Sample records for dry plant formations

  1. Technology-Enhanced Formative Assessment of Plant Identification

    NASA Astrophysics Data System (ADS)

    Conejo, Ricardo; Garcia-Viñas, Juan Ignacio; Gastón, Aitor; Barros, Beatriz

    2016-04-01

    Developing plant identification skills is an important part of the curriculum of any botany course in higher education. Frequent practice with dried and fresh plants is necessary to recognize the diversity of forms, states, and details that a species can present. We have developed a web-based assessment system for mobile devices that is able to pose appropriate questions according to the location of the student. A student's location can be obtained using the device position or by scanning a QR code attached to a dried plant sheet in a herbarium or to a fresh plant in an arboretum. The assessment questions are complemented with elaborated feedback that, according to the students' responses, provides indications of possible mistakes and correct answers. Three experiments were designed to measure the effectiveness of the formative assessment using dried and fresh plants. Three questionnaires were used to evaluate the system performance from the students' perspective. The results clearly indicate that formative assessment is objectively effective compared to traditional methods and that the students' attitudes towards the system were very positive.

  2. Effects of plant polyphenols and α-tocopherol on lipid oxidation, microbiological characteristics, and biogenic amines formation in dry-cured bacons.

    PubMed

    Wang, Yongli; Li, Feng; Zhuang, Hong; Li, Lianghao; Chen, Xiao; Zhang, Jianhao

    2015-03-01

    Effects of plant polyphenols (tea polyphenol [TP], grape seed extract [GSE], and gingerol) and α-tocopherol on physicochemical parameters, microbiological counts, and biogenic amines were determined in dry-cured bacons at the end of ripening. Results showed that plant polyphenols and α-tocopherol significantly decreased pH, thiobarbituric acid reactive substances content, and total volatile basic nitrogen (TVBN) compared with the control (P < 0.05). Microbial counts and biogenic amine contents in dry-cured bacons were affected by plant polyphenols or α-tocopherol, with TP being the most effective (P < 0.05) in reducing aerobic plate counts, Enterobacteriaceae, Micrococcaceae, yeast, and molds, as well as in inhibiting formation of putrescine, cadaverine, tyramine, and spermine. Principal component analysis indicated that the first 2 principal components (PC) explained about 85.5% of the total variation. PC1 was related with physicochemical factors, parts of biogenic amines, and spoilage microorganisms, whereas PC2 grouped the TVBN, tyramine, 2-phenylethylamine, yeast, and molds. These findings suggest that plant polyphenols, especially TP, could be used to process dry-cured bacons to improve the quality and safety of finished products. © 2015 Institute of Food Technologists®

  3. Drying of medicinal plants with solar energy utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisniewski, G.

    In the paper, a potential of solar energy for drying of medicinal plants in Polish conditions is estimated and development of solar drying technologies is presented. The results of economic assessment of flat-plate solar collectors applied for drying of medicinal plants on a farm are promising. In some specific conditions, e.g. drying of wild grown medicinal plants in remote areas, even application of photovoltaic modules for driving of a fan of a solar dryer is a profitable option and enables easy control of the drying air temperature.

  4. Reflectance characteristics of dry plant materials

    NASA Technical Reports Server (NTRS)

    Elvidge, Christopher D.

    1987-01-01

    Chlorophyll and water obscure the absorption features of all other leaf constituents in the spectra of green leaves. The predominant near-IR and thermal IR spectral features of dry plant materials originate from lignin, cellulose, and hemicellulose. These compounds account for 80 to 98 percent of the dry weight in most plant materials.

  5. Interactive effects of compost and pre-planting soil moisture on plant biomass, nutrition and formation of mycorrhizas: a context dependent response.

    PubMed

    Ngo, H T T; Cavagnaro, T R

    2018-01-24

    We aimed to investigate the combined impacts of compost addition and pre-planting soil moisture conditions, on plant-available nutrients, and subsequent impacts on the biomass, nutrition and formation of AM by two important crop species. A glasshouse study was undertaken in which wheat and tomato plants were grown in compost amended or un-amended soil that was subjected to different moisture regimes prior to planting. The availability of P was strongly influenced by compost addition, but not pre-planting moisture conditions. In contrast, mineral N pools were affected by compost addition and pre-planting soil moisture conditions in complex ways. These changes in nutrient availability affected plant biomass, nutrient uptake and formation of AM. In general, plant performance was better where pre-planting soil moisture conditions were wet or dry, and worse where they involved a wet/dry cycle, and mycorrhizal colonisation was lower where compost was added to the soil. That pre-planting moisture conditions affect the biomass of subsequent crops is an important finding, the potential implications of which are considered here.

  6. Effects of plant polyphenols and a-tocopherol on lipid oxidation, microbiological characteristics, and biogenic amines formation in dry-cured bacons

    USDA-ARS?s Scientific Manuscript database

    Effects of plant polyphenols (tea polyphenol, grape seed extract, and gingerol) and a-tocopherol on physicochemical parameters, microbiological counts, and biogenic amines were determined in dry-cured bacons at the end of ripening. Results showed that plant polyphenols and a-tocopherol significantly...

  7. Valeriana officinalis Dry Plant Extract for Direct Compression: Preparation and Characterization.

    PubMed

    Gallo, Loreana; Ramírez-Rigo, María Veronica; Piña, Juliana; Palma, Santiago; Allemandi, Daniel; Bucalá, Verónica

    2012-01-01

    Valeriana officinalis L. (Valerianaceae) is one of the most widely used plants for the treatment of anxiety and insomnia. Usually dry plant extracts, including V. officinalis, are hygroscopic materials with poor physico-mechanical properties that can be directly compressed.A V. officinalis dry extract with moderate hygroscocity is suitable for direct compression, and was obtained by using a simple and economical technique. The V. officinalis fluid extract was oven-dried with colloidal silicon dioxide as a drying adjuvant. The addition of colloidal silicon dioxide resulted in a dry plant extract with good physico-mechanical properties for direct compression and lower hygroscopicity than the dry extract without the carrier. The dry plant extract glass transition temperature was considerably above room temperature (about 72 °C). The colloidal silicon dioxide also produced an antiplasticizing effect, improving the powder's physical stability.The pharmaceutical performance of the prepared V. officinalis dry extract was studied through the design of tablets. The manufactured tablets showed good compactability, friability, hardness, and disintegration time. Those containing a disintegrant (Avicel PH 101) exhibited the best pharmaceutical performance, having the lowest disintegration time of around 40 seconds.

  8. Valeriana officinalis Dry Plant Extract for Direct Compression: Preparation and Characterization

    PubMed Central

    Gallo, Loreana; Ramírez-Rigo, María Veronica; Piña, Juliana; Palma, Santiago; Allemandi, Daniel; Bucalá, Verónica

    2012-01-01

    Valeriana officinalis L. (Valerianaceae) is one of the most widely used plants for the treatment of anxiety and insomnia. Usually dry plant extracts, including V. officinalis, are hygroscopic materials with poor physico-mechanical properties that can be directly compressed. A V. officinalis dry extract with moderate hygroscocity is suitable for direct compression, and was obtained by using a simple and economical technique. The V. officinalis fluid extract was oven-dried with colloidal silicon dioxide as a drying adjuvant. The addition of colloidal silicon dioxide resulted in a dry plant extract with good physico-mechanical properties for direct compression and lower hygroscopicity than the dry extract without the carrier. The dry plant extract glass transition temperature was considerably above room temperature (about 72 °C). The colloidal silicon dioxide also produced an antiplasticizing effect, improving the powder’s physical stability. The pharmaceutical performance of the prepared V. officinalis dry extract was studied through the design of tablets. The manufactured tablets showed good compactability, friability, hardness, and disintegration time. Those containing a disintegrant (Avicel PH 101) exhibited the best pharmaceutical performance, having the lowest disintegration time of around 40 seconds. PMID:23264947

  9. Thin layer convective air drying of wild edible plant (Allium roseum) leaves: experimental kinetics, modeling and quality.

