outpatients from the hemodialysis unit. Body weight was measured before dialysis, and FFM was measured using NIRS before and after dialysis treatment. Multiple regression analysis was used to estimate the FFM in dry weight as the dependent variable. The measured FFM before dialysis treatment (Mw-FFM), and the difference between measured and dry weight (Mw-Dw) were independent variables. We performed Bland-Altman analysis to detect errors between the statistically estimated FFM and the measured FFM after dialysis treatment. The multiple regression equation to estimate the FFM in dry weight was: Dw-FFM = 0.038 + (0.984 × Mw-FFM) + (-0.571 × [Mw-Dw]); R(2)  = 0.99). There was no systematic bias between the estimated and the measured values of FFM in dry weight. Using NIRS, FFM in dry weight can be calculated by an equation including FFM in measured weight and the difference between the measured weight and the dry weight. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.

  16. Three new mussel tissue standard reference materials (SRMs) for the determination of organic contaminants.

    PubMed

    Poster, Dianne L; Schantz, Michele M; Kucklick, John R; Lopez de Alda, Maria J; Porter, Barbara J; Pugh, Rebecca; Wise, Stephen A

    2004-03-01

    Three new mussel tissue standard reference materials (SRMs) have been developed by the National Institute of Standards and Technology (NIST) for the determination of the concentrations of organic contaminants. The most recently prepared material, SRM 1974b, is a fresh frozen tissue homogenate prepared from mussels ( Mytilus edulis) collected in Boston Harbor, Massachusetts. The other two materials, SRMs 2977 and 2978, are freeze-dried tissue homogenates prepared from mussels collected in Guanabara Bay, Brazil and Raritan Bay, New Jersey, respectively. All three new mussel tissue SRMs complement the current suite of marine natural-matrix SRMs available from NIST that are characterized for a wide range of contaminants (organic and inorganic). SRM 1974b has been developed to replace its predecessor SRM 1974a, Organics in Mussel Tissue, for which the supply is depleted. Similarly, SRMs 2977 and 2978 were developed to replace a previously available (supply depleted) freeze-dried version of SRM 1974a, SRM 2974, Organics in Freeze-Dried Mussel Tissue. SRM 1974b is the third in a series of fresh frozen mussel tissue homogenate SRMs prepared from mussels collected in Boston Harbor starting in 1988. SRM 1974b has certified concentration values for 22 polycyclic aromatic hydrocarbons (PAHs), 31 polychlorinated biphenyl congeners (PCBs), and 7 chlorinated pesticides. Reference values are provided for additional constituents: 16 PAHs, 8 PCBs plus total PCBs, 6 pesticides, total extractable organics, methylmercury, and 11 trace elements. PAH concentrations range from about 2 ng g(-1 )dry mass (cyclopenta[ cd]pyrene) to 180 ng g(-1 )dry mass (pyrene). PCB concentrations range from about 2 ng g(-1 )dry mass (PCB 157) to 120 ng g(-1 )dry mass (PCB 153). The reference value for total PCBs in SRM 1974b is (2020 +/- 420) ng g(-1 )dry mass. Pesticide concentrations range from about 4 ng g(-1 )dry mass (4,4'-DDT) to 40 ng g(-1 )dry mass (4,4'-DDE). SRM 2977 has certified values for 14 PAHs, 25 PCB congeners, 7 pesticides, 6 trace elements, and methylmercury. Reference values for 16 additional PAHs and 9 inorganic constituents are provided, and information values are given for 23 additional trace elements. SRM 2978 has certified and reference concentrations for 41 and 22 organic compounds, respectively, and contains contaminant levels similar to those of SRM 1974b. Organic contaminant levels in SRM 2977 (mussels from Guanabara Bay, Brazil) are typically a factor of 2 to 4 lower than those in SRM 1974b and SRM 2978. The organic contaminant concentrations in each new mussel tissue SRM are presented and compared in this paper. In addition, a chronological review of contaminant concentrations associated with mussels collected in Boston Harbor is discussed as well as a stability assessment of SRM 1974a.

  17. Identification and Comparison of the Polar Phospholipids in Normal and Dry Eye Rabbit Tears by MALDI-TOF Mass Spectrometry

    PubMed Central

    Ham, Bryan M.; Cole, Richard B.; Jacob, Jean T.

    2008-01-01

    Purpose To identify and compare the phosphorylated lipids in normal and dry eye rabbit tears using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Methods MALDI-TOF MS studies were performed on tear samples from normal and dry eyes of female New Zealand White rabbits. Experimental dry eye was induced by complete removal of the main and accessory lacrimal glands and nictitating membranes. A solid ionic crystal MALDI matrix of paranitroaniline and butyric acid was used to enhance the mass spectral responses of the phospholipids. In addition, a novel lipid isolation, preconcentration, and clean-up method using pipettes containing immobilized metal ion affinity chromatography (IMAC) medium was used. Results The polar phospholipids present in the normal and dry eye rabbit tears showed both similarities and differences. Species related to platelet-activating factor (PAF) and/or lysophosphatidylcholine (lyso-PC), phosphatidylcholine (PC), and sphingomyelin (SM) were found in both the normal and dry eye rabbit tears. However, the number of types and the concentrations of SM molecules were markedly greater in the dry eye tears than in the normal tears. In addition, phosphatidylserine (PS) species that were readily detectable in dry eye tears were not found in normal tears. Conclusions The combination of immobilized metal ion affinity chromatography and the solid ionic crystal matrix for MALDI enabled the detection and study of phosphorylated lipids in the tears. Specific differences between phospholipid levels in normal and dry eye tears were observable with this methodology. The appearance of various SM species only in the dry eye tears may provide markers for this disease state in the future. PMID:16877399

  18. Characterization of Briquette from the Corncob Charcoal and Sago Stem Alloys

    NASA Astrophysics Data System (ADS)

    Lestari, Lina; Inda Variani, Viska; Nyoman Sudiana, I.; Purnama Sari, Dewi; Ode Sitti Ilmawati, Wa; Sahaluddin Hasan, Erzam

    2017-05-01

    The briquettes fabricated from charcoal of corncob (zea mays,L) and sago stem (metroxilon sago rottb) have been produced and characterized. The samples were prepared step by step carefully. The charcoal powder filtered by strainer with mesh size of 70-80 to get the homogeneous particle size. Briquettes are made by mixing corncob charcoal powder, sago stem charcoal and sago adhesive with a mass ratio of 4:5:1, 4.5: 4.5: 1, 5:4:1. The materials are mixed with hot water and stirred to get homogeneous blend. Then they are compacted by pressure of 34.66kg/cm2, 69.32kg/cm2, and 103.98kg/cm2 to form a cylindrical shape with diameter of 4 cm. The cylindrical briquettes then were dried at temperature of 60°C for 48 hours. After dried, the samples where then characterized their density and water, ash, volatile matter, fixed carbon contents. The burning rate, combustion temperature, and ignition time were also determined. The experimental results show that the briquettes have average densities from 0.602 to 0.717gr/cm3. The density increase with the increasing of forming pressure. The increasing of pressure also result in the decreasing of moisture content from 2.669% to 0.842%. The ash content is found from 3.459% to 8.766%. Volatile matter and fixed carbon are varies from 13.658% and 21.168% and 67.667% to 80.758% respectively. The lowest burning rate is 0.0898gr/s and the optimum burning temperature is 499.2°C with the lowest ignition time of 1.58 minutes. These briquette’s parameters agree wit the quality standard of industrial briquette.

  19. Constraining the Assembly History of Massive Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Newman, Andrew

    2013-01-01

    Massive elliptical galaxies are interesting locations to test hierarchical galaxy formation models, because mergers are thought to play a very important role in their evolution. These systems continue their assembly long after their stellar populations are “dead.” Since z ~ 2, they have grown in mass by a factor of ~2 and in size by a factor of ~4. Dissipationless (“dry”) mergers involving low-mass systems are thought to drive much of this expansion. I have tracked the rate of size growth experienced by quiescent galaxies to z ~ 1.5 using dynamical mass measures, based on Keck spectroscopy, and to z ~ 2.5 using photometric mass and size estimates derived from WFC3/IR imaging in the CANDELS survey. I have also quantified the abundance of faint companion galaxies around the same sources, in order to compare the rate of size growth with the estimated frequency of mergers. While mergers with close companions may account for most of the size growth seen at z < 1, they appear to fall short of explaining the more rapid growth seen at higher redshifts. This suggests additional modes of growth may be required. A merger-rich assembly history will impact the distribution of stellar and dark mass within the galaxy. At the extreme end of the mass function, brightest cluster galaxies (BCGs) are interesting locations to study the effects of mergers, since their assembly is expected to be dominated by late, dry, minor stellar accretion. I will present measurements of the stellar and dark matter density profiles within 7 BCGs derived from resolved stellar kinematics and gravitational lensing. Remarkably, the stellar and dark components “conspire” to produce total density profiles remarkably close to those seen in simulations containing only collisionless cold dark matter. I will briefly describe how this intriguing result might be understood in the context of a merger-rich assembly.

  20. Ultrasound-Assisted Hot Air Drying of Foods

    NASA Astrophysics Data System (ADS)

    Mulet, Antonio; Cárcel, Juan Andrés; García-Pérez, José Vicente; Riera, Enrique

    This chapter deals with the application of power ultrasound, also named high-intensity ultrasound, in the hot air drying of foods. The aim of ultrasound-assisted drying is to overcome some of the limitations of traditional convective drying systems, especially by increasing drying rate without reducing quality attributes. The effects of ultrasound on drying rate are responsible for some of the phenomena produced in the internal and/or external resistance to mass transfer.

  1. Drying characteristics and modeling of yam slices under different relative humidity conditions

    USDA-ARS?s Scientific Manuscript database

    The drying characteristics of yam slices under different 23 constant relative humidity (RH) and step-down RH levels were studied. A mass transfer model was developed based on Bi-Di correlations containing a drying coefficient and a lag factor to describe the drying process. It was validated using ex...

  2. GaN MOSFET with Boron Trichloride-Based Dry Recess Process

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Wang, Q. P.; Tamai, K.; Miyashita, T.; Motoyama, S.; Wang, D. J.; Ao, J. P.; Ohno, Y.

    2013-06-01

    The dry recessed-gate GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) on AlGaN/GaN heterostructure using boron trichloride (BCl3) as etching gas were fabricated and characterized. Etching with different etching power was conducted. Devices with silicon tetrachloride (SiCl4) etching gas were also prepared for comparison. Field-effect mobility and interface state density were extracted from current-voltage (I-V) characteristics. GaN MOSFETs on AlGaN/GaN heterostructure with BCl3 based dry recess achieved a high maximum electron mobility of 141.5 cm2V-1s-1 and a low interface state density.

  3. Rational Water and Nitrogen Management Improves Root Growth, Increases Yield and Maintains Water Use Efficiency of Cotton under Mulch Drip Irrigation

    PubMed Central

    Zhang, Hongzhi; Khan, Aziz; Tan, Daniel K. Y.; Luo, Honghai

    2017-01-01

    There is a need to optimize water-nitrogen (N) applications to increase seed cotton yield and water use efficiency (WUE) under a mulch drip irrigation system. This study evaluated the effects of four water regimes [moderate drip irrigation from the third-leaf to the boll-opening stage (W1), deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W2), pre-sowing and moderate drip irrigation from the third-leaf to the boll-opening stage (W3), pre-sowing and deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W4)] and N fertilizer at a rate of 520 kg ha-1 in two dressing ratios [7:3 (N1), 2:8 (N2)] on cotton root morpho-physiological attributes, yield, WUE and the relationship between root distribution and dry matter production. Previous investigations have shown a strong correlation between root activity and water consumption in the 40–120 cm soil layer. The W3 and especially W4 treatments significantly increased root length density (RLD), root volume density (RVD), root mass density (RMD), and root activity in the 40–120 cm soil layer. Cotton RLD, RVD, RMD was decreased by 13.1, 13.3, and 20.8%, respectively, in N2 compared with N1 at 70 days after planting (DAP) in the 0–40 cm soil layer. However, root activity in the 40–120 cm soil layer at 140 DAP was 31.6% higher in N2 than that in N1. Total RMD, RLD and root activity in the 40–120 cm soil were significantly and positively correlated with shoot dry weight. RLD and root activity in the 40–120 cm soil layer was highest in the W4N2 treatments. Therefore increased water consumption in the deep soil layers resulted in increased shoot dry weight, seed cotton yield and WUE. Our data can be used to develop a water-N management strategy for optimal cotton yield and high WUE. PMID:28611817

  4. Quantifying the impact of mergers on the angular momentum of simulated galaxies

    NASA Astrophysics Data System (ADS)

    Lagos, Claudia del P.; Stevens, Adam R. H.; Bower, Richard G.; Davis, Timothy A.; Contreras, Sergio; Padilla, Nelson D.; Obreschkow, Danail; Croton, Darren; Trayford, James W.; Welker, Charlotte; Theuns, Tom

    2018-02-01

    We use EAGLE to quantify the effect galaxy mergers have on the stellar specific angular momentum of galaxies, jstars. We split mergers into dry (gas-poor)/wet (gas-rich), major/minor and different spin alignments and orbital parameters. Wet (dry) mergers have an average neutral gas-to-stellar mass ratio of 1.1 (0.02), while major (minor) mergers are those with stellar mass ratios ≥0.3 (0.1-0.3). We correlate the positions of galaxies in the jstars-stellar mass plane at z = 0 with their merger history, and find that galaxies of low spins suffered dry mergers, while galaxies of normal/high spins suffered predominantly wet mergers, if any. The radial jstars profiles of galaxies that went through dry mergers are deficient by ≈0.3 dex at r ≲ 10 r50 (with r50 being the half-stellar mass radius), compared to galaxies that went through wet mergers. Studying the merger remnants reveals that dry mergers reduce jstars by ≈30 per cent, while wet mergers increase it by ≈10 per cent, on average. The latter is connected to the build-up of the bulge by newly formed stars of high rotational speed. Moving from minor to major mergers accentuates these effects. When the spin vectors of the galaxies prior to the dry merger are misaligned, jstars decreases by a greater magnitude, while in wet mergers corotation and high orbital angular momentum efficiently spun-up galaxies. We predict what would be the observational signatures in the jstars profiles driven by dry mergers: (i) shallow radial profiles and (ii) profiles that rise beyond ≈10 r50, both of which are significantly different from spiral galaxies.

  5. Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia

    NASA Astrophysics Data System (ADS)

    Zaitunah, A.; Samsuri; Ahmad, A. G.; Safitri, R. A.

    2018-03-01

    Watershed is an ecosystem area confined by topography and has function as a catcher, storage, and supplier of water, sediments, pollutants and nutrients in the river system and exit through a single outlet. Various activities around watershed areas of Besitang have changed the land cover and vegetation index (NDVI) that exist in the region. In order to detect changes in land cover and NDVI quickly and accurately, we used remote sensing technology and geographic information systems (GIS). The study aimed to assess changes in land cover and vegetation density (NDVI) between 2005 and 2015, as well as obtaining the density of vegetation (NDVI) on each of the land cover of 2005 and 2015. The research showed the extensive of forest area of 949.65 Ha and a decline of mangrove forest area covering an area of 2,884.06 Ha. The highest vegetation density reduced 39,714.58 Ha, and rather dense increased 24,410.72 Ha between 2005 and 2015. The land cover that have the highest NDVI value range with very dense vegetation density class is the primary dry forest (0.804 to 0.876), followed by secondary dry forest (0.737 to 0.804) for 2015. In 2015 the land cover has NDVI value range the primary dry forest (0.513 to 0.57), then secondary dry forest (0.456 to 0.513) with dense vegetation density class

  6. Pulmonary delivery of antitubercular drugs using spray-dried lipid-polymer hybrid nanoparticles.

    PubMed

    Bhardwaj, Ankur; Mehta, Shuchi; Yadav, Shailendra; Singh, Sudheer K; Grobler, Anne; Goyal, Amit Kumar; Mehta, Abhinav

    2016-09-01

    The present study aimed to develop lipid-polymer hybrid nanoparticles (LPNs) for the combined pulmonary delivery of isoniazid (INH) and ciprofloxacin hydrochloride (CIP HCl). Drug-loaded LPNs were prepared by the double-emulsification solvent evaporation method using the three-factor three-level Box-Behnken design. The optimized formulation had a size of 111.81 ± 1.2 nm, PDI of 0.189 ± 1.4, and PDE of 63.64 ± 2.12% for INH-loaded LPN, and a size of 172.23 ± 2.31 nm, PDI of 0.169 ± 1.23, and PDE of 68.49 ± 2.54% for CIP HCl-loaded LPN. Drug release was found to be sustained and controlled at lower pH and followed the Peppas model. The in vitro uptake study in alveolar macrophage (AM) showed that uptake of the drugs was increased significantly if administered in the form of LPN. The stability study proved the applications of adding PLGA in LPN as the polymeric core, which leads to a much more stable product as compared to other novel drug delivery systems. Spray drying was done to produce an inhalable, dry, powdered form of drug-loaded LPN. The spray-dried (SD) powder was equally capable of producing nano-aggregates having morphology, density, flowability and reconstitutibility in the range ideal for inhaled drug delivery. The nano aggregates produced by spray drying manifested their aerosolization efficiency in terms of the higher emitted dose and fine particle fraction with lower mass median aerodynamic diameter. The in vivo study using pharmacokinetic and pharmacodynamic approaches revealed that maximum internalization efficiency was achieved by delivering LPN in SD powdered forms by pulmonary route.

  7. Assessment of Heavy Metals in Municipal Sewage Sludge: A Case Study of Limpopo Province, South Africa

    PubMed Central

    Shamuyarira, Kudakwashe K.; Gumbo, Jabulani R.

    2014-01-01

    Heavy metals in high concentrations can cause health and environmental damage. Nanosilver is an emerging heavy metal which has a bright future of use in many applications. Here we report on the levels of silver and other heavy metals in municipal sewage sludge. Five towns in Limpopo province of South Africa were selected and the sludge from their wastewater treatment plants (WWTPs) was collected and analysed. The acid digested sewage sludge samples were analysed using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) methods. The concentrations of silver found were low, but significant, in the range 0.22 to 21.93 mg/kg dry mass. The highest concentration of silver was found in Louis Trichardt town with a concentration of 21.93 ± 0.38 mg/kg dry mass while the lowest was Thohoyandou with a concentration of 6.13 ± 0.12 mg/kg dry mass. A control sludge sample from a pit latrine had trace levels of silver at 0.22 ± 0.01 mg/kg dry mass. The result showed that silver was indeed present in the wastewater sewage sludge and at present there is no DWAF guideline standard. The average Cd concentration was 3.10 mg/kg dry mass for Polokwane municipality. Polokwane and Louis Trichardt municipalities exhibited high levels of Pb, in excess DWAF guidelines, in sludge at 102.83 and 171.87 mg/kg respectfully. In all the WWTPs the zinc and copper concentrations were in excess of DWAF guidelines. The presence of heavy metals in the sewage sludge in excess of DWAF guidelines presents environmental hazards should the sludge be applied as a soil ameliorant. PMID:24595211

  8. Grapes ( Vitis vinifera) drying by semitransparent photovoltaic module (SPVM) integrated solar dryer: an experimental study

    NASA Astrophysics Data System (ADS)

    Tiwari, Sumit; Tiwari, G. N.

    2018-06-01

    In present research paper, semi-transparent photovoltaic module (SPVM) integrated greenhouse solar drying system has been used for grapes ( Vitis vinifera) drying. Based on hourly experimental information namely solar intensity, moisture evaporated, ambient air temperature, grape surface temperatures, relative humidity and greenhouse air temperature etc. heat and mass transfer coefficient for the SPVM drying system have been evaluated. It has been seen that the convective heat transfer coefficients for grapes found between 3.1-0.84 W/m2 K. Also, there is a fair agreement between theoretical and practical mass transfer (moisture evaporated) during drying of grapes with a correlation coefficient (r) and root mean square percentage deviation (e) of 0.88 and 11.56 respectively. Further, nonlinear regression procedure has been used to fit various drying models namely Henderson and Pabis model, Newton's model, and Page's model. From the analysis, it was found that Page's model is best fitted for grapes drying in SPV greenhouse as well as open sun drying. Further, net electrical energy, thermal energy and equivalent thermal energy were found to be 3.61, 17.66 and 27.15 kWh during six days of drying respectively.

  9. Reactor-Scale Cultivation of the Hyperthermophilic Methanarchaeon Methanococcus jannaschii to High Cell Densities

    PubMed Central

    Mukhopadhyay, Biswarup; Johnson, Eric F.; Wolfe, Ralph S.

    1999-01-01

    For the hyperthermophilic and barophilic methanarchaeon Methanococcus jannaschii, we have developed a medium and protocols for reactor-scale cultivation that improved the final cell yield per liter from ∼0.5 to ∼7.5 g of packed wet cells (∼1.8 g dry cell mass) under autotrophic growth conditions and to ∼8.5 g of packed wet cells (∼2 g dry cell mass) with yeast extract (2 g liter−1) and tryptone (2 g liter−1) as medium supplements. For growth in a sealed bottle it was necessary to add Se to the medium, and a level of 2 μM for added Se gave the highest final cell yield. In a reactor M. jannaschii grew without added Se in the medium; it is plausible that the cells received Se as a contaminant from the reactor vessel and the H2S supply. But, for the optimal performance of a reactor culture, an addition of Se to a final concentration of 50 to 100 μM was needed. Also, cell growth in a reactor culture was inhibited at much higher Se concentrations. These observations and the data from previous work with methanogen cell extracts (B. C. McBride and R. S. Wolfe, Biochemistry 10:4312–4317, 1971) suggested that from a continuously sparged reactor culture Se was lost in the exhaust gas as volatile selenides, and this loss raised the apparent required level of and tolerance for Se. In spite of having a proteinaceous cell wall, M. jannaschii withstood an impeller tip speed of 235.5 cms−1, which was optimal for achieving high cell density and also was the higher limit for the tolerated shear rate. The organism secreted one or more acidic compounds, which lowered pH in cultures without pH control; this secretion continued even after cessation of growth. PMID:10543823

  10. Dry-Processed, Binder-Free Holey Graphene Electrodes for Supercapacitors with Ultrahigh Areal Loadings.

    PubMed

    Walsh, Evan D; Han, Xiaogang; Lacey, Steven D; Kim, Jae-Woo; Connell, John W; Hu, Liangbing; Lin, Yi

    2016-11-02

    For commercial applications, the need for smaller footprint energy storage devices requires more energy to be stored per unit area. Carbon nanomaterials, especially graphene, have been studied as supercapacitor electrodes and can achieve high gravimetric capacities affording high gravimetric energy densities. However, most nanocarbon-based electrodes exhibit a significant decrease in their areal capacitances when scaled to the high mass loadings typically used in commercially available cells (∼10 mg/cm 2 ). One of the reasons for this behavior is that the additional surface area in thick electrodes is not readily accessible by electrolyte ions due to the large tortuosity. Furthermore, the fabrication of such electrodes often involves complicated processes that limit the potential for mass production. Here, holey graphene electrodes for supercapacitors that are scalable in both production and areal capacitance are presented. The lateral surface porosity on the graphene sheets was created using a facile single-step air oxidation method, and the resultant holey graphene was compacted under ambient conditions into mechanically robust monolithic shapes that can be directly used as binder-free electrodes. In comparison, pristine graphene discs under similar binder-free compression molding conditions were extremely brittle and thus not deemed useful for electrode applications. The coin cell supercapacitors, based on these holey graphene electrodes exhibited small variations in gravimetric capacitance over a wide range of areal mass loadings (∼1-30 mg/cm 2 ) at current densities as high as 30 mA/cm 2 , resulting in the near-linear increase of the areal capacitance (F/cm 2 ) with the mass loading. The prospects of the presented method for facile binder-free ultrathick graphene electrode fabrication are discussed.

  11. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests.

    PubMed

    Li, Le; McCormack, M Luke; Ma, Chengen; Kong, Deliang; Zhang, Qian; Chen, Xiaoyong; Zeng, Hui; Niinemets, Ülo; Guo, Dali

    2015-09-01

    Leaf economics and hydraulic traits are critical to leaf photosynthesis, yet it is debated whether these two sets of traits vary in a fully coordinated manner or there is room for independent variation. Here, we tested the relationship between leaf economics traits, including leaf nitrogen concentration and leaf dry mass per area, and leaf hydraulic traits including stomatal density and vein density in five tropical-subtropical forests. Surprisingly, these two suites of traits were statistically decoupled. This decoupling suggests that independent trait dimensions exist within a leaf, with leaf economics dimension corresponding to light capture and tissue longevity, and the hydraulic dimension to water-use and leaf temperature maintenance. Clearly, leaf economics and hydraulic traits can vary independently, thus allowing for more possible plant trait combinations. Compared with a single trait dimension, multiple trait dimensions may better enable species adaptations to multifarious niche dimensions, promote diverse plant strategies and facilitate species coexistence. © 2015 John Wiley & Sons Ltd/CNRS.

  12. 40 CFR 63.2292 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., board coolers, and other process units associated with the manufacturing of plywood and composite wood... are not part of the dryer heated zones. Dry forming means the process of making a mat of resinated..., medium density fiberboard, or hardboard. Dry rotary dryer means a rotary dryer that dries wood particles...

  13. 40 CFR 63.2292 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., board coolers, and other process units associated with the manufacturing of plywood and composite wood... are not part of the dryer heated zones. Dry forming means the process of making a mat of resinated..., medium density fiberboard, or hardboard. Dry rotary dryer means a rotary dryer that dries wood particles...

  14. Application of response surface methodology for optimization of parameters for microwave heating of rare earth carbonates

    NASA Astrophysics Data System (ADS)

    Yin, Shaohua; Lin, Guo; Li, Shiwei; Peng, Jinhui; Zhang, Libo

    2016-09-01

    Microwave heating has been applied in the field of drying rare earth carbonates to improve drying efficiency and reduce energy consumption. The effects of power density, material thickness and drying time on the weight reduction (WR) are studied using response surface methodology (RSM). The results show that RSM is feasible to describe the relationship between the independent variables and weight reduction. Based on the analysis of variance (ANOVA), the model is in accordance with the experimental data. The optimum experiment conditions are power density 6 w/g, material thickness 15 mm and drying time 15 min, resulting in an experimental weight reduction of 73%. Comparative experiments show that microwave drying has the advantages of rapid dehydration and energy conservation. Particle analysis shows that the size distribution of rare earth carbonates after microwave drying is more even than those in an oven. Based on these findings, microwave heating technology has an important meaning to energy-saving and improvement of production efficiency for rare earth smelting enterprises and is a green heating process.

  15. Study of drying process on starch structural properties and their effect on semolina pasta sensory quality.

    PubMed

    Padalino, Lucia; Caliandro, Rocco; Chita, Giuseppe; Conte, Amalia; Del Nobile, Matteo Alessandro

    2016-11-20

    The influence of drying temperature on the starch crystallites and its impact on durum wheat pasta sensory properties is addressed in this work. In particular, spaghetti were produced by means of a pilot plant using 5 different drying temperature profiles. The sensory properties, as well as the cooking quality of pasta were assessed. X-ray powder diffraction was used for investigating changes in the crystallinity content of the samples. Starch crystallinity, size and density of the starch crystallites were determined from the analysis of the diffraction profiles. As expected, spaghetti sensory properties improved as the drying temperatures increased. In particular, attributes as resistance to break for uncooked samples and firmness, elasticity, bulkiness and stickiness for cooked samples, all benefit from drying temperature increase. The spaghetti cooking quality was also positively affected by the drying temperature increase. Diffraction analysis suggested that the improvement of sensory properties and cooking quality of pasta were directly related to the increase in density of both physical crosslink of starch granules and chemical crosslink of protein matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Impact of animal density on cattle nutrition in dry Mediterranean rangelands: a faecal near-IR spectroscopy-aided study.

    PubMed

    Landau, S Y; Dvash, L; Yehuda, Y; Muklada, H; Peleg, G; Henkin, Z; Voet, H; Ungar, E D

    2018-02-01

    In the context of determining the sustainable carrying capacity of dry-Mediterranean herbaceous rangelands, we examined the effect of animal density on cattle nutrition, which is fundamental to animal performance and welfare. The effects on dietary components of low (0.56 cows/ha; L) and high (1.11 cows/ha; H) animal densities were monitored for three consecutive years in grazing beef cows. In the dry season (summer and early autumn), cows had free access to N-rich poultry litter (PL) given as a dietary supplement. In each season, near-IR spectroscopy (NIRS) was used to predict the chemical composition of herbage samples (ash, NDF, CP, in vitro dry matter digestibility (IVDMD) and metabolizable energy (ME) content from IVDMD). Near-IR spectroscopy was applied also to faecal samples to determine the chemical composition of the diet selected by the animal, as well as the contents of ash, NDF and CP in the faeces themselves. A faecal-NIRS equation was applied to estimate the dietary proportion of PL. Seasonal categories were green, dry without PL supplementation and dry with it. We found no effects of animal density on nutrition during the green season but effects were apparent when cows consumed dry pasture. Ash content predicted by faecal NIRS was higher in the diet than in plant samples clipped from pasture, which infers that cows ingested soil. Dietary and faecal ash contents were higher (P<0.05) at the H, implying greater soil intake in these animals. During the dry period, dietary contents of ME were higher in L than in H (P<0.05). Poultry litter supplementation was associated with a marked increase (P<0.01) in dietary and faecal CP contents. Poultry litter represented 0.45 and 0.59 of the diet in treatments L and H, respectively (P<0.05). Consequently, treatment H had higher faecal protein (P<0.05). A tendency of higher dietary protein (P=0.08) and lower dietary NDF (P=0.10) in treatment H was probably related to greater PL ingestion. Given that high and sustained rates of poultry litter consumption are detrimental to animal health, the above results cast doubts on the long-term sustainability of the higher of the animal densities tested. Although it may be sustainable vis-à-vis the vegetation, treatment H may have exceeded the boundaries of what is acceptable for cow health. Chemical information revealed with NIRS can be used to evaluate whether animal densities are compatible with animal health and welfare standards and can play a role in determining the carrying capacity of Mediterranean rangelands.

  17. Tables of thermospheric temperature, density and composition derived from satellite and ground based measurements. Volume 1: Ap=4

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.

    1979-01-01

    The tables contain the neutral temperature, neutral densities for N2, O2, O, Ar, He and H, mean molecular weight, and total mass density as predicted by the Mass Spectrometer and Incoherent Scatter empirical thermosphere model for selected altitudes, latitudes, local times, days and other geophysical conditions. The model is based on a least squares fit to density data from mass spectrometers on five satellites and temperature data from four incoherent scatter stations, providing coverage for most of solar sunspot cycle 20. Included in the model data base are longitudinally average N3, He, and O densities from the OGO-6 mass spectrometer longitudinally average N2, He, O and Ar densities from the AEROS-A (NATE) mass spectrometer the N2, He, O, and Ar densities from the San Marco 3 mass spectrometer the N2 densities from the AE-B mass spectrometer and the N2, He, O, and Ar densities from the AE-C (OSS, NACE, NATE) mass spectrometers. The O2 and H densities are inferred using ion mass spectrometer data from AE-C (BIMS). Neutral exospheric temperature data are included from Arecibo, St. Santin, Millstone Hill and Jicamarca.

  18. Influence of entanglements on glass transition temperature of polystyrene

    NASA Astrophysics Data System (ADS)

    Ougizawa, Toshiaki; Kinugasa, Yoshinori

    2013-03-01

    Chain entanglement is essential behavior of polymeric molecules and it seems to affect many physical properties such as not only viscosity of melt state but also glass transition temperature (Tg). But we have not attained the quantitative estimation because the entanglement density is considered as an intrinsic value of the polymer at melt state depending on the chemical structure. Freeze-drying method is known as one of the few ways to make different entanglement density sample from dilute solution. In this study, the influence of entanglements on Tg of polystyrene obtained by the freeze-dried method was estimated quantitatively. The freeze-dried samples showed Tg depression with decreasing the concentration of precursor solution due to the lower entanglement density and their depressed Tg would be saturated when the almost no intermolecular entanglement was formed. The molecular weight dependence of the maximum value of Tg depression was discussed.

  19. Enhancing the engineering properties of expansive soil using bagasse ash

    NASA Astrophysics Data System (ADS)

    Silmi Surjandari, Niken; Djarwanti, Noegroho; Umri Ukoi, Nafisah

    2017-11-01

    This paper deals with stabilization of expansive soil on a laboratory experimental basis. The aim of the research was to evaluate the enhancement of the engineering properties of expansive soil using bagasse ash. The soil is treated with bagasse ash by weight (0, 5, 10, 15, and 20%) based on dry mass. The performance of bagasse ash stabilized soil was evaluated using physical and strength performance tests, namely the plasticity index, standard Proctor compaction, and percentage swelling. An X-ray diffraction (XRD) test was conducted to evaluate the clay mineral, whereas an X-ray fluorescence (XRF) was to the chemical composition of bagasse ash. From the results, it was observed that the basic tests carried out proved some soil properties after the addition of bagasse ash. Furthermore, the plasticity index decreased from 53.18 to 47.70%. The maximum dry density of the specimen increased from 1.13 to 1.24 gr/cm3. The percentage swelling decreased from 5.48 to 3.29%. The outcomes of these tests demonstrate that stabilization of expansive soils using bagasse ash can improve the strength.

  20. SELF SINTERING OF RADIOACTIVE WASTES

    DOEpatents

    McVay, T.N.; Johnson, J.R.; Struxness, E.G.; Morgan, K.Z.

    1959-12-29

    A method is described for disposal of radioactive liquid waste materials. The wastes are mixed with clays and fluxes to form a ceramic slip and disposed in a thermally insulated container in a layer. The temperature of the layer rises due to conversion of the energy of radioactivity to heat boillng off the liquid to fomn a dry mass. The dry mass is then covered with thermal insulation, and the mass is self-sintered into a leach-resistant ceramic cake by further conversion of the energy of radioactivity to heat.

  1. Volatile compound changes during shelf life of dried Boletus edulis: comparison between SPME-GC-MS and PTR-ToF-MS analysis.

    PubMed

    Aprea, Eugenio; Romano, Andrea; Betta, Emanuela; Biasioli, Franco; Cappellin, Luca; Fanti, Marco; Gasperi, Flavia

    2015-01-01

    Drying process is commonly used to allow long time storage of valuable porcini mushrooms (Boletus edulis). Although considered a stable product dried porcini flavour changes during storage. Monitoring of volatile compounds during shelf life may help to understand the nature of the observed changes. In the present work two mass spectrometric techniques were used to monitor the evolution of volatile compounds during commercial shelf life of dried porcini. Solid phase microextraction (SPME) coupled to gas chromatography - mass spectrometry (GC-MS) allowed the identification of 66 volatile compounds, 36 of which reported for the first time, monitored during the commercial shelf life of dried porcini. Proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS) , a direct injection mass spectrometric technique, was shown to be a fast and sensitive instrument for the general monitoring of volatile compound evolution during storage of dried porcini. Furthermore, PTR-ToF-MS grants access to compounds whose determination would otherwise require lengthy pre-concentration and/or derivatization steps such as ammonia and small volatile amines. The two techniques, both used for the first time to study dried porcini, provided detailed description of time evolution of volatile compounds during shelf life. Alcohols, aldehydes, ketones and monoterpenes diminish during the storage while carboxylic acids, pyrazines, lactones and amines increase. The storage temperature modifies the rate of the observed changes influencing the final quality of the dried porcini. We showed the advantages of both techniques, suggesting a strategy to be adopted to follow time evolution of volatile compounds in food products during shelf life, based on the identification of compounds by GC-MS and the rapid time monitoring by PTR-ToF-MS measurements in order to maximize the advantages of both techniques. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Relation of water level and fish availability to wood stork reproduction in the southern Everglades, Florida

    USGS Publications Warehouse

    Kushlan, James A.; Ogden, John C.; Higer, Aaron L.

    1975-01-01

    The wood stork is a species of colonial wading bird in the Everglades that is most sensitive to changes in the availability of food. Previous studies have shown that the initiation and success of wood stork nesting depends on high densities of fish concentrated in ponds and other catchment basins during the dry season. The extreme dependence of the wood stork on the cyclic hydrologic regime of the southern Florida wetlands makes it an indicator of the well-being and ecological stability of the Everglades. The wood stork has declined in numbers over the last 25 years. One reason for the decline in wood stork population was the change in the hydrologic regimen of the Everglades which affected the feeding habitat and the food production. The fish on which the wood stork feeds increase in density during the dry season as water levels fall. In the Everglades marsh, densities were highest in front of the drying edge of surface water at a depth of about 0.3 m. Dry-season densities were greatest when a drought occurred the previous year. Historically wood stork nesting success was associated with high summer water levels, high rates of surface-water discharge and high rates of drying. Before the closure of the south side of Conservation Area 3 in 1962, years of successful and unsuccessful nesting were characterized by different patterns of drying. These patterns changed after 1962 and generally the predictability of successful nesting breaks down thereafter. Only two nesting years after 1962 were successful and in only one of these was the drying rate similar to years of successful nesting before 1962. Two other potentially successful years failed after 1962. This suggests that further changes in the hydrobiological relations occurred within the Everglades after 1962. Lack of successful nesting after 1962 can be attributed in large part to late colony formation and the interruption of nesting by winter rainfall. In this period (1962-72), colonies formed earlier in years of high early drying rates than in years of low early drying rates. Delay of colony formation is ultimately the result of inability to attain a suitable nutritional state since food supply is the primary factor in the initiation of nesting. Many of the complex food associations of the wood stork remain to be explained.

  3. Research on the drying kinetics of household food waste for the development and optimization of domestic waste drying technique.

    PubMed

    Sotiropoulos, A; Malamis, D; Michailidis, P; Krokida, M; Loizidou, M

    2016-01-01

    Domestic food waste drying foresees the significant reduction of household food waste mass through the hygienic removal of its moisture content at source. In this manuscript, a new approach for the development and optimization of an innovative household waste dryer for the effective dehydration of food waste at source is presented. Food waste samples were dehydrated with the use of the heated air-drying technique under different air-drying conditions, namely air temperature and air velocity, in order to investigate their drying kinetics. Different thin-layer drying models have been applied, in which the drying constant is a function of the process variables. The Midilli model demonstrated the best performance in fitting the experimental data in all tested samples, whereas it was found that food waste drying is greatly affected by temperature and to a smaller scale by air velocity. Due to the increased moisture content of food waste, an appropriate configuration of the drying process variables can lead to a total reduction of its mass by 87% w/w, thus achieving a sustainable residence time and energy consumption level. Thus, the development of a domestic waste dryer can be proved to be economically and environmentally viable in the future.

