Science.gov

Sample records for dry organic solvent

  1. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.

    PubMed

    Nuchuchua, O; Every, H A; Hofland, G W; Jiskoot, W

    2014-11-01

    In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations.

  2. Evaluation of some water-miscible organic solvents for spray-drying enzymes and carbohydrates.

    PubMed

    Sass, Anke; Lee, Geoffrey

    2014-06-01

    The spray-drying behaviour of 16 water-miscible organic solvents on a bench-scale machine (Büchi B290 with inert loop) was determined under mild-to-moderate process conditions, namely inlet gas temperature of 130 °C and liquid feed flow rate of ≤3 mL/min. The solvents with boiling points below the inlet gas temperature could be fully dried (Group 1 solvents). The two exceptions were DMSO and DMF which despite their higher boiling points could be fully dried. The remaining solvents with boiling points above the inlet gas temperature were not fully dried during passage through the spray-dryer (Group 2 solvents). Trypsin and lysozyme when spray-dried from Group 1 solvent binary mixtures with water showed similar inactivation and residual water content, independent of solvent. The level of residual solvent was, however, strongly dependent on solvent. Trehalose (20%) and mannitol (10%) could be spray-dried from DMSO/water binary mixtures, but the amorphous disaccharide required higher inlet gas temperature. Trehalose/trypsin and mannitol/trypsin formulations showed differing degrees of protection against enzyme inactivation when spray-dried from Group 1 solvent binary mixtures with water. In all solvents the mannitol protected as well, if not better, than the trehalose. This study identifies some suitable organic solvents for spray-drying protein formulations, but also shows the difficulties of remaining organic solvent under the moderate inlet gas temperature used.

  3. Exposure to Organic Solvents Used in Dry Cleaning Reduces Low and High Level Visual Function

    PubMed Central

    Jiménez Barbosa, Ingrid Astrid

    2015-01-01

    Purpose To investigate whether exposure to occupational levels of organic solvents in the dry cleaning industry is associated with neurotoxic symptoms and visual deficits in the perception of basic visual features such as luminance contrast and colour, higher level processing of global motion and form (Experiment 1), and cognitive function as measured in a visual search task (Experiment 2). Methods The Q16 neurotoxic questionnaire, a commonly used measure of neurotoxicity (by the World Health Organization), was administered to assess the neurotoxic status of a group of 33 dry cleaners exposed to occupational levels of organic solvents (OS) and 35 age-matched non dry-cleaners who had never worked in the dry cleaning industry. In Experiment 1, to assess visual function, contrast sensitivity, colour/hue discrimination (Munsell Hue 100 test), global motion and form thresholds were assessed using computerised psychophysical tests. Sensitivity to global motion or form structure was quantified by varying the pattern coherence of global dot motion (GDM) and Glass pattern (oriented dot pairs) respectively (i.e., the percentage of dots/dot pairs that contribute to the perception of global structure). In Experiment 2, a letter visual-search task was used to measure reaction times (as a function of the number of elements: 4, 8, 16, 32, 64 and 100) in both parallel and serial search conditions. Results Dry cleaners exposed to organic solvents had significantly higher scores on the Q16 compared to non dry-cleaners indicating that dry cleaners experienced more neurotoxic symptoms on average. The contrast sensitivity function for dry cleaners was significantly lower at all spatial frequencies relative to non dry-cleaners, which is consistent with previous studies. Poorer colour discrimination performance was also noted in dry cleaners than non dry-cleaners, particularly along the blue/yellow axis. In a new finding, we report that global form and motion thresholds for dry cleaners

  4. Activity and Enantioselectivity of the Hydroxynitrile Lyase MeHNL in Dry Organic Solvents

    PubMed Central

    Paravidino, Monica; Sorgedrager, Menno J; Orru, Romano V A; Hanefeld, Ulf

    2010-01-01

    Water concentration affects both the enantioselectivity and activity of enzymes in dry organic media. Its influence has been investigated using the hydrocyanation of benzaldehyde catalyzed by hydroxynitrile lyase cross-linked enzyme aggregate (MeHNL-CLEA) as a model reaction. The enzyme displayed higher enantioselectivity at higher water concentration, thus suggesting a positive effect of enzyme flexibility on selectivity. The activity increased on reducing the solvent water content, but drastic dehydration of the enzyme resulted in a reversible loss of activity. PMID:20486110

  5. Preparation and evaluation of raloxifene-loaded solid dispersion nanoparticle by spray-drying technique without an organic solvent.

    PubMed

    Tran, Tuan Hiep; Poudel, Bijay K; Marasini, Nirmal; Chi, Sang-Cheol; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2013-02-25

    The aim of this study was to improve the physicochemical properties and bioavailability of a poorly water-soluble drug, raloxifene by solid dispersion (SD) nanoparticles using the spray-drying technique. These spray-dried SD nanoparticles were prepared with raloxifene (RXF), polyvinylpyrrolidone (PVP) and Tween 20 in water. Reconstitution of optimized RXF-loaded SD nanoparticles in pH 1.2 medium showed a mean particle size of approximately 180 nm. X-ray diffraction and differential scanning calorimetry indicated that RXF existed in an amorphous form within spray-dried nanoparticles. The optimized formulation showed an enhanced dissolution rate of RXF at pH 1.2, 4.0, 6.8 and distilled water as compared to pure RXF powder. The improved dissolution of raloxifene from spray-dried SD nanoparticles appeared to be well correlated with enhanced oral bioavailability of raloxifene in rats. Furthermore, the pharmacokinetic parameters of the spray-dried SD nanoparticles showed increased AUC(0-∞) and C(max) of RXF by approximately 3.3-fold and 2.3-fold, respectively. These results suggest that the preparation of RXF-SD nanoparticles using the spray drying technique without organic solvents might be a promising approach for improving the oral bioavailability of RXF.

  6. Formation and morphology of reverse micelles formed by nonionic surfactants in "dry" organic solvents.

    PubMed

    Pérez, Sofía V; Olea, Andres F; Gárate, M Pilar

    2014-01-01

    The formation of reverse micelles by nonionic alcohol ethoxylates surfactants in two "dry" non polar solvents, heptane and dibutoxymethane (DBM), has been studied. These surfactants are formed by a linear hydrocarbon chain consisting of i carbons, and a poly(ethylene oxide) chain with j ethoxylate units (EO) ending with a hydroxyl group, CiEOj. The study is focused on the determination of the critical micelle concentration CMC and the size and morphology of the formed aggregates. The CMC was obtained from the decreasing of interfacial tension with increasing surfactant concentration and by using pyrene sulfonic acid sodium salt as fluorescence probe. The results show that the CMC in heptane is one order of magnitude higher than in DBM and two orders of magnitude higher than those determined in aqueous solution. The self-diffusion coefficients D of C8EO5, C8EO4 and C10EO6 in heptane, were obtained by diffusion ordered spectroscopy (DOSY (1)H-NMR). The experimental values of D were then fitted to four different configurations to determine the most probable morphology of the formed aggregates. In all cases the presence of large and compact aggregates, with aggregation numbers going from a few dozens of monomers to a hundred of them, was shown.

  7. Surfactant-Free Solid Dispersions of Hydrophobic Drugs in an Amorphous Sugar Matrix Dried from an Organic Solvent.

    PubMed

    Takeda, Koji; Gotoda, Yuto; Hirota, Daichi; Hidaka, Fumihiro; Sato, Tomo; Matsuura, Tsutashi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi

    2017-03-06

    The technique for homogeneously dispersing hydrophobic drugs in a water-soluble solid matrix (solid dispersion) is a subject that has been extensively investigated in the pharmaceutical industry. Herein, a novel technique for dispersing a solid, without the need to use a surfactant, is reported. A freeze-dried amorphous sugar sample was dissolved in an organic solvent, which contained a soluble model hydrophobic component. The suspension of the sugar and the model hydrophobic component was vacuum foam dried to give a solid powder. Four types of sugars and methanol were used as representative sugars and the organic medium. Four model drugs (indomethacin, ibuprofen, gliclazide, and nifedipine) were employed. Differential scanning calorimetry analyses indicated that the sugar and model drug (100:1) did not undergo segregation during the drying process. The dissolution of the hydrophobic drugs in water from the solid dispersion was then evaluated, and the results indicated that the Cmax and AUC0-60 min of the hydrophobic drug in water were increased when the surfactant-free solid dispersion was used. Palatinose and/or α-maltose were superior to the other tested carbohydrates in increasing Cmax and AUC0-60 min for all tested model drugs, and the model drug with a lower water solubility tended to exhibit a greater extent of over-dissolution.

  8. Low operational stability of enzymes in dry organic solvents: changes in the active site might affect catalysis.

    PubMed

    Bansal, Vibha; Delgado, Yamixa; Legault, Marc; Barletta, Gabriel

    2012-02-14

    The potential of enzyme catalysis in organic solvents for synthetic applications has been overshadowed by the fact that their catalytic properties are affected by organic solvents. In addition, it has recently been shown that an enzyme's initial activity diminishes considerably after prolonged exposure to organic media. Studies geared towards understanding this last drawback have yielded unclear results. In the present work we decided to use electron paramagnetic resonance spectroscopy (EPR) to study the motion of an active site spin label (a nitroxide free radical) during 96 h of exposure of the serine protease subtilisin Carlsberg to four different organic solvents. Our EPR data shows a typical two component spectra that was quantified by the ratio of the anisotropic and isotropic signals. The isotropic component, associated with a mobile nitroxide free radical, increases during prolonged exposure to all solvents used in the study. The maximum increase (of 43%) was observed in 1,4-dioxane. Based on these and previous studies we suggest that prolonged exposure of the enzyme to these solvents provokes a cascade of events that could induce substrates to adopt different binding conformations. This is the first EPR study of the motion of an active-site spin label during prolonged exposure of an enzyme to organic solvents ever reported.

  9. Implementation of gradients of organic solvent in micellar liquid chromatography using DryLab(®): separation of basic compounds in urine samples.

    PubMed

    Rodenas-Montano, J; Ortiz-Bolsico, C; Ruiz-Angel, M J; García-Alvarez-Coque, M C

    2014-05-30

    In micellar liquid chromatography (MLC), chromatographic peaks are more evenly distributed compared to conventional reversed-phase liquid chromatography (RPLC). This is the reason that most procedures are implemented using isocratic elution. However, gradient elution may be still useful in MLC to analyse mixtures of compounds within a wide range of polarities, decreasing the analysis time. Also, it benefits the determination of moderately to low polar compounds in physiological fluids performing direct injection: an initial micellar eluent with a low organic solvent content, or a pure micellar (without surfactant) solution, will provide better protection of the column against the proteins in the physiological fluid, and once the proteins are swept away, the elution strength can be increased using a positive linear gradient of organic solvent to reduce the analysis time. This work aims to encourage analysts to implement gradients of organic solvent in MLC, which is rather simple and allows rapid analytical procedures without pre-treatment or the need of re-equilibration. The implementation of gradient elution is illustrated through the separation of eight basic compounds (β-blockers) in urine samples directly injected into the chromatograph, the most hydrophobic showing large retention in both conventional RPLC and MLC. The use of the DryLab(®) software to optimise gradients of organic solvent with eluents containing a fixed amount of surfactant above the critical micellar concentration is shown to provide satisfactory predictions, and can facilitate greatly the implementation of gradient protocols.

  10. Organic solvent topical report

    SciTech Connect

    Cowley, W.L.

    1998-04-30

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  11. Organic solvent topical report

    SciTech Connect

    COWLEY, W.L.

    1999-05-13

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  12. Novel spray freeze-drying technique using four-fluid nozzle-development of organic solvent system to expand its application to poorly water soluble drugs.

    PubMed

    Niwa, Toshiyuki; Shimabara, Hiroko; Danjo, Kazumi

    2010-02-01

    Spray freeze-drying (SFD) technique using four-fluid nozzle (4N), which is a novel particle design technique previously developed by authors, has been further developed to expand its application in pharmaceutical industry. The organic solvent was utilized as a spray solvent to dissolve the poorly soluble drug instead of conventional aqueous solution. Acetonitrile solution of the drug and aqueous solution of the polymeric carrier were separately and simultaneously atomized through 4N, and collided each other at the tip of nozzle edge. The spray mists were immediately frozen in the liquid nitrogen to form a suspension. Then, the iced droplets were freeze-dried to prepare the composite particles of the drug and carrier according to our proprietary method developed before. The resultant composite particles with phenytoin prepared by using acetonitrile (4N-SFD-MeCN system) were deeply characterized compared to those using aqueous solution (4N-SFD-aqua system) from morphological and physicochemical perspectives. The characteristic porous structure was observed in 4N-SFD-MeCN particles as well as 4N-SFD-aqua particles. However, it was found that the size and quantity of pore in 4N-SFD-MeCN particles were smaller than those of 4N-SFD-aqua particles. As a result, the former particles had 2- to 3-times smaller specific surface area than the latter particles independent of the type of carrier loaded. The slight difference of release profiles from the particles prepared between both systems was discussed from the microscopically structural viewpoint. In addition, ciclosporin was applied to organic solvent SFD system because this drug was poorly water soluble and cannot be applied to conventional aqueous SFD system. The release profiles from SFD particles were dramatically improved compared to the bulk material, suggesting that the new SFD technique using organic solvent has potential to develop the novel solubilized formulation for poorly water-soluble active pharmaceutical

  13. Microheterogeneity in phenyl group modified inorganic/organic hybrid gels after aerosol drying or slow solvent evaporation.

    PubMed

    Ulke, Simone; Koller, Hubert

    2011-01-01

    Sol-gel systems were prepared by co-hydrolysis and co-condensation of tetraethoxysilane (TEOS) and phenyltriethoxysilane (PhTES). The sols were transferred into silica gels by Evaporation Induced Self-Assembly (EISA) or Aerosol Assisted Self-Assembly (AASA) using a laboratory spray-dryer. The structural properties such as porosity and homogeneity/microheterogeneity of these different systems are compared by N(2) sorption measurements, thermal analysis (TG, DTG and DTA), (29)Si MAS NMR and (29)Si{(1)H} CP MAS NMR. The cross polarization of the AASA gels can be described with the conventional I-S dynamics of a homogeneous proton spin bath. The EISA gels are heterogeneous, and the I-I(*)-S model, or a bimodal I-S model, was employed for the simulation of CP dynamics. Microheterogeneities are observed by (1)H-(29)Si cross polarization on an EISA sample, whereas rapid drying (AASA) transfers the corresponding sol into homogeneous xerogels. The EISA gels are microporous after calcination at 923 K, and the AASA gels are dense.

  14. Organic Solvent Effects in Biomass Conversion Reactions.

    PubMed

    Shuai, Li; Luterbacher, Jeremy

    2016-01-01

    Transforming lignocellulosic biomass into fuels and chemicals has been intensely studied in recent years. A large amount of work has been dedicated to finding suitable solvent systems, which can improve the transformation of biomass into value-added chemicals. These efforts have been undertaken based on numerous research results that have shown that organic solvents can improve both conversion and selectivity of biomass to platform molecules. We present an overview of these organic solvent effects, which are harnessed in biomass conversion processes, including conversion of biomass to sugars, conversion of sugars to furanic compounds, and production of lignin monomers. A special emphasis is placed on comparing the solvent effects on conversion and product selectivity in water with those in organic solvents while discussing the origins of the differences that arise. We have categorized results as benefiting from two major types of effects: solvent effects on solubility of biomass components including cellulose and lignin and solvent effects on chemical thermodynamics including those affecting reactants, intermediates, products, and/or catalysts. Finally, the challenges of using organic solvents in industrial processes are discussed from the perspective of solvent cost, solvent stability, and solvent safety. We suggest that a holistic view of solvent effects, the mechanistic elucidation of these effects, and the careful consideration of the challenges associated with solvent use could assist researchers in choosing and designing improved solvent systems for targeted biomass conversion processes.

  15. Special Issue: "Organic Reactions in Green Solvents".

    PubMed

    Sperry, Jonathan; García-Álvarez, Joaquín

    2016-11-15

    To overcome the well-established drawbacks of conventional organic solvents (toxicity, non-biodegradability, flammability, accumulation in the atmosphere) remarkable research efforts have been recently devoted to the replacement of traditional organic reaction media by the so-called Green Solvents. In this sense, the choice of a safe, non-toxic, biorenewable and cheap reaction media is a crucial goal in organic synthesis. Thus, this Special Issue on "Organic Reactions in Green Solvents" has been aimed to showcase a series of stimulating contributions from international experts within different sub-areas of organic synthesis in Green Solvents (ranging from metal- to organo-catalyzed organic reactions).

  16. Method of stripping metals from organic solvents

    DOEpatents

    Todd, Terry A.; Law, Jack D.; Herbst, R. Scott; Romanovskiy, Valeriy N.; Smirnov, Igor V.; Babain, Vasily A.; Esimantovski, Vyatcheslav M.

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  17. Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme

    SciTech Connect

    Ogino, Hiroyasu; Yasui, Kiyoshi; Shiotani, Takashi

    1995-12-01

    A bacterial strain which can be grown in a medium containing organic solvents and can secrete a proteolytic enzyme was isolated and identified as Pseudomonas aeruginosa. The strain was derived by the following two-step procedures: high proteolytic enzyme producers were first isolated by the usual method, and then the organic solvent-tolerant microorganism was selected from these high-rate proteolytic enzyme producers. The proteolytic activity of the supernatant of the culture was stable in the presence of various organic solvents. The stability of the enzyme in the presence of organic solvents, of which the values of the logarithm of the partition coefficient (log P) were equal to or more than 3.2, was almost the same as that in the absence of organic solvents. It is expected that both the solvent-tolerant microorganism and the solvent-stable enzyme produced by this strain can be used as catalysts for reactions in the presence of organic solvents.

  18. Organic Solvent Tolerant Lipases and Applications

    PubMed Central

    Kanwar, Shamsher S.

    2014-01-01

    Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s) could be performed in water-restricted organic media as organic solvent(s) not only improve(s) the solubility of substrate and reactant in reaction mixture but also permit(s) the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented. PMID:24672342

  19. SOLVENT-FREE ORGANIC SYNTHESES USING MICROWAVES

    EPA Science Inventory

    The latest results on microwave-expedited solvent-free approach as applied to the assembly of organic molecules will be presented. The salient features of this expeditious methodology such as solvent conservation and ease of manipulation etc. will be described in the context of r...

  20. Organic solvent use in enterprises in Japan.

    PubMed

    Nagasawa, Yasuhiro; Ukai, Hirohiko; Okamoto, Satoru; Samoto, Hajime; Itoh, Kenji; Moriguchi, Jiro; Sakuragi, Sonoko; Ohashi, Fumiko; Takada, Shiro; Kawakami, Tetsuya; Ikeda, Masayuki

    2011-01-01

    This study was initiated to elucidate possible changes in types of organic solvents (to be called solvents in short) used in enterprises in Japan through comparison of current solvent types with historical data since 1983. To investigate current situation in solvent use in enterprises, surveys were conducted during one year of 2009 to 2010. In total, workroom air samples in 1,497 unit workplaces with solvent use were analyzed in accordance with regulatory requirements. Typical use pattern of solvents was as mixtures, accounting for >70% of cases. Adhesives spreading (followed by adhesion) was relatively common in small-scale enterprises, whereas printing and painting work was more common in middle-scale ones, and solvent use for testing and research purpose was basically in large-scaled enterprises. Through-out printing, painting, surface coating and adhesive application, toluene was most common (being detected in 49 to 82% of workplaces depending on work types), whereas isopropyl alcohol was most common (49%) in degreasing, cleaning and wiping workplaces. Other commonly used solvents were methyl alcohol, ethyl acetate and acetone (33 to 37%). Comparison with historical data in Japan and literature-retrieved data outside of Japan all agreed with the observation that toluene is the most commonly used solvent. Application of trichloroethylene and 1,1,1-trichloroethane, once common in 1980s, has ceased to exist in recent years.

  1. Solvent-free fluidic organic dye lasers.

    PubMed

    Choi, Eun Young; Mager, Loic; Cham, Tran Thi; Dorkenoo, Kokou D; Fort, Alain; Wu, Jeong Weon; Barsella, Alberto; Ribierre, Jean-Charles

    2013-05-06

    We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors.

  2. Asphaltene aggregation in organic solvents.

    PubMed

    Oh, Kyeongseok; Ring, Terry A; Deo, Milind D

    2004-03-01

    Asphaltenic solids formed in the Rangely field in the course of a carbon dioxide flood and heptane insolubles in the oil from the same field were used in this study. Four different solvents were used to dissolve the asphaltenes. Near-infrared (NIR) spectroscopy was used to determine the onset of asphaltene precipitation by heptane titration. When the onset values were plotted versus asphaltene concentrations, distinct break points (called critical aggregation concentrations (CAC) in this paper) were observed. CACs for the field asphaltenes dissolved in toluene, trichloroethylene, tetrahydrofuran, and pyridine occurred at concentrations of 3.0, 3.7, 5.0, and 8.2 g/l, respectively. CACs are observed at similar concentrations as critical micelle concentrations (CMC) for the asphaltenes in the solvents employed and can be interpreted to be the points at which rates of asphaltene aggregations change. CMC values of asphaltenes determined from surface tension measurements (in pyridine and TCE) were slightly higher than the CAC values measured by NIR onset measurements. The CAC for heptane-insoluble asphaltenes in toluene was 3.1 g/l. Thermal gravimetric analysis (TGA) and elemental compositions of the two asphaltenes showed that the H/C ratio of the heptane-insoluble asphaltenes was higher and molecular weight (measured by vapor pressure osmometry) was lower.

  3. Organic-solvent-tolerant bacterium which secretes organic-solvent-stable lipolytic enzyme

    SciTech Connect

    Ogino, Hiroyasu; Miyamoto, Kazuhiro; Ishikawa, Haruo )

    1994-10-01

    A bacterial strain which could be grown in a medium containing organic solvents and which could secrete lipolytic enzyme was isolated. The stability of the lipolytic activity of the supernatant of the culture increased significantly in the presence of organic solvents such as toluene, cyclohexane, ethanol, and acetone. 11 refs., 1 fig., 2 tabs.

  4. 40 CFR 52.1145 - Regulation on organic solvent use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Regulation on organic solvent use. 52... on organic solvent use. (a) Definitions: (1) Organic solvents include diluents and thinners and are defined as organic materials which are liquids at standard conditions and which are used as...

  5. 40 CFR 52.1145 - Regulation on organic solvent use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Regulation on organic solvent use. 52... on organic solvent use. (a) Definitions: (1) Organic solvents include diluents and thinners and are defined as organic materials which are liquids at standard conditions and which are used as...

  6. 40 CFR 52.1145 - Regulation on organic solvent use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Regulation on organic solvent use. 52... on organic solvent use. (a) Definitions: (1) Organic solvents include diluents and thinners and are defined as organic materials which are liquids at standard conditions and which are used as...

  7. 40 CFR 52.1145 - Regulation on organic solvent use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Regulation on organic solvent use. 52... on organic solvent use. (a) Definitions: (1) Organic solvents include diluents and thinners and are defined as organic materials which are liquids at standard conditions and which are used as...

  8. 40 CFR 52.1145 - Regulation on organic solvent use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Regulation on organic solvent use. 52... on organic solvent use. (a) Definitions: (1) Organic solvents include diluents and thinners and are defined as organic materials which are liquids at standard conditions and which are used as...

  9. Organic Solvent Tropical Report [SEC 1 and 2

    SciTech Connect

    COWLEY, W.L.

    2000-06-21

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an unmitigated organic solvent fire is within risk evaluation guidelines.

  10. Swelling of lignites in organic solvents

    SciTech Connect

    R.G. Makitra; D.V. Bryk

    2008-10-15

    Data on the swelling of Turkish lignites can be summarized using linear multiparameter equations that take into account various properties of solvents. Factors responsible for the amounts of absorbed solvents are the basicity and cohesion energy density of the solvents.

  11. Organic sedimentary deposits in Titan's dry lakebeds: Probable evaporite

    USGS Publications Warehouse

    Barnes, J.W.; Bow, J.; Schwartz, J.; Brown, R.H.; Soderblom, J.M.; Hayes, A.G.; Vixie, G.; Le, Mouelic S.; Rodriguez, S.; Sotin, C.; Jaumann, R.; Stephan, K.; Soderblom, L.A.; Clark, R.N.; Buratti, B.J.; Baines, K.H.; Nicholson, P.D.

    2011-01-01

    We report the discovery of organic sedimentary deposits at the bottom of dry lakebeds near Titan's north pole in observations from the Cassini Visual and Infrared Mapping Spectrometer (VIMS). We show evidence that the deposits are evaporitic, making Titan just the third known planetary body with evaporitic processes after Earth and Mars, and is the first that uses a solvent other than water. ?? 2011 Elsevier Inc.

  12. Electromembrane extraction from aqueous samples containing polar organic solvents.

    PubMed

    Seip, Knut Fredrik; Gjelstad, Astrid; Pedersen-Bjergaard, Stig

    2013-09-20

    Electromembrane extraction (EME) was performed from aqueous samples and from aqueous samples containing methanol, ethanol, dimethyl sulfoxide, and acetonitrile. The basic drugs pethidine, haloperidol, nortriptyline, methadone and loperamide were used as model analytes. Reversed phase (C18) HPLC with UV (235 nm) and MS detection was used for analysis of the samples. With no organic solvent in the sample, maximum recoveries were obtained after 5-10 min. The maximum recoveries ranged between 83 and 95%. With 50% (v/v) methanol, ethanol, or dimethyl sulfoxide in the sample, recoveries were comparable to those from an aqueous sample, but the time required reaching maximum recovery increased to 15-25 min. With 2-nitrophenyl octyl ether (NPOE) as the supported liquid membrane (SLM), a stable EME system was obtained for 50% (v/v) methanol, 50% (v/v) ethanol, or 75% (v/v) dimethyl sulfoxide in the sample solution. On the other hand, the EME system was unstable with acetonitrile in the sample, as this solvent partly dissolved the SLM. In addition, acetonitrile migrated through the SLM and caused a volume expansion of the acceptor solution. Other SLMs were also tested (ethyl nitrobenzene, isopropyl nitrobenzene, and dodecyl nitrobenzene), but were inferior to NPOE. As a practical example, EME on dried blood spot extracts (80% methanol) were tested, and proved highly successful. These observations showed that EME can be an effective way of preparing aqueous samples containing substantial amounts of an organic solvent.

  13. Interaction of organic solvents with protein structures at protein-solvent interface.

    PubMed

    Khabiri, Morteza; Minofar, Babak; Brezovský, Jan; Damborský, Jiří; Ettrich, Rudiger

    2013-11-01

    The effect of non-denaturing concentrations of three different organic solvents, formamide, acetone and isopropanol, on the structure of haloalkane dehalogenases DhaA, LinB, and DbjA at the protein-solvent interface was studied using molecular dynamics simulations. Analysis of B-factors revealed that the presence of a given organic solvent mainly affects the dynamical behavior of the specificity-determining cap domain, with the exception of DbjA in acetone. Orientation of organic solvent molecules on the protein surface during the simulations was clearly dependent on their interaction with hydrophobic or hydrophilic surface patches, and the simulations suggest that the behavior of studied organic solvents in the vicinity of hyrophobic patches on the surface is similar to the air/water interface. DbjA was the only dimeric enzyme among studied haloalkane dehalogenases and provided an opportunity to explore effects of organic solvents on the quaternary structure. Penetration and trapping of organic solvents in the network of interactions between both monomers depends on the physico-chemical properties of the organic solvents. Consequently, both monomers of this enzyme oscillate differently in different organic solvents. With the exception of LinB in acetone, the structures of studied enzymes were stabilized in water-miscible organic solvents.

  14. NOVEL POLYMERIC MEMBRANE FOR DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Pervaporation has emerged as an economically viable alternative technology for dehydration of organic solvents, removal of organic compounds and organic/organic separations. Development of a membrane system with suitable flux and selectivity characteristics plays a critical role...

  15. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents

    NASA Astrophysics Data System (ADS)

    Li, Song; Zhang, Pengfei; Fulvio Pasquale, F.; Hillesheim Patrick, C.; Feng, Guang; Dai, Sheng; Cummings Peter, T.

    2014-07-01

    The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance-electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation.

  16. Petroleum solvent mortality study of Oklahoma dry cleaners. Volume 2. Final report, 1 January 1986-31 March 1988

    SciTech Connect

    Asal, N.R.; Coleman, R.L.; Petrone, R.L.; Owen, W.; Walsworth, S.

    1988-06-30

    The association between exposures to the primary petroleum solvents used in commercial dry-cleaning processes and various causes of death was investigated. Each commercial dry-cleaning establishment in Oklahoma was classified according to the solvent or solvents in use from 1941 to 1983, based on data from the State Dry Cleaners Board. A cohort with known solvent exposures was identified. The proportionate mortality ratios and standardized mortality ratios were determined for all major causes of death. Nearly 59% were white males, with an average exposure of 10.5 years. No excess in overall cancer mortality was found. Significant excesses were noted for mental, psychoneurotic, and personality disorders due to alcoholism; genitourinary system due to acute nephritis, chronic nephritis, and renal sclerosis; bone and organ movement due to arthritis and spondylitis. An excess in cancers of the respiratory system was identified with excesses in mortality due to trachea, bronchus, and lung cancer among those dying at age 65 or older. A 45% excess in proportionate mortality due to pancreatic cancer was found. Only on analysis of petroleum-solvent exposure to white males was an excess found for kidney cancer. Moderately increased incidents of skin and bone cancer were found. Volume 1 is also available.

  17. 40 CFR 52.254 - Organic solvent usage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Organic solvent usage. 52.254 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.254 Organic solvent usage. (a) This...) No person shall discharge into the atmosphere more than 15 pounds of organic materials in any 1...

  18. 40 CFR 52.254 - Organic solvent usage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Organic solvent usage. 52.254 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.254 Organic solvent usage. (a) This...) No person shall discharge into the atmosphere more than 15 pounds of organic materials in any 1...

  19. 40 CFR 52.254 - Organic solvent usage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Air Quality Control Regions (the “Regions”), as described in 40 CFR part 81, dated July 1, 1979...) No person shall discharge into the atmosphere more than 15 pounds of organic materials in any 1 day... which any organic solvent or any material containing organic solvent comes into contact with flame or...

  20. 40 CFR 52.254 - Organic solvent usage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Air Quality Control Regions (the “Regions”), as described in 40 CFR part 81, dated July 1, 1979...) No person shall discharge into the atmosphere more than 15 pounds of organic materials in any 1 day... which any organic solvent or any material containing organic solvent comes into contact with flame or...

  1. 40 CFR Table 3 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the...: Solvent/Solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass...

  2. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in... formulation data. Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  3. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in... formulation data. Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  4. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in... formulation data. Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  5. 40 CFR Table 3 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the...: Solvent/Solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass...

  6. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in... formulation data. Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  7. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in... formulation data. Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  8. 40 CFR Table 3 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the...: Solvent/Solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass...

  9. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in... formulation data. Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  10. Interaction of organic solvents with the green alga Chlorella pyrenoidosa

    SciTech Connect

    Stratton, G.W.; Smith, T.M. )

    1988-06-01

    Solvents are often a component of bioassay systems when water-insoluble toxicants are being tested. These solvents must also be considered as xenobiotics and therefore, as potential toxicants in the bioassay. However, the effects of solvents on the organisms being tested and their possible interaction with the test compound are often overlooked by researchers. The purpose of the present study was to compare the inhibitory effects of six solvents commonly used in pesticide bioassays towards growth of the common green alga Chlorella pyrenoidosa, and to examine the occurrence of solvent-pesticide interactions with this organism.

  11. A newly isolated organic solvent tolerant Staphylococcus saprophyticus M36 produced organic solvent-stable lipase.

    PubMed

    Fang, Yaowei; Lu, Zhaoxin; Lv, Fengxia; Bie, Xiaomei; Liu, Shu; Ding, Zhongyang; Xu, Weifeng

    2006-12-01

    Thirty-eight high lipase activity strains were isolated from soil, seawater, and Brassica napus. Among them, a novel organic solvent tolerant bacterium (strain M36) was isolated from the seawater in Jiangsu, China. Isolate M36 was able to grow at high concentration of benzene or toluene up to 40% (vol/vol), and later identified as Staphylococcus saprophyticus by biochemical test and 16s ribosomal DNA sequence. No work on Staphylococcus producing lipase with organic solvent tolerance has been reported so far. The lipase of strain M36 whose activity in liquid medium was 42 U mL(-1) at 24-h incubation time was stable in the presence of 25% (vol/vol) p-xylene, benzene, toluene, and hexane.

  12. COSOLVENCY OF PARTIALLY MISCIBLE ORGANIC SOLVENTS ON THE SOLUBILITY OF HYDROPHOBIC ORGANIC CHEMICALS

    EPA Science Inventory

    The cosolvency of completely miscible organic solvents (CMOSs) and partially miscible organic solvents (PMOSs) on the solubility of hydrophobic organic chemicals (HOCs) was examined, with an emphasis on PMOSs. Measured solubilities were compared with predictions from the log- lin...

  13. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction... formulation data. Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP,...

  14. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the.... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  15. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the.... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  16. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  17. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the.... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  18. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction... formulation data. Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP,...

  19. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  20. Hematin crystallization from aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Ketchum, Megan A.; Olafson, Katy N.; Petrova, Elena V.; Rimer, Jeffrey D.; Vekilov, Peter G.

    2013-09-01

    Hematin crystallization is the main mechanism of detoxification of heme that is released in malaria-infected erythrocytes as a byproduct of the hemoglobin catabolism by the parasite. A controversy exists over whether hematin crystals grow from the aqueous medium of the parasite's digestive vacuole or in the lipid bodies present in the vacuole. To this end, we compare the basic thermodynamic and structural features of hematin crystallization in an aqueous buffer at pH 4.8, as in the digestive vacuole, and in water-saturated octanol that mimics the environment of the lipid nanospheres. We show that in aqueous solutions, hematin aggregation into mesoscopic disordered clusters is insignificant. We determine the solubility of the β-hematin crystals in the pH range 4.8-7.6. We image by atomic force microscopy crystals grown at pH 4.8 and show that their macroscopic and mesoscopic morphology features are incompatible with those reported for biological hemozoin. In contrast, crystals grown in the presence of octanol are very similar to those extracted from parasites. We determine the hematin solubility in water-saturated octanol at three temperatures. These solubilities are four orders of magnitude higher than that at pH 4.8, providing for faster crystallization from organic than from aqueous solvents. These observations further suggest that the lipid bodies play a role in mediating biological hemozoin crystal growth to ensure faster heme detoxification.

  1. Dispersion and separation of nanostructured carbon in organic solvents

    NASA Technical Reports Server (NTRS)

    Landi, Brian J. (Inventor); Raffaelle, Ryne P. (Inventor); Ruf, Herbert J. (Inventor); Evans, Christopher M. (Inventor)

    2011-01-01

    The present invention relates to dispersions of nanostructured carbon in organic solvents containing alkyl amide compounds and/or diamide compounds. The invention also relates to methods of dispersing nanostructured carbon in organic solvents and methods of mobilizing nanostructured carbon. Also disclosed are methods of determining the purity of nanostructured carbon.

  2. Reduced Graphene Oxide Membranes for Ultrafast Organic Solvent Nanofiltration.

    PubMed

    Huang, Liang; Chen, Ji; Gao, Tiantian; Zhang, Miao; Li, Yingru; Dai, Liming; Qu, Liangti; Shi, Gaoquan

    2016-10-01

    Solvated reduced graphene oxide (S-rGO) membranes are stable in organic solvents, and strong acidic, alkaline, or oxidative media. They show high rejections to small molecules with charges the same as that of S-rGO coatings or neutral molecules larger than 3.4 nm, while retaining their high permeances to organic solvents.

  3. Radiometric method for determining solubility of organic solvents in water

    SciTech Connect

    Lo, J.M.; Tseng, C.L.; Yang, J.Y.

    1986-06-01

    Cobalt-60 labeled cobalt(III) pyrrolidinecarbodithioate (/sup 60/Co(PDC)/sub 3/) has a peculiar stability during storage in organic solvent and when its organic solution is shaken with an aqueous solution containing different acids or ions. Using these characteristics, the authors have attempted to use /sup 60/Co(PDC)/sub 3/ as a radioagent for determining solubilities of various organic solvents in water. The radioagent was first dissolved in the organic solvent under investigation before pure water was added. The solution mixture was shaken vigorously in order to let the organic phase contact with water sufficiently. Some of the organic solvent would dissolve in water after shaking, resulting in volume reduction of the organic phase. However, the radioagent was found not to accompany the organic solvent molecules going into water; i.e., all the radioactivity of /sup 60/Co(PDC)/sub 3/ would be retained in the organic phase. Solubility of the organic solvent in water therefore can be calculated from the value of the volume change of the organic phase divided by the water volume. Direct measurement of a small change in volume of organic phase with high accuracy is generally very difficult; alternatively, the authors have measured the specific activities of /sup 60/Co(PDC)/sub 3/ (cpm/mL) in the original and the final organic solutions, and the counting results were used to estimate the decrease in volume of the organic phase. Several commonly used organic solvents were selected to test the applicability of the proposed radiometric method. The solubilities of the organic solvents selected for this study range from very small values (10/sup -4/) to relatively large values (10/sup -2/), 6 references, 1 table.

  4. Effect of Organic Solvents on the Yield of Solvent-Tolerant Pseudomonas putida S12

    PubMed Central

    Isken, Sonja; Derks, Antoine; Wolffs, Petra F. G.; de Bont, Jan A. M.

    1999-01-01

    Solvent-tolerant microorganisms are useful in biotransformations with whole cells in two-phase solvent-water systems. The results presented here describe the effects that organic solvents have on the growth of these organisms. The maximal growth rate of Pseudomonas putida S12, 0.8 h−1, was not affected by toluene in batch cultures, but in chemostat cultures the solvent decreased the maximal growth rate by nearly 50%. Toluene, ethylbenzene, propylbenzene, xylene, hexane, and cyclohexane reduced the biomass yield, and this effect depended on the concentration of the solvent in the bacterial membrane and not on its chemical structure. The dose response to solvents in terms of yield was linear up to an approximately 200 mM concentration of solvent in the bacterial membrane, both in the wild type and in a mutant lacking an active efflux system for toluene. Above this critical concentration the yield of the wild type remained constant at 0.2 g of protein/g of glucose with increasing concentrations of toluene. The reduction of the yield in the presence of solvents is due to a maintenance higher by a factor of three or four as well as to a decrease of the maximum growth yield by 33%. Therefore, energy-consuming adaptation processes as well as the uncoupling effect of the solvents reduce the yield of the tolerant cells. PMID:10347053

  5. Liquid Cell Electron Microscopy of Nanoparticle Self-Assembly Driven by Solvent Drying.

    PubMed

    Lee, Won Chul; Kim, Byung Hyo; Choi, Sun; Takeuchi, Shoji; Park, Jungwon

    2017-02-02

    Drying a colloidal solution of nanoparticles is a versatile method to construct self-assembled structures of nanoparticles. However, mechanistic understanding has mostly relied on empirical knowledge obtained from the final structures of self-assembly as relevant processes during solvent drying are likely kinetic and far from equilibrium. Here, we present in situ TEM studies of nanoparticle self-assembly under various conditions, including the concentrations of the initial solution and the types of nanoparticles and substrates. The capability of tracking trajectories of individual nanoparticles enables us to understand the mechanisms of drying-mediated self-assembly at the single-nanoparticle level. Our results consistently show that a solvent boundary primarily affects nanoparticle motions and the resulting self-assembly processes regardless of different conditions. The solvent boundary drives nanoparticles to form two-dimensional assembly mainly through two pathways, transporting scattered nanoparticles by lateral dragging and flattening aggregated nanoparticles by vertical pressing.

  6. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... manufacturer's formulation data Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical...

  7. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... manufacturer's formulation data Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical...

  8. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... manufacturer's formulation data Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical...

  9. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... MMMM of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... organic HAP mass fraction must be used for that solvent blend. Otherwise, use the organic HAP...

  10. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... MMMM of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... organic HAP mass fraction must be used for that solvent blend. Otherwise, use the organic HAP...

  11. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... MMMM of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... organic HAP mass fraction must be used for that solvent blend. Otherwise, use the organic HAP...

  12. Studies on gas transport through dry cellulose acetate membranes prepared by solvent exchange technique

    SciTech Connect

    Lui, A.; Talbot, F.D.F.; Sourirajan, S.; Fouda, A.; Matsuura, T.

    1988-10-01

    The mechanism of gas transport through pores on the surface of dry cellulose acetate membranes under pressure was identified for membranes prepared by the solvent exchange technique using pure gas permeation rate data. The pure gases were helium, methane and carbon dioxide. The variables involved in the membrane preparation variables involved in the membrane preparation are the shrinkage temperature, the first solvent, the second solvent and the combinations thereof. Different conditions of membrane preparation produce different pore sizes. Depending on this pore size, one of the following mechanisms becomes dominant: Knudsen, surface and size exclusion.

  13. SOLVENT-FREE ORGANIC SYNTHESES USING SUPPORTED REAGENTS AND MICROWAVES

    EPA Science Inventory

    The latest results on microwave-expedited solvent-free approach as applied to the assembly of organic molecules will be presented. The salient features of this expeditious methodology such as solvent conservation and ease of manipulation etc. will be described in the context of ...

  14. Measurement of oxygen transfer from air into organic solvents

    PubMed Central

    Ramesh, Hemalata; Hobisch, Mathias; Borisov, Sergey; Klimant, Ingo; Krühne, Ulrich; Woodley, John M

    2015-01-01

    Abstract BACKGROUND The use of non‐aqueous organic media is becoming increasingly important in many biotechnological applications in order to achieve process intensification. Such media can be used, for example, to directly extract poorly water‐soluble toxic products from fermentations. Likewise many biological reactions require the supply of oxygen, most normally from air. However, reliable online measurements of oxygen concentration in organic solvents (and hence oxygen transfer rates from air to the solvent) has to date proven impossible due to limitations in the current analytical methods. RESULTS For the first time, online oxygen measurements in non‐aqueous media using a novel optical sensor are demonstrated. The sensor was used to measure oxygen concentration in various organic solvents including toluene, THF, isooctane, DMF, heptane and hexane (which have all been shown suitable for several biological applications). Subsequently, the oxygen transfer rates from air into these organic solvents were measured. CONCLUSION The measurement of oxygen transfer rates from air into organic solvents using the dynamic method was established using the solvent resistant optical sensor. The feasibility of online oxygen measurements in organic solvents has also been demonstrated, paving the way for new opportunities in process control. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:27773958

  15. Mechanism of transport and distribution of organic solvents in blood

    NASA Technical Reports Server (NTRS)

    Lam, C. W.; Galen, T. J.; Boyd, J. F.; Pierson, D. L.

    1990-01-01

    Little is known about the mechanism of transport and distribution of volatile organic compounds in blood. Studies were conducted on five typical organic solvents to investigate how these compounds are transported and distributed in blood. Groups of four to five rats were exposed for 2 hr to 500 ppm of n-hexane, toluene, chloroform, methyl isobutyl ketone (MIBK), or diethyl ether vapor; 94, 66, 90, 51, or 49%, respectively, of these solvents in the blood were found in the red blood cells (RBCs). Very similar results were obtained in vitro when aqueous solutions of these solvents were added to rat blood. In vitro studies were also conducted on human blood with these solvents; 66, 43, 65, 49, or 46%, respectively, of the added solvent was taken up by the RBCs. These results indicate that RBCs from humans and rats exhibited substantial differences in affinity for the three more hydrophobic solvents studied. When solutions of these solvents were added to human plasma and RBC samples, large fractions (51-96%) of the solvents were recovered from ammonium sulfate-precipitated plasma proteins and hemoglobin. Smaller fractions were recovered from plasma water and red cell water. Less than 10% of each of the added solvents in RBC samples was found in the red cell membrane ghosts. These results indicate that RBCs play an important role in the uptake and transport of these solvents. Proteins, chiefly hemoglobin, are the major carriers of these compounds in blood. It can be inferred from the results of the present study that volatile lipophilic organic solvents are probably taken up by the hydrophobic sites of blood proteins.

  16. Solvent Selection for Recrystallization: An Undergraduate Organic Experiment.

    ERIC Educational Resources Information Center

    Baumann, Jacob B.

    1979-01-01

    This experiment develops the students' ability to carry out a simple recrystallization effectively, and demonstrates how a solvent may be selected or rejected for the recrystallization of a specific organic compound. (Author/BB)

  17. Extraction of fatty acids from dried freshwater algae using accelerated solvent extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high temperature/pressure extraction method (accelerated solvent extraction)(ASE) and a manual extraction method (modified Folch extraction) were compared with regard to their ability to extract total fat from three samples of air-dried filamentous algae and determine the fatty acid (FA) profile o...

  18. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction.... If a solvent blend matches both the name and CAS number for an entry, that entry's organic HAP...

  19. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction.... If a solvent blend matches both the name and CAS number for an entry, that entry's organic HAP...

  20. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the... solvent blend matches both the name and CAS number for an entry, that entry's organic HAP mass...

  1. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction.... If a solvent blend matches both the name and CAS number for an entry, that entry's organic HAP...

  2. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the... solvent blend matches both the name and CAS number for an entry, that entry's organic HAP mass...

  3. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction.... If a solvent blend matches both the name and CAS number for an entry, that entry's organic HAP...

  4. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction.... If a solvent blend matches both the name and CAS number for an entry, that entry's organic HAP...

  5. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction

    PubMed Central

    Guthrie, O'neil W.; Wong, Brian A.; McInturf, Shawn M.; Reboulet, James E.; Ortiz, Pedro A.; Mattie, David R.

    2016-01-01

    Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures. PMID:26885406

  6. Solvent-based nanocomposite coatings I. Dispersion of organophilic montmorillonite in organic solvents.

    PubMed

    Burgentzlé, D; Duchet, J; Gérard, J F; Jupin, A; Fillon, B

    2004-10-01

    This study aims to determine the relevant parameters controlling the organophilic montmorillonite dispersion in various organic solvents which can be used as dispersion media for polymer coatings. These suspensions were studied at three scales: At nanometer scale by looking to interlayer distance: When the solvent surface energy is higher than the organophilic clay surface energy, i.e., gamma solvent > or = gamma montmorillonite, the intercalated organic chains of the quaternary ammonium modifier swell, leading to an increase of the interlayer distance. The balance between hydrophilic and hydrophobic character is the key to dispersion of nanoclays. At micrometer scale by studying the rheological behaviour of clay suspensions: Gels are formed by percolation of microgels, based on swollen 3-4 platelet tactoids. The viscoelastic properties and the flow behavior reveal the gel structuration by measuring the gel stiffness and the flowing stress. At macroscopic scale analyzed from the swelling of the nanoclay into solvents: The compatibility between solvent and organophilic clay governs the macroscopic swelling, i.e., interactions between organic chains borne by the intercalated ions and solvents govern the final suspension morphologies. The same methodology can be adopted for monomers or prepolymers selected for one in situ intercalation/exfoliation processing route.

  7. Occupational exposures to new dry cleaning solvents: High-flashpoint hydrocarbons and butylal.

    PubMed

    Ceballos, Diana M; Whittaker, Stephen G; Lee, Eun Gyung; Roberts, Jennifer; Streicher, Robert; Nourian, Fariba; Gong, Wei; Broadwater, Kendra

    2016-10-02

    The dry cleaning industry is moving away from using perchloroethylene. Occupational exposures to two alternative dry cleaning solvents, butylal and high-flashpoint hydrocarbons, have not been well characterized. We evaluated four dry cleaning shops that used these alternative solvents. The shops were staffed by Korean- and Cantonese-speaking owners, and Korean-, Cantonese-, and Spanish-speaking employees. Because most workers had limited English proficiency we used language services in our evaluations. In two shops we collected personal and area air samples for butylal. We also collected air samples for formaldehyde and butanol, potential hydrolysis products of butylal. Because there are no occupational exposure limits for butylal, we assessed employee health risks using control banding tools. In the remaining two shops we collected personal and area air samples for high-flashpoint hydrocarbon solvents. In all shops the highest personal airborne exposures occurred when workers loaded and unloaded the dry cleaning machines and pressed dry cleaned fabrics. The air concentrations of formaldehyde and butanol in the butylal shops were well below occupational exposure limits. Likewise, the air concentrations of high-flashpoint hydrocarbons were also well below occupational exposure limits. However, we saw potential skin exposures to these chemicals. We provided recommendations on appropriate work practices and the selection and use of personal protective equipment. These recommendations were consistent with those derived using control banding tools for butylal. However, there is insufficient toxicological and health information to determine the safety of butylal in occupational settings. Independent evaluation of the toxicological properties of these alternative dry cleaning solvents, especially butylal, is urgently needed.

  8. Automated process for solvent separation of organic/inorganic substance

    DOEpatents

    Schweighardt, Frank K.

    1986-01-01

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

  9. Automated process for solvent separation of organic/inorganic substance

    DOEpatents

    Schweighardt, F.K.

    1986-07-29

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process. 4 figs.

  10. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents

    NASA Astrophysics Data System (ADS)

    Ono, Toshikazu; Sugimoto, Takahiro; Shinkai, Seiji; Sada, Kazuki

    2007-06-01

    Polyelectrolyte gels that are known as super-absorbent polymers swell and absorb water up to several hundred times their dried weights and have become ubiquitous and indispensable materials in many applications. Their superior swelling abilities originate from the electrostatic repulsion between the charges on the polymer chains and the osmotic imbalance between the interior and exterior of the gels. However, no super-absorbent polymers for volatile organic compounds (VOCs), and especially for nonpolar organic solvents (ɛ<10) have been reported, because common polyelectrolyte gels collapse in such solvents owing to the formation of a higher number of aggregates of ions and ion pairs. Here, we report that a novel class of polyelectrolyte gels bearing tetra-alkylammonium tetraphenylborate as a lipophilic and bulky ionic group swell in some nonpolar organic solvents up to 500 times their dry size. Dissociation of the ionic groups even in low-dielectric media (3<ɛ<10) enhances the swelling ability by expansion of the polymer networks. This expands the potential of polyelectrolytes that have been used only in aqueous solutions or highly polar solvents, and provides soft materials that swell in a variety of media. These materials could find applications as protective barriers for VOCs spilled in the environment and as absorbents for waste oil.

  11. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents.

    PubMed

    Ono, Toshikazu; Sugimoto, Takahiro; Shinkai, Seiji; Sada, Kazuki

    2007-06-01

    Polyelectrolyte gels that are known as super-absorbent polymers swell and absorb water up to several hundred times their dried weights and have become ubiquitous and indispensable materials in many applications. Their superior swelling abilities originate from the electrostatic repulsion between the charges on the polymer chains and the osmotic imbalance between the interior and exterior of the gels. However, no super-absorbent polymers for volatile organic compounds (VOCs), and especially for nonpolar organic solvents (epsilon<10) have been reported, because common polyelectrolyte gels collapse in such solvents owing to the formation of a higher number of aggregates of ions and ion pairs. Here, we report that a novel class of polyelectrolyte gels bearing tetra-alkylammonium tetraphenylborate as a lipophilic and bulky ionic group swell in some nonpolar organic solvents up to 500 times their dry size. Dissociation of the ionic groups even in low-dielectric media (3solvents, and provides soft materials that swell in a variety of media. These materials could find applications as protective barriers for VOCs spilled in the environment and as absorbents for waste oil.

  12. ACTIVE EFFLUX OF ORGANIC SOLVENTS BY PSEUDOMONAS PUTIDA S12 IS INDUCED BY SOLVENTS

    EPA Science Inventory

    Induction of the membrane-associated organic solvent efflux system SrpABC of Pseudomonas putida S12 was examined by cloning a 312-bp DNA fragment, containing the srp promoter, in the broad-host-range reporter vector pKRZ-1. Compounds that are capable of inducing expression of the...

  13. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Wood Building Products Pt. 63, Subpt. QQQQ, Table 5 Table 5 to Subpart QQQQ of Part 63—Default Organic.... Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass...

  14. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Wood Building Products Pt. 63, Subpt. QQQQ, Table 5 Table 5 to Subpart QQQQ of Part 63—Default Organic.... Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass...

  15. ICE: Ionic contrast enhancement for organic solvent negative tone develop

    NASA Astrophysics Data System (ADS)

    Sundberg, Linda K.; Wallraff, Gregory M.; Bozano, Luisa D.; Truong, Hoa D.; Sanchez, Martha I.; Goldfarb, Dario L.; Petrillo, Karen E.; Hinsberg, William D.

    2014-03-01

    The use of organic solvents in the development of chemically amplified (CA) resists has been known since the introduction of DUV lithography into manufacturing over twenty years ago [1,2]. In this approach a negative tone image is produced using an aqueous base developable positive tone resist developed in an organic solvent. Recently there has been an increased interest in negative tone imaging due to superior performance for specific masking levels such as narrow trenches and contact holes [3]. Negative tone imaging of this type is based on differences in the polarity between the exposed and unexposed regions of the resist film. The dissolution contrast can be optimized by selecting a solvent with the proper match of solubility parameters (polarity, hydrogen bonding and dispersion) to attain good solubility of the relatively nonpolar unexposed resist and poor solubility of the deprotected acidic exposed film. Another approach is to tune the properties of the resist polymer for a given solvent, creating a new optimized resist. We have explored a third methodology to achieve a high contrast solvent developable system without a need to modify resist or solvent. In this report we describe a process that exploits the differences in solubility between ionic and organic materials. In this method an ionic species is introduced into the resist film following post-exposure bake to alter the polarity in such way that the resist contrast can be improved in organic solvent development. We describe processes using pre-rinses and developers containing salts. Lithographic response, characterized using contrast curves and imaging, is presented for a variety of resist platforms. We show evidence for ionic incorporation into the resist film using SIMS, XPS, QCM and FTIR characterization. We demonstrate the practical applicability of this method to 248nm, 193nm, e-beam and EUV exposures.

  16. Poly(ionic liquid) superabsorbent for polar organic solvents.

    PubMed

    Horne, W Jeffrey; Andrews, Mary A; Terrill, Kelsey L; Hayward, Spenser S; Marshall, Jeannie; Belmore, Kenneth A; Shannon, Matthew S; Bara, Jason E

    2015-05-06

    A simple, polymerized ionic liquid (poly(IL)) based on methylimidazolium cations tethered to a polystyrene backbone exhibits superabsorbent behavior toward polar organic solvents, most notably propylene carbonate (PC) and dimethyl sulfoxide (DMSO), wherein the poly(IL) was observed to swell more than 390 and 200 times (w/w) its original mass, yet absorbs negligible quantities of water, hexanes, and other solvents, many of which were miscible with the IL monomer. Although solubility parameters and dielectric constants are typically used to rationalize such behaviors, we find that poly(IL)-solvent compatibility is most clearly correlated to solvent dipole moment. Poly(IL) superabsorbency is not reliant upon the addition of a cross-linking agent.

  17. Mobility of organic solvents in water-saturated soil materials

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1985-01-01

    This investigation presents an analysis of the mobility of 37 organic solvents in saturated soil-water systems, focusing on adsorption phenomena at the solid-liquid interface This analysis was made, in part, by applying predictive expressions that estimate the potential magnitude of adsorption by soil materials Of the 37 solvents considered, 19 were classified as either "very highly mobile" or "highly mobile" and, thus, would have little tendency to be retained by soils to a significant extent, 12 were considered to have medium mobility and 6 low mobility None of these solvents were in the immobile class The limited information available indicates that these predictive expressions yield satisfactory first approximations of the magnitude of adsorption of these solvents by soil materials ?? 1985 Springer-Verlag New York Inc.