    PubMed

    Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem

    2015-06-01

    The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant factor during drying of Allium roseum leaves. Five models selected from the literature were found to satisfactorily describe drying kinetics of Allium roseum leaves for all tested drying conditions. Drying data were analyzed to obtain moisture diffusivity values. During the falling rate-drying period, moisture transfer from Allium roseum leaves was described by applying the Fick's diffusion model. Moisture diffusivity varied from 2.55 × 10(-12) to 8.83 × 10(-12) m(2)/s and increased with air temperature. Activation energy during convective drying was calculated using an exponential expression based on Arrhenius equation and ranged between 46.80 and 52.68 kJ/mol. All sulfur compounds detected in the fresh leaves were detected in the dried leaves. Convective air drying preserved the sulfur compounds potential formation.

  10. Freezing and drying effects on potential plant contributions to phosphorus in runoff.

    PubMed

    Roberson, Tiffany; Bundy, Larry G; Andraski, Todd W

    2007-01-01

    Phosphorus (P) in runoff from landscapes can promote eutrophication of natural waters. Soluble P released from plant material can contribute significant amounts of P to runoff particularly after plant freezing or drying. This study was conducted to evaluate P losses from alfalfa or grass after freezing or drying as potential contributors to runoff P. Alfalfa (Medicago sativa L.) and grass (principally, Agropyron repens L.) plant samples were subjected to freezing and drying treatments to determine P release. Simulated rainfall runoff and natural runoff from established alfalfa fields and a grass waterway were collected to study P contributions from plant tissue to runoff. The effects of freezing and drying on P released from plant tissue were simulated by a herbicide treatment in selected experiments. Soluble reactive P (SP) extracted from alfalfa and grass samples was markedly increased by freezing or drying. In general, SP extracted from plant samples increased in the order fresh < frozen < frozen/thawed < dried, and averaged 1, 8, 14, and 26% of total P in alfalfa, respectively. Soluble reactive P extracted from alfalfa after freezing or drying increased with increasing soil test P (r(2) = 0.64 to 0.68), suggesting that excessive soil P levels increased the risk of plant P contributions to runoff losses. In simulated rainfall studies, paraquat (1,1'-dimethyl-4, 4''-bipyridinium ion) treatment of alfalfa increased P losses in runoff, and results suggested that this treatment simulated the effects of drying on plant P loss. In contrast to the simulated rainfall results, natural runoff studies over 2 yr did not show higher runoff P losses that could be attributed to P from alfalfa. Actual P losses likely depend on the timing and extent of plant freezing and drying and of precipitation events after freezing.

  11. Enhancing fire safety at Hydro plants with dry transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemen, D.M.

    Hydroelectric plant owners and engineers can use dry-type transformers to reduce fire hazards in auxiliary power systems. The decision to replace a liquid-immersed transformer with a dry-type product has a price: higher unit cost and a need to be more vigilant in detailing transformer specifications. But, whether the change affects only one failed transformer or is part of a plant rehabilitation project, the benefits in safety can be worth it. Voltages on hydroelectric plant auxiliary power systems can range from a 20 kV medium-voltage system to the normal 480-208/120 V low-voltage system. Dry transformers typically are used in such systemsmore » to reduce the fire hazard present with liquid-filled transformers. For a hydro plant owner or engineer seeking alternatives to liquid-filled transformers, there are two main kinds of dry-type transformers to consider: vacuum pressure impregnated (VPI) and cast coil epoxy resin. VPI transformers normally are manufactured in sizes up to 6,000 kVA with primary voltage ratings up to 20 kV. Cast coil transformers can be made in sizes from 75 to 10,000 kVA, with primary voltage ratings up to 34,500 V. Although the same transformer theory applies to dry transformers as to liquid-filled units, the cooling medium, air, required different temperature rise ratings, dielectric tests, and construction techniques to ensure reliability. Consequently, the factory and field tests for dry units are established by a separate set of American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) standards. Cast coil transformers have several important advantages over VPI units.« less

  12. Mineralization of carbon and nitrogen from freeze- and over-dried plant material added to soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorhead, K.K.; Graetz, D.A.; Reddy, K.R.

    Drying organic material before soil incorporation is a common procedure used in mineralization or decomposition studies. A laboratory study was conducted to determine the effect of drying methods on plant C and N and associated mineralization patterns in soil. Freeze- and oven-dried water hyacinth (Eichhornia crassipes (Mart) Solms) was added to a Kendrick soil (loamy, siliceous, hyperthermic Arenic Paleudults) at a rate of 5 g kg{sup {minus}1} and incubated in the dark at 27{degree}C for 90 d. Oven drying in paper bags significantly increased the lignin content and decreased the mineral content of the plant material compared to freeze drying.more » The total C and N was not significantly different for the two materials. The mineralization of C from freeze-dried plant material was more rapid during the initial stage of decomposition and remained significantly higher throughout the incubation. At 90 d, 50, and 41% of the plant C had evolved as CO{sub 2} for the freeze- and oven-dried plant material, respectively. Mineralization of {sup 15}N from the plant material accounted for 33% of the applied N of the freeze-dried material and 23% of the applied N of the oven-dried material. Nitrogen mineralization and CO{sub 2} evolution were linearly correlated (r=0.998) for the oven-dried plant material, but less correlated (r=0.770) for the freeze-dried material.« less

  13. Measuring dry plant residues in grasslands: A case study using AVIRIS

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Michael; Ustin, Susan L.

    1992-01-01

    Grasslands, savannah, and hardwood rangelands are critical ecosystems and sensitive to disturbance. Approximately 20 percent of the Earth's surface are grasslands and represent 3 million ha. in California alone. Developing a methodology for estimating disturbance and the effects of cumulative impacts on grasslands and rangelands is needed to effectively monitor these ecosystems. Estimating the dry biomass residue remaining on rangelands at the end of the growing season provides a basis for evaluating the effectiveness of land management practices. The residual biomass is indicative of the grazing pressure and provides a measure of the system capacity for nutrient cycling since it represents the maximum organic matter available for decomposition, and finally, provides a measure of the erosion potential for the ecosystem. Remote sensing presents a possible method for measuring dry residue. However, current satellites have had limited application due to the coarse spatial scales (relative to the patch dynamics) and insensitivity of the spectral coverage to resolve dry plant material. Several hypotheses for measuring the biochemical constituents of dry plant material, particularly cellulose and lignin, using high spectral resolution sensors were proposed. The use of Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) to measure dry plant residues over an oak savannah on the eastern slopes of the Coast Range in central California was investigated and it was asked what spatial and spectral resolutions are needed to quantitatively measure dry plant biomass in this ecosystem.