  4. Identification and monitoring of metabolite markers of dry bean consumption in parallel human and mouse studies.

    PubMed

    Perera, Thushanthi; Young, Matthew R; Zhang, Zhiying; Murphy, Gwen; Colburn, Nancy H; Lanza, Elaine; Hartman, Terryl J; Cross, Amanda J; Bobe, Gerd

    2015-04-01

    Aim of the study was to identify and monitor metabolite markers of dry bean consumption in parallel human and mouse studies that each had shown chemopreventive effects of dry bean consumption on colorectal neoplasia risk. Using LC/mass spectroscopy ± ESI and GC/mass spectroscopy, serum metabolites of dry beans were measured in 46 men before and after a 4-week dry bean enriched diet (250 g/day) and 12 mice that received a standardized diet containing either 0 or 10% navy bean ethanol extract for 6 weeks; we also investigated fecal metabolites in the mice. The serum metabolites identified in these controlled feeding studies were then investigated in 212 polyp-free participants from the Polyp Prevention Trial who self-reported either increased (≥+31 g/day from baseline), high dry bean intake of ≥42 g/day in year 3 or low, unchanged dry bean consumption of <8 g/day; serum was analyzed from baseline and year 3. Serum pipecolic acid and S-methyl cysteine were elevated after dry bean consumption in human and mouse studies and reflected dry bean consumption in the Polyp Prevention Trial. Serum levels of pipecolic acid and S-methyl cysteine are useful biomarkers of dry bean consumption. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Identification and monitoring of metabolite markers of dry bean consumption in parallel human and mouse studies

    PubMed Central

    Perera, Thushanthi; Young, Matthew R.; Zhang, Zhiying; Murphy, Gwen; Colburn, Nancy H.; Lanza, Elaine; Hartman, Terryl J.; Cross, Amanda J.; Bobe, Gerd

    2015-01-01

    Scope Aim of the study was to identify and monitor metabolite markers of dry bean consumption in parallel human and mouse studies that each had shown chemopreventive effects of dry bean consumption on colorectal neoplasia risk. Methods and Results Using liquid chromatography/mass spectroscopy +/− electrospray ionization and gas chromatography/mass spectroscopy, serum metabolites of dry beans were measured in 46 men before and after a four-week dry bean-enriched diet (250 g/d) and 12 mice that received a standardized diet containing either 0 or 10% navy bean ethanol extract for 6 weeks; we also investigated fecal metabolites in the mice. The serum metabolites identified in these controlled feeding studies were then investigated in 212 polyp-free participants from the Polyp Prevention Trial who self-reported either increased (≥+31 g/d from baseline), high dry bean intake of ≥42 g/d in year 3 or low, unchanged dry bean consumption of <8 g/d; serum was analyzed from baseline and year 3. Serum pipecolic acid and S-methyl-cysteine were elevated after dry bean consumption in human and mouse studies and reflected dry bean consumption in the Polyp Prevention Trial. Conclusions Serum levels of pipecolic acid and S-methyl-cysteine are useful biomarkers of dry bean consumption. PMID:25641932

  6. Freeze Drying of Fruits and Vegetables: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Noble, Richard D.

    1979-01-01

    Describes a laboratory experiment for freeze-drying fruits and vegetables which aims to expose college students to the principles of drying and simultaneous heat and mass transfer. The experimental apparatus, procedure of the experiment, and data analysis are also included. (HM)

  7. Declines in deepwater sculpin Myoxocephalus thompsonii energy density associated with the disappearance of Diporeia spp. in lakes Huron and Michigan

    USGS Publications Warehouse

    Pothoven, S.A.; Hondorp, D.W.; Nalepa, T.F.

    2011-01-01

    The deepwater sculpin Myoxocephalus thompsonii is a glacial relict in the Laurentian Great Lakes that primarily consumes two glacial relict crustaceans, Mysis relicta and Diporeia spp. Deepwater sculpin were collected in Lake Michigan off Little Sable Point (in 2001) and Muskegon, Michigan (in 2001 and 2009), and in Lake Huron off Harbor Beach, Michigan (in 2007) for energy density and diet analyses. These sites and years represented differences in available prey. In Lake Michigan, energy densities of deepwater sculpin in 2001 were similar to those reported in 1969-1971. In contrast, energy content declined at least 26% at Muskegon between 2001 and 2009. Overall, energy density was 31-34% higher at a site with abundant Diporeia spp. compared with two sites without Diporeia spp. Deepwater sculpin diets consisted primarily of M. relicta at all sites, but included 10-17% (dry mass) Diporeia spp. at sites where this crustacean was still abundant. Food biomass in stomachs was higher at sites with abundant Diporeia spp. than at those without Diporeia spp. Deepwater sculpin energy density and food biomass in stomachs were similar between two sites without Diporeia spp. despite differences in abundance of remaining prey, M. relicta. Declines in deepwater sculpin energy density suggest the potential for further effects on other species and changes in the flow of energy through the food web of the Great Lakes. Published 2010. This article is a US Government work and is in the public domain in the USA.

  8. γ-Heptalactone is an endogenously produced quorum-sensing molecule regulating growth and secondary metabolite production by Aspergillus nidulans.

    PubMed

    Williams, Headley E; Steele, Jonathan C P; Clements, Mark O; Keshavarz, Tajalli

    2012-11-01

    Microbes monitor their population density through a mechanism termed quorum sensing. It is believed that quorum-sensing molecules diffuse from the microbial cells and circulate in the surrounding environment as a function of cell density. When these molecules reach a threshold concentration, the gene expression of the entire population is altered in a coordinated manner. This work provides evidence that Aspergillus nidulans produces at least one small diffusible molecule during its growth cycle which accumulates at high cell density and alters the organism's behaviour. When added to low-density cell cultures, ethyl acetate extracts from stationary phase culture supernatants of A. nidulans resulted in the abolition of the lag phase, induced an earlier deceleration phase with 16.3 % decrease in the final cell dry weight and resulted in a 37.8 % increase in the expression of ipnA::lacZ reporter gene construct, which was used as a marker for penicillin production compared to non-treated controls. The bioactive molecule present in the stationary phase extract was purified to homogeneity and was identified by liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy to be γ-heptalactone. This study provides the first evidence that A. nidulans produces γ-heptalactone at a high cell density and it can alter the organism's behaviour at a low cell density. γ-Heptalactone hence acts as a quorum-sensing molecule in the producing strain.

  9. New gentle-wing high-shear granulator: impact of processing variables on granules and tablets characteristics of high-drug loading formulation using design of experiment approach.

    PubMed

    Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Al-Shdefat, Ramadan I

    2017-10-01

    The aim of this work was to study the application of design of experiment (DoE) approach in defining design space for granulation and tableting processes using a novel gentle-wing high-shear granulator. According to quality-by-design (QbD) prospective, critical attributes of granules, and tablets should be ensured by manufacturing process design. A face-centered central composite design has been employed in order to investigate the effect of water amount (X 1 ), impeller speed (X 2 ), wet massing time (X 3 ), and water addition rate (X 4 ) as independent process variables on granules and tablets characteristics. Acetaminophen was used as a model drug and granulation experiments were carried out using dry addition of povidone k30. The dried granules have been analyzed for their size distribution, density, and flow pattern. Additionally, the produced tablets have been investigated for; weight uniformity, breaking force, friability and percent capping, disintegration time, and drug dissolution. Results of regression analysis showed that water amount, impeller speed and wet massing time have significant (p < .05) effect on granules and tablets characteristics. However, the water amount had the most pronounced effect as indicated by its higher parameter estimate. On the other hand, water addition rate showed a minimal impact on granules and tablets properties. In conclusion, water amount, impeller speed, and wet massing time could be considered as critical process variables. Thus, understanding the relationship between these variables and quality attributes of granules and corresponding tablets provides the basis for adjusting granulation variables in order to optimize product performance.

  10. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests.

    PubMed

    Rambhatla, S; Tchessalov, S; Pikal, Michael J

    2006-04-21

    The objective of this research was to estimate differences in heat and mass transfer between freeze dryers due to inherent design characteristics using data obtained from sublimation tests. This study also aimed to provide guidelines for convenient scale-up of the freeze-drying process. Data obtained from sublimation tests performed on laboratory-scale, pilot, and production freeze dryers were used to evaluate various heat and mass transfer parameters: nonuniformity in shelf surface temperatures, resistance of pipe, refrigeration system, and condenser. Emissivity measurements of relevant surfaces such as the chamber wall and the freeze dryer door were taken to evaluate the impact of atypical radiation heat transfer during scale-up. "Hot" and "cold" spots were identified on the shelf surface of different freeze dryers, and the impact of variation in shelf surface temperatures on the primary drying time and the product temperature during primary drying was studied. Calculations performed using emissivity measurements on different freeze dryers suggest that a front vial in the laboratory lyophilizer received 1.8 times more heat than a front vial in a manufacturing freeze dryer operating at a shelf temperature of -25 degrees C and a chamber pressure of 150 mTorr during primary drying. Therefore, front vials in the laboratory are much more atypical than front vials in manufacturing. Steady-state heat and mass transfer equations were used to study a combination of different scale-up issues pertinent during lyophilization cycles commonly used for the freeze-drying of pharmaceuticals.

  11. Sheared-root inocula of vesicular-arbuscular mycorrhizal fungi.

    PubMed

    Sylvia, D M; Jarstfer, A G

    1992-01-01

    For efficient handling, vesicular-arbuscular mycorrhizal fungi should be processed into small and uniform inocula; however, processing can reduce the inoculum density. In this article we describe the preparation and use of sheared-root inocula of Glomus spp. in which inoculum densities were increased during processing. Our objectives were to determine inoculum viability and density after shearing and to ascertain if the sheared inocula could be pelletized or used with a gel carrier. Root samples were harvested from aeroponic cultures, blotted dry, cut into 1-cm lengths, and sheared in a food processor for up to 80 s. After shearing, the inoculum was washed over sieves, and the propagule density in each fraction was determined. Sheared inocula were also encapsulated in carrageenan or used in a gel carrier. Shearing aeroponically produced root inocula reduced particle size. Propagule density increased with decreasing size fraction down to a size of 63 mum, after which propagule density decreased. The weighted-average propagule density of the inoculum was 135,380 propagules g (dry weight) of sheared root material. Sheared roots were encapsulated successfully in carrageenan, and the gel served as an effective carrier. Aeroponic root inoculum was stored dry at 4 degrees C for 23 months without significant reduction in propagule density; however, this material was not appropriate for shearing. Moist roots, useful for shearing, began to lose propagule density after 1 month of storage. Shearing proved to be an excellent method to prepare viable root inocula of small and uniform size, allowing for more efficient and effective use of limited inoculum supplies.

  12. Long-term elemental dry deposition fluxes measured around Lake Michigan with an automated dry deposition sampler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahin, U. Yi, S.M.; Paode, R.D.; Holsen, T.M.

    2000-05-15

    Long-term measurements of mass and elemental dry deposition (MG, Al, V, Cr, Mn, Ni, Co, Cu, Zn, As, Sr, Mo, Cd, Sb, Ba, and Pb) were made with an automated dry deposition sampler (Eagle II) containing knife-edge surrogate surfaces during the Lake Michigan Mass Balance/Mass Budget Study. Measurements were made over a roughly 700-day period in Chicago, IL; in South Haven and Sleeping Bear Dunes, MI; and over Lake Michigan on the 68th Street drinking water intake cribs from December 1993 to October 1995. Average mass fluxes in Chicago, South Haven, Sleeping Bear Dunes, and the 68th Street crib weremore » 65, 10, 3.6, and 12 mg m{sup {minus}2} day{sup {minus}1}, respectively. Primarily crustal elemental fluxes were significantly smaller than the mass fluxes but higher than primarily anthropogenic elemental fluxes. For example, the average elemental flux of Al in Chicago, South Haven, Sleeping Bear Dunes, and the 68th Street crib were 1.0, 0.34, 0.074, and 0.34 mg m{sup {minus}2}day{sup {minus}1}, respectively. The average Pb fluxes in Chicago, South Haven, Sleeping Bear Dunes, and the 68th Street crib were 0.038, 0.023, 0.035, and 0.032 mg m{sup {minus}2}day{sup {minus}1}, respectively. The measured fluxes at the various sites were used to calculate the dry deposition loadings to the lake. These estimated fluxes were highest for Mg and lowest for Cd.« less

  13. Dry season distribution of land crabs, Gecarcinus quadratus (Crustacea: Gecarcinidae), in Corcovado National Park, Costa Rica.

    PubMed

    Griffiths, Megan E; Mohammad, Basma A; Vega, Andres

    2007-03-01

    The land crab Gecarcinus quadratus is an engineering species that controls nutrient cycling in tropical forests. Factors regulating their coastal distribution are not fully understood. We quantified land crab distribution during the dry season at Sirena Field Station in Corcovado National Park, Costa Rica, and found that land crab burrow density decreases with increasing distance from the ocean. Leaf litter depth and tree seedling density are negatively correlated with land crab burrow density. Burrows are strongly associated with sand substrate and burrow density is comparatively low in clay substrate. Results suggest that G. quadratus is limited to a narrow coastal zone with sand substrate, and this distribution could have profound effects on plant community structure.

  14. Assessment of Reproducibility of Laser Electrospray Mass Spectrometry using Electrospray Deposition of Analyte

    NASA Astrophysics Data System (ADS)

    Sistani, Habiballah; Karki, Santosh; Archer, Jieutonne J.; Shi, Fengjian; Levis, Robert J.

    2017-05-01

    A nonresonant, femtosecond (fs) laser is employed to desorb samples of Victoria blue deposited on stainless steel or indium tin oxide (ITO) slides using either electrospray deposition (ESD) or dried droplet deposition. The use of ESD resulted in uniform films of Victoria blue whereas the dried droplet method resulted in the formation of a ring pattern of the dye. Laser electrospray mass spectrometry (LEMS) measurements of the ESD-prepared films on either substrate were similar and revealed lower average relative standard deviations for measurements within-film (20.9%) and between-films (8.7%) in comparison to dried droplet (75.5% and 40.2%, respectively). The mass spectral response for ESD samples on both substrates was linear (R2 > 0.99), enabling quantitative measurements over the selected range of 7.0 × 10-11 to 2.8 × 10-9 mol, as opposed to the dried droplet samples where quantitation was not possible (R2 = 0.56). The limit of detection was measured to be 210 fmol.

  15. Lipidomic profiling of dried seahorses by hydrophilic interaction chromatography coupled to mass spectrometry.

    PubMed

    Shen, Qing; Dai, Zhiyuan; Huang, Yao-Wen; Cheung, Hon-Yeung

    2016-08-15

    Dried seahorse is a precious raw food material for cooking soups. In this study, a lipidomics strategy using the techniques of solid-phase extraction (SPE) and hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-QTOF/MS) was developed for extraction, visualization, and quantification of phospholipids in dried seahorses. The parameters of SPE were optimized, and 1 mL of sample and chloroform/methanol (1:2, v/v) were found to be the best loading volume and eluting solvent, respectively. Afterwards, each phospholipid class was successfully separated on a HILIC column and analyzed by mass spectrometry. A total of 50 phospholipid molecular species were identified and determined, including 15 phosphatidylcholines (PCs), 14 phosphatidylethanolamines (PEs), 12 phosphatidylinositols (PIs) and 9 phosphatidylserines (PSs). In comparison to previously methods, this strategy was robust and efficient in extraction, characterization, and determination of phospholipids. The dried seahorse was found to contain large amounts of polyunsaturated fatty acyl phospholipids which are beneficial to human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Crop drying by indirect active hybrid solar - Electrical dryer in the eastern Algerian Septentrional Sahara

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boughali, S.; Bouchekima, B.; Mennouche, D.

    2009-12-15

    In the present work, a new specific prototype of an indirect active hybrid solar-electrical dryer for agricultural products was constructed and investigated at LENREZA Laboratory, University of Ouargla (Algerian Sahara). In the new configuration of air drying passage; the study was done in a somewhat high range of mass flow rate between 0.04 and 0.08 kg/m{sup 2} s a range not properly investigated by most researchers. Experimental tests with and without load were performed in winter season in order to study the thermal behavior of the dryer and the effect of high air masse flow on the collector and systemmore » drying efficiency. The fraction of electrical and solar energy contribution versus air mass flow rate was investigated. Slice tomato was studied with different temperatures and velocities of drying air in order to study the influence of these parameters on the removal moisture content from the product and on the kinetics drying and also to determine their suitable values. Many different thin layer mathematical drying models were compared according to their coefficient of determination (R{sup 2}) and reduced chi square ({chi}{sup 2}) to estimate experimental drying curves. The Middli model in this condition proved to be the best for predicting drying behavior of tomato slice with (R{sup 2} = 0.9995, {chi}{sup 2} = 0.0001). Finally an economic evaluation was calculated using the criterion of payback period which is found very small 1.27 years compared to the life of the dryer 15 years. (author)« less

  17. Scanning transmission ion micro-tomography (STIM-T) of biological specimens.

    PubMed

    Schwertner, Micheal; Sakellariou, Arthur; Reinert, Tilo; Butz, Tilman

    2006-05-01

    Computed tomography (CT) was applied to sets of Scanning Transmission Ion Microscopy (STIM) projections recorded at the LIPSION ion beam laboratory (Leipzig) in order to visualize the 3D-mass distribution in several specimens. Examples for a test structure (copper grid) and for biological specimens (cartilage cells, cygospore) are shown. Scanning Transmission Micro-Tomography (STIM-T) at a resolution of 260 nm was demonstrated for the first time. Sub-micron features of the Cu-grid specimen were verified by scanning electron microscopy. The ion energy loss measured during a STIM-T experiment is related to the mass density of the specimen. Typically, biological specimens can be analysed without staining. Only shock freezing and freeze-drying is required to preserve the ultra-structure of the specimen. The radiation damage to the specimen during the experiment can be neglected. This is an advantage compared to other techniques like X-ray micro-tomography. At present, the spatial resolution is limited by beam position fluctuations and specimen vibrations.

  18. Mechanisms and implications of a type IV functional response for short-term intake rate of dry matter in large mammalian herbivores.

    PubMed

    Mezzalira, Jean C; Bonnet, Olivier J F; Carvalho, Paulo C de F; Fonseca, Lidiane; Bremm, Carolina; Mezzalira, Carlos C; Laca, Emilio A

    2017-09-01

    The functional response (i.e. the relationship between consumers' intake rate and resource density) is central in plant-herbivore interactions. Its shape and the biological processes leading to it have significant implications for both foraging theory and ecology of grazing systems. A type IV functional response (i.e. dome-shaped relationship) of short-term intake rate of dry matter (intake while grazing) has rarely been reported for large herbivores and the conditions that can lead to it are poorly understood. We report a type IV functional response observed in heifers grazing monocultures of Cynodon sp. and Avena strigosa. The mechanisms and consequences of this type of functional response for grazed system dynamics are discussed. Intake rate was higher at intermediate than at short or tall sward heights in both grass species. The type IV functional response resulted from changes in bite mass instead of a longer time needed to encounter and process bites. Thus, the decrease of intake rate of dry matter in tall swards is not explained by a shift from process 3 (potential bites are concentrated and apparent) to process 2 (potential bites are apparent but dispersed, Spalinger & Hobbs 1992). Bite mass was smaller in tall than in intermediate swards due to a reduction of bite volume possibly caused by the greater proportion of stem and sheath acting as a physical barrier to bite formation. It is generally accepted that potential bites are abundant and apparent in most grassland and meadow systems, as they were in the present experiments. Therefore, a type IV response of intake rate not directly related to digestive constraints may determine the dynamics of intake and defoliation under a much larger set of conditions than previously thought. These results have implications for foraging theory and stability of grazing systems. For example, if animals prefer patches of intermediate stature that yield the highest intake rate, grazing should lead to the widely observed bimodal distribution of plant mass per unit area, even when tall patches are not of significantly lower digestive quality than the pasture average. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  19. Bud removal affects shoot, root, and callus development of hardwood Populus cuttings

    Treesearch

    A.H. Wiese; J.A. Zalesny; D.M. Donner; Ronald S., Jr. Zalesny

    2006-01-01

    The inadvertent removal and/or damage of buds during processing and planting of hardwood poplar (Populus spp.) cuttings are a concern because of their potential impact on shoot and root development during establishment. The objective of the current study was to test for differences in shoot dry mass, root dry mass, number of roots, length of the...

  20. Improvement of water transport mechanisms during potato drying by applying ultrasound.

    PubMed

    Ozuna, César; Cárcel, Juan A; García-Pérez, José V; Mulet, Antonio

    2011-11-01

    The drying rate of vegetables is limited by internal moisture diffusion and convective transport mechanisms. The increase of drying air temperature leads to faster water mobility; however, it provokes quality loss in the product and presents a higher energy demand. Therefore, the search for new strategies to improve water mobility during convective drying constitutes a topic of relevant research. The aim of this work was to evaluate the use of power ultrasound to improve convective drying of potato and quantify the influence of the applied power in the water transport mechanisms. Drying kinetics of potato cubes were increased by the ultrasonic application. The influence of power ultrasound was dependent on the ultrasonic power (from 0 to 37 kW m(-3) ), the higher the applied power, the faster the drying kinetic. The diffusion model considering external resistance to mass transfer provided a good fit of drying kinetics. From modelling, it was observed a proportional and significant (P < 0.05) influence of the applied ultrasonic power on the identified kinetic parameters: effective moisture diffusivity and mass transfer coefficient. The ultrasonic application during drying represents an interesting alternative to traditional convective drying by shortening drying time, which may involve an energy saving concerning industrial applications. In addition, the ultrasonic effect in the water transport is based on mechanical phenomena with a low heating capacity, which is highly relevant for drying heat sensitive materials and also for obtaining high-quality dry products. Copyright © 2011 Society of Chemical Industry.

  1. The effects of Pantoea sp. strain Y4-4 on alfalfa in the remediation of heavy-metal-contaminated soil, and auxiliary impacts of plant residues on the remediation of saline-alkali soils.

    PubMed

    Li, Shuhuan; Wang, Jie; Gao, Nanxiong; Liu, Lizhu; Chen, Yahua

    2017-04-01

    The plant-growth-promoting rhizobacterium (PGPR) Y4-4 was isolated from plant rhizosphere soil and identified as Pantoea sp. by 16S rRNA sequence analysis. The effects of strain Y4-4 on alfalfa grown in heavy-metals-contaminated soil was investigated using a pot experiment. In a Cu-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 22.6% and 21%, and Cu accumulation increased by 15%. In a Pb-Zn-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 23.4% and 22%, and Zn accumulation increased by 30.3%. In addition, the salt tolerance and biomass of wheat seedlings could be improved by applying strain Y4-4 mixed with plant residue as a result of the Cu-rich plant residues providing copper nutrition to wheat. This study offers an efficient PGPR with strong salt tolerance and a safe strategy for the post-treatment of plant residue.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giggleman, M.A.; Fitzpatrick, L.C.; Goven, A.J.

    Earthworms, Lumbricus terrestris, exposed for 96 h to filter paper saturated with five nominal concentrations of pentachlorophenol, exhibited a 50% lethal concentration (LC50) of 25.0 {micro}g PCP/cm{sup 2} and corresponding whole worm body burden-based 50% lethal dose (LD50) of 877.7 {micro}g PCP/g dry mass. Linear regression modeling showed that worms increased body concentrations (BC = {micro}g PCP/g dry tissue mass) with increasing exposure concentrations (EC) according to BC = 113.5 + 29.5EC. Phagocytosis of yeast cells by immunoactive coelomocytes was suppressed only at body concentrations (863.3 {micro}g PCP/g dry mass) that approximated the calculated LD50 and overlapped those demonstrating lethality,more » indicating a sharp transition between sublethal and lethal toxicity. An exposure concentration of 15 {micro}g PCP/cm{sup 2} produced significant suppression of phagocytosis of yeast cells by immunoactive coelomocytes. However, the average measured body burden from this group approximated the estimated LD50, indicating a sharp toxic response slope. Exposure to 10 {micro}g PCP/cm{sup 2} with a corresponding body concentration of 501.3 {micro}g PCP/g dry mass did not affect phagocytosis. The importance of body burden data is emphasized.« less

  3. Anti-climacterium effects of pomegranate concentrated solutions in ovariectomized ddY mice

    PubMed Central

    Kang, Su Jin; Choi, Beom Rak; Kim, Seung Hee; Yi, Hae Yeon; Park, Hye Rim; Song, Chang Hyun; Ku, Sae Kwang; Lee, Young Joon

    2017-01-01

    In the present study, the complex anti-climacterium potential of standardized pomegranate concentrated solution (PCS) was investigated using bilateral ovariectomy (OVX) female ddY mice. Changes in body weight and gain during experimental periods, food consumption, serum estradiol levels, total body and abdominal fat densities, abdominal fat pads, and uterus weights were observed, along with the histopathology of abdominal fat pads and uterus for anti-obesity and estrogenic effects. In addition, liver weights, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels, and histopathological inspections were performed to explore the hepato-protective effects. Serum total cholesterol (TC), low density lipoprotein (LDL), high density lipoprotein, and triglyceride (TG) levels were monitored for hypolipidemic effects with total body and femur mean bone mineral density (BMD), right femur wet, dry and ash weights, strength, serum osteocalcin, bone-specific alkaline phosphatase (bALP) contents, and histological and histomorphometrical analyses for anti-osteoporosis activity. As a result of OVX, notable increases in body weight and gains, food consumption, abdominal fat mass densities, weights of abdominal fat pads deposited in the abdominal cavity, and serum AST, ALT, TC, LDL, TG, and osteocalcin levels were observed, along with decreases in the uterus, liver, and femur weights, mean total body and femur BMD, femur strength, serum bALP, and estradiol levels. In addition, marked hypertrophic alterations in adipocytes located in the deposited abdominal fat pads, liver steatosis, uterine disused atrophic changes, and decreases in bone mass and structures of the femur were also observed in OVX control mice with significant increases in bone resorption markers based on histopathological and histomorphometrical analysis. However, these estrogen-deficient climacterium symptoms were significantly (P<0.05 or P<0.01) inhibited after 84 days of continuous treatment with estradiol and PCS (1, 2 and 4 ml/kg), respectively. The present results suggested that PCS was able to effectively inhibit or refine the climacterium symptoms, including obesity, hyperlipidemia, hepatic steatosis, and osteoporosis, induced by OVX in ddY mice. PMID:28413464

  4. Mechanisms of Drying of Skin Forming Materials

    NASA Astrophysics Data System (ADS)

    Hassan, Haydar Mahmood

    Available from UMI in association with The British Library. The literature relating to evaporation from single droplets of pure liquids, and to the drying of droplets containing solids and of droplet sprays has been reviewed. The heat and mass transfer rates for a single droplet suspended from a nozzle were studied within a 42mm I.D. horizontal wind tunnel designed to supply hot dry air, to simulate conditions encountered in practical spray dryer. A novel rotating glass nozzle was developed to facilitate direct measurements of droplet weight and core temperature. This design minimised heat conduction through the nozzle. Revised correlations were obtained for heat and mass transfer coefficients, for evaporation from pure water droplets suspended from a rotating nozzle. (UNFORMATTED TABLE OR EQUATION FOLLOWS)eqalign {rm Nu&= rm 2.0 + 0.27 ({1over B})^{0.18}Re^{0.5}Pr ^{0.33}crrm Sh&= rm 2.0 + 0.575({Ta-Ts over Tamb})^{ -0.04}Re^{0.5}Sc^{0.33 }cr}(TABLE/EQUATION ENDS)Experimental drying studies were carried out on single droplets of different types of skin-forming materials, namely, custard, starch, gelatin, skim milk and fructose at air temperatures ranging from 19^circC to 198 ^circC. Dried crusts were recovered and examined by Scanning Electron Microscopy. Skin-forming materials were classified into three types according to the mechanisms of skin formation. In the first type (typified by droplets of custard and starch) skin formed due to gelatinisation at high temperatures. Increasing the drying temperature resulted in increased crust resistance to mass transfer due to increased granule swelling and the crust resistance was completely transferred to a skin resistance at drying temperatures >150 ^circC. In the second type e.g. gelatin droplets the skin formed immediately drying had taken place at any drying temperature. At drying temperature >60^circC a more resistant skin was formed. In the third type (typified by droplets of skim milk and fructose) the skin appeared on the droplet at a certain stage of the drying process under any drying conditions. As the drying temperature was increased the resistance of the skin to mass transfer increased. The drying rate history of any material depended upon the nature of the skin formed which, in turn, depended upon the drying conditions. A mathematical model was proposed for the drying of the first type of skin-forming material. This was based on the assumption that, once all the granules gelatinised at the gelatinisation temperature, a skin appeared instantaneously on the droplet surface. The experimentally-observed times at which the skin appeared on the droplets surfaces were in excellent agreement with those predicted from the model. The work should assist in understanding the fundamentals of particulate drying processes, particularly when skin -formation occurs and may be a crucial factor in volatiles retention.

  5. Solid-state, triboelectrostatic and dissolution characteristics of spray-dried piroxicam-glucosamine solid dispersions.

    PubMed

    Adebisi, Adeola O; Kaialy, Waseem; Hussain, Tariq; Al-Hamidi, Hiba; Nokhodchi, Ali; Conway, Barbara R; Asare-Addo, Kofi

    2016-10-01

    This work explores the use of both spray drying and d-glucosamine HCl (GLU) as a hydrophilic carrier to improve the dissolution rate of piroxicam (PXM) whilst investigating the electrostatic charges associated with the spray drying process. Spray dried PXM:GLU solid dispersions were prepared and characterised (XRPD, DSC, SEM). Dissolution and triboelectric charging were also conducted. The results showed that the spray dried PXM alone, without GLU produced some PXM form II (DSC results) with no enhancement in solubility relative to that of the parent PXM. XRPD results also showed the spray drying process to decrease the crystallinity of GLU and solid dispersions produced. The presence of GLU improved the dissolution rate of PXM. Spray dried PXM: GLU at a ratio of 2:1 had the most improved dissolution. The spray drying process generally yielded PXM-GLU spherical particles of around 2.5μm which may have contributed to the improved dissolution. PXM showed a higher tendency for charging in comparison to the carrier GLU (-3.8 versus 0.5nC/g for untreated material and -7.5 versus 3.1nC/g for spray dried materials). Spray dried PXM and spray dried GLU demonstrated higher charge densities than untreated PXM and untreated GLU, respectively. Regardless of PXM:GLU ratio, all spray dried PXM:GLU solid dispersions showed a negligible charge density (net-CMR: 0.1-0.3nC/g). Spray drying of PXM:GLU solid dispersions can be used to produce formulation powders with practically no charge and thereby improving handling as well as dissolution behaviour of PXM. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Density on Dry Land.

    ERIC Educational Resources Information Center

    Libarkin, Julie C.; Crockett, Cynthia D.; Sadler, Philip M.

    2003-01-01

    Presents activities to dispel student misconceptions about density, particularly as it applies to buoyancy. Finds that misconceptions fall under three categories: (1) size; (2) shape; and (3) material. (NB)

  7. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2017-02-01

    The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in situ and that of accreted stellar populations. Using as an observable the effective IMF αIMF, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry-merger evolution model, based on cosmological N-body simulations, together with empirically motivated prescriptions for the IMF to make predictions on how the effective IMF of massive early-type galaxies changes from z = 2 to z = 0. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, αIMF is predicted to be constant with redshift. Current dynamical constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties, including the effect of radial gradients in the IMF, prevent a conclusive statement. The correlation of αIMF with stellar mass becomes shallower with time, while the correlation between αIMF and velocity dispersion is mostly preserved by dry mergers. We also find that dry mergers can mix the dependence of the IMF on stellar mass and velocity dispersion, making it challenging to infer, from z = 0 observations of global galactic properties, what is the quantity that is originally coupled with the IMF.

  8. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    PubMed

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high nitrogen utilization efficiency had a strong ability of dry matter production and nitrogen accumulation. It could synergistically improve yield and nitrogen utilization efficiency by enhancing the ability of nitrogen uptake and dry matter formation before jointing stage in barley.

  9. Long Range Materials Research

    DTIC Science & Technology

    1976-01-01

    the "weight In water -weight In air" method. The compact Is first weighed dry and then weighed while Immersed completely In water . The density was...calculated from the following: (Wdry) ^ compact W. - W dry wet (1) where P^-o ^8 ’^ density of water corrected for temperature. The weight wet...PPh9) ’"NXV 2 (4) ’ X CH20TS + EtO e These bonds are easily cleaved by water and alcohols . Thererore, it should be possible to

  10. Fresh and Dry Mass Estimates of Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae) Larvae Associated with Swine Decomposition in Urban Area of Central Amazonia.

    PubMed

    Barros, L M; Martins, R T; Ferreira-Keppler, R L; Gutjahr, A L N

    2017-08-04

    Information on biomass is substantial for calculating growth rates and may be employed in the medicolegal and economic importance of Hermetia illucens (Linnaeus, 1758). Although biomass is essential to understanding many ecological processes, it is not easily measured. Biomass may be determined by directly weighing or indirectly through regression models of fresh/dry mass versus body dimensions. In this study, we evaluated the association between morphometry and fresh/dry mass of immature H. illucens using linear, exponential, and power regression models. We measured width and length of the cephalic capsule, overall body length, and width of the largest abdominal segment of 280 larvae. Overall body length and width of the largest abdominal segment were the best predictors for biomass. Exponential models best fitted body dimensions and biomass (both fresh and dry), followed by power and linear models. In all models, fresh and dry biomass were strongly correlated (>75%). Values estimated by the models did not differ from observed ones, and prediction power varied from 27 to 79%. Accordingly, the correspondence between biomass and body dimensions should facilitate and motivate the development of applied studies involving H. illucens in the Amazon region.

  11. Strength/Brittleness Classification of Igneous Intact Rocks Based on Basic Physical and Dynamic Properties

    NASA Astrophysics Data System (ADS)

    Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad

    2017-01-01

    This paper sheds further light on the fundamental relationships between simple methods, rock strength, and brittleness of igneous rocks. In particular, the relationship between mechanical (point load strength index I s(50) and brittleness value S 20), basic physical (dry density and porosity), and dynamic properties (P-wave velocity and Schmidt rebound values) for a wide range of Iranian igneous rocks is investigated. First, 30 statistical models (including simple and multiple linear regression analyses) were built to identify the relationships between mechanical properties and simple methods. The results imply that rocks with different Schmidt hardness (SH) rebound values have different physicomechanical properties or relations. Second, using these results, it was proved that dry density, P-wave velocity, and SH rebound value provide a fine complement to mechanical properties classification of rock materials. Further, a detailed investigation was conducted on the relationships between mechanical and simple tests, which are established with limited ranges of P-wave velocity and dry density. The results show that strength values decrease with the SH rebound value. In addition, there is a systematic trend between dry density, P-wave velocity, rebound hardness, and brittleness value of the studied rocks, and rocks with medium hardness have a higher brittleness value. Finally, a strength classification chart and a brittleness classification table are presented, providing reliable and low-cost methods for the classification of igneous rocks.

  12. Moisture and drug solid-state monitoring during a continuous drying process using empirical and mass balance models.

    PubMed

    Fonteyne, Margot; Gildemyn, Delphine; Peeters, Elisabeth; Mortier, Séverine Thérèse F C; Vercruysse, Jurgen; Gernaey, Krist V; Vervaet, Chris; Remon, Jean Paul; Nopens, Ingmar; De Beer, Thomas

    2014-08-01

    Classically, the end point detection during fluid bed drying has been performed using indirect parameters, such as the product temperature or the humidity of the outlet drying air. This paper aims at comparing those classic methods to both in-line moisture and solid-state determination by means of Process Analytical Technology (PAT) tools (Raman and NIR spectroscopy) and a mass balance approach. The six-segmented fluid bed drying system being part of a fully continuous from-powder-to-tablet production line (ConsiGma™-25) was used for this study. A theophylline:lactose:PVP (30:67.5:2.5) blend was chosen as model formulation. For the development of the NIR-based moisture determination model, 15 calibration experiments in the fluid bed dryer were performed. Six test experiments were conducted afterwards, and the product was monitored in-line with NIR and Raman spectroscopy during drying. The results (drying endpoint and residual moisture) obtained via the NIR-based moisture determination model, the classical approach by means of indirect parameters and the mass balance model were then compared. Our conclusion is that the PAT-based method is most suited for use in a production set-up. Secondly, the different size fractions of the dried granules obtained during different experiments (fines, yield and oversized granules) were compared separately, revealing differences in both solid state of theophylline and moisture content between the different granule size fractions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Size matters: relationships between body size and body mass of common coastal, aquatic invertebrates in the Baltic Sea

    PubMed Central

    Austin, Åsa; Bergström, Ulf; Donadi, Serena; Eriksson, Britas D.H.K.; Hansen, Joakim; Sundblad, Göran

    2017-01-01

    Background Organism biomass is one of the most important variables in ecological studies, making biomass estimations one of the most common laboratory tasks. Biomass of small macroinvertebrates is usually estimated as dry mass or ash-free dry mass (hereafter ‘DM’ vs. ‘AFDM’) per sample; a laborious and time consuming process, that often can be speeded up using easily measured and reliable proxy variables like body size or wet (fresh) mass. Another common way of estimating AFDM (one of the most accurate but also time-consuming estimates of biologically active tissue mass) is the use of AFDM/DM ratios as conversion factors. So far, however, these ratios typically ignore the possibility that the relative mass of biologically active vs. non-active support tissue (e.g., protective exoskeleton or shell)—and therefore, also AFDM/DM ratios—may change with body size, as previously shown for taxa like spiders, vertebrates and trees. Methods We collected aquatic, epibenthic macroinvertebrates (>1 mm) in 32 shallow bays along a 360 km stretch of the Swedish coast along the Baltic Sea; one of the largest brackish water bodies on Earth. We then estimated statistical relationships between the body size (length or height in mm), body dry mass and ash-free dry mass for 14 of the most common taxa; five gastropods, three bivalves, three crustaceans and three insect larvae. Finally, we statistically estimated the potential influence of body size on the AFDM/DM ratio per taxon. Results For most taxa, non-linear regression models describing the power relationship between body size and (i) DM and (ii) AFDM fit the data well (as indicated by low SE and high R2). Moreover, for more than half of the taxa studied (including the vast majority of the shelled molluscs), body size had a negative influence on organism AFDM/DM ratios. Discussion The good fit of the modelled power relationships suggests that the constants reported here can be used to quickly estimate organism dry- and ash-free dry mass based on body size, thereby freeing up considerable work resources. However, the considerable differences in constants between taxa emphasize the need for taxon-specific relationships, and the potential dangers associated with ignoring body size. The negative influence of body size on the AFDM/DM ratio found in a majority of the molluscs could be caused by increasingly thicker shells with organism age, and/or spawning-induced loss of biologically active tissue in adults. Consequently, future studies utilizing AFDM/DM (and presumably also AFDM/wet mass) ratios should carefully assess the potential influence of body size to ensure more reliable estimates of organism body mass. PMID:28149685

  14. Size matters: relationships between body size and body mass of common coastal, aquatic invertebrates in the Baltic Sea.