  18. Exposure to organic solvents. Does it adversely affect pregnancy?

    PubMed Central

    McMartin, K. I.; Koren, G.

    1999-01-01

    QUESTION: One of my patients is a laboratory technician who routinely handles organic solvents. She has just learned that she is pregnant, and she depends very much on this job because her husband is unemployed. What is the risk to her unborn baby? ANSWER: Available epidemiologic data indicate your patient's fetus might be at increased risk for malformations. We recommend that she minimize her occupational exposure to organic solvents by routinely using ventilation systems and protective equipment. This is most important during the first trimester of pregnancy. PMID:10424263

  19. Organic microchemical performance of solvent resistant polycarbosilane based microreactor.

    PubMed

    Yoon, Tae-Ho; Jung, Sang-Hee; Kim, Dong-Pyo

    2011-05-01

    We report the successful fabrication of preceramic polymer allylhydridopolycarbosilane (AHPCS) derived microchannels with excellent organic solvent resistance and optical transparency via economic imprinting process, followed by UV and post thermal curing process at 160 degrees C for 3 h. The microchemical performance of the fabricated microreactors was evaluated by choosing two model micro chemical reactions under organic solvent conditions; syntheses of 2-aminothiazole in DMF and dimethylpyrazole in THF, and compared with glass-based microreactor having identical dimensions and batch system with analogy. It is clear that AHPCS derived microreactor showed excellent solvent resistance and chemical stability compare with glass derived microreactor made by high cost of photolithography and thermal bonding process. The novel preceramic polymer derived microreactors showed reliable mechanical and chemical stability and conversion yields compare with that of glass derived microreactors, which is very promising for developing an integrated microfluidics by adopting available microstructuring techniques of the polymers.

  20. Transitioning organic synthesis from organic solvents to water. What's your E Factor?

    PubMed Central

    Lipshutz, Bruce H.; Ghorai, Subir

    2014-01-01

    Traditional organic chemistry, and organic synthesis in particular, relies heavily on organic solvents, as most reactions involve organic substrates and catalysts that tend to be water-insoluble. Unfortunately, organic solvents make up most of the organic waste created by the chemical enterprise, whether from academic, industrial, or governmental labs. One alternative to organic solvents follows the lead of Nature: water. To circumvent the solubility issues, newly engineered “designer” surfactants offer an opportunity to efficiently enable many of the commonly used transition metal-catalyzed and related reactions in organic synthesis to be run in water, and usually at ambient temperatures. This review focuses on recent progress in this area, where such amphiphiles spontaneously self-aggregate in water. The resulting micellar arrays serve as nanoreactors, obviating organic solvents as the reaction medium, while maximizing environmental benefits. PMID:25170307

  1. Transitioning organic synthesis from organic solvents to water. What's your E Factor?

    PubMed

    Lipshutz, Bruce H; Ghorai, Subir

    2014-08-01

    Traditional organic chemistry, and organic synthesis in particular, relies heavily on organic solvents, as most reactions involve organic substrates and catalysts that tend to be water-insoluble. Unfortunately, organic solvents make up most of the organic waste created by the chemical enterprise, whether from academic, industrial, or governmental labs. One alternative to organic solvents follows the lead of Nature: water. To circumvent the solubility issues, newly engineered "designer" surfactants offer an opportunity to efficiently enable many of the commonly used transition metal-catalyzed and related reactions in organic synthesis to be run in water, and usually at ambient temperatures. This review focuses on recent progress in this area, where such amphiphiles spontaneously self-aggregate in water. The resulting micellar arrays serve as nanoreactors, obviating organic solvents as the reaction medium, while maximizing environmental benefits.

  2. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOEpatents

    Britten, J.A.

    1997-08-26

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.

  3. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    SciTech Connect

    Britten, Jerald A.

    1997-01-01

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.

  4. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Contents of... Boat Manufacturing Pt. 63, Subpt. VVVV, Table 5 Table 5 to Subpart VVVV of Part 63—Default Organic HAP Contents of Solvents and Solvent Blends As specified in § 63.5758(a)(6), when detailed organic HAP...

  5. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Contents of... Manufacturing Pt. 63, Subpt. VVVV, Table 5 Table 5 to Subpart VVVV of Part 63—Default Organic HAP Contents of Solvents and Solvent Blends As specified in § 63.5758(a)(6), when detailed organic HAP content data...

  6. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Contents of... Boat Manufacturing Pt. 63, Subpt. VVVV, Table 5 Table 5 to Subpart VVVV of Part 63—Default Organic HAP Contents of Solvents and Solvent Blends As specified in § 63.5758(a)(6), when detailed organic HAP...

  7. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Contents of... Manufacturing Pt. 63, Subpt. VVVV, Table 5 Table 5 to Subpart VVVV of Part 63—Default Organic HAP Contents of Solvents and Solvent Blends As specified in § 63.5758(a)(6), when detailed organic HAP content data...

  8. Sono-enzymatic peptide synthesis in organic solvent.

    PubMed

    Fulcrand-Rolland, V; Duc Hua, T; Lazaro, R; Viallefont, P

    1991-01-01

    Copolymerized compounds of acrylated derivatives of alpha-chymotrypsin and polyethylene glycol (P.E.G.) have been prepared and used as biocatalysts for peptide synthesis in organic solvent containing low quantity of water. In order to increase the velocity of the coupling reactions, without loss of enzyme activity, we have used the principle of sonication. Some results and future projects are presented.

  9. SOLVENT-FREE ACCELERATED ORGANIC SYNTHESES USING MICROWAVES

    EPA Science Inventory

    Abstract: A solvent-free approach for organic synthesis is described which involves microwave (MW) exposure of neat reactants (undiluted) either in presence of a catalyst or catalyzed by the surfaces of inexpensive and recyclable mineral supports such as alumina, silica, clay, or...

  10. Superfund Innovative Technology Evaluation: Demonstration Bulletin: Organic Extraction Utilizing Solvents

    EPA Science Inventory

    This technology utilizes liquified gases as the extracting solvent to remove organics, such as hydrocarbons, oil and grease, from wastewater or contaminated sludges and soils. Carbon dioxide is generally used for aqueous solutions, and propane is used for sediment, sludges and ...

  11. Dramatic enhancement of enzymatic activity in organic solvents by lyoprotectants

    SciTech Connect

    Dabulis, K.; Klibanov, A.M. )

    1993-03-05

    When seven different hydrolytic enzymes (four proteases and three lipases) were lyophilized from aqueous solution containing a ligand, N-Ac-L-Phe-NH[sub 2], their catalytic activity in anhydrous solvents was far greater (one to two orders of magnitude) than that of the enzymes lyophilized without the ligand. This ligand-induced activation was expressed regardless of whether the substrate employed in organic solvents structurally resembled the ligand. Furthermore, nonligand lyoprotectants [sorbitol, other sugars, and poly(ethylene glycol)] also dramatically enhanced enzymatic activity in anhydrous solvents when present in enzyme aqueous solution prior to lyophilization. The effects of the ligand and of the lyoprotectants were nonadditive, suggesting the same mechanism of action. Excipient-activated and nonactivated enzymes exhibited identical activities in water. Also, addition of the excipients directly to suspensions of nonactivated enzymes in organic solvents had no appreciable effect on catalytic activity. These observations indicate that the mechanism of the excipient-induced activation is based on the ability of the excipients to alleviate reversible denaturation of enzymes upon lyophilization. Activity enhancement induced by the excipients is displayed even after their removal by washing enzymes with anhydrous solvents. Subtilisin Carlsberg, lyophilized with sorbitol, was found to be a much more efficient practical catalyst than its regular' counterpart.

  12. [Generic method for determination of volatile organic solvents in cosmetics].

    PubMed

    Da, Jing; Huang, Xianglu; Wang, Gangli; Cao, Jin; Zhang, Qingsheng

    2014-11-01

    A generic screening, confirmation and determination method was established based on 36 commonly used volatile organic solvents in cosmetics by headspace gas chromatography- mass spectrometry (GC-MS). This method included a database for pilot screening and identifi- cation of those solvents and their quantitative method. Pilot screening database was composed by two sections, one was household section built by two columns with opposite polarities (col- umn VF-1301 ms and DB-5 ms) using retention index in different column systems as qualitative parameter, and the other was NIST MS search version 2.0. Meanwhile, the determination method of the 36 volatile solvents was developed with GC-MS. Cosmetic samples were dissolved in water and transferred to a headspace vial. After 30 min equilibration at 60 °C, the samples were analyzed by GC-MS equipped with a capillary chromatographic column VF-1301 ms. The external calibration was used for quantification. The limits of detection were from 0.01 to 3.3 μg/g, and the recoveries were from 60.77% to 126.6%. This study provided a generic method for pilot screening, identification, and quantitation of volatile organic solvents in cosmetics, and may solve the problem that different analytical methods need to be developed for different targeted compounds and pilot screening for potential candidate solvent residues.

  13. Investigation of HNO2 Production in Solvent Extraction Organic Phases

    SciTech Connect

    Martin, Leigh R.

    2014-09-01

    This document is a letter report that was prepared to meet FCR&D level 4 milestone M4FT-14IN0304054, “Investigate HNO2 production in solvent extraction organic phases.” This work was carried out under the auspices of the Fundamental Radiation Chemistry FCR&D work package. This document reports on an initial tests performed to follow HNO2 formation in reference flowsheet relevant organic phases.

  14. Properties and Synthetic Applications of Enzymes in Organic Solvents.

    PubMed

    Carrea; Riva

    2000-07-03

    Biotransformations already represent an effective and sometimes preferable alternative to chemical synthesis for the production of fine chemicals and optically active compounds. To further widen the versatility of the biological approach, the so-called "nonaqueous enzymology", which now represents an important area of research and biotechnological development, has emerged in the last ten years or so. This new methodology is especially suitable for the modification of precursors of pharmaceutical compounds and fine chemicals, which, in most cases, are insoluble or poorly soluble in water. Even though the idea of carrying out an enzymatic process in organic solvent was initially considered with scepticism, biocatalysis in such media is now investigated and exploited in numerous academic and industrial laboratories. One of the reasons that makes enzymatic catalysis in nonaqueous media so appealing, is the important new properties that enzymes exhibit in organic solvents. For example, they are often more stable and can catalyze reactions that are impossible or difficult in water. Furthermore, enzyme selectivity can also differ from that in water and can change, or even reverse, from one solvent to another. This phenomenon, which can be called "medium engineering", can be exploited as a valid alternative to protein engineering. The first part of this review examines the thermodynamic, kinetic, spectroscopic, and physical approaches that have been adopted to investigate the factors that affect activity, stability, structure, and selectivity of enzymes in organic solvents. These combined studies have brought the understanding of enzyme catalysis in organic solvents to a level almost comparable to that reached for biocatalysis in aqueous media. The second part surveys a number of the synthetic applications of enzymes in organic media, which span from the preparation of milligrams of specifically labeled compounds to the modification of fats on multiton scale and from the

  15. Effects of occupational exposure to organic solvents upon cognitive performance

    SciTech Connect

    Milanovic, L.; Spilich, G.; Vucinic, G.; Knezevic, S.; Ribaric, B.; Mubrin, Z. )

    1990-11-01

    Twenty-three individuals exposed to mixed organic solvents were compared with 23 nonexposed controls on a number of cognitive performance tasks. Solvent exposure resulted in a significantly poorer performance on the forward digit span test, copying of a complex figure, and on semantic memory tests which also measure individual's ability to integrate linguistic information into cohesive units. These tasks rely heavily upon short-term memory and its integrative operations in higher cognitive function. Acute exposure effect was also observed for the linguistic integrative task.

  16. Impact of solvent extraction organics on bioleaching by Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Yu, Hualong; Liu, Xiaorong; Shen, Junhui; Chi, Daojie

    2017-03-01

    Solvent extraction organics (SX organics) entrained and dissoluted in the raffinate during copper SX operation, can impact bioleaching in case of raffinate recycling. The influence of SX organics on bioleaching process by Acidithiobacillus ferrooxidans (At. ferrooxidans) has been investigated. The results showed that, cells of At. ferrooxidans grew slower with contaminated low-grade chalcopyrite ores in shaken flasks bioleaching, the copper bioleaching efficiency reached 15%, lower than that of 24% for uncontaminated minerals. Obviously, the SX organics could adsorb on mineral surface and hinder its contact with bacterials, finanlly lead to the low bioleaching efficiency.

  17. A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents

    NASA Astrophysics Data System (ADS)

    Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao

    2016-06-01

    In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions.

  18. A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents.

    PubMed

    Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao

    2016-06-05

    In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions.

  19. Efficient organic solar cells processed from hydrocarbon solvents

    NASA Astrophysics Data System (ADS)

    Zhao, Jingbo; Li, Yunke; Yang, Guofang; Jiang, Kui; Lin, Haoran; Ade, Harald; Ma, Wei; Yan, He

    2016-02-01

    Organic solar cells have desirable properties, including low cost of materials, high-throughput roll-to-roll production, mechanical flexibility and light weight. However, all top-performance devices are at present processed using halogenated solvents, which are environmentally hazardous and would thus require expensive mitigation to contain the hazards. Attempts to process organic solar cells from non-halogenated solvents lead to inferior performance. Overcoming this hurdle, here we present a hydrocarbon-based processing system that is not only more environmentally friendly but also yields cells with power conversion efficiencies of up to 11.7%. Our processing system incorporates the synergistic effects of a hydrocarbon solvent, a novel additive, a suitable choice of polymer side chain, and strong temperature-dependent aggregation of the donor polymer. Our results not only demonstrate a method of producing active layers of organic solar cells in an environmentally friendly way, but also provide important scientific insights that will facilitate further improvement of the morphology and performance of organic solar cells.

  20. Rational enhancement of enzyme performance in organic solvents. Final technical report, 1992--1996

    SciTech Connect

    Klibanov, A.M.

    1996-12-31

    This research focused on the following: the dependence of enzymatic activity of several model hydrolases in nonaqueous solvents; control of substrate selectivity of the protease subtilisin Carlsberg by the solvent; control of catalytic activity and enantioselectivity of this enzyme in organic solvents by immobilization support; lipase-catalyzed acylation of sugars in anhydrous hydrophobic media; the possibility of accelerating enzymatic processes in organic solvents by certain cosolvents; whether lipase catalysis in organic solvents can be enhanced by introducing interfaces in the in the reaction medium; the structure of proteins suspended in organic solvents; improving enzymatic enantioselectivity in organic solvents; analyzing the plunge in enzymatic activity upon replacing water with organic solvents; and the structural basis for the phenomenon of molecular memory of imprinted proteins in organic solvents.

  1. Alterations in cognitive and psychological functioning after organic solvent exposure

    SciTech Connect

    Morrow, L.A.; Ryan, C.M.; Hodgson, M.J.; Robin, N. )

    1990-05-01

    Exposure to organic solvents has been linked repeatedly to alterations in both personality and cognitive functioning. To assess the nature and extent of these changes more thoroughly, 32 workers with a history of exposure to mixtures of organic solvents and 32 age- and education-matched blue-collar workers with no history of exposure were assessed with a comprehensive battery of neuropsychological tests. Although both groups were comparable on measures of general intelligence, significant differences were found in virtually all other cognitive domains tested (Learning and Memory, Visuospatial, Attention and Mental Flexibility, Psychomotor Speed). In addition, Minnesota Multiphasic Personality Inventories of exposed workers indicated clinically significant levels of depression, anxiety, somatic concerns and disturbances in thinking. The reported psychological distress was unrelated to degree of cognitive deficit. Finally, several exposure-related variables were associated with poorer performance on tests of memory and visuospatial ability.

  2. A Peptide Amphiphile Organogelator of Polar Organic Solvents

    PubMed Central

    Rouse, Charlotte K.; Martin, Adam D.; Easton, Christopher J.; Thordarson, Pall

    2017-01-01

    A peptide amphiphile is reported, that gelates a range of polar organic solvents including acetonitrile/water, N,N-dimethylformamide and acetone, in a process dictated by β-sheet interactions and facilitated by the presence of an alkyl chain. Similarities with previously reported peptide amphiphile hydrogelators indicate analogous underlying mechanisms of gelation and structure-property relationships, suggesting that peptide amphiphile organogel design may be predictably based on hydrogel precedents. PMID:28255169

  3. A Peptide Amphiphile Organogelator of Polar Organic Solvents

    NASA Astrophysics Data System (ADS)

    Rouse, Charlotte K.; Martin, Adam D.; Easton, Christopher J.; Thordarson, Pall

    2017-03-01

    A peptide amphiphile is reported, that gelates a range of polar organic solvents including acetonitrile/water, N,N-dimethylformamide and acetone, in a process dictated by β-sheet interactions and facilitated by the presence of an alkyl chain. Similarities with previously reported peptide amphiphile hydrogelators indicate analogous underlying mechanisms of gelation and structure-property relationships, suggesting that peptide amphiphile organogel design may be predictably based on hydrogel precedents.

  4. A Peptide Amphiphile Organogelator of Polar Organic Solvents.

    PubMed

    Rouse, Charlotte K; Martin, Adam D; Easton, Christopher J; Thordarson, Pall

    2017-03-03

    A peptide amphiphile is reported, that gelates a range of polar organic solvents including acetonitrile/water, N,N-dimethylformamide and acetone, in a process dictated by β-sheet interactions and facilitated by the presence of an alkyl chain. Similarities with previously reported peptide amphiphile hydrogelators indicate analogous underlying mechanisms of gelation and structure-property relationships, suggesting that peptide amphiphile organogel design may be predictably based on hydrogel precedents.

  5. Exposure to organic solvents during cosmetic finishing of cars.

    PubMed

    Bråtveit, M; Moen, B E

    2001-09-01

    The objectives of this study were to assess the exposure to organic solvents during degreasing, washing and polishing of cars, and to obtain information about acute health symptoms in car-finishing workers. Fifteen car shops participated in this study, and at these locations 36 workers had car finishing as their main working task. All 36 car-finishing workers and 17 randomly selected office workers from six of these car shops completed questionnaires on acute health symptoms. Personal monitoring of exposure to organic solvents was carried out in three representative shops. The highest exposure levels were found during degreasing of new cars, the median level of aliphatic hydrocarbons (C9-C13) being 22 p.p.m. (range 7-215 p.p.m.). This exposure level represents 50% (range 20-540%) of the Norwegian 8 h limit value for additive factor for these compounds. Only 28% of the workers used gas respirators regularly during this process. Very low exposure levels were detected during washing of second-hand cars and during polishing processes. The present study shows that car-finishing workers are exposed to high levels of organic solvents only for short periods of time. It seems that they are not adequately protected during these periods. However, the presence of acute symptoms was low, i.e. comparable to the prevalences in the reference group.

  6. Behavioural evaluation of workers exposed to mixtures of organic solvents.

    PubMed

    Maizlish, N A; Langolf, G D; Whitehead, L W; Fine, L J; Albers, J W; Goldberg, J; Smith, P

    1985-09-01

    Reports from Scandinavia have suggested behavioural impairment among long term workers exposed to solvents below regulatory standards. A cross sectional study of behavioural performance was conducted among printers and spray painters exposed to mixtures of organic solvents to replicate the Scandinavian studies and to examine dose-response relationships. Eligible subjects consisted of 640 hourly workers from four midwestern United States companies. Of these, 269 responded to requests to participate and 240 were selected for study based on restrictions for age, sex, education, and other potentially confounding variables. The subjects tested had been employed on average for six years. Each subject completed an occupational history, underwent a medical examination, and completed a battery of behavioural tests. These included the Fitts law psychomotor task, the Stroop colour-word test, the Sternberg short term memory scanning test, the short term memory span test, and the continuous recognition memory test. Solvent exposure for each subject was defined as an exposed or non-exposed category based on a plant industrial hygiene walk-through and the concentration of solvents based on an analysis of full shift personal air samples by gas chromatography. The first definition was used to maintain consistency with Scandinavian studies, but the second was considered to be more accurate. The average full shift solvent concentration was 302 ppm for the printing plant workers and 6-13 ppm for the workers at other plants. Isopropanol and hexane were the major components, compared with toluene in Scandinavian studies. Performance on behavioural tests was analysed using multiple linear regression with solvent concentration as an independent variable. Other relevant demographic variables were also considered for inclusion. No significant (p greater than 0.05) relation between solvent concentration and impairment on any of the 10 behavioural variables was observed after controlling for

  7. Behavioural evaluation of workers exposed to mixtures of organic solvents.

    PubMed Central

    Maizlish, N A; Langolf, G D; Whitehead, L W; Fine, L J; Albers, J W; Goldberg, J; Smith, P

    1985-01-01

    Reports from Scandinavia have suggested behavioural impairment among long term workers exposed to solvents below regulatory standards. A cross sectional study of behavioural performance was conducted among printers and spray painters exposed to mixtures of organic solvents to replicate the Scandinavian studies and to examine dose-response relationships. Eligible subjects consisted of 640 hourly workers from four midwestern United States companies. Of these, 269 responded to requests to participate and 240 were selected for study based on restrictions for age, sex, education, and other potentially confounding variables. The subjects tested had been employed on average for six years. Each subject completed an occupational history, underwent a medical examination, and completed a battery of behavioural tests. These included the Fitts law psychomotor task, the Stroop colour-word test, the Sternberg short term memory scanning test, the short term memory span test, and the continuous recognition memory test. Solvent exposure for each subject was defined as an exposed or non-exposed category based on a plant industrial hygiene walk-through and the concentration of solvents based on an analysis of full shift personal air samples by gas chromatography. The first definition was used to maintain consistency with Scandinavian studies, but the second was considered to be more accurate. The average full shift solvent concentration was 302 ppm for the printing plant workers and 6-13 ppm for the workers at other plants. Isopropanol and hexane were the major components, compared with toluene in Scandinavian studies. Performance on behavioural tests was analysed using multiple linear regression with solvent concentration as an independent variable. Other relevant demographic variables were also considered for inclusion. No significant (p greater than 0.05) relation between solvent concentration and impairment on any of the 10 behavioural variables was observed after controlling for

  8. Dissolving efficacy of organic solvents on root canal sealers.

    PubMed

    Martos, J; Gastal, M T; Sommer, L; Lund, R G; Del Pino, F A B; Osinaga, P W R

    2006-03-01

    The aim of this study was to evaluate the solubility of three types of root canal sealers in three organic solvents used in endodontics. The solubility of calcium-hydroxide-based (Sealer 26), silicon-polydimethylsiloxane-based (RoekoSeal), and zinc-oxide-eugenol based (Endofill and Intrafill) sealers was assessed in eucalyptol, xylol, orange oil, and distilled water. Eighty samples of each filling material were prepared according to the manufacturers' instructions and then divided into four groups for immersion in solvent for 2 or 10 min. The means of sealer dissolution in solvents were obtained by the difference between the original preimmersion weight and the postimmersion weight in a digital analytical scale. Data were statistically analyzed with the Student's t test, and multiple comparisons were performed with Student-Newman-Keuls. Xylol and orange oil showed similar effects, with significant solubilization (P<0.05) of the tested cements. Endofill and Sealer 26 did not show any significant difference in solubilization at the two immersion times, whereas RoekoSeal and Intrafill showed a more pronounced solubility at 10 min. The lowest levels of solubilization occurred in RoekoSeal, Sealer 26, Endofill, and Intrafill. It is concluded that xylol and orange oil presented similar solvent effects with a significant solubility of the tested cements.

  9. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... OOOO of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... organic HAP, percent by mass 1. Toluene 108-88-3 1.0 Toluene. 2. Xylene(s) 1330-20-7 1.0...

  10. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... OOOO of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... organic HAP, percent by mass 1. Toluene 108-88-3 1.0 Toluene. 2. Xylene(s) 1330-20-7 1.0...

  11. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... OOOO of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... organic HAP, percent by mass 1. Toluene 108-88-3 1.0 Toluene. 2. Xylene(s) 1330-20-7 1.0...

  12. Conformational effects of organic solvents on histone complexes

    SciTech Connect

    Beaudette, N.V.; Okabayashi, H.; Fasman, G.D.

    1982-01-01

    Changes in the conformations of H3-H4, H2A-H2B, and the core histone complex brought about by the addition of organic solvents have been examined by circular dichroism spectroscopy. All three complexes assume increased ..cap alpha.. helicity with increasing amounts of the organic solvent. An amount of secondary structure equal to that obtained in phosphate-buffered 2 M NaCl solution can be induced in low-salt solutions of the complexes by the addition of 40-50% ethylene glycol, 50% glycerol, or approximately 2% hexafluoro-2-propanol. H3-H4 was found to be somewhat more flexible than H2A-H2B in its response to changes in solvent polarity. Upon being heated, H3-H4 and the core histone complex both undergo irreversible ..cap alpha.. ..-->.. ..beta.. transitions in 50% ethylene glycol under low-salt conditions, while H2A-H2B undergoes an essentially ..cap alpha.. ..-->.. random-coil transition under the same conditions. These results are discussed in terms of the dynamics of the nucleosome particle. 68 references, 8 figures.

  13. Solvent effect induced solute damage in an organic inner salt.

    PubMed

    Shui, Min; Jin, Xiao; Li, Zhongguo; Yang, Junyi; Shi, Guang; Zhang, Xueru; Wang, Yuxiao; Yang, Kun; Wei, Tai-huei; Song, Yinglin

    2010-12-20

    Nonlinear absorption of a newly synthesized organic inner salt Ge-150 dissolved in four different solvents (DMF, DMSO, acetonitrile and acetone) is investigated by the Z-scan technique with both nanosecond and picosecond pulses. When pulse energy surpasses a threshold and pulse-to-pulse separation is shorter than a characteristic time, all the four solutions show absorption weakening induced by cross-pulse effects in the picosecond regime. However, only two of them (Ge-150 dissolved in DMF and DMSO) show this weakening in the nanosecond regime. By conducting a simple verification experiment, we verify this absorption weakening is induced by solute damage related to solvent effect rather than solute migration. A simple theoretical model is proposed to interpret the experimental phenomenon.

  14. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Contents of Solvents and Solvent Blends 5 Table 5 to Subpart VVVV of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  15. Understanding dissolution behavior of 193nm photoresists in organic solvent developers

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hyun; Park, Jong Keun; Cardolaccia, Thomas; Sun, Jibin; Andes, Cecily; O'Connell, Kathleen; Barclay, George G.

    2012-03-01

    Herein, we investigate the dissolution behavior of 193-nm chemically amplified resist in different organic solvents at a mechanistic level. We previously reported the effect of solvent developers on the negative tone development (NTD) process in both dry and immersion lithography, and demonstrated various resist performance parameters such as photospeed, critical dimension uniformity, and dissolution rate contrast are strongly affected by chemical nature of the organic developer. We further pursued the investigation by examining the dependence of resist dissolution behavior on their solubility properties using Hansen Solubility Parameter (HSP). The effects of monomer structure, and resist composition, and the effects of different developer chemistry on dissolution behaviors were evaluated by using laser interferometry and quartz crystal microbalance. We have found that dissolution behaviors of methacrylate based resists are significantly different in different organic solvent developers such as OSDTM-1000 Developer* and n-butyl acetate (nBA), affecting their resist performance. This study reveals that understanding the resist dissolution behavior helps to design robust NTD materials for higher resolution imaging.

  16. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Large Appliances Pt. 63, Subpt. NNNN, Table 3 Table 3 to Subpart NNNN of Part 63—Default Organic HAP.../solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass 1....

  17. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Large Appliances Pt. 63, Subpt. NNNN, Table 3 Table 3 to Subpart NNNN of Part 63—Default Organic HAP.../solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass 1....

  18. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Petroleum Solvent Groups 6 Table 6 to Subpart VVVV of Part 63 Protection of Environment ENVIRONMENTAL... Contents of Petroleum Solvent Groups As specified in § 63.5758(a)(6), when detailed organic HAP content..., Naphthol Spirits, Petroleum Spirits, Petroleum Oil, Petroleum Naphtha, Solvent Naphtha, Solvent Blend.) 3...

  19. Enzyme catalysis in organic solvents: influence of water content, solvent composition and temperature on Candida rugosa lipase catalyzed transesterification.

    PubMed

    Herbst, Daniela; Peper, Stephanie; Niemeyer, Bernd

    2012-12-31

    In the present study the influence of water content, solvent composition and reaction temperature on the transesterification of 1-phenylpropan-2-ol catalyzed by Candida rugosa lipase was examined. Reactions were carried out in different mixtures of hexane and tetrahydrofurane. The studies showed that an increasing water content of the organic solvent results in an increasing enzyme activity and a decreasing enantiomeric excess. Furthermore, a significant influence of the solvent hydrophilicity both on the enzyme activity and on the enantiomeric excess was found. An increase in solvent hydrophilicity leads to a decrease of enzyme activity and an increase of the enantiomeric excess. This indicates that the enzyme becomes more selective with decreasing flexibility. Similar effects were found by variation of the reaction temperature. Taken together, the decrease in conversion and the increase in selectivity with increasing solvent hydrophilicity are induced by the different water contents on the enzyme surface and not by the solvent itself.

  20. Reactions of organic ions at ambient surfaces in a solvent-free environment.

    PubMed

    Badu-Tawiah, Abraham K; Cyriac, Jobin; Cooks, R Graham

    2012-05-01

    Solvent-free ion/surface chemistry is studied at atmospheric pressure, specifically pyrylium cations, are reacted at ambient surfaces with organic amines to generate pyridinium ions. The dry reagent ions were generated by electrospraying a solution of the organic salt and passing the resulting electrosprayed droplets pneumatically through a heated metal drying tube. The dry ions were then passed through an electric field in air to separate the cations from anions and direct the cations onto a gold substrate coated with an amine. This nontraditional way of manipulating polyatomic ions has provided new chemical insights, for example, the surface reaction involving dry isolated 2,4,6-triphenylpyrylium cations and condensed solid-phase ethanolamine was found to produce the expected N-substituted pyridinium product ion via a pseudobase intermediate in a regiospecific fashion. In solution however, ethanolamine was observed to react through its N-centered and O-centered nucleophilic groups to generate two isomeric products via 2H-pyran intermediates. The O-centered nucleophile reacted less rapidly to give the minor product. The surface reaction product was characterized in situ by surface enhanced Raman spectroscopy, and ex situ using mass spectrometry and H/D exchange, and found to be chemically the same as the major pyridinium solution-phase reaction product.

  1. Dissolving efficacy of some organic solvents on gutta-percha.

    PubMed

    Magalhães, Bianca Silva; Johann, Julia Elis; Lund, Rafael Guerra; Martos, Josué; Del Pino, Francisco Augusto Burkert

    2007-01-01

    The aim of this study was to evaluate the solubility of gutta-percha in four organic solvents used in endodontics. The solubility of gutta-percha (Dentsply) was assessed in xylol, orange oil, eucalyptol, chloroform and distilled water. A hundred and fifty samples of gutta-percha were prepared using a standardized stainless steel mould and divided into five groups for immersion in the different solvents tested and in distilled water (control group) for 2, 5 and 10 minutes. The means of gutta-percha dissolution in the solvents were obtained by the difference between the pre-immersion original weight and the post-immersion weight in a digital analytical scale (Gehaka-AG2000). Data were statistically analyzed by Analysis of Variance (ANOVA) and multiple comparisons with Scheffes test (p<0.05). The best solvency capacity was obtained with xylol. Chloroform, orange oil and eucalyptol presented similar results, and distilled water did not promote alterations in the gutta-percha.

  2. Occupational Exposure to Organic Solvents during Bridge Painting

    PubMed Central

    Qian, Hua; Fiedler, Nancy; Moore, Dirk F.; Weisel, Clifford P.

    2010-01-01

    Exposure to volatile organic compounds (VOCs) from bridge painting was measured in New York City and New Jersey during the summer and fall seasons from 2005 to 2007. The effect of painting activities (paint coating layer, confinement setup, and application method) and meteorological conditions (temperature, humidity, and wind speed) on solvent exposure to aromatic, ketone, ester, and alkane compounds were individually evaluated. Mixed-effect models were used to examine the combination effects of these factors on the air concentration of total VOCs as the individual compound groups were not present in all samples. Air concentration associated with spraying was not affected by meteorological conditions since spraying was done in a confined space, thus reducing their impact on solvent air concentration. The mixed models for brushing and rolling samples included two fixed factors, i.e. application method and temperature, and one random factor, i.e. sampling day. An independent dataset (daily air samples) was used to validate the mixed model constructed for brushing and rolling samples. The regression line of the predicted values and actual measurements had a slope of 1.32 ± 0.15 for daily brushing and rolling samples, with almost all points being within the 95% confidence bands. The constructed model provides practical approaches for estimating the solvent exposure from brushing and rolling activities among construction painters. An adjusted mean air concentration derived from the activity-specific spray samples was the best estimate for that painting application. PMID:20354053

  3. Mixed Organic Solvents Induce Renal Injury in Rats

    PubMed Central

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2∶2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5–6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli. PMID:23029287

  4. Antioxidant components and properties of dry heat treated clove in different extraction solvents.

    PubMed

    Nikousaleh, Azadeh; Prakash, Jamuna

    2016-04-01

    The effects of heat treatment and extraction solvents (pure/aqueous acetone, ethanol, methanol) on antioxidant activity (AA) and components of clove (Syzygium aromaticum Linn) were studied. Clove was subjected to dry heat treatment (microwave and roasting) and the AA measured by free radical scavenging activity (FRSA), reducing power (RP), and phospho-molybdenum assay (TAA). Unheated samples served as controls. The antioxidant components estimated were total phenols, flavonoids and tannins. Using RP and FRSA, highest AA was observed in 80 % acetone extract of all samples (1.778-1448 and 84.5-86.0 %). TAA showed higher value in 80 % methanolic extract for all samples in the range 303.595-307.941 mmol ascorbic acid/g. Heated samples exhibited higher AA in all assays. Highest amount of phenols and flavonoids were extracted in 80 % acetone (4053-4064 mg/100 g) and 80 % methanol (11,271-11,370 mg/100 g) respectively. For tannins, maximum extraction was in 80 % acetone (control, 16441 mg/100 g), 80 % ethanol (microwave, 19,558 mg/100 g), and pure methanol (roasted, 15,823 mg/100 g). Total phenol and flavonoid contents were positively associated with AA determined using RP and FRSA. In conclusion, clove exhibited powerful AA in different extraction solvents which increased on dry heat treatments and correlated positively with antioxidant components. Hence, clove can be used as a natural antioxidant in food systems.

  5. A comparison of lipase-catalyzed ester hydrolysis in reverse micelles, organic solvents, and biphase systems

    SciTech Connect

    Yang, F.; Russell, A.J.

    1995-07-05

    The performance of lipases from Candida rugosa and wheat germ have been investigated in three reaction media using three acetate hydrolyses as model reactions (ethyl acetate, allyl acetate, and prenyl acetate). The effect of substrate properties and water content were studied for each system (organic solvent, biphasic system, and reverse micelles). Not unexpectedly, the effect of water content is distinct for each system, and the optimal water content for enzyme activity is not always the same as that for productivity. A theoretical model has been used to simulate and predict enzyme performance in reverse micelles, and a proposed partitioning model for biphasic systems agrees well with experimental results. While the highest activities observed were in the micellar system, productivity in microemulsions is limited by low enzyme concentrations. Biphasic systems, however, support relatively good activity and productivity. The addition of water to dry organic solvents, combined with the dispersion of lyophilized enzyme powders in the solvent, resulted in significant enzyme aggregation, which not surprisingly limits the applicability of the ``anhydrous`` enzyme suspension approach.

  6. Solvent effects on chemical processes. I: Solubility of aromatic and heterocyclic compounds in binary aqueous-organic solvents.

    PubMed

    Khossravi, D; Connors, K A

    1992-04-01

    The standard free energy change (delta G0) for equilibrium dissolution in binary solvent mixtures is written as a sum of effects arising from solvent-solvent interactions (the general medium effect), solvent-solute interactions (the solvation effect), and solute-solute interactions (the intersolute effect). The general medium effect is given by gA gamma, where g is a curvature correction factor to the surface tension (gamma) and A is the molecular cavity surface area. A new feature is the definition of gamma to be that value appropriate to the equilibrium mean solvation shell composition. The solvation effect is modeled by stoichiometric stepwise competitive equilibria between the two solvent components for the solute. The intersolute effect includes the crystal energy and solution phase interactions. In this work, water was solvent component 1, and various miscible organic cosolvents served as solvent component 2. Relating all data to the fully aqueous solution gives an explicit expression for delta M delta G0, the solvent effect on the free energy change, as a function of the mole fractions x1 and x2. This function is a binding isotherm. Nonlinear regression leads (for a two-step solvation scheme) to estimates of the solvation exchange constants K1 and K2 and the parameter gA. This relationship was applied to 44 systems comprising combinations of 31 solutes and eight organic cosolvents. Curve fits were good to excellent, and most of the parameter estimates had physically reasonable magnitudes.

  7. Solvent Molding of Organic Morphologies Made of Supramolecular Chiral Polymers.

    PubMed

    Đorđević, Luka; Marangoni, Tomas; Miletić, Tanja; Rubio-Magnieto, Jenifer; Mohanraj, John; Amenitsch, Heinz; Pasini, Dario; Liaros, Nikos; Couris, Stelios; Armaroli, Nicola; Surin, Mathieu; Bonifazi, Davide

    2015-07-01

    The self-assembly and self-organization behavior of uracil-conjugated enantiopure (R)- or (S)-1,1'-binaphthyl-2,2'-diol (BINOL) and a hydrophobic oligo(p-phenylene ethynylene) (OPE) chromophore exposing 2,6-di(acetylamino)pyridine termini are reported. Systematic spectroscopic (UV-vis, CD, fluorescence, NMR, and SAXS) and microscopic studies (TEM and AFM) showed that BINOL and OPE compounds undergo triple H-bonding recognition, generating different organic nanostructures in solution. Depending on the solvophobic properties of the liquid media (toluene, CHCl3, CHCl3/CHX, and CHX/THF), spherical, rod-like, fibrous, and helical morphologies were obtained, with the latter being the only nanostructures expressing chirality at the microscopic level. SAXS analysis combined with molecular modeling simulations showed that the helical superstructures are composed of dimeric double-cable tape-like structures that, in turn, are supercoiled at the microscale. This behavior is interpreted as a consequence of an interplay among the degree of association of the H-bonded recognition, the vapor pressure of the solvent, and the solvophobic/solvophilic character of the supramolecular adducts in the different solutions under static and dynamic conditions, namely solvent evaporation conditions at room temperature.

  8. Characterizing DNA Condensation and Conformational Changes in Organic Solvents

    PubMed Central

    Ke, Fuyou; Luu, Yen Kim; Hadjiargyrou, Michael; Liang, Dehai

    2010-01-01

    Organic solvents offer a new approach to formulate DNA into novel structures suitable for gene delivery. In this study, we examined the in situ behavior of DNA in N, N-dimethylformamide (DMF) at low concentration via laser light scattering (LLS), TEM, UV absorbance and Zeta potential analysis. Results revealed that, in DMF, a 21bp oligonucleotide remained intact, while calf thymus DNA and supercoiled plasmid DNA were condensed and denatured. During condensation and denaturation, the size was decreased by a factor of 8–10, with calf thymus DNA forming spherical globules while plasmid DNA exhibited a toroid-like conformation. In the condensed state, DNA molecules were still able to release the counterions to be negatively charged, indicating that the condensation was mainly driven by the excluded volume interactions. The condensation induced by DMF was reversible for plasmid DNA but not for calf thymus DNA. When plasmid DNA was removed from DMF and resuspended in an aqueous solution, the DNA was quickly regained a double stranded configuration. These findings provide further insight into the behavior and condensation mechanism of DNA in an organic solvent and may aid in developing more efficient non-viral gene delivery systems. PMID:20949017

  9. High exposures to organic solvents among graffiti removers.

    PubMed

    Anundi, H; Lind, M L; Friis, L; Itkes, N; Langworth, S; Edling, C

    1993-01-01

    The exposure to organic solvents among 12 graffiti removers was studied. Health effects were also assessed by structured interview and a symptom questionnaire. Blood and urine samples were collected at the end of the day of air sampling. The concentrations of dichloromethane, glycol ethers, trimethylbenzenes and N-methyl-2-pyrrolidinone in the breathing zone of each worker were measured during one working day. The 8-h time-weighted average exposure to dichloromethane ranged from 18 to 1200 mg/m3. The Swedish Permissible Exposure Limit value for dichloromethane is 120 mg/m3. The air concentrations of glycol ethers, trimethylbenzenes and N-methyl-2-pyrrolidinone were low or not detectable. No exposure-related deviations in the serum concentrations of creatinine, aspartate transaminase, alanine transaminase, gamma-glutamyl transpeptidase or hyaluronan or the urine concentrations of alpha 1-microglobulin, beta 2-microglobulin or N-acetyl-beta-glucosaminidase were found. Irritative symptoms of the eyes and upper respiratory tract were more prevalent than in the general population. This study demonstrates that old knowledge about work hazards is not automatically transferred to new professions. Another aspect is that the public is also exposed as the job is performed during daytime in underground stations. At least for short periods, bystanders may be exposed to high concentrations of organic solvent vapours. People with predisposing conditions, e.g. asthmatics, may risk adverse reactions.

  10. Controlled Growth of Organic Semiconductor Films Using Liquid Crystal Solvents

    NASA Astrophysics Data System (ADS)

    Bufkin, Kevin; Ohlson, Brooks; Hillman, Ben; Johnson, Brad; Patrick, David

    2008-05-01

    Interest in using organic semiconductors in applications such as large area displays, photovoltaic devices, and RFID tags stems in part from their prospects for enabling significantly reduced manufacturing costs compared to traditional inorganic semiconductors. However many of the best performing prototype devices produced so far have involved expensive or time-consuming fabrication methods, such as the use of single crystals or thin films deposited under high vacuum conditions. We present a new approach for growing low molecular weight organic crystalline films at ambient conditions based on a vapor-liquid-solid growth mechanism using thermotropic nematic liquid crystal (LC) solvents. Tetracene is deposited via atmospheric-pressure sublimation onto substrates coated by a LC layer oriented using rubbed polyimide, producing films that are highly crystalline, with large grain sizes, and possessing macroscopic uniaxial orientation. This poster will describe the growth mechanism, discuss the effects of processing conditions such as LC layer thickness, substrate temperature and flux rate, and compare the results to a model of deposition-diffusion aggregation accounting for the finite thickness of the solvent layer.

  11. Controlled Growth of Organic Semiconductor Films Using Liquid Crystal Solvents

    NASA Astrophysics Data System (ADS)

    Bufkin, Kevin; Ohlson, Brooks; Hillman, Ben; Johnson, Brad; Patrick, David

    2008-03-01

    Interest in using organic semiconductors in applications such as large area displays, photovoltaic devices, and RFID tags stems in part from their prospects for enabling significantly reduced manufacturing costs compared to traditional inorganic semiconductors. However many of the best performing prototype devices produced so far have involved expensive or time-consuming fabrication methods, such as the use of single crystals or thin films deposited under high vacuum conditions. We present a new approach for growing low molecular weight organic crystalline films at ambient conditions based on a vapor-liquid-solid growth mechanism using thermotropic nematic liquid crystal (LC) solvents. Tetracene is deposited via atmospheric-pressure sublimation onto substrates coated by a LC layer oriented using rubbed polyimide, producing films that are highly crystalline, with large grain sizes, and possessing macroscopic uniaxial orientation. This poster will describe the growth mechanism, discuss the effects of processing conditions such as LC layer thickness, substrate temperature and flux rate, and compare the results to a model of diffusion limited aggregation accounting for the finite thickness of the solvent layer.

  12. Tolerance of β-diketone hydrolases as representatives of the crotonase superfamily towards organic solvents.

    PubMed

    Siirola, Elina; Grischek, Barbara; Clay, Dorina; Frank, Annika; Grogan, Gideon; Kroutil, Wolfgang

    2011-12-01

    Crotonase superfamily enzymes catalyze a wide variety of reactions, including hydrolytic C-C bond cleavage in symmetrical β-diketones by 6-oxo camphor hydrolase (OCH) from Rhodococcus sp. The organic solvent tolerance and temperature stability of OCH and its structurally related ortholog Anabaena β-diketone hydrolase have been investigated. Both enzymes showed excellent tolerance toward organic solvents; for instance, even in the presence of 80% (v/v) THF or dioxane, OCH was still active. In most solvent mixtures, except methanol, the stereospecificity was conserved (>99% e.e. of product), hence neither the type of solvent nor its concentration appeared to have an effect on the stereoselectivity of the enzyme. Attempts to correlate the observed activities with log P, functional solvent group or denaturing capacity (DC) of the solvent were only successful in the case of DC for water miscible solvents. This study represents the first investigation of organic solvent stability for members of the crotonase superfamily.

  13. Solvent-tolerance of fungi located on an interface between an agar plate and an organic solvent.

    PubMed

    Oda, Shinobu; Sugitani, Ayaka; Ohashi, Shinichi

    2014-01-01

    While 6 by 20 of type culture fungi could grow on an interface between organic solvent (log P, 4.12) and agar plate, 13 by 20 of strains could form a large colony after the removal of more toxic solvent, such as styrene (log P, 2.95) and tert-butyl acetate (log P, 1.76) because of viability of spores on the interface.

  14. Estimation of total carbonyl compounds in roasted and dried foods by the tentative method using 1-butanol as a solvent.

    PubMed

    Usuki, Riichiro; Shibata, Yuriko; Tagiri-Endo, Misako; Endo, Yasushi

    2009-01-01

    Total carbonyl compounds in oils extracted from roasted and dried foods were estimated by the tentative method using 1-butanol instead of benzene as a solvent. Oils extracted from dried foods had generally showed higher carbonyl value (CV) than those from roasted foods. The CV estimated by the tentative method had a good correlation with that by the conventional method in oils extracted from roasted and dried foods, although the former did not always correlate with the latter for roasted and dried foods. It was expected that the tentative method using 1-butanol could be substituted for that using benzene and be useful for evaluating the quality of oils in roasted and dried foods.

  15. Peptide synthesis in neat organic solvents with novel thermostable proteases.

    PubMed

    Toplak, Ana; Nuijens, Timo; Quaedflieg, Peter J L M; Wu, Bian; Janssen, Dick B

    2015-06-01

    Biocatalytic peptide synthesis will benefit from enzymes that are active at low water levels in organic solvent compositions that allow good substrate and product solubility. To explore the use of proteases from thermophiles for peptide synthesis under such conditions, putative protease genes of the subtilase class were cloned from Thermus aquaticus and Deinococcus geothermalis and expressed in Escherichia coli. The purified enzymes were highly thermostable and catalyzed efficient peptide bond synthesis at 80°C and 60°C in neat acetonitrile with excellent conversion (>90%). The enzymes tolerated high levels of N,N-dimethylformamide (DMF) as a cosolvent (40-50% v/v), which improved substrate solubility and gave good conversion in 5+3 peptide condensation reactions. The results suggest that proteases from thermophiles can be used for peptide synthesis under harsh reaction conditions.

  16. Production of an osteoinductive demineralised bone matrix powder without the use of organic solvents.

    PubMed

    Eagle, M J; Rooney, P; Kearney, J N

    2015-09-01

    Demineralised bone matrix (DBM) is produced by grinding cortical bone into a powder, sieving the powder to obtain a desired size range and then demineralising the powder using acid. Protocols for the production of DBM powder have been published since 1965 and the powder can be used in lyophilised form or it can be mixed with a carrier to produce a paste or putty. The powder is generally produced from cortical bone which has been processed to remove blood, bone marrow and bone marrow components, including fat. Removal of fat is accomplished by incorporating incubation in an organic solvent, often chloroform, chloroform/methanol or acetone. The use of organic solvents in a clean room environment in a human tissue bank is problematic and involves operator exposure and the potential for the solvent to be trapped in air filters or recirculated throughout the clean room suite. Consequently, in this study, we have developed a cortical bone washing step which removes fat/lipid without the use of an organic solvent. Bone was prepared from six femoral shafts from three donors by dissecting soft tissue and bisecting the shaft, the shafts were then cut into ~9-10 cm lengths. These struts were then taken through a series of hot water washes at 56-59 °C, centrifugation and decontamination steps. Washed cortical struts were then lyophilised before being ground with a compressed air milling machine. The ground bone was sieved, demineralised, freeze-dried and terminally sterilised with a target dose of 25 kGy gamma irradiation. The DBM powder was evaluated for residual calcium content, in vitro cytotoxicity and osteoinductivity by implantation into the muscle of an athymic mouse. Data indicated that in addition to removing in excess of 97% DNA and extractable soluble protein, the washing protocol reduced lipid 10,000-fold. The processed bone was easily ground without clogging the grinder; the sterilised DBM powder was not cytotoxic but was osteoinductive in the animal model

  17. Production of graphene by exfoliation of graphite in a volatile organic solvent.

    PubMed

    Choi, Eun-Young; Choi, Won San; Lee, Young Boo; Noh, Yong-Young

    2011-09-07

    The production of unfunctionalized and nonoxidized graphene by exfoliation of graphite in a volatile solvent, 1-propanol, is reported. A stable homogeneous dispersion of graphene was obtained by mild sonication of graphite powder and subsequent centrifugation. The presence of a graphene monolayer was observed by atomic force microscopy and transmission electron microscopy. The solvent, 1-propanol, from the deposited dispersion was simply and quickly removed by air drying at room temperature, without the help of high temperature annealing or vacuum drying, which shortens production time and does not leave any residue of the solvent in the graphene sheets.

  18. Toxic effects of organic solvents on the growth of chlorella vulgaris and Selenastrum capicornutum

    SciTech Connect

    El Jay, A.

    1996-10-01

    Organic solvents can make their way into the environment as industrial wastes and components of pesticide formulations. In laboratory bioassays, the use of organic solvents is unavoidable since many pesticides and organic pollutants have low water solubilities and need to be dissolved in organic solvents prior to addition into experimental systems. So, one area of concern with laboratory bioassays is the stress imposed on test organisms by organic solvents. Most reports on the comparative toxicity of solvents towards test organisms deals with the effects of solvents on fish and aquatic invertebrates with some data available for blue-green algae and green algae. The US Environmental Protection Agency recommends maximum allowable limits of 0.05% solvent for acute tests and 0.01% for chronic tests but, in the literature, the nature of the solvent and the final concentration used vary among the different authors and are often higher than EPA limits due to problems associated with the use of small test volumes and toxicant solubility. Organic solvents can cause toxic effects on their own, but it has been also reported that they can interact with pesticides to alter toxicity. The first step in choosing a solvent for use in bioassays should be a detailed screening to identify solvents with inherently low toxicity to the test organism, followed by an interaction study (pesticide and solvent interactions) to choose the best concentration to use. The purpose of this study is to compare the inhibitory effects of our solvents used in pesticide bioassays towards the growth of two green algae. 18 refs., 4 figs., 1 tabs.

  19. XAFS study of bioactive Cu(II) complexes of 7-hydroxycoumarin derivatives in organic solvents

    NASA Astrophysics Data System (ADS)

    Klepka, M. T.; Wolska, A.; Drzewiecka-Antonik, A.; Rejmak, P.; Hatada, K.; Aquilanti, G.

    2017-04-01

    We characterize the structure of two Cu(II) complexes of 7-hydroxycoumarins in organic solvents. The solvents are, dimethyl sulfoxide and dimethylformamide. X-ray absorption spectroscopy together with density functional theory calculations are employed to identify the structural changes induced by the two solvents in comparison to the solid form of complexes. We show that the structure of the Cu(II) complexes is modified depending on the solvent and we propose the geometry of the complexes molecule.

  20. Water-enhanced solubility of carboxylic acids in organic solvents and its application to extraction processes

    SciTech Connect

    Starr, J.N. ); King, C.J. )

    1992-11-01

    This paper reports on solubilities of carboxylic acids in certain organic solvents which increase sharply as the concentration of water in the solvent increases. This phenomenon leads to a method of regeneration for solvent-extraction processes whereby coextracted water is selectively removed from the extract, such as by stripping, thereby precipitating the acid. The removal of a minor constituent to cause precipitation reduces energy consumption, in contrast with bulk removal of solvent. Solubilities of fumaric acid were measured in a number of organic solvents, with varying amounts of water in the organic phase. Cyclohexanone and methylcyclohexanone were chosen as solvents for which detailed solid-liquid and liquid-liquid equilibria were measured for adipic, fumaric, and succinic acids in the presence of varying concentrations of water, at both 25 and 45[degrees]C. Batch precipitation experiments were performed to demonstrate the processing concept and determine the relative volatility of water to solvent in the presence of carbon.

  1. Enantioselective hydrolysis of epichlorohydrin using whole Aspergillus niger ZJB-09173 cells in organic solvents.

    PubMed

    Jin, Huo-Xi; Hu, Zhong-Ce; Zheng, Yu-Guo

    2012-09-01

    The enantioselective hydrolysis of racemic epichlorohydrin for the production of enantiopure (S)-epichlorohydrin using whole cells of Aspergillus niger ZJB-09173 in organic solvents was investigated. Cyclohexane was used as the reaction medium based on the excellent enantioselectivity of epoxide hydrolase from A. niger ZJB- 09173 in cyclohexane. However, cyclohexane had a negative effect on the stability of epoxide hydrolase from A. niger ZJB-09173. In the cyclohexane medium, substrate inhibition, rather than product inhibition of catalysis, was observed in the hydrolysis of racemic epichlorohydrin using A. niger ZJB-09173. The racemic epichlorohydrin concentration was markedly increased by continuous feeding of substrate without significant decline of the yield. Ultimately, 18.5% of (S)-epichlorohydrin with 98 percent enantiomeric excess from 153.6 mM of racemic epichlorohydrin was obtained by the dry cells of A. niger ZJB-09173, which was the highest substrate concentration in the production of enantiopure (S)-epichlorohydrin by epoxide hydrolases using an organic solvent medium among the known reports.

  2. Regioselective self-acylating cyclodextrins in organic solvent

    PubMed Central

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-01-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods. PMID:27020946

  3. Regioselective self-acylating cyclodextrins in organic solvent

    NASA Astrophysics Data System (ADS)

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-03-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods.

  4. Organic solvents for pharmaceutical parenterals and embolic liquids: a review of toxicity data.

    PubMed

    Mottu, F; Laurent, A; Rufenacht, D A; Doelker, E

    2000-01-01

    Non-aqueous solvents have long been used in subcutaneous or intramuscular pharmaceutical formulations to dissolve water-insoluble drugs. In recent years, the need for these vehicles was increased since the drug discovery process has yielded many poorly water-soluble drugs. Besides, preparations containing embolic materials dissolved in undiluted non-aqueous water-miscible solvents have been proposed for the intravascular treatment of aneurysms, arteriovenous malformations, or tumors. These organic solvents, regarded as chemically and biologically inert, may show pharmacological and toxicological effects. Therefore, knowledge of tolerance and activity of non-aqueous solvents is essential before they can be administered, especially when given undiluted. This paper focuses on thirteen organic solvents reported as possible vehicles for injectable products and details toxicological data when they have been administered intravascularly. These solvents can be subdivided into three groups according to their description in the literature either for intravenous pharmaceutical parenterals or for intravascular embolic liquids: well-documented organic solvents (propylene glycol, polyethylene glycols, ethanol), solvents described in specific applications (dimethyl sulfoxide, N-methyl-2-pyrrolidone, glycofurol, Solketal, glycerol formal, acetone), and solvents not reported in intravascular applications but potentially useful (tetrahydrofurfuryl alcohol, diglyme, dimethyl isosorbide, ethyl lactate). This review of the literature shows that toxicity data on intravascular organic solvents are insufficient because they concern solvents diluted with water and because of the lack of comparative evaluation using the same methodologies.