  14. "Dry-column" chromatography of plant pigments

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Lehwalt, M. F.; Oyama, V. I.

    1973-01-01

    Separation of plant pigments which can be accomplished on thin-layer silica plates with mixture of petroleum ether, halocarbon, acetone, and polar solvent can be readily translated into dry-column technique that yields reproducible chromatograms after elution in fashion of liquid chromatography with fluorimeter as detector. Best solvent system was found to be mixture of petroleum ether, dichloromethane, acetone, and ethyl acetate.

  15. 6. VIEW OF POWER PLANT BUILDING LOOKING NORTHWEST. DRY CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF POWER PLANT BUILDING LOOKING NORTHWEST. DRY CANAL BED TO THE LEFT. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  16. 9. EXTERIOR PERSPECTIVE OF POWER PLANT BUILDING LOOKING NORTHEAST. DRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. EXTERIOR PERSPECTIVE OF POWER PLANT BUILDING LOOKING NORTHEAST. DRY CANAL BED IN FOREGROUND. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  17. Effect of ozone on the microbiological status of five dried aromatic plants.

    PubMed

    Kazi, Martha; Parlapani, Foteini F; Boziaris, Ioannis S; Vellios, Evangelos K; Lykas, Christos

    2018-03-01

    Aromatic plants may be contaminated with a wide range of microorganisms, making them a potential health hazard when infused or added to ready-to-eat meals. To ensure safety, the effect of gaseous ozone treatment on the population of aerobic plate counts (APC), hygienic indicators (Escherichia coli, Enterococcus spp. and Enterobacteriaceae) and fungi was investigated for five dried aromatic plants: oregano, thyme, mountain tea, lemon verbena and chamomile. Selection, isolation and further fungi identification were based on the phenotypic and macro- and microscopic characteristics. Prior to ozonation, APC on five dried aromatic plants was in the range 5-7 log colony-forming units (CFU) g -1 . The APC exhibited a 4 log reduction, from around 6.5 to 2.5 in the case of oregano, and only a 1-2 log reduction for other herbs after 30 or 60 min of 4 ppm gaseous ozone treatment. Enterococcus spp. and E. coli were not detected on any of the tested dried aromatic plants. The fungi counts were 2-4 log CFU g -1 before ozonation. Aspergillus spp, Penicillium spp, Cladosporium spp, Alternaria spp, Fusarium spp., Ulocladium spp. and some unknown fungi were detected on plants before ozone treatment. Aspergillus spp. and/or Penicillium spp. were only detected on mountain tea and thyme plant material after 60 min of ozonation. The present study provides information about the efficiency of ozone on the microbial decontamination of dried aromatic plants. Treatment with gaseous ozone at 4 ppm for 30 min in the case of dried oregano and 60 min in the case of chamomile and lemon verbena could be used as alternative disinfection methods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Evaluating energy efficient strategies and product quality for distillers' dried grains with solubles (DDGS) in dry-grind ethanol plants

    NASA Astrophysics Data System (ADS)

    Lan, Tian

    The drying of distillers dried grains with solubles (DDGS), a coproduct of dry-grind corn processing to ethanol utilizes about 30% of the total energy required for the production of a liter of fuel ethanol. Therefore, improving DDGS drying energy efficiency could have significant impact on the economics of the dry-grind corn-to-ethanol process. Drying process improvements must take account into the effects of various drying strategies on the final quality of DDGS which is primarily utilized as a feed ingredient. Previous studies in the literature have shown that physical and chemical properties of DDGS vary according to the ratio of the two primarily feed streams, wet distillers grains (WDG) and condensed distillers solubles (CDS) which make up DDGS. Extensive research using plant-scale and bench-scale experiments have been conducted on the effect of process variables (ratios of WDG, CDS and DDGS add-back) during drying on the physical and chemical properties of DDGS. However, these investigations did not correlate the product characteristics data to drying efficiency. Additionally, it cannot be clearly determined from the literature on DDGS drying that processes used in the industry are optimized for both product quality and energy efficiency. A bench-scale rotary drum dryer heated by an electrically powered heat gun was used to investigate the effects of WDG, CDS and add-back ratios on both energy efficiency, drying performance and DDGS physical and chemical properties. A two stage drying process with the bench-scale rotary dryer was used to simulate the drying of DDGS using ICM (ICM, Inc., Colwich, KS) dry-grind process technology for DDGS drying which uses two rotary drum dryers in series. Effects of drying process variables, CDS content (0, 10, 20 and 40% by mass) and percent DDGS add-back (0, 20, 40 and 60% by mass) on energy performance and product quality were determined. Sixteen different drying strategies based on drying process variable ratios were

  19. Utilization potential evaluation of plant resources in the dry-hot valley of Jinsha River

    NASA Astrophysics Data System (ADS)

    Xi, Rong; Xu, Naizhong; Liu, Shengxiang; Ren, Tingyan

    2017-08-01

    Plant resources in the dry-hot valley of Jinsha River are endemic to a class of district. The article adopts the analytic hierarchy process method to evaluate the exploitation and utilization potential of plant resources of thirty typical plant resources on the basis of their characteristics in the dry-hot valley of Jinsha River, which provide scientific evidence for quantitative evaluation of regional plant resources, and we also suggest pathways offering protection and development.

  20. Mechanisms of plant spindle formation.

    PubMed

    Zhang, Han; Dawe, R Kelly

    2011-04-01

    In eukaryotes, the formation of a bipolar spindle is necessary for the equal segregation of chromosomes to daughter cells. Chromosomes, microtubules and kinetochores all contribute to spindle morphogenesis and have important roles during mitosis. A unique property of flowering plant cells is that they entirely lack centrosomes, which in animals have a major role in spindle formation. The absence of these important structures suggests that plants have evolved novel mechanisms to assure chromosome segregation. In this review, we highlight some of the recent studies on plant mitosis and argue that plants utilize a variation of "spindle self-organization" that takes advantage of the early polarity of plant cells and accentuates the role of kinetochores in stabilizing the spindle midzone in prometaphase.

  1. Plant Water Uptake in Drying Soils1

    PubMed Central

    Lobet, Guillaume; Couvreur, Valentin; Meunier, Félicien; Javaux, Mathieu; Draye, Xavier

    2014-01-01

    Over the last decade, investigations on root water uptake have evolved toward a deeper integration of the soil and roots compartment properties, with the goal of improving our understanding of water acquisition from drying soils. This evolution parallels the increasing attention of agronomists to suboptimal crop production environments. Recent results have led to the description of root system architectures that might contribute to deep-water extraction or to water-saving strategies. In addition, the manipulation of root hydraulic properties would provide further opportunities to improve water uptake. However, modeling studies highlight the role of soil hydraulics in the control of water uptake in drying soil and call for integrative soil-plant system approaches. PMID:24515834

  2. Liquid crystalline pattern formation in drying droplets of biopolymers

    NASA Astrophysics Data System (ADS)

    Smalyukh, Ivan; Zribi, Olena; Butler, John; Lavrentovich, Oleg; Wong, Gerard

    2006-03-01

    When a droplet of DNA in water dries out, a ring-like deposit is observed along the perimeter, similar to the stains in spilled drops of coffee. However, the dried ring of DNA is a self-similar birefringent pattern composed of extended molecules. We examine dynamics of the pattern formation at the droplet's rim. This gives us an insight into the underlining physics. During the major part of drying process the contact line is pinned so that DNA molecules are brought to the perimeter and extended by the radial capillary flow. Lyotropic nematic phase is formed in which highly concentrated DNA aligns along the triple line to minimize elastic energy. When the contact angle becomes small, the contact line starts to retract and the radial dilative stress causes buckling distortions at the rim which then propagate deep into the elastic liquid- crystalline medium and give rise to the pattern.