    PubMed

    Eklöf, Johan; Austin, Åsa; Bergström, Ulf; Donadi, Serena; Eriksson, Britas D H K; Hansen, Joakim; Sundblad, Göran

    2017-01-01

    Organism biomass is one of the most important variables in ecological studies, making biomass estimations one of the most common laboratory tasks. Biomass of small macroinvertebrates is usually estimated as dry mass or ash-free dry mass (hereafter 'DM' vs. 'AFDM') per sample; a laborious and time consuming process, that often can be speeded up using easily measured and reliable proxy variables like body size or wet (fresh) mass. Another common way of estimating AFDM (one of the most accurate but also time-consuming estimates of biologically active tissue mass) is the use of AFDM/DM ratios as conversion factors. So far, however, these ratios typically ignore the possibility that the relative mass of biologically active vs. non-active support tissue (e.g., protective exoskeleton or shell)-and therefore, also AFDM/DM ratios-may change with body size, as previously shown for taxa like spiders, vertebrates and trees. We collected aquatic, epibenthic macroinvertebrates (>1 mm) in 32 shallow bays along a 360 km stretch of the Swedish coast along the Baltic Sea; one of the largest brackish water bodies on Earth. We then estimated statistical relationships between the body size (length or height in mm), body dry mass and ash-free dry mass for 14 of the most common taxa; five gastropods, three bivalves, three crustaceans and three insect larvae. Finally, we statistically estimated the potential influence of body size on the AFDM/DM ratio per taxon. For most taxa, non-linear regression models describing the power relationship between body size and (i) DM and (ii) AFDM fit the data well (as indicated by low SE and high R 2 ). Moreover, for more than half of the taxa studied (including the vast majority of the shelled molluscs), body size had a negative influence on organism AFDM/DM ratios. The good fit of the modelled power relationships suggests that the constants reported here can be used to quickly estimate organism dry- and ash-free dry mass based on body size, thereby freeing up considerable work resources. However, the considerable differences in constants between taxa emphasize the need for taxon-specific relationships, and the potential dangers associated with ignoring body size. The negative influence of body size on the AFDM/DM ratio found in a majority of the molluscs could be caused by increasingly thicker shells with organism age, and/or spawning-induced loss of biologically active tissue in adults. Consequently, future studies utilizing AFDM/DM (and presumably also AFDM/wet mass) ratios should carefully assess the potential influence of body size to ensure more reliable estimates of organism body mass.

  15. Soil property effects on wind erosion of organic soils

    NASA Astrophysics Data System (ADS)

    Zobeck, Ted M.; Baddock, Matthew; Scott Van Pelt, R.; Tatarko, John; Acosta-Martinez, Veronica

    2013-09-01

    Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (OM > 20%) in half or more of the upper 80 cm. Forty two states have a total of 21 million ha of Histosols in the United States. These soils, when intensively cropped, are subject to wind erosion resulting in loss of crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service (NRCS) as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to understand how soil properties vary among organic soils and to calibrate and validate estimates of wind erosion of organic soils using WEPS. Soil properties and sediment flux were measured in six soils with high organic contents located in Michigan and Florida, USA. Soil properties observed included organic matter content, particle density, dry mechanical stability, dry clod stability, wind erodible material, and geometric mean diameter of the surface aggregate distribution. A field portable wind tunnel was used to generate suspended sediment and dust from agricultural surfaces for soils ranging from 17% to 67% organic matter. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was sampled using a Grimm optical particle size analyzer. Particle density of the saltation-sized material (>106 μm) was inversely related to OM content and varied from 2.41 g cm-3 for the soil with the lowest OM content to 1.61 g cm-3 for the soil with highest OM content. Wind erodible material and the geometric mean diameter of the surface soil were inversely related to dry clod stability. The effect of soil properties on sediment flux varied among flux types. Saltation flux was adequately predicted with simple linear regression models. Dry mechanical stability was the best single soil property linearly related to saltation flux. Simple linear models with soil properties as independent variables were not well correlated with PM10E values (mass flux). A second order polynomial equation with OM as the independent variable was found to be most highly correlated with PM10E values. These results demonstrate that variations in sediment and dust emissions can be linked to soil properties using simple models based on one or more soil properties to estimate saltation mass flux and PM10E values from organic and organic-rich soils.

  16. 40 CFR Table 7 to Subpart Dddd of... - Model Rule-Emission Limitations That Apply to Energy Recovery Units After May 20, 2011

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... volume Biomass—490 parts per million dry volumeCoal—59 parts per million dry volume 3-run average (1 hour... with a concentration of 1000 ppm or less for biomass-fed boilers. Dioxins/furans (total mass basis) 2.9... million dry volume Biomass—290 parts per million dry volumeCoal—340 parts per million dry volume 3-run...

  17. Density-dependent seedling mortality varies with light availability and species abundance in wet and dry Hawaiian forests

    Treesearch

    Faith Inman-Narahari; Rebecca Ostertag; Stephen P. Hubbell; Christian P. Giardina; Susan Cordell; Lawren Sack; Andrew MacDougall

    2016-01-01

    Conspecific density may contribute to patterns of species assembly through negative density dependence (NDD) as predicted by the Janzen-Connell hypothesis, or through facilitation (positive density dependence; PDD). Conspecific density effects are expected to be more negative in darker and wetter environments due to higher pathogen abundance and...

  18. Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades.

    PubMed

    Masojídek, Jiří; Kopecký, Jiří; Giannelli, Luca; Torzillo, Giuseppe

    2011-02-01

    This work aims to: (1) correlate photochemical activity and productivity, (2) characterize the flow pattern of culture layers and (3) determine a range of biomass densities for high productivity of the freshwater microalga Chlorella spp., grown outdoors in thin-layer cascade units. Biomass density, irradiance inside culture, pigment content and productivity were measured in the microalgae cultures. Chlorophyll-fluorescence quenching was monitored in situ (using saturation-pulse method) to estimate photochemical activities. Photobiochemical activities and growth parameters were studied in cultures of biomass density between 1 and 47 g L(-1). Fluorescence measurements showed that diluted cultures (1-2 g DW L(-1)) experienced significant photostress due to inhibition of electron transport in the PSII complex. The highest photochemical activities were achieved in cultures of 6.5-12.5 g DW L(-1), which gave a maximum daylight productivity of up to 55 g dry biomass m(-2) day(-1). A midday depression of maximum PSII photochemical yield (F (v)/F (m)) of 20-30% compared with morning values in these cultures proved to be compatible with well-performing cultures. Lower or higher depression of F (v)/F (m) indicated low-light acclimated or photo-inhibited cultures, respectively. A hydrodynamic model of the culture demonstrated highly turbulent flow allowing rapid light/dark cycles (with frequency of 0.5 s(-1)) which possibly match the turnover of the photosynthetic apparatus. These results are important from a biotechnological point of view for optimisation of growth of outdoor microalgae mass cultures under various climatic conditions.

  19. Rheological and volumetric properties of TiO2-ethylene glycol nanofluids

    PubMed Central

    2013-01-01

    Homogeneous stable suspensions obtained by dispersing dry TiO2 nanoparticles in pure ethylene glycol were prepared and studied. Two types of nanocrystalline structure were analyzed, namely anatase and rutile phases, which have been characterized by scanning electron microscopy. The rheological behavior was determined for both nanofluids at nanoparticle mass concentrations up to 25%, including flow curves and frequency-dependent storage and loss moduli, using a cone-plate rotational rheometer. The effect of temperature over these flow curve tests at the highest concentration was also analyzed from 283.15 to 323.15 K. Furthermore, the influence of temperature, pressure, nanocrystalline structure, and concentration on the volumetric properties, including densities and isobaric thermal expansivities, were also analyzed. PMID:23763850

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshetenko, T. V.; Bender, G.; Bethune, K.

    The overall current density that is measured in a proton exchange membrane fuel cell (PEMFC) represents the average of the local reaction rates. The overall and local PEMFC performances are determined by several primary loss mechanisms, namely activation, ohmic, and mass transfer. Spatial performance and loss variabilities are significant and depend on the cell design and operating conditions. A segmented cell system was used to quantify different loss distributions along the gas channel to understand the effects of gas humidification. A reduction in the reactant stream humidification decreased cell performance and resulted in non-uniform distributions of overpotentials and performance alongmore » the flow field. Activation and ohmic overpotentials increased with a relative humidity decrease due to insufficient membrane and catalyst layer hydration. The relative humidity of the cathode had a strong impact on the mass transfer overpotential due to a lower oxygen permeability through the dry Nafion film covering the catalyst surface. The mass transfer loss distribution was non-uniform, and the mass transfer overpotential increased for the outlet segments due to the oxygen consumption at the inlet segments, which reduced the oxygen concentration downstream, and a progressive water accumulation from upstream segments. Electrochemical impedance spectroscopy (EIS) and an equivalent electric circuit (EEC) facilitated the analysis and interpretation of the segmented cell data.« less

  1. Maternal characteristics versus egg size and energy density: do stocked lake trout in Lake Ontario experience premature reproductive senescence?

    USGS Publications Warehouse

    Lantry, B.F.; O'Gorman, R.; Machut, L.S.

    2008-01-01

    Observations from September 1994 and 1997 collections of hatchery-origin, mature female lake trout (Salvelinus namaycush) from Lake Ontario indicated that egg mass decreased with age, fueling the notion that stocked fish experienced premature reproductive senescence. Supplemental collections during September 2002 and November 2002-2004 were combined with the 1994 and 1997 samples to examine whether sample date or maternal age, body mass, condition (K), egg count, or strain were related to egg mass or energy content (percentage dry mass [%DM]). Body mass was correlated with egg mass for age ≥ 8 lake trout sampled in September, and egg count was correlated with egg mass for September age-6 lake trout only. Within each month, egg mass was not related to K or egg %DM, however, egg %DM was 1.52% greater (P ≤ 0.0247) in November than in September which is equivalent to a 110 cal/g difference. Samples were grouped for the three most abundant strains (Seneca, Superior, and Ontario) after finding no strain or year effects from our 1994 and 1997 samples and based on life history data from the literature and our assessment sampling. Further analysis indicated that September egg masses were greater for fish ages ≤ 6 than for fish ages ≥ 8. The age effect disappeared in November when mean egg mass across all ages (0.078 g) was greater than September means (P < 0.0005) for ages -5 (0.054 g), -6 (0.057 g) and ≥ 8 (0.041 g). Our results indicate that the decrease in egg mass with female age in September was not due to senescence, but to oogenesis being closer to completion in young age-5 and -6 fish than in older individuals.

  2. Systemic delivery of parathyroid hormone (1-34) using inhalation dry powders in rats.

    PubMed

    Codrons, Valérie; Vanderbist, Francis; Verbeeck, Roger K; Arras, Mohammed; Lison, Dominique; Préat, Véronique; Vanbever, Rita

    2003-05-01

    The aim of this work was to prepare and characterize inhalation dry powders of human parathyroid hormone (PTH), as well as to assess their efficacy for systemic delivery of the peptide and safety in rats. The powders were prepared by spray-drying using PTH, sugars, dipalmitoylphosphatidylcholine, and/or albumin. They presented an average primary particle diameter of 4.5 microm and tap density of 0.06 g/cm(3), a mass median aerodynamic diameter between 3.9 and 5.9 microm, and reached up to 98% emitted dose and up to 61% fine particle fraction in the multi-stage liquid impinger using a Spinhaler inhaler device. Varying the airflow rate from 30 to 100 L/min had limited influence on the aerodynamic behavior of the aerosols. The absolute PTH bioavailability was 21% after intratracheal administration of the powder formed of PTH/albumin/lactose/dipalmitoylphosphatidylcholine and 18% after subcutaneous injection in rats. Equilibrium dialysis revealed a 78% binding of PTH to albumin and the withdrawal of albumin from the powder increased absolute bioavailability after inhalation from 21 to 34%. No acute inflammation appeared in the lung up to 48 h after a single inhalation. The increased bioavailability of the optimized powder aerosol of PTH makes it a promising alternative to subcutaneous injection. Copyright 2003 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 92:938-950, 2003

  3. Effect of population density of lettuce intercropped with rocket on productivity and land-use efficiency

    PubMed Central

    2018-01-01

    The objective of this study was to evaluate the influence of the spacing of lettuce rows on the production of a lettuce-rocket intercropping system over two growing seasons (11 August to 25 September 2011 and 12 January to 24 February 2012) in Jaboticabal, São Paulo, Brazil. We evaluated 11 treatments in each season: lettuce-rocket intercrops with five row spacings for the lettuce (0.20, 0.25, 0.30, 0.35 and 0.40 m) and the rocket planted midway between the lettuce rows, sole crops of lettuce at the same five row spacings and a sole crop of rocket. Fresh and dry masses of the lettuce and rocket and number of lettuce leaves per plant were highest with a lettuce row spacing of 0.40 m, but the productivities of the lettuce and rocket were higher with a lettuce row spacing of 0.20 m. The productivities and fresh and dry weights of the lettuce and rocket and the number of lettuce leaves per plant were highest in the sole crops, but the fresh and dry weights of the rocket were higher with intercropping. The land equivalent ratios were >1.0 in both seasons in all intercrops and were highest for the densest crop (1.41). Intercropping was therefore 41% more efficient than sole cropping for the production of lettuce and rocket. PMID:29698401

  4. Effect of population density of lettuce intercropped with rocket on productivity and land-use efficiency.

    PubMed

    Nascimento, Camila Seno; Cecílio Filho, Arthur Bernardes; Mendoza-Cortez, Juan Waldir; Nascimento, Carolina Seno; Bezerra Neto, Francisco; Grangeiro, Leilson Costa

    2018-01-01

    The objective of this study was to evaluate the influence of the spacing of lettuce rows on the production of a lettuce-rocket intercropping system over two growing seasons (11 August to 25 September 2011 and 12 January to 24 February 2012) in Jaboticabal, São Paulo, Brazil. We evaluated 11 treatments in each season: lettuce-rocket intercrops with five row spacings for the lettuce (0.20, 0.25, 0.30, 0.35 and 0.40 m) and the rocket planted midway between the lettuce rows, sole crops of lettuce at the same five row spacings and a sole crop of rocket. Fresh and dry masses of the lettuce and rocket and number of lettuce leaves per plant were highest with a lettuce row spacing of 0.40 m, but the productivities of the lettuce and rocket were higher with a lettuce row spacing of 0.20 m. The productivities and fresh and dry weights of the lettuce and rocket and the number of lettuce leaves per plant were highest in the sole crops, but the fresh and dry weights of the rocket were higher with intercropping. The land equivalent ratios were >1.0 in both seasons in all intercrops and were highest for the densest crop (1.41). Intercropping was therefore 41% more efficient than sole cropping for the production of lettuce and rocket.

  5. High dietary biotin levels affect the footpad and hock health of broiler chickens reared at different stocking densities and litter conditions.

    PubMed

    Sun, Z W; Fan, Q H; Wang, X X; Guo, Y M; Wang, H J; Dong, X

    2017-06-01

    Responses to stocking density (SD), dietary biotin concentration and litter condition were evaluated on 2016 Ross 308 male broilers in the fattening period (day 22-day 42). The birds were placed in 48 pens with either dry or wet litter to simulate the final stocking density of 30 kg (12 broilers/m 2 ; normal stocking density, NSD) and 40 kg (16 broilers/m 2 ; high stocking density, HSD) of body weight (BW)/m 2 floor space. A corn-soybean meal-based diet was supplemented with biotin to provide a normal (NB; 155 μg/kg) or high (HB, 1521 μg/kg) level of dietary biotin. There were six repetitions per treatment. The inappropriate moisture content of litter associated with HSD was avoided (p < 0.05) by good management (SD difference: dry litter, 6.65% vs. wet litter, 13.23%; 42 days), which made it advantageous (p < 0.01) for footpad (SD difference: dry litter, 0.118 vs. wet litter, 0.312; weekly average value) and hock health (SD difference: dry litter, 0.090 vs. wet litter, 0.303; weekly average value) of HSD birds, but not (p > 0.05) for growth and processing yield. In HSD, the biotin effect (gains, FCR) was significantly higher (p < 0.01) than in NSD. The similar response of HSD birds to supplemental biotin was observed (p < 0.05) for lesion scores of footpad and hock in particularly finishing chickens, and a significant interaction (p < 0.01) among stocking density, biotin supplementation and litter condition existed from 35 to 42 days of age. Taken together, increasing dietary biotin improves the performance and well-being of broiler chickens stocked at high densities in litter-independent and litter-dependent manners respectively. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  6. Critical heat flux maxima during boiling crisis on textured surfaces

    PubMed Central

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.

    2015-01-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098

  7. How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Comparison of four magnesium carbonates.

    PubMed

    Freitag, Franziska; Kleinebudde, Peter

    2003-07-01

    The effect of roll compaction/dry granulation on the particle and bulk material characteristics of different magnesium carbonates was evaluated. The flowability of all materials could be improved, even by the application of low specific compaction forces. The tablet properties made of powder and dry granulated magnesium carbonate were compared. Roll compaction/dry granulation resulted in a modified compactibility of the material and, consequently, tablets with reduced tensile strength. The higher relative tap density of the compacted material does not allow a densification to the same extent as the uncompacted powder. The degree of densification during tableting can be expressed as the ratio of the relative tablet density to the relative tap density of the feed material. Increasing the specific compaction forces resulted in higher apparent mean yield pressure, gained from Heckel plots, of all materials analysed. The partial loss of compactibility leads to the demand of low loads during roll compaction. Comparing the tablet properties of different magnesium carbonates reveals an obvious capping disposition. However, it depends on the type of magnesium carbonate, the specific compaction force and also on the tableting force applied.

  8. Timing of seed dispersal generates a bimodal seed bank depth distribution

    USGS Publications Warehouse

    Espinar, J.L.; Thompson, K.; Garcia, L.V.

    2005-01-01

    The density of soil seed banks is normally highest at the soil surface and declines monotonically with depth. Sometimes, for a variety of reasons, peak density occurs below the surface but, except in severely disturbed soils, it is generally true that deeper seeds are older. In seasonally dry habitats that develop deep soil cracks during the dry season, it is possible that some seeds fall down cracks and rapidly become deeply buried. We investigated this possibility for three dominant clonal perennials (Scirpus maritimus, S. litoralis, and Juncus subulatus) in the Don??ana salt marsh, a nontidal marsh with a Mediterranean climate located in southwest Spain. Two species, which shed most of their seed during the dry season and have seeds with low buoyancy, had bimodal viable seed depth distributions, with peak densities at the surface and at 16-20 cm. A third species, which shed most seeds after soil cracks had closed and had seeds with high buoyancy, had viable seeds only in surface soil. Bimodal seed bank depth distributions may be relatively common in seasonally dry habitats with fine-textured soils, but their ecological significance has not been investigated.

  9. Label-free cell-cycle analysis by high-throughput quantitative phase time-stretch imaging flow cytometry

    NASA Astrophysics Data System (ADS)

    Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2018-02-01

    Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.

  10. Differentiation of dried sea cucumber products from different geographical areas by surface desorption atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Wu, Zhongchen; Chen, Huanwen; Wang, Weiling; Jia, Bin; Yang, Tianlin; Zhao, Zhanfeng; Ding, Jianhua; Xiao, Xuxian

    2009-10-28

    Without any sample pretreatment, mass spectral fingerprints of 486 dried sea cucumber slices were rapidly recorded in the mass range of m/z 50-800 by using surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). A set of 162 individual sea cucumbers (Apostichopus japonicus Selenka) grown up in 3 different geographical regions (Weihai: 59 individuals, 177 slices; Yantai: 53 individuals, 159 slices; Dalian: 50 individuals, 150 slices;) in north China sea were successfully differentiated according to their habitats both by Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) of the mass spectral raw data, demonstrating that DAPCI-MS is a practically convenient tool for high-throughput differentiation of sea cucumber products. It has been found that the difference between the body wall tissue and the epidermal tissue is heavily dependent on the habitats. The experimental data also show that the roughness of the sample surface contributes to the variance of the signal levels in a certain extent, but such variance does not fail the differentiation of the dried sea cucumber samples.

  11. Analysis of carbohydrates in Fusarium verticillioides using size-exclusion HPLC – DRI and direct analysis in real time ionization – time-of-flight – mass spectrometry (DART-MS)

    USDA-ARS?s Scientific Manuscript database

    Direct analysis in real time ionization – time-of-flight – mass spectrometry (DART-MS) and size-exclusion HPLC – DRI are used, respectively, to qualitatively and quantitatively determine the carbohydrates extracted from the corn rot fungus Fusarium verticillioides. In situ permethylation in the DART...

  12. Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading.

    PubMed

    Han, Xi; Ghoroi, Chinmay; Davé, Rajesh

    2013-02-14

    Motivated by our recent study showing improved flow and dissolution rate of the active pharmaceutical ingredient (API) powders (20 μm) produced via simultaneous micronization and surface modification through continuous fluid energy milling (FEM) process, the performance of blends and direct compacted tablets with high drug loading is examined. Performance of 50 μm API powders dry coated without micronization is also considered for comparison. Blends of micronized, non-micronized, dry coated or uncoated API powders at 30, 60 and 70% drug loading, are examined. The results show that the blends containing dry coated API powders, even micronized ones, have excellent flowability and high bulk density compared to the blends containing uncoated API, which are required for direct compaction. As the drug loading increases, the difference between dry coated and uncoated blends is more pronounced, as seen in the proposed bulk density-FFC phase map. Dry coating led to improved tablet compactibility profiles, corresponding with the improvements in blend compressibility. The most significant advantage is in tablet dissolution where for all drug loadings, the t(80) for the tablets with dry coated APIs was well under 5 min, indicating that this approach can produce nearly instant release direct compacted tablets at high drug loadings. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Low temperature hot air drying of potato cubes subjected to osmotic dehydration and intermittent microwave: drying kinetics, energy consumption and product quality indexes

    NASA Astrophysics Data System (ADS)

    Dehghannya, Jalal; Bozorghi, Somayyeh; Heshmati, Maryam Khakbaz

    2018-04-01

    Hot-air drying is a slow energy-extensive process. Use of intermittent microwave (IM) in hot-air (HA) drying of food products is characterized with advantages including reduced process time, energy saving, and improved final quality. In this study, the effect of IM-HA drying following an osmotic dehydration (OD) pretreatment was analyzed on qualitative and quantitative properties of the output (i.e. effective moisture diffusion coefficient (Deff), shrinkage, bulk density, rehydration and energy consumption). Temperature and airflow velocity were fixed at 40°C and 1 m/s, respectively. The process variables included sucrose solution concentration at five levels (0 or control, 10, 30, 50 and 70 w/w%), microwave output power at four levels (0 or control, 360, 600 and 900 W), and pulse ratio at four levels (1, 2, 3 and 4). Use of osmotic dehydration in combination with IM-HA drying reduced the drying time by up to about 54%. Increasing the osmotic solution concentration to 30% and using higher pulse ratios increased the Deff. The lowest shrinkage and bulk density as well as the highest rehydration belonged to the 900 W microwave power and pulse ratio of 4. The lowest energy consumption was observed when using the 900 W power level, showing 63.27% less consumption than the HA drying method.

  14. Effects of new dietary ingredients used in artificial diet for screwworm larvae (Diptera: Calliphoridae)

    USDA-ARS?s Scientific Manuscript database

    Spray-dried whole bovine blood, dry poultry egg, and a dry milk substitute are the constituents of the standard artificial diet currently used for mass rearing screwworm larvae, Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae). Due to high cost and uncertainty of the commercial supply of ...

  15. Method of low pressure and/or evaporative drying of aerogel

    DOEpatents

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1995-01-01

    A process whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4-1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO.sub.2 extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.

  16. Production of salbutamol sulfate for inhalation by high-gravity controlled antisolvent precipitation.

    PubMed

    Chiou, Herbert; Li, Li; Hu, Tingting; Chan, Hak-Kim; Chen, Jian-Feng; Yun, Jimmy

    2007-02-22

    The purpose of this study was to produce salbutamol sulfate (SS) as a model anti-asthmatic drug using high-gravity controlled precipitation (HGCP) through antisolvent crystallisation. An aqueous solution of SS was passed through a HGCP reactor with isopropanol as antisolvent to induce precipitation. Spray drying was employed to obtain dry powders. Scanning electron microscopy, X-ray powder diffraction (XRD), density measurement, thermal gravimetric analysis, and dynamic vapour sorption were carried out to characterise the powder physical properties. The aerosol performance of the powders was measured using an Aeroliser connected to a multiple stage liquid impinger operating at 60 L/min. The HGCP SS particles were elongated with 0.1 microm in width but varying length of several mum, which formed spherical agglomerates when spray dried. The particles showed the same XRD pattern and true density (1.3g/cm3) as the raw material, indicating that they belonged to the same crystalline form. However, the spray dried agglomerates had a much lower tapped density (0.1g/cm3) than the raw material (0.6g/cm3). Compared with the powder obtained by spray drying directly from an aqueous solution, the SS powders obtained from HGCP were much less hygroscopic (0.6% versus 10% water uptake at 90% RH). The in vitro aerosol performance showed a fine particle fraction FPFloaded and FPFemitted up to 54.5+/-4.9% and 71.3+/-10.0%, respectively. In conclusion, SS powder with suitable physical and aerosol properties can be obtained through antisolvent HGCP followed by spray drying.

  17. Using corneal confocal microscopy to track changes in the corneal layers of dry eye patients after autologous serum treatment.

    PubMed

    Mahelkova, Gabriela; Jirsova, Katerina; Seidler Stangova, Petra; Palos, Michalis; Vesela, Viera; Fales, Ivan; Jiraskova, Nada; Dotrelova, Dagmar

    2017-05-01

    In vivo corneal confocal microscopy allows the examination of each layer of the cornea in detail and the identification of pathological changes at the cellular level. The purpose of this study was to identify the possible effects of a three-month treatment with autologous serum eye-drops in different corneal layers of patients with severe dry eye disease using corneal confocal microscopy. Twenty-six patients with dry eye disease were included in the study. Corneal fluorescein staining was performed. The corneas of the right eyes were examined using in vivo corneal confocal microscopy before and after a three-month treatment with autologous serum drops. The densities of superficial and basal epithelial cells, Langerhans cells, the keratocytes and activated keratocytes, the density of endothelial cells and the status of the sub-basal nerve plexus fibres were evaluated. A significant decrease in corneal fluorescein staining was found after the three-month autologous serum treatment (p = 0.0006). The basal epithelial cell density decreased significantly (p = 0.001), while the density of superficial epithelial cells did not change significantly (p = 0.473) nor did the number of Langerhans cells or activated keratocytes (p = 0.223; p = 0.307, respectively). There were no differences in the other corneal cell layers or in the status of the nerve fibres. The results demonstrate the ability of corneal confocal microscopy to evaluate an improvement in the basal epithelial cell layer of the cornea after autologous serum treatment in patients with dry eye disease. More studies with longer follow-up periods are needed to elucidate the suitability of corneal confocal microscopy to follow the effect of autologous serum treatment on nerve fibres or other corneal layers in dry eye disease patients. © 2016 Optometry Australia.

  18. Relative drying times of 650 tropical woods : estimation by green moisture content, specific gravity, and green weight density

    Treesearch

    William T. Simpson; John A. Sagoe

    1991-01-01

    Many tropical species are underutilized because of their varied and frequently unknown drying properties. When handling a large number of species, harvesting and processing the species individually is impractical, and grouping species by similar drying properties is difficult. This report examines the relationship between green moisture content and specific gravity of...

  19. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration.

    PubMed

    Yao, Ye

    2016-07-01

    The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Prey fish returned to Forster's tern colonies suggest spatial and temporal differences in fish composition and availability.

    PubMed

    Peterson, Sarah H; Ackerman, Joshua T; Eagles-Smith, Collin A; Herzog, Mark P; Hartman, C Alex

    2018-01-01

    Predators sample the available prey community when foraging; thus, changes in the environment may be reflected by changes in predator diet and foraging preferences. We examined Forster's tern (Sterna forsteri) prey species over an 11-year period by sampling approximately 10,000 prey fish returned to 17 breeding colonies in south San Francisco Bay, California. We compared the species composition among repeatedly-sampled colonies (≥ 4 years), using both relative species abundance and the composition of total dry mass by species. Overall, the relative abundances of prey species at seven repeatedly-sampled tern colonies were more different than would be expected by chance, with the most notable differences in relative abundance observed between geographically distant colonies. In general, Mississippi silverside (Menidia audens) and topsmelt silverside (Atherinops affinis) comprised 42% of individuals and 40% of dry fish mass over the study period. Three-spined stickleback (Gasterosteus aculeatus) comprised the next largest proportion of prey species by individuals (19%) but not by dry mass (6%). Five additional species each contributed ≥ 4% of total individuals collected over the study period: yellowfin goby (Acanthogobius flavimanus; 10%), longjaw mudsucker (Gillichthys mirabilis; 8%), Pacific herring (Clupea pallasii; 6%), northern anchovy (Engraulis mordax; 4%), and staghorn sculpin (Leptocottus armatus; 4%). At some colonies, the relative abundance and biomass of specific prey species changed over time. In general, the abundance and dry mass of silversides increased, whereas the abundance and dry mass of three-spined stickleback and longjaw mudsucker decreased. As central place foragers, Forster's terns are limited in the distance they forage; thus, changes in the prey species returned to Forster's tern colonies suggest that the relative availability of some fish species in the environment has changed, possibly in response to alteration of the available habitat.

  1. Prey fish returned to Forster’s tern colonies suggest spatial and temporal differences in fish composition and availability

    USGS Publications Warehouse

    Peterson, Sarah; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark; Hartman, C. Alex

    2018-01-01

    Predators sample the available prey community when foraging; thus, changes in the environment may be reflected by changes in predator diet and foraging preferences. We examined Forster’s tern (Sterna forsteri) prey species over an 11-year period by sampling approximately 10,000 prey fish returned to 17 breeding colonies in south San Francisco Bay, California. We compared the species composition among repeatedly-sampled colonies (≥ 4 years), using both relative species abundance and the composition of total dry mass by species. Overall, the relative abundances of prey species at seven repeatedly-sampled tern colonies were more different than would be expected by chance, with the most notable differences in relative abundance observed between geographically distant colonies. In general, Mississippi silverside (Menidia audens) and topsmelt silverside (Atherinops affinis) comprised 42% of individuals and 40% of dry fish mass over the study period. Three-spined stickleback (Gasterosteus aculeatus) comprised the next largest proportion of prey species by individuals (19%) but not by dry mass (6%). Five additional species each contributed ≥ 4% of total individuals collected over the study period: yellowfin goby (Acanthogobius flavimanus; 10%), longjaw mudsucker (Gillichthys mirabilis; 8%), Pacific herring (Clupea pallasii; 6%), northern anchovy (Engraulis mordax; 4%), and staghorn sculpin (Leptocottus armatus; 4%). At some colonies, the relative abundance and biomass of specific prey species changed over time. In general, the abundance and dry mass of silversides increased, whereas the abundance and dry mass of three-spined stickleback and longjaw mudsucker decreased. As central place foragers, Forster’s terns are limited in the distance they forage; thus, changes in the prey species returned to Forster’s tern colonies suggest that the relative availability of some fish species in the environment has changed, possibly in response to alteration of the available habitat.

  2. Concentration, size, and density of total suspended particulates at the air exhaust of concentrated animal feeding operations.

    PubMed

    Yang, Xufei; Lee, Jongmin; Zhang, Yuanhui; Wang, Xinlei; Yang, Liangcheng

    2015-08-01

    Total suspended particulate (TSP) samples were seasonally collected at the air exhaust of 15 commercial concentrated animal feeding operations (CAFOs; including swine finishing, swine farrowing, swine gestation, laying hen, and tom turkey) in the U.S. Midwest. The measured TSP concentrations ranged from 0.38 ± 0.04 mg m⁻³ (swine gestation in summer) to 10.9 ± 3.9 mg m⁻³ (tom turkey in winter) and were significantly affected by animal species, housing facility type, feeder type (dry or wet), and season. The average particle size of collected TSP samples in terms of mass median equivalent spherical diameter ranged from 14.8 ± 0.5 µm (swine finishing in winter) to 30.5 ± 2.0 µm (tom turkey in summer) and showed a significant seasonal effect. This finding affirmed that particulate matter (PM) released from CAFOs contains a significant portion of large particles. The measured particle size distribution (PSD) and the density of deposited particles (on average 1.65 ± 0.13 g cm⁻³) were used to estimate the mass fractions of PM10 and PM2.5 (PM ≤ 10 and ≤ 2.5 μm, respectively) in the collected TSP. The results showed that the PM10 fractions ranged from 12.7 ± 5.1% (tom turkey) to 21.1 ± 3.2% (swine finishing), whereas the PM2.5 fractions ranged from 3.4 ± 1.9% (tom turkey) to 5.7 ± 3.2% (swine finishing) and were smaller than 9.0% at all visited CAFOs. This study applied a filter-based method for PSD measurement and deposited particles as a surrogate to estimate the TSP's particle density. The limitations, along with the assumptions adopted during the calculation of PM mass fractions, must be recognized when comparing the findings to other studies.

  3. Evaluating industrial drying of cellulosic feedstock for bioenergy: A systems approach

    DOE PAGES

    Sokhansanj, Shahab; Webb, Erin

    2016-01-21

    Here, a large portion of herbaceous and woody biomass must be dried following harvest. Natural field drying is possible if the weather cooperates. Mechanical drying is a certain way of reducing the moisture content of biomass. This paper presents an engineering analysis applied to drying of 10 Mg h –1 (exit mass flow) of biomass with an initial moisture content ranging from 25% to 70% (wet mass basis) down to 10% exit moisture content. The requirement for hog fuel to supply heat to the dryer increases from 0.5 dry Mg to 3.8 dry Mg h –1 with the increased initialmore » moisture of biomass. The capital cost for the entire drying system including equipment for biomass size reduction, pollution control, dryer, and biomass combustor sums up to more than 4.7 million dollars. The operating cost (electricity, labor, repair, and maintenance) minus fuel cost for the dryer alone amount to 4.05 Mg –1 of dried biomass. For 50% moisture content biomass, the cost of fuel to heat the drying air is 7.41 dollars/ dry ton of biomass for a total 11.46 dollars per dry ton at 10% moisture content. The fuel cost ranges from a low of 2.21 dollars to a high of 18.54 dollars for a biomass at an initial moisture content of 25% to 75%, respectively. This wide range in fuel cost indicates the extreme sensitivity of the drying cost to initial moisture content of biomass and to ambient air humidity and temperature and highlights the significance of field drying for a cost effective drying operation.« less

  4. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  5. Advances in drying: Volume 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mujumdar, A.S.

    1987-01-01

    Topics covered in this volume include recent thoughts in modeling of drying phenomena, use of computers in rational design of drying particulates, recent advances in drying of wood, and heat/mass transfer phenomena in drying of solids. As the readers will no doubt notice, special effort is made to ensure the truly international nature of the contents of this serial publication. As existing knowledge on drying and dryers becomes more widely and readily accessible, it is expected that more and more dryers will be designed rationally rather than built solely with the benefit of empiricism.

  6. Spray-drying nanocapsules in presence of colloidal silica as drying auxiliary agent: formulation and process variables optimization using experimental designs.

    PubMed

    Tewa-Tagne, Patrice; Degobert, Ghania; Briançon, Stéphanie; Bordes, Claire; Gauvrit, Jean-Yves; Lanteri, Pierre; Fessi, Hatem

    2007-04-01

    Spray-drying process was used for the development of dried polymeric nanocapsules. The purpose of this research was to investigate the effects of formulation and process variables on the resulting powder characteristics in order to optimize them. Experimental designs were used in order to estimate the influence of formulation parameters (nanocapsules and silica concentrations) and process variables (inlet temperature, spray-flow air, feed flow rate and drying air flow rate) on spray-dried nanocapsules when using silica as drying auxiliary agent. The interactions among the formulation parameters and process variables were also studied. Responses analyzed for computing these effects and interactions were outlet temperature, moisture content, operation yield, particles size, and particulate density. Additional qualitative responses (particles morphology, powder behavior) were also considered. Nanocapsules and silica concentrations were the main factors influencing the yield, particulate density and particle size. In addition, they were concerned for the only significant interactions occurring among two different variables. None of the studied variables had major effect on the moisture content while the interaction between nanocapsules and silica in the feed was of first interest and determinant for both the qualitative and quantitative responses. The particles morphology depended on the feed formulation but was unaffected by the process conditions. This study demonstrated that drying nanocapsules using silica as auxiliary agent by spray drying process enables the obtaining of dried micronic particle size. The optimization of the process and the formulation variables resulted in a considerable improvement of product yield while minimizing the moisture content.

  7. Ecological, biological and social dimensions of dengue vector breeding in five urban settings of Latin America: a multi-country study.

    PubMed

    Quintero, Juliana; Brochero, Helena; Manrique-Saide, Pablo; Barrera-Pérez, Mario; Basso, César; Romero, Sonnia; Caprara, Andrea; De Lima Cunha, Jane Cris; Beltrán-Ayala, Efraín; Mitchell-Foster, Kendra; Kroeger, Axel; Sommerfeld, Johannnes; Petzold, Max

    2014-01-21

    Dengue is an increasingly important public health problem in most Latin American countries and more cost-effective ways of reducing dengue vector densities to prevent transmission are in demand by vector control programs. This multi-centre study attempted to identify key factors associated with vector breeding and development as a basis for improving targeted intervention strategies. In each of 5 participant cities in Mexico, Colombia, Ecuador, Brazil and Uruguay, 20 clusters were randomly selected by grid sampling to incorporate 100 contiguous households, non-residential private buildings (businesses) and public spaces. Standardized household surveys, cluster background surveys and entomological surveys specifically targeted to obtain pupal indices for Aedes aegypti, were conducted in the dry and wet seasons. The study clusters included mainly urban low-middle class populations with satisfactory infrastructure and -except for Uruguay- favourable climatic conditions for dengue vector development. Household knowledge about dengue and "dengue mosquitoes" was widespread, mainly through mass media, but there was less awareness around interventions to reduce vector densities. Vector production (measured through pupal indices) was favoured when water containers were outdoor, uncovered, unused (even in Colombia and Ecuador where the large tanks used for household water storage and washing were predominantly productive) and -particularly during the dry season- rainwater filled. Larval infestation did not reflect productive container types. All productive container types, including those important in the dry season, were identified by pupal surveys executed during the rainy season. A number of findings are relevant for improving vector control: 1) there is a need for complementing larval surveys with occasional pupal surveys (to be conducted during the wet season) for identifying and subsequently targeting productive container types; 2) the need to raise public awareness about useful and effective interventions in productive container types specific to their area; and 3) the motivation for control services that-according to this and similar studies in Asia- dedicated, targeted vector management can make a difference in terms of reducing vector abundance.