  5. Rotational Diffusion of Charged and Nondipolar Solutes in Ionic Liquid-Organic Solvent Mixtures: Evidence for Stronger Specific Solute-Solvent Interactions in Presence of Organic Solvent.

    PubMed

    Prabhu, Sugosh R; Dutt, G B

    2015-08-20

    Rotational diffusion of a charged solute, rhodamine 110 (R110), and a nondipolar solute, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP), has been investigated in ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]) and 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([BMIM][FAP]), with 0.8 mole fraction of dibenzyl ether (DBE). This study has been undertaken to find out how specific interactions between the solute and the ionic liquid are affected upon dilution with a nondipolar solvent. It has been observed that at a given viscosity (η) and temperature (T), the reorientation times of R110 increase by 40-60% in the ionic liquid-organic solvent mixtures compared to ones in the corresponding neat ionic liquids. In the case of DMDPP, the influence of DBE is less pronounced, and its reorientation times increase by 25-50% at a given η/T. The addition of DBE weakens the numerous interactions prevailing between the cations and the anions of the ionic liquids, which results in stronger specific interactions between the solutes and the constituent ions, consequently leading to slower rotation of the solutes.

  6. Sequential separation of immunoglobulin Y and phosvitin from chicken egg yolk without using organic solvents.

    PubMed

    Lee, Hyun Yong; Abeyrathne, E D N S; Choi, Inwook; Suh, Joo Won; Ahn, Dong Uk

    2014-10-01

    A study was conducted to develop a simple sequential separation protocol to separate phosvitin and IgY from egg yolk without using organic solvents. Egg yolk was diluted with 2 volumes of distilled water (DW), homogenized, and centrifuged. The precipitant was collected and homogenized with 4 volumes of 10% NaCl (wt/vol) in 0.05 N NaOH solution to extract phosvitin. The pH of the homogenate was adjusted to 4.0 and the precipitate was removed by centrifugation. The supernatant was collected and then heat-treated at 70°C for 30 min and centrifuged to remove impurities. The supernatant containing phosvitin was collected, had salts removed, and was concentrated and then freeze-dried. The supernatant from the centrifugation of diluted egg yolk was diluted again with 3 volumes of DW, and the precipitate was removed by centrifugation. The resulting supernatant was concentrated using ultrafiltration and then IgY was precipitated using 20% saturated (NH₄)₂SO₄+ 15% NaCl (wt/vol). The precipitant was collected after centrifugation at 3,400 × g for 30 min at 4°C and dissolved with DW, had salts removed, and then was freeze-dried. The purity of separated phosvitin and IgY was checked using SDS-PAGE and the proteins were verified using Western blotting. The purity of phosvitin and IgY was 97.2 and 98.7%, and the yield was 98.7 and 80.9%, respectively. The ELISA results indicated that the activities of separated IgY and phosvitin were 96.3 and 98.3%, respectively. This study proved that both phosvitin and IgY can be separated in sequence from egg yolk without using an organic solvent. Also, the method is very simple and has a high potential for scale-up processing.

  7. Antioxidant activities of lead (Leucaena leucocephala) seed as affected by extraction solvent, prior dechlorophyllisation and drying methods.

    PubMed

    Benjakul, Soottawat; Kittiphattanabawon, Phanat; Sumpavapol, Punnanee; Maqsood, Sajid

    2014-11-01

    Extracts of brown lead (Leucaena leucocephala) seed prepared using different extraction solvents were determined for antioxidative activities using different assays. The highest yield (3.4-4.0%) was obtained when water was used as an extraction solvent, compared with all ethanolic extracts used (1.2-2.0 %) (P < 0.05). Much lower chlorophyll content was found in the water extract. When hot water was used, the resulting extract contained lower total phenolic and mimosine contents (P < 0.05). In general, 60-80 % ethanolic extracts had higher 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities, ferric reducing antioxidant power (FRAP) and metal chelating activity than water extracts (P < 0.05). When brown lead seed was dechlorophyllised prior to extraction, the water extract had slightly increased yield with lower chlorophyll content. Nevertheless, prior chlorophyll removal resulted in the increase in antioxidative activities but lower total phenolic and mimosine contents (P < 0.05). Generally, phenolic compounds and mimosine were more released when water was used as the extraction solvent, while the lower amount of chlorophyll was extracted. Oven-drying exhibited the negative effect on antioxidative activities and mimosine content. The higher antioxidative activities with concomitant higher total phenolic and mimosine contents were found in water extract dried by freeze drying. Thus, extraction solvent, dechlorophyllisation and drying methods directly influenced the yield and antioxidative activity of lead seed extract.

  8. Organic solvent soluble oxide supported hydrogenation catalyst precursors

    DOEpatents

    Edlund, David J.; Finke, Richard G.; Saxton, Robert J.

    1992-01-01

    The present invention discloses two polyoxoanion supported metal complexes found to be useful in olefin hydrogenation. The complexes are novel compositions of matter which are soluble in organic solvents. In particular, the compositions of matter comprise A.sub.x [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.15 M'.sub.3 O.sub.62 ].sup.x- and A.sub.y [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.9 M'.sub.3 O.sub.40 ].sup.y- where L is a ligand preferably chosen from 1,5-cyclooctadiene (COD), ethylene, cyclooctene, norbornadiene and other olefinic ligands; n=1 or 2 depending upon the number of double bonds present in the ligand L; X is a "hetero" atom chosen from B, Si, Ge, P, As, Se, Te, I, Co, Mn and Cu; M is either W or Mo; M' is preferably Nb or V but Ti, Zr, Ta, Hf are also useful; and A is a countercation preferably selected from tetrabutyl ammonium and alkali metal ions.

  9. Interaction forces between asphaltene surfaces in organic solvents.

    PubMed

    Wang, Shengqun; Liu, Jianjun; Zhang, Liyan; Masliyah, Jacob; Xu, Zhenghe

    2010-01-05

    The colloidal interactions between asphaltene surfaces in heptol, a mixture of n-heptane and toluene, were studied for the first time by colloidal force measurements using an atomic force microscope (AFM). Asphaltenes were deposited on silica wafers and silica spheres using the Langmuir-Blodgett upstroke technique. The results showed that the ratio of toluene to heptane can significantly change solvent quality in terms of the ability to solubilize asphaltenes and hence the nature and the magnitude of the interaction forces between asphaltene surfaces. In pure toluene, there is a steric long-range repulsion which can be well fitted by the scaling theory of polymer brushes. As toluene volume fraction in heptol (Phi(T)) is gradually decreased from Phi(T) = 1 (pure toluene) to Phi(T) = 0 (pure n-heptane), the steric repulsion reduced and changed to weak attraction when Phi(T) < 0.2. The attraction in heptane can be fitted by van der Waals forces alone which are thus believed to promote asphaltene aggregation, leading to asphaltene precipitation. The results obtained in this study provide an insight into interactions that determine asphaltene behavior in an organic medium and hence in crude oils.

  10. Tertiary phase diagram of cellulose, ionic liquid and organic solvent

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Henderson, Doug; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert M.; Wang, Howard

    Cellulose is the most abundant natural polymer on earth, and widely used in products from clothing to paper. Fundamental understanding of molecular solutions of cellulose is the key to realize advanced technologies beyond cellulose fibers. It has been reported that certain ionic liquid/organic solvent mixtures dissolve cellulose. In this study, the tertiary phase diagram of microcrystalline cellulose, 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and dimethylformamide (DMF) mixtures has been determined using optical cloud point method and small angle neutron scattering (SANS). Data indicate that a molar ratio of EMIMAc to cellulose repeating unit equal or greater than 3 is necessary but not sufficient in forming one-phase homogeneous solutions. A miscibility gap exists in the dilute regime, where a minimum of 5 mol% of EMIM Ac in DMF is needed to form homogenous solutions. SANS show that cellulose chains adopt Gaussian-like conformation in homogenous solutions. The solutions exhibit the characteristics of upper critical solution temperature. Clustering of cellulose chains occurs at low EMIMAc/DMF or EMIMAc/cellulose ratio, or at low temperatures. The mechanism of cellulose dissolution in tertiary mixture is discussed.

  11. Modeling structure and flexibility of Candida antarctica lipase B in organic solvents

    PubMed Central

    Trodler, Peter; Pleiss, Jürgen

    2008-01-01

    Background The structure and flexibility of Candida antarctica lipase B in water and five different organic solvent models was investigated using multiple molecular dynamics simulations to describe the effect of solvents on structure and dynamics. Interactions of the solvents with the protein and the distribution of water molecules at the protein surface were examined. Results The simulated structure was independent of the solvent, and had a low deviation from the crystal structure. However, the hydrophilic surface of CALB in non-polar solvents decreased by 10% in comparison to water, while the hydrophobic surface is slightly increased by 1%. There is a large influence on the flexibility depending on the dielectric constant of the solvent, with a high flexibility in water and a low flexibility in organic solvents. With decreasing dielectric constant, the number of surface bound water molecules significantly increased and a spanning water network with an increasing size was formed. Conclusion The reduced flexibility of Candida antarctica lipase B in organic solvents is caused by a spanning water network resulting from less mobile and slowly exchanging water molecules at the protein-surface. The reduced flexibility of Candida antarctica lipase B in organic solvent is not only caused by the interactions between solvent-protein, but mainly by the formation of a spanning water network. PMID:18254946

  12. Amino Acid, Organic Acid, and Sugar Profiles of 3 Dry Bean (Phaseolus vulgaris L.) Varieties.

    PubMed

    John, K M Maria; Luthria, Devanand

    2015-12-01

    In this study, we compared the amino acid, organic acid and sugar profiles of 3 different varieties of dry beans (black bean [BB], dark red bean [DRB], and cranberry bean [CB]). The efficiency of the 2 commonly used extraction solvents (water and methanol:chloroform:water [2.5:1:1, v/v/v/]) for cultivar differentiation based on their metabolic profile was also investigated. The results showed that the BB contained the highest concentration of amino acids followed by DRB and CB samples. Phenylalanine, a precursor for the biosynthesis of phenolic secondary metabolites was detected at low concentration in CB samples and correlated with the reduced anthocyanins content in CB extract as documented in the published literature. Comparing the extractability of 2 extraction solvents, methanol:chloroform:water (2.5:1:1, v/v/v/) showed higher recoveries of amino acids from 3 beans, whereas, sugars were extracted in higher concentration with water. Analytically, gas chromatography detected sugars (9), amino acids (11), and organic acids (3) in a single run after derivatization of the extracts. In comparison, ion chromatography detected only sugars in a single run without any derivatization step with the tested procedure. Bean samples are better differentiated by the sugar content extracted with water as compared to the aqueous organic solvent extracts using partial least-square discriminant analysis.

  13. Immobilization of Lipase by Adsorption Onto Magnetic Nanoparticles in Organic Solvents.

    PubMed

    Shi, Ying; Liu, Wei; Tao, Qing-Lan; Jiang, Xiao-Ping; Liu, Cai-Hong; Zeng, Sha; Zhang, Ye-Wang

    2016-01-01

    In order to improve the performance of lipase in organic solvents, a simple immobilization method was developed by adsorption of lipase onto Fe₃O₄@ SiO₂magnetic nanoparticles in organic solvent. Among the solvents tested, toluene was found to be the most effective solvent for the immobilization. A maximum immobilization yield of 97% and relative activity of 124% were achieved in toluene at 30 °C. The optimal temperature, enzyme loading and water activity were 30 °C, 1.25 mg/mg support and 0.48 aw, respectively. The residual activity of immobilized lipase was 67% after 10 cycles of use. The advantages of the immobilized lipase including easy recovery, high stability, and enhanced activity of immobilized lipase in organic solvents show potential industrial applications in anhydrous solvents.

  14. Porphyrin entrapment and release behavior of microporous organic hollow spheres: fluorescent alerting systems for existence of organic solvents in water.

    PubMed

    Jin, Jaewon; Kim, Bolyong; Park, Nojin; Kang, Sungah; Park, Joon Hyun; Lee, Sang Moon; Kim, Hae Jin; Son, Seung Uk

    2014-12-07

    This work reports on the controllable guest entrapment and release behavior of microporous organic hollow spheres (MOHs). Porphyrins which are soluble in both water and methanol were entrapped in the MOHs using methanol solution. The water-soluble porphyrins entrapped in MOHs were not extracted by water due to the hydrophobicity of microporous organic shells. In contrast, the porphyrins were released gradually into aqueous solution by adding water-soluble organic solvents. The release behavior depended on the kind of organic solvents used and on the alkyl chain length of the porphyrin compounds. These properties were applied for the fluorescent alert towards the existence of organic solvents in flowing aqueous media.

  15. Exposure Characteristics of Construction Painters to Organic Solvents

    PubMed Central

    Park, Hyunhee; Park, Hae Dong; Jang, Jae-Kil

    2015-01-01

    Background Construction painters have not been studied well in terms of their hazards exposure. The objective of this study was to evaluate the exposure levels of total volatile organic compounds (TVOCs) for painters in the construction industry. Methods Activity-specific personal air samplings were carried out in three waterproofing activities [polyurethane (PU), asphalt, and cement mortar] and three painting activities (epoxy, oil based, and water based) by using organic-vapor-monitor passive-sampling devices. Gas chromatograph with flame ionization detector could be used for identifying and quantifying individual organic chemicals. The levels of TVOCs, by summing up 15 targeted substances, were expressed in exposure-index (EI) values. Results As arithmetic means in the order of concentration levels, the EIs of TVOCs in waterproofing works were 10.77, 2.42, 1.78, 1.68, 0.47, 0.07, and none detected (ND) for indoor PU-primer task, outdoor PU-primer task, outdoor PU-resin task, indoor PU-resin task, asphalt-primer task, asphalt-adhesive task, and cement-mortar task, respectively. The highest EI for painting works was 5.61 for indoor epoxy-primer task, followed by indoor epoxy-resin task (2.03), outdoor oil-based-spray-paint task (1.65), outdoor water-based-paint task (0.66), and indoor oil-based-paint task (0.15). Assuming that the operations were carried out continuously for 8 hours without breaks and by using the arithmetic means of EIs for each of the 12 tasks in this study, 58.3% (7 out of 12) exceeded the exposure limit of 100% (EI > 1.0), while 8.3% (1 out of 12) was in 50–100% of exposure limit (0.5 > EI > 1.0), and 4 tasks out of 12 were located in less than 50% of the limit range (EI < 0.5). Conclusion From this study, we recognized that construction painters are exposed to various solvents, including carcinogens and reproductive toxins, and the levels of TVOC concentration in many of the painting tasks exceeded the exposure limits. Construction

  16. Effect of prolonged exposure to organic solvents on the active site environment of subtilisin Carlsberg.

    PubMed

    Bansal, Vibha; Delgado, Yamixa; Fasoli, Ezio; Ferrer, Amaris; Griebenow, Kai; Secundo, Francesco; Barletta, Gabriel L

    2010-06-01

    The potential of enzyme catalysis as a tool for organic synthesis is nowadays indisputable, as is the fact that organic solvents affect an enzyme's activity, selectivity and stability. Moreover, it was recently realized that an enzyme's initial activity is substantially decreased after prolonged exposure to organic media, an effect that further hampers their potential as catalysts for organic synthesis. Regrettably, the mechanistic reasons for these effects are still debatable. In the present study we have made an attempt to explain the reasons behind the partial loss of enzyme activity on prolonged exposure to organic solvents. Fluorescence spectroscopic studies of the serine protease subtilisin Carlsberg chemically modified with polyethylene glycol (PEG-SC) and inhibited with a Dancyl fluorophore, and dissolved in two organic solvents (acetonitrile and 1,4-dioxane) indicate that when the enzyme is initially introduced into these solvents, the active site environment is similar to that in water; however prolonged exposure to the organic medium causes this environment to resemble that of the solvent in which the enzyme is dissolved. Furthermore, kinetic studies show a reduction on both V(max) and K(M) as a result of prolonged exposure to the solvents. One interpretation of these results is that during this prolonged exposure to organic solvents the active-site fluorescent label inhibitor adopts a different binding conformation. Extrapolating this to an enzymatic reaction we argue that substrates bind in a less catalytically favorable conformation after the enzyme has been exposed to organic media for several hours.

  17. Solvents, Ethanol, Car Crashes and Tolerance: How Risky is Inhalation of Organic Solvents?

    EPA Science Inventory

    A research program in the National Health and Environmental Effects Research Laboratory of the U.S. EPA has led to some surprising considerations regarding the potential hazard of exposure to low concentrations of solvent vapors. This program involved conducting experiments to ch...

  18. High-Pressure Solvent Vapor Annealing with a Benign Solvent To Rapidly Enhance the Performance of Organic Photovoltaics.

    PubMed

    Jung, Buyoung; Kim, Kangmin; Eom, Yoomin; Kim, Woochul

    2015-06-24

    A high-pressure solvent vapor annealing (HPSVA) treatment is suggested as an annealing process to rapidly achieve high-performance organic photovoltaics (OPVs); this process can be compatible with roll-to-roll processing methods and uses a benign solvent: acetone. Solvent vapor annealing can produce an advantageous vertical distribution in the active layer; however, conventional solvent vapor annealing is also time-consuming. To shorten the annealing time, high-pressure solvent vapor is exposed on the active layer of OPVs. Acetone is a nonsolvent for poly(3-hexylthiophene-2,5-diyl) (P3HT), but it can dissolve small amounts of 1-(3-methoxycarbonyl)-propyl-1,1-phenyl-(6,6)C61 (PCBM). Acetone vapor molecules can penetrate into the active layer under high vapor pressure conditions to alter the morphology. HPSVA induces a PCBM-rich phase near the cathode and facilitates the transport of free charge carriers to the electrode. Although P3HT is not soluble in acetone, locally rearranged P3HT crystallites are generated. The performance of OPV films was enhanced after HPSVA; the film treated at 30 kPa for 10 s showed optimum performance. Additionally, this HPSVA method could be adapted for mass production because the temporary exposure of films to high-pressure acetone vapor in ambient conditions also improved performance.

  19. Simultaneously Enhanced Efficiency and Stability of Polymer Solar Cells by Employing Solvent Additive and Upside-down Drying Method.

    PubMed

    Sun, Qianqian; Zhang, Fujun; An, Qiaoshi; Zhang, Miao; Ma, Xiaoling; Zhang, Jian

    2017-03-15

    The morphology of active layer plays an important role in determining the power conversion efficiency (PCE) and stability of polymer solar cells (PSCs), which strongly depend on the dynamic drying process of active layer. In this work, an efficient and universal method was developed to let active layer undergo upside-down drying process in a covered glass Petri dish. For the PSCs based on PTB7-Th:PC71BM, the champion PCEs were improved from 8.58% to 9.64% by mixing 3 vol % 1,8-di-iodooctane and further to 10.30% by employing upside-down drying method. The enhanced PCEs of PSCs with active layers undergoing upside-down drying process are mainly attributed to the optimized vertical phase separation, the more ordered and tightly packed π-π stacking of polymer molecules. Meanwhile, PC71BM molecules can be frozen in more ordered and tightly packed π-π stacking polymer network, which lead to the enhanced stability of PSCs. The universality of upside-down drying method can be solidly confirmed from PSCs with PTB7:PC71BM, PffBT4T-2OD:PC71BM, or PBDT-TS1:PC71BM as active layers, respectively. The molecular packing and phase separation of blend films with different solvent additives and drying methods were investigated by grazing incidence X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy.

  20. Fast molecular beacon hybridization in organic solvents with improved target specificity.

    PubMed

    Dave, Neeshma; Liu, Juewen

    2010-12-02

    DNA hybridization is of tremendous importance in biology, bionanotechnology, and biophysics. Molecular beacons are engineered DNA hairpins with a fluorophore and a quencher labeled on each of the two ends. A target DNA can open the hairpin to give an increased fluorescence signal. To date, the majority of molecular beacon detections have been performed only in aqueous buffers. We describe herein DNA detection in nine different organic solvents, methanol, ethanol, isopropanol, acetonitrile, formamide, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ethylene glycol, and glycerol, varying each up to 75% (v/v). In comparison with detection in water, the detection in organic solvents showed several important features. First, the molecular beacon hybridizes to its target DNA in the presence of all nine solvents up to a certain percentage. Second, the rate of this hybridization was significantly faster in most organic solvents compared with water. For example, in 56% ethanol, the beacon showed a 70-fold rate enhancement. Third, the ability of the molecular beacon to discriminate single-base mismatch is still maintained. Lastly, the DNA melting temperature in the organic solvents showed a solvent concentration-dependent decrease. This study suggests that molecular beacons can be used for applications where organic solvents must be involved or organic solvents can be intentionally added to improve the molecular beacon performance.

  1. Fetotoxic effects of exposure to the vapor of organic solvents from a synthetic adhesive in mice

    SciTech Connect

    Tachi, N.; Shimotori, S.; Naruse, N.; Itani, T.; Aoyama, M. ); Fujise, H.; Sonoki, S. )

    1994-09-01

    Synthetic adhesives are widely used in various industries as well as at home. Adhesives usually contain several organic solvents which easily vaporize. Exposure can cause aplastic anemia and polyneuropathy in adults. Chronic glue sniffing results in aplastic anemia, polyneuropathy, and muscular atrophy. Inhalation of the solvent contained in adhesives, such as n-hexane, toluene, xylene, and benzene by pregnant animals can decrease the number of live fetuses and retard fetal growth. In humans, the risk of spontaneous abortion is increased in workers exposed to organic solvents. However, information is still limited about the effects of exposure to organic solvents vaporized from adhesives on fetuses. In the present study, female mice were exposed throughout pregnancy to organic solvents vaporized from an adhesive to clarify the effects of the inhalation on progeny. 19 refs., 1 fig., 4 tabs.

  2. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  3. Impact of solvents and supercritical CO{sub 2} drying on the morphology and structure of polymer-based biofilms

    SciTech Connect

    Causa, Andrea; Acierno, Domenico; Filippone, Giovanni; Salerno, Aurelio; Domingo, Concepción

    2014-05-15

    In the present work, two-dimensional systems based on biodegradable polymers such as poly(ε-caprolactone) (PCL), poly(ethylene oxide) (PEO) and polylactic acid (PLA) are fabricated by means of a sustainable approach which consists in inducing phase separation in solutions of such polymers and “green” solvents, namely ethyl lactate (EL) and ethyl acetate (EA). The extraction of the solvent is promoted by a controlled drying process, which is performed in either air or supercritical CO{sub 2}. The latter can indeed act as both an antisolvent, which favors the deposition of the polymer by forming a mixture with EL and EA, and a plasticizing agent, whose solvation and transport properties may considerably affect the microstructure and crystallinity of the polymer films. The morphological, topographical and crystalline properties of the films are tailored through a judicial selection of the materials and the processing conditions and assessed by means of thermal analyses, polarized optical microscopy, scanning electron microscopy and confocal interferometric microscopy. The results show that the morphological and crystalline properties of the films are strongly dependent on the choice of both the polymer/solvent system and the operating conditions during the drying step. In particular, the morphological, topographical and thermal properties of films prepared starting from highly crystalline polymers, namely PCL and PEO, are greatly affected by the crystallization of the material. Conversely, the less crystalline PLA forms almost completely amorphous films.

  4. Impact of solvents and supercritical CO2 drying on the morphology and structure of polymer-based biofilms

    NASA Astrophysics Data System (ADS)

    Causa, Andrea; Salerno, Aurelio; Domingo, Concepción; Acierno, Domenico; Filippone, Giovanni

    2014-05-01

    In the present work, two-dimensional systems based on biodegradable polymers such as poly(ɛ-caprolactone) (PCL), poly(ethylene oxide) (PEO) and polylactic acid (PLA) are fabricated by means of a sustainable approach which consists in inducing phase separation in solutions of such polymers and "green" solvents, namely ethyl lactate (EL) and ethyl acetate (EA). The extraction of the solvent is promoted by a controlled drying process, which is performed in either air or supercritical CO2. The latter can indeed act as both an antisolvent, which favors the deposition of the polymer by forming a mixture with EL and EA, and a plasticizing agent, whose solvation and transport properties may considerably affect the microstructure and crystallinity of the polymer films. The morphological, topographical and crystalline properties of the films are tailored through a judicial selection of the materials and the processing conditions and assessed by means of thermal analyses, polarized optical microscopy, scanning electron microscopy and confocal interferometric microscopy. The results show that the morphological and crystalline properties of the films are strongly dependent on the choice of both the polymer/solvent system and the operating conditions during the drying step. In particular, the morphological, topographical and thermal properties of films prepared starting from highly crystalline polymers, namely PCL and PEO, are greatly affected by the crystallization of the material. Conversely, the less crystalline PLA forms almost completely amorphous films.

  5. Effects of organic solvents on the barrier properties of human nail.

    PubMed

    Smith, Kelly A; Hao, Jinsong; Li, S Kevin

    2011-10-01

    The effects of organic solvent systems on nail hydration and permeability have not been well studied. The objectives of the present study were to investigate the effects of binary aqueous organic solvent systems of ethanol (EtOH), propylene glycol (PPG), and polyethylene glycol 400 (PEG) on the barrier properties of nail plates. (3) H-water, (14) C-urea, and (14) C-tetraethylammonium ions were the probes in the nail uptake and transport experiments to study the effect(s) of organic solvents on nail hydration and permeability. Gravimetric studies were also performed as a secondary method to study nail hydration and the reversibility of the nail after organic solvent treatments. Both ungual uptake and transport were directly related to the concentration of the organic solvent in the binary systems. Partitioning of the probes into and transport across the nail decreased with an increase in the organic solvent concentration. These changes corresponded to the changes in solution viscosity and the barrier properties of the nail. In general, the effects for PPG and PEG were more pronounced than those for EtOH. Practically, these results suggest that organic solvents in formulations can increase nail barrier resistivity.

  6. Validation of Alternatives to High Volatile Organic Compound Solvents Used in Aeronautical Antifriction Bearing Cleaning

    DTIC Science & Technology

    2006-10-17

    Rinse – Step 3 Fluid Agitated Tank MIL-PRF-680 (Filtered –10 μ) 5 min. 8 Dry Isopropyl Alcohol Dryer Isopropyl Alcohol As Required 9 Inspection None...Isopropyl Alcohol Dryer 8 Dry Isopropyl Alcohol As Required 9 Inspection None None As Required Neutralize Fingerprints 10 Fluid Agitated Tank...control regulations for effect on the design and operation of pressurized solvent spray equipment. h. Vibro- Tumbling Finishing Mills. Several

  7. Validation of a UV Spectrometric Method for the Assay of Tolfenamic Acid in Organic Solvents

    PubMed Central

    Ahmed, Sofia; Mustaan, Nafeesa; Sheraz, Muhammad Ali; Nabi, Syeda Ayesha Ahmed un; Ahmad, Iqbal

    2015-01-01

    The present study has been carried out to validate a UV spectrometric method for the assay of tolfenamic acid (TA) in organic solvents. TA is insoluble in water; therefore, a total of thirteen commonly used organic solvents have been selected in which the drug is soluble. Fresh stock solutions of TA in each solvent in a concentration of 1 × 10−4 M (2.62 mg%) were prepared for the assay. The method has been validated according to the guideline of International Conference on Harmonization and parameters like linearity, range, accuracy, precision, sensitivity, and robustness have been studied. Although the method was found to be efficient for the determination of TA in all solvents on the basis of statistical data 1-octanol, followed by ethanol and methanol, was found to be comparatively better than the other studied solvents. No change in the stock solution stability of TA has been observed in each solvent for 24 hours stored either at room (25 ± 1°C) or at refrigerated temperature (2–8°C). A shift in the absorption maxima has been observed for TA in various solvents indicating drug-solvent interactions. The studied method is simple, rapid, economical, accurate, and precise for the assay of TA in different organic solvents. PMID:26783497

  8. Screening for organic solvents in Hanford waste tanks using organic vapor concentrations

    SciTech Connect

    Huckaby, J.L.; Sklarew, D.S.

    1997-09-01

    The potential ignition of organic liquids stored in the Hanford Site high-level radioactive waste tanks has been identified as a safety issue because expanding gases could potentially affect tank dome integrity. Organic liquid waste has been found in some of the waste tanks, but most are thought to contain only trace amounts. Due to the inhomogeneity of the waste, direct sampling of the tank waste to locate organic liquids may not conclusively demonstrate that a given tank is free of risk. However, organic vapors present above the organic liquid waste can be detected with a high degree of confidence and can be used to identify problem tanks. This report presents the results of a screening test that has been applied to 82 passively ventilated high-level radioactive waste tanks at the Hanford Site to identify those that might contain a significant amount of organic liquid waste. It includes seven tanks not addressed in the previous version of this report, Screening for Organic Solvents in Hanford Waste Tanks Using Total Non-Methane Organic Compound Vapor Concentrations. The screening test is based on a simple model of the tank headspace that estimates the effective surface area of semivolatile organic liquid waste in a tank. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Thirteen tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Most of the tanks identified as containing potentially significant quantities of organic liquid waste are in the 241-BY and 241-C tank farms, which agrees qualitatively with the fact that these tank farms received the majority of the PUREX process organic wash waste and waste organic liquids.

  9. Effect of the drying process on the intensification of phenolic compounds recovery from grape pomace using accelerated solvent extraction.

    PubMed

    Rajha, Hiba N; Ziegler, Walter; Louka, Nicolas; Hobaika, Zeina; Vorobiev, Eugene; Boechzelt, Herbert G; Maroun, Richard G

    2014-10-15

    In light of their environmental and economic interests, food byproducts have been increasingly exploited and valorized for their richness in dietary fibers and antioxidants. Phenolic compounds are antioxidant bioactive molecules highly present in grape byproducts. Herein, the accelerated solvent extraction (ASE) of phenolic compounds from wet and dried grape pomace, at 45 °C, was conducted and the highest phenolic compounds yield (PCY) for wet (16.2 g GAE/100 g DM) and dry (7.28 g GAE/100 g DM) grape pomace extracts were obtained with 70% ethanol/water solvent at 140 °C. The PCY obtained from wet pomace was up to two times better compared to the dry byproduct and up to 15 times better compared to the same food matrices treated with conventional methods. With regard to Resveratrol, the corresponding dry pomace extract had a better free radical scavenging activity (49.12%) than the wet extract (39.8%). The drying pretreatment process seems to ameliorate the antiradical activity, especially when the extraction by ASE is performed at temperatures above 100 °C. HPLC-DAD analysis showed that the diversity of the flavonoid and the non-flavonoid compounds found in the extracts was seriously affected by the extraction temperature and the pretreatment of the raw material. This diversity seems to play a key role in the scavenging activity demonstrated by the extracts. Our results emphasize on ASE usage as a promising method for the preparation of highly concentrated and bioactive phenolic extracts that could be used in several industrial applications.

  10. Effect of the Drying Process on the Intensification of Phenolic Compounds Recovery from Grape Pomace Using Accelerated Solvent Extraction

    PubMed Central

    Rajha, Hiba N.; Ziegler, Walter; Louka, Nicolas; Hobaika, Zeina; Vorobiev, Eugene; Boechzelt, Herbert G.; Maroun, Richard G.

    2014-01-01

    In light of their environmental and economic interests, food byproducts have been increasingly exploited and valorized for their richness in dietary fibers and antioxidants. Phenolic compounds are antioxidant bioactive molecules highly present in grape byproducts. Herein, the accelerated solvent extraction (ASE) of phenolic compounds from wet and dried grape pomace, at 45 °C, was conducted and the highest phenolic compounds yield (PCY) for wet (16.2 g GAE/100 g DM) and dry (7.28 g GAE/100 g DM) grape pomace extracts were obtained with 70% ethanol/water solvent at 140 °C. The PCY obtained from wet pomace was up to two times better compared to the dry byproduct and up to 15 times better compared to the same food matrices treated with conventional methods. With regard to Resveratrol, the corresponding dry pomace extract had a better free radical scavenging activity (49.12%) than the wet extract (39.8%). The drying pretreatment process seems to ameliorate the antiradical activity, especially when the extraction by ASE is performed at temperatures above 100 °C. HPLC-DAD analysis showed that the diversity of the flavonoid and the non-flavonoid compounds found in the extracts was seriously affected by the extraction temperature and the pretreatment of the raw material. This diversity seems to play a key role in the scavenging activity demonstrated by the extracts. Our results emphasize on ASE usage as a promising method for the preparation of highly concentrated and bioactive phenolic extracts that could be used in several industrial applications. PMID:25322155

  11. Improved solvent-free microwave extraction of essential oil from dried Cuminum cyminum L. and Zanthoxylum bungeanum Maxim.

    PubMed

    Wang, Ziming; Ding, Lan; Li, Tiechun; Zhou, Xin; Wang, Lu; Zhang, Hanqi; Liu, Li; Li, Ying; Liu, Zhihong; Wang, Hongju; Zeng, Hong; He, Hui

    2006-01-13

    Solvent-free microwave extraction (SFME) is a recently developed green technique which is performed in atmospheric conditions without adding any solvent or water. SFME has already been applied to extraction of essential oil from fresh plant materials or dried materials prior moistened. The essential oil is evaporated by the in situ water in the plant materials. In this paper, it was observed that an improved SFME, in which a kind of microwave absorption solid medium, such as carbonyl iron powders (CIP), was added and mixed with the sample, can be applied to extraction of essential oil from the dried plant materials without any pretreatment. Because the microwave absorption capacity of CIP is much better than that of water, the extraction time while using the improved SFME is no more than 30 min using a microwave power of 85 W. Compared to the conventional SFME, the advantages of improved SFME were to speed up the extraction rate and need no pretreatment. Improved SFME has been compared with conventional SFME, microwave-assisted hydrodistillation (MAHD) and conventional hydrodistillation (HD) for the extraction of essential oil from dried Cuminum cyminum L. and Zanthoxylum bungeanum Maxim. By using GC-MS system the compositions of essential oil extracted by applying four kinds of extraction methods were identified. There was no obvious difference in the quality of essential oils obtained by the four kinds of extraction methods.

  12. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review.

    PubMed

    Zhang, Ke; Pei, Zhijian; Wang, Donghai

    2016-01-01

    Lignocellulosic biomass represents the largest potential volume and lowest cost for biofuel and biochemical production. Pretreatment is an essential component of biomass conversion process, affecting a majority of downstream processes, including enzymatic hydrolysis, fermentation, and final product separation. Organic solvent pretreatment is recognized as an emerging way ahead because of its inherent advantages, such as the ability to fractionate lignocellulosic biomass into cellulose, lignin, and hemicellulose components with high purity, as well as easy solvent recovery and solvent reuse. Objectives of this review were to update and extend previous works on pretreatment of lignocellulosic biomass for biofuels and biochemicals using organic solvents, especially on ethanol, methanol, ethylene glycol, glycerol, acetic acid, and formic acid. Perspectives and recommendations were given to fully describe implementation of proper organic solvent pretreatment for future research.

  13. Degradation problems with the solvent extraction organic at Roessing uranium

    SciTech Connect

    Munyungano, Brodrick; Feather, Angus; Virnig, Michael

    2008-07-01

    Roessing Uranium Ltd recovers uranium from a low-grade ore in Namibia. Uranium is recovered and purified from an ion-exchange eluate in a solvent-extraction plant. The solvent-extraction plant uses Alamine 336 as the extractant for uranium, with isodecanol used as a phase modifier in Sasol SSX 210, an aliphatic hydrocarbon diluent. Since the plant started in the mid 1970's, there have been a few episodes where the tertiary amine has been quickly and severely degraded when the plant was operated outside certain operating parameters. The Rossing experience is discussed in more detail in this paper. (authors)

  14. Organic Scintillator Detector Response Simulations with DRiFT

    DOE PAGES

    Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen; ...

    2016-06-11

    Here, this work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNPR output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed- field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNPR®6, which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plotsmore » and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.« less

  15. Organic Scintillator Detector Response Simulations with DRiFT

    SciTech Connect

    Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen; Solomon, Clell Jeffrey Jr.; Sood, Avneet

    2016-06-11

    Here, this work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNPR output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed- field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNPR®6, which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  16. Organic scintillator detector response simulations with DRiFT

    NASA Astrophysics Data System (ADS)

    Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.

    2016-09-01

    This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  17. Lipase in aqueous-polar organic solvents: Activity, structure, and stability

    PubMed Central

    Kamal, Md Zahid; Yedavalli, Poornima; Deshmukh, Mandar V; Rao, Nalam Madhusudhana

    2013-01-01

    Studying alterations in biophysical and biochemical behavior of enzymes in the presence of organic solvents and the underlying cause(s) has important implications in biotechnology. We investigated the effects of aqueous solutions of polar organic solvents on ester hydrolytic activity, structure and stability of a lipase. Relative activity of the lipase monotonically decreased with increasing concentration of acetone, acetonitrile, and DMF but increased at lower concentrations (upto ∼20% v/v) of dimethylsulfoxide, isopropanol, and methanol. None of the organic solvents caused any appreciable structural change as evident from circular dichorism and NMR studies, thus do not support any significant role of enzyme denaturation in activity change. Change in 2D [15N, 1H]-HSQC chemical shifts suggested that all the organic solvents preferentially localize to a hydrophobic patch in the active-site vicinity and no chemical shift perturbation was observed for residues present in protein's core. This suggests that activity alteration might be directly linked to change in active site environment only. All organic solvents decreased the apparent binding of substrate to the enzyme (increased Km); however significantly enhanced the kcat. Melting temperature (Tm) of lipase, measured by circular dichroism and differential scanning calorimetry, altered in all solvents, albeit to a variable extent. Interestingly, although the effect of all organic solvents on various properties on lipase is qualitatively similar, our study suggest that magnitudes of effects do not appear to follow bulk solvent properties like polarity and the solvent effects are apparently dictated by specific and local interactions of solvent molecule(s) with the protein. PMID:23625694

  18. WASTE TREATABILITY TESTS OF SPENT SOLVENT AND OTHER ORGANIC WASTEWATERS

    EPA Science Inventory

    Some commercial and industrial facilities treat RCRA spent solvent wastewaters by steam stripping, carbon adsorption, and/or biological processes. Thirteen facilities were visited by EPA's Office of Research and Development (ORD) from June 1985 to September 1986, to conduct sampl...

  19. Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials.

    PubMed

    Torres, Sebastian; Pandey, Ashok; Castro, Guillermo R

    2011-01-01

    Organic-solvent-tolerant bacteria are considered extremophiles with different tolerance levels that change among species and strains, but also depend on the inherent toxicity of the solvent. Extensive studies to understand the mechanisms of organic solvent tolerance have been done in Gram-negative bacteria. On the contrary, the information on the solvent tolerance mechanisms in Gram-positive bacteria remains scarce. Possible shared mechanisms among Gram-(-) and Gram-(+) microorganisms include: energy-dependent active efflux pumps that export toxic organic solvents to the external medium; cis-to-trans isomerization of unsaturated membrane fatty acids and modifications in the membrane phospholipid headgroups; formation of vesicles loaded with toxic compounds; and changes in the biosynthesis rate of phospholipids to accelerate repair processes. However, additional physiological responses of Gram-(+) bacteria to organic solvents seem to be specific. The aim of the present work is to review the state of the art of responsible mechanisms for organic solvent tolerance in Gram-positive bacteria, and their industrial and environmental biotechnology potential.

  20. Lipase-catalyzed transesterification in organic media: solvent effects on equilibrium and individual rate constants.

    PubMed

    García-Alles, L F; Gotor, V

    1998-09-20

    The kinetics of the immobilized lipase B from Candida antarctica have been studied in organic solvents. This enzyme has been shown to be slightly affected by the water content of the organic media, and it does not seem to be subject to mass transfer limitations. On the other hand, some evidence indicates that the catalytic mechanism of reactions catalyzed by this lipase proceeds through the acyl-enzyme intermediate. Moreover, despite the fact that the immobilization support dramatically enhances the catalytic power of the enzyme, it does not interfere with the intrinsic solvent effect. Consequently, this enzyme preparation becomes optimum for studying the role played by the organic solvent in catalysis. To this end, we have measured the acylation and deacylation individual rate constants, and the binding equilibrium constant for the ester, in several organic environments. Data obtained show that the major effect of the organic solvent is on substrate binding, and that the catalytic steps are almost unaffected by the solvent, indicating the desolvation of the transition state. However, the strong decrease in binding for hydrophilic solvents such as THF and dioxane, compared to the rest of solvents, cannot be easily explained by means of thermodynamic arguments (desolvation of the ester substrate). For this reason, data have been considered as an indication of the existence of an unknown step in the catalytic pathway occurring prior to formation of the acyl-enzyme intermediate.

  1. Multivariate statistical characterization of the tolerance of argon inductively coupled plasmas to organic solvents

    NASA Astrophysics Data System (ADS)

    Lopez Molinero, A.; Castillo, J. R.; Chamorro, P.; Muniozguren, J. M.

    1997-01-01

    The tolerance of Argon-inductively coupled plasmas to the introduction of organic solvents, defined by Matsunaga's parameter and by "limiting aspiration rate", has been correlated with their nature by statistical methods. The main physical variables of solvents obtained from the technical literature were used as independent variables to perform principal component analysis (PCA) and factorial discriminant analysis (FDA). Thus the variables which had the greatest influence on heat exchange nebulization and transport processes were determined. Organic solvents were classified into different groups characterized by their tolerance in plasma operation. In the PCA study, the second principal component was the most significative to differentiate between the tolerance of solvents and it showed a high correlation with surface tension, viscosity and heat of vaporization. Scores of the organic solvents belonging to the same class can be adjusted to straight lines and their positions in the plane (expressed as ordinates in the origin) as well as the slope values are characteristics of organic solvent groups. The results of FDA confirms those obtained with PCA. Multivariable regression was applied to obtain predictive equations of the limiting aspiration rate for organic solvents, in terms of their main physical variables.

  2. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Petroleum Solvent Groups 1 4 Table 4 to Subpart RRRR of Part 63 Protection of Environment ENVIRONMENTAL... Organic HAP Mass Fraction for Petroleum Solvent Groups 1 You May Use the Mass Fraction Values in the..., Petroleum Spirits, Petroleum Oil, Petroleum Naphtha, Solvent Naphtha, Solvent Blend. 3 E.g.,...

  3. A NOVEL HYDROPHILIC POLYMER MEMBRANE FOR THE DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Novel hydrophilic polymer membranes based on polyallylamine ydrochloride- polyvinylalcohol are developed. The high selectivity and flux characteristics of these membranes for the dehydration of organic solvents are evaluated using pervaporation technology and are found to be ver...

  4. PERTURBATION OF VOLTAGE-SENSITIVE CALCIUM FUNCTION IN PHEOCHROMOCYTOMA CELLS BY VOLATILE ORGANIC SOLVENTS.

    EPA Science Inventory

    Volatile organic solvents such as toluene (TOL) and trichloroethylene perturb nervous system function and share characteristic effects with other central nervous system depressants such as anesthetic gasses, ethanol, benzodiazepines and barbiturates. Recently, mechanistic studies...

  5. Recurrent Acute Liver Failure Because of Acute Hepatitis Induced by Organic Solvents

    PubMed Central

    Ito, Daisuke; Tanaka, Tomohiro; Akamatsu, Nobuhisa; Ito, Kyoji; Hasegawa, Kiyoshi; Sakamoto, Yoshihiro; Nakagawa, Hayato; Fujinaga, Hidetaka; Kokudo, Norihiro

    2016-01-01

    Abstract The authors present a case of recurrent acute liver failure because of occupational exposure to organic solvents. A 35-year-old man with a 3-week history of worsening jaundice and flu-like symptoms was admitted to our hospital. Viral hepatitis serology and autoimmune factors were negative. The authors considered liver transplantation, but the patient's liver function spontaneously recovered. Liver biopsy revealed massive infiltration of neutrophils, but the cause of the acute hepatitis was not identified. Four months after discharge, the patient's liver function worsened again. The authors considered the possibility of antinuclear antibody-negative autoimmune hepatitis and initiated steroid treatment, which was effective. Four months after discharge, the patient was admitted for repeated liver injury. The authors started him on steroid pulse therapy, but this time it was not effective. Just before the first admission, he had started his own construction company where he was highly exposed to organic solvents, and thus the authors considered organic solvent-induced hepatitis. Although urine test results for organic solvents were negative, a second liver biopsy revealed severe infiltration of neutrophils, compatible with toxic hepatitis. Again, his liver function spontaneously improved. Based on the pathology and detailed clinical course, including the patient's high exposure to organic solvents since just before the first admission, and the spontaneous recovery of his liver damage in the absence of the exposure, he was diagnosed with toxic hepatitis. The authors strongly advised him to avoid organic solvents. Since then, he has been in good health without recurrence. This is the first report of recurrent acute liver failure because of exposure to organic solvents, which was eventually diagnosed through a meticulous medical history and successfully recovered by avoiding the causative agents. In acute liver failure with an undetermined etiology, clinicians

  6. Organic solvents and presenile dementia: a case referent study using death certificates.

    PubMed Central

    O'Flynn, R R; Monkman, S M; Waldron, H A

    1987-01-01

    Occupational exposure to organic solvents has been implicated in the development of "presenile dementia" in several studies. The death certificates of all men aged under 65 dying in England and Wales bearing presenile dementia as cause of death were collected for the years 1970-9 (n = 557): control death certificates were obtained, matched for age and sex. No significant differences were found between the groups as regards estimated occupational exposure to either organic solvents or lead. PMID:3567100

  7. [Neuroadaptive mechanisms form development of psychological dependence on volatile organic solvents].

    PubMed

    Funada, Masahiko; Sato, Mio; Zhou, Xiaohua; Kanai, Hiroko; Wada, Kiyoshi

    2005-02-01

    Abuse of volatile organic solvents among youth remains a major social problem. Organic solvents are cheap and relatively easy to obtain, so they carry the risk of becoming a so-called "gateway drug" for users. Most research regarding organic solvents has until now focused on their neurotoxicity, specifically examining the mechanism of neuron death in terms of the involvement of substances such as nerve growth factor. However, systems to assess psychological dependence on volatile organic solvents that take into account the mechanism involved in the development of this dependence have not been established due to the difficulty of creating animal models. The conditioned place preference procedure, which can easily assess whether psychological dependence has been formed, has been phased in in recent years, and dependence assessment systems have been established for drug inhalation. There have also been new research developments regarding dependence on volatile organic solvents. The importance of mesolimbic dopamine neurons has been indicated in the expression of CNS stimulant action and the development of psychological dependence on drugs such as stimulants, cocaine, and heroin, which are typical abused drugs. It has recently become apparent that the increase in dopamine release in the nucleus accumbens accompanying activation of mesolimbic dopamine neurons, as has conventionally been proposed, is important to the expression of CNS stimulant action and the formation of psychological dependence in response to inhalation of toluene, a volatile organic solvent. Furthermore, research with regard to organic solvents' site of action is also proceeding based on studies using molecular biological techniques. Research regarding toluene is progressing, and the importance of receptors that gate ion channels such as N-methyl-D-aspartate (NMDA) and y-aminobutyric acid (GABA)A receptors as candidates for toluene's site of action has been indicated. Clarification of organic solvents

  8. High-Throughput Synthetic Chemistry Enabled by Organic Solvent Disintegrating Tablet.

    PubMed

    Li, Tingting; Xu, Lei; Xing, Yanjun; Xu, Bo

    2017-01-17

    Synthetic chemistry remains a time- and labor-intensive process of inherent hazardous nature. Our organic solvent disintegrating tablet (O-Tab) technology has shown potential to make industrial/synthetic chemistry more efficient. As is the case with pharmaceutical tablets, our reagent-containing O-Tabs are mechanically strong, but disintegrate rapidly when in contact with reaction media (organic solvents). For O-Tabs containing sensitive chemicals, they can be further coated to insulate them from air and moisture.

  9. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks.

    PubMed

    Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Zhang, Y-H Percival

    2012-08-01

    Developing feedstock-independent biomass pretreatment would be vital to second generation biorefineries that would fully utilize diverse non-food lignocellulosic biomass resources, decrease transportation costs of low energy density feedstock, and conserve natural biodiversity. Cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) was applied to a variety of feedstocks, including Miscanthus, poplar, their mixture, bagasse, wheat straw, and rice straw. Although non-pretreated biomass samples exhibited a large variation in enzymatic digestibility, the COSLIF-pretreated biomass samples exhibited similar high enzymatic glucan digestibilities and fast hydrolysis rates. Glucan digestibilities of most pretreated feedstocks were ∼93% at five filter paper units per gram of glucan. The overall glucose and xylose yields for the Miscanthus:poplar mixture at a weight ratio of 1:2 were 93% and 85%, respectively. These results suggested that COSLIF could be regarded as a feedstock-independent pretreatment suitable for processing diverse feedstocks by adjusting pretreatment residence time only.

  10. Enhanced production and organic solvent stability of a protease fromBrevibacillus laterosporus strain PAP04

    PubMed Central

    Anbu, P.

    2016-01-01

    A bacterial strain (PAP04) isolated from cattle farm soil was shown to produce an extracellular, solvent-stable protease. Sequence analysis using 16S rRNA showed that this strain was highly homologous (99%) to Brevibacillus laterosporus. Growth conditions that optimize protease production in this strain were determined as maltose (carbon source), skim milk (nitrogen source), pH 7.0, 40°C temperature, and 48 h incubation. Overall, conditions were optimized to yield a 5.91-fold higher production of protease compared to standard conditions. Furthermore, the stability of the enzyme in organic solvents was assessed by incubation for 2 weeks in solutions containing 50% concentration of various organic solvents. The enzyme retained activity in all tested solvents except ethanol; however, the protease activity was stimulated in benzene (74%) followed by acetone (63%) and chloroform (54.8%). In addition, the plate assay and zymography results also confirmed the stability of the PAP04 protease in various organic solvents. The organic solvent stability of this protease at high (50%) concentrations of solvents makes it an alternative catalyst for peptide synthesis in non-aqueous media. PMID:27007657

  11. Enhanced production and organic solvent stability of a protease from Brevibacillus laterosporus strain PAP04.

    PubMed

    Anbu, P

    2016-01-01

    A bacterial strain (PAP04) isolated from cattle farm soil was shown to produce an extracellular, solvent-stable protease. Sequence analysis using 16S rRNA showed that this strain was highly homologous (99%) to Brevibacillus laterosporus. Growth conditions that optimize protease production in this strain were determined as maltose (carbon source), skim milk (nitrogen source), pH 7.0, 40°C temperature, and 48 h incubation. Overall, conditions were optimized to yield a 5.91-fold higher production of protease compared to standard conditions. Furthermore, the stability of the enzyme in organic solvents was assessed by incubation for 2 weeks in solutions containing 50% concentration of various organic solvents. The enzyme retained activity in all tested solvents except ethanol; however, the protease activity was stimulated in benzene (74%) followed by acetone (63%) and chloroform (54.8%). In addition, the plate assay and zymography results also confirmed the stability of the PAP04 protease in various organic solvents. The organic solvent stability of this protease at high (50%) concentrations of solvents makes it an alternative catalyst for peptide synthesis in non-aqueous media.

  12. Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.

    PubMed

    Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian

    2016-10-06

    Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational.

  13. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Contents of... Manufacturing Pt. 63, Subpt. VVVV, Table 6 Table 6 to Subpart VVVV of Part 63—Default Organic HAP Contents of Petroleum Solvent Groups As specified in § 63.5758(a)(6), when detailed organic HAP content data for...

  14. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Contents of... Manufacturing Pt. 63, Subpt. VVVV, Table 6 Table 6 to Subpart VVVV of Part 63—Default Organic HAP Contents of Petroleum Solvent Groups As specified in § 63.5758(a)(6), when detailed organic HAP content data for...

  15. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Contents of... Boat Manufacturing Pt. 63, Subpt. VVVV, Table 6 Table 6 to Subpart VVVV of Part 63—Default Organic HAP Contents of Petroleum Solvent Groups As specified in § 63.5758(a)(6), when detailed organic HAP...

  16. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Contents of... Boat Manufacturing Pt. 63, Subpt. VVVV, Table 6 Table 6 to Subpart VVVV of Part 63—Default Organic HAP Contents of Petroleum Solvent Groups As specified in § 63.5758(a)(6), when detailed organic HAP...

  17. A comparison of various methods to predict bacterial predilection for organic solvents used as reaction media.

    PubMed

    Hamada, Takahiro; Sameshima, Yuka; Honda, Kohsuke; Omasa, Takeshi; Kato, Junichi; Ohtake, Hisao

    2008-10-01

    Bacterial predilection for organic solvents is important in whole-cell biocatalysis in organic media. Although various methods of measuring bacterial hydrophobicity have been proposed, it is not fully determined whether they are applicable to the assessment of bacterial predilection for organic solvents in whole-cell biocatalytic processes. In this study, bacterial predilection for organic solvents was assessed by bacterial adhesion to hydrocarbon (BATH), contact angle measurement (CAM), hydrophobic interaction chromatography (HIC), and glass adhesion test (GAT). These methods were applied to the cultures of four bacterial species of industrial importance, namely, Rhodococcus opacus B-4, R. erythropolis PR4, Pseudomonas putida T-57, and Escherichia coli JM109, in organic media. Experimental results revealed that CAM assays could be used to predict the dispersibility of bacterial cells in anhydrous organic solvents. However, when bacteria were suspended in aqueous-organic (A/O) two-phase media, the results of BATH assays provided the most reliable assessment of bacterial predilection for organic solvents. This discrepancy noted between CAM and BATH assays was attributed to the effect of electrostatic interaction between bacteria and oil droplets. In A/O two-phase media, the accessibility of a water-immiscible dye, nile red, to the bacterial cell surface, correlated well with BATH assay results.

  18. Solubility, stability, and electrochemical studies of sulfur-sulfide solutions in organic solvents

    NASA Technical Reports Server (NTRS)

    Fielder, W. L.; Singer, J.

    1978-01-01

    A preliminary study of the sulfur electrode in organic solvents suggests that the system warrants further investigation for use in a low temperature (100 deg to 120 C) Na-S secondary battery. A qualitative screening was undertaken at 120 C to determine the solubilities and stabilities of Na2S and Na2S2 in representatives of many classes of organic solvents. From the screening and quantitative studies, two classes of solvents were selected for work; amides and cyclic polyalcohols. Voltammetric and Na-S cell charge discharge studies of sulfide solutions in organic solvents (e.g., N, N-dimethylformamide) at 120 C suggested that the reversibilities of the reactions on Pt or high density graphite were moderately poor. However, the sulfur electrode was indeed reducible (and oxidizable) through the range of elemental sulfur to Na2S. Reactions and mechanisms are proposed for the oxidation reduction processes occurring at the sulfur electrode.

  19. Probing Contaminant Transport to and from Clay Surfaces in Organic Solvents and Water Using Solution Calorimetry.

    PubMed

    Pourmohammadbagher, Amin; Shaw, John M

    2015-09-15

    Clays, in tailings, are a significant ongoing environmental concern in the mining and oilsands production industries, and clay rehabilitation following contamination poses challenges episodically. Understanding the fundamentals of clay behavior can lead to better environmental impact mitigation strategies. Systematic calorimetric measurements are shown to provide a framework for parsing the synergistic and antagonistic impacts of trace (i.e., parts per million level) components on the surface compositions of clays. The enthalpy of solution of as-received and "contaminated" clays, in as-received and "contaminated" organic solvents and water, at 60 °C and atmospheric pressure, provides important illustrative examples. Clay contamination included pre-saturation of clays with water and organic liquids. Solvent contamination included the addition of trace water to organic solvents and trace organic liquids to water. Enthalpy of solution outcomes are interpreted using a quantitative mass and energy balance modeling framework that isolates terms for solvent and trace contaminant sorption/desorption and surface energy effects. Underlying surface energies are shown to dominate the energetics of the solvent-clay interaction, and organic liquids as solvents or as trace contaminants are shown to displace water from as-received clay surfaces. This approach can be readily extended to include pH, salts, or other effects and is expected to provide mechanistic and quantitative insights underlying the stability of clays in tailings ponds and the behaviors of clays in diverse industrial and natural environments.