  3. Chromatin Ring Formation at Plant Centromeres.

    PubMed

    Schubert, Veit; Ruban, Alevtina; Houben, Andreas

    2016-01-01

    We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants.

  4. Chromatin Ring Formation at Plant Centromeres

    PubMed Central

    Schubert, Veit; Ruban, Alevtina; Houben, Andreas

    2016-01-01

    We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants. PMID:26913037

  5. Penicillium populations in dry-cured ham manufacturing plants.

    PubMed

    Battilani, Paola; Pietri, V Amedeo; Giorni, Paola; Formenti, Silvia; Bertuzzi, Terenzio; Toscani, Tania; Virgili, Roberta; Kozakiewicz, Zofia

    2007-04-01

    Seven ham manufacturing plants were sampled for 1 year to assess the mycoflora present in the air and on hams, with special attention given to potential mycotoxin producers. Temperature and relative humidity were recorded in the ripening rooms. Maturing rooms held hams from 2 to 3 through 6 to 7 ripening months, and aging rooms held hams for the following 6 to 7 months, until the 14-month ripening point, when they were ready for the market. Mean temperatures and relative humidities registered during the study were 14.9 degrees C and 62.4%, respectively, in maturing rooms and 16.3 degrees C and 57.6% in aging rooms. Aspergilli and penicillia, potential mycotoxin producers, were isolated in all the plants from the air and the ham. Aspergilli represented 5% of the isolates, while penicillia were largely dominant, with Penicillium nalgiovense being the most represented species (around 60% of the penicillia), followed by Penicillium nordicum, with 10 and 26% of the penicillia isolated, respectively, from the air or the ham. Ochratoxin A production ability, checked in vitro at 250C, was observed in 50% of the P. nordicum isolates obtained both from the air and the ham. Air and ham surface contamination by penicillia was greater in the ripening rooms, where higher temperatures were registered. A certain correlation was also observed between air and ham surface contamination. On the basis of this study, P. nordicum, the ochratoxin A producer that is notable on proteinaceous substrates, is normally present in ham manufacturing plants in Italy, even though not a dominant species. Further studies are necessary to clarify and ensure if dry-curing conditions minimize the potential risk of ochratoxin A formation in the product.

  6. Kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying

    NASA Astrophysics Data System (ADS)

    Kameya, Yuki

    2017-06-01

    A kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying is presented. The proposed two-dimensional model addresses the dynamics of nanoparticles in the vertical plane of a drying nanocolloid film. The gas-liquid interface movement due to solvent evaporation was controlled by a time-dependent chemical potential, and the resultant particle dynamics including Brownian diffusion and aggregate growth were calculated. Simulations were performed at various Peclet numbers defined based on the rate ratio of solvent evaporation and nanoparticle diffusion. At high Peclet numbers, nanoparticles accumulated at the top layer of the liquid film and eventually formed a skin layer, causing the formation of a particulate film with a densely packed structure. At low Peclet numbers, enhanced particle diffusion led to significant particle aggregation in the bulk colloid, and the resulting film structure became highly porous. The simulated results showed some typical characteristics of a drying nanocolloid that had been reported experimentally. Finally, the potential of the model as well as the remaining challenges are discussed.

  7. Technology-Enhanced Formative Assessment of Plant Identification

    ERIC Educational Resources Information Center

    Conejo, Ricardo; Garcia-Viñas, Juan Ignacio; Gastón, Aitor; Barros, Beatriz

    2016-01-01

    Developing plant identification skills is an important part of the curriculum of any botany course in higher education. Frequent practice with dried and fresh plants is necessary to recognize the diversity of forms, states, and details that a species can present. We have developed a web-based assessment system for mobile devices that is able to…

  8. Sewage sludge drying process integration with a waste-to-energy power plant.

    PubMed

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Inhibitory effect of phosphates on magnesium lactate efflorescence formation in dry-fermented sausages.

    PubMed

    Walz, Felix H; Gibis, Monika; Schrey, Pia; Herrmann, Kurt; Reichert, Corina L; Hinrichs, Jörg; Weiss, Jochen

    2017-10-01

    This study aimed to prevent the phenomena of efflorescence formation on the surface of dry fermented sausages due to the complexation of efflorescence forming cations with phosphates. Efflorescence formation is a critical issue constituting a major quality defect, especially of dry fermented sausages. Different phosphates (di- and hexametaphosphate) were added (3.0g/kg) to the sausage batter. As a hypothesis, these additives should complex with one of the main efflorescence-causing substances such as magnesium. The formation of efflorescences was determined for dry fermented sausages without phosphate addition, with diphosphate, or hexametaphosphate addition during 8weeks of storage under modified atmosphere. The visual analyses of the sausage surface revealed high amounts of efflorescences for the control (42.2%) and for the sausages with added diphosphate (40.9%), whereas the sausages containing hexametaphosphate had significantly reduced amounts of efflorescence formation, showing only 11.9% efflorescences after 8weeks of storage. This inhibition was a result of strong complexation of hexametaphosphate with magnesium ions, thus preventing the diffusion of magnesium towards the sausage surface. This can be explained by the magnesium content on the sausage surface that increased by 163.9, 127.8, and 52.8% for the sausages without phosphate, diphosphate, and hexametaphosphate addition, respectively. The mass transport of lactate and creatine was not affected by phosphate addition. Isothermal titration calorimetry confirmed that, theoretically, 4.5g/kg of diphosphate or 2.8g/kg hexametaphosphate are required to complex 0.2g/kg magnesium ions naturally occurring in dry fermented sausages and, thus, the chosen overall phosphate concentration of 3.0g/kg was enough when adding hexametaphosphate, but not for diphosphate, to inhibit the efflorescence formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Root Formation in Ethylene-Insensitive Plants1

    PubMed Central

    Clark, David G.; Gubrium, Erika K.; Barrett, James E.; Nell, Terril A.; Klee, Harry J.

    1999-01-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia × hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more belowground root mass but fewer aboveground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated taproots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli. PMID:10482660

  11. Dry matter and energy partitioning in plants under climatic stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolhar-Nordenkampf, H.R.; Postl, W.F.; Meister, M.H.

    1996-12-31

    During ontogenesis plants distribute assimilates quite differently among their organs depending on the environmental conditions. In case of high sink capacity energetically cheap storing compounds such as carbohydrates and/or organic acids are formed, whereas during periods with low demand proteins and lipids may be accumulated. Besides ontogenesis, drought and increased CO{sub 2} are able to modify sink capacity and by this transients in the partitioning pattern of carbon are induced. Plants, well adapted to several dry seasons during the year are able to allocate carbon predominantly to below ground organs. During this period many leaves become senescent. In any casemore » stems and remaining green leaves will loose dry matter and energy. With 80% of plants under investigation CO{sub 2} enrichment was shown to induce an enforced allocation of carbon to below ground organs. Roots and Rhizomes, beets and tubers act as a sink for the additionally fixed carbon. It was demonstrated that sink capacity is controlling photosynthetic activity. With respect to agricultural production, to ecosystems and to single plants, climatic change will modify productivity and plants distribution pattern as a consequence of quite different metabolic changes. These responses are depending on the effect of natural and anthropogenic stress factors on the use of enhanced CO{sub 2} and on the allocation of additionally formed assimilates.« less

  12. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems.