  8. Effect of operational factors on bioregeneration of binary phenol and 4-chlorophenol-loaded granular activated carbon using PVA-immobilized biomass cryogels.

    PubMed

    Leong, Kwok-Yii; Adnan, Rohana; Lim, Poh-Eng; Ng, Si-Ling; Seng, Chye-Eng

    2017-09-01

    The effects of dry biomass density in cryogel beads, shaking speed and initial concentration ratio of phenol to 4-chlorophenol (4-CP) on the bioregeneration efficiencies of binary phenol and 4-CP-loaded granular activated carbon (GAC) for phenol and 4-CP, respectively, were investigated under the simultaneous adsorption and biodegradation approach. The results revealed higher bioregeneration efficiencies of binary-loaded GAC for phenol and 4-CP at higher dry biomass density but moderate shaking speed. The optimum dry biomass density in cryogel beads and shaking speed for use in bioregeneration were found to be 0.01 g/mL and 250 rpm, respectively. With respect to the initial phenol to 4-CP concentration ratio, the bioregeneration efficiencies were lower under increasing phenol and 4-CP initial concentrations, respectively, with the effect being more conspicuous under increasing 4-CP concentration. Higher bioregeneration efficiencies were achieved with the use of immobilized rather than suspended biomasses.

  9. Moisture Effects on the High Strain-Rate Behavior of Sand (Preprint)

    DTIC Science & Technology

    2008-04-01

    1986) used a conventional SHPB to evaluate a single short pressure pulse traveling through long specimens of 20/40 dry sand, 50/80 dry sand...constant strain-rate within the specimen. In a conventional SHPB experiment, e.g., on dry sand by Veyera (1994), the incident pulse is nearly...strain-rate of 400 s-1. The sand specimen confined in a hardened steel tube, had a dry density of 1.50 g/cm3 with moisture contents varied from 3% to 20

  10. Effect of packaging materials on shelf life and quality of banana cultivars (Musa spp.).

    PubMed

    Hailu, M; Seyoum Workneh, T; Belew, D

    2014-11-01

    This study was carried out to evaluate the effect of packaging materials on the shelf life of three banana cultivars. Four packaging materials, namely, perforated low density polyethylene bag, perforated high density polyethylene bag, dried banana leaf, teff straw and no packaging materials (control) were used with three banana cultivars, locally known as, Poyo, Giant Cavendish and Williams I. The experiment was carried out in Randomized Complete Block Design in a factorial combination with three replications. Physical parameters including weight loss, peel colour, peel thickness, pulp thickness, pulp to peel ratio, pulp firmness, pulp dry matter, decay, loss percent of marketability were assessed every 3 days. Banana remained marketable for 36 days in the high density polyethylene and low density polyethylene bags, and for 18 days in banana leaf and teff straw packaging treatments. Unpackaged fruits remained marketable for 15 days only. Fruits that were not packaged lost their weight by 24.0 % whereas fruits packaged in banana leaf and teff straw became unmarketable with final weight loss of 19.8 % and 20.9 %, respectively. Packaged fruits remained well until 36th days of storage with final weight loss of only 8.2 % and 9.20 %, respectively. Starting from green mature stage, the colour of the banana peel changed to yellow and this process was found to be fast for unpackaged fruits. Packaging maintained the peel and the pulp thickness, firmness, dry matter and pulp to peel ratio was kept lower. Decay loss for unpackaged banana fruits was16 % at the end of date 15, whereas the decay loss of fruits packaged using high density and low density polyethylene bags were 43.0 % and 41.2 %, respectively at the end of the 36th day of the experiment. It can, thus, be concluded that packaging of banana fruits in high density and low density polyethylene bags resulted in longer shelf life and improved quality of the produce followed by packaging in dried banana leaf and teff straw.

  11. Density-driven transport of gas phase chemicals in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Fen, Chiu-Shia; Sun, Yong-tai; Cheng, Yuen; Chen, Yuanchin; Yang, Whaiwan; Pan, Changtai

    2018-01-01

    Variations of gas phase density are responsible for advective and diffusive transports of organic vapors in unsaturated soils. Laboratory experiments were conducted to explore dense gas transport (sulfur hexafluoride, SF6) from different source densities through a nitrogen gas-dry soil column. Gas pressures and SF6 densities at transient state were measured along the soil column for three transport configurations (horizontal, vertically upward and vertically downward transport). These measurements and others reported in the literature were compared with simulation results obtained from two models based on different diffusion approaches: the dusty gas model (DGM) equations and a Fickian-type molar fraction-based diffusion expression. The results show that the DGM and Fickian-based models predicted similar dense gas density profiles which matched the measured data well for horizontal transport of dense gas at low to high source densities, despite the pressure variations predicted in the soil column were opposite to the measurements. The pressure evolutions predicted by both models were in trend similar to the measured ones for vertical transport of dense gas. However, differences between the dense gas densities predicted by the DGM and Fickian-based models were discernible for vertically upward transport of dense gas even at low source densities, as the DGM-based predictions matched the measured data better than the Fickian results did. For vertically downward transport, the dense gas densities predicted by both models were not greatly different from our experimental measurements, but substantially greater than the observations obtained from the literature, especially at high source densities. Further research will be necessary for exploring factors affecting downward transport of dense gas in soil columns. Use of the measured data to compute flux components of SF6 showed that the magnitudes of diffusive flux component based on the Fickian-type diffusion expressions in terms of molar concentration, molar fraction and mass density fraction gradient were almost the same. However, they were greater than the result computed with the mass fraction gradient for > 24% and the DGM-based result for more than one time. As a consequence, the DGM-based total flux of SF6 was in magnitude greatly less than the Fickian result not only for horizontal transport (diffusion-dominating) but also for vertical transport (advection and diffusion) of dense gas. Particularly, the Fickian-based total flux was more than two times in magnitude as much as the DGM result for vertically upward transport of dense gas.

  12. Bayesian modeling of the mass and density of asteroids

    NASA Astrophysics Data System (ADS)

    Dotson, Jessie L.; Mathias, Donovan

    2017-10-01

    Mass and density are two of the fundamental properties of any object. In the case of near earth asteroids, knowledge about the mass of an asteroid is essential for estimating the risk due to (potential) impact and planning possible mitigation options. The density of an asteroid can illuminate the structure of the asteroid. A low density can be indicative of a rubble pile structure whereas a higher density can imply a monolith and/or higher metal content. The damage resulting from an impact of an asteroid with Earth depends on its interior structure in addition to its total mass, and as a result, density is a key parameter to understanding the risk of asteroid impact. Unfortunately, measuring the mass and density of asteroids is challenging and often results in measurements with large uncertainties. In the absence of mass / density measurements for a specific object, understanding the range and distribution of likely values can facilitate probabilistic assessments of structure and impact risk. Hierarchical Bayesian models have recently been developed to investigate the mass - radius relationship of exoplanets (Wolfgang, Rogers & Ford 2016) and to probabilistically forecast the mass of bodies large enough to establish hydrostatic equilibrium over a range of 9 orders of magnitude in mass (from planemos to main sequence stars; Chen & Kipping 2017). Here, we extend this approach to investigate the mass and densities of asteroids. Several candidate Bayesian models are presented, and their performance is assessed relative to a synthetic asteroid population. In addition, a preliminary Bayesian model for probablistically forecasting masses and densities of asteroids is presented. The forecasting model is conditioned on existing asteroid data and includes observational errors, hyper-parameter uncertainties and intrinsic scatter.

  13. The Recent and Continuing Assembly of Field Elliptical Galaxies by Red Mergers

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter G.

    2005-12-01

    We present a study of tidal debris associated with 126 nearby red galaxies, selected from the 1.2 deg2 Multiwavelength Survey by Yale-Chile and the 9.3 deg2 NOAO Deep Wide-Field Survey. In the full sample, 67 galaxies (53%) show morphological signatures of tidal interactions consisting of broad fans of stars, tails, and other asymmetries at very faint surface brightness levels. When restricting the sample to the 86 bulge-dominated early-type galaxies, the fraction of tidally disturbed galaxies rises to 71%, which implies that for every ``normal'' undisturbed elliptical there are two that show clear signs of interactions. The tidal features are red and smooth and often extend over >50 kpc. Of the tidally distorted galaxies, about two-thirds are remnants, and one-third are interacting with a companion galaxy. The companions are usually bright red galaxies as well; the median R-band luminosity ratio of the tidal pairs is 0.31, and the median color difference after correcting for the slope of the color-magnitude relation is -0.02 in B-R. If the ongoing mergers are representative for the progenitors of the remnants, ~35% of bulge-dominated galaxies experienced a merger with mass ratio >1:4 in the recent past. With further assumptions it is estimated that the present-day mass accretion rate of galaxies on the red sequence ΔM/M=0.09+/-0.04 Gyr-1. For a constant or increasing mass accretion rate with redshift, we find that red mergers may lead to an evolution of a factor of >~2 in the stellar mass density in luminous red galaxies over the redshift range 0

  14. Seed reserve composition and mobilization during germination and early seedling establishment of Cereus jamacaru D.C. ssp. jamacaru (Cactaceae).

    PubMed

    Alencar, Nara L M; Innecco, Renato; Gomes-Filho, Enéas; Gallão, Maria Izabel; Alvarez-Pizarro, Juan C; Prisco, José T; Oliveira, Alexandre B De

    2012-09-01

    Cereus jamacaru, a Cactaceae found throughout northeast Brazil, is widely used as cattle food and as an ornamental and medicinal plant. However, there has been little information about the physiological and biochemical aspects involved in its germination. The aim of this study was to investigate its reserve mobilization during germination and early seedling growth. For this, C. jamacaru seeds were germinated in a growth chamber and collected at 0, 2, 4, 5, 6, 8 and 12 days after imbibition for morphological and biochemical analyses. Dry seeds had wrinkled seed coats and large, curved embryos. Lipids were the most abundant reserve, comprising approximately 55% and 65% of the dry mass for cotyledons and the hypocotylradicle axis, respectively. Soluble sugars and starch were the minor reserves, corresponding to approximately 2.2% of the cotyledons' dry mass, although their levels showed significant changes during germination. Soluble proteins corresponded to 40% of the cotyledons' dry mass, which was reduced by 81% at the final period of germination compared to dry seeds. C. jamacaru seed can be classified as an oil seed due to its high lipid content. Moreover, lipids were the main reserve mobilized during germination because their levels were strongly reduced after seed germination, while proteins were the second most utilized reserve in this process.

  15. Simulated drought regimes reveal community resilience and hydrological thresholds for altered decomposition.

    PubMed

    Rodríguez Pérez, Héctor; Borrel, Guillaume; Leroy, Céline; Carrias, Jean-François; Corbara, Bruno; Srivastava, Diane S; Céréghino, Régis

    2018-05-01

    Future climate scenarios forecast a 10-50% decline in rainfall in Eastern Amazonia. Altered precipitation patterns may change important ecosystem functions like decomposition through either changes in physical and chemical processes or shifts in the activity and/or composition of species. We experimentally manipulated hydroperiods (length of wet:dry cycles) in a tank bromeliad ecosystem to examine impacts on leaf litter decomposition. Gross loss of litter mass over 112 days was greatest in continuously submersed litter, lowest in continuously dry litter, and intermediate over a range of hydroperiods ranging from eight cycles of 7 wet:7 dry days to one cycle of 56 wet:56 dry days. The resilience of litter mass loss to hydroperiod length is due to a shift from biologically assisted decomposition (mostly microbial) at short wet:dry hydroperiods to physicochemical release of dissolved organic matter at longer wet:dry hydroperiods. Biologically assisted decomposition was maximized at wet:dry hydroperiods falling within the range of ambient conditions (12-22 consecutive dry days) but then declined under prolonged wet:dry hydroperiods (28 and 56 dry days. Fungal:bacterial ratios showed a similar pattern as biologically assisted decomposition to hydroperiod length. Our results suggest that microbial communities confer functional resilience to altered hydroperiod in tank bromeliad ecosystems. We predict a substantial decrease in biological activity relevant to decomposition under climate scenarios that increase consecutive dry days by 1.6- to 3.2-fold in our study area, whereas decreased frequency of dry periods will tend to increase the physicochemical component of decomposition.

  16. Why did the storm ex-Gaston (2010) fail to redevelop during the PREDICT experiment?

    NASA Astrophysics Data System (ADS)

    Freismuth, Thomas M.; Rutherford, Blake; Boothe, Mark A.; Montgomery, Michael T.

    2016-07-01

    An analysis is presented of the failed re-development of ex-Gaston during the 2010 PREDICT field campaign based on the European Centre for Medium Range Weather Forecast (ECMWF) analyses. We analyze the dynamics and kinematics of ex-Gaston to investigate the role of dry, environmental air in the failed redevelopment. The flow topology defined by the calculation of particle trajectories shows that ex-Gaston's pouch was vulnerable to dry, environmental air on all days of observations. As early as 12:00 UTC 2 September 2010, a dry layer at and above 600 hPa results in a decrease in the vertical mass flux and vertical relative vorticity. These findings support the hypothesis that entrained, dry air near 600 hPa thwarted convective updraughts and vertical mass flux, which in turn led to a reduction in vorticity and a compromised pouch at these middle levels. A compromised pouch allows further intrusion of dry air and quenching of subsequent convection, therefore hindering vorticity amplification through vortex tube stretching. This study supports recent work investigating the role of dry air in moist convection during tropical cyclogenesis.

  17. Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre-settlement and modern eras.

    Treesearch

    Paul F. Hessburg; James K. Agee; Jerry F. Franklin

    2005-01-01

    Prior to Euro-American settlement, dry ponderosa pine and mixed conifer forests (hereafter, the "dry forests") of the Inland Northwest were burned by frequent low- or mixed-severity fires. These mostly surface fires maintained low and variable tree densities, light and patchy ground fuels, simplified forest structure, and favored fire-tolerant trees, such as...

  18. Analysis of problems with dry fermentation process for biogas production

    NASA Astrophysics Data System (ADS)

    Pilát, Peter; Patsch, Marek; Jandačka, Jozef

    2012-04-01

    The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas station that allows analysis of optimal parameters of the dry anaerobic fermentation, in particular, however, affect the reaction temperature on yield and quality of biogas.

  19. Formation of Pluto's moons: the fission hypothesis revisited

    NASA Astrophysics Data System (ADS)

    Prentice, A. J.

    2015-12-01

    I re-examine the fission hypothesis for the formation of Pluto's moons within the framework of a gas ring model for the origin of the solar system (Prentice 1978 Moon Planets 19 341; 2015 LPSC, abs. 2664). It is supposed that the planetary system condensed from a concentric family of orbiting gas rings. These were cast off by the proto-solar cloud (PSC) as a means for disposing of excess spin angular momentum during gravitational contraction. If contraction is homologous, the mean orbital radii R(n) (n = 0,1,2,3,..) of the rings form a nearly geometric sequence. The temperatures T(n) of the rings scale roughly as T(n) = A/R(n) and the gas pressures p(n) on the gas ring mean orbits scale as p(n) = B/R(n)^4. The constants A & B are chosen so that (1) the geometric mean of the ratio R(n+1)/R(n) of successive gas ring radii from Jupiter to Mercury matches the observed mean ratio of planetary distances and (2) that the metal mass fraction at Mercury's orbit, namely 0.70, yields a planet whose mean density equals the observed value (Prentice 2008, LPSC abs. 1945.pdf). I assume that proto-Pluto (PPO) condensed within the n = 0 gas ring shed by the PSC at the orbit of Quaoar (43.2 AU). Here T(0) = 26.3 K and p(0) = 1.3 x 10^(-9) bar. The condensate consists of anhydrous rock (mass fraction 0.5255), graphite (0.0163), water ice (0.1858), dry ice (0.2211), and methane ice (0.0513). The RTP rock density is 3.662 g/cc. I assume that melting of the ices in the PPO took place through the decay of short-lived radioactive nuclides, causing internal segregation of rock & graphite. If rotational fission did occur and Pluto's moons formed from ejected liquid water and CO2, we get a Charon mean density of 1.24 g/cc. This is much lower than the observed value. Perhaps some of the rock and graphite became entrained in the fissioned liquid, so yielding a dense core for Charon of mass fraction ~0.4? In any event, the surfaces of all of the moons should have initially been football-shaped, very smooth and consist solely of water ice. As there is no outward migration of the major planets in the gas ring model, the risk of impact bombardment is minimal. Most likely, subsequent tidal action between Pluto and Charon produced the chasms that girdle the equator of Charon (Barr & Collins 2015). I predict that New Horizons will detect dry ice in those parts of Hydra that have been gouged by impacts.

  20. An integrated pan-tropical biomass map using multiple reference datasets.

    PubMed

    Avitabile, Valerio; Herold, Martin; Heuvelink, Gerard B M; Lewis, Simon L; Phillips, Oliver L; Asner, Gregory P; Armston, John; Ashton, Peter S; Banin, Lindsay; Bayol, Nicolas; Berry, Nicholas J; Boeckx, Pascal; de Jong, Bernardus H J; DeVries, Ben; Girardin, Cecile A J; Kearsley, Elizabeth; Lindsell, Jeremy A; Lopez-Gonzalez, Gabriela; Lucas, Richard; Malhi, Yadvinder; Morel, Alexandra; Mitchard, Edward T A; Nagy, Laszlo; Qie, Lan; Quinones, Marcela J; Ryan, Casey M; Ferry, Slik J W; Sunderland, Terry; Laurin, Gaia Vaglio; Gatti, Roberto Cazzolla; Valentini, Riccardo; Verbeeck, Hans; Wijaya, Arief; Willcock, Simon

    2016-04-01

    We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N-23.4 S) of 375 Pg dry mass, 9-18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15-21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha(-1) vs. 21 and 28 Mg ha(-1) for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets. © 2015 John Wiley & Sons Ltd.

  1. Taylor's law and body size in exploited marine ecosystems.

    PubMed

    Cohen, Joel E; Plank, Michael J; Law, Richard

    2012-12-01

    Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught.

  2. Taylor's law and body size in exploited marine ecosystems

    PubMed Central

    Cohen, Joel E; Plank, Michael J; Law, Richard

    2012-01-01

    Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught. PMID:23301181

  3. Constraining the galaxy-halo connection over the last 13.3 Gyr: star formation histories, galaxy mergers and structural properties

    NASA Astrophysics Data System (ADS)

    Rodríguez-Puebla, Aldo; Primack, Joel R.; Avila-Reese, Vladimir; Faber, S. M.

    2017-09-01

    We present new determinations of the stellar-to-halo mass relation (SHMR) at z = 0-10 that match the evolution of the galaxy stellar mass function, the star formation rate (SFR)-M* relation and the cosmic SFR. We utilize a compilation of 40 observational studies from the literature and correct them for potential biases. Using our robust determinations of halo mass assembly and the SHMR, we infer star formation histories, merger rates and structural properties for average galaxies, combining star-forming and quenched galaxies. Our main findings are as follows: (1) The halo mass M50 above which 50 per cent of galaxies are quenched coincides with sSFR/sMAR ˜ 1, where sSFR is the specific SFR and sMAR is the specific halo mass accretion rate. (2) M50 increases with redshift, presumably due to cold streams being more efficient at high redshifts, while virial shocks and active galactic nucleus feedback become more relevant at lower redshifts. (3) The ratio sSFR/sMAR has a peak value, which occurs around {M_vir}˜ 2× 10^{11} M_{⊙}. (4) The stellar mass density within 1 kpc, Σ1, is a good indicator of the galactic global sSFR. (5) Galaxies are statistically quenched after they reach a maximum in Σ1, consistent with theoretical expectations of the gas compaction model; this maximum depends on redshift. (6) In-situ star formation is responsible for most galactic stellar mass growth, especially for lower mass galaxies. (7) Galaxies grow inside-out. The marked change in the slope of the size-mass relation when galaxies became quenched, from d log {R_eff}/d log {M_*}˜ 0.35 to ˜2.5, could be the result of dry minor mergers.

  4. THE ZURICH ENVIRONMENTAL STUDY (ZENS) OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. V. PROPERTIES AND FREQUENCY OF MERGING SATELLITES AND CENTRALS IN DIFFERENT ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipino, A.; Cibinel, A.; Tacchella, S.

    2014-12-20

    We use the Zurich Environmental Study database to investigate the environmental dependence of the merger fraction Γ and merging galaxy properties in a sample of ∼1300 group galaxies with M > 10{sup 9.2} M {sub ☉} and 0.05 < z < 0.0585. In all galaxy mass bins investigated in our study, we find that Γ decreases by a factor of ∼2-3 in groups with halo masses M {sub HALO} > 10{sup 13.5} M {sub ☉} relative to less massive systems, indicating a suppression of merger activity in large potential wells. In the fiducial case of relaxed groups only, we measuremore » a variation of ΔΓ/Δlog (M {sub HALO}) ∼ –0.07 dex{sup –1}, which is almost independent of galaxy mass and merger stage. At galaxy masses >10{sup 10.2} M {sub ☉}, most mergers are dry accretions of quenched satellites onto quenched centrals, leading to a strong increase of Γ with decreasing group-centric distance at these mass scales. Both satellite and central galaxies in these high-mass mergers do not differ in color and structural properties from a control sample of nonmerging galaxies of equal mass and rank. At galaxy masses of <10{sup 10.2} M {sub ☉} where we mostly probe satellite-satellite pairs and mergers between star-forming systems close pairs (projected distance <10-20 kpc) show instead ∼2 × enhanced (specific) star formation rates and ∼1.5 × larger sizes than similar mass, nonmerging satellites. The increase in both size and star formation rate leads to similar surface star formation densities in the merging and control-sample satellite populations.« less

  5. Mass of a black hole firewall.

    PubMed

    Abramowicz, M A; Kluźniak, W; Lasota, J-P

    2014-03-07

    Quantum entanglement of Hawking radiation has been supposed to give rise to a Planck density "firewall" near the event horizon of old black holes. We show that Planck density firewalls are excluded by Einstein's equations for black holes of mass exceeding the Planck mass. We find an upper limit of 1/(8πM) to the surface density of a firewall in a Schwarzschild black hole of mass M, translating for astrophysical black holes into a firewall density smaller than the Planck density by more than 30 orders of magnitude. A strict upper limit on the firewall density is given by the Planck density times the ratio M(Pl)/(8πM).

  6. The dynamics of superclusters - Initial determination of the mass density of the universe at large scales

    NASA Technical Reports Server (NTRS)

    Ford, H. C.; Ciardullo, R.; Harms, R. J.; Bartko, F.

    1981-01-01

    The radial velocities of cluster members of two rich, large superclusters have been measured in order to probe the supercluster mass densities, and simple evolutionary models have been computed to place limits upon the mass density within each supercluster. These superclusters represent true physical associations of size of about 100 Mpc seen presently at an early stage of evolution. One supercluster is weakly bound, the other probably barely bound, but possibly marginally unbound. Gravity has noticeably slowed the Hubble expansion of both superclusters. Galaxy surface-density counts and the density enhancement of Abell clusters within each supercluster were used to derive the ratio of mass densities of the superclusters to the mean field mass density. The results strongly exclude a closed universe.

  7. Model for heat and mass transfer in freeze-drying of pellets.

    PubMed

    Trelea, Ioan Cristian; Passot, Stéphanie; Marin, Michèle; Fonseca, Fernanda

    2009-07-01

    Lyophilizing frozen pellets, and especially spray freeze-drying, have been receiving growing interest. To design efficient and safe freeze-drying cycles, local temperature and moisture content in the product bed have to be known, but both are difficult to measure in the industry. Mathematical modeling of heat and mass transfer helps to determine local freeze-drying conditions and predict effects of operation policy, and equipment and recipe changes on drying time and product quality. Representative pellets situated at different positions in the product slab were considered. One-dimensional transfer in the slab and radial transfer in the pellets were assumed. Coupled heat and vapor transfer equations between the temperature-controlled shelf, the product bulk, the sublimation front inside the pellets, and the chamber were established and solved numerically. The model was validated based on bulk temperature measurement performed at two different locations in the product slab and on partial vapor pressure measurement in the freeze-drying chamber. Fair agreement between measured and calculated values was found. In contrast, a previously developed model for compact product layer was found inadequate in describing freeze-drying of pellets. The developed model represents a good starting basis for studying freeze-drying of pellets. It has to be further improved and validated for a variety of product types and freeze-drying conditions (shelf temperature, total chamber pressure, pellet size, slab thickness, etc.). It could be used to develop freeze-drying cycles based on product quality criteria such as local moisture content and glass transition temperature.

  8. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying.

    PubMed

    Gieseler, Henning; Kessler, William J; Finson, Michael; Davis, Steven J; Mulhall, Phillip A; Bons, Vincent; Debo, David J; Pikal, Michael J

    2007-07-01

    The goal of this work was to demonstrate the use of Tunable Diode Laser Absorption Spectroscopy (TDLAS) as a noninvasive method to continuously measure the water vapor concentration and the vapor flow velocity in the spool connecting a freeze-dryer chamber and condenser. The instantaneous measurements were used to determine the water vapor mass flow rate (g/s). The mass flow determinations provided a continuous measurement of the total amount of water removed. Full load runs of pure water at different pressure and shelf temperature settings and a 5% (w/w) mannitol product run were performed in both laboratory and pilot scale freeze dryers. The ratio of "gravimetric/TDLAS" measurements of water removed was 1.02 +/- 0.06. A theoretical heat transfer model was used to predict the mass flow rate and the model results were compared to both the gravimetric and TDLAS data. Good agreement was also observed in the "gravimetric/TDLAS" ratio for the 5% mannitol runs dried in both freeze dryers. The endpoints of primary and secondary drying for the product runs were clearly identified. Comparison of the velocity and mass flux profiles between the laboratory and pilot dryers indicated a higher restriction to mass flow for the lab scale freeze dryer. Copyright 2007 Wiley-Liss, Inc.

  9. The XXL survey XV: evidence for dry merger driven BCG growth in XXL-100-GC X-ray clusters

    NASA Astrophysics Data System (ADS)

    Lavoie, S.; Willis, J. P.; Démoclès, J.; Eckert, D.; Gastaldello, F.; Smith, G. P.; Lidman, C.; Adami, C.; Pacaud, F.; Pierre, M.; Clerc, N.; Giles, P.; Lieu, M.; Chiappetti, L.; Altieri, B.; Ardila, F.; Baldry, I.; Bongiorno, A.; Desai, S.; Elyiv, A.; Faccioli, L.; Gardner, B.; Garilli, B.; Groote, M. W.; Guennou, L.; Guzzo, L.; Hopkins, A. M.; Liske, J.; McGee, S.; Melnyk, O.; Owers, M. S.; Poggianti, B.; Ponman, T. J.; Scodeggio, M.; Spitler, L.; Tuffs, R. J.

    2016-11-01

    The growth of brightest cluster galaxies (BCGs) is closely related to the properties of their host cluster. We present evidence for dry mergers as the dominant source of BCG mass growth at z ≲ 1 in the XXL 100 brightest cluster sample. We use the global red sequence, Hα emission and mean star formation history to show that BCGs in the sample possess star formation levels comparable to field ellipticals of similar stellar mass and redshift. XXL 100 brightest clusters are less massive on average than those in other X-ray selected samples such as LoCuSS or HIFLUGCS. Few clusters in the sample display high central gas concentration, rendering inefficient the growth of BCGs via star formation resulting from the accretion of cool gas. Using measures of the relaxation state of their host clusters, we show that BCGs grow as relaxation proceeds. We find that the BCG stellar mass corresponds to a relatively constant fraction 1 per cent of the total cluster mass in relaxed systems. We also show that, following a cluster scale merger event, the BCG stellar mass lags behind the expected value from the Mcluster-MBCG relation but subsequently accretes stellar mass via dry mergers as the BCG and cluster evolve towards a relaxed state.

  10. Biotransformation of Tryptamine in Fruiting Mycelia of Psilocybe cubensis.

    PubMed

    Gartz, J

    1989-06-01

    Mycelial cultures of PSILOCYBE CUBENSIS, with the ability to form psilocybin and psilocin DE-NOVO, also hydroxylated and methylated fed tryptamine to give psilocin in up to 3.3% dry mass of the obtained fruit bodies. By using HPLC and TLC, it was found that these mushrooms contain only a small amount of psilocybin (0.01-0.2% dry mass). The values of psilocin are the highest described in any mushrooms.

  11. Correlation and path analysis of biomass sorghum production.

    PubMed

    Vendruscolo, T P S; Barelli, M A A; Castrillon, M A S; da Silva, R S; de Oliveira, F T; Corrêa, C L; Zago, B W; Tardin, F D

    2016-12-23

    Sorghum biomass is an interesting raw material for bioenergy production due to its versatility, potential of being a renewable energy source, and low-cost of production. The objective of this study was to evaluate the genetic variability of biomass sorghum genotypes and to estimate genotypic, phenotypic, and environmental correlations, and direct and indirect effects of seven agronomic traits through path analysis. Thirty-four biomass sorghum genotypes and two forage sorghum genotypes were cultivated in a randomized block design with three replicates. The following morpho-agronomic traits were evaluated: flowering date, stem diameter, number of stems, plant height, number of leaves, green mass production, and dry matter production. There were significant differences at the 1% level for all traits. The highest genotypic correlation was found between the traits green mass production and dry matter production. The path analysis demonstrated that green mass production and number of leaves can assist in the selection of dry matter production.

  12. Exergetic simulation of a combined infrared-convective drying process

    NASA Astrophysics Data System (ADS)

    Aghbashlo, Mortaza

    2016-04-01

    Optimal design and performance of a combined infrared-convective drying system with respect to the energy issue is extremely put through the application of advanced engineering analyses. This article proposes a theoretical approach for exergy analysis of the combined infrared-convective drying process using a simple heat and mass transfer model. The applicability of the developed model to actual drying processes was proved using an illustrative example for a typical food.

  13. Desiccation and freezing tolerance of embryonic axes from Citrus sinensis [L.] osb. pretreated with sucrose.

    PubMed

    Santos, Izulmé R I; Stushnoff, Cecil

    2003-01-01

    Embryonic axes of Citrus sinensis L. were successfully cryopreserved. While fully hydrated unfrozen axes germinated 100%, survival decreased as axes water content dropped, and total loss of viability was observed when the water content dropped to 0.04 and 0.10 mg H2O/mg dry mass, for axes without and with sucrose preculture, respectively. Fully hydrated axes did not survive exposure to liquid nitrogen. Highest seedling recovery (93-100%) for untreated axes was observed at 0.26 to 0.15 mg H2O/mg dry mass. Differential scanning calorimetry revealed the presence of broad melting peaks in fully hydrated embryonic axes. The size of the melting peak diminished as water was removed by desiccation. Minimum melting of water was observed at the point axes survived cryopreservation. Occurrence of a glass transition upon warming was not a condition for axes to survive liquid nitrogen exposure. In untreated axes, glucose, increased with desiccation to 0.2 mg H2O/mg dry mass, and decreased as the axes were desiccated to lower water contents. Fructose and sucrose levels did not increase when untreated samples were desiccated for the same periods of time. Raffinose and stachyose levels decreased as untreated and precultured embryonic axes were desiccated. In sucrose precultured axes, sucrose and fructose levels increased when they were dehydrated, reaching maximum levels at 0.2 mg H2O/mg dry mass. Tissue glucose did not change significantly with desiccation. Raffinose and stachyose levels dropped as precultured embryonic axes were dried.

  14. A Parameterization of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Pergaud, Julien; Masson, Valéry; Malardel, Sylvie; Couvreux, Fleur

    2009-07-01

    For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy DiffusivityMass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCSARM) and conserve a realistic evolution of stratocumulus (EUROCSFIRE).

  15. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest.

    PubMed

    Cai, Zhi-Quan; Schnitzer, Stefan A; Bongers, Frans

    2009-08-01

    Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in seasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO(2) assimilation per unit mass (A(mass)), nitrogen concentration (N(mass)), and delta(13)C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO(2) assimilation per unit area (A(area)), phosphorus concentration per unit mass (P(mass)), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A(area) decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana delta(13)C increased four times more than tree delta(13)C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A(mass) than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.

  16. IRAS galaxies versus POTENT mass - Density fields, biasing, and Omega

    NASA Technical Reports Server (NTRS)

    Dekel, Avishai; Bertschinger, Edmund; Yahil, Amos; Strauss, Michael A.; Davis, Marc; Huchra, John P.

    1993-01-01

    A comparison of the galaxy density field extracted from a complete redshift survey of IRAS galaxies brighter than 1.936 Jy with the mass-density field reconstructed by the POTENT procedure from the observed peculiar velocities of 493 objects is presented. A strong correlation is found between the galaxy and mass-density fields; both feature the Great Attractor, part of the Perseus-Pisces supercluster, and the large void between them. Monte Carlo noise simulations show that the data are consistent with the hypotheses that the smoothed fluctuations of galaxy and mass densities at each point are proportional to each other with the 'biasing' factor of IRAS galaxies, b(I), and that the peculiar velocity field is related to the mass-density field as expected according to the gravitational instability theory. Under these hypotheses, the two density fields can be related by specifying b(I) and the cosmological density parameter, Omega.

  17. Method of low pressure and/or evaporative drying of aerogel

    DOEpatents

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1995-05-30

    A process is described whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4--1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO{sub 2} extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.

  18. Determination of PM mass emissions from an aircraft turbine engine using particle effective density

    NASA Astrophysics Data System (ADS)

    Durdina, L.; Brem, B. T.; Abegglen, M.; Lobo, P.; Rindlisbacher, T.; Thomson, K. A.; Smallwood, G. J.; Hagen, D. E.; Sierau, B.; Wang, J.

    2014-12-01

    Inventories of particulate matter (PM) emissions from civil aviation and air quality models need to be validated using up-to-date measurement data corrected for sampling artifacts. We compared the measured black carbon (BC) mass and the total PM mass determined from particle size distributions (PSD) and effective density for a commercial turbofan engine CFM56-7B26/3. The effective density was then used to calculate the PM mass losses in the sampling system. The effective density was determined using a differential mobility analyzer and a centrifugal particle mass analyzer, and increased from engine idle to take-off by up to 60%. The determined mass-mobility exponents ranged from 2.37 to 2.64. The mean effective density determined by weighting the effective density distributions by PM volume was within 10% of the unit density (1000 kg/m3) that is widely assumed in aircraft PM studies. We found ratios close to unity between the PM mass determined by the integrated PSD method and the real-time BC mass measurements. The integrated PSD method achieved higher precision at ultra-low PM concentrations at which current mass instruments reach their detection limit. The line loss model predicted ∼60% PM mass loss at engine idle, decreasing to ∼27% at high thrust. Replacing the effective density distributions with unit density lead to comparable estimates that were within 20% and 5% at engine idle and high thrust, respectively. These results could be used for the development of a robust method for sampling loss correction of the future PM emissions database from commercial aircraft engines.

  19. Correlation between corneal innervation and inflammation evaluated with confocal microscopy and symptomatology in patients with dry eye syndromes: a preliminary study.

    PubMed

    Tepelus, Tudor C; Chiu, Gloria B; Huang, Jianyan; Huang, Ping; Sadda, SriniVas R; Irvine, John; Lee, Olivia L

    2017-09-01

    To evaluate corneal innervation and inflammatory cell infiltration using in vivo confocal microscopy (IVCM) and to correlate these findings with subjective symptoms of dry eye, as measured by the Ocular Surface Disease Index (OSDI) in patients with non-Sjögren's (NSDE) and Sjögren's syndrome dry eyes (SSDE). Central corneal images were prospectively captured from 10 age-matched healthy control eyes, 24 eyes with clinically diagnosed NSDE and 44 eyes with clinically diagnosed SSDE, using IVCM (HRT III RCM). Density, tortuosity and reflectivity of corneal nerves, presence of inflammatory dendritic cells (DCs) and OSDI scores were evaluated. Images obtained by IVCM from 78 eyes were analyzed. The density of nerve fibers was 1562 ± 996 μm/frame in the SSDE group, 2150 ± 1015 μm/frame in the NSDE group and 2725 ± 687 μm/frame in the control group (P < 0.05, ANOVA). In comparison to the control group, the density of nerve fibers was decreased in the SSDE (P < 0.001) and the NSDE groups (P = 0.06), with increased nerve tortuosity and decreased reflectivity in both groups (both P < 0.05). The density of DCs was 71.65 ± 72.54 cells/mm 2 in the SSDE group, 40.33 ± 31.63 cells/mm 2 in the NSDE group and 27.53 ± 5.58 cells/mm 2 in the control group (P < 0.05, ANOVA). In comparison to the control group, the density of DCs was increased in the SSDE (P < 0.001) and the NSDE groups (P = 0.07). Significant correlations were found between the nerve density and DC density (r = -0.57, P < 0.001), between the nerve density and OSDI scores (r = -0.91, P < 0.001) and between the nerve reflectivity and OSDI scores (r = -0.75, P < 0.001). The corneas of eyes affected with NSDE and SSDE are characterized by alterations in corneal innervation and infiltration of inflammatory DCs. Corneal nerve density and reflectivity are correlated with severity of subjective dry eye symptoms, as measured by OSDI score.

  20. Research on acting mechanism and behavior of a gas bubble in the air dense medium fluidized bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, X.; Chen, Q.; Yang, Y.

    1996-12-31

    Coal dry beneficiation with air-dense medium fluidized bed has now been established as a high efficiency dry separation technology, it is the application of fluidization technology to the coal preparation field. The tiny particle media forms an uniform and stable fluidized bed with a density acted by airflow, which is used to separate 80{micro}m to {approximately}6mm size coal. This technology has achieved satisfied industrialization results, and attracted the expert`s attention in the field. In fluidized bed, the interaction between gas and solid was mainly decided by the existence state of heavy media particles mass (position and distance) relative velocity ofmore » gas-solid two phase, as well turbulent action. A change of vertical gas-solid fluidizing state essentially is the one of a energy transforming process. For a coal separating process with air-dense medium fluidized bed, the gas bubble, producing a turbulent and stirring action in the bed, leads to two effects. It can promote a uniform distribution of heavy media particles, and a uniform and stability of a bed density. Otherwise it will decrease effective contacts between gas-solids two phases, producing a bigger gas bubble. Therefore controlling a gas bubble size in bed should be optimized. This paper analyzes mutual movement between gas-solid, and studies the gas bubble behavior in the bed. A mechanic mode and a separating process of coal in the bed is discussed. It aims to research the coal separating mechanism with air-dense fluidized bed.« less

  1. Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.).