  20. Laser ablation synthesis of gold nanoparticles in organic solvents.

    PubMed

    Amendola, Vincenzo; Polizzi, Stefano; Meneghetti, Moreno

    2006-04-13

    Free and functionalized gold nanoparticles are synthesized by laser ablation of a gold metal plate immersed in dimethyl sulfoxide, acetonitrile, and tetrahydrofuran. Functionalized gold nanoparticles are synthesized in a one-step process thanks to the solubility of the ligands in these solvents. It is possible to have significant control of the concentration, aggregation, and size of the particles by varying a few parameters. UV-vis spectroscopy and transmission electron microscopy are used for the characterization of the nanoparticles. The Mie model for spherical particles and the Gans model for spheroids allow a fast and reliable interpretation of experimental UV-vis spectra.

  1. Photonic sensing of organic solvents through geometric study of dynamic reflection spectrum

    PubMed Central

    Zhang, Yuqi; Fu, Qianqian; Ge, Jianping

    2015-01-01

    Traditional photonic sensing based on the change of balanced reflection of photonic structures can hardly distinguish chemical species with similar refractive indices. Here a sensing method based on the dynamic reflection spectra (DRS) of photonic crystal gel has been developed to distinguish even homologues, isomers and solvents with similar structures and physical properties. There are inherent relationships between solvent properties, diffusion behaviour and evolution of reflection signals, so that the geometric characteristics of DRS pattern including ascending/descending, colour changes, splitting/merging and curvature of reflection band can be utilized to recognize different organic solvents. With adequate solvents being tested, a database of DRS patterns can be established, which provide a standard to identify an unknown solvent. PMID:26082186

  2. Binary Solvent Organization at Silica/Liquid Interfaces: Preferential Ordering in Acetonitrile-Methanol Mixtures.

    PubMed

    Gobrogge, Eric A; Walker, Robert A

    2014-08-07

    Nonlinear vibrational spectroscopy experiments examined solvent organization at the silica/binary solvent interface where the binary solvent consisted of methanol and acetonitrile in varying mole fractions. Data were compared with surface vibrational spectra acquired from silica surfaces exposed to a vapor phase saturated with the same binary solvent mixtures. Changes in vibrational band intensities suggest that methanol ideally adsorbs to the silica/vapor interface but acetonitrile accumulates in excess relative to vapor-phase composition. At the silica/liquid interface, acetonitrile's signal increases until a solution phase mole fraction of ∼0.85. At higher acetonitrile concentrations, acetonitrile's signal decreases dramatically until only a weak signature persists with the neat solvent. This behavior is ascribed to dipole-paired acetonitrile forming a bilayer with the first sublayer associating with surface silanol groups and a second sublayer consisting of weakly associating, antiparallel partners. On the basis of recent simulations, we propose that the second sublayer accumulates in excess.

  3. An Efficient Synthesis Strategy for Metal-Organic Frameworks: Dry-Gel Synthesis of MOF-74 Framework with High Yield and Improved Performance

    NASA Astrophysics Data System (ADS)

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; McGrail, B. Peter; Motkuri, Radha Kishan

    2016-06-01

    Vapor-assisted dry-gel synthesis of the metal-organic framework-74 (MOF-74) structure, specifically Ni-MOF-74 produced from synthetic precursors using an organic-water hybrid solvent system, showed a very high yield (>90% with respect to 2,5-dihydroxyterepthalic acid) and enhanced performance. The Ni-MOF-74 obtained showed improved sorption characteristics towards CO2 and the refrigerant fluorocarbon dichlorodifluoromethane. Unlike conventional synthesis, which takes 72 hours using the tetrahydrofuran-water system, this kinetic study showed that Ni-MOF-74 forms within 12 hours under dry-gel conditions with similar performance characteristics, and exhibits its best performance characteristics even after 24 hours of heating. In the dry-gel conversion method, the physical separation of the solvent and precursor mixture allows for recycling of the solvent. We demonstrated efficient solvent recycling (up to three times) that resulted in significant cost benefits. The scaled-up manufacturing cost of Ni-MOF-74 synthesized via our dry-gel method is 45% of conventional synthesis cost. Thus, for bulk production of the MOFs, the proposed vapor-assisted, dry-gel method is efficient, simple, and inexpensive when compared to the conventional synthesis method.

  4. An Efficient Synthesis Strategy for Metal-Organic Frameworks: Dry-Gel Synthesis of MOF-74 Framework with High Yield and Improved Performance

    PubMed Central

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; McGrail, B. Peter; Motkuri, Radha Kishan

    2016-01-01

    Vapor-assisted dry-gel synthesis of the metal-organic framework-74 (MOF-74) structure, specifically Ni-MOF-74 produced from synthetic precursors using an organic-water hybrid solvent system, showed a very high yield (>90% with respect to 2,5-dihydroxyterepthalic acid) and enhanced performance. The Ni-MOF-74 obtained showed improved sorption characteristics towards CO2 and the refrigerant fluorocarbon dichlorodifluoromethane. Unlike conventional synthesis, which takes 72 hours using the tetrahydrofuran-water system, this kinetic study showed that Ni-MOF-74 forms within 12 hours under dry-gel conditions with similar performance characteristics, and exhibits its best performance characteristics even after 24 hours of heating. In the dry-gel conversion method, the physical separation of the solvent and precursor mixture allows for recycling of the solvent. We demonstrated efficient solvent recycling (up to three times) that resulted in significant cost benefits. The scaled-up manufacturing cost of Ni-MOF-74 synthesized via our dry-gel method is 45% of conventional synthesis cost. Thus, for bulk production of the MOFs, the proposed vapor-assisted, dry-gel method is efficient, simple, and inexpensive when compared to the conventional synthesis method. PMID:27306598

  5. An Efficient Synthesis Strategy for Metal-Organic Frameworks: Dry-Gel Synthesis of MOF-74 Framework with High Yield and Improved Performance.

    PubMed

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; McGrail, B Peter; Motkuri, Radha Kishan

    2016-06-16

    Vapor-assisted dry-gel synthesis of the metal-organic framework-74 (MOF-74) structure, specifically Ni-MOF-74 produced from synthetic precursors using an organic-water hybrid solvent system, showed a very high yield (>90% with respect to 2,5-dihydroxyterepthalic acid) and enhanced performance. The Ni-MOF-74 obtained showed improved sorption characteristics towards CO2 and the refrigerant fluorocarbon dichlorodifluoromethane. Unlike conventional synthesis, which takes 72 hours using the tetrahydrofuran-water system, this kinetic study showed that Ni-MOF-74 forms within 12 hours under dry-gel conditions with similar performance characteristics, and exhibits its best performance characteristics even after 24 hours of heating. In the dry-gel conversion method, the physical separation of the solvent and precursor mixture allows for recycling of the solvent. We demonstrated efficient solvent recycling (up to three times) that resulted in significant cost benefits. The scaled-up manufacturing cost of Ni-MOF-74 synthesized via our dry-gel method is 45% of conventional synthesis cost. Thus, for bulk production of the MOFs, the proposed vapor-assisted, dry-gel method is efficient, simple, and inexpensive when compared to the conventional synthesis method.

  6. Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

    SciTech Connect

    Campbell, J.R.; Luthy, R.G.

    1984-06-01

    Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.

  7. Neurotoxicity of chronic low-dose exposure to organic solvents: a skeptical review.

    PubMed

    Lees-Haley, P R; Williams, C W

    1997-11-01

    The health effects of long-term, low-level exposure to organic solvents have been studied for many years. While the volume of literature is great, definitive conclusions regarding chronic neurobehavioral effects of environmental exposure are premature. Methodological shortcomings in research preclude confidence in studies allegedly supporting a causal link between chronic low-dose solvent exposure and lasting neurobehavioral deficits. In this article, the shortcomings reviewed include selection bias in recruitment of research subjects, overreliance on subjective recall in determining levels and duration of exposure, between-study variability in kinds of solvents examined, variability in tests selected to assess neurobehavioral functioning, and diversity in reported findings. The implications of these for characterizing the state of organic solvent research are discussed.

  8. Contamination of Critical Surfaces from NVR Glove Residues Via Dry Handling and Solvent Cleaning

    NASA Technical Reports Server (NTRS)

    Sovinski, Marjorie F.

    2004-01-01

    Gloves are often used to prevent the contamination of critical surfaces during handling. The type of glove chosen for use should be the glove that produces the least amount of non-volatile residue (NVR). This paper covers the analysis of polyethylene, nitrile, latex, vinyl, and polyurethane gloves using the contact transfer and gravimetric determination methods covered in the NASA GSFC work instruction Gravimetric Determination and Contact Transfer of Non-volatile Residue (NVR) in Cleanroom Glove Samples, 541-WI-5330.1.21 and in the ASTM Standard E-1731M-95, Standard Test Method for Gravimetric Determination of Non-Volatile Residue from Cleanroom Gloves. The tests performed focus on contamination of critical surfaces at the molecular level. The study found that for the most part, all of the gloves performed equally well in the contact transfer testing. However, the polyethylene gloves performed the best in the gravimetric determination testing, and therefore should be used whenever solvent contact is a possibility. The nitrile gloves may be used as a substitute for latex gloves when latex sensitivity is an issue. The use of vinyl gloves should be avoided, especially if solvent contact is a possibility. A glove database will be established by Goddard Space Flight Center (GSFC) Code 541 to compile the results from future testing of new gloves and different glove lots.

  9. A push-pull organic dye with a quinoidal thiophene linker: Photophysical properties and solvent effects

    NASA Astrophysics Data System (ADS)

    Climent, Clàudia; Carreras, Abel; Alemany, Pere; Casanova, David

    2016-10-01

    In the present work we perform a computational study of the properties of a push-pull organic dye with a quinoidal thiophene unit as the conjugated linker between the electron donor and acceptor groups. We investigate the photophysical properties of the dye related to its potential use as a molecular sensitizer in dye-sensitized solar cells. We rationalize the solvation effects on the absorption band of the dye in protic and aprotic solvents, identifying the interaction of alcohol solvents with the amine in the donor group as the source for the blue shift of the absorption band with respect to aprotic solvents.

  10. The effect of acids on fluorescence of coumarin-6 in organic solvents

    NASA Astrophysics Data System (ADS)

    Mina, M. V.; Puzyk, I. P.; Puzyk, M. V.

    2013-02-01

    The effect of acids (HCl, HClO4, HNO3, and CH3COOH) on the fluorescence of coumarin-6 in organic solvents (acetonitrile, acetone, butanol-1, and ethanol) is studied. The regions of acid (HCl, HClO4, HNO3) concentrations that lead to a change in the fluorescence spectra are determined for each of the solvents. It is shown that, for all the solvents studied, acetic acid with a concentration within the region 10-1-10-6 M causes no significant changes in the fluorescence spectrum of coumarin-6. A mechanism of the coumarin-6 protonation is proposed.

  11. Investigations on the activity of poly(2-oxazoline) enzyme conjugates dissolved in organic solvents.

    PubMed

    Konieczny, Stefan; Krumm, Christian; Doert, Dominik; Neufeld, Katharina; Tiller, Joerg C

    2014-07-10

    The use of enzymes in organic solvents offers a great opportunity for the highly selective synthesis of complex organic compounds. In this study we investigate the POXylation of several enzymes with different polyoxazolines ranging from the hydrophilic poly(2-methyl-oxazoline) (PMOx) to the hydrophobic poly(2-heptyl-oxazoline) (PHeptOx). As reported previously on the examples of model enzymes POXylation mediated by pyromellitic acid dianhydride results in highly modified, organosoluble protein conjugates. This procedure is here extended to a larger number of proteins and optimized for the different polyoxazolines. The resulting polymer-enzyme conjugates (PEC) became soluble in different organic solvents ranging from hydrophilic DMF to even toluene. These conjugates were characterized regarding their solubility and especially their activity in organic solvents and in some cases the PECs showed significantly (up to 153,000 fold) higher activities than the respective native enzymes.

  12. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by...

  13. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... MMMM of Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass... manufacturer's formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent...

  14. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by...

  15. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by...

  16. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by...

  17. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by...

  18. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by...

  19. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by...

  20. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by...

  1. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Petroleum Solvent Groups 1 You May Use the Mass Fraction Values in the...: Solvent type Average organic HAP mass fraction Typical organic percent HAP, by mass Aliphatic 2 0.03...

  2. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... MMMM of Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass... manufacturer's formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent...

  3. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... MMMM of Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass... manufacturer's formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent...

  4. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Petroleum Solvent Groups 1 You May Use the Mass Fraction Values in the...: Solvent type Average organic HAP mass fraction Typical organic percent HAP, by mass Aliphatic 2 0.03...

  5. Activation of the mitochondrial signaling pathway in response to organic solvent stress in yeast.

    PubMed

    Nishida-Aoki, Nao; Mori, Hitoshi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2015-05-01

    In Saccharomyces cerevisiae, we have demonstrated that organic solvent stress activated the pleiotropic drug resistance (PDR) pathway, which involves the transcription factors Pdr1p and Pdr3p. Pdr1p and Pdr3p are functionally homologous in multidrug resistance, although Pdr3p has been reported to have some distinct functions. Here, we analyzed the functions of Pdr1p and Pdr3p during the cellular response to isooctane, as a representative of organic solvents, and observed the differential functions of Pdr1p and Pdr3p. In response to organic solvent stress, only Pdr3p contributed to the regulation of downstream genes of the PDR pathway, while Pdr1p had a rather inhibitory role on transcriptional induction through competition with Pdr3p for binding to their recognition sequence, pleiotropic drug response element. Our results demonstrated that organic solvent stress was likely to damage mitochondria, causing generation of reactive oxygen species and mitochondrial fragmentation, and to activate retrograde signaling pathway via Pdr3p to upregulate PDR5 expression. Therefore, the unique function of Pdr3p in organic solvent stress distinguishes this pathway from the multidrug response.

  6. Non-Volatile Residue (NVR) Contamination from Dry Handling and Solvent Cleaning

    NASA Technical Reports Server (NTRS)

    Sovinski, Marjorie F.

    2009-01-01

    This slide presentation reviews the testing for Non-Volatile Residue contamination transferred to surfaces from handling and solvent cleaning. Included in the presentation is a list of the items tested, formal work instructions dealing with NVR. There is an explanation of the Gravimetric determination method used to test the NVR in a variety of items, i.e., Gloves, Swabs, Garments, Bagging material, film and Wipes. Another method to test for contamination from NVR is the contact transfer method. The use of this method for testing gloves, garments, bagging material and film is explained. Certain equations use in NVR analysis and the use of a database for testing of NVR in consumables are reviewed.

  7. Prediction of penicillin V acylase stability in water-organic co-solvent monophasic systems as a function of solvent composition.

    PubMed

    Arroyo; Torres-Guzmán; de la Mata I; Castillón; Acebal

    2000-07-01

    Hydrolytic activity of penicillin V acylase (EC 3.5.1.11) can be improved by using organic cosolvents in monophasic systems. However, the addition of these solvents may result in loss of stability of the enzyme. The thermal stability of penicillin V acylase from Streptomyces lavendulae in water-organic cosolvent monophasic systems depends on the nature of the organic solvent and its concentration in the media. The threshold solvent concentration (at which half enzymatic activity is displayed) is related to the denaturing capacity of the solvent. We found out linear correlations between the free energy of denaturation at 40 degrees C and the concentration of the solvent in the media. On one hand, those solvents with logP values lower than -1.8 have a protective effect that is enhanced when its concentration is increased in the medium. On the other hand, those solvents with logP values higher than -1.8 have a denaturing effect: the higher this value and concentration, the more deleterious. Deactivation constants of PVA at 40 degrees C can be predicted in any monophasic system containing a water-miscible solvent.

  8. Real-time observation of drying kinetics and morphology evolution in organic bulk heterojunctions (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Güldal, Nusret S.; Ameri, Tayebeh; Osvet, Andres; Brabec, Christoph J.

    2015-08-01

    In organic photovoltaics field, an optimized bulk heterojunction film consists of an electron-donating conjugated polymer and an electron-accepting fullerene derivative, which is organized in a well phase-separated, yet interconnected network. This sensitive morphology, affecting the light absorption, exciton dissociation and subsequent charge generation-extraction, is determined by the film formation during solution casting under certain processing conditions. Therefore, a number of previous studies focused on characterizing the thin film formation during solution casting, mainly with in-situ grazing-incidence X-ray scattering methods, accompanied by various optical methods, such as ellipsometry/reflectometry and UV-VIS absorption. Although these studies provided invaluable information on the matter, the development of nanoscale morphology is yet to be fully understood. The purpose of this study is to demonstrate a portable in-situ characterization chamber, which can characterize any organic/hybrid thin film during solution casting. The chamber is a miniature doctor blade under controlled atmosphere, equipped with white light reflectometry (WLR), photoluminescence (PL) and laser light scattering (LLS). WLR was used to monitor the thickness reduction of the thin film during the drying, enabling to establish a drying curve. LLS informed the time scale of aggregate/crystallite formation. PL monitored molecular arrangement and enabled the estimation of microstructure. The combined data is used to understand the competition between thermodynamics (e.g. solubility, miscibility) and kinetics of morphology formation. In this study, we measured different BHJ systems with binary and ternary solvent mixtures under different processing conditions, from which we built a roadmap for microstructure formation in organic thin films, used in organic photovoltaics.

  9. Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches.

    PubMed

    Rodríguez, Alejandro; Serrano, Luis; Moral, Ana; Pérez, Antonio; Jiménez, Luis

    2008-04-01

    Oil palm empty fruit bunches were used as an alternative raw material to obtain cellulosic pulp. Pulping was done by using high-boiling point organic solvents of decreased polluting power relative to classical (Kraft, sulphite) solvents but affording operation at similar pressure levels. The holocellulose, alpha-cellulose and lignin contents of oil palm empty fruit bunches (viz. 66.97%, 47.91% and 24.45%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using ethyleneglycol, diethyleneglycol, ethanolamine and diethanolamine under two different sets of operating conditions, namely: (a) a 70% solvent concentration, 170 degrees C and 90 min; and (b) 80% solvent, 180 degrees C and 150 min. The solid/liquid ratio was six in both cases. The amine solvents were found to provide pulp with better properties than did the glycol solvents. Ethanolamine pulp exhibited the best viscosity and drainage index (viz. 636 mL/g and 17 degrees SR, respectively), and paper made from it the best breaking length (1709 m), stretch (1.95%), burst index (0.98 kN/g) and tear index (0.33 mNm(2)/g). Operating costs can be reduced by using milder conditions, which provide similar results. In any case, the amines are to be preferred to the glycols as solvents for this purpose.

  10. The influence of organic solvents on estimates of genotoxicity and antigenotoxicity in the SOS chromotest

    PubMed Central

    Quintero, Nathalia; Stashenko, Elena E.; Fuentes, Jorge Luis

    2012-01-01

    In this work, the toxicity and genotoxicity of organic solvents (acetone, carbon tetrachloride, dichloromethane, dimethylsulfoxide, ethanol, ether and methanol) were studied using the SOS chromotest. The influence of these solvents on the direct genotoxicity induced by the mutagens mitomycin C (MMC) and 4-nitroquinoline-1-oxide (4-NQO) were also investigated. None of the solvents were genotoxic in Escherichia coli PQ37. However, based on the inhibition of protein synthesis assessed by constitutive alkaline phosphatase activity, some solvents (carbon tetrachloride, dimethylsulfoxide, ethanol and ether) were toxic and incompatible with the SOS chromotest. Solvents that were neither toxic nor genotoxic to E. coli (acetone, dichloromethane and methanol) significantly reduced the genotoxicity of MMC and 4-NQO. When these solvents were used to dissolve vitamin E they increased the antigenotoxic activity of this compound, possibly through additive or synergistic effects. The relevance of these results is discussed in relation to antigenotoxic studies. These data indicate the need for careful selection of an appropriate diluent for the SOS chromotest since some solvents can modulate genotoxicity and antigenotoxicity. PMID:22888301

  11. The Effect of Solvent on the Analysis of Secondary Organic Aerosol Using Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Bateman, Adam P.; Walser, Maggie L.; Dessiaterik, Yury; Laskin, Julia; Laskin, Alexander; Nizkorodov, Serguei

    2008-08-29

    Solvent-analyte reactions in organic aerosol (OA) extracts prepared for analysis by electrospray ionization mass spectrometry (ESI-MS) were examined. Secondary organic aerosol (SOA) produced by ozonation of d-limonene as well as several test organic chemicals with functional groups typical for OA constituents were dissolved and stored in methanol, d3-methanol, acetonitrile, and d3-acetonitrile to investigate the extent and relative rates of reactions between analyte and solvent. High resolution ESI-MS showed that reactions of carbonyls with methanol produce significant amounts of hemiacetals and acetals on time scales ranging from several minutes to several days, with the reaction rates increasing in acidified solutions. Carboxylic acid groups were observed to react with methanol resulting in the formation of esters. In contrast, acetonitrile extracts showed no evidence of reactions with analyte molecules, suggesting that acetonitrile is the preferred solvent for SOA extraction. The use of solvent-analyte reactivity as an analytical chemistry tool for the improved characterization of functional groups in complex organic mixtures was also demonstrated. Direct comparison between ESI mass spectra of the same SOA samples extracted in reactive (methanol) versus non-reactive (acetonitrile) solvents was used to estimate the relative fractions of ketones (≥38%), aldehydes (≥6%), and carboxylic acids (≥55%) in d-limonene SOA.

  12. Removal of ion-implanted photoresists on GaAs using two organic solvents in sequence

    NASA Astrophysics Data System (ADS)

    Oh, Eunseok; Na, Jihoon; Lee, Seunghyo; Lim, Sangwoo

    2016-07-01

    Organic solvents can effectively remove photoresists on III-V channels without damage or etching of the channel material during the process. In this study, a two-step sequential photoresist removal process using two different organic solvents was developed to remove implanted ArF and KrF photoresists at room temperature. The effects of organic solvents with either low molar volumes or high affinities for photoresists were evaluated to find a proper combination that can effectively remove high-dose implanted photoresists without damaging GaAs surfaces. The performance of formamide, acetonitrile, nitromethane, and monoethanolamine for the removal of ion-implanted ArF and KrF photoresists were compared using a two-step sequential photoresist removal process followed by treatment in dimethyl sulfoxide (DMSO). Among the various combinations, the acetonitrile + DMSO two-step sequence exhibited the best removal of photoresists that underwent ion implantation at doses of 5 × 1013-5 × 1015 atoms/cm2 on both flat and trench-structured GaAs surfaces. The ability of the two-step process using organic solvents to remove the photoresists can be explained by considering the affinities of solvents for a polymer and its permeability through the photoresist.

  13. Organic solvents, electrolytes, and lithium ion cells with good low temperature performance

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor)

    2002-01-01

    Multi-component organic solvent systems, electrolytes and electrochemical cells characterized by good low temperature performance are provided. In one embodiment, an improved organic solvent system contains a ternary mixture of ethylene carbonate, dimethyl carbonate and diethyl carbonate. In other embodiments, quaternary systems include a fourth component, i.e, an aliphatic ester, an asymmetric alkyl carbonate or a compound of the formula LiOX, where X is R, COOR, or COR, where R is alkyl or fluoroalkyl. Electrolytes based on such organic solvent systems are also provided and contain therein a lithium salt of high ionic mobility, such as LiPF.sub.6. Reversible electrochemical cells, particularly lithium ion cells, are constructed with the improved electrolytes, and preferably include a carbonaceous anode, an insertion type cathode, and an electrolyte interspersed therebetween.

  14. Preparation of graphene sponge by vapor phase reduction for oil and organic solvent removal

    NASA Astrophysics Data System (ADS)

    Wu, Ruihan; Yu, Baowei; Jin, Xinyan; Liu, Xiaoyang; Bai, Yitong; Chen, Lingyun; Ming, Zhu; Yang, Hua; Yang, Sheng-Tao; Luo, Jianbin

    2016-10-01

    Due to the porous structure and hydrophobicity, graphene sponge has huge adsorption capacity for oils and organic solvents. In this study, we reported that graphene sponge could be prepared by vapor phase reduction (denoted as VPRGS) for oil and organic solvent removal. Graphene oxide was lyophilized and reduced by steamy hydrazine hydrate to produce VPRGS. VPRGS had huge capacity for oils and organic solvents (72-224 g g-1). In particular, the adsorption capacity for crude oil reached 165 g g-1, suggesting that VPRGS could be applied in oil leakage remediation. VPRGS could treat pollutants both in pure liquid form and in the simulated sea water, where the hydrophobic nature of VPRGS allowed the floating of VPRGS on simulated sea water. VPRGS could be easily regenerated without obvious capacity loss up to 9 cycles. The implications to the applications of VPRGS in oil/water separation and water remediation are discussed.

  15. Dispersibility of reduced alkylamine-functionalized graphene oxides in organic solvents.

    PubMed

    Jang, Jinhee; Pham, Viet Hung; Hur, Seung Hyun; Chung, Jin Suk

    2014-06-15

    The alkylamine functionalization of graphene oxide is well known as an efficient approach to prepare reduced functionalized graphene oxide (RFGO) that is highly dispersible in organic solvents. Herein, we systematically investigated the effects of long-chain alkylamine functionalization of graphene oxide on the organic solvent dispersibility and electrical conductivity of RFGO. Three kinds of alkylamines, octylamine, dodecylamine and hexadecylamine, were chosen as functionalization agents. The alkylamine functionalization of graphene oxide was characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis and X-ray diffraction. RFGO using octylamine exhibited the best electrical conductivity of greater than 180 S/m. All of the RFGOs had excellent dispersibility, up to 3.0 mg/mL, in organic solvents, with Hansen solubility parameters in the range of 6.3<(δ(p)+δ(h))<13.7.

  16. Dissolution of biomacromolecules in organic solvents by nano-complexing with poly(ethylene glycol).

    PubMed

    Mok, Hyejung; Kim, Ho Jeong; Park, Tae Gwan

    2008-05-22

    Various biomacromolecules (BMs) such as proteins, DNA, and carbohydrates are extremely difficult to be dissolved in a single organic solvent phase for sustained release or targeted delivery formulation. In this study, three different BMs could be solubilized in selected organic solvents by forming poly(ethylene glycol) (PEG)-assisted nano-complexes while maintaining their structural integrity. Dynamic light scattering (DLS) and atomic force microscopy (AFM) analysis revealed that proteins, DNA, and carbohydrate polymers could be nano-complexed with PEG in various organic solvents. The diameter of nano-complexes decreased roughly from approximately 600 nm to approximately 100 nm with increasing weight ratio of PEG/BM. The present solubilization technique could be potentially applied for sustained release formulations of various therapeutic biological drugs.

  17. Morphology-Controlled High-Efficiency Small Molecule Organic Solar Cells without Additive Solvent Treatment

    PubMed Central

    Kim, Il Ku; Jo, Jun Hyung; Yun, Jung-Ho

    2016-01-01

    This paper focuses on nano-morphology-controlled small-molecule organic solar cells without solvent treatment for high power-conversion efficiencies (PCEs). The maximum high PCE reaches up to 7.22% with a bulk-heterojunction (BHJ) thickness of 320 nm. This high efficiency was obtained by eliminating solvent additives such as 1,8-diiodooctane (DIO) to find an alternative way to control the domain sizes in the BHJ layer. Furthermore, the generalized transfer matrix method (GTMM) analysis has been applied to confirm the effects of applying a different thickness of BHJs for organic solar cells from 100 to 320 nm, respectively. Finally, the study showed an alternative way to achieve high PCE organic solar cells without additive solvent treatments to control the morphology of the bulk-heterojunction.

  18. Vapor-phase interactions and diffusion of organic solvents in the unsaturated zone

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1990-01-01

    This article presents an analysis of the interactions and static movement of 37 organic solvents as vapors through the unsaturated soil zone. The physicochemical interactions of the organic vapors with unsaturated soil materials were emphasized with focus on diffusive, and adsorptive interactions. Fick's Law and porous media diffusion coefficients for most of the solvent vapors were either compiled or estimated; coefficients were not available for some of the fluorinated solvents. The adsorption of some of the solvent vapors by silica was concluded to be due to hydrogen bond formation with surface silanol groups. Heats of adsorption data for different adsorbents were also compiled. There were very few data on the adsorption of these solvent vapors by soils, but it appears that the magnitude of adsorption of nonpolar solvents is reduced as the relative humidity of the vapor-solid system is increased. Consequently, the interaction of the vapors may then separated into two processes; (1) gas-water partitioning described by Henry's Law constants, and (2) solid-water adsorption coefficients which may be estimated from liquid-solid partition coefficients (Kd values). ?? 1990 Springer-Verlag New York Inc.

  19. Study on effects of organic solvents on Hela cells by digital holography

    NASA Astrophysics Data System (ADS)

    Ouyang, Liting; Wang, Dayong; Wang, Yunxin; Wang, Xinlong; Marx, Lisa

    2012-11-01

    In the anticancer research with traditional Chinese medicine, many medicinally effective components can only dissolve in higher polar organic solvents, such as ethanol, dimethyl sulfoxide (DMSO) etc. However, organic solvents may directly interfere with the accuracy of therapeutic efficacy evaluation. Therefore the study on effects of organic solvents with different concentrations on Hela cells is of great significance. The digital holography is a non-destructive and non-contact method to image the transparent sample without staining and with the high precision and high resolution. In this paper, the digital holography is proposed to replace the methyl-thiazol-tetrazolium (MTT) or the Giemsa dye method. Based on the pre-magnification off-axis Fresnel digital holographic theory, an inverted microscopy system is built to obtain the phase-contrast images of the Hela cells, which are added different concentrations of organic solvents. Compared to the control group, there is significantly differences with the shapes of Hela cells with different organic solvents. The size of cell with ethanol 25% is no significantly difference with the control group. But the sizes of cells in the solutions with ethanol 12.5% and 50% are smaller than the control group. Next, the sizes of cells in the solutions with DMSO 12.5%, 25% and 50% are great smaller, compared with the control group. The results show that the digital holography has high practical value in detecting the changes in the shape of cells and is helpful in the choice of organic solvents for further apoptosis study.

  20. Prediction of solubility of drugs and other compounds in organic solvents.

    PubMed

    Abraham, Michael H; Smith, Robert E; Luchtefeld, Ron; Boorem, Aaron J; Luo, Rensheng; Acree, William E

    2010-03-01

    We have set out a procedure for the prediction of solubilities of drugs and other compounds in a wide range of solvents, based on the Abraham solvation equations. The method requires a knowledge of solubilities of a given compound in a few solvents, as shown by our own experimental data on apocynin, diapocynin, dehydrodivanillin, and dehydrodi(methyl vanillate). The procedure is especially useful for very hydrophobic compounds such as cholesteryl acetate and cholesterol that we give as examples. Other examples include vanillin and 3,4-dichlorobenzoic acid. If the solubility in water is available, then this alone is sufficient to predict solubilities in organic solvents, provided that the Abraham descriptors are available for the compound. Predictions can be made for solubilities in some 85 solvents.

  1. Rate limitations in coal/organic solvent interactions

    SciTech Connect

    Zieminski, G.H.

    1982-01-01

    Rate limitations in the extraction of tetralin-soluble material from Wyodak subbituminous coal were investigated at temperatures below those of coal pyrolysis. Intimate coal/tetralin contacting was conducted at 150 to 300/sup 0/C in a stirred batch contactor vessel at contacting times from 1/2 minute up to 24 hours, and in a high pressure Soxhlet apparatus at contacting times up to 725 hours. The yield of extracted coal material as a function of contacting time was determined from the amount of dissolved material in samples of the extract solution; total yields of up to 30% by weight of dry, ash-free (daf) coal were obtained. The extraction process could be well represented by a model based on three groups of soluble materials, in which each group was treated as a pseudo-single component. The first group (1.5-5.0% wt daf coal) extracts within the first minute of contacting, apparently unhindered by kinetic or mass transfer processes. Diffusion and weak bond breaking dominate the extraction of the second, intermediate rate, extract group (1.5-5.0% wt daf coal). The rate of extraction of the third group (5-24% wt daf coal) is kinetically controlled. The activation energies (0-10 kcal/mol) and rate coefficients (0.001-0.3 min/sup -1/) calculated from this model are well within the range that might be expected for the phenomena involved.

  2. A Solvent-Free Claisen Condensation Reaction for the Organic Laboratory

    NASA Astrophysics Data System (ADS)

    Esteb, John J.; Stockton, Matthew B.

    2003-12-01

    An experiment involving the Claisen condensation reaction for a first-year organic chemistry laboratory is presented. Claisen condensations are routinely covered in organic textbooks but owing to the long reaction times required to reach equilibrium in solution they are seldom explored in the undergraduate teaching laboratory. In this experiment, potassium tert-butoxide and ethyl phenylacetate are heated to 100 °C for 30 minutes under solvent-free conditions to produce 2,4-diphenyl acetoacetate in 80% yield. The solvent-free nature of this procedure greatly reduces the quantity of waste generated by students relative to typical carbonyl condensation experiments.

  3. Solid-state enzyme deactivation in air and in organic solvents

    SciTech Connect

    Toscano, G.; Pirozzi, D.; Maremonti, M.; Greco, G. Jr. . Dipartimento di Ingegneria Chimica)

    1994-09-05

    Thermal deactivation of solid-state acid phosphatase is analyzed, both in the presence and in the absence of organic solvents. The thermal deactivation profile departs from first order kinetics and shows an unusual, temperature-dependent, asymptotic value of residual activity. The process is described by a phenomenological equation, whose theoretical implications are also discussed. The total amount of buffer salts in the enzyme powder dramatically affects enzyme stability in the range 70 to 105 C. The higher salt/protein ratio increases the rate of thermal deactivation. The deactivation rate is virtually unaffected by the presence of organic solvents, independent of their hydrophilicity.

  4. Survey of residue levels of organic solvents in "existing food additives" and health food materials by head-space GC.

    PubMed

    Uematsu, Yoko; Ogimoto, Mami; Suzuki, Kumi; Kabashima, Junichirou; Ito, Koichi; Nakazato, Mitsuo

    2008-01-01

    Organic solvent residue levels in "Existing Food Additives" (n=145), health food materials (n=23), and commercial health food products (n=19) were surveyed. Ethanol was the dominant solvent found in the samples, suggesting its use in the manufacturing process. Methanol, acetone, 2-propanol and ethyl acetate was also found. No residual solvent exceeded the limits set by the Food Sanitation Law.

  5. Evidence of Self-Organized Criticality in Dry Sliding Friction

    NASA Technical Reports Server (NTRS)

    Zypman, Fredy R.; Ferrante, John; Jansen, Mark; Scanlon, Kathleen; Abel, Phillip

    2003-01-01

    This letter presents experimental results on unlubricated friction, which suggests that stick-slip is described by self-organized criticality (SOC). The data, obtained with a pin-on-disc tribometer examines the variation of the friction force as a function of time-or sliding distance. This is the first time that standard tribological equipment has been used to examine the possibility of SOC. The materials were matching pins and discs of aluminium loaded with 250, 500 and 1000 g masses, and matching M50 steel couples loaded with a 1000 g mass. An analysis of the data shows that the probability distribution of slip sizes follows a power law. We perform a careful analysis of all the properties, beyond the two just mentioned, which are required to imply the presence of SOC. Our data strongly support the existence of SOC for stick-slip in dry sliding friction.

  6. Aqueous Alkaline Cleaners: An Alternative to Organic Solvents

    DTIC Science & Technology

    1993-09-01

    74 7.10 Econom ics ............................................. 75 7.11 Alkaline Cleaners vs. Terpene Cleaners...the financial burden of waste disposal. A previous study25 was performed by USACERL to determine if semi-aqueous terpene cleaner could be used as a...organic soivents. 5. Discuss results based on research. 6. Contrast the results of this study with the previous work examining terpene -based cleaners. 25

  7. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in the.... Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03...

  8. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction... formulation data. Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  9. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction... formulation data. Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  10. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction... formulation data. Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  11. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... of Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass... manufacturer's formulation data Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent...

  12. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in the... Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03...

  13. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction... formulation data: Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  14. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... OOOO of Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass... manufacturer's formulation data: Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent...

  15. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... OOOO of Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass... manufacturer's formulation data: Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent...

  16. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... of Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass... manufacturer's formulation data Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent...

  17. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in the... Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03...

  18. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction... formulation data: Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  19. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... OOOO of Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass... manufacturer's formulation data: Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent...

  20. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... of Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass... manufacturer's formulation data Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent...

  1. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in the.... Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03...

  2. 40 CFR 52.246 - Control of dry cleaning solvent vapor losses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of activated carbon adsorption, or other appropriate means, not later than January 1, 1975. (d) If incineration is used as a control technique, 90 percent or more of the carbon in the organic compounds being incinerated must be oxidized to carbon dioxide....

  3. 40 CFR 52.246 - Control of dry cleaning solvent vapor losses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of activated carbon adsorption, or other appropriate means, not later than January 1, 1975. (d) If incineration is used as a control technique, 90 percent or more of the carbon in the organic compounds being incinerated must be oxidized to carbon dioxide....

  4. 40 CFR 52.246 - Control of dry cleaning solvent vapor losses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of activated carbon adsorption, or other appropriate means, not later than January 1, 1975. (d) If incineration is used as a control technique, 90 percent or more of the carbon in the organic compounds being incinerated must be oxidized to carbon dioxide....

  5. 40 CFR 52.246 - Control of dry cleaning solvent vapor losses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of activated carbon adsorption, or other appropriate means, not later than January 1, 1975. (d) If incineration is used as a control technique, 90 percent or more of the carbon in the organic compounds being incinerated must be oxidized to carbon dioxide....

  6. 40 CFR 52.246 - Control of dry cleaning solvent vapor losses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of activated carbon adsorption, or other appropriate means, not later than January 1, 1975. (d) If incineration is used as a control technique, 90 percent or more of the carbon in the organic compounds being incinerated must be oxidized to carbon dioxide....

  7. Organic aqueous tunable solvents (OATS): a vehicle for coupling reactions and separations.

    PubMed

    Pollet, Pamela; Hart, Ryan J; Eckert, Charles A; Liotta, Charles L

    2010-09-21

    In laboratory-based chemical synthesis, the choice of the solvent and the means of product purification are rarely determined by cost or environmental impact considerations. When a reaction is scaled up for industrial applications, however, these choices are critical: the separation of product from the solvent, starting materials, and byproduct usually constitutes 60-80% of the overall cost of a process. In response, researchers have developed solvents and solvent-handling methods to optimize both the reaction and the subsequent separation steps on the manufacturing scale. These include "switchable" solvents, which are designed so that their physical properties can be changed abruptly, as well as "tunable" solvents, wherein the solvent's properties change continuously through the application of an external stimulus. In this Account, we describe the organic aqueous tunable solvent (OATS) system, examining two instructive and successful areas of application of OATS as well as its clear potential for further refinement. OATS systems address the limitations of biphasic processes by optimizing reactions and separations simultaneously. The reaction is performed homogeneously in a miscible aqueous-organic solvent mixture, such as water-tetrahydrofuran (THF). The efficient product separation is conducted heterogeneously by the simple addition of modest pressures of CO(2) (50-60 bar) to the system. Under these conditions, the water-THF phase splits into two relatively immiscible phases: the organic THF phase contains the hydrophobic product, and the aqueous phase contains the hydrophilic catalyst. We take advantage of the unique properties of OATS to develop environmentally benign and cost-competitive processes relevant in industrial applications. Specifically, we describe the use of OATS for optimizing the reaction, separation, design, and recycling of (i) Rh-catalyzed hydroformylation of olefins such as 1-octene and (ii) enzyme-catalyzed hydrolysis of 2-phenylacetate. We

  8. Reactions of Microsolvated Organic Compounds at Ambient Surfaces: Droplet Velocity, Charge State, and Solvent Effects

    NASA Astrophysics Data System (ADS)

    Badu-Tawiah, Abraham K.; Campbell, Dahlia I.; Cooks, R. Graham

    2012-06-01

    The exposure of charged microdroplets containing organic ions to solid-phase reagents at ambient surfaces results in heterogeneous ion/surface reactions. The electrosprayed droplets were driven pneumatically in ambient air and then electrically directed onto a surface coated with reagent. Using this reactive soft landing approach, acid-catalyzed Girard condensation was achieved at an ambient surface by directing droplets containing Girard T ions onto a dry keto-steroid. The charged droplet/surface reaction was much more efficient than the corresponding bulk solution-phase reaction performed on the same scale. The increase in product yield is ascribed to solvent evaporation, which causes moderate pH values in the starting droplet to reach extreme values and increases reagent concentrations. Comparisons are made with an experiment in which the droplets were pneumatically accelerated onto the ambient surface (reactive desorption electrospray ionization, DESI). The same reaction products were observed but differences in spatial distribution were seen associated with the "splash" of the high velocity DESI droplets. In a third type of experiment, the reactions of charged droplets with vapor phase reagents were examined by allowing electrosprayed droplets containing a reagent to intercept the headspace vapor of an analyte. Deposition onto a collector surface and mass analysis showed that samples in the vapor phase were captured by the electrospray droplets, and that instantaneous derivatization of the captured sample is possible in the open air. The systems examined under this condition included the derivatization of cortisone vapor with Girard T and that of 4-phenylpyridine N-oxide and 2-phenylacetophenone vapors with ethanolamine.

  9. Retention modeling in combined pH/organic solvent gradient reversed-phase HPLC.

    PubMed

    Zisi, Ch; Fasoula, S; Nikitas, P; Pappa-Louisi, A

    2013-07-07

    An approach for retention modeling of double pH/organic solvent gradient data easily generated by automatically mixing two mobile phases with different pH and organic content according to a linear pump program is proposed. This approach is based on retention models arising from the evaluation of the retention data of a set of 17 OPA derivatives of amino acids obtained in 27 combined pH/organic solvent gradient runs performed between fixed initial pH/organic modifier values but different final ones and for different gradient duration. The derived general model is a ninth parameter equation easily manageable through a linear least-squares fitting but it requires eighteen initial pH/organic modifier gradient experiments for a satisfactory retention prediction in various double gradients of the same kind with those used in the fitting procedure. Two simplified versions of the general model, which were parameterized based on six only initial pH/organic modifier gradients, were also proposed, when one of the final double gradient conditions, pH or organic content was kept constant. The full and the simplified models allowed us to predict the experimental retention data in simultaneous pH/organic solvent double gradient mode very satisfactorily without the solution of the fundamental equation of gradient elution.

  10. The Relationship of Liver Function Tests to Mixed Exposure to Lead and Organic Solvents

    PubMed Central

    2013-01-01

    Objective This study aims to compare liver function indices (aspartate aminotransferase [AST], alanine aminotransferase [ALT], and gamma glutamyl transferase [GGT]) among males who work with lead, organic solvents, or both lead and organic solvents, under the permissible exposure limit (PEL). Methods A total of 593 (out of 2,218) male workers who agreed to share their personal health information for medical research were selected for this study. Those excluded were hepatitis B carriers, individuals exposed to occupational risk factors other than lead and organic solvents, and individuals without liver function results. The 593 were divided into five groups: a lead-exposed group, an organic solvent-exposed group exposed to trichloroethylene (TCE co-exposed solvent group), an organic solvent-exposed group not exposed to trichloroethylene (TCE non-exposed solvent group), a lead and organic solvent-exposed group (mixed exposure group), and a non-exposed group (control group). We performed a one way-analysis of variance (one way-ANOVA) test to compare the geometric means of liver function indices among the groups, using a general linear model (GLM) to adjust for age, work duration, body mass index (BMI), smoking, and alcohol intake. In addition, we performed a binary logistic regression analysis to compare the odds ratios among groups with an abnormal liver function index, according to a cut-off value. Results The ALT and AST of the mixed exposure group were higher than those of the other groups. The GGT of the mixed exposure group was higher than the TCE co-exposed solvent group, but there was no difference among the control group, TCE non-exposed solvent group, lead-exposed group, and mixed exposure group. The same result was evident after adjusting by GLM for age, work duration, BMI, smoking, and alcohol intake, except that ALT from the mixed exposure group showed no difference from the TCE co-exposed solvent group. When the cut-off values of the AST, ALT, and GGT

  11. Stoddard solvent poisoning

    MedlinePlus

    These products contain Stoddard solvent: Dry cleaning fluids Paints Paint thinner Stoddard solvent ( mineral spirits ) Toners used in copy machines This list may not include all products containing Stoddard solvent.

  12. Impact Of Organic Solvents And Common Anions On 2-Chlorobiphenyl Dechlorination Kinetics With Pd/Mg

    EPA Science Inventory

    The current study evaluates Pd/Mg performance for 2-chlorobiphenyl (2-CB) dechlorination in the presence of naturally abundant anions such as sulfate, chloride, nitrate, hydroxide and carbonates and organic solvents that are used for ex-situ PCB extraction or may accompany PCB co...

  13. Poly(L-aspartic acid) derivative soluble in a volatile organic solvent for biomedical application.

    PubMed

    Oh, Nam Muk; Oh, Kyung Taek; Youn, Yu Seok; Lee, Eun Seong

    2012-09-01

    In order to develop a novel functional poly(L-amino acid) that can dissolve in volatile organic solvents, we prepared poly[L-aspartic acid-g-(3-diethylaminopropyl)]-b-poly(ethylene glycol) [poly(L-Asp-g-DEAP)-b-PEG] via the conjugation of 3-diethylaminopropyl (DEAP) to carboxylate groups of poly(L-Asp) (M(n) 4 K)-b-PEG (M(n) 2 K). This poly(L-aspartic acid) derivative evidenced a relatively high solubility in volatile organic solvents such as dichloromethane, chloroform, and acetone. We fabricated a model nanostructure (i.e., polymeric micelle) using poly(L-Asp-g-DEAP)-b-PEG by the film rehydration method, which involves the simple removal of the volatile organic solvent (dichloromethane) used to dissolve polymer, reducing concerns about organic solvents remaining in a nano-sized particle. Interestingly, this micelle showed the pH-stimulated release of encapsulated model drug [i.e., doxorubicin (DOX)] due to the protonation of DEAP according to the pH of the solution. We expect that this poly(L-aspartic acid) derivative promises to provide pharmaceutical potential for constituting a new stimuli-sensitive drug carrier for various drug molecules.

  14. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  15. Development of organic solvent-free micro-/nano-porous polymer scaffolds for musculoskeletal regeneration.

    PubMed

    Lin, S T C; Musson, D S; Amirapu, S; Cornish, J; Bhattacharyya, D

    2017-05-01

    The use of biomaterial scaffolds has been an enormous field of research in tissue engineering, where the aim is to use graft materials for assisting the human body in recovering lost functions. Currently, there are many ways biomaterial scaffolds can be fabricated; however, many of these techniques involve the use of toxic organic solvents during the process. As biocompatibility is one of the mandatory requirements in designing a successful scaffold, there is an interest in fabricating scaffolds that are completely organic solvent-free. This paper describes the development and characterization of novel micro-/nano-fibrillar composites (MFC/NFC) that can produce scaffolds which are completely free from organic solvents. In this research, the cytocompatibility of these materials have been tested in vitro using mouse osteoblast-like cells and primary rat tenocytes, where cell numbers increase over the culture period, demonstrating the material viability. Gene expression analysis of primary rat tenocytes on MFC/NFC scaffolds demonstrate tenocytic behavior, and histology studies show an increase in cell formation on NFC scaffolds. This study establishes the potential of using the MFC/NFC technique to produce completely organic solvent-free scaffolds capable of hosting musculoskeletal cells, in the hope of providing a graft material for non-union skeletal fractures and rotator cuff repairs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1393-1404, 2017.

  16. Organic solvents induce the formation of oil-in-ionic liquid microemulsion aggregations.

    PubMed

    Gao, Yanan; Li, Na; Zhang, Shaohua; Zheng, Liqiang; Li, Xinwei; Dong, Bin; Yu, Li

    2009-02-05

    The role of four organic solvents in the formation process of 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) based ionic liquid (IL) microemulsions is investigated. The results showed that the addition of Triton X-100 remarkably decreased the conductivity of bmimBF4. The added organic solvents provided a strong apolar environment for the hydrophobic tails of Triton X-100 and caused the surfactant molecules to aggregate into the interfacial film of oil-in-bmimBF4 (O/IL) microemulsions. As a result, the conductivities of the solutions were initially increased because the insulative Triton X-100 molecules were assembled, which corresponded to increasing the concentration of continuous bmimBF4 solutions. The hydrophobic interaction between the dispersed organic solvents and the hydrophobic tails of Triton X-100 may be the driving force for the formation of O/IL microemulsions. The droplets of O/IL microemulsions were successively swollen by organic solvents, and a bicontinuous IL-containing microemulsion was observed by freeze-fracture transmission electron microscopy for the first time. The current study can help in further understanding the ILs-containing microemulsions and thereby improve microemulsion theory.

  17. Understanding mechanisms of asphaltene adsorption from organic solvent on mica.

    PubMed

    Natarajan, Anand; Kuznicki, Natalie; Harbottle, David; Masliyah, Jacob; Zeng, Hongbo; Xu, Zhenghe

    2014-08-12

    The adsorption process of asphaltene onto molecularly smooth mica surfaces from toluene solutions of various concentrations (0.01-1 wt %) was studied using a surface forces apparatus (SFA). Adsorption of asphaltenes onto mica was found to be highly dependent on adsorption time and asphaltene concentration of the solution. The adsorption of asphaltenes led to an attractive bridging force between the mica surfaces in asphaltene solution. The adsorption process was identified as being controlled by the diffusion of asphaltenes from the bulk solution to the mica surface with a diffusion coefficient on the order of 10(-10) m(2)/s at room temperature, depending on the asphaltene bulk concentration. This diffusion coefficient corresponds to a hydrodynamic molecular radius of approximately 0.5 nm, indicating that asphaltene diffuses to mica surfaces as individual molecules at very low concentration (e.g., 0.01 wt %). Atomic force microscopy images of the adsorbed asphaltenes on mica support the results of the SFA force measurements. The results from the SFA force measurements provide valuable insights into the molecular interactions (e.g., steric repulsion and bridging attraction as a function of distance) of asphaltenes in organic media and hence their roles in crude oil and bitumen production.

  18. Experimental Limiting Oxygen Concentrations for Nine Organic Solvents at Temperatures and Pressures Relevant to Aerobic Oxidations in the Pharmaceutical Industry

    PubMed Central

    2015-01-01

    Applications of aerobic oxidation methods in pharmaceutical manufacturing are limited in part because mixtures of oxygen gas and organic solvents often create the potential for a flammable atmosphere. To address this issue, limiting oxygen concentration (LOC) values, which define the minimum partial pressure of oxygen that supports a combustible mixture, have been measured for nine commonly used organic solvents at elevated temperatures and pressures. The solvents include acetic acid, N-methylpyrrolidone, dimethyl sulfoxide, tert-amyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, methanol, acetonitrile, and toluene. The data obtained from these studies help define safe operating conditions for the use of oxygen with organic solvents. PMID:26622165

  19. Lignin Peroxidase Oxidation of Aromatic Compounds in Systems Containing Organic Solvents

    PubMed Central

    Vazquez-Duhalt, Rafael; Westlake, Donald W. S.; Fedorak, Phillip M.

    1994-01-01

    Lignin peroxidase from Phanerochaete chrysosporium was used to study the oxidation of aromatic compounds, including polycyclic aromatic hydrocarbons and heterocyclic compounds, that are models of moieties of asphaltene molecules. The oxidations were done in systems containing water-miscible organic solvents, including methanol, isopropanol, N, N-dimethylformamide, acetonitrile, and tetrahydrofuran. Of the 20 aromatic compounds tested, 9 were oxidized by lignin peroxidase in the presence of hydrogen peroxide. These included anthracene, 1-, 2-, and 9-methylanthracenes, acenaphthene, fluoranthene, pyrene, carbazole, and dibenzothiophene. Of the compounds studied, lignin peroxidase was able to oxidize those with ionization potentials of <8 eV (measured by electron impact). The reaction products contain hydroxyl and keto groups. In one case, carbon-carbon bond cleavage, yielding anthraquinone from 9-methylanthracene, was detected. Kinetic constants and stability characteristics of lignin peroxidase were determined by using pyrene as the substrate in systems containing different amounts of organic solvent. Benzyl alkylation of lignin peroxidase improved its activity in a system containing water-miscible organic solvent but did not increase its resistance to inactivation at high solvent concentrations. PMID:16349176

  20. Application of a statistically enhanced, novel, organic solvent stable lipase from Bacillus safensis DVL-43.

    PubMed

    Kumar, Davender; Parshad, Rajinder; Gupta, Vijay Kumar

    2014-05-01

    This paper presents the molecular identification of a newly isolated bacterial strain producing a novel and organic solvent stable lipase, statistical optimization of fermentation medium, and its application in the synthesis of ethyl laurate. On the basis of nucleotide homology and phylogenetic analysis of 16S rDNA sequence, the strain was identified as Bacillus safensis DVL-43 (Gen-bank accession number KC156603). Optimization of fermentation medium using Plackett-Burman design and response surface methodology led to 11.4-fold increase in lipase production. The lipase from B. safensis DVL-43 exhibited excellent stability in various organic solvents. The enzyme retained 100% activity after 24h incubation in xylene, DMSO and toluene, each solvent being used at a concentration of 25% (v/v). The use of partially purified DVL-43 lipase as catalyst in the synthesis of ethyl laurate, an esterification product of lauric acid and ethanol, resulted in 80% esterification in 12h under optimized conditions. The formation of ethyl laurate was confirmed using TLC and (1)H NMR. Organic solvent stable lipases exhibiting potential application in enzymatic esterification are in great demand in flavor, fine chemicals and pharma industries. We could not find any report on lipase production from B. safensis strain and its application in esterification.

  1. Tuning the solubility of boron nitride nanosheets in organic solvents by using block copolymer as a "Janus" modifier.

    PubMed

    Liu, Yi-Tao; Xie, Xu-Ming; Ye, Xiong-Ying

    2013-01-14

    The solubility of boron nitride nanosheets (BNNSs) in different organic solvents is smartly tuned by using a "Janus" modifier, P(S-b-MMA), which enriches our choice of organic solvents for BNNSs, including low-boiling-point acetone, alkanes, cycloalkanes and benzene series, that are viewed as nonsolvents of BNNSs.

  2. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for Petroleum Solvent Groups a 7 Table 7 to Subpart KKKK of Part 63 Protection of Environment ENVIRONMENTAL... Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in...

  3. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for Petroleum Solvent Groups a 7 Table 7 to Subpart KKKK of Part 63 Protection of Environment ENVIRONMENTAL... Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in...

  4. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for Petroleum Solvent Groups a 7 Table 7 to Subpart KKKK of Part 63 Protection of Environment ENVIRONMENTAL... Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in...

  5. The influence of organic sample solvents on the separation efficiency of basic compounds under strong cation exchange mode.

    PubMed

    Long, Zhen; Yu, Dongping; Liu, Yanfang; Du, Nana; Tao, Yanduo; Mei, Lijuan; Guo, Zhimou; Liang, Xinmiao

    2015-05-04

    This study investigated the influence of organic sample solvents on separation efficiency of basic compounds under strong cation exchange (SCX) mode. The mixtures of acidic aqueous solution and organic solvent such as acetonitrile, ethanol, methanol and dimethyl sulfoxide (DMSO) were tested as sample solvents. For later-eluting analytes, the increase of sample solvent elution strength was responsible for the decrease of separation efficiency. Thus, sample solvents with weak elution strength could provide high separation efficiencies. For earlier-eluting analytes, the retention of organic sample solvents was the main factor affecting separation efficiency. Weakly retained solvents could provide high separation efficiency. In addition, an optimized approach was proposed to reduce the effect of organic sample solvent, in which low ionic solvent was employed as initial mobile phase in the gradient. At last, the analysis of impurities in hydrophobic drug berberine was performed. The results showed that using acidic aqueous methanol as sample solvents could provide high separation efficiency and good resolution (R>1.5).