    PubMed

    Fagúndez, Jaime; Olea, Pedro P; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  13. Stepwise drying of medicinal plants as alternative to reduce time and energy processing

    NASA Astrophysics Data System (ADS)

    Cuervo-Andrade, S. P.; Hensel, O.

    2016-07-01

    The objective of drying medicinal plants is to extend the shelf life and conserving the fresh characteristics. This is achieved by reducing the water activity (aw) of the product to a value which will inhibit the growth and development of pathogenic and spoilage microorganisms, significantly reducing enzyme activity and the rate at which undesirable chemical reactions occur. The technical drying process requires an enormous amount of thermal and electrical energy. An improvement in the quality of the product to be dried and at the same time a decrease in the drying cost and time are achieved through the utilization of a controlled conventional drying method, which is based on a good utilization of the renewable energy or looking for other alternatives which achieve lower processing times without sacrificing the final product quality. In this work the method of stepwise drying of medicinal plants is presented as an alternative to the conventional drying that uses a constant temperature during the whole process. The objective of stepwise drying is the decrease of drying time and reduction in energy consumption. In this process, apart from observing the effects on decreases the effective drying process time and energy, the influence of the different combinations of drying phases on several characteristics of the product are considered. The tests were carried out with Melissa officinalis L. variety citronella, sowed in greenhouse. For the stepwise drying process different combinations of initial and final temperature, 40/50°C, are evaluated, with different transition points associated to different moisture contents (20, 30, 40% and 50%) of the product during the process. Final quality of dried foods is another important issue in food drying. Drying process has effect in quality attributes drying products. This study was determining the color changes and essential oil loses by reference the measurement of the color and essential oil content of the fresh product was

  14. Drying bacterial biosaline patterns capable of vital reanimation upon rehydration: novel hibernating biomineralogical life formations.

    PubMed

    Gómez Gómez, José María; Medina, Jesús; Hochberg, David; Mateo-Martí, Eva; Martínez-Frías, Jesús; Rull, Fernando

    2014-07-01

    Water is the fundamental molecule for life on Earth. Thus, the search for hibernating life-forms in waterless environments is an important research topic for astrobiology. To date, however, the organizational patterns containing microbial life in extremely dry places, such as the deserts of Earth, the Dry Valleys of Antarctica, or Mars analog regolith, have been poorly characterized. Here, we report on the formation of bacterial biosaline self-organized drying patterns formed over plastic surfaces. These emerge during the evaporation of sessile droplets of aqueous NaCl salt 0.15 M solutions containing Escherichia coli cells. In the present study, scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS) analyses indicated that the bacterial cells and the NaCl in these biosaline formations are organized in a two-layered characteristic 3-D architectural morphology. A thin filmlike top layer formed by NaCl conjugated to, and intermingled with, "mineralized" bacterial cells covers a bottom layer constructed by the bulk of the nonmineralized bacterial cells; both layers have the same morphological pattern. In addition, optical microscopic time-lapsed movies show that the formation of these patterns is a kinetically fast process that requires the coupled interaction between the salt and the bacterial cells. Apparently, this mutual interaction drives the generative process of self-assembly that underlies the drying pattern formation. Most notably, the bacterial cells inside these drying self-assembled patterns enter into a quiescent suspended anhydrobiotic state resistant to complete desiccation and capable of vital reanimation upon rehydration. We propose that these E. coli biosaline drying patterns represent an excellent experimental model for understanding different aspects of anhydrobiosis phenomena in bacteria as well as for revealing the mechanisms of bacterially induced biomineralization, both highly relevant topics for the search of life in

  15. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward K. Levy; Nenad Sarunac; Harun Bilirgen

    2006-03-01

    U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissionsmore » and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.« less

  16. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.

    1978-05-01

    The User's Manual describes how to operate BNW-II, a computer code developed by the Pacific Northwest Laboratory (PNL) as a part of its activities under the Department of Energy (DOE) Dry Cooling Enhancement Program. The computer program offers a comprehensive method of evaluating the cost savings potential of dry/wet-cooled heat rejection systems. Going beyond simple ''figure-of-merit'' cooling tower optimization, this method includes such items as the cost of annual replacement capacity, and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence the BNW-II code ismore » a useful tool for determining potential cost savings of new dry/wet surfaces, new piping, or other components as part of an optimized system for a dry/wet-cooled plant.« less

  17. User's manual for the BNW-I optimization code for dry-cooled power plants. Volume III. [PLCIRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D.J.; Daniel, D.J.; De Mier, W.V.

    1977-01-01

    This appendix to User's Manual for the BNW-1 Optimization Code for Dry-Cooled Power Plants provides a listing of the BNW-I optimization code for determining, for a particular size power plant, the optimum dry cooling tower design using a plastic tube cooling surface and circular tower arrangement of the tube bundles. (LCL)

  18. Plant diversity patterns in neotropical dry forests and their conservation implications.

    PubMed

    Banda-R, Karina; Delgado-Salinas, Alfonso; Dexter, Kyle G; Linares-Palomino, Reynaldo; Oliveira-Filho, Ary; Prado, Darién; Pullan, Martin; Quintana, Catalina; Riina, Ricarda; Rodríguez M, Gina M; Weintritt, Julia; Acevedo-Rodríguez, Pedro; Adarve, Juan; Álvarez, Esteban; Aranguren B, Anairamiz; Arteaga, Julián Camilo; Aymard, Gerardo; Castaño, Alejandro; Ceballos-Mago, Natalia; Cogollo, Álvaro; Cuadros, Hermes; Delgado, Freddy; Devia, Wilson; Dueñas, Hilda; Fajardo, Laurie; Fernández, Ángel; Fernández, Miller Ángel; Franklin, Janet; Freid, Ethan H; Galetti, Luciano A; Gonto, Reina; González-M, Roy; Graveson, Roger; Helmer, Eileen H; Idárraga, Álvaro; López, René; Marcano-Vega, Humfredo; Martínez, Olga G; Maturo, Hernán M; McDonald, Morag; McLaren, Kurt; Melo, Omar; Mijares, Francisco; Mogni, Virginia; Molina, Diego; Moreno, Natalia Del Pilar; Nassar, Jafet M; Neves, Danilo M; Oakley, Luis J; Oatham, Michael; Olvera-Luna, Alma Rosa; Pezzini, Flávia F; Dominguez, Orlando Joel Reyes; Ríos, María Elvira; Rivera, Orlando; Rodríguez, Nelly; Rojas, Alicia; Särkinen, Tiina; Sánchez, Roberto; Smith, Melvin; Vargas, Carlos; Villanueva, Boris; Pennington, R Toby

    2016-09-23

    Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale. Copyright © 2016, American Association for the Advancement of Science.