    PubMed

    Yıldız, Gökçen; İzli, Nazmi; Ünal, Halil; Uylaşer, Vildan

    2015-04-01

    Some physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.) were investigated. These characteristics are necessary for the design of equipments for harvesting, processing, transportation, sorting, separating and packing. The fruit length, diameter, geometric and arithmetic mean diameters, sphericity, surface area, projected areas (vertical-horizontal) and aspect ratio of goldenberries were determined as 17.52 mm, 17.31 mm, 17.33 mm, 17.38 mm, 98.9 %, 0.949 cm(2), 388.67-387.85 mm(2) and 0.988, respectively. The mass of fruit, bulk density, fruit density, porosity and fruit hardness were 3.091 g, 997.3 kg/m(3), 462.3 kg/m(3), 53.61 % and 8.01 N, respectively. The highest static coefficient of friction was observed on rubber surface, followed by stainless steel sheet, aluminum sheet, and plywood materials. The dry matter, water soluble dry matter, ash, protein, oil, carbohydrate, titratable acidity, pH, total sugar, reducing sugar, antioxidant capacity were 18.67 %, 14.17 %, 2.98 %, 1.66 %, 0.18 %, 13.86 %, 1.26 %, 6.07, 63.90 g/kg, 31.99 g/kg and 57.67 %, respectively. The fresh fruits have 145.22 mg gallic acid equivalent (GAE)/100 g total phenol content and skin colour data represented as L*, a*, b*, Chroma (C) and Hue angle (α) were 49.92, 25.11, 50.23, 56.12 and 63.48, respectively.

  2. Decomposition and nutrient release from fresh and dried pine roots under two fertilizer regimes

    Treesearch

    Kim H. Ludovici; Lance W. Kress

    2006-01-01

    Root decomposition and nutrient release are typically estimated from dried root tissues; however, it is unlikely that roots dehydrate prior to decomposing. Soil fertility and root diameter may also affect the rate of decomposition. This study monitored mass loss and nutrient concentrations of dried and fresh roots of two size classes (

  3. Rice husk ash (RHA) as a partial cement replacement in modifying peat soil properties

    NASA Astrophysics Data System (ADS)

    Daud, Nik Norsyahariati Nik; Daud, Mohd Nazrin Mohd; Muhammed, Abubakar Sadiq

    2018-02-01

    This paper describes the effect of rice husk ash (RHA) and ordinary Portland cement (OPC) as a potential binder for modifying the properties of peat soil. The amounts RHA and OPC added to the peat soil sample, as percentage of the dry soil mass were in the range of 10-15% and 15%, respectively. Observations were made for the changes in the properties of the soil such as maximum dry density (MDD), optimum moisture content (OMC) and shear strength. Scanning Electron Micrograph-Energy Dispersive X-Ray (SEM-EDX) test were also conducted to observe the microstructure of treated and untreated peat soil. The results show that the modified soil of MDD and OMC values are increased due to the increment amount of binder material. Shear strength values of modified peat showing a good result by assuming that it is relative to the formation of major reaction products such as calcium silicate hydrate (C-S-H). The presence of C-S-H formation is indicated by the results produced from microstructural analysis of peat before and after modification process. This depicts the potential usage of RHA as a partial cement replacement in peat soil which is also improving its engineering properties.

  4. The utilization of ultisol soil for horticulture crops cultivation

    NASA Astrophysics Data System (ADS)

    Sumono; Parinduri, SM; Huda, N.; Ichwan, N.

    2018-02-01

    Ultisol soil is a marginal soil commonly used for palm oil cultivation in Indonesia, its very potential for cultivation of horticulture crops. The utilization of ultisol soil can be done with adding compost with certain proportions. The research aimed to know best proportion of ultisol soil and compost, and proportion of water concentration, and its relationship with fresh and dry weight of horticulture crops . The research was divided 3 steps. The first, mixed ultisol soil and compost with certain proportion and flooding until steady. The second, watering with different concentration to soil mixture. The last, studied its relationship with fresh and dry weight of crops. The result show that physical properties and nutrient content of ultisol soil was increasing with adding compost. SC4 (70% soil and 30% compost) is the best composition to soil mixture. Watering with different concentration show that trend decreased from reference and the bulk density and porosity decreased not significantly at the significant level ∝ = 0.05. Watering affect mass of pakcoynot significantly at the significant level ∝ = 0.05. Hence, ultisol soil was a potential marginal soil to utilizing as a media for cultivating horticulture crops.

  5. Military Vision Research Program. Addendum

    DTIC Science & Technology

    2011-08-01

    keratitis, ocular cicatricial pemphigoid and dry eye syndromes. In some diseases, overproduction of mucin owing to excessive goblet cell proliferation and...cell density and mucin secretion has been observed in dry eye patients and inflammation can lead to goblet cell apoptosis; 2. A reduced goblet cell...of goblet cell mucin secretion in severe dry eye patients.3 It was therefore of interest to investigate the role of goblet cells in regulating

  6. Temporal fluctuation and reproduction of Thermocyclops decipiens (Copepoda, Cyclopoida) in an eutrophic lake of central Brazil.

    PubMed

    Padovesi-Fonseca, Claudia; de Mendonça-Galvão, Luciana; Rocha, Diogo Libânio Pereira

    2002-03-01

    Lake Paranoá is an eutrophic reservoir situated in the urban region of Brasília. This study was carried out in a fixed collection station located in the Riacho Fundo branch of the reservoir. Zooplankton samples were collected at intervals of 3-5 d at 9:00 a.m. during two months in the dry and rainy seasons for two years (dry-1996, rainy-1997, dry-1997 and rainy-1998), using a 64 microns-mesh plankton net. The most predominant species was Thermocyclops decipiens (about 50% of the total zooplankton community), which during the whole period had a high reproductive rate. The highest densities were found in the dry-1996 season (1700 ind/l for nauplii), and also fluctuated widely overtime. Nauplii stages dominated during the four periods, comprising 50-75% of the total population density. Ovigerous females peaked in the dry-1996 and rainy-1997 seasons, with 20-30% of the total females. The largest peak in egg production occurred during the dry-1996 season, and the total egg production was 2.0 x 10(3) eggs/l. Mesocyclops longisetus is a first record for Lake Paranoá. The ecological factors that determine the success of T. decipiens in eutrophic systems are related to omnivorous feeding habits and prey-predator interactions.

  7. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.

    PubMed

    Huang, Zhonghui; Scicolone, James V; Han, Xi; Davé, Rajesh N

    2015-01-30

    The improvements in the flow and packing of fine pharmaceutical powder blends due to dry coating of micronized acetaminophen (mAPAP, ∼11μm), a model poorly flowing drug, are quantified. Poor flow and packing density of fine excipients (∼20μm) allowed testing the hypothesis that dry coating of cohesive API may counteract poor flow and packing of fine pharmaceutical powder blends. Further, fine excipients could improve compaction and reduce segregation tendency. It was found that flow function coefficient (FFC) and bulk density enhancements for 10%, 30%, and 60% (w/w), API loading blends with dry coated API are significantly higher than those without coated silica. At the highest API loading, for which coarser excipients were also used as reference, the flow and packing of dry coated mAPAP blends were significantly increased regardless of the excipient particle size, exceeding those of a well compacting excipient, Avicel 102. In addition, tensile strength of tablets with fine excipients was significantly higher, indicating improved compactibility. These results show for the first time that dry coating of fine, cohesive API powder leads to significantly improved flow and packing of high API loading blends consisting of fine excipients, while achieving improved tablet compactibility, suggesting suitability for direct compaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.

    PubMed

    Hottot, A; Vessot, S; Andrieu, J

    2005-01-01

    The principal aim of this study was to evaluate the water vapour mass transfer resistance of the dried layer and the vial heat transfer coefficient values of a pharmaceutical product during the primary drying period. First, overall vial heat transfer coefficient values, Kv, were determined by a gravimetric method based on pure ice sublimation experiments. Thus, it was possible to set up a map of the total heat flux received by each vial throughout the plate surface of our pilot scale freeze-dryer. Important heterogeneities were observed for the vials placed at the plate edges and for the vials placed at the center of the plate. As well, the same gravimetric method was also used to precisely determine the influence of main lyophilization operating parameters (shelf temperature and gas total pressure) or the vial types and sizes on these overall heat transfer coefficient values. A semi-empirical relationship as a function of total gas pressure was proposed. The transient method by pressure rise analysis (PRA method) after interrupting the water vapour flow between the sublimation chamber and the condenser, previously set up and validated in our laboratory, was then extensively used with an amorphous BSA-based formulation to identify the dried layer mass transfer resistance values, Rp, the ice front temperature, and the total heat transfer coefficient values, Kv, with or without annealing treatment. It was proved that this method gave accurate and coherent data only during the first half of the sublimation period when the totality of the vials of the set was still sublimating. Thus, this rapid method allowed estimation of, on line and in situ, the sublimation front temperature and the characterization of the morphology and structure of the freeze-dried layer, all along the first part of the sublimation period. The estimated sublimation temperatures shown by the PRA model were about 2 degrees C lower than the experimental values obtained using thermocouples inserted inside the vial, in accordance with previous data given by this method for similar freeze-drying conditions. As well, by using this method we could confirm the homogenization of the dried layer porous structure by annealing treatment after the freezing step. Furthermore, frozen matrix structure analysis (mean pore diameter) using optical microscopy and mass transfer modelling of water vapour by molecular diffusion (Knudsen regime) allowed, in some cases, to predict the experimental values of this overall mass transfer resistance directly related to the freeze-dried cake permeability.

  9. Characteristics of Comminuted Forest Biomass

    Treesearch

    Jacob Sprinkle; Dana Mitchell

    2013-01-01

    Transpirational drying and in-woods production of microchips potentially improve the economic efficiency of energy production from forest-derived feedstocks, but yield materials with moisture contents, bulk densities, and particle size distributions that differ from more conventional feedstocks. Ongoing research suggests that transpirational drying reduces the moisture...

  10. Ability of near infrared spectroscopy to monitor air-dry density distribution and variation of wood

    Treesearch

    Brian K. Via; Chi-Leung So; Todd F. Shupe; Michael Stine; Leslie H. Groom

    2005-01-01

    Process control of wood density with near infrared spectroscopy (NIR) would be useful for pulp mills that need to maximize pulp yield without compromising paper strength properties. If models developed from the absorbance at wavelengths in the NIR region could provide density histograms, fiber supply personnel could monitor chip density variation as the chips enter the...

  11. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors.

    PubMed

    Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John

    2016-12-23

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor's tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor's performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful.

  12. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.

    PubMed

    Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong

    2012-02-17

    All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf(2)]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g(-1) at a current density of 2 A g(-1), when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg(-1) and 41 Wh kg(-1), respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.

  13. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes

    NASA Astrophysics Data System (ADS)

    Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong

    2012-02-01

    All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf2]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g-1 at a current density of 2 A g-1, when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg-1 and 41 Wh kg-1, respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.

  14. Application of Glass Fiber Waste Polypropylene Aggregate in Lightweight Concrete – thermal properties

    NASA Astrophysics Data System (ADS)

    Citek, D.; Rehacek, S.; Pavlik, Z.; Kolisko, J.; Dobias, D.; Pavlikova, M.

    2018-03-01

    Actual paper focus on thermal properties of a sustainable lightweight concrete incorporating high volume of waste polypropylene aggregate as partial substitution of natural aggregate. In presented experiments a glass fiber reinforced polypropylene (GFPP) which is a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40 and 50 mass %. Results were compared with a reference concrete mix without plastic waste in order to quantify the effect of GFPP use on concrete properties. Main material physical parameters were studied (bulk density, matrix density without air content, and particle size distribution). Especially a thermal transport and storage properties of GFPP were examined in dependence on compaction time. For the developed lightweight concrete, thermal properties were accessed using transient impulse technique, where the measurement was done in dependence on moisture content (from the fully water saturated state to dry state). It was found that the tested lightweight concrete should be prospective construction material possessing improved thermal insulation function and the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view.

  15. Application of N-Doped Three-Dimensional Reduced Graphene Oxide Aerogel to Thin Film Loudspeaker.

    PubMed

    Kim, Choong Sun; Lee, Kyung Eun; Lee, Jung-Min; Kim, Sang Ouk; Cho, Byung Jin; Choi, Jung-Woo

    2016-08-31

    We built a thermoacoustic loudspeaker employing N-doped three-dimensional reduced graphene oxide aerogel (N-rGOA) based on a simple template-free fabrication method. A two-step fabrication process, which includes freeze-drying and reduction/doping, was used to realize a three-dimensional, freestanding, and porous graphene-based loudspeaker, whose macroscopic structure can be easily modulated. The simplified fabrication process also allows the control of structural properties of the N-rGOAs, including density and area. Taking advantage of the facile fabrication process, we fabricated and analyzed thermoacoustic loudspeakers with different structural properties. The anlayses showed that a N-rGOA with lower density and larger area can produce a higher sound pressure level (SPL). Furthermore, the resistance of the proposed loudspeaker can be easily controlled through heteroatom doping, thereby helping to generate higher SPL per unit driving voltage. Our success in constructing an array of optimized N-rGOAs able to withstand input power as high as 40 W demonstrates that a practical thermoacoustic loudspeaker can be fabricated using the proposed mass-producible solution-based process.

  16. Nano-liposomal dry powder inhaler of tacrolimus: preparation, characterization, and pulmonary pharmacokinetics.

    PubMed

    Chougule, Mahavir; Padhi, Bijay; Misra, Ambikanandan

    2007-01-01

    The studies were undertaken to evaluate feasibility of pulmonary delivery of liposomaly encapsulated tacrolimus dry powder inhaler for prolonged drug retention in lungs as rescue therapy to prevent refractory rejection of lungs after transplantation. Tacrolimus encapsulated liposomes were prepared by thin film evaporation technique and liposomal dispersion was passed through high pressure homogenizer. Tacrolimus nano-liposomes (NLs) were separated by centrifugation and characterized. NLs were dispersed in phosphate buffer saline (PBS) pH 7.4 containing different additives like lactose, sucrose, and trehalose, and L-leucine as antiadherent. The dispersion was spray dried and spray dried powders were characterized. In vitro and in vivo pulmonary deposition was performed using Andersen Cascade Impactor and intratracheal instillation in rats respectively. NLs were found to have average size of 140 nm, 96% +/- 1.5% drug entrapment, and zeta potential of 1.107 mV. Trehalose based formulation was found to have low density, good flowability, particle size of 9.46 +/- 0.8 microm, maximum fine particle fraction (FPF) of 71.1 +/- 2.5%, mean mass aerodynamic diameter (MMAD) 2.2 +/- 0.1 microm, and geometric standard deviation (GSD) 1.7 +/- 0.2. Developed formulations were found to have in vitro prolonged drug release up to 18 hours, following Higuchi's Controlled Release model. In vivo studies revealed maximal residence of tacrolimus within lungs of 24 hours, suggesting slow clearance from the lungs. The investigation provides a practical approach for direct delivery of tacrolimus encapsulated in NLs for controlled and prolonged retention at the site of action. It may play a promising role as rescue therapy in reducing the risk of acute rejection and chronic rejection.

  17. Nano-liposomal dry powder inhaler of tacrolimus: Preparation, characterization, and pulmonary pharmacokinetics

    PubMed Central

    Chougule, Mahavir; Padhi, Bijay; Misra, Ambikanandan

    2007-01-01

    The studies were undertaken to evaluate feasibility of pulmonary delivery of liposomaly encapsulated tacrolimus dry powder inhaler for prolonged drug retention in lungs as rescue therapy to prevent refractory rejection of lungs after transplantation. Tacrolimus encapsulated liposomes were prepared by thin film evaporation technique and liposomal dispersion was passed through high pressure homogenizer. Tacrolimus nano-liposomes (NLs) were separated by centrifugation and characterized. NLs were dispersed in phosphate buffer saline (PBS) pH 7.4 containing different additives like lactose, sucrose, and trehalose, and L-leucine as antiadherent. The dispersion was spray dried and spray dried powders were characterized. In vitro and in vivo pulmonary deposition was performed using Andersen Cascade Impactor and intratracheal instillation in rats respectively. NLs were found to have average size of 140 nm, 96% ± 1.5% drug entrapment, and zeta potential of 1.107 mV. Trehalose based formulation was found to have low density, good flowability, particle size of 9.46 ± 0.8 μm, maximum fine particle fraction (FPF) of 71.1 ± 2.5%, mean mass aerodynamic diameter (MMAD) 2.2 ± 0.1 μm, and geometric standard deviation (GSD) 1.7 ± 0.2. Developed formulations were found to have in vitro prolonged drug release up to 18 hours, following Higuchi’s Controlled Release model. In vivo studies revealed maximal residence of tacrolimus within lungs of 24 hours, suggesting slow clearance from the lungs. The investigation provides a practical approach for direct delivery of tacrolimus encapsulated in NLs for controlled and prolonged retention at the site of action. It may play a promising role as rescue therapy in reducing the risk of acute rejection and chronic rejection. PMID:18203434

  18. Larval Competition Reduces Body Condition in the Female Seed Beetle, Callosobruchus maculatus

    PubMed Central

    Schade, Daynika J.; Vamosi, Steven M.

    2012-01-01

    Early body condition may be important for adult behavior and fitness, and is impacted by a number of environmental conditions and biotic interactions. Reduced fecundity of adult females exposed to larval competition may be caused by reduced body condition or shifts in relative body composition, yet these mechanisms have not been well researched. Here, body mass, body size, scaled body mass index, and two body components (water content and lean dry mass) of adult Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae: Bruchinae) females exposed to larval competition or reared alone were examined. Experimental females emerged at significantly smaller body mass and body size than control females. Additionally, scaled body mass index and water content, but not lean dry mass, were significantly reduced in experimental females. To our knowledge, these are the first results that demonstrate a potential mechanism for previously documented direct effects of competition on fecundity in female bruchine beetles. PMID:22954282

  19. Larval competition reduces body condition in the female seed beetle, Callosobruchus maculatus.

    PubMed

    Schade, Daynika J; Vamosi, Steven M

    2012-01-01

    Early body condition may be important for adult behavior and fitness, and is impacted by a number of environmental conditions and biotic interactions. Reduced fecundity of adult females exposed to larval competition may be caused by reduced body condition or shifts in relative body composition, yet these mechanisms have not been well researched. Here, body mass, body size, scaled body mass index, and two body components (water content and lean dry mass) of adult Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae: Bruchinae) females exposed to larval competition or reared alone were examined. Experimental females emerged at significantly smaller body mass and body size than control females. Additionally, scaled body mass index and water content, but not lean dry mass, were significantly reduced in experimental females. To our knowledge, these are the first results that demonstrate a potential mechanism for previously documented direct effects of competition on fecundity in female bruchine beetles.

  20. Contact drying: a review of experimental and mechanistic modeling approaches.

    PubMed

    Sahni, Ekneet Kaur; Chaudhuri, Bodhisattwa

    2012-09-15

    Drying is one of the most complex unit operations with simultaneous heat and mass transfer. The contact drying process is also not well understood as several physical phenomena occur concurrently. This paper reviews current experimental and modeling approaches employed towards a better understanding of the contact drying operation. Additionally, an overview of some fundamental aspects relating to contact drying is provided. A brief discussion of some model extensions such as incorporation of noncontact forces, interstitial fluids and attrition rate is also presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Photon number density operator

    NASA Astrophysics Data System (ADS)

    Melde, Thomas

    Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or buckypapers. This novel technique could construct CNT films with reproducible properties, which also had the potential to be scale-up for industrial mass production. Based on the microcombing approach, dispersion issue of the long, straight, and highly aligned CNTs was investigated by adding PVA matrix into the microcombed CNT sheets. It was found although microcombing promoted the formation of agglomerated strands of the long, straight, and aligned CNTs, this was not an adverse problem in impairing the composite performance. When matrix was added, those agglomerated strands were wrapped together which maintained a more stable and better contact between nanotubes than those in the dry films. The as-produced CNT/PVA composite films exhibit an electrical conductivity of 1.84x105 S/m, Young's modulus of 119 GPa, tensile strength of 2.9 GPa, and toughness of 52.4 J/cm3, which represent improvements over those of uncombed samples by 300%, 100%, 120%, and 200%, respectively, demonstrating the effectiveness and reliability of microcombing in producing high-performance CNT/polymer composite films.

  2. Corecovery of lipids and fermentable sugars from Rhodosporidium toruloides using ionic liquid cosolvents: application of recycle to batch fermentation.

    PubMed

    Severa, Godwin; Kumar, Guneet; Cooney, Michael J

    2014-01-01

    This work evaluates the ability of an ionic liquid-methanol cosolvent system to extract lipids and recycle fermentable sugars recovered from oil-bearing Rhodosporidium toruloides grown in batch culture on defined media using glucose and xylose as carbon sources. Growth on the recycled mixed carbon substrate was successful with glucose consumed before xylose and overall cell mass to lipid yields (YP/X ) between 57% and 61% (w/w relative to whole dried cell mass) achieved. Enzymatic hydrolysis of the delipified carbohydrate fraction recovered approximately 9%-11% (w/w) of the whole dried cell mass as fermentable sugars, which were successfully recycled as carbon sources without further purification. In total, up to 70% (w/w) of the whole dried cell mass was recovered as lipids and fermentable sugars and the substrate to lipid yields (YP/S ) was increased from 0.12 to 0.16 g lipid/g carbohydrate consumed, highlighting the promise of this approach to process lipid bearing cell biomass. © 2014 American Institute of Chemical Engineers.

  3. Use of a non-linear method for including the mass uncertainty of gravimetric standards and system measurement errors in the fitting of calibration curves for XRFA freeze-dried UNO/sub 3/ standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickles, W.L.; McClure, J.W.; Howell, R.H.

    1978-05-01

    A sophisticated nonlinear multiparameter fitting program was used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantities withmore » a known error. Error estimates for the calibration curve parameters can be obtained from the curvature of the ''Chi-Squared Matrix'' or from error relaxation techniques. It was shown that nondispersive XRFA of 0.1 to 1 mg freeze-dried UNO/sub 3/ can have an accuracy of 0.2% in 1000 s.« less

  4. Flow and active mixing have a strong impact on bacterial growth dynamics in the proximal large intestine

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Yang, Chih-Yu; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    2016-11-01

    More than half of fecal dry weight is bacterial mass with bacterial densities reaching up to 1012 cells per gram. Mostly, these bacteria grow in the proximal large intestine where lateral flow along the intestine is strong: flow can in principal lead to a washout of bacteria from the proximal large intestine. Active mixing by contractions of the intestinal wall together with bacterial growth might counteract such a washout and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate contractions. We investigate growth along the channel under a steady nutrient inflow. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term. Based on this model, we discuss bacterial growth dynamics in the human large intestine using flow- and mixing-behavior having been observed for humans.

  5. Direct current plasma jet at atmospheric pressure operating in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Deng, X. L.; Nikiforov, A. Yu.; Vanraes, P.; Leys, Ch.

    2013-01-01

    An atmospheric pressure direct current (DC) plasma jet is investigated in N2 and dry air in terms of plasma properties and generation of active species in the active zone and the afterglow. The influence of working gases and the discharge current on plasma parameters and afterglow properties are studied. The electrical diagnostics show that discharge can be sustained in two different operating modes, depending on the current range: a self-pulsing regime at low current and a glow regime at high current. The gas temperature and the N2 vibrational temperature in the active zone of the jet and in the afterglow are determined by means of emission spectroscopy, based on fitting spectra of N2 second positive system (C3Π-B3Π) and the Boltzmann plot method, respectively. The spectra and temperature differences between the N2 and the air plasma jet are presented and analyzed. Space-resolved ozone and nitric oxide density measurements are carried out in the afterglow of the jet. The density of ozone, which is formed in the afterglow of nitrogen plasma jet, is quantitatively detected by an ozone monitor. The density of nitric oxide, which is generated only in the air plasma jet, is determined by means of mass-spectroscopy techniques.

  6. Impact of low skeletal muscle mass and density on short and long-term outcome after resection of stage I-III colorectal cancer.

    PubMed

    van Vugt, Jeroen L A; Coebergh van den Braak, Robert R J; Lalmahomed, Zarina S; Vrijland, Wietske W; Dekker, Jan W T; Zimmerman, David D E; Vles, Wouter J; Coene, Peter-Paul L O; IJzermans, Jan N M

    2018-06-06

    Preoperative low skeletal muscle mass and density are associated with increased postoperative morbidity in patients undergoing curative colorectal cancer (CRC) surgery. However, the long-term effects of low skeletal muscle mass and density remain uncertain. Patients with stage I-III CRC undergoing surgery, enrolled in a prospective observational cohort study, were included. Skeletal muscle mass and density were measured on CT. Patients with high and low skeletal muscle mass and density were compared regarding postoperative complications, disease-free survival (DFS), overall survival (OS), and cancer-specific survival (CSS). In total, 816 patients (53.9% males, median age 70) were included; 50.4% had low skeletal muscle mass and 64.1% low density. The severe postoperative complication rate was significantly higher in patients with low versus high skeletal muscle and density (20.9% versus 13.6%, p = 0.006; 20.0% versus 11.8%, p = 0.003). Low skeletal muscle mass (OR 1.91, p = 0.018) and density (OR 1.87, p = 0.045) were independently associated with severe postoperative complications. Ninety-day mortality was higher in patients with low skeletal muscle mass and density compared with patients with high skeletal muscle mass and density (3.6% versus 1.7%, p = 0.091; 3.4% versus 1.0%, p = 0.038). No differences in DFS were observed. After adjustment for covariates such as age and comorbidity, univariate differences in OS and CSS diminished. Low skeletal muscle mass and density are associated with short-term, but not long-term, outcome in patients undergoing CRC surgery. These findings recommend putting more emphasis on preoperative management of patients at risk for surgical complications, but do not support benefit for long-term outcome. Copyright © 2018 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  7. Interactions of an insecticide, herbicide, and natural stressors in amphibian community mesocosms

    USGS Publications Warehouse

    Boone, M.D.; James, S.M.

    2003-01-01

    Amphibians developing in wetlands embedded within or near agricultural lands may frequently encounter chemical mixtures. The objectives of our study were to determine the effects that post-application concentrations of an insecticide (carbaryl) and an herbicide (atrazine) have on body mass, development, and survival of two anuran species (southern leopard frog, Rana sphenocephala; American toad, Bufo americanus) and two caudate species (spotted salamander, Ambystoma maculatum; small-mouthed salamander, A. texanum) reared in outdoor cattle tank mesocosms. In one experiment, we manipulated tadpole density (low or high), carbaryl exposure (0, 3.5, 7.0 mg/L), and atrazine exposure (0 or 200 μg/L) to test for effects on development, mass, and survival of larvae. In a second experiment, we manipulated pond hydroperiod (constant or drying), carbaryl exposure (0 or 5 mg/L), and atrazine exposure (0 or 200 μg/L) to test for effects on mass, time, and survival to metamorphosis. Salamanders were virtually eliminated in carbaryl treatments, indicating that at realistic levels, this insecticide could cause population declines for salamanders in contaminated habitats. Carbaryl also had negative effects on toad survival. Exposure to atrazine had negative effects on body size, development, and time to metamorphosis in anuran species, which were associated with reduced chlorophyll levels. Both chemicals interacted significantly with density or hydroperiod, indicating that the environmental conditions could influence the impact of a contaminant. A significant atrazine-by-carbaryl interaction resulted in smaller and less developed spotted salamander larvae than in control ponds. Atrazine exposure, however, appeared to moderate negative effects of carbaryl for spotted salamanders. Our research suggests that important changes in the community's food web result from chemical exposure, which influence the susceptibility of amphibian species to contaminants.

  8. Soil organic carbon sequestration potential of conservation vs. conventional tillage

    NASA Astrophysics Data System (ADS)

    Meurer, Katharina H. E.; Ghafoor, Abdul; Haddaway, Neal R.; Bolinder, Martin A.; Kätterer, Thomas

    2017-04-01

    Soil tillage has been associated with many negative impacts on soil quality, especially a reduction in soil organic carbon (SOC). The benefits of no tillage (NT) on topsoil SOC concentrations have been demonstrated in several reviews, but the effect of reduced tillage (RT) compared to conventional tillage (CT) that usually involves soil inversion through moldboard ploughing is still unclear. Moreover, the effect of tillage on total SOC stocks including deeper layers is still a matter of considerable debate, because the assessment depends on many factors such as depth and method of measurement, cropping systems, soil type, climatic conditions, and length of the experiments used for the analysis. From a recently published systematic map database consisting of 735 long-term field experiments (≥ 10 years) within the boreal and temperate climate zones (Haddaway et al. 2015; Environmental Evidence 4:23), we selected all tillage studies (about 80) reporting SOC concentrations along with dry soil bulk density and conducted a systematic review. SOC stocks were calculated considering both fixed soil depths and by using the concept of equivalent soil mass. A meta-analysis was used to determine the influence of environmental, management, and soil-related factors regarding their prediction potential on SOC stock changes between the tillage categories NT, RT, and CT. C concentrations and stocks to a certain depth were generally highest under NT, intermediate under RT, and lowest under CT. However, this effect was mainly limited to the first 15 cm and disappeared or was even reversed in deeper layers, especially when adjusting soil depth according to the equivalent soil mineral mass. Our study highlights the impact of tillage-induced changes in soil bulk density between treatments and shows that neglecting the principles of equivalent soil mass leads to overestimation of SOC stocks for by conservation tillage practices.

  9. Parasitism alters three power laws of scaling in a metazoan community: Taylor’s law, density-mass allometry, and variance-mass allometry

    PubMed Central

    Lagrue, Clément; Poulin, Robert; Cohen, Joel E.

    2015-01-01

    How do the lifestyles (free-living unparasitized, free-living parasitized, and parasitic) of animal species affect major ecological power-law relationships? We investigated this question in metazoan communities in lakes of Otago, New Zealand. In 13,752 samples comprising 1,037,058 organisms, we found that species of different lifestyles differed in taxonomic distribution and body mass and were well described by three power laws: a spatial Taylor’s law (the spatial variance in population density was a power-law function of the spatial mean population density); density-mass allometry (the spatial mean population density was a power-law function of mean body mass); and variance-mass allometry (the spatial variance in population density was a power-law function of mean body mass). To our knowledge, this constitutes the first empirical confirmation of variance-mass allometry for any animal community. We found that the parameter values of all three relationships differed for species with different lifestyles in the same communities. Taylor's law and density-mass allometry accurately predicted the form and parameter values of variance-mass allometry. We conclude that species of different lifestyles in these metazoan communities obeyed the same major ecological power-law relationships but did so with parameters specific to each lifestyle, probably reflecting differences among lifestyles in population dynamics and spatial distribution. PMID:25550506

  10. Parasitism alters three power laws of scaling in a metazoan community: Taylor's law, density-mass allometry, and variance-mass allometry.

    PubMed

    Lagrue, Clément; Poulin, Robert; Cohen, Joel E

    2015-02-10

    How do the lifestyles (free-living unparasitized, free-living parasitized, and parasitic) of animal species affect major ecological power-law relationships? We investigated this question in metazoan communities in lakes of Otago, New Zealand. In 13,752 samples comprising 1,037,058 organisms, we found that species of different lifestyles differed in taxonomic distribution and body mass and were well described by three power laws: a spatial Taylor's law (the spatial variance in population density was a power-law function of the spatial mean population density); density-mass allometry (the spatial mean population density was a power-law function of mean body mass); and variance-mass allometry (the spatial variance in population density was a power-law function of mean body mass). To our knowledge, this constitutes the first empirical confirmation of variance-mass allometry for any animal community. We found that the parameter values of all three relationships differed for species with different lifestyles in the same communities. Taylor's law and density-mass allometry accurately predicted the form and parameter values of variance-mass allometry. We conclude that species of different lifestyles in these metazoan communities obeyed the same major ecological power-law relationships but did so with parameters specific to each lifestyle, probably reflecting differences among lifestyles in population dynamics and spatial distribution.

  11. The use of sensory attributes, sugar content, instrumental data and consumer acceptability in selection of sweet potato varieties.

    PubMed

    Laurie, Sunette M; Faber, Mieke; Calitz, Frikkie J; Moelich, Erika I; Muller, Nina; Labuschagne, Maryke T

    2013-05-01

    As eating quality is important for adoption of new varieties, nine orange-fleshed and three cream-fleshed sweet potato varieties were assessed for sensory characteristics, dry mass and free sugar content, instrumental texture and colour and consumer acceptability (n =  216) in a peri-urban South African setting. Cream-fleshed varieties were higher in yellow-green colour and sweet potato-like flavour and lower in graininess. Orange-fleshed varieties were higher in pumpkin-like flavour, orange colour, discolouration and sucrose content. Partial least squares regression analysis showed that the most accepted varieties (Impilo, Excel, Resisto, 2001_5_2, Serolane, W-119 and Monate) were associated with sweet flavour, dry mass and maltose content, while the least accepted varieties (Beauregard, Khano and 1999_1_7) were associated with wateriness. Pearson correlation analysis highlighted correlations of sensory attributes yellow and orange with instrumental colour measurements (colour a* and colour b*), instrumental firmness with sensory firmness, dry mass with sensory wateriness, and maltose content with sensory sweet and sweet potato-like flavour. The varieties were clustered into three groups. Consumer acceptability for eating quality correlated with maltose content, dry mass and sweet flavour. Chemical and instrumental measurements were identified to evaluate key attributes and will be useful in the intermediate phases of sweet potato varietal development. © 2012 Society of Chemical Industry.

  12. Overmassive black holes in the MBH-σ diagram do not belong to over (dry) merged galaxies

    NASA Astrophysics Data System (ADS)

    Savorgnan, Giulia A. D.; Graham, Alister W.

    2015-01-01

    Semi-analytical models in a Λ cold dark matter cosmology have predicted the presence of outlying, `overmassive' black holes at the high-mass end of the (black hole mass-galaxy velocity dispersion) MBH-σ diagram (which we update here with a sample of 89 galaxies). They are a consequence of having experienced more dry mergers - thought not to increase a galaxy's velocity dispersion - than the `main-sequence' population. Wet mergers and gas-rich processes, on the other hand, preserve the main correlation. Due to the scouring action of binary supermassive black holes, the extent of these dry mergers (since the last significant wet merger) can be traced by the ratio between the central stellar mass deficit and the black hole mass (Mdef,*/MBH). However, in a sample of 23 galaxies with partially depleted cores, including central cluster galaxies, we show that the `overmassive' black holes are actually hosted by galaxies that appear to have undergone the lowest degree of such merging. In addition, the rotational kinematics of 37 galaxies in the MBH-σ diagram reveals that fast and slow rotators are not significantly offset from each other, also contrary to what is expected if these two populations were the product of wet and dry mergers, respectively. The observations are thus not in accordance with model predictions and further investigation is required.

  13. Gravitational lens effects of a cosmological density of compact objects

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.

    1983-01-01

    Amplification of quasar light by a cosmological density of compact objects causes significant effects on many quasars in magnitude-limited samples. For lens masses solar mass less than 100,000 solar mass the continuum would be amplified by a magnitude or more but the line emission would not. Examination of the UV selected sample of Marshall et al. (1983) gives limits to more than 90 percent statistical confidence of Omega(c) less than 0.1 for a mass between 200 and 100,000 solar mass, where Omega(c) is the mean density of objects of mass M relative to the closure density. Preliminary results from an X-ray selected sample may probe to more than 0.1 solar mass and give a value for Omega(c) of less than one. These limits indicate that the remnants of an early population of massive stars cannot make a cosmologically significant contribution to the mass density of the universe. On a separate topic, recent work on the enhanced surface density of quasars near galaxies due to lensing by stars in the galaxy halos is reviewed.

  14. Density test study.

    DOT National Transportation Integrated Search

    1984-01-01

    This report presents the results of an investigation of the comparison of percent density determinations between dry, 4 in. square sawed samples and 4 in. wet cores measured in both the field and the lab. Recommendations are given concerning the rela...

  15. Effects of biochars on hydraulic properties of clayey soil

    NASA Astrophysics Data System (ADS)

    Zhen, Jingbo; Palladino, Mario; Lazarovitch, Naftali; Bonanomi, Giuliano; Battista Chirico, Giovanni

    2017-04-01

    Biochar has gained popularity as an amendment to improve soil hydraulic properties. Since biochar properties depend on feedstocks and pyrolysis temperatures used for its production, proper selection of biochar type as soil amendment is of great importance for soil hydraulic properties improvement. This study investigated the effects of eight types of biochar on physical and hydraulic properties of clayey soil. Biochars were derived from four different feedstocks (Alfalfa hay, municipal organic waste, corn residues and wood chip) pyrolyzed at two different temperatures (300 and 550 °C). Clayey soil samples were taken from Leone farm (40° 26' 15.31" N, 14° 59' 45.54" E), Italy, and were oven-dried at 105 °C to determine dry bulk density. Biochars were mixed with the clayey soil at 5% by mass. Bulk densities of the mixtures were also determined. Saturated hydraulic conductivities (Ks) of the original clayey soil and corresponding mixtures were measured by means of falling-head method. Soil water retention measurements were conducted for clayey soil and mixtures using suction table apparatus and Richards' plate with the pressure head (h) up to 12000 cm. van Genuchten retention function was selected to evaluate the retention characteristics of clayey soil and mixtures. Available water content (AWC) was calculated by field capacity (h = - 500 cm) minus wilting pointing (h = -12000 cm). The results showed that biochar addition decreased the bulk density of clayey soil. The Ks of clayey soil increased due to the incorporation of biochars except for waste and corn biochars pyrolyzed at 550 °C. AWC of soils mixed with corn biochar pyrolyzed at 300 °C and wood biochar pyrolyzed at 550 °C, increased by 31% and 7%, respectively. Further analysis will be conducted in combination of biochar properties such as specific surface area and total pore volume. Better understanding of biochar impact on clayey soil will be helpful in biochar selection for soil amendment and improving water use efficiency in agriculture.

  16. Effects of the hippopotamus on the chemistry and ecology of a changing watershed.

    PubMed

    Stears, Keenan; McCauley, Douglas J; Finlay, Jacques C; Mpemba, James; Warrington, Ian T; Mutayoba, Benezeth M; Power, Mary E; Dawson, Todd E; Brashares, Justin S

    2018-05-29

    Cross-boundary transfers of nutrients can profoundly shape the ecology of recipient systems. The common hippopotamus, Hippopotamus amphibius , is a significant vector of such subsidies from terrestrial to river ecosystems. We compared river pools with high and low densities of H. amphibius to determine how H. amphibius subsidies shape the chemistry and ecology of aquatic communities. Our study watershed, like many in sub-Saharan Africa, has been severely impacted by anthropogenic water abstraction reducing dry-season flow to zero. We conducted observations for multiple years over wet and dry seasons to identify how hydrological variability influences the impacts of H. amphibius During the wet season, when the river was flowing, we detected no differences in water chemistry and nutrient parameters between pools with high and low densities of H. amphibius Likewise, the diversity and abundance of fish and aquatic insect communities were indistinguishable. During the dry season, however, high-density H. amphibiu s pools differed drastically in almost all measured attributes of water chemistry and exhibited depressed fish and insect diversity and fish abundance compared with low-density H. amphibius pools. Scaled up to the entire watershed, we estimate that H. amphibius in this hydrologically altered watershed reduces dry-season fish abundance and indices of gamma-level diversity by 41% and 16%, respectively, but appears to promote aquatic invertebrate diversity. Widespread human-driven shifts in hydrology appear to redefine the role of H. amphibius , altering their influence on ecosystem diversity and functioning in a fashion that may be more severe than presently appreciated.