  6. Solvent dependence of Stokes shift for organic solute-solvent systems: A comparative study by spectroscopy and reference interaction-site model-self-consistent-field theory.

    PubMed

    Nishiyama, Katsura; Watanabe, Yasuhiro; Yoshida, Norio; Hirata, Fumio

    2013-09-07

    The Stokes shift magnitudes for coumarin 153 (C153) in 13 organic solvents with various polarities have been determined by means of steady-state spectroscopy and reference interaction-site model-self-consistent-field (RISM-SCF) theory. RISM-SCF calculations have reproduced experimental results fairly well, including individual solvent characteristics. It is empirically known that in some solvents, larger Stokes shift magnitudes are detected than anticipated on the basis of the solvent relative permittivity, ɛr. In practice, 1,4-dioxane (ɛr = 2.21) provides almost identical Stokes shift magnitudes to that of tetrahydrofuran (THF, ɛr = 7.58), for C153 and other typical organic solutes. In this work, RISM-SCF theory has been used to estimate the energetics of C153-solvent systems involved in the absorption and fluorescence processes. The Stokes shift magnitudes estimated by RISM-SCF theory are ∼5 kJ mol(-1) (400 cm(-1)) less than those determined by spectroscopy; however, the results obtained are still adequate for dipole moment comparisons, in a qualitative sense. We have also calculated the solute-solvent site-site radial distributions by this theory. It is shown that solvation structures with respect to the C-O-C framework, which is common to dioxane and THF, in the near vicinity (∼0.4 nm) of specific solute sites can largely account for their similar Stokes shift magnitudes. In previous works, such solute-solvent short-range interactions have been explained in terms of the higher-order multipole moments of the solvents. Our present study shows that along with the short-range interactions that contribute most significantly to the energetics, long-range electrostatic interactions are also important. Such long-range interactions are effective up to 2 nm from the solute site, as in the case of a typical polar solvent, acetonitrile.

  7. Expanded Porphyrin-Anion Supramolecular Assemblies: Environmentally Responsive Sensors for Organic Solvents and Anions.

    PubMed

    Zhang, Zhan; Kim, Dong Sub; Lin, Chung-Yon; Zhang, Huacheng; Lammer, Aaron D; Lynch, Vincent M; Popov, Ilya; Miljanić, Ognjen Š; Anslyn, Eric V; Sessler, Jonathan L

    2015-06-24

    Porphyrins have been used frequently to construct supramolecular assemblies. In contrast, noncovalent ensembles derived from expanded porphyrins, larger congeners of naturally occurring tetrapyrrole macrocycles, are all but unknown. Here we report a series of expanded porphyrin-anion supramolecular assemblies. These systems display unique environmentally responsive behavior. Addition of polar organic solvents or common anions to the ensembles leads to either a visible color change, a change in the fluorescence emission features, or differences in solubility. The actual response, which could be followed easily by the naked eye, was found to depend on the specifics of the assembly, as well as the choice of analyte. Using the ensembles of this study, it proved possible to differentiate between common solvents, such as diethyl ether, THF, ethyl acetate, acetone, alcohol, acetonitrile, DMF, and DMSO, identify complex solvent systems, as well as distinguish between the fluoride, chloride, bromide, nitrate, and sulfate anions.

  8. Water-enhanced solvation of organic solutes in ketone and ester solvents

    SciTech Connect

    Lee, J.H.; Brunt, V. van; King, C.J. . Dept. of Chemical Engineering Lawrence Berkeley Lab., CA )

    1994-05-01

    Previous research has shown that the solubilities of dicarboxylic acids in certain electron-donor solvents are substantially increased in the presence of water. Information on solubilities, liquid-liquid equilibria and maximum-boiling ternary azeotropes was screened so as to identify other systems where codissolved water appears to enhance solvation of organic solutes in solvents. Several carboxylic acids, an alcohol, diols, and phenols were selected for examination as solutes in ketone and ester solvents. Effects of water upon solute solubilities and volatilities were measured. Results showed that water-enhanced solvation is greatest for carboxylic acids. Solute activity coefficients decreased by factors of 2--3, 6--8, and 7--10 due to the presence of water for mono-, di and tricarboxylic acids, respectively. Activity coefficients decreased by a factor of about 1.5 for ethanol and 1,2-propanediol as solutes. Water-enhanced solvation of phenols is small, when existent.

  9. Hydrogen/Deuterium Exchange Study of Subtilisin Carlsberg During Prolonged Exposure to Organic Solvents

    PubMed Central

    Fasoli, Ezio; Ferrer, Amaris; Barletta, Gabriel L.

    2009-01-01

    It has been previously reported that prolonged exposure of an enzyme to organic solvents leads to substantial decrease of activity. This effect was found to be unrelated to the catalysts’ structure or their possible aggregation in organic solvents, and up to the present day the cause for activity loss remains unclear. In the present work, the structural dynamics of the serine protease subtilisin Carlsberg (SC) have been investigated during prolonged exposure to two organic solvents by following hydrogen/deuterium (H/D) exchange of mobile protons. The enzyme, after lyophilization, was incubated in organic solvents at controlled deuteriated water activity for different times and the H/D exchange was allowed to take place. The amount of deuterium exchanged was evaluated by 2H NMR, which in turn gave us a picture of the changing dynamics of our model enzyme during incubation and under different experimental conditions. Our results show that the flexibility of SC decreases during prolonged storage in 1,4-dioxane (Diox) and acetonitrile (ACN) as indicated by the observed 3- to 10-fold decrease in the apparent rate constants of exchange (k) of fast exchangeable protons (FEP) and slow exchangeable protons (SEP) in the protein. Our study also shows that SC is more flexible in ACN than in Diox (k 3−20 times higher in ACN for the FEP and SEP), suggesting that enzyme dynamics are affected by solvent physicochemical properties. Additionally, the enzyme dynamics are also affected by the method of preparation: decreased flexibility (k decreases 3- to 10-fold for FEP and SEP) is observed when the enzyme is chemically modified with poly ethylene glycol (PEGylated) or colyophilized with crown ethers. A possible relationship between activity, enantioselectivity (E), and structural dynamics is discussed, demonstrating that direct correlations, as have been attempted in the past, are hampered by the multi-variable nature and complexity of the system. PMID:18985614

  10. [Determination of residual organic solvents in flunixin meglumine raw material by headspace gas chromatography].

    PubMed

    Hu, Huilian

    2012-01-01

    A method for the determination of five kinds of residual organic solvents in flunixin meglumine raw material was developed by headspace gas chromatography. An HP-FFAP capillary column (30 m x 0.32 mm x 1.0 microm), a flame ionization detector and the external standard method were used for the separation and quantitative analysis. The effects of equilibrium temperature and equilibrium time on the determination of residual organic solvents were investigated. The good results were obtained in the equilibrium temperature of 90 degrees C and equilibrium time of 30 min. The standard curves were linear in the range of 0.40-7.93 mg/L (r = 0.999 8) for ethyl acetate, 7.32-146.48 mg/L (r = 0.999 6) for methanol, 4.53-90.61 mg/L (r = 0.999 9) for isopropanol, 3.62-72.32 mg/L (r = 0.999 8) for ethanol and 2.31-46.24 mg/L (r = 0.999 6) for acetonitrile. The recoveries for the five residual organic solvents were between 95.96% and 100.31% with relative standard deviations (RSDs) (n = 6) of 1.97%-3.28%. The detection limits of ethyl acetate, methanol, isopropanol, ethanol and acetonitrile were 0.08, 0.9, 0.2, 0.4 and 0.3 mg/L, respectively. The proposed method was successfully applied to analyze the residual organic solvents in the real sample of flunixin meglumine raw material. The results showed that only isopropanol and ethanol were found in the sample with the contents of 177.44 microg/g and 69.32 microg/g, respectively. The method is rapid, sensitive and accurate for the content determination of residual solvents in flunixin meglumine raw material.

  11. [Development of revolutionary enzymatic reactions in organic solvents with molecular display].

    PubMed

    Ueda, Mitsuyoshi

    2010-11-01

    We have seen increasing use of the term "White biotechnology". White biotechnology involves the use of microbial cells and enzymes in the production of bulk and fine chemicals such as amino acids and polymers. This generally results in cleaner processes with minimum waste generation and energy use. Most of the organic syntheses using enzymes are carried out in nearly anhydrous organic solvents or solvent-free media. Ionic liquids have more recently emerged as another nonaqueous media, which, in view of their low vapor pressure, are viewed as "green solvents". Organic solvents may alter the structure and activity of enzymes that usually function in an aqueous environment. One alternative is to immobilize the enzymes on solid supports to increase their function and stability in response to organic solvents or increased temperatures. Enzymes may be stabilized by chemical and physical processes. With chemical methods, enzymes are immobilized by strong covalent bonding, but changes in protein structure often result. In physical stabilization processes, the interactions between enzymes and solids usually are weaker, resulting in fewer changes in the enzyme's structure. Yeast cell surface engineering is an alternative approach that immobilizes enzymes on the yeast cell surface. Proteins are immobilized by using an outer shell cell-wall protein, the C-terminal half of alpha-agglutinin. Display of enzymes on the yeast cell surface has at least two advantages relative to other physical immobilization methods. First, the displayed enzymes can be readily produced in a standard fermentation. No further work is required to either purify or immobilize the enzymes. Second, enzyme displayed on the yeast cell surface can be modified directly by conventional genetic engineering, which enables error-prone PCR, DNA shuffling, and combinatorial mutagenesis to be used quickly and efficiently to create strains (whole-cell biocatalysts) with enhanced enzyme activity.

  12. Effect of some organic solvent-water mixtures composition on precipitated calcium carbonate in carbonation process

    NASA Astrophysics Data System (ADS)

    Konopacka-Łyskawa, Donata; Kościelska, Barbara; Karczewski, Jakub

    2015-05-01

    Precipitated calcium carbonate particles were obtained during carbonation of calcium hydroxide slurry with carbon dioxide. Aqueous solutions of isopropyl alcohol, n-butanol and glycerol were used as solvents. Concentration of organic additives in the reactive mixture was from 0% to 20% (vol). Precipitation process were performed in a stirred tank reactor equipped with gas distributor. Multimodal courses of particles size distribution were determined for produced CaCO3 particles. Calcium carbonate as calcite was precipitated in all experiments. The mean Sauter diameter of CaCO3 particles decreased when the concentration of all used organic additives increased. The amount of small particle fraction in the product increased with the increasing concentration of organic solvents. Similar physical properties of used liquid phase resulted in the similar characteristics of obtained particles.

  13. Hemolysis as a possible indicator of neurotoxicity induced by organic solvents.

    PubMed Central

    Anderson, R J; Glasgow, C E; Dunham, C B

    1984-01-01

    The expense, length of time and number of animals required for routine toxicity testing have provided the incentive for finding alternative techniques which are faster, less expensive and equally valid. The purpose of this work was to examine the value of a simple in vitro test (hemolysis) as a correlate of the neurotoxicity produced by commonly used industrial organic solvents. Incubation of rat erythrocytes with organic alcohols produced hemolysis which correlates with the potency of the same alcohols to suppress membrane excitability, measured as reduction in the evoked action potential of the rat sciatic nerve. The hemolytic activity also reflects changes in water solubility among the compounds and thus can be used as an index of in vivo neurotoxicity, the extent of which partly depends on absorption of the agent and delivery to nerve tissue. Hemolysis therefore may be of value as a preliminary test for assessing the neurotoxicity of organic solvents. PMID:6525994

  14. Morphology and physiology of anaerobic granular sludge exposed to an organic solvent.

    PubMed

    Costa, J C; Moita, I; Ferreira, E C; Alves, M M

    2009-08-15

    The use of quantitative image analysis techniques, together with physiological information might be used to monitor and detect operational problems in advance to reactor performance failure. Industrial organic solvents, such as White Spirit, are potentially harmful to granular sludge. In preliminary batch assays, 33 mg L(-1) of solvent caused 50% relative biomass activity loss. In an expanded granular sludge blanket reactor fed with 40 mg L(-1) of solvent, during 222h, the reactor performance seemed to be unaffected, presenting COD removal efficiency consistently >95%. However, in the last days of exposure, the biogas production and the methane content were inhibited. Afterwards, already during recovery phase, the COD removal efficiency decreased to 33%, probably because the reactor was underloaded and the biomass became saturated in solvent only at this stage. In the first hours of exposure the specific acetoclastic and the specific hydrogenotrophic methanogenic activities decreased 29% and 21%, respectively. The % of aggregates projected area with equivalent diameter (D(eq))>1mm decreased from 81% to 53%. The mean D(eq) of the aggregates > or =0.2mm decreased, as well as the settling velocity, showing that the granules experienced fragmentation phenomenon caused by the solvent shock load. The ratio between total filaments length and total aggregates projected area (LfA) increased 2 days before effluent volatile suspended solids, suggesting that LfA could be an early-warning indicator of washout events.

  15. Efficient inverted organic light-emitting devices by amine-based solvent treatment (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Song, Myoung Hoon; Choi, Kyoung-Jin; Jung, Eui Dae

    2015-10-01

    The efficiency of inverted polymer light-emitting diodes (iPLEDs) were remarkably enhanced by introducing spontaneously formed ripple-shaped nanostructure of ZnO (ZnO-R) and amine-based polar solvent treatment using 2-methoxyethanol and ethanolamine (2-ME+EA) co-solvents on ZnO-R. The ripple-shape nanostructure of ZnO layer fabricated by solution process with optimal rate of annealing temperature improves the extraction of wave guide modes inside the device structure, and 2-ME+EA interlayer enhances the electron injection and hole blocking and reduces exciton quenching between polar solvent treated ZnO-R and emissive layer. As a result, our optimized iPLEDs show the luminous efficiency (LE) of 61.6 cd A-1, power efficiency (PE) of 19.4 lm W-1 and external quantum efficiency (EQE) of 17.8 %. This method provides a promising method, and opens new possibilities for not only organic light-emitting diodes (OLEDs) but also other organic optoelectronic devices such as organic photovoltaics, organic thin film transistors, and electrically driven organic diode laser.

  16. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods.

    PubMed

    Hong, Shiqi; Shen, Shoucang; Tan, David Cheng Thiam; Ng, Wai Kiong; Liu, Xueming; Chia, Leonard S O; Irwan, Anastasia W; Tan, Reginald; Nowak, Steven A; Marsh, Kennan; Gokhale, Rajeev

    2016-01-01

    Encapsulation of drugs in mesoporous silica using co-spray drying process has been recently explored as potential industrial method. However, the impact of spray drying on manufacturability, physiochemical stability and bioavailability in relation to conventional drug load processes are yet to be fully investigated. Using a 2(3) factorial design, this study aims to investigate the effect of drug-loading process (co-spray drying and solvent impregnation), mesoporous silica pore size (SBA-15, 6.5 nm and MCM-41, 2.5 nm) and percentage drug load (30% w/w and 50% w/w) on material properties, crystallinity, physicochemical stability, release profiles and bioavailability of fenofibrate (FEN) loaded into mesoporous silica. From the scanning electronic microscopy (SEM) images, powder X-ray diffraction and Differential scanning calorimetry measurements, it is indicated that the co-spray drying process was able to load up to 50% (w/w) FEN in amorphous form onto the mesoporous silica as compared to the 30% (w/w) for solvent impregnation. The in vitro dissolution rate of the co-spray dried formulations was also significantly (p = 0.044) better than solvent impregnated formulations at the same drug loading. Six-month accelerated stability test at 40 °C/75 RH in open dish indicated excellent physical and chemical stability of formulations prepared by both methods. The amorphous state of FEN and the enhanced dissolution profiles were well preserved, and very low levels of degradation were detected after storage. The dog data for the three selected co-spray-dried formulations revealed multiple fold increment in FEN bioavailability compared to the reference crystalline FEN. These results validate the viability of co-spray-dried mesoporous silica formulations with high amorphous drug load as potential drug delivery systems for poorly water soluble drugs.

  17. Limited influence of dry deposition of semivolatile organic vapors on secondary organic aerosol formation in the urban plume

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Madronich, S.; Aumont, B.; Lee-Taylor, J.; Karl, T.; Camredon, M.; Mouchel-Vallon, C.

    2013-06-01

    The dry deposition of volatile organic compounds (VOCs) and its impact on secondary organic aerosols (SOA) are investigated in the Mexico City plume. Gas-phase chemistry and gas-particle partitioning of oxygenated VOCs are modeled with the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) from C3 to C25 alkanes, alkenes, and light aromatics. Results show that dry deposition of oxidized gases is not an efficient sink for SOA, as it removes <5% of SOA within the city's boundary layer and ~15% downwind. Dry deposition competes with the gas-particle uptake, and only gases with fewer than ~12 carbons dry deposit while longer species partition to SOA. Because dry deposition of submicron aerosols is slow, condensation onto particles protects organic gases from deposition, thus increasing their atmospheric burden and lifetime. In the absence of this condensation, ~50% of the regionally produced mass would have been dry deposited.

  18. Investigating the role of solvent-solute interaction in crystal nucleation of salicylic acid from organic solvents.

    PubMed

    Khamar, Dikshitkumar; Zeglinski, Jacek; Mealey, Donal; Rasmuson, Åke C

    2014-08-20

    In previous work, it has been shown that the crystal nucleation of salicylic acid (SA) in different solvents becomes increasingly more difficult in the order: chloroform, ethyl acetate acetonitrile, acetone, methanol, and acetic acid. In the present work, vibration spectroscopy, calorimetric measurements, and density functional theory (DFT) calculations are used to reveal the underlying molecular mechanisms. Raman and infrared spectra suggest that SA exists predominately as dimers in chloroform, but in the other five solvents there is no clear evidence of dimerization. In all solvents, the shift in the SA carbonyl peak reflecting the strength in the solvent-solute interaction is quite well correlated to the nucleation ranking. This shift is corroborated by DFT calculated energies of binding one solvent molecule to the carboxyl group of SA. An even better correlation of the influence of the solvent on the nucleation is provided by DFT calculated energy of binding the complete first solvation shell to the SA molecule. These solvation shell binding energies are corroborated by the enthalpy of solvent-solute interaction as estimated from experimentally determined enthalpy of solution and calculated enthalpy of cavity formation using the scaled particle theory. The different methods reveal a consistent picture and suggest that the stronger the solvent binds to the SA molecule in solution, the slower the nucleation becomes.

  19. Structure Characterization and Properties of Metal-Surfactant Complexes Dispersed in Organic Solvents.

    PubMed

    de la Iglesia, Pablo; Jaeger, Vance W; Xi, Yuyin; Pfaendtner, Jim; Pozzo, Lilo D

    2015-08-25

    This work describes the synthesis and characterization of metal-surfactant complexes. Dioctyl sulfosuccinate and dodecylbenzenesulfonate are associated with multivalent aluminum, iron, and vanadium ions using an ion exchange reaction. The metal complexes are dispersible in various organic solvents. In solvents with low polarity, the complexes form "inverse" macromolecular structures with multiple metal ions. In contrast, in alcohols, the complex size is reduced, showing a more disperse conformation. The metal and surfactant ions are still strongly bonded to each other in all the solvents probed. Small-angle X-ray and neutron scattering (SAXS and SANS) are used to characterize the structures. Simultaneous fitting of neutron and X-ray scattering spectra is performed in order to obtain an accurate description of the system. Scattering results are also validated by performing molecular dynamics (MD) simulations. The conductive and electrochemical properties of the complexes in solution are also evaluated. The dispersion of metal-organic complexes significantly increases electric conductivity, and some metal ions in the core of the complexes are shown to be electrochemically active in apolar solvents.

  20. Predicting the acute neurotoxicity of diverse organic solvents using probabilistic neural networks based QSTR modeling approaches.

    PubMed

    Basant, Nikita; Gupta, Shikha; Singh, Kunwar P

    2016-03-01

    Organic solvents are widely used chemicals and the neurotoxic properties of some are well established. In this study, we established nonlinear qualitative and quantitative structure-toxicity relationship (STR) models for predicting neurotoxic classes and neurotoxicity of structurally diverse solvents in rodent test species following OECD guideline principles for model development. Probabilistic neural network (PNN) based qualitative and generalized regression neural network (GRNN) based quantitative STR models were constructed using neurotoxicity data from rat and mouse studies. Further, interspecies correlation based quantitative activity-activity relationship (QAAR) and global QSTR models were also developed using the combined data set of both rodent species for predicting the neurotoxicity of solvents. The constructed models were validated through deriving several statistical coefficients for the test data and the prediction and generalization abilities of these models were evaluated. The qualitative STR models (rat and mouse) yielded classification accuracies of 92.86% in the test data sets, whereas, the quantitative STRs yielded correlation (R(2)) of >0.93 between the measured and model predicted toxicity values in both the test data (rat and mouse). The prediction accuracies of the QAAR (R(2) 0.859) and global STR (R(2) 0.945) models were comparable to those of the independent local STR models. The results suggest the ability of the developed QSTR models to reliably predict binary neurotoxicity classes and the endpoint neurotoxicities of the structurally diverse organic solvents.

  1. The oxidation of chiral alcohols catalyzed by catalase in organic solvents

    SciTech Connect

    Magner, E.; Klibanov, A.M.

    1995-04-20

    The catalytic properties of bovine liver catalase have been investigated in organic solvents. In tetrahydrofuran, dioxane, and acetone (all containing 1% to 3% of water), the enzyme breaks down tert-butyl hydroperoxide several fold faster than in pure water. Furthermore, the rate of catalase-catalyzed production of tert-butanol from tert-butyl hydroperoxide increases more than 400-fold upon transition from aqueous buffer to ethanol as the reaction medium. The mechanistic rationale for this striking effect is that in aqueous buffer the rate-limiting step of the enzymatic process involves the reduction of catalase`s compound 1 by tert-butyl hydroperoxide. In ethanol, an additional step in the reaction scheme becomes available in which ethanol, greatly outcompeting the hydroperoxide, is oxidized by compound 1 regenerating the free enzyme. In solvents, such as acetonitrile or tetrahydrofuran, which themselves are not oxidizable by compound 1, catalase catalyzes the oxidation of numerous primary and secondary alcohols with tert-butyl hydroperoxide to the corresponding aldehydes or ketones. The enzymatic oxidation of some chiral alcohols (2,3-butanediol, citronellol, and menthol) under these conditions occurs enantioselectively. Examination of the enantioselectivity for the oxidation of 2,3-butanediol in a series of organic solvents reveals a considerable solvent dependence.

  2. Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Bo, Zheng; Yang, Huachao; Yang, Jinyuan; Duan, Liangping; Yan, Jianhua; Cen, Kefa

    2016-12-01

    Organic electrolytes are widely used in electric double-layer capacitors (EDLCs). In this work, the microstructure of planar graphene-based EDLCs with different organic solvents are investigated with molecular dynamics simulations. Results show that an increase of solvent polarity could weaken the accumulation of counter-ions nearby the electrode surface, due to the screen of electrode charges and relatively lower ionic desolvation. It thus suggests that solvents with low polarity could be preferable to yield high EDL capacitance. Meanwhile, the significant effects of the size and structure of solvent molecules are reflected by non-electrostatic molecule-electrode interactions, further influencing the adsorption of solvent molecules on electrode surface. Compared with dimethyl carbonate, γ-butyrolactone, and propylene carbonate, acetonitrile with relatively small-size and linear structure owns weak non-electrostatic interactions, which favors the easy re-orientation of solvent molecules. Moreover, the shift of solvent orientation in surface layer, from parallel orientation to perpendicular orientation relative to the electrode surface, deciphers the solvent twin-peak behavior near negative electrode. The as-obtained insights into the roles of solvent properties on the interplays among particles and electrodes elucidate the solvent influences on the microstructure and capacitive behavior of EDLCs using organic electrolytes.

  3. Tunable and flexible solvent-free liquid organic distributed feedback lasers

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Hyung; Inoue, Munetomo; Zhao, Li; Komino, Takeshi; Seo, Soonmin; Ribierre, Jean-Charles; Adachi, Chihaya

    2015-02-01

    We report on optically pumped blue, green, and red liquid organic distributed feedback (DFB) lasers based on solvent-free fluidic organic semiconductors, and prepared on highly flexible corrugated polymeric patterns. By the appropriate selection of laser dyes doping a liquid 9-(2-ethylhexyl)carbazole host, the lasing wavelength is effectively tuned across the visible spectrum via a cascade energy transfer scheme. We also demonstrate a mechanical tunability of the flexible liquid DFB laser emission, which is due to the deformation of the high-aspect ratio DFB grating under bending. Overall, this work provides an important step in the development of flexible liquid organic optoelectronic devices.

  4. Production, characterization, and application of an organic solvent-tolerant lipase present in active inclusion bodies.

    PubMed

    Li, Suxia; Lin, Kang; Pang, Huaiyu; Wu, Yixin; Xu, Jianhe

    2013-01-01

    An organic solvent-tolerant lipase from Serratia marcescens ECU1010 (rSML) was overproduced in Escherichia coli in an insoluble form. High concentrations of both biomass (50 g cell wet weight/L culture broth) and inclusion bodies (10.5 g/L) were obtained by applying a high-cell-density cultivation procedure. Activity assays indicated that the enzymatic activity of rSML reached 600 U/L. After treatment with isopropyl ether for 12 h, the maximum lipase activity reached 6,000 U/L. Scanning electron microscopy and Fourier transform infrared microspectroscopy revealed the activation mechanism of rSML in the presence of organic solvents. rSML was stable in broad ranges of temperatures and pH values, as well as in a series of organic solvents. Besides, rSML showed the best enantioselectivity for the kinetic resolution of (±)-trans-3-(4-methoxyphenyl)glycidic acid methyl ester. These features render the S. marcescens ECU1010 lipase attractive for biotechnological applications in the field of organic synthesis and pharmaceutical industry.

  5. New lipophilic polyelectrolyte gels containing quaternary ammonium salt with superabsorbent capacity for organic solvents.

    PubMed

    Chen, Jian; Wang, Shuojue; Peng, Jing; Li, Jiuqiang; Zhai, Maolin

    2014-09-10

    Water and soil pollution by organic pollutants from petrochemical plants has become one of the major environmental problems in recent years. Lipophilic polyelectrolyte gels with ionic groups dissociable in nonpolar organic solvents show an enhanced swelling ability in a corresponding media attributed to the electrostatic repulsion and osmotic pressure provided by dissociated ionic groups. Here, we synthesized new lipophilic polyelectrolyte gels based on an easily available electrolyte monomer, methacryloxyethyl dimethyloctane ammonium trifluoromethanesulfonimide (MODAT), and a lipophilic neutral monomer, dodecyl acrylate by radiation-induced polymerization and cross-linking. The resultant lipophilic polyelectrolyte gels could absorb plenty of organic solvents with dielectric constants lower than 20 and exhibited a high absorbing ability at a wide range of temperatures (0-40 °C). The maximum swelling degree could reach as high as 200 g/g in some media, such as 1,2-dichloroethane (199.4 g/g) and dichloromethane (204 g/g), which was much higher than that of the nonionic gel without the addition of MODAT. Moreover, the resultant lipophilic polyelectrolyte gels could release most of the absorbed solvents within several hours and then be reused. It is expected that this new type of lipophilic polyelectrolyte gels may be a suitable candidate as organic pollutant absorbents.

  6. Exposure to isophorone and other organic solvents in a screen printing plant.

    PubMed

    Samimi, B

    1982-01-01

    A study was conducted in a screen printing plant to determine the exposure of workers to isophorone and other organic solvents. One hundred twenty-four charcoal tube samples were collected from both workers breathing zones and various workplace areas. Sampling times were 50-90 minutes. Maximum mean TWACs of isophorone and cyclohexanone were 23 +/- 5.4 ppm and 28 +/- 5 ppm, respectively, at the breathing zones of printing press workers. Exposure levels for other organic vapors such as cellosolve acetate, butyl acetate, xylenes, diacetone alchohol, and petroleum distillate are also presented. Mean TWACs of personal samples were generally higher than area samples due to proximity of the solvent evaporating surfaces to the workers breathing zones. Mean TWACs for the individual organic vapors did not exceed OSHA Limits. However, the sum of (TWAC/TLV) ratios of organic vapors with additive health effects exceeded unity at the breathing zones of workers handling inks and solvents. Actual 8-hour worker exposures were assumed to be lower because workers were exposed to lower concentrations (about 9/10 of the additive TLVs) in the plant's general atmosphere during non-active periods of the work shift. Recommendations for improvement of working conditions and reduction of exposure levels are made.

  7. Facilitating the use of counter-current chromatography in pharmaceutical purification through use of organic solvent nanofiltration.

    PubMed

    Rundquist, Elin; Pink, Christopher; Vilminot, Elsa; Livingston, Andrew

    2012-03-16

    This paper demonstrates a combined approach for separating an active pharmaceutical ingredient (API) from a heavily contaminated waste stream. The approach uses organic solvent nanofiltration (OSN) to improve the application of counter-current chromatography (CCC) in an industrial process. OSN provides an efficient route for exchanging solutes from the process solvent into the desired mobile phase for CCC, generating a CCC feed containing less than 0.01% (area % by GC) of the original process solvents. The high solvent burden of CCC was additionally reduced through recovery of mobile phase using OSN, with the recovered solvent containing less than 1% (area % by HPLC) impurities. The recovered solvent was then successfully recycled into a subsequent CCC run with no indication of impurity build-up. Coupling OSN with CCC improved the mass-intensity of the CCC process, reducing the solvent use by 56%. OSN can be a useful tool in facilitating the application of CCC to pharmaceutical process streams.

  8. Singlet oxygen-sensitized delayed emissions from hydrogen peroxide/gallic acid/potassium ferricyanide systems containing organic solvents

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroshi; Tsukino, Kazuo; Sekine, Masahiko; Nakata, Munetaka

    2009-06-01

    Fourier-transform chemiluminescence spectra of H 2O 2/gallic acid/K 3[Fe(CN) 6] systems containing organic solvents were measured. Emission bands with peaks around 530 and 700 nm were observed in systems containing solvents with a carbonyl group such as N, N-dimethylformamide, and those with a hydroxyl group such as methanol, respectively. The relative band intensities depended strongly on the concentration of these organic solvents. The emission species are attributed to gallic acid-ferricyanide complexes excited by energy transfer from singlet oxygen dimol, ( 1O 2) 2. The effects of organic solvents are interpreted in terms of intermolecular interactions of gallic acid-ferricyanide complexes, water molecules and organic solvents.

  9. Drying process in a solvent-based paint analyzed by phase-shifting digital holography and an estimation of time for tack free.

    PubMed

    Yokota, Masayuki; Kawakami, Tomoaki; Kimoto, Yoshiki; Yamaguchi, Ichirou

    2011-10-20

    A technique to study the drying of paints, based on phase-shifting digital holography, is presented. The technique is applied to the drying process of solvent-based paint on a three-dimensional surface at different substrate temperatures. For processing the data, a cross-correlation function and phase change derived from reconstructed complex amplitudes are calculated to visualize and to evaluate the local variations in the dryness of paint. The relationship between the optical signal obtained by the holographic method and the actual microscopic variations occurring in the paint film is also investigated using the gravimetric technique and a microscope. It is shown that the holographic technique can determine the stationary state of a painted surface corresponding to the end of the falling rate period in the drying process. The holographic technique detects mainly the activity on the surface and is applicable to assessment of the early drying process of paint.

  10. Effects of organic solvents and substrate binding on trypsin in acetonitrile and hexane media.

    PubMed

    Meng, Yanyan; Yuan, Yuan; Zhu, Yanyan; Guo, Yanzhi; Li, Menglong; Wang, Zhimeng; Pu, Xuemei; Jiang, Lin

    2013-09-01

    In this work, we used molecular dynamic (MD) simulation to study trypsin with and without a six-amino-acid peptide bound in three different solvents (water, acetonitrile and hexane) in order to provide molecular information for well understanding the structure and function of enzymes in non-aqueous media. The results show that the enzyme is more compact and less native-like in hexane than in the other two polar solvents. The substrate could stabilize the native protein structure in the two polar media, but not in the non-polar hexane. There are no significant differences in the conformation of the S1 pocket upon the substrate binding in water and acetonitrile media while a reverse behavior is observed in hexane media, implying a possible induced fit binding mechanism in the non-polar media. The substrate binding enhances the stability of catalytic H-bond network since it could expel the solvent molecules from the active site. The enzyme and the substrate appear to be more appropriate to the reactive conformation in the organic solvents compared with aqueous solution. There is much greater substrate binding strength in hexane media than the water and acetonitrile ones since the polar solvent significantly weakens electrostatic interactions, which are observed to be the main driving force to the binding. In addition, some residues of the S1 pocket could remain favorable contribution to the binding despite the solvent change, but with differences in the contribution extent, the number and the type of residues between the three media.

  11. Stabilities and conformational transitions of various proteases in the presence of an organic solvent.

    PubMed

    Ogino, Hiroyasu; Gemba, Yuichi; Yutori, Yoshikazu; Doukyu, Noriyuki; Ishimi, Kosaku; Ishikawa, Haruo

    2007-01-01

    The half-life of the activity of the PST-01 protease that was secreted by organic solvent-tolerant Pseudomonas aeruginosa PST-01 was very long in the presence of methanol as compared to that in the absence of methanol. The conformational transitions of the PST-01 protease, alpha-chymotrypsin, thermolysin, and subtilisin in the presence and absence of methanol were monitored by measuring the CD spectra. The conformational stabilities of the PST-01 protease and subtilisin in the presence of methanol were higher than those in the absence of methanol. This resulted in high stability of these proteases in the presence of methanol. Furthermore, it was suggested that the organic solvent stabilities of enzymes were closely related to the secondary structure by monitoring the conformational transitions of polyamino acids, which form the particular conformations, in the presence and absence of methanol.

  12. [Identification of organic solvents in the water of a freshly coated drinking-water reservoir].

    PubMed

    Karrenbrock, F; Haberer, K

    1982-01-01

    Chloro-caoutschouc coatings on reservoirs made of concrete can release organic solvents to the drinking water for several month after applying. These solvents can be identified directly in the water by highly sensitive analytical methods (GC/MS). The concentrations verified distinctly exceed the maximum permissible concentration of 10 micrograms/l as suggested by the EEG for the parameter: "dissolved or emulsified hydrocarbons (after extraction by petroleum ether); mineral oils" (2). Protective chloro-caoutchouc coatings should therefore be tested for the release of organic substances to water according to the KTW-Recommendations of the German Federal Health Bureau (1). In future drinking water reservoirs should not be coated unless compelling reasons exist, such as to protect concrete against aggressive water.

  13. One-pot hydrothermal preparation of graphene sponge for the removal of oils and organic solvents

    NASA Astrophysics Data System (ADS)

    Wu, Ruihan; Yu, Baowei; Liu, Xiaoyang; Li, Hongliang; Wang, Weixuan; Chen, Lingyun; Bai, Yitong; Ming, Zhu; Yang, Sheng-Tao

    2016-01-01

    Graphene sponge (GS) has found applications in oil removal due to the hydrophobic nature of graphene sheets. Current hydrothermal preparations of GS use toxic reducing reagents, which might cause environmental pollution. In this study, we reported that graphene oxide (GO) could be hydrothermally reduced by glucose to form GS for the adsorption of oils and various organic solvents. Graphene sheets were reduced by glucose during the hydrothermal treatment and formed 3D porous structure. GS efficiently adsorbed organic solvents and oils with competitive adsorption capacities. GS was able to treat pollutants in pure liquid form and also in the simulated seawater. GS could be easily regenerated by evaporating or burning. After 10 cycles, the adsorption capacity still retained 77% by evaporating and 87% by burning. The implication to the applications of GS in water remediation is discussed.

  14. Graphene/polyester staple composite for the removal of oils and organic solvents

    NASA Astrophysics Data System (ADS)

    Wu, Ruihan; Yu, Baowei; Liu, Xiaoyang; Li, Hongliang; Bai, Yitong; Ming, Zhu; Chen, Lingyun; Yang, Sheng-Tao; Chang, Xue-Ling

    2016-06-01

    Spongy graphene has been widely applied in oil removal. However, spongy graphene is hardly applicable for crude oil removal, because the complexity and high viscosity of crude oil. Herein, we reported that graphene/polyester staple composite (GPSC) could be used for the removal of oils and organic solvents, in particular crude oil. Graphene oxide was in situ reduced in the presence of polyester staple by hydrazine hydrate to form GPSC. GPSC efficiently adsorbed oils and organic solvents with high adsorption capacities. Demonstrations of treating pure oils and those in simulated sea water by GPSC were successfully performed. Due to the loose structure, GPSC adsorbed crude oil quickly with an adsorption capacity of 52 g g-1. During the regeneration, the adsorption capacity of GPSC retained around 78% of the initial capacity up to 9 cycles. The implication to the applications of GPSC in water remediation is discussed.

  15. A Water Indicator Strip: Instantaneous Fluorogenic Detection of Water in Organic Solvents, Drugs, and Foodstuffs.

    PubMed

    Kim, Tae-Il; Kim, Youngmi

    2017-02-22

    A simple, highly sensitive and rapid reaction-based colorimetric and fluorescent indicator 1 has been developed for the qual-itative and quantitative determination of water. The water-induced sensitive (LOD = 0.003%, v/v) and fast (< 10 s) change in emission properties was applied to the determination of water in organic solvents, drugs, and foodstuffs in both solution and practical solid state indicator paper strips.

  16. Comparison of Methanol and Tetraglyme as Extraction Solvents for Determination of Volatile Organics in Soil

    DTIC Science & Technology

    1987-11-01

    determining volatile organics in soil can be classified into thefollowing groups: 1. Static or dynamic headspace analysis 2. Solvent extraction-direct...methods based on the dynamic headspace method whereby the volatiles are stripped from a soil/water slurry using a conventional purge-and-trap instrument...651. Brazell, R.S. and MP. Maskarinec (1981) Dynamic headspace analysis of solid waste materials. Journal of High Resolution Chromatography and

  17. Fluorometric assay protocol for protease-catalyzed transesterification reactions in organic solvents.

    PubMed

    Han, Min Su; Jung, Sang Oh; Kim, Mahn-Joo; Kim, Dong H

    2004-04-16

    A flourometric assay protocol for a subtilisin-catalyzed transesterification reaction in n-hexane has been developed. The method makes use of a Michael acceptor that forms a fluorescent adduct with thiophenol, one of the products generated in the transesterification reaction. The method may be employed for screening a biocatalyst useful for transesterification reactions in organic solvents and for optimizing the transesterification reaction conditions.

  18. Organic compounds of different extractability in total solvent extracts from soils of contrasting water repellency

    NASA Astrophysics Data System (ADS)

    Atanassova, Irena; Doerr, Stefan H.

    2010-05-01

    Previous studies examining organic compounds that may cause water-repellent behaviour of soils have typically focussed on analysing only the lipophilic fraction of extracted material. This study aimed to provide a more comprehensive examination by applying single- and sequential-accelerated solvent extraction (ASE), separation and analysis by GC/MS of the total solvent extracts of three soils taken from under eucalypt vegetation with different levels of water repellency. Water repellency increased in all the soils after extraction with DCM:MeOH (95:5), but was eliminated with iso-propanol/ammonia (95:5). Quantities of major lipid compound classes varied between solvents and soils. Iso-propanol/ammonia (95:5) solvent released saccharides, glycerol, aromatic acids and other polar organic compounds, which were more abundant in fractionated extracts from the single extraction and the third step sequential ASE extraction, than in the extracts from the DCM:MeOH ASE solvent. Dominant compounds extracted from all soils were long-chain alkanols (>C22), palmitic acid, C29 alkane, β-sitosterol, terpenes, terpenoids and other polar compounds. The soil with smallest repellency lacked >C18 fatty acids and had smallest concentrations of alkanols (C26, C28 and C30) and alkanes (C29, C31), but a greater abundance of more complex polar compounds than the more repellent soils. We therefore speculate that the above compounds play an important role in determining the water repellency of the soils tested. The results suggest that one-stage and sequential ASE extractions with iso-propanol:ammonia and subsequent fractionation of extracts are a useful approach in providing a comprehensive assessment of the potential compounds involved in causing soil water repellency.

  19. PRODAN dual emission feature to monitor BHDC interfacial properties changes with the external organic solvent composition.

    PubMed

    Agazzi, Federico M; Rodriguez, Javier; Falcone, R Dario; Silber, Juana J; Correa, N Mariano

    2013-03-19

    We have investigated the water/benzyl-n-hexadecyldimethylammonium chloride (BHDC)/n-heptane:benzene reverse micelles (RMs) interfaces properties using 6-propionyl-2-(N,N-dimethyl)aminonaphthalene, PRODAN, as molecular probe. We have used absorption and emission (steady-state and time-resolved) spectroscopy of PRODAN to monitor the changes in the RMs interface functionalities upon changing the external organic solvent blend. We demonstrate that PRODAN is a useful probe to investigate how the external solvent composition affects the micelle interface properties. Our results show that changes in the organic solvent composition in water/BHDC/n-heptane:benzene RMs have a dramatic effect on the photophysics of PRODAN. Thus, increasing the aliphatic solvent content over the aromatic one produces PRODAN partition and PRODAN intramolecular electron transfer (ICT) processes. Additionally, the water presence in these RMs makes the PRODAN ICT process favored with the consequent decreases in the LE emission intensity and a better definition of the charge transfer (CT) band. All this evidence suggests that the benzene molecules are expelled out of the interface, and the water-BHDC interactions are stronger with more presence of water molecules in the polar part of the interface. Thus, we demonstrate that a simple change in the composition of the external phase promotes remarkable changes in the RMs interface. Finally, the results obtained with PRODAN together with those reported in a previous work in our lab reveal that the external phase is important when trying to control the properties of RMs interface. It should be noted that the external phase itself, besides the surfactant and the polar solvent sequestrated, is a very important control variable that can play a key role if we consider smart application of these RMs systems.

  20. Comparative hemolytic activity of undiluted organic water-miscible solvents for intravenous and intra-arterial injection.

    PubMed

    Mottu, F; Stelling, M J; Rüfenacht, D A; Doelker, E

    2001-01-01

    In humans, nonaqueous solvents are administered intravascularly in two kinds of situations. They have been used in subcutaneous or intramuscular pharmaceutical formulations to dissolve water-insoluble drugs. The need for these vehicles had increased in recent years, since the drug development process has yielded many poorly water-soluble drugs. The use of water-miscible nonaqueous solvents in therefore one of the approaches for administering these products as reference solutions useful in formulation bioequivalence studies. The intravascular use of organic solvents has also gained importance owing to a new approach for the treatment of cerebral malformations using precipitating polymers dissolved in water-miscible organic solvents. At present, the solvent most commonly used for the liquid embolics to solubilize the polymers is dimethyl sulfoxide, which exhibits some local and hemodynamic toxicities. In order to find new, less toxic vehicles for pharmaceutical formulations for the intravenous and intra-arterial routes and for embolic materials, 13 water-miscible organic solvents currently used (diluted with water) for pharmaceutical applications, were evaluated in this study. Their hemolytic activity and the morphological changes induced when mixed with blood (1:99, 5:95, 10:90 solvent:blood) were estimated in vitro. From these data, the selected organic solvents could be subdivided into four groups depending on their hemolytic activity: very highly hemolytic solvents (ethyl lactate, dimethyl sulfoxide), highly hemolytic solvents (polyethylene glycol 200, acetone), moderately hemolytic solvents (tetrahydrofurfuryl alcohol, N-methyl-2-pyrrolidone, glycerol formal, ethanol, Solketal, glycofurol) and solvents with low hemolytic activity (propylene glycol, dimethyl isosorbide, diglyme).

  1. A calorimetric study of energy conversion efficiency of a sonochemical reactor at 500 kHz for organic solvents.

    PubMed

    Toma, Maricela; Fukutomi, Satoshi; Asakura, Yoshiyuki; Koda, Shinobu

    2011-01-01

    It would seem that the economic viability is yet to be established for a great number of sonochemical processes, owning to their perfectible ultrasonic equipments. Industrial scale sonoreactors may become more important as a result of mastering the parameters with influence on their energy balance. This work related the solvent type to the energy efficiency as the first step of a complex study aiming to assess the energy balance of sonochemical reactors at 500 kHz. Quantitative measurements of ultrasonic power for water and 10 pure organic solvents were performed by calorimetry for a cylindrically shaped sonochemical reactor with a bottom mounted vibrating plate. It was found that the ultrasonic power is strongly related to the solvent, the energy conversion for organic liquids is half from that of water and there is a drop in energy efficiency for filling levels up to 250 mm organic solvents. Surface tension, viscosity and vapor pressure influence the energy conversion for organic solvents, but it is difficult explain these findings based on physical properties of solvents alone. The apparent intensity of the atomization process shows a good agreement with the experimentally determined values for energy conversion for water and the solvent group studied here. This study revealed that to attain the same ultrasonic power level, more electrical energy is need for organic solvents as compared to water. The energy balance equation has been defined based on these findings by considering an energy term for atomization.

  2. The Mammary Gland Carcinogens: The Role of Metal Compounds and Organic Solvents

    PubMed Central

    Mulware, Stephen Juma

    2013-01-01

    The increased rate of breast cancer incidences especially among postmenopausal women has been reported in recent decades. Despite the fact that women who inherited mutations in the BRCA1 and BRCA2 genes have a high risk of developing breast cancer, studies have also shown that significant exposure to certain metal compounds and organic solvents also increases the risks of mammary gland carcinogenesis. While physiological properties govern the uptake, intracellular distribution, and binding of metal compounds, their interaction with proteins seems to be the most relevant process for metal carcinogenicity than biding to DNA. The four most predominant mechanisms for metal carcinogenicity include (1) interference with cellular redox regulation and induction of oxidative stress, (2) inhibition of major DNA repair, (3) deregulation of cell proliferation, and (4) epigenetic inactivation of genes by DNA hypermethylation. On the other hand, most organic solvents are highly lipophilic and are biotransformed mainly in the liver and the kidney through a series of oxidative and reductive reactions, some of which result in bioactivation. The breast physiology, notably the parenchyma, is embedded in a fat depot capable of storing lipophilic xenobiotics. This paper reviews the role of metal compounds and organic solvents in breast cancer development. PMID:23762568

  3. A Robust and Cost-Effective Superhydrophobic Graphene Foam for Efficient Oil and Organic Solvent Recovery.

    PubMed

    Zhu, Haiguang; Chen, Dongyun; An, Wei; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei

    2015-10-21

    Water pollution caused by chemical reagent leaking, industrial wastewater discharging, and crude oil spills has raised global concerns on environmental sustainability, calling for high-performance absorbent materials for effective treatments. However, low-cost materials capable of effectively separating oils and organic solvents from water with a high adsorption capacity and good recyclability are rare on the market. Here, a cost-effective method is reported to fabricate high-performance graphene modified absorbents through the facile thermal reduction of graphene oxide on the skeletons of melamine foam. By integrating the high porosity, superior elasticity, and mechanical stability of raw sponge with the chemical stability and hydrophobicity of graphene sheets, the as-fabricated graphene foam not only possesses a rough and superhydrophobic surface, but also exhibits an excellent adsorption performance and extraordinary recyclability for various oils and organic solvents. It is worth mentioning that the superhydrophobic surface also endows the graphene foam with an excellent efficiency for oil/water separation. More importantly, the cost-effective fabrication method without involving expensive raw materials and sophisticated equipment permits a scale-up of the graphene foam for pollution disposal. All these features make the graphene foam an ideal candidate for removal and collection of oils and organic solvents from water.

  4. [Synergistic effect of organic solvents and tobacco smoke on serum immunoglobulin levels in humans].

    PubMed

    Moszczyński, P; Lisiewicz, J; Słowiński, S

    1989-01-01

    The IgG, IgA, IgM, IgD and IgE levels in the blood serum was determined using the radial immunodiffusion method--the Tri-Partigen and the Partigen plated produced by Behringin 49 male non-smokers, 47 subjects who had been smoking for more than 10 years, 19 non-smokers occupationally exposed to organic solvents and 41 smokers exposed to the above-mentioned chemical compounds. It was found that both tobacco smoke and organic solvents, when acting separately, diminish the IgA and IgG level in the serum. Additionally, in the smokers the lowering of the IgM level occurred. In smokers occupationally exposed to benzene and its homologues the decrease in the IgA, IgG and IgM level in the serum was more significant than in those exposed to either tobacco smoke or organic solvents. The authors emphasize the role of smoking in the evaluation of the immunotoxic effect of various factors of industrial origin.

  5. Enhancement of the aspartame precursor synthetic activity of an organic solvent-stable protease.

    PubMed

    Ogino, Hiroyasu; Tsuchiyama, Shotaro; Yasuda, Masahiro; Doukyu, Noriyuki

    2010-03-01

    The PST-01 protease is highly stable and catalyzes the synthesis of the aspartame precursor with high reaction yields in the presence of organic solvents. However, the synthesis rate using the PST-01 protease was slower than that observed when thermolysin was used. Structural comparison of both enzymes showed particular amino acid differences near the active center. These few residue differences in the PST-01 protease were mutated to match those amino acid types found in thermolysin. The mutated PST-01 proteases at the 114th residue from tyrosine to phenylalanine showed enhancement of synthetic activity. This activity was found to be similar to thermolysin. In addition, mutating the residue in the PST-01 protease with arginine and serine showed more improvement of the activity. The mutant PST-01 protease should be more useful than thermolysin for the synthesis of the aspartame precursor, because this enzyme has higher stability and activity in the presence of organic solvents. The results show the potential of organic solvent-stable enzymes as industrial catalysts.

  6. [Cloning and expression of organic solvent tolerant lipase gene from Staphylococcus saprophyticus M36].

    PubMed

    Tang, Yanchong; Lu, Yaping; Lü, Fengxia; Bie, Xiaomei; Guo, Yao; Lu, Zhaoxin

    2009-12-01

    Lipases are important biocatalysts that are widely used in food processing and bio-diesel production. However, organic solvents could inactivate some lipases during applications. Therefore, the efficient cloning and expression of the organic solvent-tolerant lipase is important to its application. In this work, we first found out an organic solvent-tolerant lipase from Staphylococcus saprophyticus M36 and amplified the 741 bp Lipase gene lip3 (GenBank Accession No. FJ979867), by PCR, which encoded a 31.6 kD polypeptide of 247 amino acid residues. But the lipase shared 83% identity with tentative lip3 gene of Staphylococcus saprophyticus (GenBank Accession No. AP008934). We connected the gene with expression vector pET-DsbA, transformed it into Escherichia coli BL21 (DE3), and obtained the recombinant pET-DsbA-lip3. With the induction by 0.4 mmol/L of isopropyl beta-D-thiogalactopyranoside at pH 8.0, OD600 1.0, 25 degrees C for 12 h, the lipase activity reached up to 25.8 U/mL. The lipase expressed was stable in the presence of methanol, n-hexane, and isooctane, n-heptane.

  7. An oxidant- and organic solvent-resistant alkaline metalloprotease from Streptomyces olivochromogenes.

    PubMed

    Simkhada, Jaya Ram; Cho, Seung Sik; Park, Seong Ju; Mander, Poonam; Choi, Yun Hee; Lee, Hyo Jeong; Yoo, Jin Cheol

    2010-11-01

    Organic solvent- and detergent-resistant proteases are important from an industrial viewpoint. However, they have been less frequently reported and only few of them are from actinomycetes. A metalloprotease from Streptomyces olivochromogenes (SOMP) was purified by ion exchange with Poros HQ and gel filtration with Sepharose CL-6B. Apparent molecular mass of the enzyme was estimated to be 51 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gelatin zymography. The activity was optimum at pH 7.5 and 50 degrees C and stable between pH 7.0 and 10.0. SOMP was stable below 45 degrees C and Ca(2+) increased its thermostability. Ca(2+) enhanced while Co(2+), Cu(2+), Zn(2+), Mn(2+), and Fe(2+) inhibited the activity. Ethylenediaminetetraacetic acid and ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, but not phenylmethylsulfonyl fluoride, aprotinin, and pefabloc SC, significantly suppressed the activity, suggesting that it might be a metalloprotease. Importantly, it is highly resistant against various detergents, organic solvents, and oxidizing agents, and the activity is enhanced by H(2)O(2). The enzyme could be a novel protease based on its origin and peculiar biochemical properties. It may be useful in biotechnological applications especially for organic solvent-based enzymatic synthesis.

  8. Expression of an Organic Solvent Stable Lipase from Staphylococcus epidermidis AT2

    PubMed Central

    Rahman, Raja Noor Zaliha Raja Abd.; Kamarudin, Nor Hafizah Ahmad; Yunus, Jalimah; Salleh, Abu Bakar; Basri, Mahiran

    2010-01-01

    An organic solvent tolerant lipase gene from Staphylococcus epidermidis AT2 was successfully cloned and expressed with pTrcHis2 in E. coli TOP10. Sequence analysis revealed an open reading frame (ORF) of 1,933 bp in length which coded for a polypeptide of 643 amino acid residues. The polypeptide comprised of a signal peptide (37 amino acids), pro-peptide and a mature protein of 390 amino acids. Expression of AT2 lipase resulted in an 18-fold increase in activity, upon the induction of 0.6 mM IPTG after a 10 h incubation period. Interestingly, this lipase was stable in various organic solvents (25% (v/v), mainly toluene, octanol, p-xylene and n-hexane). Literature shows that most of the organic solvent stable bacterial lipases were produced by Pseudomonas sp. and Bacillus sp., but very few from Staphylococcus sp. This lipase demonstrates great potential to be employed in various industrial applications. PMID:20957088

  9. Towards safer sodium-ion batteries via organic solvent/ionic liquid based hybrid electrolytes

    NASA Astrophysics Data System (ADS)

    Monti, Damien; Ponrouch, Alexandre; Palacín, M. Rosa; Johansson, Patrik

    2016-08-01

    Hybrid electrolytes aimed at application in sodium-ion batteries (SIB) consisting of an organic solvent mixture (EC:PC) and different ionic liquids (ILs); EMImTFSI, BMImTFSI, and Pyr13TFSI, and with the NaTFSI salt providing the Na+ charge carriers have here been extensively studied. The physico-chemical and electrochemical characterisation includes ionic conductivity, viscosity, density, cation coordination and solvation, various safety measures, and electrochemical stability window (ESW). Hybrid electrolytes with 10-50% of IL content were found to have ionic conductivities on par with comparable organic solvent based electrolytes, but with highly enhanced safety properties. A systematic Raman spectroscopy study of the cation coordination and solvation before and after electrolyte safety tests by ignition suggest that IL cations and TFSI remain stable when ignited while organic solvents are consumed. Finally, the solid electrolyte interphase (SEI) formed when using hybrid electrolytes has both better mechanical and electrochemical stability than the SEI derived from pure IL based electrolytes. For a half-cell with a hard carbon (HC) electrode and a hybrid electrolyte with a composition of 0.8 m NaTFSI in EC0.45:PC0.45:Pyr13TFSI0.10 encouraging results were obtained for IL based electrolytes - ca. 182 mAhg-1 at C/10 over 40 cycles.

  10. Coacervate Core Micelles for the Dispersion and Stabilization of Organophosphate Hydrolase in Organic Solvents

    NASA Astrophysics Data System (ADS)

    Mills, Carolyn; Obermeyer, Allie; Dong, Xuehui; Olsen, Bradley D.