  19. Relationship soil-water-plant after the dry season in dry Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Hueso-González, P.; Jiménez-Donaire, V.; Ruiz-Sinoga, J. D.

    2012-04-01

    Preliminary studies have determined the existence of a pluviometric gradient around Mediterranean system, which varies from 240 to 1 100 mm mean annual rainfall. This gradient has an incidence in the physical, chemical and hydrological properties in soils with the same litology. Empiric results conclude that humid eco-geomorphological systems are controlled by biotic processes, whereas in arid eco-geomorphological systems, are abiotic factors which have more importance in soil degradation processes. The study area of the present work is located in Málaga (Andalusia, Spain), in the southern part of the Natural Park "Sierra Tejeda, Almijara y Alhama". There, the mean annual temperature is around 18 °C and the mean rainfall is 650 mm. Predominant vegetation corresponds to the termomediterranean serie Smilaci Mauritanicae-Querceto Rotundifoliae Sigmetum, typical of basic soils. The aim of this study is to analyse the immediate hydrological response of the soil under different vegetation covers, through the analysis of certain properties, all this, under subhumid ombrotipe. A random choice of ten representative plants has been done. These plants, with different sizes, were located in the same Southern slope. The soil samples were taken right beside the plant log, and also within a distance of 0.4 to 1 metre from them, depending on the plant size. The sampling was carried out between the end of the dry season and the beginning of the wet one, after a 20% of the mean annual rainfall had rained. The physical, chemical and hydrological analyzes -both in the field and the laboratory- were: exchange-base, total carbon, cation exchange capacity, soil infiltration capacity, salt content, hydrophobia, organic matter, soil organic carbon, total nitrogen, wetting profile in bared soil, wetting profile under vegetation cover (shrubland), and p.H. Literature reveals that rainfall affects significantly the edafogenetic factors, regarding the pluviometric gradient level. In the

  20. Formation of naturally occurring pigments during the production of nitrite-free dry fermented sausages.

    PubMed

    De Maere, Hannelore; Fraeye, Ilse; De Mey, Eveline; Dewulf, Lore; Michiels, Chris; Paelinck, Hubert; Chollet, Sylvie

    2016-04-01

    This study investigates the potential of producing red coloured dry fermented sausages without the addition of nitrite and/or nitrate. Therefore, the formation of zinc protoporphyrin IX (Zn(II)PPIX) as naturally occurring pigment, and the interrelated protoporphyrin IX (PPIX) and heme content were evaluated during nitrite-free dry fermented sausage production at different pH conditions. Zn(II)PPIX was only able to form in dry fermented sausages at pH conditions higher than approximately 4.9. Additionally, the presence of Zn(II)PPIX increased drastically at the later phase of the production process (up to day 177), confirming that in addition to pH, time is also a crucial factor for its formation. Similarly, PPIX also accumulated in the meat products at increased pH conditions and production times. In contrast, a breakdown of heme was observed. This breakdown was more gradual and independent of pH and showed no clear relationship with the formed amounts of Zn(II)PPIX and PPIX. A statistically significant relationship between Zn(II)PPIX formation and product redness was established. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Negative plant soil feedback explaining ring formation in clonal plants.

    PubMed

    Cartenì, Fabrizio; Marasco, Addolorata; Bonanomi, Giuliano; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco

    2012-11-21

    Ring shaped patches of clonal plants have been reported in different environments, but the mechanisms underlying such pattern formation are still poorly explained. Water depletion in the inner tussocks zone has been proposed as a possible cause, although ring patterns have been also observed in ecosystems without limiting water conditions. In this work, a spatially explicit model is presented in order to investigate the role of negative plant-soil feedback as an additional explanation for ring formation. The model describes the dynamics of the plant biomass in the presence of toxicity produced by the decomposition of accumulated litter in the soil. Our model qualitatively reproduces the emergence of ring patterns of a single clonal plant species during colonisation of a bare substrate. The model admits two homogeneous stationary solutions representing bare soil and uniform vegetation cover which depend only on the ratio between the biomass death and growth rates. Moreover, differently from other plant spatial patterns models, but in agreement with real field observations of vegetation dynamics, we demonstrated that the pattern dynamics always lead to spatially homogeneous vegetation covers without creation of stable Turing patterns. Analytical results show that ring formation is a function of two main components, the plant specific susceptibility to toxic compounds released in the soil by the accumulated litter and the decay rate of these same compounds, depending on environmental conditions. These components act at the same time and their respective intensities can give rise to the different ring structures observed in nature, ranging from slight reductions of biomass in patch centres, to the appearance of marked rings with bare inner zones, as well as the occurrence of ephemeral waves of plant cover. Our results highlight the potential role of plant-soil negative feedback depending on decomposition processes for the development of transient vegetation patterns

  2. Arbuscular mycorrhizal fungi and associated microbial communities from dry grassland do not improve plant growth on abandoned field soil.

    PubMed

    Pánková, Hana; Lepinay, Clémentine; Rydlová, Jana; Voříšková, Alena; Janoušková, Martina; Dostálek, Tomáš; Münzbergová, Zuzana

    2018-03-01

    After abandonment of agricultural fields, some grassland plant species colonize these sites with a frequency equivalent to dry grasslands (generalists) while others are missing or underrepresented in abandoned fields (specialists). We aimed to understand the inability of specialists to spread on abandoned fields by exploring whether performance of generalists and specialists depended on soil abiotic and/or biotic legacy. We performed a greenhouse experiment with 12 species, six specialists and six generalists. The plants were grown in sterile soil from dry grassland or abandoned field inoculated with microbial communities from one or the other site. Plant growth, abundance of mycorrhizal structures and plant response to inoculation were evaluated. We focused on arbuscular mycorrhizal fungi (AMF), one of the most important parts of soil communities affecting plant performance. The abandoned field soil negatively affected plant growth, but positively affected plant response to inoculation. The AMF community from both sites differed in infectivity and taxa frequencies. The lower AMF taxa frequency in the dry grassland soil suggested a lack of functional complementarity. Despite the fact that dry grassland AMF produced more arbuscules, the dry grassland inoculum did not improve phosphorus nutrition of specialists contrary to the abandoned field inoculum. Inoculum origin did not affect phosphorus nutrition of generalists. The lower effectiveness of the dry grassland microbial community toward plant performance excludes its inoculation in the abandoned field soil as a solution to allow settlement of specialists. Still, the distinct response of specialists and generalists to inoculation suggested that they differ in AMF responsiveness.

  3. Saprobe fungi decreased the sensitivity to the toxic effect of dry olive mill residue on arbuscular mycorrhizal plants.