  17. CFD simulation of a dry scroll vacuum pump with clearances, solid heating and thermal deformation

    NASA Astrophysics Data System (ADS)

    Spille-Kohoff, A.; Hesse, J.; Andres, R.; Hetze, F.

    2017-08-01

    Although dry scroll vacuum pumps (DSPV) are essential devices in many different industrial processes, the CFD simulation of such pumps is not widely used and often restricted to simplified cases due to its complexity: The working principle with a fixed and an orbiting scroll leads to working chambers that are changing in time and are connected through moving small radial and axial clearances in the range of 10 to 100 μm. Due to the low densities and low mass flow rates in vacuum pumps, it is important to include heat transfer towards and inside the solid components. Solid heating is very slow compared to the scroll revolution speed and the gas behaviour, thus a special workflow is necessary to reach the working conditions in reasonable simulation times. The resulting solid temperature is then used to compute the thermal deformation, which usually results in gap size changes that influence leakage flows. In this paper, setup steps and results for the simulation of a DSVP are shown and compared to theoretical and experimental results. The time-varying working chambers are meshed with TwinMesh, a hexahedral meshing programme for positive displacement machines. The CFD simulation with ANSYS CFX accounts for gas flow with compressibility and turbulence effects, conjugate heat transfer between gas and solids, and leakage flows through the clearances. Time-resolved results for torques, chamber pressure, mass flow, and heat flow between gas and solids are shown, as well as time- and space-resolved results for pressure, velocity, and temperature for different operating conditions of the DSVP.

  18. Shifts in microbial community structure and function in stream sediments during experimentally simulated riparian succession.

    PubMed

    Frossard, Aline; Gerull, Linda; Mutz, Michael; Gessner, Mark O

    2013-05-01

    Successional changes of terrestrial vegetation can profoundly influence stream ecosystem structure and function. We hypothesized that microbial enzyme production and community structure in stream beds depend on terrestrial litter inputs that reflect different stages of riparian succession. Outdoor experimental channels were supplied with leaf-litter of varying quantities and qualities to mimic litter supply during five successional stages: (1) an initial biofilm stage; (2) an open-land stage with grass litter; (3) a transitional stage with mixed grass and birch litter; (4) an early forest stage with birch litter; and (5) an advanced forest stage with 2.5 × the amount of birch litter. Mean potential activities of nitrogen- and phosphorus-acquiring enzymes in sediments (20.7 and 67.3 μmol g(-1) dry mass) were 12-70 times greater than those of carbon-acquiring enzymes (0.96-1.71 μmol g(-1) dry mass), with the former reduced 1.3-8.3-fold in channels with tree litter. These patterns could suggest gradually diminishing nutrient limitation of microbial activity during riparian succession, potentially linked both to an increasing supply by the added litter and to a lower nutrient demand as algal biomass and labile carbon supply by photosynthetic exudates declined. As the observed shifts in nutrient-acquiring enzymes were reflected in changes of sediment microbial communities, these results indicate that both the type and density of terrestrial vegetation control microbial community structure and function in stream sediments, particularly enzyme production related to nutrient cycling. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Demonstration Report for Visual Sample Plan (VSP) Verification Sampling Methods at the Navy/DRI Site

    DTIC Science & Technology

    2011-08-01

    population of 537,197 with an overall population density of 608 people per square mile (people/ mi2 ). However, the population density in the vicinity...Preliminary Assessment Findings  approximately 12 people/ mi2 . Population density is expected to greatly increase following development of the site

  20. Laboratory Characterization of Gray Masonry Concrete

    DTIC Science & Technology

    2007-08-01

    Based on the appropriate values of posttest water content, wet density, and an assumed grain density of 2.61 Mg/m3, values of dry density, porosity...velocity measurements were performed on each specimen. The TXC tests exhibited a continuous increase in maximum principal stress difference with...14 Figure 3. Spring-arm lateral deformeter mounted on test

  1. Bulk densities of materials from selected pine-site hardwoods

    Treesearch

    Clyde Vidrine; George E. Woodson

    1982-01-01

    Bulk densities of hardwood materials from low and high density species were determined for green and air-dry conditions. Materials consisted of whole-tree chips, bark-free chips, bark as collected from three types of debarkers (ring, rosser head, and drum debarkers) sawdust, planer shavings, flakes, logging residues, baled branchwood, steel-strapped firewood, and...

  2. Spatial Patterns of Plasmodium falciparum Clinical Incidence, Asymptomatic Parasite Carriage and Anopheles Density in Two Villages in Mali

    PubMed Central

    Sissoko, Mahamadou S.; van den Hoogen, Lotus L.; Samake, Yacouba; Tapily, Amadou; Diarra, Adama Z.; Coulibaly, Maimouna; Bouare, Madama; Gaudart, Jean; Knight, Philip; Sauerwein, Robert W.; Takken, Willem; Bousema, Teun; Doumbo, Ogobara K.

    2015-01-01

    Heterogeneity in malaria exposure is most readily recognized in areas with low-transmission patterns. By comparison, little research has been done on spatial patterns in malaria exposure in high-endemic settings. We determined the spatial clustering of clinical malaria incidence, asymptomatic parasite carriage, and Anopheles density in two villages in Mali exposed to low- and mesoendemic-malaria transmission. In the two study areas that were < 1 km2 in size, we observed evidence for spatial clustering of Anopheles densities or malaria parasite carriage during the dry season. Anopheles density and malaria prevalence appeared associated in some of our detected hotspots. However, many households with high parasite prevalence or high Anopheles densities were located outside the identified hotspots. Our findings indicate that within small villages exposed to low- or mesoendemic-malaria transmission, spatial patterns in mosquito densities and parasite carriage are best detected in the dry season. Considering the high prevalence of parasite carriage outside detected hotspots, the suitability of the area for targeting control efforts to households or areas of more intense malaria transmission may be limited. PMID:26324728

  3. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance.

    PubMed

    Bosquillon, C; Lombry, C; Préat, V; Vanbever, R

    2001-02-23

    The objective of this study was to determine the effects of formulation excipients and physical characteristics of inhalation particles on their in vitro aerosolization performance, and thereby to maximize their respirable fraction. Dry powders were produced by spray-drying using excipients that are FDA-approved for inhalation as lactose, materials that are endogenous to the lungs as albumin and dipalmitoylphosphatidylcholine (DPPC); and/or protein stabilizers as trehalose or mannitol. Dry powders suitable for deep lung deposition, i.e. with an aerodynamic diameter of individual particles <3 microm, were prepared. They presented 0.04--0.25 g/cm(3) bulk tap densities, 3--5 microm geometric particle sizes, up to 90% emitted doses and 50% respirable fractions in the Andersen cascade impactor using a Spinhaler inhaler device. The incorporation of lactose, albumin and DPPC in the formulation all improved the aerosolization properties, in contrast to trehalose and the mannitol which decreased powder flowability. The relative proportion of the excipients affected aerosol performance as well. The lower the bulk powder tap density, the higher the respirable fraction. Optimization of in vitro aerosolization properties of inhalation dry powders can be achieved by appropriately selecting composition and physical characteristics of the particles.

  4. Experimental and numerical investigations on freeze-drying of porous media with prebuilt porosity

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yang, Jing; Hu, Dapeng; Pan, Yanqiu; Wang, Shihao; Chen, Guohua

    2018-05-01

    Freeze-drying of initially porous frozen material was investigated aimed at improving the process economics by reducing drying time and raising productivity. Experimental results showed that freeze-drying can be significantly enhanced by the frozen material with prebuilt porosity, and about 31% of drying time can be saved compared with the conventionally solid frozen material under the tested operating conditions. A multiphase transport model was formulated based on the local mass non-equilibrium assumption. Numerical results showed excellent agreements between measured and predicted drying curves. Analyses of saturation and temperature profiles displayed that volumetric sublimation-desorption can occur for the initially porous frozen material.

  5. Study of microwave drying of wet materials based on one-dimensional two-phase model

    NASA Astrophysics Data System (ADS)

    Salomatov, Vl V.; Karelin, V. A.

    2017-11-01

    Currently, microwave is one of the most interesting ways to conduct drying of dielectric materials, in particular coal. In this paper, two processes were considered - heating and drying. The temperature field of the coal semi-mass in the heating mode is found analytically strictly with the use of integral transformations. The drying process is formulated as a nonlinear Stephen problem with a moving boundary of the liquid-vapor phase transformation. The temperature distribution, speed and drying time in this mode are determined approximately analytically. Parametric analysis of the influence of the material and boundary conditions on the dynamics of warming up and drying is revealed.

  6. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra.

    PubMed

    Christiansen, Casper T; Haugwitz, Merian S; Priemé, Anders; Nielsen, Cecilie S; Elberling, Bo; Michelsen, Anders; Grogan, Paul; Blok, Daan

    2017-01-01

    Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface-incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open-top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures. © 2016 John Wiley & Sons Ltd.

  7. Disruption rates for one vulnerable soil in Organ Pipe Cactus National Monument, Arizona, USA

    USGS Publications Warehouse

    Webb, Robert H.; Esque, Todd C.; Nussear, Kenneth E.; Sturm, Mark

    2013-01-01

    Rates of soil disruption from hikers and vehicle traffic are poorly known, particularly for arid landscapes. We conducted an experiment in Organ Pipe Cactus National Monument (ORPI) in western Arizona, USA, on an air-dry very fine sandy loam that is considered to be vulnerable to disruption. We created variable-pass tracks using hikers, an all-terrain vehicle (ATV), and a four-wheel drive vehicle (4WD) and measured changes in cross-track topography, penetration depth, and bulk density. Hikers (one pass = 5 hikers) increased bulk density and altered penetration depth but caused minimal surface disruption up to 100 passes; a minimum of 10 passes were required to overcome surface strength of this dry soil. Both ATV and 4WD traffic significantly disrupted the soil with one pass, creating deep ruts with increasing passes that rendered the 4WD trail impassable after 20 passes. Despite considerable soil loosening (dilation), bulk density increased in the vehicle trails, and lateral displacement created berms of loosened soil. This soil type, when dry, can sustain up to 10 passes of hikers but only one vehicle pass before significant soil disruption occurs; greater disruption is expected when soils are wet. Bulk density increased logarithmically with applied pressure from hikers, ATV, and 4WD.

  8. Orion Landing Simulation Eight Soil Model Comparison

    NASA Technical Reports Server (NTRS)

    Mark, Stephen D.

    2009-01-01

    LS-DYNA finite element simulations of a rigid Orion Crew Module (CM) were used to investigate the CM impact behavior on eight different soil models. Ten different landing conditions, characterized by the combination of CM vertical and horizontal velocity, hang angle, and roll angle were simulated on the eight different soils. The CM center of gravity accelerations, pitch angle, kinetic energy, and soil contact forces were the outputs of interest. The simulation results are presented, with comparisons of the CM behavior on the different soils. The soils analyzed in this study can be roughly categorized as soft, medium, or hard, according to the CM accelerations that occur when landing on them. The soft group is comprised of the Carson Sink Wet soil and the Kennedy Space Center (KSC) Low Density Dry Sand. The medium group includes Carson Sink Dry, the KSC High Density In-Situ Moisture Sand and High Density Flooded Sand, and Cuddeback B. The hard soils are Cuddeback A and the Gantry Unwashed Sand. The softer soils were found to produce lower peak accelerations, have more stable pitch behavior, and to be less sensitive to the landing conditions. This investigation found that the Cuddeback A soil produced the highest peak accelerations and worst stability conditions, and that the best landing performance was achieved on the KSC Low Density Dry Sand.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staring, M., E-mail: m.staring@lumc.nl; Bakker, M. E.; Shamonin, D. P.

    Purpose: Whole lung densitometry on chest CT images is an accepted method for measuring tissue destruction in patients with pulmonary emphysema in clinical trials. Progression measurement is required for evaluation of change in health condition and the effect of drug treatment. Information about the location of emphysema progression within the lung may be important for the correct interpretation of drug efficacy, or for determining a treatment plan. The purpose of this study is therefore to develop and validate methods that enable the local measurement of lung density changes, which requires proper modeling of the effect of respiration on density. Methods:more » Four methods, all based on registration of baseline and follow-up chest CT scans, are compared. The first naïve method subtracts registered images. The second employs the so-called dry sponge model, where volume correction is performed using the determinant of the Jacobian of the transformation. The third and the fourth introduce a novel adaptation of the dry sponge model that circumvents its constant-mass assumption, which is shown to be invalid. The latter two methods require a third CT scan at a different inspiration level to estimate the patient-specific density-volume slope, where one method employs a global and the other a local slope. The methods were validated on CT scans of a phantom mimicking the lung, where mass and volume could be controlled. In addition, validation was performed on data of 21 patients with pulmonary emphysema. Results: The image registration method was optimized leaving a registration error below half the slice increment (median 1.0 mm). The phantom study showed that the locally adapted slope model most accurately measured local progression. The systematic error in estimating progression, as measured on the phantom data, was below 2 gr/l for a 70 ml (6%) volume difference, and 5 gr/l for a 210 ml (19%) difference, if volume correction was applied. On the patient data an underlying linearity assumption relating lung volume change with density change was shown to hold (fitR{sup 2} = 0.94), and globalized versions of the local models are consistent with global results (R{sup 2} of 0.865 and 0.882 for the two adapted slope models, respectively). Conclusions: In conclusion, image matching and subsequent analysis of differences according to the proposed lung models (i) has good local registration accuracy on patient data, (ii) effectively eliminates a dependency on inspiration level at acquisition time, (iii) accurately predicts progression in phantom data, and (iv) is reasonably consistent with global results in patient data. It is therefore a potential future tool for assessing local emphysema progression in drug evaluation trials and in clinical practice.« less

  10. Towards local progression estimation of pulmonary emphysema using CT.

    PubMed

    Staring, M; Bakker, M E; Stolk, J; Shamonin, D P; Reiber, J H C; Stoel, B C

    2014-02-01

    Whole lung densitometry on chest CT images is an accepted method for measuring tissue destruction in patients with pulmonary emphysema in clinical trials. Progression measurement is required for evaluation of change in health condition and the effect of drug treatment. Information about the location of emphysema progression within the lung may be important for the correct interpretation of drug efficacy, or for determining a treatment plan. The purpose of this study is therefore to develop and validate methods that enable the local measurement of lung density changes, which requires proper modeling of the effect of respiration on density. Four methods, all based on registration of baseline and follow-up chest CT scans, are compared. The first naïve method subtracts registered images. The second employs the so-called dry sponge model, where volume correction is performed using the determinant of the Jacobian of the transformation. The third and the fourth introduce a novel adaptation of the dry sponge model that circumvents its constant-mass assumption, which is shown to be invalid. The latter two methods require a third CT scan at a different inspiration level to estimate the patient-specific density-volume slope, where one method employs a global and the other a local slope. The methods were validated on CT scans of a phantom mimicking the lung, where mass and volume could be controlled. In addition, validation was performed on data of 21 patients with pulmonary emphysema. The image registration method was optimized leaving a registration error below half the slice increment (median 1.0 mm). The phantom study showed that the locally adapted slope model most accurately measured local progression. The systematic error in estimating progression, as measured on the phantom data, was below 2 gr/l for a 70 ml (6%) volume difference, and 5 gr/l for a 210 ml (19%) difference, if volume correction was applied. On the patient data an underlying linearity assumption relating lung volume change with density change was shown to hold (fitR(2) = 0.94), and globalized versions of the local models are consistent with global results (R(2) of 0.865 and 0.882 for the two adapted slope models, respectively). In conclusion, image matching and subsequent analysis of differences according to the proposed lung models (i) has good local registration accuracy on patient data, (ii) effectively eliminates a dependency on inspiration level at acquisition time, (iii) accurately predicts progression in phantom data, and (iv) is reasonably consistent with global results in patient data. It is therefore a potential future tool for assessing local emphysema progression in drug evaluation trials and in clinical practice.

  11. Cross-section Trichometry: A Clinical Tool for Assessing the Progression and Treatment Response of Alopecia

    PubMed Central

    Wikramanayake, Tongyu Cao; Mauro, Lucia M; Tabas, Irene A; Chen, Anne L; Llanes, Isabel C; Jimenez, Joaquin J

    2012-01-01

    Background: To properly assess the progression and treatment response of alopecia, one must measure the changes in hair mass, which is influenced by both the density and diameter of hair. Unfortunately, a convenient device for hair mass evaluation had not been available to dermatologists until the recent introduction of the cross-section trichometer, which directly measures the cross-sectional area of an isolated bundle of hair. Objective: We sought to evaluate the accuracy and sensitivity of the HairCheck® device, a commercial product derived from the original cross-section trichometer. Materials and Methods: Bundles of surgical silk and human hair were used to evaluate the ability of the HairCheck® device to detect and measure small changes in the number and diameter of strands, and bundle weight. Results: Strong correlations were observed between the bundle's cross-sectional area, displayed as the numeric Hair Mass Index (HMI), the number of strands, the silk/hair diameter, and the bundle dry weight. Conclusion: HMI strongly correlated with the number and diameter of silk/hair, and the weight of the bundle, suggesting that it can serve as a valid indicator of hair mass. We have given the name cross-section trichometry (CST) to the methodology of obtaining the HMI using the HairCheck® system. CST is a simple modality for the quantification of hair mass, and may be used as a convenient and useful tool to clinically assess changes in hair mass caused by thinning, shedding, breakage, or growth in males and females with progressive alopecia or those receiving alopecia treatment. PMID:23766610

  12. Satellite Investigation of Atmospheric Metal Deposition During Meteor Showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.

    2008-12-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the magnesium column densities and any connection to possible enhanced mass deposition during a meteor shower. We derive a time dependent mass flux rate due to meteor showers using published estimates of mass density and activity profiles of meteor showers. An average daily mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities from the years 1996 - 2001.There appears to be little correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  13. Evaluation of a Novel Artificial Tear in the Prevention and Treatment of Dry Eye in an Animal Model.

    PubMed

    She, Yujing; Li, Jinyang; Xiao, Bing; Lu, Huihui; Liu, Haixia; Simmons, Peter A; Vehige, Joseph G; Chen, Wei

    2015-11-01

    To evaluate effects of a novel multi-ingredient artificial tear formulation containing carboxymethylcellulose (CMC) and hyaluronic acid (HA) in a murine dry eye model. Dry eye was induced in mice (C57BL/6) using an intelligently controlled environmental system (ICES). CMC+HA (Optive Fusion™), CMC-only (Refresh Tears(®)), and HA-only (Hycosan(®)) artificial tears and control phosphate-buffered saline (PBS) were administered 4 times daily and compared with no treatment (n = 64 eyes per group). During regimen 1 (prevention regimen), mice were administered artificial tears or PBS for 14 days (starting day 0) while they were exposed to ICES, and assessed on days 0 and 14. During regimen 2 (treatment regimen), mice exposed to ICES for 14 days with no intervention were administered artificial tears or PBS for 14 days (starting day 14) while continuing exposure to ICES, and assessed on days 0, 14, and 28. Corneal fluorescein staining and conjunctival goblet cell density were measured. Artificial tear-treated mice had significantly better outcomes than control groups on corneal staining and goblet cell density (P < 0.01). Mice administered CMC+HA also showed significantly lower corneal fluorescein staining and higher goblet cell density, compared with CMC (P < 0.01) and HA (P < 0.05) in both regimens 1 and 2. The artificial tear formulation containing CMC and HA was effective in preventing and treating environmentally induced dry eye. Improvements observed for corneal fluorescein staining and conjunctival goblet cell retention suggest that this combination may be a viable treatment option for dry eye disease.

  14. Variations in Volatile Oil Yield and Composition of "Xin-yi" (Magnolia biondii Pamp. Flower Buds) at Different Growth Stages.

    PubMed

    Hu, Mingli; Bai, Mei; Ye, Wei; Wang, Yaling; Wu, Hong

    2018-06-01

    Dried flower buds of Magnolia biondii Pamp. are the main ingredient in "Xin-yi" in China, and the volatile oils of M. biondii flower buds are the principal medicinal component. Gas chromatographymass spectrometry (GC-MS) and microscopic techniques were employed to detect the volatile yields of M. biondii flowers at various growth stages. The volatile oil yields of M. biondii flowers differed significantly at different growth stages and were closely related to flower dry weight, oil cell density and degree of oil accumulation. In February 2016, flower buds had the highest dry weight, the maximum percentage of oil cells at the oil saturation stage and the highest density of oil cells, which coincided with the highest oil yield. In March 2016, flower buds had a lower dry weight, a higher percentage of oil cells at the oil-degrading stage and the lowest oil cell density, resulting in decreased oil yields. The total amounts of the major medicinal components in the M. biondii flower also showed regular changes at different growth stages. In January and February of 2016, M. biondii flowers had a higher dry weight, volatile oil yield and total content of medicinal ingredients, which was the best time for harvesting high-quality medicinal components. Our study reveals that volatile oil content and chemical composition are closely related to the growth stage of M. biondii flower buds. The results provide a scientific morphology and composition index for evaluating the medicinal value and harvesting of high-quality M. biondii medicinal herbs.

  15. Forage Production on Dry Rangelands of Binary Grass-Legume Mixtures at Four Plant Densities

    USDA-ARS?s Scientific Manuscript database

    Forage production on Western US rangelands can be increased with the right combination of plants. Our objective was to demonstrate the relative forage production advantage of including a legume on dry rangelands. A falcata and rhizomatous alfalfa (medicago sativa L.), alti wildrye [Leymus andustus...

  16. Centrifuge modeling of cyclic lateral response of pile-cap systems and seat-type abutments in dry sands

    DOT National Transportation Integrated Search

    1998-10-02

    This report presents the results of slow, cyclic, lateral-loading centrifuge tests performed on models of pile-cap foundation systems and seat-type bridge abutements in dry Neveda sand of 75% relative density to study the lateral response of these sy...

  17. Light scattering and backscattering by particles suspended in the Baltic Sea in relation to the mass concentration of particles and the proportions of their organic and inorganic fractions

    NASA Astrophysics Data System (ADS)

    Woźniak, Sławomir B.; Sagan, Sławomir; Zabłocka, Monika; Stoń-Egiert, Joanna; Borzycka, Karolina

    2018-06-01

    The empirical relationships were examined of spectral characteristics of light scattering and backscattering by particles suspended in seawater in relation to the dry mass concentration of particles and the bulk proportions of their organic and inorganic fractions. The analyses were based on empirical data collected in the surface waters of the southern and central Baltic Sea at different times of the year. It was found that the average scattering and backscattering coefficients, normalized to the dry mass concentration of particles for all our Baltic Sea data (i.e. mass-specific optical coefficients), were characterized by large coefficients of variation (CV) of the order of 30% at all the visible light wavelengths analysed. At wavelength 555 nm the average mass-specific scattering coefficient was ca 0.75 m2 g- 1 (CV = 31%); the corresponding value for backscattering was 0.0072 m2 g- 1 (CV = 29%). The analyses confirmed that some of the observed variations could be explained by changes in the proportions of organic and inorganic fractions of suspended matter. The average organic fraction in all the samples was as high as 83% of the total dry mass concentration but in individual cases it varied between < 50% and up to 100%. Simple, two-variable parameterizations of scattering and backscattering coefficients were derived as functions of the organic and inorganic fraction concentrations. The statistical relationship between the backscattering ratio and the ratio of the organic fraction to the total dry mass of suspended matter was also found: this can be used in practical interpretations of in situ optical measurements. In addition, the variability in particle size distributions recorded with a Coulter counter indicated its potentially highly significant influence on the light scattering properties of particles suspended in Baltic Sea waters.

  18. Evaluation of Minimum Asphalt Concrete Thickness Criteria

    DTIC Science & Technology

    2008-10-01

    9 Figure 6. Dry density versus moisture content for CH material... density measurements. ............................ 24 Figure 18. EPC installation in a crushed gravel base course layer...Construction Materials Materials Characterization Laboratory Testing Field Testing Test Section Construction Hydrometer, Modified Proctor , Specific

  19. Mass of materials: the impact of designers on construction ergonomics.

    PubMed

    Smallwood, John

    2012-01-01

    Many construction injuries are musculoskeletal related in the form of sprains and strains arising from the handling of materials, which are specified by designers. The paper presents the results of a study conducted among delegates attending two 'designing for H&S' (DfH&S) seminars using a questionnaire. The salient findings include: the level of knowledge relative to the mass and density of materials is limited; designers generally do not consider the mass and density of materials when designing structures and elements and specifying materials; to a degree designers appreciate that the mass and density of materials impact on construction ergonomics; designers rate their knowledge of the mass and density of materials as limited, and designers appreciate the potential of the consideration of the mass and density of materials to contribute to an improvement in construction ergonomics. Conclusions include: designers lack the requisite knowledge relative to the mass and density of materials; designers are thus precluded from conducting optimum design hazard identification and risk assessments, and tertiary built environment designer education does not enlighten designers relative to construction ergonomics. Recommendations include: tertiary built environment designer education should construction ergonomics; professional associations should raise the level of awareness relative to construction ergonomics, and design practices should include a category 'mass and density of materials' in their practice libraries.

  20. Aerosol Chemical and Physical Characterization in Central Amazonia during the 2013 Dry Season

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Stern, R.; Brito, J.; Carbone, S.

    2015-12-01

    During the dry season, the central Amazon forest is highly influenced by forest fires transported through large distances, changing drastically the atmospheric composition even in remote places. This work focuses on a physical-chemical characterization of the aerosol population over a pristine site in Central Amazonia during the dry season. The submicrometer organic aerosols were measured with the Aerodyne ACSM (Aerosol Chemical Speciation Monitor, Aerodyne Inc). Optical properties, size distribution and other micro-physical characteristics were also analyzed. Other instruments were simultaneously used. The measurements were taken during the dry season of 2013 in the Cuieiras ecological reserve (ZF2), northwest of Manaus. The statistical analysis of the data was done with the PMF (Positive Matrix Factorization) technique, in which the organic aerosol was separated into different factors, and then its sources and forming processes were attributed. Results show that the mean aerosol loading was 5,91 μg m-3, from which 78% are of organic composition, 8.5% are sulfate, 6.5% are equivalent black carbon, 4% are ammonium and 3% are nitrate. The mass spectra variability can be explained by 3 factors only, determined with the PMF technique. They were identified as BBOA (Biomass Burning Organic Aerosol), representing 12% of the total organic mass, OOA (Oxygenated Organic Aerosol), representing 66% of the total organic mass and IEPOX-SOA (Isoprene derived Epoxydiol-Secondary Organic Aerosol), representing 21% of the total organic mass. Even in remote and pristine regions, Central Amazonia is highly impacted by biomass burning. Biogenic secondary organic aerosols are also present during the dry season, and the suppression of its wet deposition processes increases their concentration. The oxidation level and other physical-chemical characteristics indicate that the long range transport is responsible for the regional range of this impact.

  1. Kinetics of mass transfer during deep fat frying of yellow fleshed cassava root slices

    NASA Astrophysics Data System (ADS)

    Oyedeji, A. B.; Sobukola, O. P.; Henshaw, F. O.; Adegunwa, M. O.; Sanni, L. O.; Tomlins, K. I.

    2016-05-01

    Kinetics of mass transfer [moisture content, oil uptake, total carotenoid (TC) and shrinkage] during frying of yellow fleshed cassava roots (TMS 01/1371) was investigated. Slices were divided into (i) fresh and (ii) pre-dried to 75 % moisture content before atmospheric frying and (iii) vacuum fried. Percentage TC and activation energies of vacuum, fresh and pre-dried fried samples were 76, 63 and 61 %; and 82, 469.7, 213.7 kJ/mol, respectively.

  2. Ultimate energy density of observable cold baryonic matter.

    PubMed

    Lattimer, James M; Prakash, Madappa

    2005-03-25

    We demonstrate that the largest measured mass of a neutron star establishes an upper bound to the energy density of observable cold baryonic matter. An equation of state-independent expression satisfied by both normal neutron stars and self-bound quark matter stars is derived for the largest energy density of matter inside stars as a function of their masses. The largest observed mass sets the lowest upper limit to the density. Implications from existing and future neutron star mass measurements are discussed.

  3. Ontogenetic changes in leaf traits of tropical rainforest trees differing in juvenile light requirement.

    PubMed

    Houter, Nico C; Pons, Thijs L

    2012-05-01

    Relationships between leaf traits and the gap dependence for regeneration, and ontogenetic changes therein, were investigated in juvenile and adult tropical rainforest tree species. The juveniles of the 17 species included in the study were grown in high light, similar to the exposed crowns of the adult trees. The traits were structural, biomechanical, chemical and photosynthetic. With increasing species gap dependence, leaf mass per area (LMA) decreased only slightly in juveniles and remained constant in adults, whereas punch strength together with tissue density decreased, and photosynthetic capacity and chlorophyll increased. Contrary to what has been mostly found in evergreen tropical rainforest, the trade-off between investment in longevity and in productivity was evident at an essentially constant LMA. Of the traits pertaining to the chloroplast level, photosynthetic capacity per unit chlorophyll increased with gap dependence, but the chlorophyll a/b ratio showed no relationship. Adults had a twofold higher LMA, but leaf strength was on average only about 50% larger. Leaf tissue density, and chlorophyll and leaf N per area were also higher, whereas chlorophyll and leaf N per unit dry mass were lower. Ranking of the species, relationships between traits and with the gap dependence of the species were similar for juveniles and adults. However, the magnitudes of most ontogenetic changes were not clearly related to a species' gap dependence. The adaptive value of the leaf traits for juveniles and adults is discussed.

  4. Osmotic dehydration of Braeburn variety apples in the production of sustainable food products

    NASA Astrophysics Data System (ADS)

    Ciurzyńska, Agnieszka; Cichowska, Joanna; Kowalska, Hanna; Czajkowska, Kinga; Lenart, Andrzej

    2018-01-01

    The aim of this work was to investigate the effects of osmotic dehydration conditions on the properties of osmotically pre-treated dried apples. The scope of research included analysing the most important mass exchange coefficients, i.e. water loss, solid gain, reduced water content and water activity, as well as colour changes of the obtained dried product. In the study, apples were osmotically dehydrated in one of two 60% solutions: sucrose or sucrose with an addition of chokeberry juice concentrate, for 30 and 120 min, in temperatures of 40 and 60°C. Ultrasound was also used during the first 30 min of the dehydration process. After osmotic pre-treatment, apples were subjected to innovative convective drying with the puffing effect, and to freeze-drying. Temperature and dehydration time increased the effectiveness of mass exchange during osmotic dehydration. The addition of chokeberry juice concentrate to standard sucrose solution and the use of ultrasound did not change the value of solid gain and reduced water content. Water activity of the dried apple tissue was not significantly changed after osmotic dehydration, while changes in colour were significant.

  5. Thermal characterization and syngas production from the pyrolysis of biophysical dried and traditional thermal dried sewage sludge.

    PubMed

    Han, Rong; Zhao, Chenxi; Liu, Jinwen; Chen, Aixia; Wang, Hongtao

    2015-12-01

    A novel method for energy recycling from sewage sludge was developed through biophysical drying coupled with fast pyrolysis. Thermal decomposition properties of biophysical-dried sludge (BDS) and thermal-dried sludge (TDS) were characterized through thermogravimetric (TG) coupled with mass spectrometry (MS) analysis. BDS exhibited typical peaks in each differential thermogravimetric (DTG) region and presented slower mass loss rates in H, C, and L regions (180-550°C) but remarkable weight loss in region I (>550°C) compared with TDS. The charring process centered at region I, was responsible for the prominent H2 emission from BDS. The pseudo multicomponent model showed that the Em values of BDS and TDS were 48.84 and 37.75 kJ/mol, respectively. Furthermore, fast pyrolysis of BDS was proven to facilitate syngas and char formation more than TDS. For the yielded syngas, the thermal conversion of BDS was characterized by high H2 and CH4 content beyond 700°C. Copyright © 2015. Published by Elsevier Ltd.

  6. Contributions of Lower Atmospheric Drivers to the Semiannual Oscillation in Thermospheric Global Mass Density

    NASA Astrophysics Data System (ADS)

    Jones, M., Jr.; Emmert, J. T.; Drob, D. P.; Siskind, D. E.

    2016-12-01

    The thermosphere exhibits intra-annual variations (IAV) in globally averaged mass density that noticeably impact the drag environment of satellites in low Earth orbit. Particularly, the annual and semiannual oscillations (AO and SAO) are collectively the second largest component, after solar variability, of thermospheric global mass density variations. Several mechanisms have been proposed to explain the oscillations, but they have yet to be reproduced by first-principles modeling simulations. Recent studies have focused on estimating the SAO in eddy diffusion required to explain the thermospheric SAO in mass density. Less attention has been paid to the effect of lower and middle atmospheric drivers on the lower boundary of the thermosphere. In this study, we utilize the National Center for Atmospheric Research Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM), to elucidate how the different lower atmospheric drivers influence IAV, and in particular the SAO of globally-averaged thermospheric mass density. We performed numerical simulations of a continuous calendar year assuming constant solar forcing, manipulating the lower atmospheric tidal forcing and gravity wave parameterization in order to quantify the SAO in thermospheric mass density attributable to different lower atmospheric drivers. The prominent initial results are as follows: (1) The "standard" TIME-GCM is capable of simulating the SAO in globally-averaged mass density at 400 km from first-principles, and its amplitude and phase compare well with empirical models; (2) The simulations suggest that seasonally varying Kzz driven by breaking GWs is not the primary driver of the SAO in upper thermospheric globally averaged mass density; (3) Preliminary analysis suggests that the SAO in the upper thermospheric mass density could be a by-product of dynamical wave transport in the mesopause region.

  7. The combined effect of wet granulation process parameters and dried granule moisture content on tablet quality attributes.

    PubMed

    Gabbott, Ian P; Al Husban, Farhan; Reynolds, Gavin K

    2016-09-01

    A pharmaceutical compound was used to study the effect of batch wet granulation process parameters in combination with the residual moisture content remaining after drying on granule and tablet quality attributes. The effect of three batch wet granulation process parameters was evaluated using a multivariate experimental design, with a novel constrained design space. Batches were characterised for moisture content, granule density, crushing strength, porosity, disintegration time and dissolution. Mechanisms of the effect of the process parameters on the granule and tablet quality attributes are proposed. Water quantity added during granulation showed a significant effect on granule density and tablet dissolution rate. Mixing time showed a significant effect on tablet crushing strength, and mixing speed showed a significant effect on the distribution of tablet crushing strengths obtained. The residual moisture content remaining after granule drying showed a significant effect on tablet crushing strength. The effect of moisture on tablet tensile strength has been reported before, but not in combination with granulation parameters and granule properties, and the impact on tablet dissolution was not assessed. Correlations between the energy input during granulation, the density of granules produced, and the quality attributes of the final tablets were also identified. Understanding the impact of the granulation and drying process parameters on granule and tablet properties provides a basis for process optimisation and scaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Long-term acclimatization of hydraulic properties, xylem conduit size, wall strength and cavitation resistance in Phaseolus vulgaris in response to different environmental effects.

    PubMed

    Holste, Ellen K; Jerke, Megan J; Matzner, Steven L

    2006-05-01

    Phaseolus vulgaris grown under various environmental conditions was used to assess long-term acclimatization of xylem structural characteristics and hydraulic properties. Conduit diameter tended to be reduced and 'wood' density (of 'woody' stems) increased under low moisture ('dry'), increased soil porosity ('porous soil') and low phosphorus ('low P') treatments. Dry and low P had the largest percentage of small vessels. Dry, low light ('shade') and porous soil treatments decreased P50 (50% loss in conductivity) by 0.15-0.25 MPa (greater cavitation resistance) compared with 'controls'. By contrast, low P increased P50 by 0.30 MPa (less cavitation resistance) compared with porous soil (the control for low P). Changes in cavitation resistance were independent of conduit diameter. By contrast, changes in cavitation resistance were correlated with wood density for the control, dry and porous soil treatments, but did not appear to be a function of wood density for the shade and low P treatments. In a separate experiment comparing control and porous soil plants, stem hydraulic conductivity (kh), specific conductivity (ks), leaf specific conductivity (LSC), total pot water loss, plant biomass and leaf area were all greater for control plants compared to porous soil plants. Porous soil plants, however, demonstrated higher midday stomatal conductance to water vapour (gs), apparently because they experienced proportionally less midday xylem cavitation.

  9. Zooplankton variability and larval striped bass foraging: Evaluating potential match/mismatch regulation

    USGS Publications Warehouse

    Chick, J.H.; Van Den Avyle, M.J.

    1999-01-01

    We quantified temporal and spatial variability of zooplankton in three potential nursery sites (river, transition zone, lake) for larval striped bass (Morone saxatilis) in Lake Marion, South Carolina, during April and May 1993-1995. In two of three years, microzooplankton (rotifers and copepod nauplii) density was significantly greater in the lake site than in the river or transition zone. Macrozooplankton (>200 ??m) composition varied among the three sites in all years with adult copepods and cladocerans dominant at the lake, and juvenile Corbicula fluminea dominant at the river and transition zone. Laboratory feeding experiments, simulating both among-site (site treatments) and within-site (density treatments) variability, were conducted in 1995 to quantify the effects of the observed zooplankton variability on foraging success of larval striped bass. A greater proportion of larvae fed in the lake than in the river or transition-zone treatments across all density treatments: mean (x), 10x and 100x. Larvae also ingested significantly more dry mass of prey in the lake treatment in both the mean and 10x density treatments. Field zooplankton and laboratory feeding data suggest that both spatial and temporal variability of zooplankton influence larval striped bass foraging. Prey density levels that supported successful foraging in our feeding experiments occurred in the lake during late April and May in 1994 and 1995 but were never observed in the river or transition zone. Because the rivers flowing into Lake Marion are regulated, it may be possible to devise flow management schemes that facilitate larval transport to the lake and thereby increase the proportion of larvae matched to suitable prey resources.

  10. Simultaneous moisture content and mass flow measurements in wood chip flows using coupled dielectric and impact sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Pengmin; McDonald, Timothy; Fulton, John

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less

  11. Simultaneous moisture content and mass flow measurements in wood chip flows using coupled dielectric and impact sensors

    DOE PAGES

    Pan, Pengmin; McDonald, Timothy; Fulton, John; ...