    Bulk organophosphate (OP) nerve agents are difficult to decontaminate on site and dangerous to transport. The organophosphate hydrolase (OPH) enzyme is an efficient catalyst for hydrolyzing, and thus decontaminating, these compounds, but suffers from poor stability in the hydrophobic bulk OP environment. Here, we exploit the complex coacervation phase separation phenomenon to form complex coacervate core micelles (C3Ms) that can protect this OPH enzyme under these conditions. Stable C3Ms form when mixing a charged-neutral block copolymer methyl-quaternized poly(4-vinylpyridine)-block-poly(oligo(ethylene glycol) methacrylate) (Qp4vp- b-POEGMA), a homopolymer poly(acrylic acid) (PAA), and OPH under a certain conditions. The C3Ms are then transferred into two organic solvents, ethanol and dimethyl methylphosphonate (DMMP), which is a good simulant for the physical properties of the OP compounds. The C3Ms retain their nanostructures in the organic solvents. The activity test of OPH indicates that the C3Ms successfully protect OPH activity in organic solvents.

  11. Is the general conclusion justified that higher applicable field strength results in shorter analysis time with organic solvents in CE?

    PubMed

    Téllez, Adolfo; Kenndler, Ernst

    2009-11-01

    In this paper, a widespread opinion in CE with organic solvents for the background electrolyte is critically questioned, namely that in general a shorter analysis time can be achieved due to the higher field strength applicable compared with aqueous electrolyte systems. This view, common in the literature, is based on the supposition that the conductance in organic solvents is lower than in water. Indeed in many organic solvents with higher viscosity than water lower ion mobility is observed, and higher fields can be applied in these cases. However, in this paper the problem is sharper defined and treated two-fold: (i) in all solvents conditions are such that either the same electric power is generated, or (ii) the same temperature increase is taken into account. It was shown that for the same electric power the field strength in the organic solvent can be changed to a less extent than the ionic mobility changes. As a result, the migration velocity of the analytes is lower and the analysis time is longer in most organic solvents compared with water; acetonitrile (MeCN) is an exception (in this solvent the mobilities are higher than in water). The more stringent treatment of the problem takes an equal temperature increase due to Joule heating into account rather than equal electric power. The temperature increase in the capillary depends on the thermal conductivity of the solvent, which is only about one-third of that of water for organic liquids. The consequence is that in none of the organic solvent systems a shorter analysis time can be achieved compared with water (given that the experimental conditions are comparable, e.g. zero EOF). The theoretical predictions were confirmed by measurements with water, methanol, propylenecarbonate, and MeCN as solvents.

  12. Carbon, hydrogen and nitrogen isotopes in solvent-extractable organic matter from carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Epstein, S.

    1982-01-01

    CCl4 and CH3OH solvent extractions were performed on the Murray, Murchison, Orgueil and Renazzo carbonaceous chondrites. Delta-D values of +300-+500% are found in the case of the CH3OH-soluble organic matter. The combined C, H and N isotope data makes it unlikely that the CH3OH-soluble components are derivable from, or simply related to, the insoluble organic polymer found in the same meteorites. A relation between the event that formed hydrous minerals in CI1 and CM2 meteorites and the introduction of water- and methanol-soluble organic compounds is suggested. Organic matter soluble in CCl4 has no N, and delta-C-13 values are lower than for CH3OH-soluble phases. It is concluded that there either are large isotopic fractionations for carbon and hydrogen between different soluble organic phases, or the less polar components are partially of terrestrial origin.

  13. Micelle to solvent stacking of organic cations in micellar electrokinetic chromatography with sodium dodecyl sulfate.

    PubMed

    Quirino, Joselito P; Aranas, Agnes T

    2011-10-14

    The on-line sample concentration technique, micelle to solvent stacking (MSS), was studied for small organic cations (quaternary ammonium herbicides, β-blocker drugs, and tricyclic antidepressant drugs) in reversed migration micellar electrokinetic chromatography. Electrokinetic chromatography was carried out in fused silica capillaries with a background solution of sodium dodecyl sulfate (SDS) in a low pH phosphate buffer. MSS was performed using anionic SDS micelles in the sample solution for analyte transport and methanol or acetonitrile as organic solvent in the background solution for analyte effective electrophoretic mobility reversal. The solvent also allowed for the separation of the analyte test mixtures. A model for focusing and separation was developed and the mobility reversal that involved micelle collapse was experimentally verified. The effect of analyte retention factor was observed by changing the % organic solvent in the background solution or the concentration of SDS in the sample matrix. With an injection length of 31.9 cm (77% of effective capillary length) for the 7 test drugs, the LODs (S/N=3) of 5-14 ng/mL were 101-346-fold better when compared to typical injection. The linearity (R(2), range=0.025-0.8 μg/mL), intraday and interday repeatability (%RSD, n=10) were ≥0.988, <6.0% and <8.5%, respectively. In addition, analysis of spiked urine samples after 10-fold dilution with the sample matrix yielded LODs=0.02-0.10 μg/mL. These LODs are comparable to published electrophoretic methods that required off-line sample concentration. However, the practicality of the technique for more complex samples will rely on dedicated sample preparation schemes.

  14. [Liver function of workers occupationally exposed to mixed organic solvents in a petrochemical industry].

    PubMed

    Fernández-D'Pool, J; Oroño-Osorio, A

    2001-06-01

    A descriptive and cross sectional study was conducted to determine whether hepatic function changes in workers occupationally exposed to a mixture of organic solvents, were due to the exposure or confusing factors. A non random sample of 77 workers, operators and supervisors of the Olefin Plant I and II of a petrochemical industry in Maracaibo, Venezuela, was used. Their mean age was 29 +/- 7 years, and had at least one year of exposure to the solvents. This sample was compared with a group of employees of the administrative offices or control panel workers, with a mean age of 36 +/- 8 year and with similar anthropometric characteristics. Workers with a known history of liver disease, blood transfusions and diabetes mellitus were excluded of the study. In addition to a complete occupational disease medical history and a physical examination, serum samples were obtained to determine the activity of the aspartato aminotransferase (AST), alanin aminotransferase (ALT), gamma glutamiltransferase (GGT), alkaline phosphatase (AF), the concentration of the total bile acids (BAS), the surface antigen of hepatitis B(HbsAg) and the hepatitis A virus antibodies: AntiHAV-IgG and the AntiHAV-IgM. An urine sample was taken and analyzed by standard methodology to determine urinary phenols. The air concentrations of benzene, ethylbenzene, toluene and xylene were analyzed by gas chromathography. The serum activities of the liver enzymes, the concentration of bile acids and urinary phenols were not influenced by the exposure to the solvents. The increase of the activity of GGT was associated with obesity and alcohol consumption. The antibodies of the surface antigen of hepatitis A-IgM were normal in both groups and the antibodies for the antigen of hepatitis A-IgG presented a prevalence of 6% in the exposed group and 9% in the non exposed not being associated with liver abnormalities. The individual air concentrations of the solvents were below the environmentally permissible

  15. 40 CFR 63.5749 - How do I calculate the organic HAP content of aluminum wipedown solvents?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... content of aluminum wipedown solvents? 63.5749 Section 63.5749 Protection of Environment ENVIRONMENTAL... Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5749 How do I calculate the organic HAP content of aluminum wipedown solvents? (a) Use equation 1 of...

  16. 40 CFR 63.5749 - How do I calculate the organic HAP content of aluminum wipedown solvents?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... content of aluminum wipedown solvents? 63.5749 Section 63.5749 Protection of Environment ENVIRONMENTAL... Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5749 How do I calculate the organic HAP content of aluminum wipedown solvents? (a) Use equation 1 of this section to...

  17. 40 CFR 63.5749 - How do I calculate the organic HAP content of aluminum wipedown solvents?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... content of aluminum wipedown solvents? 63.5749 Section 63.5749 Protection of Environment ENVIRONMENTAL... Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5749 How do I calculate the organic HAP content of aluminum wipedown solvents? (a) Use equation 1 of...

  18. 40 CFR 63.5749 - How do I calculate the organic HAP content of aluminum wipedown solvents?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... content of aluminum wipedown solvents? 63.5749 Section 63.5749 Protection of Environment ENVIRONMENTAL... Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5749 How do I calculate the organic HAP content of aluminum wipedown solvents? (a) Use equation 1 of...

  19. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... organic HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753...) National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum... aluminum wipedown solvents and aluminum recreational boat surface coatings? (a) Use equation 1 of...

  20. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... organic HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753...) National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum... aluminum wipedown solvents and aluminum recreational boat surface coatings? (a) Use equation 1 of...

  1. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The…

  2. The effect of different organic solvents on the degradation of restorative materials

    PubMed Central

    Martos, Josué; Silveira, Luiz Fernando Machado; Silveira, Carina Folgearini; de Castro, Luis Antonio Suita; Ferrer-Luque, Carmen María

    2013-01-01

    Objective: To evaluate the solubility of three restorative materials exposed to the different endodontic solvents. Materials and Methods: The organic solvents eucalyptus oil, xylol, chloroform, and orange oil, with distilled water as the control group was utilized. The restorative materials light-cured resin (Filtek Z250/3M ESPE), light-cured-resin-reinforced glass ionomer (Riva Light Cure LC/Southern Dental Industries SDI]) and resin-modified glass ionomer (Vitremer/3M ESPE) were analyzed. A total of 50 disks containing specimens (2 mm × 8 mm Ø) were prepared for each of the three classes of restorative materials, which were divided into 10 groups (n = 5) for immersion in eucalyptus oil, xylol, chloroform, orange oil or distilled water for periods of either 2 min or 10 min. The means of restorative material disintegration in solvents were obtained by the difference between the original preimmersion weight and the postimmersion weight in a digital analytical scale. Data were statistically analyzed by two-way analysis of variance while the difference between the materials was analyzed by Student-Newman-Keuls test. The significance level set at 0.05. Results: Vitremer showed the highest solubility, followed by Riva LC, and these were statistically different from eucalyptus oil, xylol, chloroform, and distilled water (P < 0.05). Regarding the immersion time in solvents, there were no significant differences between the two tested periods (P > 0.05). Conclusions: The solvents minimally degraded the composite resin, although they did influence the degradation of both resin-modified glass ionomer resin and resin reinforced with glass ionomer. PMID:24926215

  3. Thermodynamics of solvent interaction with the metal-organic framework MOF-5.

    PubMed

    Akimbekov, Zamirbek; Wu, Di; Brozek, Carl K; Dincă, Mircea; Navrotsky, Alexandra

    2016-01-14

    The inclusion of solvent in metal-organic framework (MOF) materials is a highly specific form of guest-host interaction. In this work, the energetics of solvent MOF-5 interactions has been investigated by solution calorimetry in 5 M sodium hydroxide (NaOH) at room temperature. Solution calorimetric measurement of enthalpy of formation (ΔH(f)) of Zn4O(C8H4O4)3·C3H7NO (MOF-5·DMF) and Zn4O(C8H4O4)3·0.60C5H11NO (MOF-5·0.60DEF) from the dense components zinc oxide (ZnO), 1,4-benzenedicarboxylic acid (H2BDC), N,N-dimethylformamide (DMF) and N,N-diethylformamide (DEF) gives values of 16.69 ± 1.21 and 45.90 ± 1.46 kJ (mol Zn4O)(-1), respectively. The enthalpies of interaction (ΔH(int)) for DMF and DEF with MOF-5 are -82.78 ± 4.84 kJ (mol DMF)(-1) and -89.28 ± 3.05 kJ (mol DEF)(-1), respectively. These exothermic interaction energies suggest that, at low guest loading, Lewis base solvents interact more strongly with electron accepting Zn4O clusters in the MOF than at high solvent loading. These data provide a quantitative thermodynamic basis to investigate transmetallation and solvent assisted linker exchange (SALE) methods and to synthesize new MOFs.

  4. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique.

    PubMed

    Becker Peres, Luana; Becker Peres, Laize; de Araújo, Pedro Henrique Hermes; Sayer, Claudia

    2016-04-01

    Encapsulation of hydrophilic compounds for drug delivery systems with high loading efficiency is not easily feasible and remains a challenge, mainly due to the leaking of the drug to the outer aqueous phase during nanoparticle production. Usually, encapsulation of hydrophilic drugs is achieved by using double emulsion or inverse miniemulsion systems that often require the use of organic solvents, which may generate toxicological issues arising from solvent residues. Herein, we present the preparation of solid lipid nanoparticles loaded with a hydrophilic compound by a novel organic solvent free double emulsion/melt dispersion technique. The main objective of this study was to investigate the influence of important process and formulation variables, such as lipid composition, surfactant type, sonication parameters and lipid solidification conditions over physicochemical characteristics of SLN dispersion. Particle size and dispersity, as well as dispersion stability were used as responses. SLN dispersions with average size ranging from 277 to 550 nm were obtained, showing stability for over 60 days at 4 °C depending on the chosen emulsifying system. Entrapment efficiency of fluorescent dyes used as model markers was assessed by fluorescence microscopy and UV-vis spectrophotometry and results suggest that the obtained lipid based nanoparticles could be potentially applied as a delivery system of water soluble drugs.

  5. An organic-solvent-tolerant esterase from thermophilic Bacillus licheniformis S-86.

    PubMed

    Torres, Sebastián; Martínez, M Alejandra; Pandey, Ashok; Castro, Guillermo R

    2009-01-01

    A thermophile, halotolerant and organic-solvent-tolerant esterase producer Bacillus sp. S-86 strain previously isolated was found to belong to Bacillus licheniformis species through morphological, biochemical, 16S rRNA gene sequence analyses and rDNA intergenic spacers amplification (ITS-PCR). The strain can grow at 55 degrees C in presence of C2-C7 alkanols (log P=-0.86 to 2.39), and NaCl concentrations up to 15% (w/v). This bacterium showed optimal growth and esterase production at 50 degrees C. Two different molecular weight esterase activities were detected in zymographic assays. PMSF inhibited type I esterase activity, showing no inhibitory effect on type II esterase activity. B. licheniformis S-86 was able to grow in presence of hydroxylic organic-solvents like propan-2-ol, butan-1-ol and 3-methylbutan-1-ol. At a sub-lethal concentration of these solvents (392 mmoll(-1) propan-2-ol; 99 mmol l(-1) butan-1-ol, 37 mmol l(-1) 3-methylbutan-1-ol), adequate to produce 50% cell growth inhibition at 50 degrees C, an increment between 1.9 and 2.3 times was observed in type I esterase production, and between 2.2 and 3.1 times in type II esterase production.

  6. Transfers of Colloidal Silica from Water into Organic Solvents of Intermediate Polarities

    PubMed

    Kasseh; Keh

    1998-01-15

    Dispersions of discrete metal-oxide submicroparticles in organic solvents of medium polarities are uneasy to generate and weakly documented. We address this topic along two general methods focusing on silica. Successive transfers of colloidal particles from water into n-propanol and then into 1,2-dichloroethane by azeotropic distillation yield a stable organosol. The particles are found to be propanol-coated by surface esterification to the extent of 0.40 nm2 per molecule. Alternatively, centrifugation-redispersion cycles make it possible to obtain stable suspensions of unaltered silica in methanol and acetonitrile starting from an aqueous silicasol. Particles are characterized by various methods including nitrogen adsorption, transmission electron microscopy, dynamic light scattering, and electrophoresis. The stabilities of these suspensions in various organic solvents are investigated with special concern for the role of residual water. Stabilization of silica in methanol is inconspicuously related to solvent permittivity and prominently dependent on the presence of adsorbed water. In contrast, the acetonitrile silicasol, which is unaffected by residual water, displays electrophoretic behavior compatible with electrostatic stabilization. Copyright 1998 Academic Press. Copyright 1998Academic Press

  7. Third-harmonic generation at the interfaces of a cuvette filled with selected organic solvents.

    PubMed

    Barbano, E C; Harrington, K; Zilio, S C; Misoguti, L

    2016-01-20

    We report on the third-harmonic generation (THG) of tightly focused femtosecond laser pulses at the interfaces of a cuvette filled with organic solvents. Such a system presents four interfaces separating two materials of different refractive indices and third-order nonlinear susceptibilities where the THG takes place because the symmetry around the focus is broken. We selected two cuvettes (silica and B270 crown glass) filled with different organic solvents (acetone, chloroform, and dimethyl sulfoxide) in order to have a variety of interfaces with different linear and nonlinear optical properties. For some of the peaks, the self-focusing modifies the expected cubic power law dependence for THG and as a consequence the four peak profiles may be quite uneven. Although the THG is due to the electronic part of the nonlinear susceptibility, it can suffer from the influence of the self-focusing effect, a Kerr nonlinearity that can have both instantaneous electronic and slow nuclear contributions. This mixture of two distinct third-order nonlinear processes was never considered for such interfaces. All the THG signals could be understood by taking into account the self-focusing effect. Furthermore, the nonlinear refractive indices, n(2), and third-order nonlinear susceptibilities of the solvents, χ((3)), could be determined simultaneously by the THG signals using the cuvette walls as a reference.

  8. Implementation of a solvent management program to control paint shop volatile organic compounds

    SciTech Connect

    Floer, M.M.; Hicks, B.H.

    1997-12-31

    The majority of automobile assembly plant volatile organic compound (VOC) emissions are generated from painting operations. Typical paint operations generate more than 90 percent of the total plant emissions and, up to, 50 percent can be released by cleaning sources. Plant practices which contribute to the release of VOC emissions include the cleaning of paint lines and equipment, tanks, spray booths, floors and vehicles. Solvents continue to be the largest contributing source of VOC emissions in an automotive paint shop. To reduce overall VOC emissions, environmental regulations and guidelines were introduced under the Clean Air Act; Pollution Prevention and Waste Minimization programs, Control Techniques, and special air permit conditions. The introduction of these regulations and guidelines has driven industry toward continual refinement of their present cleaning methods while pursuing new techniques and technologies. Industry has also shown a proactive approach by introducing new waterborne and powder coating paint technologies to reduce overall emissions. As new paint technologies are developed and introduced, special attention must be given to the types of materials utilized for cleaning. The development and implementation of a solvent management program allows a facility to standardize a program to properly implement materials, equipment, technologies and work practices to reduce volatile organic compound emissions, meet strict cleaning requirements posed by new paint technologies and produce a vehicle which meets the high quality standards of the customer. This paper will assess the effectiveness of a solvent management program by examining pollution prevention initiatives and data from four different painting operations.

  9. Colloidal crystallization of colloidal silica modified with ferrocenyl group-contained polymers in organic solvents.

    PubMed

    Yoshinaga, Kohji; Shigeta, Maki; Komune, Seishu; Mouri, Emiko; Nakai, Akemi

    2007-01-15

    Surface modification of colloidal silica with ferrocenyl-grafted polymer and colloidal crystallization of the particles in organic solvent were studied. Poly(methyl methacrylate-co-vinylferrocene)-grafted silica never formed colloidal crystals in polar solvent, such as acetone, acetonitrile, ethanol and N,N-dimethylformamide (DMF), while poly(methyl methacrylate-co-ferrocenyl acrylate)-grafted silica gave colloidal crystallization in DMF. The particles prepared by grafting of poly(N,N-dimethylacrylamide-co-vinylferrocene), with vinylferrocene (Vfc) mole fraction of 1/13 and 1/23, were observed to give the crystallization in ethanol and DMF over particle volume fraction of 0.058. Further, silica modified with copolymer of Vfc and N-vinyl-2-pyrrolidone, N-vinylcarbazole or N-isopropylacrylamide formed colloidal crystals in ethanol and DMF. Especially, poly(N-isopropylacrylamide-co-Vfc)-grafted silica, which was composed of the highest mole fraction of vinylferrocene, 1/3, afforded colloidal crystallization in ethanol over particle volume fraction of 0.053. Relatively high polar vinylferrocene copolymer grafting of silica resulted in colloidal polymerization in organic solvents.

  10. Risk factors associated with persistence of neuropsychological deficits in persons with organic solvent exposure

    SciTech Connect

    Morrow, L.A.; Ryan, C.M.; Hodgson, M.J.; Robin, N. )

    1991-09-01

    This study examined neuropsychological prognosis following organic solvent exposure. Twenty-seven persons with evidence of 'mild toxic encephalopathy' were evaluated on two separate occasions with a standard neuropsychological test battery and the Minnesota Multiphasic Personality Inventory. Ratings by experienced clinicians revealed that 50% of exposed persons had improved neuropsychological performance at the second evaluation. The other 50% were rated as having no change or a decline in neuropsychological tests scores. While the majority of persons in the good-outcome group were working at the time of the follow-up evaluation, none of the persons in the poor-outcome group was actively employed. Persons rated as having shown no improvement were significantly more likely to have had a peak exposure--an episode in which they were briefly exposed to a larger than normal amount of solvent. In addition, persons in the poor outcome group reported higher levels of psychological distress, both initially and at the follow-up evaluation. Results from this study suggest that the presence of certain risk factors, namely a peak exposure and psychological distress, may be particularly detrimental for long-term neuropsychological outcome in persons with a history of organic solvent exposure.

  11. Effect of Water Miscible Organic Solvents on p-Nitrophenol Hydroxylase (CYP2E1) Activity in Rat Liver Microsomes

    PubMed Central

    Patil, Pranali G.; Kamble, S. H.; Shah, T. S.; Iyer, K. R.

    2015-01-01

    Organic solvents used for solubilization of the substrates/NCEs are known to affect the activity of cytochrome P450 enzymes. Further, this effect varies with the solvents used, the substrates and CYP450 isoforms in question. In the present study, we have investigated the effect of ten commonly used water miscible organic solvents (methanol, ethanol, 1-propanol, 2-propanol, acetonitrile, acetone, dimethyl sulphoxide, N,N-dimethyl formamide, dioxane and polyethylene glycol 400) on p-nitrophenol hydroxylase activity at 0, 0.1, 0.25, 0.5, 0.75 and 1% v/v concentration in rat liver microsomes. All the solvents studied showed concentration dependent inhibition of the p-nitrophenol hydroxylase activity except acetonitrile which showed activation of the activity at concentration range studied. Out of ten solvents studied, dioxane was found to be the most inhibitory solvent (inhibition >90% at 0.25% v/v concentration). Overall, solvents like dimethyl sulphoxide, dimethyl formamide and dioxane appeared to be unsuitable for characterizing p-nitrophenol hydroxylase (CYP2E1-mediated) reactions due to a high degree of inhibition. On the other hand, methanol and acetonitrile at concentrations <0.5% v/v appeared to be appropriate solvents for substrate solubilization while evaluating CYP2E1-mediated catalysis. The results of this study imply that caution should be exercised while choosing solvents for dissolution of substrate during enzyme studies in liver microsomes. PMID:26180273

  12. Effect of Water Miscible Organic Solvents on p-Nitrophenol Hydroxylase (CYP2E1) Activity in Rat Liver Microsomes.

    PubMed

    Patil, Pranali G; Kamble, S H; Shah, T S; Iyer, K R

    2015-01-01

    Organic solvents used for solubilization of the substrates/NCEs are known to affect the activity of cytochrome P450 enzymes. Further, this effect varies with the solvents used, the substrates and CYP450 isoforms in question. In the present study, we have investigated the effect of ten commonly used water miscible organic solvents (methanol, ethanol, 1-propanol, 2-propanol, acetonitrile, acetone, dimethyl sulphoxide, N,N-dimethyl formamide, dioxane and polyethylene glycol 400) on p-nitrophenol hydroxylase activity at 0, 0.1, 0.25, 0.5, 0.75 and 1% v/v concentration in rat liver microsomes. All the solvents studied showed concentration dependent inhibition of the p-nitrophenol hydroxylase activity except acetonitrile which showed activation of the activity at concentration range studied. Out of ten solvents studied, dioxane was found to be the most inhibitory solvent (inhibition >90% at 0.25% v/v concentration). Overall, solvents like dimethyl sulphoxide, dimethyl formamide and dioxane appeared to be unsuitable for characterizing p-nitrophenol hydroxylase (CYP2E1-mediated) reactions due to a high degree of inhibition. On the other hand, methanol and acetonitrile at concentrations <0.5% v/v appeared to be appropriate solvents for substrate solubilization while evaluating CYP2E1-mediated catalysis. The results of this study imply that caution should be exercised while choosing solvents for dissolution of substrate during enzyme studies in liver microsomes.

  13. Lipase-catalyzed synthesis of (S)-naproxen ester prodrug by transesterification in organic solvents.

    PubMed

    Tsai, S W; Tsai, C S; Chang, C S

    1999-06-01

    A lipase-catalyzed enantioselective transesterification process was developed for the synthesis of (S)-naproxen 2-N-morpholinoethyl ester prodrug from racemic 2,2,2-trifluoroethyl naproxen ester in organic solvents. By selecting isooctane and 37 degrees C as the best solvent and temperature, the apparent fits of the initial conversion rates for transesterification and hydrolysis side reaction suggest a ping-pong Bi-Bi enzymatic mechanism with the alcohol as a competitive enzyme inhibitor. Improvements in the initial conversion rate and the productivity for the desired (S)-ester product were obtained after comparing with the result of an enantioselective esterification process. Studies of water content in isooctane and alcohol containing various N,N-dialkylamino groups on the enzyme activity and enantioselectivity, as well as the recovery of (S)-ester product by using extraction, were also reported.

  14. Solvent polarity and nanoscale morphology in bulk heterojunction organic solar cells: A case study

    SciTech Connect

    Thomas, Ajith; Elsa Tom, Anju; Ison, V. V. E-mail: praveen@materials.iisc.ernet.in; Rao, Arun D.; Varman, K. Arul; Ranjith, K.; Ramamurthy, Praveen C. E-mail: praveen@materials.iisc.ernet.in; Vinayakan, R.

    2014-03-14

    Organic bulk heterojunction solar cells were fabricated under identical experimental conditions, except by varying the solvent polarity used for spin coating the active layer components and their performance was evaluated systematically. Results showed that presence of nitrobenzene-chlorobenzene composition governs the morphology of active layer formed, which is due to the tuning of solvent polarity as well as the resulting solubility of the P3HT:PCBM blend. Trace amount of nitrobenzene favoured the formation of better organised P3HT domains, as evident from conductive AFM, tapping mode AFM and surface, and cross-sectional SEM analysis. The higher interfacial surface area thus generated produced cells with high efficiency. But, an increase in the nitrobenzene composition leads to a decrease in cell performance, which is due to the formation of an active layer with larger size polymer domain networks with poor charge separation possibility.

  15. Ionic Liquids Beyond Simple Solvents: Glimpses at the State of the Art in Organic Chemistry.

    PubMed

    Kuchenbuch, Andrea; Giernoth, Ralf

    2015-12-01

    Within the last 25 years ionic liquids have written a tremendous success story, which is documented in a nearly uncountable amount of original research papers, reviews, and numerous applications in research and industry. These days, ionic liquids can be considered as a mature class of compounds for many different applications. Frequently, they are used as neoteric solvents for chemical tansformations, and the number of reviews on this field of research is huge. In this focused review, though, we are trying to evaluate the state of the art of ionic liquid chemistry beyond using them simply as solvents for chemical transformations. It is not meant to be a comprehensive overview on the topic; the choice of emphasis and examples rather refects the authors' personal view on the field. We are especially highlighting fields in which we believe the most fundamental developments within the next five years will take place: biomass processing, (chiral) ionic liquids from natural sources, biotransformations, and organic synthesis.

  16. Organic carbonates as alternative solvents for palladium-catalyzed substitution reactions.

    PubMed

    Schäffner, Benjamin; Holz, Jens; Verevkin, Sergey P; Börner, Armin

    2008-01-01

    Organic carbonates, such as propylene carbonate, butylene carbonate, and diethyl carbonate, were tested in the Pd-catalyzed asymmetric allylic substitution reactions of rac-1,3-diphenyl-3-acetoxy-prop-1-ene with dimethyl malonate or benzylamine as nucleophiles. Bidentate diphosphanes were used as chiral ligands. The application of monodentate phosphanes capable of self-assembling with the metal was likewise tested. In the substitution reaction with dimethyl malonate, enantioselectivities up to 98% were achieved. In the amination reaction, the chiral product was obtained with up to 83% ee. The results confirm that these "green solvents" can be advantageously used for this catalytic transformation as an alternative to those solvents usually employed which run some risk of being harmful to the environment.

  17. Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization.

    PubMed

    Amendola, Vincenzo; Polizzi, Stefano; Meneghetti, Moreno

    2007-06-05

    Stable colloidal solutions of free silver nanoparticles (AgNPs) have been synthesized without reducing and stabilizing agents in pure acetonitrile and N,N-dimethylformamide by laser ablation of the bulk metal. Synthesis in tetrahydrofuran and dimethyl sulfoxide gave nanoparticles surrounded by a carbon shell or included in a carbon matrix. Mie theory for free and core@shell spheres accounts for the UV-vis spectra of the nanoparticles and allows their structural characterization. Transmission electron microscopy confirms the structure of the synthesized AgNPs. It is shown that free nanoparticles can be immediately functionalized, without further treatments, in the organic solvent used for the synthesis with molecules which are soluble in the same solvent.

  18. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, R.T.; Jackson, K.J.; Duba, A.G.; Chen, C.I.

    1998-05-19

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants are described. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating. 21 figs.

  19. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, Robert T.; Jackson, Kenneth J.; Duba, Alfred G.; Chen, Ching-I

    1998-01-01

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating.

  20. Hydrothermal liquefaction of palm oil empty fruit bunch (EFB) into bio-oil in different organic solvents

    NASA Astrophysics Data System (ADS)

    Sarwono, Rakhman; Pusfitasari, Eka Dian; Ghozali, Muhammad

    2016-06-01

    Thermochemical Liquefaction of empty fruit bunch (EFB) of palm oil in different organic solvents (water, methanol, ethanol, acetone, toluene and hexane) were comparatively investigated. Experiments were carried out in an autoclave at different temperatures of 300, 350 and 400 °C with a fixed solid/liquid rasio of 3 gram in 50 ml solvent, without catalysts and reaction time of 5 hours. The efficiency of above solvents in terms of conversion rate, soluble liquid and carbon products were investigated in the experiments. Increasing the reaction temperature increased the conversion rate in all organic solvents and water, but gaseous products also increased using a reaction temperature of 400 oC. The water solvent gave higher conversion rate of 49.14%, while toluene, acetone, methanol, hexane and ethanol gave conversion of 35.76%, 26.5%, 25.98%, 24.26 %, and 22.24%, respectively. The bio-oil produced in order of the largest amount were using methanol, water, ethanol, toluene, acetone, and hexane solvents. The chemical properties of bio-oil products were significantly affected by the type of liquefaction solvent. The composition of bio-oil consisted of mostly of a mixture of organic acids, ketones, and esters. The methanol and ethanol solvents resulted in mostly esters, while toluene and hexane resulted in mostly organic acids. Acetone solvent resulted in the same amount of organic acid and esters. In water as a solvent resulted in 2-pentanone, 4-hydroxy-4-methyl. The bio-oil consisted of a range of carbon C6 - C20 fragments.

  1. Novel organic solvent-tolerant esterase isolated by metagenomics: insights into the lipase/esterase classification.

    PubMed

    Berlemont, Renaud; Spee, Olivier; Delsaute, Maud; Lara, Yannick; Schuldes, Jörg; Simon, Carola; Power, Pablo; Daniel, Rolf; Galleni, Moreno

    2013-01-01

    in order to isolate novel organic solvent-tolerant (OST) lipases, a metagenomic library was built using DNA derived from a temperate forest soil sample. A two-step activity-based screening allowed the isolation of a lipolytic clone active in the presence of organic solvents. Sequencing of the plasmid pRBest recovered from the positive clone revealed the presence of a putative lipase/esterase encoding gene. The deduced amino acid sequence (RBest1) contains the conserved lipolytic enzyme signature and is related to the previously described OST lipase from Lysinibacillus sphaericus 205y, which is the sole studied prokaryotic enzyme belonging to the 4.4 α/β hydrolase subgroup (abH04.04). Both in vivo and in vitro studies of the substrate specificity of RBest1, using triacylglycerols or nitrophenyl-esters, respectively, revealed that the enzyme is highly specific for butyrate (C4) compounds, behaving as an esterase rather than a lipase. The RBest1 esterase was purified and biochemically characterized. The optimal esterase activity was observed at pH 6.5 and at temperatures ranging from 38 to 45 °C. Enzymatic activity, determined by hydrolysis of p-nitrophenyl esters, was found to be affected by the presence of different miscible and non-miscible organic solvents, and salts. Noteworthy, RBest1 remains significantly active at high ionic strength. These findings suggest that RBest1 possesses the ability of OST enzymes to molecular adaptation in the presence of organic compounds and resistance of halophilic proteins.

  2. Comparison of the Behavior of Polymers in Supercritical Fluids and Organic Solvents Via Small Angle Neutron Scattering

    SciTech Connect

    Melnichenko, Y.B.; Kiran, E.; Heath, K.D.; Salaniwal, S.; Cochran, H.D.; Stamm, M.; Van Hook, W.A.; Wignall, G.D.

    1999-05-17

    Small-angle neutron scattering has been used to study the effect of temperature and pressure on the phase behavior of semidilute solutions of polymers dissolved in organic and supercritical solvents. Above the theta temperature (To), these systems exhibit a ''good solvent'' domain, where the molecules expand beyond the unperturbed dimensions in both organic solvents and in COZ. However, this transition can be made to occur at a critical ''theta pressure'' (PO) in CO2 and this represents a new concept in the physics of polymer-solvent systems. For T < To, and P < Po, the system enters the ''poor solvent'' domain where diverging concentration fluctuations prevent the chains from collapsing and allow them to maintain their unperturbed dimensions.

  3. Spatially Resolved Monitoring of Drying of Hierarchical Porous Organic Networks.

    PubMed

    Velasco, Manuel Isaac; Silletta, Emilia V; Gomez, Cesar G; Strumia, Miriam C; Stapf, Siegfried; Monti, Gustavo Alberto; Mattea, Carlos; Acosta, Rodolfo H

    2016-03-01

    Evaporation kinetics of water confined in hierarchal polymeric porous media is studied by low field nuclear magnetic resonance (NMR). Systems synthesized with various degrees of cross-linker density render networks with similar pore sizes but different response when soaked with water. Polymeric networks with low percentage of cross-linker can undergo swelling, which affects the porosity as well as the drying kinetics. The drying process is monitored macroscopically by single-sided NMR, with spatial resolution of 100 μm, while microscopic information is obtained by measurements of spin-spin relaxation times (T2). Transition from a funicular to a pendular regime, where hydraulic connectivity is lost and the capillary flow cannot compensate for the surface evaporation, can be observed from inspection of the water content in different sample layers. Relaxation measurements indicate that even when the larger pore structures are depleted of water, capillary flow occurs through smaller voids.

  4. LONG-TERM STUDY OF VOLATILE ORGANIC COMPOUND RECOVERY FROM AMPULATED, DRY, FORTIFIED SOILS

    EPA Science Inventory

    Our objective was to evaluate the stability and extractability of volatile organic compound (VOCs) when fortified on dry soils and stored in sealed ampules. Two desiccator-dried soils were fortified with eight neat VOCs, benzene,toluene,ethylbenzene,o-xylene,1,1,1-trichloroethane...

  5. Measuring the relative hydrogen-bonding strengths of alcohols in aprotic organic solvents.

    PubMed

    Tessensohn, Malcolm E; Lee, Melvyn; Hirao, Hajime; Webster, Richard D

    2015-01-12

    Voltammetric experiments with 9,10-anthraquinone and 1,4-benzoquinone performed under controlled moisture conditions indicate that the hydrogen-bond strengths of alcohols in aprotic organic solvents can be differentiated by the electrochemical parameter ΔEp (red) =|Ep (red(1)) -Ep (red(2)) |, which is the potential separation between the two one-electron reduction processes. This electrochemical parameter is inversely related to the strength of the interactions and can be used to differentiate between primary, secondary, tertiary alcohols, and even diols, as it is sensitive to both their steric and electronic properties. The results are highly reproducible across two solvents with substantially different hydrogen-bonding properties (CH3 CN and CH2 Cl2 ) and are supported by density functional theory calculations. This indicates that the numerous solvent-alcohol interactions are less significant than the quinone-alcohol hydrogen-bonding interactions. The utility of ΔEp (red) was illustrated by comparisons between 1) 3,3,3-trifluoro-n-propanol and 1,3-difluoroisopropanol and 2) ethylene glycol and 2,2,2-trifluoroethanol.

  6. Solution based zinc tin oxide TFTs: the dual role of the organic solvent

    NASA Astrophysics Data System (ADS)

    Salgueiro, Daniela; Kiazadeh, Asal; Branquinho, Rita; Santos, Lídia; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira

    2017-02-01

    Chemical solution deposition is a low cost, scalable and high performance technique to obtain metal oxide thin films. Recently, solution combustion synthesis has been introduced as a chemical route to reduce the processing temperature. This synthesis method takes advantage of the chemistry of the precursors as a source of energy for localized heating. According to the combustion chemistry some organic solvents can have a dual role in the reaction, acting both as solvent and fuel. In this work, we studied the role of 2-methoxyethanol in solution based synthesis of ZTO thin films and its influence on the performance of ZTO TFTs. The thermal behaviour of ZTO precursor solutions confirmed that 2-methoxyethanol acts simultaneously as a solvent and fuel, replacing the fuel function of urea. The electrical characterization of the solution based ZTO TFTs showed a slightly better performance and lower variability under positive gate bias stress when urea was not used as fuel, confirming that the excess fuel contributes negatively to the device operation and stability. Solution based ZTO TFTs demonstrated a low hysteresis (ΔV  =  -0.3 V) and a saturation mobility of 4-5 cm2 V-1 s-1.

  7. Experimental and Theoretical Study of Molecular Response of Amine Bases in Organic Solvents

    SciTech Connect

    Kathmann, Shawn M.; Cho, Herman M.; Chang, Tsun-Mei; Schenter, Gregory K.; Parab, Kshitij K.; Autrey, Thomas

    2014-05-08

    Reorientational correlation times of various amine bases (viz., pyridine, 2,6-lutidene, 2,2,6,6-tetramethylpiperidine) and organic solvents (dichloromethane, toluene) were determined by solution-state NMR relaxation time measurements and compared with predictions from molecular dynamics (MD) simulations. The bases and solvents are reagents in complex reactions involving Frustrated Lewis Pairs (FLP), which display remarkable catalytic activity in metal-free H2 scission. The comparison of measured and simulated correlation times is a key test of the ability of recent MD and quantum electronic structure calculations to elucidate the mechanism of FLP activity. Correla- tion times were found to be in the range 1.4-3.4 ps (NMR) and 1.23-5.28 ps (MD) for the amines, and 0.9-2.3 ps (NMR) and 0.2-1.7 ps (MD) for the solvent molecules. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacic Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  8. Transport, Targeting and Applications of Metallic Functional Nanoparticles for Degradation of DNAPL Chlorinated Organic Solvents

    SciTech Connect

    Lowry, Gregory V.; Majetich, Sara; Sholl, David; Tilton, Robert D.; Matyjaszewski, Krzysztof; Liu, Yueqiang; Sarbu, Traian; Almusallam, Abdulwahab; Redden, George D.; Meakin, Paul; Rollins, Harry W.

    2004-03-31

    Recently, laboratory and field studies have demonstrated that zero-valent iron nanoparticles (colloids) can rapidly transform dissolved chlorinated organic solvents into non-toxic compounds. This technology also has the potential to address Dense Non- Aqueous Phase Liquid (DNAPL) contamination, one of DOE's primary contamination problems. This project develops and tests polymer-modified reactive nanoscale Fe0 particles for in situ delivery to chlorinated solvents that are present as DNAPLs in the subsurface. The surfaces of reactive Fe0-based nanoparticles are modified with amphiphilic block copolymers to maintain a stable suspension of the particles in water for transport in a porous matrix and to create an affinity for the water-DNAPL interface. Ultimately this will provide an improved technology to locate and eliminate DNAPL, a recalcitrant and persistent source for groundwater contamination by chlorinated solvents. Candidate polymers have been synthesized and attached to 20 nm SiO2 particles using Atom Transfer Radical Polymerization (ATRP). The physical properties (hydrodynamic radius, stability, TCE-water partitioning behavior, mobility in a porous matrix) of these nanostructures have been determined. The particles (dp {approx}102 nm) are water soluble and partition to the TCE-water interface. The physical and chemical properties (e.g. oxide phase and thickness) of Fe0 nanoparticles synthesized using different techniques and the effects of these properties on particle reactivity and efficiency have been evaluated. Numerical models (Brownian Dynamics) have been developed to predict the aqueous diffusivities of these particle-polymer nanostructures.

  9. Archaeal Inorganic Pyrophosphatase Displays Robust Activity under High-Salt Conditions and in Organic Solvents.

    PubMed

    McMillan, Lana J; Hepowit, Nathaniel L; Maupin-Furlow, Julie A

    2015-11-06

    Soluble inorganic pyrophosphatases (PPAs) that hydrolyze inorganic pyrophosphate (PPi) to orthophosphate (Pi) are commonly used to accelerate and detect biosynthetic reactions that generate PPi as a by-product. Current PPAs are inactivated by high salt concentrations and organic solvents, which limits the extent of their use. Here we report a class A type PPA of the haloarchaeon Haloferax volcanii (HvPPA) that is thermostable and displays robust PPi-hydrolyzing activity under conditions of 25% (vol/vol) organic solvent and salt concentrations from 25 mM to 3 M. HvPPA was purified to homogeneity as a homohexamer by a rapid two-step method and was found to display non-Michaelis-Menten kinetics with a Vmax of 465 U · mg(-1) for PPi hydrolysis (optimal at 42°C and pH 8.5) and Hill coefficients that indicated cooperative binding to PPi and Mg(2+). Similarly to other class A type PPAs, HvPPA was inhibited by sodium fluoride; however, hierarchical clustering and three-dimensional (3D) homology modeling revealed HvPPA to be distinct in structure from characterized PPAs. In particular, HvPPA was highly negative in surface charge, which explained its extreme resistance to organic solvents. To demonstrate that HvPPA could drive thermodynamically unfavorable reactions to completion under conditions of reduced water activity, a novel coupled assay was developed; HvPPA hydrolyzed the PPi by-product generated in 2 M NaCl by UbaA (a "salt-loving" noncanonical E1 enzyme that adenylates ubiquitin-like proteins in the presence of ATP). Overall, we demonstrate HvPPA to be useful for hydrolyzing PPi under conditions of reduced water activity that are a hurdle to current PPA-based technologies.

  10. Archaeal Inorganic Pyrophosphatase Displays Robust Activity under High-Salt Conditions and in Organic Solvents

    PubMed Central

    McMillan, Lana J.; Hepowit, Nathaniel L.

    2015-01-01

    Soluble inorganic pyrophosphatases (PPAs) that hydrolyze inorganic pyrophosphate (PPi) to orthophosphate (Pi) are commonly used to accelerate and detect biosynthetic reactions that generate PPi as a by-product. Current PPAs are inactivated by high salt concentrations and organic solvents, which limits the extent of their use. Here we report a class A type PPA of the haloarchaeon Haloferax volcanii (HvPPA) that is thermostable and displays robust PPi-hydrolyzing activity under conditions of 25% (vol/vol) organic solvent and salt concentrations from 25 mM to 3 M. HvPPA was purified to homogeneity as a homohexamer by a rapid two-step method and was found to display non-Michaelis-Menten kinetics with a Vmax of 465 U · mg−1 for PPi hydrolysis (optimal at 42°C and pH 8.5) and Hill coefficients that indicated cooperative binding to PPi and Mg2+. Similarly to other class A type PPAs, HvPPA was inhibited by sodium fluoride; however, hierarchical clustering and three-dimensional (3D) homology modeling revealed HvPPA to be distinct in structure from characterized PPAs. In particular, HvPPA was highly negative in surface charge, which explained its extreme resistance to organic solvents. To demonstrate that HvPPA could drive thermodynamically unfavorable reactions to completion under conditions of reduced water activity, a novel coupled assay was developed; HvPPA hydrolyzed the PPi by-product generated in 2 M NaCl by UbaA (a “salt-loving” noncanonical E1 enzyme that adenylates ubiquitin-like proteins in the presence of ATP). Overall, we demonstrate HvPPA to be useful for hydrolyzing PPi under conditions of reduced water activity that are a hurdle to current PPA-based technologies. PMID:26546423

  11. Extraction of Nb(v) by quaternary ammonium-based solvents: toward organic hexaniobate systems.

    PubMed

    Deblonde, Gauthier J-P; Chagnes, Alexandre; Roux, Marie-Aude; Weigel, Valérie; Cote, Gérard

    2016-12-06

    Solvent extraction of Nb(v) from alkaline aqueous media using quaternary ammonium solutions, especially Aliquat® 336 diluted in an aliphatic diluent, was investigated. The hexaniobate ions (HxNb6O19(x-8)) were extracted into the organic phase with very high yields at room temperature and within a few minutes, affording easy access to organic solutions of hexaniobates. Several parameters were found to influence the extraction of HxNb6O19(x-8) including the nature and concentration of alkali cations, confirming subtle effects previously described for polyoxoniobates such as ion-pairing with alkali ions. The extraction of HxNb6O19(x-8) with Aliquat® 336 is also influenced if competing anions are present in the aqueous phase (NO3(-), Cl(-), C2O4(2-), SO4(2-) and CO3(2-)) and varies with the pH mainly due to the competitive extraction of hydroxide ions at high pH. The co-extraction of sodium ions with HxNb6O19(x-8) was observed as well as the co-extraction of water molecules, suggesting a self-association of the extractant. The proposed liquid-liquid extraction generic system paves the way for innovative niobium (and potentially tantalum) hydrometallurgical processes and it may also afford more direct routes for exploring the chemistry of hexaniobates in organic solvents.

  12. Thermodynamic aspects of phase equilibrium in binary water-organic solvent mixtures

    NASA Astrophysics Data System (ADS)

    Mizerovskii, L. N.

    2017-02-01

    It is shown that the boundary curves of liquid equilibria in binary systems characterize the temperature-concentration boundary of the existence of homogeneous mixtures whose formation is not accompanied by changes in the Gibbs energy of the system and are a combination of two branches that do not convert into each other but intersect at the temperature of homogenization of a mixture of critical composition. The phase diagrams of a number of water-organic solvent systems are analyzed to determine the thermodynamic particularities of the latter.

  13. Ultrafast photoinduced relaxation dynamics of the indoline dye D149 in organic solvents.

    PubMed

    Lohse, Peter W; Kuhnt, Julia; Druzhinin, Sergey I; Scholz, Mirko; Ekimova, Maria; Oekermann, Torsten; Lenzer, Thomas; Oum, Kawon

    2011-11-21

    The relaxation dynamics of the indoline dye D149, a well-known sensitizer for photoelectrochemical solar cells, have been extensively characterized in various organic solvents by combining results from ultrafast pump-supercontinuum probe (PSCP) spectroscopy, transient UV-pump VIS-probe spectroscopy, time-correlated single-photon counting (TCSPC) measurements as well as steady-state absorption and fluorescence. In the steady-state spectra, the position of the absorption maximum shows only a weak solvent dependence, whereas the fluorescence Stokes shift Δν̃(F) correlates with solvent polarity. Photoexcitation at around 480 nm provides access to the S(1) state of D149 which exhibits solvation dynamics on characteristic timescales, as monitored by a red-shift of the stimulated emission and spectral development of the excited-state absorption in the transient PSCP spectra. In all cases, the spectral dynamics can be modeled by a global kinetic analysis using a time-dependent S(1) spectrum. The lifetime τ(1) of the S(1) state roughly correlates with polarity [acetonitrile (280 ps) < acetone (540 ps) < THF (720 ps) < chloroform (800 ps)], yet in alcohols it is much shorter [methanol (99 ps) < ethanol (178 ps) < acetonitrile (280 ps)], suggesting an appreciable influence of hydrogen bonding on the dynamics. A minor component with a characteristic time constant in the range 19-30 ps, readily observed in the PSCP spectra of D149 in acetonitrile and THF, is likely due to removal of vibrational excess energy from the S(1) state by collisions with solvent molecules. Additional weak fluorescence in the range 390-500 nm is observed upon excitation in the S(0)→S(2) band, which contains short-lived S(2)→S(0) emission of D149. Transient absorption signals after excitation at 377.5 nm yield an additional time constant in the subpicosecond range, representing the lifetime of the S(2) state. S(2) excitation also produces photoproducts.

  14. Colloidal crystallization of colloidal silica grafted with iron(0) complex-tethered polymers in organic solvents

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Kohji; Mouri, Emiko

    2007-09-01

    Incorporation of iron(0) complex into polymer-grafted silica and colloidal crystallization in organic solvent were studied. In this study, zero-valence iron complex, vinylferrocene (Vfc) and iron(0)tricarbonyl(4,4-dimethyl-1,-4-cyclohexadienyl) acrylate (Fe(0)Ac) or methacrylate (Fe(0)Me), were introduced into grafted polymer to prevent from increasing ionic strength in colloidal crystallization system. Poly(methyl methacrylate (MMA)-co-Vfc)-grafted silica never formed colloidal crystals in polar solvent, such as acetone or acetonitrile. However, increasing ferrocenyl group fraction in the polymer resulted in disturbing the crystallization. Poly(N-isopropylacrylamide (NIPAAm)-co-Vfc)-grafted silica, which was composed of mole fraction of Vfc, 1/3, afforded crystallization in ethanol over the particle fraction of 0.053. In the case of diene-Fe(0)(CO) 3/polymer-grafted silica, poly(MMA-co-Fe(0)Ac)-, poly(NIPAAm-co-Fe(0)Ac)- and poly(N.N-dimethylacrylamide (DMAAm)-co-Fe(0)Ac)-grafted silica gave colloidal crystallization in relatively low polar solvents, DMF, acetone, acetonirile and ethanol, critical volume fraction for which were in the range from 0.054 to 0.117. In the case of copolymer-grafted silica containing Fe(0)Me, poly(MMA-co-FeMe)-grafted silica crystallized in DMF, Interestingly, especially in cases of polymer-grafted silica containing Fe(0)Ac or Fe(0)Me composed of the highest mole fraction Fe(0)Me, 1/2, afforded crystallization in DMF. The iridescence color of the colloidal crystals was changed with the combination of grafted polymer and solvent. The characteristic coloration of the solution from reddish to greenish color is possibly due to absorption of blue light region by diene-Fe(0)(CO) 3 complex and Bragg deflection on colloidal crystals.

  15. Improved solvent collection system for a dispersive liquid-liquid microextraction of organochlorine pesticides from water using low-density organic solvent.

    PubMed

    Chang, Chu-Chi; Wei, Shuo-Yang; Huang, Shang-Da

    2011-04-01

    In this study, the organochlorine pesticides (OCPs) levels in lake and tap water samples were determined by a dispersive liquid-liquid microextraction method using a low-density organic solvent and an improved solvent collection system (DLLME-ISCS). This method used a very small volume of a solvent of low toxicity (11  μL of 1-nonanol and 400  μL of methanol) to extract OCPs from 10  mL water samples prior to the analysis by GC. After centrifugation in the dispersive liquid-liquid microextraction, there was a liquid organic drop floating between the water surface and the glass wall of the centrifuge tube. The liquid organic drop (with some water phase) was transferred into a microtube (3  mm×15  mm) with a syringe. The organic and aqueous phases were separated in the microtube immediately. Then, 1  μL of the organic solvent (which was in the upper portion of liquid in the microtube) was easily collected by a syringe and injected into the GC-ECD system for the analysis. Under optimum conditions, the linear range of this method was 5-5000  ng/L for most of the analytes. The correlation coefficient was higher than 0.997. Enrichment factors ranged from 1309 to 3629. The relative recoveries ranged from 73 to 119% for lake water samples. The LODs of the method ranged from 0.7 to 9.4  ng/L. The precision of the method ranged from 1.0 to 10.8% for lake water.

  16. Highly mesoporous metal-organic framework assembled in a switchable solvent

    NASA Astrophysics Data System (ADS)

    Peng, Li; Zhang, Jianling; Xue, Zhimin; Han, Buxing; Sang, Xinxin; Liu, Chengcheng; Yang, Guanying

    2014-07-01

    The mesoporous metal-organic frameworks are a family of materials that have pore sizes ranging from 2 to 50 nm, which have shown promising applications in catalysis, adsorption, chemical sensing and so on. The preparation of mesoporous metal-organic frameworks usually needs the supramolecular or cooperative template strategy. Here we report the template-free assembly of mesoporous metal-organic frameworks by using CO2-expanded liquids as switchable solvents. The mesocellular metal-organic frameworks with large mesopores (13-23 nm) are formed, and their porosity properties can be easily adjusted by controlling CO2 pressure. Moreover, the use of CO2 can accelerate the reaction for metal-organic framework formation from metal salt and organic linker due to the viscosity-lowering effect of CO2, and the product can be recovered through CO2 extraction. The as-synthesized mesocellular metal-organic frameworks are highly active in catalysing the aerobic oxidation of benzylic alcohols under mild temperature at atmospheric pressure.

  17. Highly mesoporous metal–organic framework assembled in a switchable solvent

    PubMed Central

    Peng, Li; Zhang, Jianling; Xue, Zhimin; Han, Buxing; Sang, Xinxin; Liu, Chengcheng; Yang, Guanying

    2014-01-01

    The mesoporous metal–organic frameworks are a family of materials that have pore sizes ranging from 2 to 50 nm, which have shown promising applications in catalysis, adsorption, chemical sensing and so on. The preparation of mesoporous metal–organic frameworks usually needs the supramolecular or cooperative template strategy. Here we report the template-free assembly of mesoporous metal–organic frameworks by using CO2-expanded liquids as switchable solvents. The mesocellular metal–organic frameworks with large mesopores (13–23 nm) are formed, and their porosity properties can be easily adjusted by controlling CO2 pressure. Moreover, the use of CO2 can accelerate the reaction for metal–organic framework formation from metal salt and organic linker due to the viscosity-lowering effect of CO2, and the product can be recovered through CO2 extraction. The as-synthesized mesocellular metal–organic frameworks are highly active in catalysing the aerobic oxidation of benzylic alcohols under mild temperature at atmospheric pressure. PMID:25047059

  18. Highly mesoporous metal-organic framework assembled in a switchable solvent.

    PubMed

    Peng, Li; Zhang, Jianling; Xue, Zhimin; Han, Buxing; Sang, Xinxin; Liu, Chengcheng; Yang, Guanying

    2014-07-22

    The mesoporous metal-organic frameworks are a family of materials that have pore sizes ranging from 2 to 50 nm, which have shown promising applications in catalysis, adsorption, chemical sensing and so on. The preparation of mesoporous metal-organic frameworks usually needs the supramolecular or cooperative template strategy. Here we report the template-free assembly of mesoporous metal-organic frameworks by using CO2-expanded liquids as switchable solvents. The mesocellular metal-organic frameworks with large mesopores (13-23 nm) are formed, and their porosity properties can be easily adjusted by controlling CO2 pressure. Moreover, the use of CO2 can accelerate the reaction for metal-organic framework formation from metal salt and organic linker due to the viscosity-lowering effect of CO2, and the product can be recovered through CO2 extraction. The as-synthesized mesocellular metal-organic frameworks are highly active in catalysing the aerobic oxidation of benzylic alcohols under mild temperature at atmospheric pressure.