    PubMed

    Sampedro, I; Aranda, E; Díaz, R; García-Sanchez, M; Ocampo, J A; García-Romera, I

    2008-02-01

    We studied the influence of olive mill dry residue (DOR) treated with saprobe fungi on growth of tomato and alfalfa colonized by Glomus deserticola. The application of 25g kg(-1) of dry DOR to soil decreased the shoot and root dry weight of tomato and alfalfa. Plants were more sensitive to the toxicity of DOR when colonized with the arbuscular mycorrhizal (AM) fungi. The sensitivity of both plants to the toxicity of DOR differed according to whether they were colonized by G. deserticola or by indigenous AM fungi. The phytotoxicity of DOR towards tomato and alfalfa was decreased by incubation the residue before planting with saprobe fungi for 20wk. The beneficial effects of AM fungi on plant growth added with DOR incubated with saprobe fungi depend of the type of the plant and AM fungi. The contribution of AM fungi to the beneficial effect of DOR incubated with saprobe fungi varied according to the type of the plant and AM fungi. G. deserticola increased the shoot and root dry weight of plants when they were grown in the presence of DOR incubated with saprobe fungi for 20wk. The beneficial effect of saprobe fungi on the dry weight and the level of AM mycorrhization of plants seem to be related to the decrease caused by these fungi in the phenol concentration in DOR. However, the toxicity of DOR due to substances other than phenols can not be ignored. The use of certain saprobe and AM fungi allows the possibility of using DOR as an organic fertilizer.

  4. Toward breeding new land-sea plant hybrid species irrigable with seawater for dry regions.

    PubMed

    Moustafa, Khaled

    2015-01-01

    A plant species growing in sea or coastal saltmarsh is greatly tolerant to high concentrations of salts, and a plant species growing in desert or dry regions is highly tolerant to drought. Breeding a new plant hybrid species from both species by means of cellular grafting, genome fusion or nuclear transfer would generate, at least in theory, a hybrid plant species that should be strongly tolerant to harsh aridity and salinity and would be potentially irrigable with seawater. Such prospective species can be used for example as a fodder, biofuel crop or stabilizer species to protect soil from wind erosion and sandy storms in dry regions. Breeding such species would change the surface of the world and help to solve major challenges of starvation, malnutrition and poverty. Here, I propose potential approaches that would be worthy of investigation toward this purpose.

  5. Effects of plant polyphenols and a-tocopherol on lipid oxidation, residual nitrites, biogenic amines, and N-nitrosamines formation during ripening and storage of dry-cured bacon

    USDA-ARS?s Scientific Manuscript database

    Effects of plant polyphenols (green tea polyphenols (GTP) and grape seed extract (GSE) and a-tocopherol on physicochemical parameters, lipid oxidation, residual nitrite, microbiological counts, biogenic amines, and N-nitrosamines were determined in bacons during dry-curing and storage. Results show ...

  6. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demuth, Scott Francis; Sprinkle, James K.

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout ofmore » Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.« less

  7. New type of dry substances content meter using microwaves for application in biogas plants.

    PubMed

    Nacke, Thomas; Brückner, Kathleen; Göller, Arndt; Kaufhold, Sebastian; Nakos, Xenia; Noack, Stephan; Stöber, Heinrich; Beckmann, Dieter

    2005-11-01

    Dry substances (DS) are an important index for monitoring and controlling anaerobic co-digestion in biogas plants. We have developed and tested an online meter that measures suspended solids by means of the reflection coefficient of an exiting microwave signal, which is dependent on the dielectric properties of the suspensions. Intelligent models based on partial least squares regression (PLSR) and artificial neural network (ANN) for calibration allow exact and reproducible measurements under different circumstances. This measuring method is appropriate for contactless and online measurements of dry substance contents in biogas plants in a large range from 2-14%.

  8. [Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize.

    PubMed

    Zhang, Lin Lin; Sun, Shi Jun; Chen, Zhi Jun; Jiang, Hao; Zhang, Xu Dong; Chi, Dao Cai

    2018-01-01

    In order to investigate the effect of different colored plastic film mulching and planting density on spring maize dry matter accumulation and yield in the rain-fed area of the Northeast China, a complete combination field experiment which was comprised by three types of mulching (non-mulching, transparent plastic film mulching and black plastic film mulching) and five densities (60000, 67500, 75000, 82500 and 90000 plants·hm -2 ), was conducted to analyze the water and heat effect, dry matter accumulation and yield of spring maize (Liangyu 99). The results showed that, compared with the other mulching treatments, the black plastic film mulching treatment significantly increased the maize dry matter accumulation and maize biomass by 3.2%-8.2%. In mature stage, the biomass increased firstly and then decreased with the increasing plant density. When planting density was 82500 plants·hm -2 , the biomass was the highest, which was 5.2%-28.3% higher than that of other plant density treatments. The mean soil temperature in prophase of transparent plastic film mulching treatment was 0.4-2.7 ℃ higher than that of other treatments, which accelerated the maize growth process and augmented the dry matter transportation amount (T), dry matter transportation efficiency (TE) and contribution rate of dry matter transportation to the grain yield (TC) of maize stalk and leaf. The T, TE, TC of leaf and leaf-stalk under 60000 plants·hm -2 treatment were the highest. The highest T, TE, TC of stalk were observed under 75000 plants·hm -2 treatment. In heading period, the water consumption and daily water consumption intensity of maize under the treatment of black film mulching were the largest, which were 9.4%-10.6% and 10.6%-24.5% higher than that of other mulching treatments, respectively. The highest water consumption and daily water consumption intensity were both obtained under 90000 plants·hm -2 treatment, which increased by 6.8%-15.7% and 7.0%-20.0% compared with other

  9. Distribution of Cenozoic plant relicts in China explained by drought in dry season.

    PubMed

    Huang, Yongjiang; Jacques, Frédéric M B; Su, Tao; Ferguson, David K; Tang, Hui; Chen, Wenyun; Zhou, Zhekun

    2015-09-15

    Cenozoic plant relicts are those groups that were once widespread in the Northern Hemisphere but are now restricted to some small isolated areas as a result of drastic climatic changes. They are good proxies to study how plants respond to climatic changes since their modern climatic requirements are known. Herein we look at the modern distribution of 65 palaeoendemic genera in China and compare it with the Chinese climatic pattern, in order to find a link between the plant distribution and climate. Central China and Taiwan Island are shown to be diversity centres of Cenozoic relict genera, consistent with the fact that these two regions have a shorter dry season with comparatively humid autumn and spring in China. Species distribution models indicate that the precipitation parameters are the most important variables to explain the distribution of relict genera. The Cenozoic wide-scale distribution of relict plants in the Northern Hemisphere is therefore considered to be linked to the widespread humid climate at that time, and the subsequent contraction of their distributional ranges was probably caused by the drying trend along with global cooling.

  10. Gene expression programming approach for the estimation of moisture ratio in herbal plants drying with vacuum heat pump dryer

    NASA Astrophysics Data System (ADS)

    Dikmen, Erkan; Ayaz, Mahir; Gül, Doğan; Şahin, Arzu Şencan

    2017-07-01

    The determination of drying behavior of herbal plants is a complex process. In this study, gene expression programming (GEP) model was used to determine drying behavior of herbal plants as fresh sweet basil, parsley and dill leaves. Time and drying temperatures are input parameters for the estimation of moisture ratio of herbal plants. The results of the GEP model are compared with experimental drying data. The statistical values as mean absolute percentage error, root-mean-squared error and R-square are used to calculate the difference between values predicted by the GEP model and the values actually observed from the experimental study. It was found that the results of the GEP model and experimental study are in moderately well agreement. The results have shown that the GEP model can be considered as an efficient modelling technique for the prediction of moisture ratio of herbal plants.