    2016-12-23

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less

  12. Fate of five pharmaceuticals under different infiltration conditions for managed aquifer recharge.

    PubMed

    Silver, Matthew; Selke, Stephanie; Balsaa, Peter; Wefer-Roehl, Annette; Kübeck, Christine; Schüth, Christoph

    2018-06-18

    Infiltration of treated wastewater (TWW) to recharge depleted aquifers, often referred to as managed aquifer recharge, is a solution to replenish groundwater resources in regions facing water scarcity. We present a mass balance approach to infer the amounts of five pharmaceuticals (carbamazepine, diclofenac, fenoprofen, gemfibrozil, and naproxen) degraded in column experiments based on concentrations of pharmaceuticals in the aqueous and solid (sorbed) phases. Column experiments were conducted under three different conditions: continuous infiltration, wetting and drying cycles, and wetting and drying cycles with elevated concentrations of antibiotics (which may reduce microbially aided degradation of other compounds). A mass balance comparing pharmaceutical mass in the water phase over the 16-month duration of the experiments to mass sorbed to the soil was used to infer the mass of pharmaceuticals degraded. Results show sorption as the main attenuation mechanism for carbamazepine. About half of the mass of diclofenac was degraded with wetting and drying cycles, but no significant degradation was found for continuous infiltration, while 32% of infiltrated mass sorbed. Fenoprofen was degraded in the shallow and aerobic part of the soil, but degradation appeared to cease beyond 27 cm depth. Gemfibrozil attenuated through a combination of degradation and sorption, with slight increases in attenuation with depth from both mechanisms. Naproxen degraded progressively with depth, resulting in attenuation of >90% of the mass. In the column with elevated concentrations of antibiotics, the antibiotics attenuated to about 50% or less of inflow concentrations by 27 cm depth and within this zone, less degradation of the other compounds was observed. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors

    PubMed Central

    Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John

    2016-01-01

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful. PMID:28025536

  14. Comparison of Mathematical Equation and Neural Network Modeling for Drying Kinetic of Mendong in Microwave Oven

    NASA Astrophysics Data System (ADS)

    Maulidah, Rifa'atul; Purqon, Acep

    2016-08-01

    Mendong (Fimbristylis globulosa) has a potentially industrial application. We investigate a predictive model for heat and mass transfer in drying kinetics during drying a Mendong. We experimentally dry the Mendong by using a microwave oven. In this study, we analyze three mathematical equations and feed forward neural network (FNN) with back propagation to describe the drying behavior of Mendong. Our results show that the experimental data and the artificial neural network model has a good agreement and better than a mathematical equation approach. The best FNN for the prediction is 3-20-1-1 structure with Levenberg- Marquardt training function. This drying kinetics modeling is potentially applied to determine the optimal parameters during mendong drying and to estimate and control of drying process.

  15. Structural and evaporative evolutions in desiccating sessile drops of blood

    NASA Astrophysics Data System (ADS)

    Sobac, B.; Brutin, D.

    2011-07-01

    We report an experimental investigation of the drying of a deposited drop of whole blood. Flow motion, adhesion, gelation, and fracturation all occur during the evaporation of this complex matter, leading to a final typical pattern. Two distinct regimes of evaporation are highlighted: the first is driven by convection, diffusion, and gelation in a liquid phase, whereas the second, with a much slower rate of evaporation, is characterized by the mass transport of the liquid left over in the gellified biocomponent matter. A diffusion model of the drying process allows a prediction of the transition between these two regimes of evaporation. Moreover, the formation of cracks and other events occurring during the drying are examined and shown to be driven by critical solid mass concentrations.

  16. Neutron-proton effective mass splitting in terms of symmetry energy and its density slope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, S.; Sahoo, B.; Sahoo, S., E-mail: sukadevsahoo@yahoo.com

    2015-01-15

    Using a simple density-dependent finite-range effective interaction having Yukawa form, the density dependence of isoscalar and isovector effective masses is studied. The isovector effective mass is found to be different for different pairs of like and unlike nucleons. Using HVH theorem, the neutron-proton effective mass splitting is represented in terms of symmetry energy and its density slope. It is again observed that the neutron-proton effective mass splitting has got a positive value when isoscalar effective mass is greater than the isovector effective mass and has a negative value for the opposite case. Furthermore, the neutron-proton effective mass splitting is foundmore » to have a linear dependence on asymmetry β. The second-order symmetry potential has a vital role in the determination of density slope of symmetry energy but it does not have any contribution on neutron-proton effective mass splitting. The finite-range effective interaction is compared with the SLy2, SKM, f{sub −}, f{sub 0}, and f{sub +} forms of interactions.« less

  17. Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ashwani; Chandramohan, V. P.

    2018-04-01

    A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.

  18. Understanding PSA and its derivatives in prediction of tumor volume: Addressing health disparities in prostate cancer risk stratification.

    PubMed

    Chinea, Felix M; Lyapichev, Kirill; Epstein, Jonathan I; Kwon, Deukwoo; Smith, Paul Taylor; Pollack, Alan; Cote, Richard J; Kryvenko, Oleksandr N

    2017-03-28

    To address health disparities in risk stratification of U.S. Hispanic/Latino men by characterizing influences of prostate weight, body mass index, and race/ethnicity on the correlation of PSA derivatives with Gleason score 6 (Grade Group 1) tumor volume in a diverse cohort. Using published PSA density and PSA mass density cutoff values, men with higher body mass indices and prostate weights were less likely to have a tumor volume <0.5 cm3. Variability across race/ethnicity was found in the univariable analysis for all PSA derivatives when predicting for tumor volume. In receiver operator characteristic analysis, area under the curve values for all PSA derivatives varied across race/ethnicity with lower optimal cutoff values for Hispanic/Latino (PSA=2.79, PSA density=0.06, PSA mass=0.37, PSA mass density=0.011) and Non-Hispanic Black (PSA=3.75, PSA density=0.07, PSA mass=0.46, PSA mass density=0.008) compared to Non-Hispanic White men (PSA=4.20, PSA density=0.11 PSA mass=0.53, PSA mass density=0.014). We retrospectively analyzed 589 patients with low-risk prostate cancer at radical prostatectomy. Pre-operative PSA, patient height, body weight, and prostate weight were used to calculate all PSA derivatives. Receiver operating characteristic curves were constructed for each PSA derivative per racial/ethnic group to establish optimal cutoff values predicting for tumor volume ≥0.5 cm3. Increasing prostate weight and body mass index negatively influence PSA derivatives for predicting tumor volume. PSA derivatives' ability to predict tumor volume varies significantly across race/ethnicity. Hispanic/Latino and Non-Hispanic Black men have lower optimal cutoff values for all PSA derivatives, which may impact risk assessment for prostate cancer.

  19. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and neutron-probe density measurements

    NASA Astrophysics Data System (ADS)

    Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.

    2016-08-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.

  20. Formation of Guaiacol by Spoilage Bacteria from Vanillic Acid, a Product of Rice Koji Cultivation, in Japanese Sake Brewing.

    PubMed

    Ito, Toshihiko; Konno, Mahito; Shimura, Yoichiro; Watanabe, Seiei; Takahashi, Hitoshi; Hashizume, Katsumi

    2016-06-08

    The formation of guaiacol, a potent phenolic off-odor compound in the Japanese sake brewing process, was investigated. Eight rice koji samples were analyzed, and one contained guaiacol and 4-vinylguaiacol (4-VG) at extraordinarily high levels: 374 and 2433 μg/kg dry mass koji, respectively. All samples contained ferulic and vanillic acids at concentrations of mg/kg dry mass koji. Guaiacol forming microorganisms were isolated from four rice koji samples. They were identified as Bacillus subtilis, B. amyloliquefaciens/subtilis, and Staphylococcus gallinarum using 16S rRNA gene sequence. These spoilage bacteria convert vanillic acid to guaiacol and ferulic acid to 4-VG. However, they convert very little ferulic acid or 4-VG to guaiacol. Nine strains of koji fungi tested produced vanillic acid at the mg/kg dry mass koji level after cultivation. These results indicated that spoilage bacteria form guaiacol from vanillic acid, which is a product of koji cultivation in the sake brewing process.

  1. Heat and Mass Transfer Model in Freeze-Dried Medium

    NASA Astrophysics Data System (ADS)

    Alfat, Sayahdin; Purqon, Acep

    2017-07-01

    There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.

  2. Tear proteomic analysis of patients with type 2 diabetes and dry eye syndrome by two-dimensional nano-liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Li, Bing; Sheng, Minjie; Xie, Liqi; Liu, Feng; Yan, Guoquan; Wang, Weifang; Lin, Anjuan; Zhao, Fei; Chen, Yihui

    2014-01-09

    Diabetes mellitus has been shown to be associated with and complicated by dry eye syndrome. We sought to examine and compare the tear film proteome of type 2 diabetic patients with or without dry eye syndrome and normal subjects using two-dimensional nano-liquid chromatography coupled with tandem mass spectrometry (MS)-based proteomics. Tears were collected from eight type 2 diabetes patients with dry eye syndrome, eight type 2 diabetes patients without dry eye syndrome, and eight normal subjects. Tear breakup time (BUT) was determined, and tear proteins were prepared and analyzed using two-dimensional strong cation-exchange/reversed-phase nano-scale liquid chromatography MS. All MS/MS spectra were identified by using SEQUEST against the human International Protein Index (IPI) database and the relative abundance of individual proteins was assessed by spectral counting. Tear BUT was significantly lower in patients with diabetes and dry eye syndrome than in patients with diabetes only and normal subjects. Analysis of spectral counts of tear proteins showed that, compared to healthy controls, patients with diabetes and dry eye syndrome had increased expression of apoptosis-related proteins, like annexin A1, and immunity- and inflammation-related proteins, including neutrophil elastase 2 and clusterin, and glycometabolism-related proteins, like apolipoprotein A-II. Dry eye syndrome in diabetic patients is associated with aberrant expression of tear proteins, and the findings could lead to identification of novel pathways for therapeutic targeting and new diagnostic markers.

  3. Potential worldwide distribution of Fusarium dry root rot in common beans based on the optimal environment for disease occurrence.

    PubMed

    Macedo, Renan; Sales, Lilian Patrícia; Yoshida, Fernanda; Silva-Abud, Lidianne Lemes; Lobo, Murillo

    2017-01-01

    Root rots are a constraint for staple food crops and a long-lasting food security problem worldwide. In common beans, yield losses originating from root damage are frequently attributed to dry root rot, a disease caused by the Fusarium solani species complex. The aim of this study was to model the current potential distribution of common bean dry root rot on a global scale and to project changes based on future expectations of climate change. Our approach used a spatial proxy of the field disease occurrence, instead of solely the pathogen distribution. We modeled the pathogen environmental requirements in locations where in-situ inoculum density seems ideal for disease manifestation. A dataset of 2,311 soil samples from commercial farms assessed from 2002 to 2015 allowed us to evaluate the environmental conditions associated with the pathogen's optimum inoculum density for disease occurrence, using a lower threshold as a spatial proxy. We encompassed not only the optimal conditions for disease occurrence but also the optimal pathogen's density required for host infection. An intermediate inoculum density of the pathogen was the best disease proxy, suggesting density-dependent mechanisms on host infection. We found a strong convergence on the environmental requirements of both the host and the disease development in tropical areas, mostly in Brazil, Central America, and African countries. Precipitation and temperature variables were important for explaining the disease occurrence (from 17.63% to 43.84%). Climate change will probably move the disease toward cooler regions, which in Brazil are more representative of small-scale farming, although an overall shrink in total area (from 48% to 49% in 2050 and 26% to 41% in 2070) was also predicted. Understanding pathogen distribution and disease risks in an evolutionary context will therefore support breeding for resistance programs and strategies for dry root rot management in common beans.

  4. Potential worldwide distribution of Fusarium dry root rot in common beans based on the optimal environment for disease occurrence

    PubMed Central

    Macedo, Renan; Sales, Lilian Patrícia; Yoshida, Fernanda; Silva-Abud, Lidianne Lemes

    2017-01-01

    Root rots are a constraint for staple food crops and a long-lasting food security problem worldwide. In common beans, yield losses originating from root damage are frequently attributed to dry root rot, a disease caused by the Fusarium solani species complex. The aim of this study was to model the current potential distribution of common bean dry root rot on a global scale and to project changes based on future expectations of climate change. Our approach used a spatial proxy of the field disease occurrence, instead of solely the pathogen distribution. We modeled the pathogen environmental requirements in locations where in-situ inoculum density seems ideal for disease manifestation. A dataset of 2,311 soil samples from commercial farms assessed from 2002 to 2015 allowed us to evaluate the environmental conditions associated with the pathogen’s optimum inoculum density for disease occurrence, using a lower threshold as a spatial proxy. We encompassed not only the optimal conditions for disease occurrence but also the optimal pathogen’s density required for host infection. An intermediate inoculum density of the pathogen was the best disease proxy, suggesting density-dependent mechanisms on host infection. We found a strong convergence on the environmental requirements of both the host and the disease development in tropical areas, mostly in Brazil, Central America, and African countries. Precipitation and temperature variables were important for explaining the disease occurrence (from 17.63% to 43.84%). Climate change will probably move the disease toward cooler regions, which in Brazil are more representative of small-scale farming, although an overall shrink in total area (from 48% to 49% in 2050 and 26% to 41% in 2070) was also predicted. Understanding pathogen distribution and disease risks in an evolutionary context will therefore support breeding for resistance programs and strategies for dry root rot management in common beans. PMID:29107985

  5. Rapid determination of cell mass and density using digitally controlled electric field in a microfluidic chip.

    PubMed

    Zhao, Yuliang; Lai, Hok Sum Sam; Zhang, Guanglie; Lee, Gwo-Bin; Li, Wen Jung

    2014-11-21

    The density of a single cell is a fundamental property of cells. Cells in the same cycle phase have similar volume, but the differences in their mass and density could elucidate each cell's physiological state. Here we report a novel technique to rapidly measure the density and mass of a single cell using an optically induced electrokinetics (OEK) microfluidic platform. Presently, single cellular mass and density measurement devices require a complicated fabrication process and their output is not scalable, i.e., it is extremely difficult to measure the mass and density of a large quantity of cells rapidly. The technique reported here operates on a principle combining sedimentation theory, computer vision, and microparticle manipulation techniques in an OEK microfluidic platform. We will show in this paper that this technique enables the measurement of single-cell volume, density, and mass rapidly and accurately in a repeatable manner. The technique is also scalable - it allows simultaneous measurement of volume, density, and mass of multiple cells. Essentially, a simple time-controlled projected light pattern is used to illuminate the selected area on the OEK microfluidic chip that contains cells to lift the cells to a particular height above the chip's surface. Then, the cells are allowed to "free fall" to the chip's surface, with competing buoyancy, gravitational, and fluidic drag forces acting on the cells. By using a computer vision algorithm to accurately track the motion of the cells and then relate the cells' motion trajectory to sedimentation theory, the volume, mass, and density of each cell can be rapidly determined. A theoretical model of micro-sized spheres settling towards an infinite plane in a microfluidic environment is first derived and validated experimentally using standard micropolystyrene beads to demonstrate the viability and accuracy of this new technique. Next, we show that the yeast cell volume, mass, and density could be rapidly determined using this technology, with results comparable to those using the existing method suspended microchannel resonator.

  6. Occurrence of species-rich crab fauna in a human-impacted mangrove forest questions the application of community analysis as an environmental assessment tool

    NASA Astrophysics Data System (ADS)

    Geist, Simon Joscha; Nordhaus, Inga; Hinrichs, Saskia

    2012-01-01

    Diversity and composition of the intertidal brachyuran crab community in the Segara Anakan Lagoon (SAL), Java, Indonesia, during the dry season of 2005 and the rainy season of 2006, shows that crab community composition and structure alone appeared to be poor indicators for the state of a forest in terms of tree diversity and wood-cutting intensity. The lagoon is surrounded by the largest mangrove stand in Java and is under constant anthropogenic pressure, mainly due to logging, land conversion for agriculture, overfishing and industrial pollution. This study aims to determine the crab community composition at different sites of the lagoon in relation to vegetation composition and sediment parameters. In addition it investigates if mangrove crabs can be used as bioindicators to describe the environmental state of mangrove forests (tree diversity, degree of logging). It was assumed to find a low crab diversity and species richness and a strong dominance of a single species at highly disturbed forest sites compared to moderately disturbed sites. A stratified, hierarchical design was used to sample the crab fauna at 13 stations distributed over the entire lagoon. Additionally, abiotic parameters and vegetation composition were recorded. In total 6463 crabs were caught belonging to 49 species, 5 superfamilies and 10 families, with Ocypodidae and Sesarmidae being the families of most note. Mean density of adult crabs was 27.7 individuals*m -2 and mean biomass was 12.8 g wet mass*m -2 or 1.3 g ash free dry mass*m -2. Density and biomass varied strongly within and between stations but they where within the range reported for other mangrove forests of the Indo-West-Pacific. Species composition was significantly different between stations. The distribution of facultatively leaf-feeding grapsid crabs was related to vegetation parameters (tree, seedling and undergrowth density), but the occurrence of single crab and tree species was not correlated. The distribution of ocypodid crabs, feeding on detritus and microphytobenthos, correlated with sediment characteristics like median grain size and organic content. The crab community was strongly dominated by one species at six stations, however, this was not correlated to the degree of logging. Leaf-feeding crab and mangrove tree diversity was correlated at areas of one hectare (stations), but not at a lower spatial scale (areas of 100 m 2, "zone"). Species richness of leaf-feeding crabs was not linked to forest diversity. Hence a functional relation between leaf-feeding crab and tree species diversity could not be proven.

  7. Testing assumptions for conservation of migratory shorebirds and coastal managed wetlands

    USGS Publications Warehouse

    Collazo, Jaime; James Lyons,; Herring, Garth

    2015-01-01

    Managed wetlands provide critical foraging and roosting habitats for shorebirds during migration; therefore, ensuring their availability is a priority action in shorebird conservation plans. Contemporary shorebird conservation plans rely on a number of assumptions about shorebird prey resources and migratory behavior to determine stopover habitat requirements. For example, the US Shorebird Conservation Plan for the Southeast-Caribbean region assumes that average benthic invertebrate biomass in foraging habitats is 2.4 g dry mass m−2 and that the dominant prey item of shorebirds in the region is Chironomid larvae. For effective conservation and management, it is important to test working assumptions and update predictive models that are used to estimate habitat requirements. We surveyed migratory shorebirds and sampled the benthic invertebrate community in coastal managed wetlands of South Carolina. We sampled invertebrates at three points in time representing early, middle, and late stages of spring migration, and concurrently surveyed shorebird stopover populations at approximately 7-day intervals throughout migration. We used analysis of variance by ranks to test for temporal variation in invertebrate biomass and density, and we used a model based approach (linear mixed model and Monte Carlo simulation) to estimate mean biomass and density. There was little evidence of a temporal variation in biomass or density during the course of spring shorebird migration, suggesting that shorebirds did not deplete invertebrate prey resources at our site. Estimated biomass was 1.47 g dry mass m−2 (95 % credible interval 0.13–3.55), approximately 39 % lower than values used in the regional shorebird conservation plan. An additional 4728 ha (a 63 % increase) would be required if habitat objectives were derived from biomass levels observed in our study. Polychaetes, especially Laeonereis culveri(2569 individuals m−2), were the most abundant prey in foraging habitats at our site. Polychaetes have lower caloric content than levels assumed in the regional plan; when lower caloric content and lower biomass levels are used to determine habitat objectives, an additional 6395 ha would be required (86 % increase). Shorebird conservation and management plans would benefit from considering the uncertainty in parameters used to derive habitat objectives, especially biomass and caloric content of prey resources. Iterative testing of models that are specific to the planning region will provide rapid advances for management and conservation of migratory shorebirds and coastal managed wetlands.

  8. Wheat response to CO2 enrichment: CO2 exchanges transpiration and mineral uptakes

    NASA Technical Reports Server (NTRS)

    Andre, M.; Ducloux, H.; Richaud, C.

    1986-01-01

    When simulating canopies planted in varied densities, researchers were able to demonstrate that increase of dry matter production by enhancing CO2 quickly becomes independant of increase of leaf area, especially above leaf area index of 2; dry matter gain results mainly from photosynthesis stimulation per unit of surface (primary CO2 effect). When crop density is low (the plants remaining alone a longer time), the effects of increasing leaf surface (tillering, leaf elongation here, branching for other plants etc.) was noticeable and dry matter simulation factor reached 1.65. This area effect decreased when canopy was closed in, as the effect of different surfaces no longer worked. The stimulation of photosynthesis reached to the primary CO2 effect. The accumulation in dry matter which was fast during that phase made the original weight advantage more and more neglectible. Comparison with short term measurements showed that first order long term effect of CO2 in wheat is predictible with short term experiment, from the effect of CO2 on photosynthesis measured on reference sample.

  9. Estimation of Dry Fracture Weakness, Porosity, and Fluid Modulus Using Observable Seismic Reflection Data in a Gas-Bearing Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Huaizhen; Zhang, Guangzhi

    2017-05-01

    Fracture detection and fluid identification are important tasks for a fractured reservoir characterization. Our goal is to demonstrate a direct approach to utilize azimuthal seismic data to estimate fluid bulk modulus, porosity, and dry fracture weaknesses, which decreases the uncertainty of fluid identification. Combining Gassmann's (Vier. der Natur. Gesellschaft Zürich 96:1-23, 1951) equations and linear-slip model, we first establish new simplified expressions of stiffness parameters for a gas-bearing saturated fractured rock with low porosity and small fracture density, and then we derive a novel PP-wave reflection coefficient in terms of dry background rock properties (P-wave and S-wave moduli, and density), fracture (dry fracture weaknesses), porosity, and fluid (fluid bulk modulus). A Bayesian Markov chain Monte Carlo nonlinear inversion method is proposed to estimate fluid bulk modulus, porosity, and fracture weaknesses directly from azimuthal seismic data. The inversion method yields reasonable estimates in the case of synthetic data containing a moderate noise and stable results on real data.

  10. Surface Flux Modeling for Air Quality Applications

    EPA Science Inventory

    For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic c...

  11. Influence of factors on the drying of cassava in a solar simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Njie, D.N.; Rumsey, T.R.

    1997-03-01

    In tropical countries, sun drying is still the most popular method used for processing root and tuber crops like cassava and yam. Relatively very little has been done on studying the kinetics of sun drying a bed of chips of cassava and similar crops, but this information is invaluable in finding options for reducing drying time and costs, and increasing tonnage produced. This project studied some factors that have an effect on the sun drying rate of cassava chips. The factors were ambient temperature, relative humidity, radiation intensity, air velocity, and loading density. A solar simulation chamber was constructed somore » that drying could be achieved under controllable conditions similar to those obtained in sun drying. Experiments carried out in the simulator revealed that temperature had the most significant effect on drying rate, followed by air velocity, and radiation intensity. Regression equations were developed relating the drying rate with the factors studied.« less

  12. Physicochemical properties of whole fruit plum powders obtained using different drying technologies.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Lech, Krzysztof; Łysiak, Grzegorz P; Figiel, Adam

    2016-09-15

    Physicochemical quality parameters of plum powders obtained by applying conventional drying methods and their combination devised to process plums were evaluated. The effect of freeze-drying (FD), vacuum drying (VD), convective drying (CD), microwave-vacuum drying (MVD) and combination of convective pre-drying and microwave finish-drying (CPD-MVFD) affected physical (bulk density, porosity, colour, solubility) and chemical (polyphenolic compounds determined by UPLC and antioxidant capacity by TEAC ABTS and FRAP methods) properties of plum powders. The MVD at 1.2 W g(-1) and a novel combination for plum powders production - CPD-MVFD at 70 °C/1.2 W g(-1) allowed the best preservation of phenolic compounds and increased the efficiency of production. Results obtained support the use of MVD and its combination for better quality of dried plum products. The study proved that the determination of the browning index and HMF level (formed via Maillard reaction) might be good tool for monitoring the thermal processing of plum powders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. PM10-bound polycyclic aromatic hydrocarbons in Chiang Mai (Thailand): Seasonal variations, source identification, health risk assessment and their relationship to air-mass movement

    NASA Astrophysics Data System (ADS)

    Wiriya, Wan; Prapamontol, Tippawan; Chantara, Somporn

    2013-04-01

    This study aims to analyze the seasonal variations of PM10-bound polycyclic aromatic hydrocarbons (PAHs) for an estimation of the human health risk and identification of their possible sources. Ninety four PM10 samples were collected during the dry and wet seasons of 2010 and the dry season of 2011 in Chiang Mai, Thailand, and analyzed for 16 PAHs by gas chromatography-mass spectrometry. The average PM10 concentrations were 104.91 ± 32.70, 13.28 ± 11.34 and 36.24 ± 19.16 μg/m3 in dry season of 2010, wet season of 2010 and dry season of 2011, respectively, while the average 16-PAHs concentrations were 25.87 ± 10.13, 3.12 ± 2.18 and 4.58 ± 2.18 ng/m3, respectively. Correlations of PM10 and total PAHs concentrations were relatively high during all seasons (r > 0.796). In addition, PM10 concentrations were highly correlated with carcinogenic PAHs (r = 0.927) during the dry season of 2010, indicating that carcinogenic compounds were dominant in the particulate PAHs and could be generated from open burning, usually conducted in the dry season. The average PM10 concentration in the dry season of 2011 was much lower than that in 2010 and lower than the annual average of the past 12 years (48.17 μg/m3) because of the unusually high amount of rain precipitation and low open burning activity in this year. According to the accumulated number of hot spots occurring in northern part of Thailand, approximately 19,000 spots were found in the dry season of 2010, while only 6,600 spots were found in the dry season of 2011. It can be seen that larger scale open burning activities were performed in the dry season of 2010 than in the dry season of 2011. The value of toxicity equivalent concentration from PAHs in the dry season of 2010 was higher than that of the wet season of 2010 and the dry season of 2011. This is obviously related to concentrations of PM10 and PAHs. Diagnostic ratio and principal component analysis were used to find out the sources of PM10-bound PAHs. It was found that vehicle emission and biomass burning were the main sources of PM10 and PAHs in this area. The high ratio value of benzo(a)anthracene/chrysene (BaA/CHR) in the dry season of 2010 indicated possible photochemical processes and long distance emissions. Findings on source identification of PM10 and PAHs were found to be relevant to the direction and speed of air mass movement run by backward trajectory.

  14. Characterization of screenings from three municipal wastewater treatment plants in the Region Rhône-Alpes.

    PubMed

    Le Hyaric, R; Canler, J-P; Barillon, B; Naquin, P; Gourdon, R

    2009-01-01

    The objective of this study was to analyze the composition of the screenings sampled from three municipal wastewater treatment plants (wwtp) located in the Region Rhône-Alpes, France. The plants were equipped with multi screening stages with gap sizes ranging from 60 to 3 mm. Waste production flows from each plant were monitored over at least 48 hours in each sampling campaign in order to calculate average production rates. Waste samples of at least 7 kg were collected from each screening stage in each plant at different seasons to evaluate the influence of different parameters on the composition of the waste. An overall 30 samples were thereby collected between May 2007 and February 2008, dried at 80 degrees C for a week, and subsequently hand sorted into 10 fractions of waste materials. Results showed that the average production varied between 0.53 and 3.49 kg (wet mass) per capita per year. The highest production rates were observed during or immediately after rainy weather conditions. The dry matter content ranged between 14.4 and 29.2% of wet mass, and the volatile matter content was between 70.0 and 90.5% of dry mass. The predominant materials in the screenings were found to be sanitary textiles which accounted for 65.2% to 73.6% of dry weight and fines (<20 mm) which accounted for 15.2% to 18.2% of dry weight. These proportions were relatively similar in each plant and each sampling campaign.

  15. Metal concentrations in the upper atmosphere during meteor showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.

    2010-02-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  16. Metal concentrations in the upper atmosphere during meteor showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.

    2009-09-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  17. Glaciers in Equilibrium - Results from the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Fountain, A. G.; Nylen, T. H.; Doran, P. T.

    2004-12-01

    Since 1993 the mass balance of two glaciers in the McMurdo Dry Valleys, Antarctica (163° E 77.5° S) has been measured. The magnitude of annual mass gain or loss does not exceed 10 cm water equivalent averaged over each glacier, consistent with the local climate of a polar desert. The overall trend in mass balance shows that the glaciers are in approximate balance with the current climate and no obvious trends exist in either the winter or summer balances. These are similar to a set of mass balance measurements made in another part of the dry valleys during the 1970s (Chinn, 1985). Recent analysis of the climate of the dry valleys shows this region is cooling at a rate of 0.7° C per decade during this period since 1986, which is reflected in the overall lowering of lake levels, decreased primary productivity of the lakes, and declining number of invertebrates (Doran et al., 2002). Although an unusually warm period occurred in the summer of 2001-2002, annual temperatures continue to cool. This region seems to be isolated from the warming elsewhere in Antarctica and the cooling in this part of the Ross Sea region may be due to El Nino forcing (Bertler et al, 2004). The sluggish behavior of the glaciers results from a low mass exchange and an apparent climatic buffering, which supports evidence from the geologic record that these glaciers have not advanced more than a few hundred meters over the past 3 million years (Hall et al., 1993). Many of the glaciers, however, are advancing which probably results from a slow time-scale response from warming conditions in the past millennium.

  18. Smoke emissions due to burning of green waste in the Mediterranean area: Influence of fuel moisture content and fuel mass

    NASA Astrophysics Data System (ADS)

    Tihay-Felicelli, V.; Santoni, P. A.; Gerandi, G.; Barboni, T.

    2017-06-01

    The aim of this study was to investigate emission characteristics in relation to differences in fuel moisture content (FMC) and initial dry mass. For this purpose, branches and twigs with leaves of Cistus monspeliensis were burned in a Large Scale Heat Release apparatus coupled to a Fourier Transform Infrared Spectrometer. A smoke analysis was conducted and the results highlighted the presence of CO2, H2O, CO, CH4, NO, NO2, NH3, SO2, and non-methane organic compounds (NMOC). CO2, NO, and NO2 species are mainly released during flaming combustion, whereas CO, CH4, NH3, and NMOC are emitted during both flaming and smoldering combustion. The emission of these compounds during flaming combustion is due to a rich fuel to air mixture, leading to incomplete combustion. The fuel moisture content and initial dry mass influence the flame residence time, the duration of smoldering combustion, the combustion efficiency, and the emission factors. By increasing the initial dry mass, the emission factors of NO, NO2, and CO2 decrease, whereas those of CO and CH4 increase. The increase of FMC induces an increase of the emission factors of CO, CH4, NH3, NMOC, and aerosols, and a decrease of those of CO2, NO, and NO2. Increasing fuel moisture content reduces fuel consumption, duration of smoldering, and peak heat release rate, but simultaneously increases the duration of propagation within the packed bed, and the flame residence time. Increasing the initial dry mass, causes all the previous combustion parameters to increase. These findings have implications for modeling biomass burning emissions and impacts.

  19. Herbicide dissipation from low density polyethylene mulch

    USDA-ARS?s Scientific Manuscript database

    Field and laboratory studies were conducted to examine herbicide dissipation when applied to low density polyethylene (LDPE) mulch for dry scenarios vs. washing off with water. In field studies, halosulfuron, paraquat, carfentrazone, glyphosate, and flumioxazin were applied to black 1.25-mil LDPE at...

  20. Connection between Stellar Mass Distributions within Galaxies and Quenching Since z = 2

    NASA Astrophysics Data System (ADS)

    Mosleh, Moein; Tacchella, Sandro; Renzini, Alvio; Carollo, C. Marcella; Molaeinezhad, Alireza; Onodera, Masato; Khosroshahi, Habib G.; Lilly, Simon

    2017-03-01

    We study the history from z˜ 2 to z˜ 0 of the stellar mass assembly of quiescent and star-forming galaxies in a spatially resolved fashion. For this purpose, we use multi-wavelength imaging data from the Hubble Space Telescope (HST) over the GOODS fields and the Sloan Digital Sky Survey (SDSS) for the local population. We present the radial stellar mass surface density profiles of galaxies with {M}* > {10}10 {M}⊙ , corrected for mass-to-light ratio ({M}* /L) variations, and derive the half-mass-radius (R m ), central stellar mass surface density within 1 kpc ({{{Σ }}}1) and surface density at R m ({{{Σ }}}m) for star-forming and quiescent galaxies and study their evolution with redshift. At fixed stellar mass, the half-mass sizes of quiescent galaxies increase from z˜ 2 to z˜ 0 by a factor of ˜ 3-5, whereas the half-mass sizes of star-forming galaxies increase only slightly, by a factor of ˜2. The central densities {{{Σ }}}1 of quiescent galaxies decline slightly (by a factor of ≲ 1.7) from z˜ 2 to z˜ 0, while for star-forming galaxies {{{Σ }}}1 increases with time, at fixed mass. We show that the central density {{{Σ }}}1 has a tighter correlation with specific star-formation rate (sSFR) than {{{Σ }}}m and for all masses and redshifts galaxies with higher central density are more prone to be quenched. Reaching a high central density ({{{Σ }}}1≳ {10}10 {M}⊙ {{kpc}}2) seems to be a prerequisite for the cessation of star formation, though a causal link between high {{{Σ }}}1 and quenching is difficult to prove and their correlation can have a different origin.

  1. Relationships of storm-time changes in thermospheric mass density with solar wind/IMF parameters and ring current index of Sym-H

    NASA Astrophysics Data System (ADS)

    Zhou, Yunliang; Ma, S. Y.; Xiong, Chao; Luehr, Hermann

    The total air mass densities at about 500 km altitude are derived using super-STAR accelerom-eter measurements onboard GRACE satellites for 25 great magnetic storms with minimum Dst less than 100 nT during 2002 to 2006 years. Taking NRLMSISE-00 model-predicted densities without active ap index input as a reference baseline of quiet-time mass density, the storm-time changes in upper thermospheric mass densities are obtained by subtraction for all the storm events and sorted into different grids of latitude by local time sector. The relationships of the storm-time density changes with various interplanetary parameters and magnetospheric ring current index of Sym-H are statistically investigated. The parameters include Akasofu energy coupling function, the merging electric field Em, the magnitude of IMF component in the GSM y-z plane etc. as calculated from OMNI data at 1 AU. It is found that the storm-time changes in the upper thermospheric mass density have the best linear correlation with the Sym-H index in general, showing nearly zero time delay at low-latitudes and a little time ahead at high-latitudes for most cases. Unexpectedly, the magnitude of IMF component in the y-z plane, Byz, shows correlation with storm-time mass density changes better and closer than Akasofu function and even Em. And, the mass density changes lag behind Byz about 1-4 hours for most cases at low-latitudes. The correlations considered above are local time dependent, showing the lowest at dusk sectors. For the largest superstorm of November 2003, the changes in mass density are correlated very closely with Byz, Em, and Sym-H index, showing correlation coefficients averaged over all latitudes in noon sector as high as 0.93, 0.91 and 0.90 separately. The physical factors controlling the lag times between the mass density changes at mid-low-latitudes and the interplanetary parameter variations are also analyzed. The results in this study may pro-vide useful suggestions for establishing empirical model to predict storm-time changes in upper thermospheric mass density. This work is supported by NSFC (No. 40804049) and Doctoral Fund of Ministry of Education of China (No. 200804860012).

  2. Heat and Mass Transfer in the Drying of a Cylindrical Body in an Oscillating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Rudobashta, S. P.; Zueva, G. A.; Kartashov, É. M.

    2018-01-01

    A problem on the heating of a cylindrical body of infinite length in an oscillating electromagnetic field in the process of its drying has been formulated and solved analytically with account of the intermittence of irradiation of the body defined by the Heaviside unit function, the exponential-law absorption of electromagnetic energy by it, and the convective heat and mass exchange between the surface of the body and the environment having constant parameters. The intensity of evaporation of moisture from the surface of the body was determined on the basis of analytical solution of the problem on the mass transfer (moisture diffusion) in it on the assumption that the phase transformations of the body proceed near its surface. Solutions of the problem on the heating of the cylindrical body have been obtained for the cases of nonuniform and uniform distributions of its local temperature, the temperature of the body averaged over its volume, and the temperature gradient near the surface of the body. The "serviceability" of these solutions was verified on the basis of numerical simulation, with them, of the drying of a seed shaped as a cylinder under the action of an oscillating infrared radiation. As a result of the numerical simulation performed, a technological regime of drying of seeds at minimum and maximum temperatures of their heating by on oscillating infrared radiation for a definite period of time in a cycle, providing not only the drying of the seeds but also substantial improvement of their sowing properties (the sprouting energy and the germination power), has been found. It is shown that the oscillating infrared heating of seeds can be used for their drying in pseudofluidized and vibrofluidized beds.

  3. Amino Acid Composition of Protein-Enriched Dried Pasta:
Is It Suitable for a Low-Carbohydrate Diet?

    PubMed

    Filip, Sebastjan; Vidrih, Rajko

    2015-09-01

    Today, obesity is one of the major health problems, a so-called epidemic of the developed world. Obesity arises through an imbalance between energy intake and energy expenditure, so it is important for products to have a balanced nutritional composition. The aim of this study is to prepare high-protein pasta with high nutritional quality, with emphasis on its amino acid composition, as ordinary durum pasta lacks lysine and threonine. Ordinary durum wheat pasta contains, on average, 77% carbohydrate, and can have even less than 10% protein. It is therefore often excluded from normal energy-restricted diets, and especially from low-carbohydrate diets. In this study pasta that can satisfy the nutritional requirements of a low-carbohydrate diet and is suitable for daily use was developed and evaluated. Protein-enhanced pasta was produced by adding high amounts of plant protein extract (40% dry matter) without (plain high-protein pasta) or with 3% dried spinach powder (high-protein spinach pasta) to durum wheat semolina. According to the sensory analysis data, the addition of 40% of plant protein extract satisfied sensory and nutritional requirements, allowing further development and evaluation for possible marketing. This analysis shows that these high-protein neutral and spinach pasta contain 36.4 and 39.6 g of protein per 100 g of dry mass, 12.07 and 14.70 g of total essential amino acids per 100 g of dry mass, and a high content of branched-chain amino acids, i.e. 5.54 and 6.65 g per 100 g of dry mass, respectively. This therefore represents a true alternative to durum wheat pasta for low-carbohydrate diets.