  19. Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils

    PubMed Central

    Hopkins, D.W; Sparrow, A.D; Novis, P.M; Gregorich, E.G; Elberling, B; Greenfield, L.G

    2006-01-01

    The Antarctic Dry Valleys are regarded as one of the harshest terrestrial habitats on Earth because of the extremely cold and dry conditions. Despite the extreme environment and scarcity of conspicuous primary producers, the soils contain organic carbon and heterotrophic micro-organisms and invertebrates. Potential sources of organic compounds to sustain soil organisms include in situ primary production by micro-organisms and mosses, spatial subsidies from lacustrine and marine-derived detritus, and temporal subsidies (‘legacies’) from ancient lake deposits. The contributions from these sources at different sites are likely to be influenced by local environmental conditions, especially soil moisture content, position in the landscape in relation to lake level oscillations and legacies from previous geomorphic processes. Here we review the abiotic factors that influence biological activity in Dry Valley soils and present a conceptual model that summarizes mechanisms leading to organic resources therein. PMID:17015369

  20. Screening for organic solvents in Hanford waste tanks using total non- methane organic compound vapor concentrations

    SciTech Connect

    Huckaby, J.L.; Glissmeyer, J.A.; Sklarew, D.S.

    1997-02-01

    The potential ignition of organic liquids stored in the Hanford high-level radioactive waste tanks is a safety issue because expanding gases could affect tank dome integrity. This report presents results of a screening test that was applied to 75 passively ventilated waste tanks at Hanford to determine those that might contain a significant amount of organic liquid waste. The screening test is based on a simple model of tank headspace, headspace organic vapor concentrations, and certain tank physical parameters. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Twelve tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Tank head space organic vapor concentrations and physical parameters required by the screening test have been compiled and are presented for each of the tanks studied. Estimates of the ventilation rates of the waste tanks were revised to reflect recent information obtained from hydrogen monitoring data. A simple analysis of the uncertainty in the test results suggests that the largest current uncertainty in the estimation of organic liquid surface area is that associated with knowledge of the tank ventilation rate. The uncertainty analysis is applied to determine 95% confidence limits for the estimated organic waste surface area in each tank.

  1. Approaches to extrapolating animal toxicity data on organic solvents to public health.

    PubMed

    Bushnell, Philip J; Boyes, William K; Shafer, Timothy J; Bale, Ambuja S; Benignus, Vernon A

    2007-03-01

    Synthesizing information about the acute neurotoxicity of organic solvents into predictive relationships between exposure and effect in humans is difficult because (1) data are usually derived from experimental animals whose sensitivity to the chemical relative to humans is unknown; (2) the specific endpoints measured in laboratory animals seldom translate into effects of concern in humans; and (3) the mode of action of the chemical is rarely understood. We sought to develop approaches to estimate the hazard and cost of exposure to organic solvents, focusing on the acute behavioral effects of toluene in rats and humans. Available published data include studies of shock avoidance behavior in rats and choice reaction time in humans. A meta-analysis of these data suggested that a 10% change in rat avoidance behavior occurs at a blood concentration of toluene 25 times higher than the concentration at which a 10% change in human choice reaction time occurs. In contrast, our in vitro studies of nicotinic acetylcholine receptors indicated that human and rat receptors do not differ in sensitivity to toluene. Analysis of other dose-response relationships for visual and cognitive functions in rats suggests that the apparent difference between rats and humans may be driven by the specific endpoints measured in the two species rather than by inherent differences in sensitivity to toluene. We also explored the hypothesis that dose-equivalence relationships may be used to compare the societal costs of two chemicals. For example, ethanol-induced changes in choice reaction time, for which societal costs are estimatable, may be used as a benchmark effect for estimating the monetary benefits of controlling exposure to organic solvents. This dose-equivalence method is applicable for solvents because this set of data fulfills three important assumptions about equivalence relationships based on a single effect: (1) a common dose metric (concentration of the chemical in the brain); (2

  2. Fluorescent properties and spontaneous Raman spectroscopy of new ketocyanine probes in organic solvents

    NASA Astrophysics Data System (ADS)

    Nemkovich, N. A.; Sobchuk, A. N.; Khodasevich, I. A.

    2006-11-01

    We have used fluorescence spectroscopy and spontaneous Raman spectroscopy to study the characteristics of two ketocyanine dyes: 2,5-di[(E)-1-(4-diethylaminophenyl)methylidene]-1-cyclopentanone (CPET) and 2-[(E)-1-(4-diethylaminophenyl)methylidene]-5-{(E)-1-[4-(4,7,10,13-tetraoxa-1-azacyclopentadecalin) phenyl]methylidene}-1-cyclopentanone (CPMR) in organic solvents. The position of their electronic spectra depends strongly on the polarity of the solvent. We measured the dipole moments of the dyes in the equilibrium ground state and the Franck-Condon excited state. In mixtures of neutral nonpolar toluene with aprotic polar dimethylsulfoxide, we observe inhomogeneous broadening of the electronic spectra for the indicated compounds, due to fluctuations in solution of the intermolecular interaction energy. The time-resolved characteristics of fluorescence obtained suggest formation of an intermolecular hydrogen bond between the dye and the surrounding medium in a toluene-ethanol mixture. We measured the Raman spectra of CPET and CPMR in different organic solvents. The most intense lines in the 1582 1591 cm-1 region can be assigned to stretching of the phenyl rings of the molecules; the lines in the 831 842 cm-1 region can be assigned to a cyclopentanone ring mode; the lines at 1186 1195 cm-1 can be assigned to stretching of the =C-C-bond of the phenyl ring and rocking of the H atoms of the phenyl ring. We have observed that the position and width of the lines for the stretching vibrations of the ketocyanines depend substantially on the polarity of the surrounding medium. The studied dyes can be used as probes for studying different biological systems by site-selective laser spectroscopy and Raman spectroscopy. The fact that these two methods can be used simultaneously for diagnostics of biosystems is an important advantage of ketocyanine dyes compared with other known probes.

  3. 40 CFR Table 3 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Metal Furniture Pt. 63, Subpt. RRRR, Table 3 Table 3 to Subpart RRRR of Part 63—Default Organic HAP Mass... blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass 1. Toluene...

  4. 40 CFR Table 3 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Metal Furniture Pt. 63, Subpt. RRRR, Table 3 Table 3 to Subpart RRRR of Part 63—Default Organic HAP Mass... blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass 1. Toluene...

  5. Selection of cows for treatment at dry-off on organic dairy farms.

    PubMed

    Kiesner, Klemens; Wente, Nicole; Volling, Otto; Krömker, Volker

    2016-11-01

    Restrictions regarding the use of antibiotics make selective antibiotic dry cow therapy (DCT) mandatory on organic farms in Germany. This requires methods for identifying cows with an intramammary infection (IMI) at dry-off. The aim of this field study was to create a decision scheme for the use of DCT based on cow level factors associated with IMI at dry-off and the probability of both cure and new infection (NI) during the dry period. Data from 250 cows from five organic farms were collected including somatic cell counts (SCC) from Dairy Herd Improvement (DHI) records, California mastitis test (CMT) results at dry-off, clinical mastitis (CM) history, parity and dry-off treatment. IMI at dry-off were most accurate identified using a geometric mean SCC of 100 000 cells/ml as a threshold at either one or three DHI records prior to dry-off. Using a combination of SCC with either CM history, CMT at dry off or parity slightly increased the sensitivity of detection (SE). The probability of cure of the infection over the dry period increased with use of both antibiotic DCT and application of an internal teat sealant (ITS) and decreased when the dry period was longer than 56 d. The risk of NI decreased with the use of ITS and infections with minor pathogens at dry-off. Compared with the selection performed by the farmers during the study period identification of IMI based on the selection criterion with a defined SCC threshold achieved a higher SE.

  6. Response of Rhodococcus erythropolis strain IBBPo1 to toxic organic solvents

    PubMed Central

    Stancu, Mihaela Marilena

    2015-01-01

    Abstract Recently, there has been a lot of interest in the utilization of rhodococci in the bioremediation of petroleum contaminated environments. This study investigates the response of Rhodococcus erythropolis IBBPo1 cells to 1% organic solvents (alkanes, aromatics). A combination of microbiology, biochemical, and molecular approaches were used to examine cell adaptation mechanisms likely to be pursued by this strain after 1% organic solvent exposure. R. erythropolis IBBPo1 was found to utilize 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene) as the sole carbon source. Modifications in cell viability, cell morphology, membrane permeability, lipid profile, carotenoid pigments profile and 16S rRNA gene were revealed in R. erythropolis IBBPo1 cells grown 1 and 24 h on minimal medium in the presence of 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene). Due to its environmental origin and its metabolic potential, R. erythropolis IBBPo1 is an excellent candidate for the bioremediation of soils contaminated with crude oils and other toxic compounds. Moreover, the carotenoid pigments produced by this nonpathogenic Gram-positive bacterium have a variety of other potential applications. PMID:26691458

  7. Influence of relative humidity and ambient temperature on hydrothermal waves (HTWs) of organic solvent volatile droplets

    NASA Astrophysics Data System (ADS)

    Orejon, Daniel; Kita, Yutaku; Okauchi, Yuya; Fukatani, Yuki; Kohno, Masamichi; Takata, Yasuyuki; Sefiane, Khellil; Kim, Jungho

    2016-11-01

    Droplets of organic solvents undergoing evaporation have been found to display distinctive hydrothermal patterns or HTWs at the liquid-vapor interface. Since the evaporation of mentioned organic solvents in ambient conditions is ubiquitous, in this work we investigate the effect of ambient temperature and relative humidity on the self-generated HTWs by means of infrared thermography. The intensity of the HTWs was found to decrease when lowering the ambient temperature due to a reduction in droplet evaporative cooling. On other hand, the enhancement or suppression of the HTWs was also possible by controlling the relative humidity of the system. Absorption and/or condensation of water vapor onto the evaporating droplet was found to be the main cause for the differences observed on the HTWs retrieved at the liquid-vapor interface. To account for the water adsorbed or condensed we perform in-situ gas chromatography analysis at different droplet lifetimes. Experimental results showed an increase in the amount of water condensed when increasing the relative humidity of the system as expected. In addition, for the same ambient temperature ethanol evaporation was enhanced by high relative humidity. The authors acknowledge the support of WPI-I2CNER.

  8. Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells

    DOE PAGES

    Lian, Jiarong; Wang, Qi; Yuan, Yongbo; ...

    2015-03-25

    In this study, the anisotropic electronic properties of the perovskite crystals originating from their non-cubic crystal structures can potentially give rise to the grain orientation correlated photovoltaic device performance. Here we report that an organic solvent vapor atmosphere introduced during the spin-coating and formation of perovskite films changes the orientation and size of perovskite grains. It was found that slightly larger but much more oriented methylammonium lead trihalide (CH3NH3PbI3) grains could be obtained under 1,2-dichlorobenzene (DCB) and dimethyl sulfoxide (DMSO) vapor atmospheres. The devices with more oriented grains outperformed regular devices with more random grains by a 50 mV largermore » open circuit voltage as well as a slightly increased fill factor. The device efficiency enhancement can be attributed to the longer charge recombination lifetime resulting from the reduced trap density and oriented grains. This result is important in providing guidelines for comparing the results from various groups because organic solvent vapors are generally present in a sealed glovebox for perovskite solar cell fabrication.« less

  9. Reversed-phase liquid chromatography without organic solvent for determination of tricyclic antidepressants.

    PubMed

    Fernández-Navarro, Juan José; Ruiz-Ángel, María José; García-Álvarez-Coque, María Celia

    2012-06-01

    The chromatographic behavior of seven tricyclic antidepressants (amitryptiline, clomipramine, doxepin, imipramine, maprotiline, nortryptiline, and trimipramine) was examined with micellar mobile phases containing the nonionic surfactant Brij-35. Acetonitrile-water mixtures were also used for comparison purposes. Tricyclic antidepressants are moderately polar basic drugs, which are positively charged in the usual working pH. This gives rise to a strong association with the alkyl chains and residual ionized silanols in silica-based stationary phases, which is translated in a high consumption of organic solvent to get appropriate retention times. Brij-35 modifies the surface of the stationary phases creating a neutral bilayer that masks silanols and reduces the polarity. Consequently, the retention times are decreased. A simple chromatographic procedure for the control of tricyclic antidepressants in pharmaceutical formulations was developed, using 0.02 M Brij-35 at pH 3 and UV detection. Satisfactory recoveries were achieved, with intra- and inter-day relative standard deviations usually below 1 and 2%, respectively. The preparation of the samples was simple and only required solubilization and filtration steps previous to injection. The proposed procedure has the advantage of not using an organic solvent in the mobile phase, and the biodegradable character of Brij-35. This makes an example of "green" liquid chromatographic analysis.

  10. Occupational exposure to organic solvents: a risk factor for pulmonary veno-occlusive disease.

    PubMed

    Montani, David; Lau, Edmund M; Descatha, Alexis; Jaïs, Xavier; Savale, Laurent; Andujar, Pascal; Bensefa-Colas, Lynda; Girerd, Barbara; Zendah, Inès; Le Pavec, Jerome; Seferian, Andrei; Perros, Frédéric; Dorfmüller, Peter; Fadel, Elie; Soubrier, Florent; Sitbon, Oliver; Simonneau, Gérald; Humbert, Marc

    2015-12-01

    Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension characterised by predominant remodelling of pulmonary venules. Bi-allelic mutations in the eukaryotic translation initiation factor 2α kinase 4 (EIF2AK4) gene were recently described as the major cause of heritable PVOD, but risk factors associated with PVOD remain poorly understood. Occupational exposures have been proposed as a potential risk factor for PVOD, but epidemiological studies are lacking.A case-control study was conducted in consecutive PVOD (cases, n=33) and pulmonary arterial hypertension patients (controls, n=65). Occupational exposure was evaluated via questionnaire interview with blinded assessments using an expert consensus approach and a job exposure matrix (JEM).Using the expert consensus approach, PVOD was significantly associated with occupational exposure to organic solvents (adjusted OR 12.8, 95% CI 2.7-60.8), with trichloroethylene being the main agent implicated (adjusted OR 8.2, 95% CI 1.4-49.4). JEM analysis independently confirmed the association between PVOD and trichloroethylene exposure. Absence of significant trichloroethylene exposure was associated with a younger age of disease (54.8±21.4 years, p=0.037) and a high prevalence of harbouring bi-allelic EIF2AK4 mutations (41.7% versus 0%, p=0.015).Occupational exposure to organic solvents may represent a novel risk factor for PVOD. Genetic background and environmental exposure appear to influence the phenotypic expression of the disease.

  11. Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells

    SciTech Connect

    Lian, Jiarong; Wang, Qi; Yuan, Yongbo; Shao, Yuchuan; Huang, Jinsong

    2015-03-25

    In this study, the anisotropic electronic properties of the perovskite crystals originating from their non-cubic crystal structures can potentially give rise to the grain orientation correlated photovoltaic device performance. Here we report that an organic solvent vapor atmosphere introduced during the spin-coating and formation of perovskite films changes the orientation and size of perovskite grains. It was found that slightly larger but much more oriented methylammonium lead trihalide (CH3NH3PbI3) grains could be obtained under 1,2-dichlorobenzene (DCB) and dimethyl sulfoxide (DMSO) vapor atmospheres. The devices with more oriented grains outperformed regular devices with more random grains by a 50 mV larger open circuit voltage as well as a slightly increased fill factor. The device efficiency enhancement can be attributed to the longer charge recombination lifetime resulting from the reduced trap density and oriented grains. This result is important in providing guidelines for comparing the results from various groups because organic solvent vapors are generally present in a sealed glovebox for perovskite solar cell fabrication.

  12. Removal of endotoxins from bacteriophage preparations by extraction with organic solvents.

    PubMed

    Szermer-Olearnik, Bożena; Boratyński, Janusz

    2015-01-01

    Lipopolysaccharide (LPS, endotoxin, pyrogen) constitutes a very troubling contaminant of crude phage lysates produced in Gram-negative bacteria. Toxicity of LPS depends on the strong innate immunity response including the cytokines. Therefore, its removal is important for bacteriophage applications. In this paper, we present a procedure for extractive removal of endotoxin from bacteriophage preparations with water immiscible solvents (1-octanol or 1-butanol). During extraction most of the phage lytic activity is retained in the aqueous phase, while endotoxin accumulates in the organic solvent. The levels of endotoxin (expressed as endotoxin units, EU) in the aqueous bacteriophage-containing fraction determined by limulus amebocyte lysate or EndoLISA assay were exceptionally low. While the initial endotoxin levels in the crude phage lysates ranged between 10(3) and 10(5) EU/ml the average level after organic extraction remaining in the aqueous fraction was 5.3 EU/ml. These values when related to phage titers decreased from 10(3)-10(5) EU/10(9) PFU (plaque forming units) down to an average of 2.8 EU/10(9) PFU. The purification procedure is scalable, efficient and applicable to all the bacteriophages tested: T4, HAP1 (E. coli) and F8 (P. aeruginosa).

  13. Removal of Endotoxins from Bacteriophage Preparations by Extraction with Organic Solvents

    PubMed Central

    Szermer-Olearnik, Bożena; Boratyński, Janusz

    2015-01-01

    Lipopolysaccharide (LPS, endotoxin, pyrogen) constitutes a very troubling contaminant of crude phage lysates produced in Gram-negative bacteria. Toxicity of LPS depends on the strong innate immunity response including the cytokines. Therefore, its removal is important for bacteriophage applications. In this paper, we present a procedure for extractive removal of endotoxin from bacteriophage preparations with water immiscible solvents (1-octanol or 1-butanol). During extraction most of the phage lytic activity is retained in the aqueous phase, while endotoxin accumulates in the organic solvent. The levels of endotoxin (expressed as endotoxin units, EU) in the aqueous bacteriophage-containing fraction determined by limulus amebocyte lysate or EndoLISA assay were exceptionally low. While the initial endotoxin levels in the crude phage lysates ranged between 103 and 105 EU/ml the average level after organic extraction remaining in the aqueous fraction was 5.3 EU/ml. These values when related to phage titers decreased from 103-105 EU/109 PFU (plaque forming units) down to an average of 2.8 EU/109 PFU. The purification procedure is scalable, efficient and applicable to all the bacteriophages tested: T4, HAP1 (E. coli) and F8 (P. aeruginosa). PMID:25811193

  14. Enhanced Enzymatic Synthesis of a Cephalosporin, Cefadroclor, in the Presence of Organic Co-solvents.

    PubMed

    Liu, Kun; Li, Sha; Pang, Xiao; Xu, Zheng; Li, Dengchao; Xu, Hong

    2016-11-05

    In this study, we investigated the enzymatic synthesis of a semi-synthetic cephalosporin, cefadroclor, from 7-aminodesacetoxymethyl-3-chlorocephalosporanic acid (7-ACCA) and p-OH-phenylglycine methyl ester (D-HPGM) using immobilized penicillin G acylase (IPA) in organic co-solvents. Ethylene glycol (EG) was employed as a component of the reaction mixture to improve the yield of cefadroclor. EG was found to increase the yield of cefadroclor by 15-45%. An investigation of altered reaction parameters including type and concentration of organic solvents, pH of reaction media, reaction temperature, molar ratio of substrates, enzyme loading, and IPA recycling was carried out in the buffer mixture. The best result was a 76.5% conversion of 7-ACCA, which was obtained from the reaction containing 20% EG (v/v), D-HPGM to 7-ACCA molar ratio of 4:1 and pH 6.2, catalyzed by 16 IU mL(-1) IPA at 20 °C for 10 h. Under the optimum conditions, no significant loss of IPA activity was found after seven repeated reaction cycles. In addition, cefadroclor exhibited strong inhibitory activity against yeast, Bacillus subtilis NX-2, and Escherichia coli and weaker activity against Staphylococcus aureus and Pseudomonas aeruginosa. Cefadroclor is a potential antibiotic with activity against common pathogenic microorganisms.

  15. Predicting solvent-water partitioning of charged organic species using quantum-chemically estimated Abraham pp-LFER solute parameters.

    PubMed

    Davis, Craig Warren; Di Toro, Dominic M

    2016-12-01

    Methods for obtaining accurate predictions of solvent-water partitioning for neutral organic chemicals (e.g., Kow) are well-established. However, methods that provide comparable accuracy are not available for predicting the solvent-water partitioning of ionic species. Previous methods for addressing charge contributions to solvent-water partitioning rely on charged solute descriptors which are obtained from regressions to neutral species descriptors as well as charged descriptors which are specific to unique charge-functionalities and structural moieties. This paper presents a method for obtaining Abraham poly-parameter linear free energy relationship (pp-LFER) descriptors using quantum chemical calculations and molecular structure, only. The method utilizes a large number of solvent-water systems to overcome large errors in individual quantum chemical computations of ionic solvent-water partition coefficients. The result is a single set of quantum-chemically estimated Abraham solute parameters (QCAP) which are solvent-independent, and can be used to predict the solvent-water partitioning of ionic species. Predictions of solvent-water partition coefficients for ionic species using quantum-chemically estimated Abraham parameters (QCAPs) are shown to provide improved accuracy compared over both existing Absolv-estimated Abraham solute parameters (AAP) as well as direct a priori quantum chemical (QC) calculations for partitioning of anionic solutes in 4 organic solvent-water systems (RMS = 0.740, 2.48 and 0.426 for the Absolv, QC and QCAP methods, respectively). For quaternary amine cations in the octanol-water system the RMS errors of the solvent-water partition coefficients were larger and similar between the two Abraham models (RMSE = 0.997 and 1.16, for the AAP and QCAP methods, respectively). Both methods showed significant improvement over direct QC calculations (RMSE = 2.82).

  16. Growth of columnar hydrogel colloidal crystals in water-organic solvent mixture.

    PubMed

    Zhou, Jun; Cai, Tong; Tang, Shijun; Marquez, Manuel; Hu, Zhibing

    2006-01-31

    A novel emulsion method has been demonstrated to grow columnar hydrogel colloidal crystals by mixing an aqueous suspension of poly-N-isopropylacrylamide-co-allylamine microgels with organic solvent, driven by the coalescence of micelles consisting of organic oil droplets coated by many microgels. This method leads to microgel colloidal crystals of several centimeters growing from the top to the bottom along the gravity direction. Both temperature and polymer concentration play critical roles for the formation of columnar crystals. A phase diagram has been determined, and it can be used as a guide to selectively grow different crystals, including columnar crystals and randomly oriented crystals, and enable the coexistence of columnar crystals and randomly oriented crystals.

  17. Acetylcholinesterase-polyaniline biosensor investigation of organophosphate pesticides in selected organic solvents.

    PubMed

    Somerset, Vernon S; Klink, Michael J; Baker, Priscilla G L; Iwuoha, Emmanuel I

    2007-01-01

    The behavior of an amperometric organic-phase biosensor consisting of a gold electrode modified first with a mercaptobenzothiazole self-assembled monolayer, followed by electropolymerization of polyaniline in which acetylcholinesterase as enzyme was immobilized, has been developed and evaluated for organophosphorous pesticide detection. The voltammetric results have shown that the formal potential shifts anodically as the Au/MBT/PANI/AChE/PVAc thick-film biosensor responded to acetylthiocholine substrate addition under anaerobic conditions in selected organic solvent media containing 2% v/v 0.05 M phosphate buffer, 0.1 M KCl (pH 7.2) solution. Detection limits in the order of 0.147 ppb for diazinon and 0.172 ppb for fenthion in acetone-saline phosphate buffer solution, and 0.180 ppb for diazinon and 0.194 ppb for fenthion in ethanol-saline phosphate buffer solution has been achieved.

  18. Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent.

    PubMed

    Kojima, Seiji; Du, Dongning; Sato, Masayasu; Park, Enoch Y

    2004-01-01

    Fatty acid methyl ester (FAME) production from waste activated bleaching earth (ABE) discarded by the crude oil refining industry was investigated using fossil fuel as a solvent in the esterification of triglycerides. Lipase from Candida cylindracea showed the highest stability in diesel oil. Using diesel oil as a solvent, 3 h was sufficient to obtain a yield of approximately 100% of FAME in the presence of 10% lipase from waste ABE. Kerosene was also a good solvent in the esterification of triglycerides embedded in the waste ABE. Fuel analysis showed that the FAME produced using diesel oil as a solvent complied with the Japanese diesel standard and the 10% residual carbon amount was lower than that of FAME produced using other solvents. Use of diesel oil as solvent in the FAME production from the waste ABE simplified the process, because there was no need to separate the organic solvent from the FAME-solvent mixture. These results demonstrate a promising reutilization method for the production of FAME, for use as a biodiesel, from industrial waste resources containing waste vegetable oils.

  19. Modeling the Dispersibility of Single Walled Carbon Nanotubes in Organic Solvents by Quantitative Structure-Activity Relationship Approach

    PubMed Central

    Yilmaz, Hayriye; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2015-01-01

    The knowledge of physico-chemical properties of carbon nanotubes, including behavior in organic solvents is very important for design, manufacturing and utilizing of their counterparts with improved properties. In the present study a quantitative structure-activity/property relationship (QSAR/QSPR) approach was applied to predict the dispersibility of single walled carbon nanotubes (SWNTs) in various organic solvents. A number of additive descriptors and quantum-chemical descriptors were calculated and utilized to build QSAR models. The best predictability is shown by a 4-variable model. The model showed statistically good results (R2training = 0.797, Q2 = 0.665, R2test = 0.807), with high internal and external correlation coefficients. Presence of the X0Av descriptor and its negative term suggest that small size solvents have better SWCNTs solubility. Mass weighted descriptor ATS6m also indicates that heavier solvents (and small in size) most probably are better solvents for SWCNTs. The presence of the Dipole Z descriptor indicates that higher polarizability of the solvent molecule increases the solubility. The developed model and contributed descriptors can help to understand the mechanism of the dispersion process and predictorganic solvents that improve the dispersibility of SWNTs.

  20. Organic solvent simulations under non-periodic boundary conditions: A library of effective potentials for the GLOB model

    NASA Astrophysics Data System (ADS)

    Mancini, Giordano; Brancato, Giuseppe; Chandramouli, Balasubramanian; Barone, Vincenzo

    2015-04-01

    We extend the library of solvents that can be treated using the GLOB (general liquid optimized boundary) method, that allows to perform MD simulations under non-periodic boundary conditions (NPBC) optimizing effective potentials between explicit molecules and the boundary for four organic solvents: CHCl3, CCl4, CH3OH and CH3CN. We show that GLOB allows reducing the number of explicit solvent shells to be included, while yielding results comparable with PBC and significant advantages over simulations without explicit boundaries. Finally, we provide polynomial fittings for all available GLOB effective potentials (including SPC water) to simplify their implementation in NPBC MD simulations.

  1. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Metal Cans Pt. 63, Subpt. KKKK, Table 6 Table 6 to Subpart KKKK of Part 63—Default Organic HAP Mass... blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass 1. Toluene...

  2. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Metal Cans Pt. 63, Subpt. KKKK, Table 6 Table 6 to Subpart KKKK of Part 63—Default Organic HAP Mass... blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass 1. Toluene...

  3. Highly sensitive electromembrane extraction for the determination of volatile organic compound metabolites in dried urine spot.

    PubMed

    Suh, Joon Hyuk; Eom, Han Young; Kim, Unyong; Kim, Junghyun; Cho, Hyun-Deok; Kang, Wonjae; Kim, Da Som; Han, Sang Beom

    2015-10-16

    Electromembrane extraction coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for determination of ten volatile organic compound metabolites in dried urine spot samples. The dried urine spot approach is a convenient and economical sampling method, wherein urine is spotted onto a filter paper and dried. This method requires only a small amount of sample, but the analysis sometimes suffers from low sensitivity, which can lead to analytical problems in the detection of minor components in samples. The newly developed dried urine spot analysis using electromembrane extraction exhibited improved sensitivity and extraction, and enrichment of the sample was rapidly achieved in one step by applying an electric field. Aliquots of urine were spotted onto Bond Elut DMS cards and dried at room temperature. After drying, the punched out dried urine spot was eluted with water. Volatile organic compound metabolites were extracted from the sample through a supported liquid membrane into an alkaline acceptor solution inside the lumen of a hollow fiber with the help of an electric potential. The optimum extraction conditions were determined by using design of experiments (fractional factorial design and response surface methodology). Satisfactory sensitivity was achieved and the limits of quantification (LOQ) obtained were lower than the regulatory threshold limits. The method was validated by assessing the linearity, precision, accuracy, recovery, reproducibility, stability, and matrix effects. The results were acceptable, and the developed method was successfully applied to biological exposure monitoring of volatile organic compound metabolites in fifty human urine samples.

  4. Competitive Sorption and Desorption of Chlorinated Organic Solvents (DNAPLs) in Engineered Natural Organic Matter

    SciTech Connect

    Tang, Jixin; Weber, Walter J., Jr.

    2004-03-31

    The effects of artificially accelerated geochemical condensation and maturation of natural organic matter on the sorption and desorption of trichloroethylene (TCE) and tetrachloroethylene (PCE) were studied. The sorption and desorption of TCE in the presence and absence of the competing PCE and 1,2-dichlorobenzene (DCB) were also examined. A sphagnum peat comprising geologically young organic matter was artificially ''aged'' using superheated water, thus increasing the aromaticity and the degree of condensation of its associated organic matter. The sorption of all solutes tested were increased remarkably and their respective desorptions reduced, by the aged peat. The sorption capacities and isotherm nonlinearities of the peat for both TCE and PCE were found to increase as treatment temperature increased. In the competitive sorption studies, both PCE and DCB were found to depress TCE sorption, with PCE having greater effects than DCB, presumably because the molecular structure o f the former is more similar to that of TCE.

  5. Effect of wetting and drying on the bioavailability of organic compounds sequestered in soil

    SciTech Connect

    White, J.C.; Quinones-Rivera, A.; Alexander, M.

    1998-12-01

    A study was conducted to determine whether cycles of wetting and drying alter the availability of organic compounds that have aged in soil. Subjecting soil to wetting-and drying cycles during periods of aging <60 d decreased the biodegradability, extractability, and uptake by earthworms of phenanthrene and reduced the extractability of di(2-ethylhexyl) phthalate (DEHP) sequestered in soil compared with soil aged at constant moisture. The mineralization of sequestered DEHP was greater in soil that was wet and dried during a 41-d period of aging than in soil incubated at constant moisture. Wetting and drying soil during periods of aging of 100 or more days had no effect on the biodegradability or assimilation by Eisenia foetida of sequestered phenanthrene and DEHP. Subjecting soil containing previously sequestered phenanthrene to one, three, or four wetting-and-drying cycles increased the biodegradability of the compound. The extractability of sequestered phenanthrene was greater in soil that was wet and dried once after aging than in soil maintained at constant moisture, but three wetting-and-drying cycles did not affect extractability. The biodegradability of sequestered DEHP was unaffected by wetting and drying. The authors suggest that wetting and drying may be useful in the remediation of contaminated soils.

  6. Solvent extraction of organic acids from stillage for its re-use in ethanol production process.

    PubMed

    Castro, G A; Caicedo, L A; Alméciga-Díaz, C J; Sanchez, O F

    2010-06-01

    Stillage re-use in the fermentation stage in ethanol production is a technique used for the reduction of water and fermentation nutrients consumption. However, the inhibitory effect on yeast growth of the by-products and feed components that remains in stillage increases with re-use and reduces the number of possible recycles. Several methods such as ultrafiltration, electrodialysis and advanced oxidation processes have been used in stillage treatment prior its re-use in the fermentation stage. Nevertheless, few studies evaluating the effect of solvent extraction as a stillage treatment option have been performed. In this work, the inhibitory effect of serial stillage recycling over ethanol and biomass production was determined, using acetic acid as a monitoring compound during the fermentation and solvent extraction process. Raw palm oil methyl ester showed the highest acetic acid extraction from the aqueous phase, presenting a distribution coefficient of 3.10 for a 1:1 aqueous phase mixture:solvent ratio. Re-using stillage without treatment allowed up to three recycles with an ethanol production of 53.7 +/- 2.0 g L(-1), which was reduced 25% in the fifth recycle. Alternatively, treated stillage allowed up to five recycles with an ethanol final concentration of 54.7 +/- 1.3 g L(- 1). These results show that reduction of acetic acid concentration by an extraction process with raw palm oil methyl ester before re-using stillage improves the number of recycles without a major effect on ethanol production. The proposed process generates a palm oil methyl ester that contains organic acids, among other by-products, that could be used for product recovery and as an alternative fuel.

  7. Occupational exposure to organic solvents during paint stripping and painting operations in the aeronautical industry.

    PubMed

    Vincent, R; Poirot, P; Subra, I; Rieger, B; Cicolella, A

    1994-01-01

    The exposure of workers to methylene chloride and phenol in an aeronautical workshop was measured during stripping of paint from a Boeing B 747. Methylene chloride exposure was measured during two work days by personal air sampling, while area sampling was used for phenol. During paint stripping operations, methylene chloride air concentrations ranged from 299.2 mg/m3 (83.1 ppm) to 1888.9 mg/m3 (524.7 ppm). The exposures to methylene chloride calculated for an 8-h work day ranged from 86 mg/m3 (23.9 ppm) to 1239.5 mg/m3 (344.3 ppm). In another aeronautical workshop, exposure to organic solvents, especially ethylene glycol monoethylether acetate (EGEEA), was controlled during the painting of an Airbus A 320. The external exposure to solvents and EGEEA was measured by means of individual air sampling. The estimation of internal exposure to EGEEA was made by measuring its urinary metabolite, ethoxyacetic acid (EAA). Both measurements were made during the course of 3 days. The biological samples were taken pre- and post-shift. During painting operations, methyl ethyl ketone, ethyl acetate, n-butyl alcohol, methyl isobutyl ketone, toluene, n-butyl acetate, ethylbenzene, xylenes and EGEEA were detected in working atmospheres. For these solvents, air concentrations ranged from 0.1 ppm to 69.1 ppm. EGEEA concentrations ranged from 29.2 mg/m3 (5.4 ppm) to 150.1 mg/m3 (27.8 ppm). For biological samples, the average concentrations of EAA were 108.4 mg/g creatinine in pre-shift and 139.4 mg/g creatinine in post-shift samples. Despite the fact that workers wore protective respiratory equipment during paint spraying operations, EEA urinary concentrations are high and suggest that percutaneous uptake is the main route of exposure for EGEEA.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Surface modification of PTMSP membranes by plasma treatment: Asymmetry of transport in organic solvent nanofiltration.

    PubMed

    Volkov, A V; Tsarkov, S E; Gilman, A B; Khotimsky, V S; Roldughin, V I; Volkov, V V

    2015-08-01

    For the first time, the effect of asymmetry of the membrane transport was studied for organic solvents and solutes upon their nanofiltration through the plasma-modified membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP). Plasma treatment is shown to provide a marked hydrophilization of the hydrophobic PTMSP surface (the contact angle of water decreases from 88 down to 20°) and leads to the development of a negative charge of -5.2 nC/cm(2). The XPS measurements prove the formation of the oxygen-containing groups (Si-O and C-O) due to the surface modification. The AFM images show that the small-scale surface roughness of the plasma-treated PTMSP sample is reduced but the large-scale surface heterogeneities become more pronounced. The modified membranes retain their hydrophilic surface properties even after the nanofiltration tests and 30-day storage under ambient conditions. The results of the filtration tests show that when the membrane is oriented so that its modified layer contacts the feed solution, the membrane permeability for linear alcohols (methanol-propanol) and acetone decreases nearly two times. When the modified membrane surface faces the permeate, the membrane is seen to regain its transport characteristics: the flux becomes equal to that of the unmodified PTMSP. The well-pronounced effect of the transport asymmetry is observed for the solution of the neutral dye Solvent Blue 35 in methanol, ethanol, and acetone. For example, the initial membrane shows the negative retention for the Solvent Blue 35 dye (-16%) upon its filtration from the ethanol solution whereas, for the modified PTMSP membrane, the retention increases up to 17%. Various effects contributing to the asymmetry of the membrane transport characteristics are discussed.

  9. Multidimensional analysis of the effect of occupational exposure to organic solvents on lung cancer risk: the ICARE study

    PubMed Central

    Mattei, Francesca; Liverani, Silvia; Guida, Florence; Matrat, Mireille; Cenée, Sylvie; Azizi, Lamiae; Menvielle, Gwenn; Sanchez, Marie; Pilorget, Corinne; Lapôtre-Ledoux, Bénédicte; Luce, Danièle; Richardson, Sylvia; Stücker, Isabelle

    2016-01-01

    Background The association between lung cancer and occupational exposure to organic solvents is discussed. Since different solvents are often used simultaneously, it is difficult to assess the role of individual substances. Objectives The present study is focused on an in-depth investigation of the potential association between lung cancer risk and occupational exposure to a large group of organic solvents, taking into account the well-known risk factors for lung cancer, tobacco smoking and occupational exposure to asbestos. Methods We analysed data from the Investigation of occupational and environmental causes of respiratory cancers (ICARE) study, a large French population-based case–control study, set up between 2001 and 2007. A total of 2276 male cases and 2780 male controls were interviewed, and long-life occupational history was collected. In order to overcome the analytical difficulties created by multiple correlated exposures, we carried out a novel type of analysis based on Bayesian profile regression. Results After analysis with conventional logistic regression methods, none of the 11 solvents examined were associated with lung cancer risk. Through a profile regression approach, we did not observe any significant association between solvent exposure and lung cancer. However, we identified clusters at high risk that are related to occupations known to be at risk of developing lung cancer, such as painters. Conclusions Organic solvents do not appear to be substantial contributors to the occupational risk of lung cancer for the occupations known to be at risk. PMID:26911986

  10. Evaluation of the Shear Bond Strength of Composite Resin to Wet and Dry Enamel Using Dentin Bonding Agents Containing Various Solvents

    PubMed Central

    Ramarao, Sathyanarayanan; John, Bindu Meera; Rajesh, Praveen; Swatha, S

    2017-01-01

    Introduction Bonding of composite resin to dentin mandates a wet substrate whereas, enamel should be dry. This may not be easily achievable in intracoronal preparations where enamel and dentin are closely placed to each other. Therefore, Dentin Bonding Agents (DBA) are recommended for enamel and dentinal bonding, where enamel is also left moist. A research question was raised if the “enamel-only” preparations will also benefit from wet enamel bonding and contemporary DBA. Aim The aim of this study was to compare the shear bond strengths of composite resin, bonded to dry and wet enamel using fifth generation DBA (etch and rinse system) containing various solvents such as ethanol/water, acetone and ethanol. Materials and Methods The crowns of 120 maxillary premolars were split into buccal and lingual halves. They were randomly allocated into four groups of DBA: Group 1-water/ethanol based, Group 2-acetone based, Group 3-ethanol based, Group 4-universal bonding agent (control group). The buccal halves and lingual halves were bonded using the wet bonding and dry bonding technique respectively. After application of the DBAs and composite resin build up, shear bond strength testing was done. Results Group 1 (ethanol/water based ESPE 3M, Adper Single Bond) showed highest bond strength of (23.15 MPa) in dry enamel. Group 2 (acetone based Denstply, Prime and Bond NT, showed equal bond strength in wet and dry enamel condition (18.87 MPa and 18.02 MPa respectively). Conclusion Dry enamel bonding and ethanol/water based etch and rinse DBA can be recommended for “enamel-only” tooth preparations. PMID:28274042

  11. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    SciTech Connect

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; Ye, X. Philip; Borole, Abhijeet P.; Tsouris, Costas

    2016-01-29

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organic solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.

  12. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for Petroleum Solvent Groups a 7 Table 7 to Subpart KKKK of Part 63 Protection of Environment ENVIRONMENTAL... Metal Cans Pt. 63, Subpt. KKKK, Table 7 Table 7 to Subpart KKKK of Part 63—Default Organic HAP...

  13. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for Petroleum Solvent Groups a 7 Table 7 to Subpart KKKK of Part 63 Protection of Environment ENVIRONMENTAL... Metal Cans Pt. 63, Subpt. KKKK, Table 7 Table 7 to Subpart KKKK of Part 63—Default Organic HAP...

  14. Production of Thermostable Organic Solvent Tolerant Keratinolytic Protease from Thermoactinomyces sp. RM4: IAA Production and Plant Growth Promotion

    PubMed Central

    Verma, Amit; Singh, Hukum; Anwar, Mohammad S.; Kumar, Shailendra; Ansari, Mohammad W.; Agrawal, Sanjeev

    2016-01-01

    There are several reports about the optimization of protease production, but only few have optimized the production of organic solvent tolerant keratinolytic proteases that show remarkable exploitation in the development of the non-polluting processes in biotechnological industries. The present study was carried with aim to optimize the production of a thermostable organic solvent tolerant keratinolytic protease Thermoactinomyces sp. RM4 utilizing chicken feathers. Thermoactinomyces sp. RM4 isolated from the soil sample collected from a rice mill wasteyard site near Kashipur, Uttrakhand was identified on the basis of 16S rDNA analysis. The production of organic solvent tolerant keratinolytic protease enzyme by Thermoactinomyces sp. RM4 was optimized by varying physical culture conditions such as pH (10.0), temperature (60°C), inoculum percentage (2%), feather concentration (2%) and agitation rate (2 g) for feather degradation. The result showed that Thermoactinomyces sp. RM4 potentially produces extra-cellular thermostable organic solvent tolerant keratinolytic protease in the culture medium. Further, the feather hydrolysate from keratinase production media showed plant growth promoting activity by producing indole-3-acetic acid itself. The present findings suggest that keratinolytic protease from Thermoactinomyces sp. RM4 offers enormous industrial applications due to its organic solvent tolerant property in peptide synthesis, practical role in feather degradation and potential function in plant growth promoting activity, which might be a superior candidate to keep ecosystem healthy and functional. PMID:27555836

  15. Production of Thermostable Organic Solvent Tolerant Keratinolytic Protease from Thermoactinomyces sp. RM4: IAA Production and Plant Growth Promotion.

    PubMed

    Verma, Amit; Singh, Hukum; Anwar, Mohammad S; Kumar, Shailendra; Ansari, Mohammad W; Agrawal, Sanjeev

    2016-01-01

    There are several reports about the optimization of protease production, but only few have optimized the production of organic solvent tolerant keratinolytic proteases that show remarkable exploitation in the development of the non-polluting processes in biotechnological industries. The present study was carried with aim to optimize the production of a thermostable organic solvent tolerant keratinolytic protease Thermoactinomyces sp. RM4 utilizing chicken feathers. Thermoactinomyces sp. RM4 isolated from the soil sample collected from a rice mill wasteyard site near Kashipur, Uttrakhand was identified on the basis of 16S rDNA analysis. The production of organic solvent tolerant keratinolytic protease enzyme by Thermoactinomyces sp. RM4 was optimized by varying physical culture conditions such as pH (10.0), temperature (60°C), inoculum percentage (2%), feather concentration (2%) and agitation rate (2 g) for feather degradation. The result showed that Thermoactinomyces sp. RM4 potentially produces extra-cellular thermostable organic solvent tolerant keratinolytic protease in the culture medium. Further, the feather hydrolysate from keratinase production media showed plant growth promoting activity by producing indole-3-acetic acid itself. The present findings suggest that keratinolytic protease from Thermoactinomyces sp. RM4 offers enormous industrial applications due to its organic solvent tolerant property in peptide synthesis, practical role in feather degradation and potential function in plant growth promoting activity, which might be a superior candidate to keep ecosystem healthy and functional.

  16. Thermostability and reactivity in organic solvent of O-phospho-L-serine sulfhydrylase from hyperthermophilic archaeon Aeropyrum pernix K1.

    PubMed

    Nakamura, Takashi; Asai, Shinji; Nakata, Kaori; Kunimoto, Kohei; Oguri, Masateru; Ishikawa, Kazuhiko

    2015-01-01

    O-phospho-l-serine sulfhydrylase (OPSS) from archaeon Aeropyrum pernix K1 is able to synthesize l-cysteine even at 80 °C. In this article, we compared thermal stability and reactivity in organic solvent of OPSS with those of O-acetyl-l-serine sulfhydrylase B (OASS-B) from Escherichia coli. As a result, the thermostability of OPSS was much higher than that of OASS-B. Moreover, the activity of OPSS increased in the reaction mixture containing the organic solvent, such as N, N'-dimethyl formamide and 1,4-dioxane, whereas that of OASS-B gradually decreased as the content of organic solvent increased. From the crystal structural analysis, the intramolecular electrostatic interactions of N-terminal domain in OPSS seemed to be correlated with the tolerance of OPSS to high temperature and organic solvent. These results indicate that OPSS is more superior to OASS-B for the industrial production of l-cysteine and unnatural amino acids that are useful pharmaceuticals in the presence of organic solvent.

  17. Nature and dynamic behaviour of organic surface layer deposits during dry weather.

    PubMed

    Oms, C; Gromaire, M C; Chebbo, G

    2005-01-01

    In-situ observations were performed at two different spatial and temporal scales, in order to get a better identification of the nature of the organic layer situated at the water-sediment interface, and which had previously been identified as major of combined sewer overflows organic loads. Its composition and its build up mechanisms during dry weather periods are presented. Results showed that the concept of dry weather accumulation and more generally the way organic sewer sediments are modelled needs to be reconsidered.

  18. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Qing; Shen, Wei-De; Xiang, Ru-Li; Zhuge, Lan-Jian; Gao, Wei-Jian; Wang, Wen-Bao

    2007-10-01

    When Silk fibre derived from Bombyx mori, a native biopolymer, was dissolved in highly concentrated neutral salts such as CaCl2, the regenerated liquid silk, a gradually degraded peptide mixture of silk fibroin, could be obtained. The silk fibroin nanoparticles were prepared rapidly from the liquid silk by using water-miscible protonic and polar aprotonic organic solvents. The nanoparticles are insoluble but well dispersed and stable in aqueous solution and are globular particles with a range of 35-125 nm in diameter by means of TEM, SEM, AFM and laser sizer. Over one half of the ɛ-amino groups exist around the protein nanoparticles by using a trinitrobenzenesulfonic acid (TNBS) method. Raman spectra shows the tyrosine residues on the surface of the globules are more exposed than those on native silk fibers. The crystalline polymorph and conformation transition of the silk nanoparticles from random-coil and α-helix form (Silk I) into anti-parallel β-sheet form (Silk II) are investigated in detail by using infrared, fluorescence and Raman spectroscopy, DSC, 13C CP-MAS NMR and electron diffraction. X-ray diffraction of the silk nanoparticles shows that the nanoparticles crystallinity is about four fifths of the native fiber. Our results indicate that the degraded peptide chains of the regenerated silk is gathered homogeneously or heterogeneously to form a looser globular structure in aqueous solution. When introduced into excessive organic solvent, the looser globules of the liquid silk are rapidly dispersed and simultaneously dehydrated internally and externally, resulting in the further chain-chain contact, arrangement of those hydrophobic domains inside the globules and final formation of crystalline silk nanoparticles with β-sheet configuration. The morphology and size of the nanoparticles are relative to the kinds, properties and even molecular structures of organic solvents, and more significantly to the looser globular substructure of the degraded silk

  19. Stratum corneum drying drives vertical compression and lipid organization and improves barrier function in vitro.

    PubMed

    Iwai, Ichiro; Kunizawa, Naomi; Yagi, Eiichiro; Hirao, Tetsuji; Hatta, Ichiro

    2013-03-27

    The stratum corneum dehydrates after exogenous hydration due to skincare or bathing. In this study, sheets of stratum corneum were isolated from reconstructed human epidermis and the barrier function and structure of these sheets were assessed during drying with the aim of improving our understanding of skincare. Water diffusion through the sheets of stratum corneum decreased with drying, accompanied by decreased thickness and increased visible light transmission through the sheets. Electron paramagnetic resonance revealed that the order parameter values of stratum corneum lipids increased with drying. X-ray diffraction analysis revealed increases in the diffraction intensity of lamellar structures, with an 11-12 nm periodicity and spacing of 0.42 nm for lattice structures with drying. These results suggest that the drying process improves the barrier function of the stratum corneum by organizing the intercellular lipids in a vertically compressed arrangement.

  20. Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents

    SciTech Connect

    Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

    1998-09-30

    This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl{sub 4}) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl{sub 4}. Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet.

  1. Generalized syntheses of nanocrystal-graphene hybrids in high-boiling-point organic solvents.

    PubMed

    Pang, Danny Wei-Ping; Yuan, Fang-Wei; Chang, Yan-Cheng; Li, Guo-An; Tuan, Hsing-Yu

    2012-08-07

    Nanocrystal-graphene have been proposed as a new kind of promising hybrid for a wide range of application areas including catalysts, electronics, sensors, biomedicine, and energy storage, etc. Although a variety of methods have been developed for the preparation of hybrids, a facile and general synthetic approach is still highly required. In this study, nanocrystal-graphene hybrids were successfully synthesized in high-boiling-point organic solvents. Graphene oxide (GO) nanosheets were modified by oleylamine (OLA) to form a OLA-GO complex in order to be readily incorporated into hydrophobic synthesis. A rich library of highly crystalline nanocrystals, with types including noble metal, metal oxide, magnetic material and semiconductor were successfully grown on chemically converted graphene (CCG), which is simultaneously reduced from GO during the synthesis. High boiling-point solvents afford sufficient thermal energy to assure the high-quality crystalline nature of NCs, therefore the post-annealing process is obviated. Controlled experiments revealed that OLA-GO triggers heterogeneous nucleation and serves as excellent nuclei anchorage media. The protocol developed here brings one step closer to achieve "unity in diversity" on the preparation of nanocrystal-graphene hybrids.

  2. Ionic Liquids Beyond Simple Solvents: Glimpses at the State of the Art in Organic Chemistry

    PubMed Central

    Kuchenbuch, Andrea

    2015-01-01

    Abstract Within the last 25 years ionic liquids have written a tremendous success story, which is documented in a nearly uncountable amount of original research papers, reviews, and numerous applications in research and industry. These days, ionic liquids can be considered as a mature class of compounds for many different applications. Frequently, they are used as neoteric solvents for chemical tansformations, and the number of reviews on this field of research is huge. In this focused review, though, we are trying to evaluate the state of the art of ionic liquid chemistry beyond using them simply as solvents for chemical transformations. It is not meant to be a comprehensive overview on the topic; the choice of emphasis and examples rather refects the authors’ personal view on the field. We are especially highlighting fields in which we believe the most fundamental developments within the next five years will take place: biomass processing, (chiral) ionic liquids from natural sources, biotransformations, and organic synthesis. PMID:27308192

  3. Physicochemical characteristics of reverse micelles of polyoxyethylene nonyl phenol in different organic solvents.

    PubMed

    Ghosh, Sujit Kumar; Khatua, Pijus Kanti; Bhattacharya, Subhash Chandra

    2004-11-15

    The association of polyoxyethylene nonyl phenol (Igepal) in four different organic solvents such as chloroform, carbon tetrachloride, cyclohexane, and heptane has been studied. The critical micellar concentration of the reverse micelle (RM) formed in different nonaqueous media has been determined using four different techniques: UV-visible spectroscopy, fluorescence spectroscopy, Stokes shift, and NMR spectroscopic studies. From the correlation of cmc with hydrophile-lipophile balance (HLB), we have found that cmc decreases with decrease in HLB. The obtained cmc values using different methods have been found to be consistent and facilitate the determination of DeltaG values associated with the micellization. The association constant of the dye molecule Safranine T (ST) with the reverse micelle, aggregation number of the surfactant monomer, and location of fluorophore in the RM have been determined. The vertical ionization potential of Igepal, electron affinity of the dye, and the degree of charge transfer have been estimated by the theoretical AM1 calculations. A linear relationship has been obtained between cmc(s) and the ionization potential of the solvents. The polarity of the micelle solubilization sites has been determined from the solvatochromic shift, Kosower Z value, and ET(30) value.

  4. Characterization of racemization of chiral pesticides in organic solvents and water.

    PubMed

    Li, Zhaoyang; Wu, Tong; Li, Qiaoling; Zhang, Bingzhu; Wang, Weixiao; Li, Jingyin

    2010-09-03

    Eight chiral pesticides, which were selected to cover different pesticide species and origins of chirality, were investigated to explore their chiral stability in organic solvents and water. Profenophos, fenamiphos, quizalofop-ethyl, dichlorprop-methyl (DCPP-methyl) and acetochlor were showed stable under all test conditions. However, significant racemization was observed for malathion, phenthoate and fenpropathrin in methanol, ethanol and water, but not in n-hexane, isopropanol, acetone or methylene chloride. The kinetic parameters (rate constant k and half-life T(1/2)) of the abiotic racemization were calculated through a mathematical model of the first-order reaction. Furthermore, the extent of racemization varied among the solvents and was also affected by temperature dependence. The racemization of malathion, phenthoate and fenpropathrin in water was documented to be pH-dependent and took place more rapidly at pH 7.0 than at pH 5.8. The observed racemization was deduced to occur via a proton exchange process at the chiral center, and the relationship between the abiotic racemization and pesticide structure was further explored. Findings from this study are useful for better understanding enantioselectivity of chiral pesticides in environment and also for proper analysis, formulating or handling of enantiopure products.

  5. Behaviour of water bound in bone marrow cells affected by organic solvents of different polarity.

    PubMed

    Turov, Vladimir V; Kerus, Sergey V; Gun'ko, Vladimir M

    2009-08-01

    The behaviour of intracellular water affected by organic solvents of different polarity in partially dehydrated marrow cells obtained from tubular bones of broiler chickens was studied using (1)H NMR spectroscopy at 210-290K. The (1)H NMR spectra of intracellular water include two signals which can be assigned to strongly (SAW, chemical shift of the proton resonance delta(H)=4-5ppm) and weakly (WAW, delta(H)=1.2-1.7ppm) associated waters which can be also divided into weakly (WBW, frozen at 250-0.8kJ/mol) and strongly (SBW, unfrozen at T<250K, DeltaG<-0.8kJ/mol) bound intracellular waters. Solvents of different polarity such as dimethylsulfoxide-d(6) (Me(2)SO-d(6)), acetonitrile-d(3), and chloroform-d differently affect structure, Gibbs free energy, and molecular mobility of intracellular water. A maximal fraction of SBW in WAW and a minimal fraction of SBW in SAW are observed on absorption of acetonitrile (0.8g/g) by cells. The opposite results are on addition of Me(2)SO (0.8g/g) which strongly changes organisation of intracellular water and enhances the freezing point depression of SBW.

  6. The intercalation of a vermiculite by cationic surfactants and its subsequent swelling with organic solvents.

    PubMed

    Williams-Daryn, S; Thomas, R K

    2002-11-15

    We have measured the dimensions of the interlamellar space following intercalation of a vermiculite by a range of cationic surfactants and followed the subsequent swelling of the organoclay compounds with several organic solvents. A single vermiculite (Eucatex) was used with three series of surfactants, N-alkyltrimethylammonium bromides, N,N'-dialkyldimethylammonium bromides, and the gemini cationic surfactants, alpha,omega-bis (N-alkyldimethylammonium) alkanes. In all cases well-defined stoichiometric compounds are obtained and the amount of surfactant intercalating the layer indicates that there are two factors controlling this amount, charge neutralization of the clay and hydrophobic packing. Packing arguments are used to deduce the fraction of non-charge-neutralizing material in the interlamellar space. It is clear that by altering the surfactant charge and structure it is possible to control the degree to which adsorption beyond charge neutralization occurs in these complexes, which is important when the capacity of such complexes to sorb other materials is considered. The general pattern of swelling of the surfactant/vermiculite complex by toluene suggests that the maximum expansion of the intralamellar space is limited by the longest chain in the surfactant. In contrast to earlier results we found that these vermiculites could be swollen by alkanes as well as aromatic solvents. This is attributed to the greater hydrophobicity of the interior of an organoclay formed from a clay of higher charge density.

  7. Modified Anaerobic Digestion Model No.1 for dry and semi-dry anaerobic digestion of solid organic waste.

    PubMed

    Liotta, Flavia; Chatellier, Patrice; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco

    2015-01-01

    The role of total solids (TS) content in anaerobic digestion of selected complex organic matter, e.g. rice straw and food waste, was investigated. A range of TS from wet (4.5%) to dry (23%) was evaluated. A modified version of the Anaerobic Digestion Model No.1 for a complex organic substrate is proposed to take into account the effect of the TS content on anaerobic digestion. A linear function that correlates the kinetic constants of three specific processes (i.e. disintegration, acetate and propionate up-take) was included in the model. Results of biomethanation and volatile fatty acids production tests were used to calibrate the proposed model. Model simulations showed a good agreement between numerical and observed data.

  8. The effects of organic solvents and their co-solvents on the optical, structural, morphological of P3HT:PCBM organic solar cells

    NASA Astrophysics Data System (ADS)

    Kadem, Burak Y.; Hassan, Aseel K.; Cranton, Wayne

    2016-07-01

    The effect of different solvents on the optical, structural, morphology and solar cell performance of P3HT:PCBM based devices were carried out using UV-visible absorption spectroscopy, XRD, AFM, SEM, electrical conductivity as well as current density-voltage (J-V) measurements in dark and under illumination. Chloroform (CF), chlorobenzene (CB), di-chlorobenzene (DCB), and their mixtures (DCB:CB, DCB:CF and CF:CB) in the ratio 1:1 were used as solvents to produce active layers of P3HT:PCBM heterojunctions. UV-visible absorption spectra have demonstrated different absorption intensities subject to the used solvents as well as a decrease in the optical bandgap from around 1.9eV to 1.8eV. AFM and SEM images gave an indication on the films' morphological properties, which have exhibited different topographies due to the used solvent. The electrical conductivity as well as the dark J-V characteristics were analysed using Richardson-Schottky model as well as space charge limited conduction theory to evaluate the diode properties of the produced solar cells. The electrical conductivity were found to vary from 9.7-77.7 mS.cm-1 and the higher values were associated with using CB:CF co-solvents based devices while the series resistance decreased from 33.3KΩ to 0.54KΩ using the same co-solvents. This was associated with an increase in the charge carriers' mobility that reached 6.69x10-6 cm2V-1s-1 in CB:CF based device. OSC devices produced using CB:CF co-solvents has exhibited the highest performance with PCE=2.73%, FF=53% and Jsc=8.3mA.cm-2 while Voc remained unchanged.

  9. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    DOE PAGES

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; ...

    2016-01-29

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less

  10. Resin-supported catalysts for CuAAC click reactions in aqueous or organic solvents.

    PubMed

    Presolski, Stanislav I; Mamidyala, Sreeman K; Manzenrieder, Florian; Finn, M G

    2012-10-08

    The copper-catalyzed azide-alkyne cycloaddition click reaction is a valuable process for the synthesis of libraries of drug candidates, derivatized polymers and materials, and a wide variety of other functional molecules. In some circumstances, the removal of the copper catalyst is both necessary and inconvenient. We describe here two immobilized forms of a Cu-binding ligand that has been shown to accelerate triazole formation under many different conditions, using different resin supports that are appropriate for aqueous or organic solvents. Copper leaching from these resins was modest, allowing them to be reused in many reaction/filtration cycles without recharging with metal ion. The utility of this catalyst form was demonstrated in the convenient synthesis of 20 N-acetylgalactosamine derivatives for biological testing.

  11. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents.

    PubMed

    Dubin, Sergey; Gilje, Scott; Wang, Kan; Tung, Vincent C; Cha, Kitty; Hall, Anthony S; Farrar, Jabari; Varshneya, Rupal; Yang, Yang; Kaner, Richard B

    2010-07-27

    Refluxing graphene oxide (GO) in N-methyl-2-pyrrolidinone (NMP) results in deoxygenation and reduction to yield a stable colloidal dispersion. The solvothermal reduction is accompanied by a color change from light brown to black. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images of the product confirm the presence of single sheets of the solvothermally reduced graphene oxide (SRGO). X-ray photoelectron spectroscopy (XPS) of SRGO indicates a significant increase in intensity of the C=C bond character, while the oxygen content decreases markedly after the reduction is complete. X-ray diffraction analysis of SRGO shows a single broad peak at 26.24 degrees 2theta (3.4 A), confirming the presence of graphitic stacking of reduced sheets. SRGO sheets are redispersible in a variety of organic solvents, which may hold promise as an acceptor material for bulk heterojunction photovoltaic cells, or electromagnetic interference shielding applications.

  12. Thermodynamic study of the transfer of acetanilide and phenacetin from water to different organic solvents.

    PubMed

    Baena, Yolima; Pinzón, Jorge A; Barbosa, Helber J; Martínez, Fleming

    2005-06-01

    The molar (K(C)(o/w)) and rational (K(X)(o/w)) partition coefficients in the octanol/buffer, i-propyl myristate/buffer, chloroform/buffer, and cyclohexane/buffer systems were determined for acetanilide and phenacetin at 25.0, 30.0, 35.0, and 40.0 degrees C. In all cases except for cyclohexane, the K(C)(o/w) and K(X)(o/w) values were greater than unity. This demonstrates that these two drugs have predominantly lipophilic behavior. Gibbs and van't Hoff thermodynamic analyses have revealed that the transfer of these drugs from water to organic solvents is spontaneous and that it is mainly driven enthalpically for i-propyl myristate and chloroform, and entropy-driven for octanol and cyclohexane.

  13. Glycerol and derived solvents: new sustainable reaction media for organic synthesis.

    PubMed

    Díaz-Álvarez, Alba E; Francos, Javier; Lastra-Barreira, Beatriz; Crochet, Pascale; Cadierno, Victorio

    2011-06-14

    The rapid growth of the biodiesel industry has led to a large surplus of its major byproduct, i.e. glycerol, for which new applications need to be found. Research efforts in this area have focused mainly on the development of processes for converting glycerol into value-added chemicals and its reforming for hydrogen production, but recently, in line with the increasing interest in the use of alternative greener solvents, an innovative way to revalorize glycerol and some of its derivatives has seen the light, i.e. their use as environmentally friendly reaction media for synthetic organic chemistry. The aim of the present Feature Article is to provide a comprehensive overview on the developments reached in this field.

  14. Molecular Characteristics of Kraft-AQ Pulping Lignin Fractionated by Sequential Organic Solvent Extraction

    PubMed Central

    Wang, Kun; Xu, Feng; Sun, Runcang

    2010-01-01

    Kraft-AQ pulping lignin was sequentially fractionated by organic solvent extractions and the molecular properties of each fraction were characterized by chemical degradation, GPC, UV, FT-IR, 13C-NMR and thermal analysis. The average molecular weight and polydispersity of each lignin fraction increased with its hydrogen-bonding capacity (Hildebrand solubility parameter). In addition, the ratio of the non-condensed guaiacyl/syringyl units and the content of β-O-4 linkages increased with the increment of the lignin fractions extracted successively with hexane, diethylether, methylene chloride, methanol, and dioxane. Furthermore, the presence of the condensation reaction products was contributed to the higher thermal stability of the larger molecules. PMID:21152286

  15. From nanoscale liquid spheres to anisotropic crystalline particles of tin: decomposition of decamethylstannocene in organic solvents.

    PubMed

    Dreyer, Axel; Ennen, Inga; Koop, Thomas; Hütten, Andreas; Jutzi, Peter

    2011-11-04

    Routes are presented for synthesizing nano- and mesostructured β-tin particles in the form of monocrystalline spheres, cubes, and bars, as well as polycrystalline rods and needles, by the decomposition of decamethylstannocene in organic solvents under various conditions. The formation of the observed shapes is based on the presence of liquidlike and of partly crystalline droplets. These particle stages allow structure-determining processes such as entire coalescence, oriented superficial coalescence or superficial induced crystallization. Entire coalescence and oriented superficial coalescence take place in the absence of surfactants; the superficially induced crystallization occurs in the presence of ionic additives. The observed tin morphologies depend on the competition between droplet growth and crystallization behavior. The different tin particles are investigated by electron microscopy (SEM, TEM, HRTEM), selected area electron diffraction (SAED), and differential scanning calorimetry (DSC).

  16. Molecular interactions of 1,4-dihydropyridine derivatives with selected organic solvents: A volumetric, spectroscopic and computational study

    NASA Astrophysics Data System (ADS)

    Zega, Anamarija; Srčič, Stane; Mavri, Janez; Bešter-Rogač, Marija

    2008-03-01

    Using a combination of volumetric measurements and FTIR spectroscopy, solute-solvent interactions have been investigated for 1,4-DHPs in selected organic solvents that mimic the environments of drug production, delivery and the environment from which they reach the site of its activity. Vibrational analysis of 1,4-DHPs and 1,4-DHPs complexes with the solvents has been performed on a medium-high quantum chemical level. Uncharged 1,4-DHPs act in a protic solvent as hydrogen bond acceptors, mainly via the carbonyl group, and, in all other investigated solvents, as a hydrogen bond donor via the hydrogen on the nitrogen. The behaviour of amlodipine besilate differs significantly from that of other compounds. Volumetric measurements proved an effective method for investigating the interactions of uncharged and charged 1,4-DHPs with solvents, and correlated well with FTIR spectroscopy results. This approach can be extended to consider several solvent molecules, perform thermal averaging and to calculate the vibrational spectrum beyond the harmonic approximation. Atomic simulation of antagonistic activity of this class of compounds, by considering the receptor site and the ionic channel, remains a challenge for future decades.

  17. Appearance of a stress-response protein, phage-shock protein A, in Escherichia coli exposed to hydrophobic organic solvents.

    PubMed

    Kobayashi, H; Yamamoto, M; Aono, R

    1998-02-01

    A 28 kDa protein associated with the inner membrane was induced strongly in Escherichia coli K-12 cells grown in the presence of a hydrophobic organic solvent, n-hexane or cyclooctane. These organic solvents suppressed the growth (growth rate and yield) of E. coli. A partial amino acid sequence showed that this protein was the phage-shock protein PspA. PspA is known to be induced in E. coli cells under extreme stress conditions. The results suggest that E. coli cells are subject to strong stress in the presence of organic solvents. Introduction of a multi-copy plasmid vector carrying the psp operon into E. coli improved the survival frequency of cells exposed suddenly to n-hexane but not the growth rate of cells growing in the presence of n-hexane.

  18. Solvent effects of a dimethyldicyanoquinonediimine buffer layer as N-type material on the performance of organic photovoltaic cells.

    PubMed

    Yang, Eui Yeol; Oh, Se Young

    2014-08-01

    In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.

  19. Is dry deposition of semi-volatile organic gases a significant loss of secondary organic aerosols (SOA)?

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Aumont, B.; Knote, C. J.; Lee-Taylor, J. M.; Madronich, S.

    2013-12-01

    Dry deposition removal of semi-volatile organic compounds from the atmosphere and its impact on organic aerosol mass is currently under-explored and not well represented in chemistry-climate models, especially for the many complex partly oxidized organics involved in particle formation. The main reason for this omission is that current models use simplified SOA mechanisms that lump precursors and their products into volatility bins, therefore losing information on important properties of individual molecules (or groups) that are needed to calculate dry deposition. In this study, we apply the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to simulate SOA formation and estimate the influence of dry deposition of gas-phase organics on SOA concentrations downwind of an urban area (Mexico City), as well as over a pine forest. SOA precursors considered here include short- and long-chain alkanes (C3-25), alkenes, light aromatics, isoprene and monoterpenes. We show that dry deposition of oxidized gases is not an efficient sink for anthropogenic SOA, as it removes <5% of SOA within the city's boundary layer and ~15% downwind. The effect on biogenic SOA is however significantly larger. We discuss reasons for these differences, and investigate separately the impacts on short and long-chain species. We show that the dry deposition is competing with the uptake of gases to the aerosol phase. In the absence of this condensation, ~50% of the regionally produced mass downwind of Mexico City would have been dry-deposited. However, because dry deposition of submicron aerosols is slow, condensation onto particles protects organic gases from deposition and therefore increases their atmospheric burden and lifetime. We use the explicit GECKO-A model to build an empirical parameterization for use in 3D models. Removal (dry and wet) of organic vapors depends on their solubility, and required Henry's law solubility coefficients were estimated for

  20. Solvent wash solution

    DOEpatents

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  1. Solvent wash solution

    DOEpatents

    Neace, James C.

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  2. Optimization of solution-processed oligothiophene:fullerene based organic solar cells by using solvent additives.

    PubMed

    Schulz, Gisela L; Urdanpilleta, Marta; Fitzner, Roland; Brier, Eduard; Mena-Osteritz, Elena; Reinold, Egon; Bäuerle, Peter

    2013-01-01

    The optimization of solution-processed organic bulk-heterojunction solar cells with the acceptor-substituted quinquethiophene DCV5T-Bu 4 as donor in conjunction with PC61BM as acceptor is described. Power conversion efficiencies up to 3.0% and external quantum efficiencies up to 40% were obtained through the use of 1-chloronaphthalene as solvent additive in the fabrication of the photovoltaic devices. Furthermore, atomic force microscopy investigations of the photoactive layer gave insight into the distribution of donor and acceptor within the blend. The unique combination of solubility and thermal stability of DCV5T-Bu 4 also allows for fabrication of organic solar cells by vacuum deposition. Thus, we were able to perform a rare comparison of the device characteristics of the solution-processed DCV5T-Bu 4 :PC61BM solar cell with its vacuum-processed DCV5T-Bu 4 :C60 counterpart. Interestingly in this case, the efficiencies of the small-molecule organic solar cells prepared by using solution techniques are approaching those fabricated by using vacuum technology. This result is significant as vacuum-processed devices typically display much better performances in photovoltaic cells.

  3. Solvents induced ZnO nanoparticles aggregation associated with their interfacial effect on organic solar cells.

    PubMed

    Li, Pandeng; Jiu, Tonggang; Tang, Gang; Wang, Guojie; Li, Jun; Li, Xiaofang; Fang, Junfeng

    2014-10-22

    ZnO nanofilm as a cathode buffer layer has surface defects due to the aggregations of ZnO nanoparticles, leading to poor device performance of organic solar cells. In this paper, we report the ZnO nanoparticles aggregations in solution can be controlled by adjusting the solvents ratios (chloroform vs methanol). These aggregations could influence the morphology of ZnO film. Therefore, compact and homogeneous ZnO film can be obtained to help achieve a preferable power conversion efficiency of 8.54% in inverted organic solar cells. This improvement is attributed to the decreased leakage current and the increased electron-collecting efficiency as well as the improved interface contact with the active layer. In addition, we find the enhanced maximum exciton generation rate and exciton dissociation probability lead to the improvement of device performance due to the preferable ZnO dispersion. Compared to other methods of ZnO nanofilm fabrication, it is the more convenient, moderate, and effective to get a preferable ZnO buffer layer for high-efficiency organic solar cells.

  4. Effect of the mineral components of brown coals on the properties of organic matter in the interaction with solvents

    SciTech Connect

    P.N. Kuznetsov; L.I. Kuznetsova

    2008-12-15

    The cation-exchange forms of a considerable portion of metals that occur in brown coals from various deposits were identified. Based on swelling data, the interaction of the organic matter of coals with solvents was studied depending on the concentrations of mineral components. It was found that natural brown coals exhibit a densely crosslinked supramolecular structure with the predominance of molecular-size pores. In the course of decationization, the organic matter underwent partial depolymerization; the rate of diffusion and the accessibility of fragments to solvents with relatively bulky molecules dramatically increased.

  5. Formulation of a biodegradable, odor-reducing cat litter from solvent-extracted corn dried distillers grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cats are among the most popular pets in the U.S., and the majority of these animals are kept indoors where litter boxes containing some type of absorbent litter material are needed. Dried distillers grains (DDGs) are one of the two major co-products (with carbon dioxide) of the corn ethanol industry...

  6. Formulation of a biodegradable, odor-reducing cat litter from solvent-extracted corn dried distillers grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cats are among the most popular pets in the U.S., and the majority of these animals are kept indoors where litter boxes containing some type of absorbent litter material are needed. Dried distillers grains (DDGs) are a major co-product of the ethanol industry, and are principally sold as animal fee...

  7. Turn-on luminescence sensing and real-time detection of traces of water in organic solvents by a flexible metal-organic framework.

    PubMed

    Douvali, Antigoni; Tsipis, Athanassios C; Eliseeva, Svetlana V; Petoud, Stéphane; Papaefstathiou, Giannis S; Malliakas, Christos D; Papadas, Ioannis; Armatas, Gerasimos S; Margiolaki, Irene; Kanatzidis, Mercouri G; Lazarides, Theodore; Manos, Manolis J

    2015-01-26

    The development of efficient sensors for the determination of the water content in organic solvents is highly desirable for a number of chemical industries. Presented herein is a Mg(2+) metal-organic framework (MOF), which exhibits the remarkable capability to rapidly detect traces of water (0.05-5 % v/v) in various organic solvents through an unusual turn-on luminescence sensing mechanism. The extraordinary sensitivity and fast response of this MOF for water, and its reusability make it one of the most powerful water sensors known.

  8. Volatile organic compound emissions from dry mill fuel ethanol production.

    PubMed

    Brady, Daniel; Pratt, Gregory C

    2007-09-01

    Ethanol fuel production is growing rapidly in the rural Midwest, and this growth presents potential environmental impacts. In 2002, the U.S. Environmental Protection Agency (EPA) and the Minnesota Pollution Control Agency (MPCA) entered into enforcement actions with 12 fuel ethanol plants in Minnesota. The enforcement actions uncovered underreported emissions and resulted in consent decrees that required pollution control equipment be installed. A key component of the consent decrees was a requirement to conduct emissions tests for volatile organic compounds (VOCs) with the goal of improving the characterization and control of emissions. The conventional VOC stack test method was thought to underquantify total VOC emissions from ethanol plants. A hybrid test method was also developed that involved quantification of individual VOC species. The resulting database of total and speciated VOC emissions from 10 fuel ethanol plants is relatively small, but it is the most extensive to date and has been used to develop and gauge compliance with permit limits and to estimate health risks in Minnesota. Emissions were highly variable among facilities and emissions units. In addition to the variability, the small number of samples and the presence of many values below detection limits complicate the analysis of the data. To account for these issues, a nested bootstrap procedure on the Kaplan-Meier method was used to calculate means and upper confidence limits. In general, the fermentation scrubbers and fluid bed coolers emitted the largest mass of VOC emissions. Across most facilities and emissions units ethanol was the pollutant emitted at the highest rate. Acetaldehyde, acetic acid, and ethyl acetate were also important emissions from some units. Emissions of total VOCs, ethanol, and some other species appeared to be a function of the beer feed rate, although the relationship was not reliable enough to develop a production rate-based emissions factor.

  9. Effect of organic solvents on Li+ ion solvation and transport in ionic liquid electrolytes: a molecular dynamics simulation study.

    PubMed

    Li, Zhe; Borodin, Oleg; Smith, Grant D; Bedrov, Dmitry

    2015-02-19

    Molecular dynamics simulations of N-methyl-N-propylpyrrolidinium (pyr13) bis(trifluoromethanesulfonyl)imide (Ntf2) ionic liquid [pyr13][Ntf2] doped with [Li][Ntf2] salt and mixed with acetonitrile (AN) and ethylene carbonate (EC) organic solvents were conducted using polarizable force field. Structural and transport properties of ionic liquid electrolytes (ILEs) with 20 and 40 mol % of organic solvents have been investigated and compared to properties of neat ILEs. Addition of AN and EC solvents to ILEs resulted in the partial displacement of the Ntf2 anions from the Li(+) first coordination shell by EC and AN and shifting the Li-Ntf2 coordination from bidentate to monodentate. The presence of organic solvents in ILE has increased the ion mobility, with the largest effect observed for the Li(+) cation. The Li(+) conductivity has doubled with addition of 40 mol % of AN. The Li(+)-N(Ntf2) residence times were dramatically reduced with addition of solvents, indicating an increasing contribution from structural diffusion of the Li(+) cations.

  10. Characterisation of inorganic elements and volatile organic compounds in the dried sea cucumber Stichopus japonicus.

    PubMed

    Lee, Hae-Won; Lim, Na-Lae; Cho, Kichul; Yang, Hye Young; Yim, Kyung June; Kim, Mi-Ju; Lee, Myunglip; Kim, Dong Hyeun; Koh, Hyoung Bum; Jung, Won-Kyo; Roh, Seong Woon; Kim, Daekyung

    2014-03-15

    The sea cucumber Stichopus japonicus lives in a variety of marine habitats and is an important cultivated edible aquatic species in East Asia. In this study, S. japonicus, collected from the sea near Jeju Island of Korea, was lyophilised or vacuum-dried and then analysed by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma mass spectrometry (ICP-MS). The GC-MS profiles of vacuum-dried and lyophilised samples differed. Based on direct injection and static headspace analysis, 37 volatile organic compounds (VOCs) were identified in vacuum-dried samples and 33 VOCs were identified in lyophilised samples. Therefore, the odour of vacuum-dried sea cucumber is thought to be due to the presence of various VOCs that are absent in lyophilised sea cucumber. According to ICP-MS analysis, the levels of 15 inorganic elements were slightly higher in lyophilised samples than in vacuum-dried samples. The results of the inorganic and organic chemical analyses provide information about the composition of dried sea cucumber.

  11. Poly(ethylene glycol)-based ionic liquids: properties and uses as alternative solvents in organic synthesis and catalysis.

    PubMed

    Cecchini, Martina Maya; Charnay, Clarence; De Angelis, Francesco; Lamaty, Frédéric; Martinez, Jean; Colacino, Evelina

    2014-01-01

    PEG-based ionic liquids are a new appealing group of solvents making the link between two distinct but very similar fluids: ionic liquids and poly(ethylene glycol)s. They find applications across a range of innumerable disciplines in science, technology, and engineering. In the last years, the possibility to use these as alternative solvents for organic synthesis and catalysis has been increasingly explored. This Review highlights strategies for their synthesis, their physical properties (critical point, glass transition temperature, density, rheological properties), and their application in reactions catalyzed by metals (such as Pd, Cu, W, or Rh) or as organic solvent (for example for multicomponent reactions, organocatalysis, CO2 transformation) with special emphasis on their toxicity, environmental impact, and biodegradability. These aspects, very often neglected, need to be considered in addition to the green criteria usually considered to establish ecofriendly processes.

  12. Reactivation strategies by unfolding/refolding of chymotrypsin derivatives after inactivation by organic solvents.

    PubMed

    Soler, G; Bastida, A; Blanco, R M; Fernández-Lafuente, R; Guisán, J M

    1997-04-25

    Immobilized enzyme derivatives, in organic media at neutral pH and moderate temperatures, should be mainly and perhaps uniquely inactivated by promotion of conformational changes on their 3D structure. Subsequent irreversible inactivation mechanisms (intermolecular aggregations, chemical modifications, thiol-disulfide exchanges) are thus impossible. However, simple reincubation in aqueous medium of enzymes previously inactivated by solvents usually yields significant but slow and incomplete reactivations. Disruption of incorrect protein structures by denaturing agents (urea, guanidine) is proposed as a new strategy to get rapid, complete and technologically feasible reactivations. By using multipoint immobilized chymotrypsin derivatives, we have evaluated the possibility of unfolding and further refolding of native (non-inactivated) derivatives by different denaturing conditions. After unfolding in 8 M guanidine, derivatives were quickly and completely refolded up to 100% of catalytic activity in 10 minutes. Besides, successive cycles of unfolding and refolding could be exactly reproduced. Finally we checked the possibility to reactivate chymotrypsin derivatives inactivated by dioxane. Simple reincubations in aqueous media yielded a poor reactivation even after 24 hours. However, unfolding in 8 M guanidine enabled complete reactivation in less than 2 hours. From this point of view, by working under 'chemically inert conditions' (moderate pH and temperatures), fully dispersed covalently immobilized enzyme derivatives seem to behave as almost everlasting catalysts despite the very deleterious effect of organic media.

  13. Esterification degree of fructose laurate exerted by Candida antarctica lipase B in organic solvents.

    PubMed

    Li, Lu; Ji, Fangling; Wang, Jingyun; Li, Yachen; Bao, Yongming

    2015-02-01

    Sugar esters of fatty acids have many applications as biocompatible and biodegradable emulsifiers, which are determined by their degrees of esterification (DE). Direct esterification of fructose with lauric acid in organic media used commercial immobilized Candida antarctica lipase B (CALB) was investigated for DE. Significant difference of DE was observed between 2-methyl-2-butanol (2M2B) and methyl ethyl ketone (MEK), as di-ester/mono-ester molar ratio of 1.05:1 in 2M2B and 2.79:1 in MEK. Fourier transform infrared (FTIR) spectra showed that the secondary structure of the enzyme binding mono-ester presented distinct difference in 2M2B and MEK. Contents of β-turn and antiparallel β-sheet of CALB in 2M2B were 26.9% and 16.2%, respectively, but 19.1% and 13.2% in MEK. To understand the relationship between the conformational changes and differences of DE, mono-ester and fatty acid were directly employed for synthesis of di-ester. The maximum initial velocity of di-ester synthesis in MEK was 0.59 mmolg(enzyme)(-1)h(-1), which was 2.19-fold as greater as that in 2M2B, indicating that CALB conformation in MEK was preferred for the synthesis of di-ester. These results demonstrated that the conformation of CALB binding mono-ester affected by organic solvents essentially determined DE.

  14. Investigations on diffusion limitations of biocatalyzed reactions in amphiphilic polymer conetworks in organic solvents.

    PubMed

    Schoenfeld, Ina; Dech, Stephan; Ryabenky, Benjamin; Daniel, Bastian; Glowacki, Britta; Ladisch, Reinhild; Tiller, Joerg C

    2013-09-01

    The use of enzymes as biocatalysts in organic media is an important issue in modern white biotechnology. However, their low activity and stability in those media often limits their full-scale application. Amphiphilic polymer conetworks (APCNs) have been shown to greatly activate entrapped enzymes in organic solvents. Since these nanostructured materials are not porous, the bioactivity of the conetworks is strongly limited by diffusion of substrate and product. The present manuscript describes two different APCNs as nanostructured microparticles, which showed greatly increased activities of entrapped enzymes compared to those of the already activating membranes and larger particles. We demonstrated this on the example of APCN particles based on PHEA-l-PDMS loaded with α-Chymotrypsin, which resulted in an up to 28,000-fold higher activity of the enzyme compared to the enzyme powder. Furthermore, lipase from Rhizomucor miehei entrapped in particles based on PHEA-l-PEtOx was tested in n-heptane, chloroform, and substrate. Specific activities in smaller particles were 10- to 100-fold higher in comparison to the native enzyme. The carrier activity of PHEA-l-PEtOx microparticles was tenfold higher with some 25-50-fold lower enzyme content compared to a commercial product.

  15. Discovery a novel organic solvent tolerant esterase from Salinispora arenicola CNP193 through genome mining.

    PubMed

    Fang, Yaowei; Wang, Shujun; Liu, Shu; Jiao, Yuliang

    2015-09-01

    An esterase gene, encoding a 325-amino-acid protein (SAestA), was mined form obligate marine actinomycete strain Salinispora arenicola CNP193 genome sequence. Phylogenetic analysis of the deduced amino acid sequence showed that the enzyme belonged to the family IV of lipolytic enzymes. The gene was cloned, expressed in Escherichia coli as a His-tagged protein, purified and characterized. The molecular weight of His-tagged SAestA is ∼38 kDa. SAestA-His6 was active in a temperature (5-40 °C) and pH range (7.0-11.0), and maximal activity was determined at pH 9.0 and 30 °C. The activity was severely inhibited by Hg(2+), Cu(2+), and Zn(2+). In particular, this enzyme showed remarkable stability in presence of organic solvents (25%, v/v) with log P>2.0 even after incubation for 7 days. All these characteristics suggested that SAestA may be a potential candidate for application in industrial processes in aqueous/organic media.

  16. Cold-adapted organic solvent tolerant alkalophilic family I.3 lipase from an Antarctic Pseudomonas.

    PubMed

    Ganasen, Menega; Yaacob, Norhayati; Rahman, Raja Noor Zaliha Raja Abd; Leow, Adam Thean Chor; Basri, Mahiran; Salleh, Abu Bakar; Ali, Mohd Shukuri Mohamad

    2016-11-01

    Lipolytic enzymes with cold adaptation are gaining increasing interest due to their biotechnological prospective. Previously, a cold adapted family I.3 lipase (AMS8 lipase) was isolated from an Antarctic Pseudomonas. AMS8 lipase was largely expressed in insoluble form. The refolded His-tagged recombinant AMS8 lipase was purified with 23.0% total recovery and purification factor of 9.7. The purified AMS8 lipase migrated as a single band with a molecular weight approximately 65kDa via electrophoresis. AMS8 lipase was highly active at 30°C at pH 10. The half-life of AMS8 lipase was reported at 4 and 2h under the incubation of 30 and 40°C, respectively. The lipase was stable over a broad range of pH. It showed enhancement effect in its relative activity under the presence of Li(+), Na(+), K(+), Rb(+) and Cs(+) after 30min treatment. Heavy metal ions such as Cu(2+), Fe(3+) and Zn(2+) inhibited AMS8 activity. This cold adapted alkalophilic AMS lipase was also active in various organic solvent of different polarity. These unique properties of this biological macromolecule will provide considerable potential for many biotechnological applications and organic synthesis at low temperature.

  17. Coordination conversion of cobalt(II) in binary aqueous-organic solvents

    SciTech Connect

    Khvostova, N.O.; Karapetyan, G.O.; Yanush, O.V.

    1985-11-01

    It has been shown that the thermochromic conversions of cobalt(II) in binary solvents are influenced by a number of factors: the nature of the solvent, the strength of the complexes of octahedral symmetry formed, the outer-sphere influence of the solvent on the complexes, the form of the anion, the solvation of the participants in the reaction, and the interaction of the components of the solvent with one another. A correlation between the strength and the spectral position of the absorption bands of the complexes of the activator has been established, and a spectroscopic criterion for selecting the solvents has been proposed. The expediency of using binary solvents to create effective thermochromic media with variable phototransmission has been substantiated.

  18. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753... Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5753 How do I calculate the combined organic HAP content of...

  19. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753... Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5753 How do I calculate the combined organic HAP content of...

  20. COMPARISON OF SORPTION ENERGTICS FOR HYDROPHOBIC ORGANIC CHEMICALS BY SYNTHETIC AND NATURAL SORBENTS FROM METHANOL/WATER SOLVENT MIXTURES

    EPA Science Inventory

    Reversed-phase liquid chromatography (RPLC) was used to investigate the thermodynamics and mechanisms of hydrophobic organic chemical (HOC) retention from methanol/water solvent mixtures. The enthalpy-entropy compensation model was used to infer that the hydro- phobic sorptive me...

  1. Highly efficient synthesis of endomorphin-2 under thermodynamic control catalyzed by organic solvent stable proteases with in situ product removal.

    PubMed

    Xu, Jiaxing; Sun, Honglin; He, Xuejun; Bai, Zhongzhong; He, Bingfang

    2013-02-01

    An efficient enzymatic synthesis of endomorphin-2 (EM-2) was achieved using organic solvent stable proteases in nonaqeous media, based on thermodynamic control and an in situ product removal methodology. The high stability of biocatalysts in organic solvents enabled the aleatoric modulation of the nonaqueous reaction media to shift thermodynamic equilibrium toward synthesis. Peptide Boc-Phe-Phe-NH2 was synthesized with a high yield of 96% by the solvent stable protease WQ9-2 in monophase medium with an economical molar ratio of the substrate of 1:1. The tetrapeptide Boc-Tyr-Pro-Phe-Phe-NH2 was synthesized with a yield of 88% by another organic solvent tolerant protease PT121 from Boc-Tyr-Pro-OH and Phe-Phe-NH2 in an organic-aqueous biphasic system. The reaction-separation coupling in both enzymatic processes provides "driving forces" for the synthetic reactions and gives a high yield and high productivity without purification of the intermediate, thereby making the synthesis more amenable to scale-up.

  2. To Keep or Not to Keep? The Question of Crystallographic Waters for Enzyme Simulations in Organic Solvent

    PubMed Central

    Dahanayake, Jayangika N.; Gautam, Devaki N.; Verma, Rajni; Mitchell-Koch, Katie R.

    2016-01-01

    The use of enzymes in non-aqueous solvents expands the use of biocatalysts to hydrophobic substrates, with the ability to tune selectivity of reactions through solvent selection. Non-aqueous enzymology also allows for fundamental studies on the role of water and other solvents in enzyme structure, dynamics, and function. Molecular dynamics simulations serve as a powerful tool in this area, providing detailed atomic information about the effect of solvents on enzyme properties. However, a common protocol for non-aqueous enzyme simulations does not exist. If you want to simulate enzymes in non-aqueous solutions, how many and which crystallographic waters do you keep? In the present work, this question is addressed by determining which crystallographic water molecules lead most quickly to an equilibrated protein structure. Five different methods of selecting and keeping crystallographic waters are used in order to discover which crystallographic waters lead the protein structure to reach an equilibrated structure more rapidly in organic solutions. It is found that buried waters contribute most to rapid equilibration in organic solvent, with slow-diffusing waters giving similar results. PMID:27403032

  3. Cover crop impact on weed dynamics in an organic dry bean system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops have the potential to enhance crop rotations by increasing diversity and enriching agroecosystems. Weed suppression, nutrient provisoning, and enhancements to soil biota and structure are benefits of cover crops in cropping systems, including organic dry bean production. The late spring ...

  4. Mechanistic Aspects in the Formation, Growth and Surface Functionalization of Metal Oxide Nanoparticles in Organic Solvents.

    PubMed

    Niederberger, Markus; Deshmukh, Rupali

    2017-04-04

    The synthesis of metal oxide nanoparticles in organic solvents, so-called nonaqueous (or nonhydrolytic) processes represent powerful alternatives to aqueous approaches and have become an independent research field. 10 years ago, when we published our first review on organic reaction pathways in nonaqueous sol-gel approaches,[1] the number of examples was relatively limited. Nowadays, it is almost impossible to provide an exhaustive overview. Here we review the development of the last few years, without neglecting pioneering examples, which help to follow the historical development. The importance of a profound understanding of mechanistic aspects of nanoparticle crystallization and formation mechanisms can't be overestimated, when it comes to the design of rational synthesis concepts under minimization of trial-and-error experiments. The main reason for the progress in mechanistic understanding lies in the availability of characterization tools that make it possible to monitor chemical reactions from the dissolution of the precursor to the nucleation and growth of the nanoparticles, by ex-situ methods involving sampling after different reaction times, but more and more also by in-situ studies. After a short introduction to experimental aspects of nonaqueous sol-gel routes to metal oxide nanoparticles, we provide an overview of the main and basic organic reaction pathways in these approaches. Afterwards, we summarize the main characterization methods to study formation mechanisms, and then we discuss in great depth the chemical formation mechanisms of many different types of metal oxide nanoparticles. The review concludes with a paragraph on selected crystallization mechanisms reported for nonaqueous systems and a few illustrative examples of nonaqueous sol-gel concepts applied to surface chemistry.

  5. Organic solvent wetting properties of UV and plasma treated ZnO nanorods: printed electronics approach

    NASA Astrophysics Data System (ADS)

    Sliz, Rafal; Suzuki, Yuji; Nathan, Arokia; Myllyla, Risto; Jabbour, Ghassan

    2012-09-01

    Due to low manufacturing costs, printed organic solar cells are on the short-list of renewable and environmentally- friendly energy production technologies of the future. However, electrode materials and each photoactive layer require different techniques and approaches. Printing technologies have attracted considerable attention for organic electronics due to their potentially high volume and low cost processing. A case in point is the interface between the substrate and solution (ink) drop, which is a particularly critical issue for printing quality. In addition, methods such as UV, oxygen and argon plasma treatments have proven suitable to increasing the hydrophilicity of treated surfaces. Among several methods of measuring the ink-substrate interface, the simplest and most reliable is the contact angle method. In terms of nanoscale device applications, zinc oxide (ZnO) has gained popularity, owing to its physical and chemical properties. In particular, there is a growing interest in exploiting the unique properties that the so-called nanorod structure exhibits for future 1-dimensional opto-electronic devices. Applications, such as photodiodes, thin-film transistors, sensors and photo anodes in photovoltaic cells have already been demonstrated. This paper presents the wettability properties of ZnO nanorods treated with UV illumination, oxygen and argon plasma for various periods of time. Since this work concentrates on solar cell applications, four of the most common solutions used in organic solar cell manufacture were tested: P3HT:PCBM DCB, P3HT:PCBM CHB, PEDOT:PSS and water. The achieved results prove that different treatments change the contact angle differently. Moreover, solvent behaviour varied uniquely with the applied treatment.

  6. Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    PubMed Central

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki–Miyaura coupling is reported. Although Suzuki–Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a “green” alcohol solvent. The experiment employs heterocyclic substrates, which are important pharmaceutical building blocks. Thus, this laboratory procedure exposes students to a variety of contemporary topics in organic chemistry, including transition metal-catalyzed cross-couplings, green chemistry, and the importance of heterocycles in drug discovery, none of which are well represented in typical undergraduate organic chemistry curricula. The experimental protocol uses commercially available reagents and is useful in both organic and inorganic instructional laboratories. PMID:25774064

  7. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory.

    PubMed

    Hie, Liana; Chang, Jonah J; Garg, Neil K

    2015-03-10

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The experiment employs heterocyclic substrates, which are important pharmaceutical building blocks. Thus, this laboratory procedure exposes students to a variety of contemporary topics in organic chemistry, including transition metal-catalyzed cross-couplings, green chemistry, and the importance of heterocycles in drug discovery, none of which are well represented in typical undergraduate organic chemistry curricula. The experimental protocol uses commercially available reagents and is useful in both organic and inorganic instructional laboratories.

  8. [Effects of snow cover on water soluble and organic solvent soluble components during foliar litter decomposition in an alpine forest].

    PubMed

    Xu, Li-Ya; Yang, Wan-Qin; Li, Han; Ni, Xiang-Yin; He, Jie; Wu, Fu-Zhong

    2014-11-01

    Seasonal snow cover may change the characteristics of freezing, leaching and freeze-thaw cycles in the scenario of climate change, and then play important roles in the dynamics of water soluble and organic solvent soluble components during foliar litter decomposition in the alpine forest. Therefore, a field litterbag experiment was conducted in an alpine forest in western Sichuan, China. The foliar litterbags of typical tree species (birch, cypress, larch and fir) and shrub species (willow and azalea) were placed on the forest floor under different snow cover thickness (deep snow, medium snow, thin snow and no snow). The litterbags were sampled at snow formation stage, snow cover stage and snow melting stage in winter. The results showed that the content of water soluble components from six foliar litters decreased at snow formation stage and snow melting stage, but increased at snow cover stage as litter decomposition proceeded in the winter. Besides the content of organic solvent soluble components from azalea foliar litter increased at snow cover stage, the content of organic solvent soluble components from the other five foliar litters kept a continue decreasing tendency in the winter. Compared with the content of organic solvent soluble components, the content of water soluble components was affected more strongly by snow cover thickness, especially at snow formation stage and snow cover stage. Compared with the thicker snow covers, the thin snow cover promoted the decrease of water soluble component contents from willow and azalea foliar litter and restrain the decrease of water soluble component content from cypress foliar litter. Few changes in the content of water soluble components from birch, fir and larch foliar litter were observed under the different thicknesses of snow cover. The results suggested that the effects of snow cover on the contents of water soluble and organic solvent soluble components during litter decomposition would be controlled by

  9. The high water solubility of inclusion complex of taxifolin-γ-CD prepared and characterized by the emulsion solvent evaporation and the freeze drying combination method.

    PubMed

    Zu, Yuangang; Wu, Weiwei; Zhao, Xiuhua; Li, Yong; Zhong, Chen; Zhang, Yin

    2014-12-30

    This study selected γ-cyclodextrin (γ-CD) as the inclusion material and prepared inclusion complex of taxifolin-γ-CD by the emulsion solvent evaporation and the freeze drying combination method to achieve the improvement of the solubility and oral bioavailability of taxifolin. We selected ethyl acetate as the oil phase, deionized water as the water phase. The taxifolin emulsion was prepared using adjustable speed homogenate machine in the process of this experiment, whose particle size was related to the concentration of taxifolin solution, the volume ratio of water phase to oil phase, the speed and time of homogenate. We knew through the single-factor test that, the optimum conditions were: the concentration of taxifolin solution was 40 mg/ml, the volume ratio of water phase to oil phase was 1.5, the speed of homogenate was 5,000 rpm, the homogenate time was 11 min. Taxifolin emulsion with a MPS of 142.5 nm was obtained under the optimum conditions, then the high-concentration taxifolin solution (3mg/ml) was obtained by the rotary evaporation process. Finally, the inclusion complex of taxifolin-γ-CD was prepared by vacuum freeze-dry. The characteristics of the inclusion complex of taxifolin-γ-CD were analyzed using SEM, FTIR, XRD, DSC, and TG. The FTIR results analyzed the interaction of taxifolin and γ-CD and determined the molecular structure of the inclusion complex of taxifolin-γ-CD. The analysis results of XRD, DSC and TG indicated that the inclusion complex of taxifolin-γ-CD was obtained and showed significantly different characteristics with taxifolin. In addition, dissolving capability test, antioxidant capacity test, solvent residue test were also carried out. The experimental datas showed that the solubility of inclusion complex of taxifolin-γ-CD at 25°C and 37°C were about 18.5 times and 19.8 times of raw taxifolin, the dissolution rate of inclusion complex of taxifolin-γ-CD were about 2.84 times of raw taxifolin, the bioavailability of

  10. Use of volatile organic solvents in headspace liquid-phase microextraction by direct cooling of the organic drop using a simple cooling capsule.

    PubMed

    Ghiasvand, Ali Reza; Yazdankhah, Fatemeh; Hajipour, Somayeh

    2016-08-01

    A low-cost and simple cooling-assisted headspace liquid-phase microextraction device for the extraction and determination of 2,6,6-trimethyl-1,3 cyclohexadiene-1-carboxaldehyde (safranal) in Saffron samples, using volatile organic solvents, was fabricated and evaluated. The main part of the cooling-assisted headspace liquid-phase microextraction system was a cooling capsule, with a Teflon microcup to hold the extracting organic solvent, which is able to directly cool down the extraction phase while the sample matrix is simultaneously heated. Different experimental factors such as type of organic extraction solvent, sample temperature, extraction solvent temperature, and extraction time were optimized. The optimal conditions were obtained as: extraction solvent, methanol (10 μL); extraction temperature, 60°C; extraction solvent temperature, 0°C; and extraction time, 20 min. Good linearity of the calibration curve (R(2) = 0.995) was obtained in the concentration range of 0.01-50.0 μg/mL. The limit of detection was 0.001 μg/mL. The relative standard deviation for 1.0 μg/mL of safranal was 10.7% (n = 6). The proposed cooling-assisted headspace liquid-phase microextraction device was coupled (off-line) to high-performance liquid chromatography and used for the determination of safranal in Saffron samples. Reasonable agreement was observed between the results of the cooling-assisted headspace liquid-phase microextraction high-performance liquid chromatography method and those obtained by a validated ultrasound-assisted solvent extraction procedure.

  11. Rapid recovery of polycrystalline silicon from kerf loss slurry using double-layer organic solvent sedimentation method

    NASA Astrophysics Data System (ADS)

    Xing, Peng-fei; Guo, Jing; Zhuang, Yan-xin; Li, Feng; Tu, Gan-feng

    2013-10-01

    The rapid development of photovoltaic (PV) industries has led to a shortage of silicon feedstock. However, more than 40% silicon goes into slurry wastes due to the kerf loss in the wafer slicing process. To effectively recycle polycrystalline silicon from the kerf loss slurry, an innovative double-layer organic solvent sedimentation process was presented in the paper. The sedimentation velocities of Si and SiC particles in some organic solvents were investigated. Considering the polarity, viscosity, and density of solvents, the chloroepoxy propane and carbon tetrachloride were selected to separate Si and SiC particles. It is found that Si and SiC particles in the slurry waste can be successfully separated by the double-layer organic solvent sedimentation method, which can greatly reduce the sedimentation time and improve the purity of obtained Si-rich and SiC-rich powders. The obtained Si-rich powders consist of 95.04% Si, and the cast Si ingot has 99.06% Si.

  12. Effects of industrial effluents, heavy metals, and organic solvents on mallard embryo development

    USGS Publications Warehouse

    Hoffman, D.J.; Eastin, W.C.

    1981-01-01

    Mallard eggs were externally exposed at 3 and 8 days of incubation to 7 different industrial effluents and to 7 different heavy metal, organic solvent, and petroleum solutions to screen for potential embryo-toxic effects. This route of exposure was chosen in order to simulate the transfer of pollutant from the plumage of aquatic birds to their eggs. Five of the effluents including mineral pigment, scouring effluent, sludge, and tannery effluent resulted in small but significant reductions in embryonic growth. Treatment with methyl mercury chloride solution of 50 ppm (Hg) impaired embryonic growth but much higher concentrations were required to affect survival and cause teratogenic effects. Oil used to suppress road dust was the most toxic of the pollutants tested and only 0.5 microliter/egg caused 60% mortality by 18 days of development. These findings, in combination with other studies suggest that petroleum pollutants, or effluents in combination with petroleum, may pose a hazard to birds' eggs when exposure is by this route.

  13. Monitoring of the aerobe biodegradation of chlorinated organic solvents by stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Horváth, Anikó; Futó, István; Palcsu, László

    2014-05-01

    Our chemical-biological basic research aims to eliminate chlorinated environmental contaminants from aquifers around industrial areas in the frame of research program supported by the European Social Fund (TÁMOP-4.2.2.A-11/1/KONV-2012-0043). The most careful and simplest way includes the in situ biodegradation with the help of cultured and compound specific strains. Numerous members of Pseudomonas bacteria are famous about function of bioremediation. They can metabolism the environmental hazardous chemicals like gas oils, dyes, and organic solvents. Our research based on the Pseudomonas putida F1 strain, because its ability to degrade halogenated hydrocarbons such as trichloroethylene. Several methods were investigated to estimate the rate of biodegradation, such as the measurement of the concentration of the pollutant along the contamination pathway, the microcosm's studies or the compound specific stable isotope analysis. In this area in the Transcarpathian basin we are pioneers in the stable isotope monitoring of biodegradation. The main goal is to find stable isotope fractionation factors by stable isotope analysis, which can help us to estimate the rate and effectiveness of the biodegradation. The subsequent research period includes the investigation of the method, testing its feasibility and adaptation in the environment. Last but not least, the research gives an opportunity to identify the producer of the contaminant based on the stable isotope composition of the contaminant.

  14. Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR).

    PubMed

    Gallart-Palau, Xavier; Serra, Aida; Wong, Andrew See Weng; Sandin, Sara; Lai, Mitchell K P; Chen, Christopher P; Kon, Oi Lian; Sze, Siu Kwan

    2015-09-30

    Extracellular vesicles (EVs) such as exosomes and microvesicles mediate intercellular communication and regulate a diverse range of crucial biological processes. Host cells that are damaged, infected or transformed release biomarker-containing EVs into the peripheral circulation, where they can be readily accessed for use in diagnostic or prognostic testing. However, current methods of EV isolation from blood plasma are complex and often require relatively large sample volumes, hence are inefficient for widespread use in clinical settings. Here, we report a novel and inexpensive method of rapidly isolating EVs from small volumes of human blood plasma by PRotein Organic Solvent PRecipitation (PROSPR). PROSPR encompasses a rapid three-step protocol to remove soluble proteins from plasma via precipitation in cold acetone, leaving the lipid-encapsulated EVs behind in suspension. This generates higher purity EVs that can then be obtained from filtration or classical ultracentrifugation methods. We foresee that PROSPR-based purification of EVs will significantly accelerate the discovery of new disease biomarkers and the characterization of EVs with potential for clinical applications.

  15. Organic-solvent stability of elastase strain K overexpressed in an Escherichia-Pseudomonas expression system.

    PubMed

    Wong, Chee Fah; Salleh, Abu Bakar; Basri, Mahiran; Abd Rahman, Raja Noor Zaliha Raja

    2010-09-01

    The structural gene of elastase strain K (elastase from Pseudomonas aeruginosa strain K), namely HindIII1500PstI, was successfully sequenced to contain 1497 bp. The amino acid sequence, deduced from the nucleotide sequence, revealed that the mature elastase consists of 301 amino acids, with a molecular mass of 33.1 kDa, and contains a conserved motif HEXXH, zinc ligands and residues involved in the catalysis of elastase strain K. The structural gene was successfully cloned to a shuttle vector, pUCP19, and transformed into Escherichia coli strains TOP10, KRX, JM109 and Tuner™ pLacI as well as P. aeruginosa strains PA01 (A.T.C.C. 47085) and S5, with detection of significant protein expression. Overexpression was detected from transformants KRX/pUCP19/HindIII1500PstI of E. coli and PA01/pUCP19/HindIII1500PstI of P. aeruginosa, with increases in elastolytic activity to 13.83- and 5.04-fold respectively relative to their controls. In addition, recombinant elastase strain K showed considerable stability towards numerous organic solvents such as methanol, ethanol, acetone, toluene, undecan-1-ol and n-dodecane, which typically pose a detrimental effect on enzymes; our finding provides further information to support the potential application of the enzyme in synthetic industries, particularly peptide synthesis.

  16. Passivity and breakdown of carbon steel in organic solvent mixtures of propylene carbonate and dimethoxyethane

    SciTech Connect

    Shifler, D.A.; Kruger, J.; Moran, P.J.

    1998-07-01

    The passivity and breakdown of passivity of 1018 carbon steel in propylene carbonate (PC) and 1,2-dimethoxyethane (DME) mixtures with 0.5 molar lithium hexafluoroarsenate supporting electrolyte were examined via several electrochemical and surface analytical methods. The PC-DME/0.5 M LiAsF{sub 6} mixtures ranged from 10 to 90 mol % PC. The results from the PC/DME mixtures were compared to passivating mechanisms found in pure PC and DME solutions. In PC-rich mixtures, the breakdown of passivity occurred near the oxidation potentials of either organic solvent. Premature breakdown of the carbon steel in PC-DME mixtures occurred at sulfide inclusions as was observed earlier in PC/0.5 M LiAsF{sub 6} solutions although passive films attempted to form at these inclusion sites in mixtures containing at least 10 mol % DME. As the DME content increased in the PC-DME mixtures, the passive films formed on bare steel surfaces possessed an increasing polymer film character. In 50 and 70 mol % DME solutions nonprotective polymer films were formed. The nonprotective nature of these films indicated that PC passivation mechanisms competed and interfered with the DME mechanism of electropolymerized film formation. Only in 10 mol % PC-90 mol % DME mixtures were protective electropolymerized films formed on 1018 carbon steel.

  17. In-Vitro Characterization and Oral Bioavailability of Organic Solvent-free Solid Dispersions Containing Telmisartan

    PubMed Central

    Cao, Yue; Shi, Li-Li; Cao, Qing-Ri; Yang, Mingshi; Cui, Jing-Hao

    2016-01-01

    Poorly water-soluble drugs often suffer from limited or irreproducible clinical response due to their low solubility and dissolution rate. In this study, organic solvent-free solid dispersions (OSF-SDs) containing telmisartan (TEL) were prepared using polyvinylpyrrolidone K30 (PVP K30) and polyethylene glycol 6000 (PEG 6000) as hydrophilic polymers, sodium hydroxide (NaOH) as an alkalizer, and poloxamer 188 as a surfactant by a lyophilization method. In-vitro dissolution rate and physicochemical properties of the OSF-SDs were characterized using the USP I basket method, differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and fourier transform-infrared (FT-IR) spectroscopy. In addition, the oral bioavailability of OSF-SDs in rats was evaluated by using TEL bulk powder as a reference. The dissolution rates of the OSF-SDs were significantly enhanced as compared to TEL bulk powder. The results from DSC, XRD showed that TEL was molecularly dispersed in the OSF-SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between TEL and its carriers. The OSF-SDs exhibited significantly higher AUC0–24 h and Cmax, but similar Tmax as compared to the reference. This study demonstrated that OSF-SDs can be a promising method to enhance the dissolution rate and oral bioavailability of TEL. PMID:27642309

  18. Biomarkers of exposure to organic solvents from glues used in table tennis bats.

    PubMed

    Karacić, V; Skender, L; Kruslin, E

    1995-09-01

    In nine samples of the glues used to glue rubber onto the table tennis bats, benzene, toluene, xylene, trichloroethene (TRI) and tetrachloroethene (TETRA) were determined by head-space gas chromatography. The analyses demonstrated the presence of benzene (1.8-4.8% (w/w)), toluene (0.32-33.90% (w/w)) and TRI (0.0006-0.280% (w/w)) in seven samples and of toluene only (22.50-67.20% (w/w)) in two samples. Xylene and TETRA were not detected in any of the glue samples analysed. Benzene, toluene and TRI in blood, as a measure of body burden, were determined in four table tennis players (aged 11-14 years) and five volunteers (aged 26-38 years). They were at the same level as in the general population. The aim of the study was to draw attention to the possibility of exposure to organic solvents from glues used in table tennis bats, particularly as it is very often a question of child exposure.

  19. Computer Simulations of Molecular Electronic Devices in Vacuum and in Organic Solvents

    NASA Astrophysics Data System (ADS)

    Wang, Huachuan

    The main aim of this dissertation is to study the structure and dynamics of molecular electronic devices in vacuum and in solvent environment, with special focus on the mechanical properties and cross-section geometries of the break-junction down to the atomic level. The problem statement relies on how to overcome the limitations of observations from experiments, to interpret and reduce the gap between experiential measurements and theoretical studies. In order to reach this goal, a molecular system involving gold nano-electrodes, organic dithiol molecules and a driving-spring model has been built based on the experimental set-up of the break junction (BJ) technique. This technique can be classified as the mechanical controllable break junction (MCBJ) and scanning tunneling / atomic force microscope break junction (STM/AFM-BJ). We then generated self-assembled monolayers and molecular junctions by combining grand-canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulation. These approaches allow us to calibrate the structure and dynamics of molecular junctions under multiple environmental factors simultaneously. In the final stage, conductance calculations are performed using the density functional theory (DFT) in combination with the Green's function techniques. The intermediate molecular junction structures could be used to perform electronic transport calculations to eventually close the force-structure-conductance loop.

  20. Organic solvent-induced controllable crystallization of the inorganic salt Na3[Au(SO3)2] into ultralong nanobelts and hierarchical microstructures of nanowires

    NASA Astrophysics Data System (ADS)

    Liu, Sen; Tian, Jingqi; Wang, Lei; Li, Hailong; Sun, Xuping

    2011-04-01

    The present paper reports an organic solvent-induced controllable crystallization of a water-soluble inorganic salt Na3[Au(SO3)2] into ultralong nanobelts and hierarchical microstructures of one-dimensional (1D) nanowires. It was found that the morphology of the resulting crystals can be fine tuned by simply varying the experimental parameters, such as the ratios of water to organic solvent and gold salt to organic solvent, as well as the type of organic solvent.The present paper reports an organic solvent-induced controllable crystallization of a water-soluble inorganic salt Na3[Au(SO3)2] into ultralong nanobelts and hierarchical microstructures of one-dimensional (1D) nanowires. It was found that the morphology of the resulting crystals can be fine tuned by simply varying the experimental parameters, such as the ratios of water to organic solvent and gold salt to organic solvent, as well as the type of organic solvent. Electronic supplementary information (ESI) available: EDS and XRD analysis of nanobelts. See DOI: 10.1039/c0nr00690d