  4. Amino Acid Composition of Protein-Enriched Dried Pasta:
Is It Suitable for a Low-Carbohydrate Diet?

    PubMed Central

    Vidrih, Rajko

    2015-01-01

    Summary Today, obesity is one of the major health problems, a so-called epidemic of the developed world. Obesity arises through an imbalance between energy intake and energy expenditure, so it is important for products to have a balanced nutritional composition. The aim of this study is to prepare high-protein pasta with high nutritional quality, with emphasis on its amino acid composition, as ordinary durum pasta lacks lysine and threonine. Ordinary durum wheat pasta contains, on average, 77% carbohydrate, and can have even less than 10% protein. It is therefore often excluded from normal energy-restricted diets, and especially from low-carbohydrate diets. In this study pasta that can satisfy the nutritional requirements of a low-carbohydrate diet and is suitable for daily use was developed and evaluated. Protein-enhanced pasta was produced by adding high amounts of plant protein extract (40% dry matter) without (plain high-protein pasta) or with 3% dried spinach powder (high-protein spinach pasta) to durum wheat semolina. According to the sensory analysis data, the addition of 40% of plant protein extract satisfied sensory and nutritional requirements, allowing further development and evaluation for possible marketing. This analysis shows that these high-protein neutral and spinach pasta contain 36.4 and 39.6 g of protein per 100 g of dry mass, 12.07 and 14.70 g of total essential amino acids per 100 g of dry mass, and a high content of branched-chain amino acids, i.e. 5.54 and 6.65 g per 100 g of dry mass, respectively. This therefore represents a true alternative to durum wheat pasta for low-carbohydrate diets. PMID:27904361

  5. Antioxidant effects of aqueous extracts from dried calyx of Hibiscus sabdariffa Linn. (Roselle) in vitro using rat low-density lipoprotein (LDL).

    PubMed

    Hirunpanich, Vilasinee; Utaipat, Anocha; Morales, Noppawan Phumala; Bunyapraphatsara, Nuntavan; Sato, Hitoshi; Herunsalee, Angkana; Suthisisang, Chuthamanee

    2005-03-01

    The present study quantitatively investigated the antioxidant effects of the aqueous extracts from dried calyx of Hibiscus sabdariffa LINN. (roselle) in vitro using rat low-density lipoprotein (LDL). Formations of the conjugated dienes and thiobarbituric acid reactive substances (TBARs) were monitored as markers of the early and later stages of the oxidation of LDL, respectively. Thus, we demonstrated that the dried calyx extracts of roselle exhibits strong antioxidant activity in Cu(2+)-mediated oxidation of LDL (p<0.05) in vitro. The inhibitory effect of the extracts on LDL oxidation was dose-dependent at concentrations ranging from 0.1 to 5 mg/ml. Moreover, 5 mg/ml of roselle inhibited TBARs-formation with greater potency than 100 microM of vitamin E. In conclusion, this study provides a quantitative insight into the potent antioxidant effect of roselle in vitro.

  6. Impact of recess etching and surface treatments on ohmic contacts regrown by molecular-beam epitaxy for AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joglekar, S.; Azize, M.; Palacios, T.

    Ohmic contacts fabricated by regrowth of n{sup +} GaN are favorable alternatives to metal-stack-based alloyed contacts in GaN-based high electron mobility transistors. In this paper, the influence of reactive ion dry etching prior to regrowth on the contact resistance in AlGaN/GaN devices is discussed. We demonstrate that the dry etch conditions modify the surface band bending, dangling bond density, and the sidewall depletion width, which influences the contact resistance of regrown contacts. The impact of chemical surface treatments performed prior to regrowth is also investigated. The sensitivity of the contact resistance to the surface treatments is found to depend uponmore » the dangling bond density of the sidewall facets exposed after dry etching. A theoretical model has been developed in order to explain the observed trends.« less

  7. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    USGS Publications Warehouse

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  8. High density circuit technology, part 3

    NASA Technical Reports Server (NTRS)

    Wade, T. E.

    1982-01-01

    Dry processing - both etching and deposition - and present/future trends in semiconductor technology are discussed. In addition to a description of the basic apparatus, terminology, advantages, glow discharge phenomena, gas-surface chemistries, and key operational parameters for both dry etching and plasma deposition processes, a comprehensive survey of dry processing equipment (via vendor listing) is also included. The following topics are also discussed: fine-line photolithography, low-temperature processing, packaging for dense VLSI die, the role of integrated optics, and VLSI and technology innovations.

  9. Extreme decay of meteoric beryllium-10 as a proxy for persistent aridity.

    PubMed

    Valletta, Rachel D; Willenbring, Jane K; Lewis, Adam R; Ashworth, Allan C; Caffee, Marc

    2015-12-09

    The modern Antarctic Dry Valleys are locked in a hyper-arid, polar climate that enables the East Antarctic Ice Sheet (EAIS) to remain stable, frozen to underlying bedrock. The duration of these dry, cold conditions is a critical prerequisite when modeling the long-term mass balance of the EAIS during past warm climates and is best examined using terrestrial paleoclimatic proxies. Unfortunately, deposits containing such proxies are extremely rare and often difficult to date. Here, we apply a unique dating approach to tundra deposits using concentrations of meteoric beryllium-10 ((10)Be) adhered to paleolake sediments from the Friis Hills, central Dry Valleys. We show that lake sediments were emplaced between 14-17.5 My and have remained untouched by meteoric waters since that time. Our results support the notion that the onset of Dry Valleys aridification occurred ~14 My, precluding the possibility of EAIS collapse during Pliocene warming events. Lake fossils indicate that >14 My ago the Dry Valleys hosted a moist tundra that flourished in elevated atmospheric CO2 (>400 ppm). Thus, Dry Valleys tundra deposits record regional climatic transitions that affect EAIS mass balance, and, in a global paleoclimatic context, these deposits demonstrate how warming induced by 400 ppm CO2 manifests at high latitudes.

  10. Extreme decay of meteoric beryllium-10 as a proxy for persistent aridity

    PubMed Central

    Valletta, Rachel D.; Willenbring, Jane K.; Lewis, Adam R.; Ashworth, Allan C.; Caffee, Marc

    2015-01-01

    The modern Antarctic Dry Valleys are locked in a hyper-arid, polar climate that enables the East Antarctic Ice Sheet (EAIS) to remain stable, frozen to underlying bedrock. The duration of these dry, cold conditions is a critical prerequisite when modeling the long-term mass balance of the EAIS during past warm climates and is best examined using terrestrial paleoclimatic proxies. Unfortunately, deposits containing such proxies are extremely rare and often difficult to date. Here, we apply a unique dating approach to tundra deposits using concentrations of meteoric beryllium-10 (10Be) adhered to paleolake sediments from the Friis Hills, central Dry Valleys. We show that lake sediments were emplaced between 14–17.5 My and have remained untouched by meteoric waters since that time. Our results support the notion that the onset of Dry Valleys aridification occurred ~14 My, precluding the possibility of EAIS collapse during Pliocene warming events. Lake fossils indicate that >14 My ago the Dry Valleys hosted a moist tundra that flourished in elevated atmospheric CO2 (>400 ppm). Thus, Dry Valleys tundra deposits record regional climatic transitions that affect EAIS mass balance, and, in a global paleoclimatic context, these deposits demonstrate how warming induced by 400 ppm CO2 manifests at high latitudes. PMID:26647733

  11. Spindt cold cathode electron gun development program

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.

    1983-01-01

    A thin film field emission cathode array and an electron gun based on this emitter array are summarized. Fabricating state of the art cathodes for testing at NASA and NRL, advancing the fabrication technology, developing wedge shaped emitters, and performing emission tests are covered. An anistropic dry etching process (reactive ion beam etching) developed that leads to increasing the packing density of the emitter tips to about 5 x 10 to the 6th power/square cm. Tests with small arrays of emitter tips having about 10 tips has demonstrated current densities of over 100 A/sq cm. Several times using cathodes having a packing density of 1.25 x 10 to the 6th power tips/sq cm. Indications are that the higher packing density achievable with the dry etch process may extend this capability to the 500 A/sq cm range and beyond. The wedge emitter geometry was developed and shown to produce emission. This geometry can (in principle) extend the current density capability of the cathodes beyond the 500 A/sq cm level. An emission microscope was built and tested for use with the cathodes.

  12. A common-garden study of resource-island effects on a native and an exotic, annual grass after fire

    USGS Publications Warehouse

    Hoover, Amber N.; Germino, Matthew J.

    2012-01-01

    Plant-soil variation related to perennial-plant resource islands (coppices) interspersed with relatively bare interspaces is a major source of heterogeneity in desert rangelands. Our objective was to determine how native and exotic grasses vary on coppice mounds and interspaces (microsites) in unburned and burned sites and underlying factors that contribute to the variation in sagebrush-steppe rangelands of the Idaho National Lab, where interspaces typically have abiotic crusts. We asked how the exotic cheatgrass (Bromus tectorum L.) and native bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Löve) were distributed among the microsites and measured their abundances in three replicate wildfires and nearby unburned areas. We conducted a common-garden study in which soil cores from each burned microsite type were planted with seed of either species to determine microsite effects on establishment and growth of native and exotic grasses. We assessed soil physical properties in the common-garden study to determine the intrinsic properties of each microsite surface and the retention of microsite soil differences following transfer of soils to the garden, to plant growth, and to wetting/drying cycles. In the field study, only bluebunch wheatgrass density was greater on coppice mounds than interspaces, in both unburned and burned areas. In the common-garden experiment, there were microsite differences in soil physical properties, particularly in crust hardness and its relationship to moisture, but soil properties were unaffected by plant growth. Also in the experiment, both species had equal densities yet greater dry mass production on coppice-mound soils compared to interspace soils, suggesting microsite differences in growth but not establishment (likely related to crust weakening resulting from watering). Coppice-interspace patterning and specifically native-herb recovery on coppices is likely important for postfire resistance of this rangeland to cheatgrass.

  13. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    PubMed

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.

  14. Studying the effect of material initial conditions on drying induced stresses

    NASA Astrophysics Data System (ADS)

    Heydari, M.; Khalili, K.; Ahmadi-Brooghani, S. Y.

    2018-02-01

    Cracking as a result of non-uniform deformation during drying is one of defects that may occur during drying and has to be dealt with by proper drying treatment. In the current study the effect of initial condition has been investigated on stress-strain induced by drying. The convective drying of a porous clay-like material has been simulated by using a mathematical model. Mass and heat transfer along with the mechanical behavior of the object being dried make the phenomenon a highly coupled problem. The coupling variables are the solid displacement, moisture content and temperature of the porous medium. A numerical solution is sought and employed to predict the influence of initial conditions of material on the drying induced stresses, the moisture content, and the temperature variations. Simulation results showed that increasing the initial temperature is an effective way to reduce the stresses induced by drying and to obtain products with good quality without significant change in drying curve and in comparison this is more effective than intermittent drying.

  15. Differentiation of Lung Cancer, Empyema, and Abscess Through the Investigation of a Dry Cough.

    PubMed

    Urso, Brittany; Michaels, Scott

    2016-11-24

    An acute dry cough results commonly from bronchitis or pneumonia. When a patient presents with signs of infection, respiratory crackles, and a positive chest radiograph, the diagnosis of pneumonia is more common. Antibiotic failure in a patient being treated for community-acquired pneumonia requires further investigation through chest computed tomography. If a lung mass is found on chest computed tomography, lung empyema, abscess, and cancer need to be included on the differential and managed aggressively. This report describes a 55-year-old Caucasian male, with a history of obesity, recovered alcoholism, hypercholesterolemia, and hypertension, presenting with an acute dry cough in the primary care setting. The patient developed signs of infection and was found to have a lung mass on chest computed tomography. Treatment with piperacillin-tazobactam and chest tube placement did not resolve the mass, so treatment with thoracotomy and lobectomy was required. It was determined through surgical investigation that the patient, despite having no risk factors, developed a lung abscess. Lung abscesses rarely form in healthy middle-aged individuals making it an unlikely cause of the patient's presenting symptom, dry cough. The patient cleared his infection with proper management and only suffered minor complications of mild pneumoperitoneum and pneumothorax during his hospitalization.

  16. Rock property measurements and analysis of selected igneous, sedimentary, and metamorphic rocks from worldwide localities

    USGS Publications Warehouse

    Johnson, Gordon R.

    1983-01-01

    Dry bulk density and grain density measurements were made on 182 samples of igneous, sedimentary, and metamorphic rocks from various world-wide localities. Total porosity values and both water-accessible and helium-accessible porosities were calculated from the density data. Magnetic susceptibility measurements were made on the solid samples and permeability and streaming potentials were concurrently measured on most samples. Dry bulk densities obtained using two methods of volume determination, namely direct measurement and Archlmedes principle, were nearly equivalent for most samples. Grain densities obtained on powdered samples were typically greater than grain densities obtained on solid samples, but differences were usually small. Sedimentary rocks had the highest percentage of occluded porosity per rock volume whereas metamorphic rocks had the highest percentage of occluded porosity per total porosity. There was no apparent direct relationship between permeability and streaming potential for most samples, although there were indications of such a relationship in the rock group consisting of granites, aplites, and syenites. Most rock types or groups of similar rock types of low permeability had, when averaged, comparable levels of streaming potential per unit of permeability. Three calcite samples had negative streaming potentials.

  17. An analysis and implications of alternative methods of deriving the density (WPL) terms for eddy covariance flux measurements

    Treesearch

    W. J. Massman; J. -P. Tuovinen

    2006-01-01

    We explore some of the underlying assumptions used to derive the density or WPL terms (Webb et al. (1980) Quart J RoyMeteorol Soc 106:85-100) required for estimating the surface exchange fluxes by eddy covariance. As part of this effort we recast the origin of the density terms as an assumption regarding the density fluctuations rather than as a (dry air) flux...

  18. Natural seed fall in white pine (Pinus strobes L.) stands of varying density

    Treesearch

    Raymond E. Graber

    1970-01-01

    Seed fall was observed in three stands of mature white pines at stand basal-area densities of 80, 120, and 187 square feet per acre. It was found that the intermediate-density stand produced nearly 50 percent more seed than the stands of other densities. During a good seed year this stand produced 59 pounds of dry sound seed per acre. Most of the seeds were dispersed...

  19. Computation of mass-density images from x-ray refraction-angle images.

    PubMed

    Wernick, Miles N; Yang, Yongyi; Mondal, Indrasis; Chapman, Dean; Hasnah, Moumen; Parham, Christopher; Pisano, Etta; Zhong, Zhong

    2006-04-07

    In this paper, we investigate the possibility of computing quantitatively accurate images of mass density variations in soft tissue. This is a challenging task, because density variations in soft tissue, such as the breast, can be very subtle. Beginning from an image of refraction angle created by either diffraction-enhanced imaging (DEI) or multiple-image radiography (MIR), we estimate the mass-density image using a constrained least squares (CLS) method. The CLS algorithm yields accurate density estimates while effectively suppressing noise. Our method improves on an analytical method proposed by Hasnah et al (2005 Med. Phys. 32 549-52), which can produce significant artefacts when even a modest level of noise is present. We present a quantitative evaluation study to determine the accuracy with which mass density can be determined in the presence of noise. Based on computer simulations, we find that the mass-density estimation error can be as low as a few per cent for typical density variations found in the breast. Example images computed from less-noisy real data are also shown to illustrate the feasibility of the technique. We anticipate that density imaging may have application in assessment of water content of cartilage resulting from osteoarthritis, in evaluation of bone density, and in mammographic interpretation.

  20. The maximal-density mass function for primordial black hole dark matter

    NASA Astrophysics Data System (ADS)

    Lehmann, Benjamin V.; Profumo, Stefano; Yant, Jackson

    2018-04-01

    The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent on the functional form of the PBH mass function. This complicates general statements about the mass functions allowed by current data, and, in particular, about the maximum total density of PBH. Numerical studies suggest that some forms of extended mass functions face tighter constraints than monochromatic mass functions, but they do not preclude the existence of a functional form for which constraints are relaxed. We use analytical arguments to show that the mass function which maximizes the fraction of the matter density in PBH subject to all constraints is a finite linear combination of monochromatic mass functions. We explicitly compute the maximum fraction of dark matter in PBH for different combinations of current constraints, allowing for total freedom of the mass function. Our framework elucidates the dependence of the maximum PBH density on the form of observational constraints, and we discuss the implications of current and future constraints for the viability of the PBH dark matter paradigm.

  1. Reef communities in the Dry Tortugas (Florida, USA): Baseline surveys for the new no-take area

    USGS Publications Warehouse

    2008-01-01

    To understand the current community structure on reefs in the Dry Tortugas, we conducted specieslevel surveys of macroalgae, coral diversity, herbivorous and game fishes, urchins, and substratum composition (e.g., rugosity) in shallow (3- to 5-m depth) low-relief reef and hardbottom habitats in October 2007. We had particular interest in the ecological process of herbivory inside and outside of the “no-take” Research Natural Area (RNA) designated by the U.S. National Park Service in 2007, and establishing a baseline to assess future changes to trophic functioning. Diadema antillarum and herbivorous fish abundance, percent cover of macroalgae, and species richness of corals and gorgonians at the 18 randomly selected survey sites were not significantly different inside vs. outside of the RNA. Mean densities of D. antillarum ranged from 0.01 to 0.54 individuals m-2, with 11 of the 18 sites having densities above 0.10 individuals m-2. Both D. antillarum density and coral species richness were positively correlated to rugosity of the substratum. Diadema antillarum density was also positively related to percentage of the substratum composed of Acropora cervicornis rubble. Improved trophic functioning and increases in D. antillarum can improve reef condition in the Dry Tortugas, and the RNA is an important management tool to achieve increases in reef resilience to global-scale stressors.

  2. Three-dimensional printing and deformation behavior of low-density target structures by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Stein, Ori; Campbell, John H.; Jiang, Lijia; Petta, Nicole; Lu, Yongfeng

    2017-08-01

    Two-photon polymerization (2PP), a 3D nano to microscale additive manufacturing process, is being used for the first time to fabricate small custom experimental packages ("targets") to support laser-driven high-energy-density (HED) physics research. Of particular interest is the use of 2PP to deterministically print low-density, low atomic-number (CHO) polymer matrices ("foams") at millimeter scale with sub-micrometer resolution. Deformation during development and drying of the foam structures remains a challenge when using certain commercial photo-resins; here we compare use of acrylic resins IP-S and IP-Dip. The mechanical strength of polymeric beam and foam structures is examined particularly the degree of deformation that occurs during the development and drying processes. The magnitude of the shrinkage in the two resins in quantified by printing sample structures and by use of FEA to simulate the deformation. Capillary drying forces are shown to be small and likely below the elastic limit of the core foam structure. In contrast the substantial shrinkage in IP-Dip ( 5-10%) cause large shear stresses and associated plastic deformation particularly near constrained boundaries such as the substrate and locations with sharp density variation. The inherent weakness of stitching boundaries is also evident and in certain cases can lead to delamination. Use of IP-S shows marked reduction in deformation with a minor loss of print resolution

  3. Basic ecology of the Oaxacan Spiny-tailed Iguana Ctenosaura oaxacana (Squamata: Iguanidae), in Oaxaca, Mexico.

    PubMed

    Rioja, Tamara; Carrillo-Reyes, Arturo; Espinoza-Medinilla, Eduardo; López-Mendoza, Sergio

    2012-12-01

    The Oaxacan Spiny-tailed Iguana Ctenosaura oaxacana is a restricted species to the Isthmus of Tehuantepec in Southern Oaxaca, Mexico. This reptile is one of the less known iguanid species. We census-tracked a population in the South ofNiltepec, Oaxaca, Mexico from May 2010 to April 2011. Throughout one year, a total of 10 line transects were situated and recorded in the study area to determine relative abundance and density, and habitat type use (dry forest, Nanchal, grassland, riparian vegetation, and mangrove) by the species. This study reports a new C. oaxacana population on the Southeastern limit of species range. Although this species has a very restricted distribution and is in danger of extinction, C. oaxacana has a high population density when compared to other Ctenosaura species. A total of 108 individuals were recorded throughout the study. Dry forest (33.75ind/ha) and Nanchal (18.75ind/ha) were the habitats with higher densities. Comparisons between habitat types showed no significant differences between dry forest and Nanchal (W=15, p=0.0808). Results between seasons were similar. The Oaxacan Spiny tailed Iguana preferred first the dry forest, and then Nanchal, while avoided grassland, riparian vegetation, and mangroves. There was no difference in habitat use between males and females. Mean perch heights were 1.23 +/- 0.32 (n=30) in Nanchal, 2.11 +/- 0.30 (n=9) in grassland, 1.90 +/- 0.56 (n=54) in dry forest, 1.91 +/- 0.28 (n=9) in mangrove and 2.30 +/- 0.37 (n=6) in riparian vegetation. Species observed as refuge and perch were B. crassifolia (Nanchal); C. alata (grassland); Tabebuia sp., Genipa americana, G. sepium, Acacia sp., Ficus sp. and Haematoxylon sp. (dry forest); G. sepium, Acacia sp. and Guazuma ulmifolia (riparian vegetation); and C. erecta (mangrove). Live trees hollows and branches were used by species. Main threats to the species are excessive hunting and habitat loss. Furthermore, grassland fires are still common in the study area during the dry season, which can result in habitat loss and territorial displacement of individuals.

  4. Current Trends in Preservation Research and Development.

    ERIC Educational Resources Information Center

    Cunha, George Martin

    1990-01-01

    Overview of current trends in the preservation of library materials discusses collections conservation and management; climate control; insect and mold control; fire control; the effects of compact shelving; freezing and freeze-drying; space drying; alkaline paper; recycled paper; mass deacidification; and paper strengthening. (27 notes and…

  5. Recent advances in fluidized bed drying

    NASA Astrophysics Data System (ADS)

    Haron, N. S.; Zakaria, J. H.; Mohideen Batcha, M. F.

    2017-09-01

    Fluidized bed drying are very well known to yield high heat and mass transfer and hence adopted to many industrial drying processes particularly agricultural products. In this paper, recent advances in fluidized bed drying were reviewed and focus is given to the drying related to the usage of Computational Fluid Dynamics (CFD). It can be seen that usage of modern computational tools such as CFD helps to optimize the fluidized bed dryer design and operation for lower energy consumption and thus better thermal efficiency. Among agricultural products that were reviewed in this paper were oil palm frond, wheat grains, olive pomace, coconut, pepper corn and millet.

  6. Seasonal abundance of total and pathogenic Vibrio parahaemolyticus isolated from American oysters harvested in the Mandinga Lagoon System, Veracruz, Mexico: implications for food safety.

    PubMed

    Flores-Primo, Argel; Pardío-Sedas, Violeta; Lizárraga-Partida, Leonardo; López-Hernández, Karla; Uscanga-Serrano, Roxana; Flores-Hernández, Reyna

    2014-07-01

    The abundance of total and pathogenic Vibrio parahaemolyticus (Vp) strains in American oysters (Crassostrea virginica) harvested in two different harvest sites from the Mandinga lagoon System was evaluated monthly for 1 year (January through December 2012). Frequencies of species-specific genes and pathogenic genes exhibited a seasonal distribution. The annual occurrence of Vp with the species-specific tlh gene (tlh(+)) was significantly higher during the winter windy season (32.50%) and spring dry season (15.0%), with the highest densities observed during spring dry season at 283.50 most probable number (MPN)/g (lagoon bank A, near human settlements), indicating the highest risk of infection during warmer months. Pathogenic Vp tlh(+)/tdh(+) frequency was significantly higher during the winter windy and the spring dry seasons at 22.50 and 10.00%, respectively, with highest densities of 16.22 and 41.05 MPN/g (bank A), respectively. The tlh/trh and tdh/trh gene combinations were also found in Vp isolates during the spring dry season at 1.25 and 1.3%, respectively, with densities of 1.79 and 0.4 MPN/g (bank A), respectively. The orf8 genes were detected during the winter windy season (1.25%) with highest densities of 5.96 MPN/g (bank A) and 3.21 MPN/g (bank B, near mangrove islands and a heron nesting area). Densities of Vp tdh(+) were correlated (R(2) = 0.245, P < 0.015) with those of Vp orf8(+). The seasonal dynamics of Vp harboring pathogenic genes varied with seasonal changes, with very high proportions of Vp tdh(+) and Vp orf8(+) isolates in the winter windy season at 46.2 and 17.0%, respectively, which suggests that environmental factors may differentially affect the abundance of pathogenic subpopulations. Although all densities of total Vp (Vp tlh(+)) were lower than 10(4) MPN/g, thus complying with Mexican regulations, the presence of pathogenic strains is a public health concern. Our results suggest that total Vp densities may not be appropriate for assessing oyster contamination and predicting the risk of infection. Evaluation of the presence of pathogenic strains would be a better approach to protecting public health.

  7. The connection between mass, environment, and slow rotation in simulated galaxies

    NASA Astrophysics Data System (ADS)

    Lagos, Claudia del P.; Schaye, Joop; Bahé, Yannick; Van de Sande, Jesse; Kay, Scott T.; Barnes, David; Davis, Timothy A.; Dalla Vecchia, Claudio

    2018-06-01

    Recent observations from integral field spectroscopy (IFS) indicate that the fraction of galaxies that are slow rotators (SRs), FSR, depends primarily on stellar mass, with no significant dependence on environment. We investigate these trends and the formation paths of SRs using the EAGLE and HYDRANGEA hydrodynamical simulations. EAGLE consists of several cosmological boxes of volumes up to (100 Mpc)^3, while HYDRANGEA consists of 24 cosmological simulations of galaxy clusters and their environment. Together they provide a statistically significant sample in the stellar mass range 10^{9.5}-10^{12.3} M_{⊙}, of 16 358 galaxies. We construct IFS-like cubes and measure stellar spin parameters, λR, and ellipticities, allowing us to classify galaxies into slow/fast rotators as in observations. The simulations display a primary dependence of FSR on stellar mass, with a weak dependence on environment. At fixed stellar mass, satellite galaxies are more likely to be SRs than centrals. FSR shows a dependence on halo mass at fixed stellar mass for central galaxies, while no such trend is seen for satellites. We find that ≈70 per cent of SRs at z = 0 have experienced at least one merger with mass ratio ≥0.1, with dry mergers being at least twice more common than wet mergers. Individual dry mergers tend to decrease λR, while wet mergers mostly increase it. However, 30 per cent of SRs at z = 0 have not experienced mergers, and those inhabit haloes with median spins twice smaller than the haloes hosting the rest of the SRs. Thus, although the formation paths of SRs can be varied, dry mergers and/or haloes with small spins dominate.

  8. Injection molding ceramics to high green densities

    NASA Technical Reports Server (NTRS)

    Mangels, J. A.; Williams, R. M.

    1983-01-01

    The injection molding behavior of a concentrated suspension of Si powder in wax was studied. It was found that the injection molding behavior was a function of the processing techniques used to generate the powder. Dry ball-milled powders had the best molding behavior, while air classified and impact-milled powders demonstrated poorer injection moldability. The relative viscosity of these molding batches was studied as a function of powder properties: distribution shape, surface area, packing density, and particle morphology. The experimental behavior, in all cases, followed existing theories. The relative viscosity of an injection molding composition composed of dry ball-milled powders could be expressed using Farris' relation.

  9. The Influence of Rainfall, Vegetation, Elephants and People on Fire Frequency of Miombo Woodlands, Northern Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, N. S.; Okin, G. S.; Shugart, H. H.; Swap, R. J.

    2008-12-01

    Miombo woodlands are important in southern Africa as they occupy over 50% of the land and, their good and services support a large proportion of people in the region. Anthropogenic fires occur in miombo every year especially in the dry season (May - October). This study explores the influence of annual rainfall, elephant density, human density and corridors, and vegetation on the fire frequency. It was carried out in Niassa Reserve located in northern Mozambique, the largest and more pristine conservation area of miombo woodlands in the world. We used a time series analysis and statistical t-test of MODIS-derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to explore the relationship between biomass and fire frequency. The influence of rainfall, elephants, people and vegetation on fire return was explored using a stepwise logistic regression analysis. The results of this study indicate that fire frequency is higher in places with high biomass at beginning of the dry season. In these areas fire seems to be more intense and to strongly reduce biomass in the late dry season. Land cover is the strongest predictor of fire frequency, but elephant density, annual rainfall and human corridors are also important.

  10. The influence of rainfall, vegetation, elephants and people on fire frequency of miombo woodlands, northern Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, N. S.; Okin, G. S.; Shugart, H.; Swap, R.

    2007-12-01

    Miombo woodlands are important in southern Africa as they occupy over 50% of the land and, their good and services support a large proportion of people in the region. Anthropogenic fires occur in miombo every year especially in the dry season (May - October). This study explores the influence of annual rainfall, elephant density, human density and corridors, and vegetation on the fire frequency. It was carried out in Niassa Reserve located in northern Mozambique, the largest and more pristine conservation area of miombo woodlands in the world. We used a time series analysis and statistical t-test of MODIS-derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to explore the relationship between biomass and fire frequency. The influence of rainfall, elephants, people and vegetation on fire return was explored using a stepwise logistic regression analysis. The results of this study indicate that fire frequency is higher in places with high biomass at beginning of the dry season. In these areas fire seems to be more intense and to strongly reduce biomass in the late dry season. Land cover is the strongest predictor of fire frequency, but elephant density, annual rainfall and human corridors are also important.

  11. The characterization of ceramic alumina prepared by using additive glass beads

    NASA Astrophysics Data System (ADS)

    Suprapedi; Muljadi; Sardjono, Priyo

    2018-01-01

    The ceramic alumina has been made by using additive glass bead (5 and 10 % wt.). There are two kinds of materials, such as : gamma Alumina and glass bead. Synthesis of alumina was done by ball milling for 24 hours, then the mixed powder was dried in drying oven at 100 °C for 6 hours. Furthermore, the dried powder was mixed by using 2 % of PVA and continued with compacted to form a pellet with pressure of 50 MPA. The next step is sintering process with variation temperature of 1150, 1200, 1250, 1300 and 1400 °C and holding time for 2 hours. The characterization conducted are consist of test density, hardness, shrinkage, and microstructure. The results show that ceramic alumina with addition of 10 % wt. glass bead has the higher value of density, hardness and shrinkage than addition of 5% wt. glass bead. The highest characterization of ceramic alumina with addition 10 % glass bead was achieved at sintering temperature of 1400 °C with density 3.68 g/cm3, hardness vickers 780.40 Hv and shrinkage 15.23 %. The XRD results show that it was founds a corrundum (alpha Alumina) as dominant phase and mullite as minor phase.

  12. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics

    PubMed Central

    Ilstedt, U.; Bargués Tobella, A.; Bazié, H. R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; Sheil, D.; Malmer, A.

    2016-01-01

    Water scarcity contributes to the poverty of around one-third of the world’s people. Despite many benefits, tree planting in dry regions is often discouraged by concerns that trees reduce water availability. Yet relevant studies from the tropics are scarce, and the impacts of intermediate tree cover remain unexplored. We developed and tested an optimum tree cover theory in which groundwater recharge is maximized at an intermediate tree density. Below this optimal tree density the benefits from any additional trees on water percolation exceed their extra water use, leading to increased groundwater recharge, while above the optimum the opposite occurs. Our results, based on groundwater budgets calibrated with measurements of drainage and transpiration in a cultivated woodland in West Africa, demonstrate that groundwater recharge was maximised at intermediate tree densities. In contrast to the prevailing view, we therefore find that moderate tree cover can increase groundwater recharge, and that tree planting and various tree management options can improve groundwater resources. We evaluate the necessary conditions for these results to hold and suggest that they are likely to be common in the seasonally dry tropics, offering potential for widespread tree establishment and increased benefits for hundreds of millions of people. PMID:26908158

  13. Reuse of thermosetting plastic waste for lightweight concrete.

    PubMed

    Panyakapo, Phaiboon; Panyakapo, Mallika

    2008-01-01

    This paper presents the utilization of thermosetting plastic as an admixture in the mix proportion of lightweight concrete. Since this type of plastic cannot be melted in the recycling process, its waste is expected to be more valuable by using as an admixture for the production of non-structural lightweight concrete. Experimental tests for the variation of mix proportion were carried out to determine the suitable proportion to achieve the required properties of lightweight concrete, which are: low dry density and acceptable compressive strength. The mix design in this research is the proportion of plastic, sand, water-cement ratio, aluminum powder, and lignite fly ash. The experimental results show that the plastic not only leads to a low dry density concrete, but also a low strength. It was found that the ratio of cement, sand, fly ash, and plastic equal to 1.0:0.8:0.3:0.9 is an appropriate mix proportion. The results of compressive strength and dry density are 4.14N/mm2 and 1395 kg/m3, respectively. This type of concrete meets most of the requirements for non-load-bearing lightweight concrete according to ASTM C129 Type II standard.

  14. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics

    NASA Astrophysics Data System (ADS)

    Ilstedt, U.; Bargués Tobella, A.; Bazié, H. R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; Sheil, D.; Malmer, A.

    2016-02-01

    Water scarcity contributes to the poverty of around one-third of the world’s people. Despite many benefits, tree planting in dry regions is often discouraged by concerns that trees reduce water availability. Yet relevant studies from the tropics are scarce, and the impacts of intermediate tree cover remain unexplored. We developed and tested an optimum tree cover theory in which groundwater recharge is maximized at an intermediate tree density. Below this optimal tree density the benefits from any additional trees on water percolation exceed their extra water use, leading to increased groundwater recharge, while above the optimum the opposite occurs. Our results, based on groundwater budgets calibrated with measurements of drainage and transpiration in a cultivated woodland in West Africa, demonstrate that groundwater recharge was maximised at intermediate tree densities. In contrast to the prevailing view, we therefore find that moderate tree cover can increase groundwater recharge, and that tree planting and various tree management options can improve groundwater resources. We evaluate the necessary conditions for these results to hold and suggest that they are likely to be common in the seasonally dry tropics, offering potential for widespread tree establishment and increased benefits for hundreds of millions of people.

  15. Ecological, biological and social dimensions of dengue vector breeding in five urban settings of Latin America: a multi-country study

    PubMed Central

    2014-01-01

    Background Dengue is an increasingly important public health problem in most Latin American countries and more cost-effective ways of reducing dengue vector densities to prevent transmission are in demand by vector control programs. This multi-centre study attempted to identify key factors associated with vector breeding and development as a basis for improving targeted intervention strategies. Methods In each of 5 participant cities in Mexico, Colombia, Ecuador, Brazil and Uruguay, 20 clusters were randomly selected by grid sampling to incorporate 100 contiguous households, non-residential private buildings (businesses) and public spaces. Standardized household surveys, cluster background surveys and entomological surveys specifically targeted to obtain pupal indices for Aedes aegypti, were conducted in the dry and wet seasons. Results The study clusters included mainly urban low-middle class populations with satisfactory infrastructure and –except for Uruguay- favourable climatic conditions for dengue vector development. Household knowledge about dengue and “dengue mosquitoes” was widespread, mainly through mass media, but there was less awareness around interventions to reduce vector densities. Vector production (measured through pupal indices) was favoured when water containers were outdoor, uncovered, unused (even in Colombia and Ecuador where the large tanks used for household water storage and washing were predominantly productive) and –particularly during the dry season- rainwater filled. Larval infestation did not reflect productive container types. All productive container types, including those important in the dry season, were identified by pupal surveys executed during the rainy season. Conclusions A number of findings are relevant for improving vector control: 1) there is a need for complementing larval surveys with occasional pupal surveys (to be conducted during the wet season) for identifying and subsequently targeting productive container types; 2) the need to raise public awareness about useful and effective interventions in productive container types specific to their area; and 3) the motivation for control services that-according to this and similar studies in Asia- dedicated, targeted vector management can make a difference in terms of reducing vector abundance. PMID:24447796

  16. A comprehensive review of thin-layer drying models used in agricultural products.

    PubMed

    Ertekin, Can; Firat, M Ziya

    2017-03-04

    Drying is one of the widely used methods of grain, fruit, and vegetable preservation. The important aim of drying is to reduce the moisture content and thereby increase the lifetime of products by limiting enzymatic and oxidative degradation. In addition, by reducing the amount of water, drying reduces the crop losses, improves the quality of dried products, and facilitates its transportation, handling, and storage requirements. Drying is a process comprising simultaneous heat and mass transfer within the material, and between the surface of the material and the surrounding media. Many models have been used to describe the drying process for different agricultural products. These models are used to estimate drying time of several products under different drying conditions, and how to increase the drying process efficiency and also to generalize drying curves, for the design and operation of dryers. Several investigators have proposed numerous mathematical models for thin-layer drying of many agricultural products. This study gives a comprehensive review of more than 100 different semitheoretical and empirical thin-layer drying models used in agricultural products and evaluates the statistical criteria for the determination of appropriate model.

  17. A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties.

    PubMed

    Krishnaiah, Duduku; Nithyanandam, Rajesh; Sarbatly, Rosalam

    2014-01-01

    Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.

  18. Phthalates and alternative plasticizers and potential for contact exposure from children's backpacks and toys.

    PubMed

    Xie, Mingjie; Wu, Yaoxing; Little, John C; Marr, Linsey C

    2016-01-01

    This work focuses on the mass content of plasticizers in children's backpacks and toys, and their mass transfer from product surfaces to cotton wipes. The mass content of plasticizers in six backpacks and seven toys was measured by extracting them in tetrahydrofuran. Bis(2-ethylhexyl) terephthalate (DEHT) was the most common plasticizer, dominating the composition of plasticizers in four backpacks (average mass content in product polyvinyl chloride, 5.38 ± 1.98%-25.5 ± 3.54%) and six plastic toys (8.17 ± 1.85%-21.2 ± 1.11%). The surface of each product was wiped with three dry and three wet (by isopropanol) cotton wipes, so as to evaluate the mass transfer of plasticizers to clothing and human skin, respectively. DEHT was the most common plasticizer detected on wipe samples. There were strong correlations (backpacks r=0.90; plastic toys r=0.96) between average mass transfer of DEHT to wet wipes and its average mass content in the product. The mass transfers of the five dominant plasticizers in one backpack to both dry and wet wipes were also correlated (both r=1.00) with their mass contents. These results suggest that the mass transfer of plasticizers from products to clothing or human skin is strongly associated with their mass content.

  19. Grade Distribution and Drying Degrade of Sweetgum and Yellow-poplar Structural Lumber

    Treesearch

    Timothy D. Faust

    1990-01-01

    The fact that the supply of southern pine timber is changing to include more lower quality plantation stock may provide incentive for utilizing lower density hardwoods for structural lumber. Yellow-poplar and sweetgum are potential substitutes for southern pine. A major problem in utilizing soft hardwoods for structural lumber is the difficulties associated with drying...

  20. Occurrence of termites (Isoptera) on living and standing dead trees in a tropical dry forest in Mexico.

    PubMed

    Calderón-Cortés, Nancy; Escalera-Vázquez, Luis H; Oyama, Ken

    2018-01-01

    Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60-98% of standing dead trees and 23-59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057-0.066 trees/m 2 ) than in riparian forests (0.022 and 0.027 trees/m 2 ), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01-0.09 trees/m 2 ) than in larger class sizes (0-0.02 trees/m 2 ). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.

Top