  11. Vascular pattern formation in plants.

    PubMed

    Scarpella, Enrico; Helariutta, Ykä

    2010-01-01

    Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Plant diversity patterns in neotropical dry forests and their conservation implications

    Treesearch

    K. Banda-R; A. Delgado-Salinas; K. G. Dexter; R. Linares-Palomino; A. Oliveira-Filho; D. Prado; M. Pullan; C. Quintana; R. Riina; G. M. Rodriguez M.; J. Weintritt; P. Acevedo-Rodriguez; J. Adarve; E. Alvarez; A. Aranguren B.; J. C. Arteaga; G. Aymard; A. Castano; N. Ceballos-Mago; A. Cogollo; H. Cuadros; F. Delgado; W. Devia; H. Duenas; L. Fajardo; A. Fernandez; M. A. Fernandez; J. Franklin; E. H. Freid; L. A. Galetti; R. Gonto; R. Gonzalez-M.; R. Graveson; E. H. Helmer; A. Idarraga; R. Lopez; H. Marcano-Vega; O. G. Martinez; H. M. Maturo; M. McDonald; K. McLaren; O. Melo; F. Mijares; V. Mogni; D. Molina; N. d. P. Moreno; J. M. Nassar; D. M. Neves; L. J. Oakley; M. Oatham; A. R. Olvera-Luna; F. F. Pezzini; O. J. R. Dominguez; M. E. Rios; O. Rivera; N. Rodriguez; A. Rojas; T. Sarkinen; R. Sanchez; M. Smith; C. Vargas; B. Villanueva; R. T. Pennington

    2016-01-01

    Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than...

  13. Freeze-Drying of Plant Tissue Containing HBV Surface Antigen for the Oral Vaccine against Hepatitis B

    PubMed Central

    Milczarek, Magdalena; Pajtasz-Piasecka, Elżbieta; Wietrzyk, Joanna

    2014-01-01

    The aim of this study was to develop a freeze-drying protocol facilitating successful processing of plant material containing the small surface antigen of hepatitis B virus (S-HBsAg) while preserving its VLP structure and immunogenicity. Freeze-drying of the antigen in lettuce leaf tissue, without any isolation or purification step, was investigated. Each process step was consecutively evaluated and the best parameters were applied. Several drying profiles and excipients were tested. The profile of 20°C for 20 h for primary and 22°C for 2 h for secondary drying as well as sucrose expressed efficient stabilisation of S-HBsAg during freeze-drying. Freezing rate and postprocess residual moisture were also analysed as important factors affecting S-HBsAg preservation. The process was reproducible and provided a product with VLP content up to 200 µg/g DW. Assays for VLPs and total antigen together with animal immunisation trials confirmed preservation of antigenicity and immunogenicity of S-HBsAg in freeze-dried powder. Long-term stability tests revealed that the stored freeze-dried product was stable at 4°C for one year, but degraded at elevated temperatures. As a result, a basis for an efficient freeze-drying process has been established and a suitable semiproduct for oral plant-derived vaccine against HBV was obtained. PMID:25371900

  14. Distribution of Cenozoic plant relicts in China explained by drought in dry season

    PubMed Central

    Huang, Yongjiang; Jacques, Frédéric M. B.; Su, Tao; Ferguson, David K.; Tang, Hui; Chen, Wenyun; Zhou, Zhekun

    2015-01-01

    Cenozoic plant relicts are those groups that were once widespread in the Northern Hemisphere but are now restricted to some small isolated areas as a result of drastic climatic changes. They are good proxies to study how plants respond to climatic changes since their modern climatic requirements are known. Herein we look at the modern distribution of 65 palaeoendemic genera in China and compare it with the Chinese climatic pattern, in order to find a link between the plant distribution and climate. Central China and Taiwan Island are shown to be diversity centres of Cenozoic relict genera, consistent with the fact that these two regions have a shorter dry season with comparatively humid autumn and spring in China. Species distribution models indicate that the precipitation parameters are the most important variables to explain the distribution of relict genera. The Cenozoic wide-scale distribution of relict plants in the Northern Hemisphere is therefore considered to be linked to the widespread humid climate at that time, and the subsequent contraction of their distributional ranges was probably caused by the drying trend along with global cooling. PMID:26369980

  15. Extraction optimization and influences of drying methods on antioxidant activities of polysaccharide from cup plant (Silphium perfoliatum L.)

    PubMed Central

    Li, Ran; Duan, Meng-Ying; Wu, Hong-Xin

    2017-01-01

    Response surface methodology (RSM) was used to investigate the extraction condition of polysaccharide from cup plant (Silphium perfoliatum L.) (named CPP). Water to raw material ratio (10–30 mL/g), extraction time (40–80 min) and extraction temperature (60–100°C) were set as the 3 independent variables, and their effects on the extraction yield of CPP were measured. In addition, the effects of drying methods including hot air drying (HD), vacuum drying (VD) and freeze drying (FD) on the antioxidant activities of CPP were evaluated. The results showed that the optimal condition to extract CPP was: water to raw material ratio (15 mL/g), extraction time (61 min), and extraction temperature (97°C), a maximum CPP yield of 6.49% was obtained under this condition. CPP drying with FD method showed stronger reducing power (0.943 at 6 mg/mL) and radical scavenging capacities against DPPH radical (75.71% at 1.2 mg/mL) and ABTS radical (98.06 at 1.6 mg/mL) than CPP drying with HD and VD methods. Therefore, freeze drying served as a good method for keeping the antioxidant activities of polysaccharide from cup plant. The polysaccharide from cup plant has potential to use as a natural antioxidant. PMID:28837625

  16. User's manual for the BNW-I optimization code for dry-cooled power plants. [AMCIRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D.J.; Daniel, D.J.; De Mier, W.V.

    1977-01-01

    This appendix provides a listing, called Program AMCIRC, of the BNW-1 optimization code for determining, for a particular size power plant, the optimum dry cooling tower design using ammonia flow in the heat exchanger tubes. The optimum design is determined by repeating the design of the cooling system over a range of design conditions in order to find the cooling system with the smallest incremental cost. This is accomplished by varying five parameters of the plant and cooling system over ranges of values. These parameters are varied systematically according to techniques that perform pattern and gradient searches. The dry coolingmore » system optimized by program AMCIRC is composed of a condenser/reboiler (condensation of steam and boiling of ammonia), piping system (transports ammonia vapor out and ammonia liquid from the dry cooling towers), and circular tower system (vertical one-pass heat exchangers situated in circular configurations with cocurrent ammonia flow in the tubes of the heat exchanger). (LCL)« less

  17. Plant carnivory beyond bogs: reliance on prey feeding in Drosophyllum lusitanicum (Drosophyllaceae) in dry Mediterranean heathland habitats

    PubMed Central

    Gil-Cabeza, E.; Ojeda, F.

    2017-01-01

    Background and Aims In a cost–benefit framework, plant carnivory is hypothesized to be an adaptation to nutrient-poor soils in sunny, wetland habitats. However, apparent exceptions to this cost–benefit model exist, although they have been rarely studied. One of these exceptions is the carnivorous subshrub Drosophyllum lusitanicum, which thrives in Mediterranean heathlands on dry sandstone soils and has relatively well-developed, xeromorphic roots. Here, the roles of leaf (carnivory) and root (soil) nutrient uptake in growth promotion of this particular species were assessed. Methods In a greenhouse experiment, plants were fed with laboratory-reared fruit flies (Drosophila virilis) and received two concentrations of soil nutrients in a factorial design. Above-ground plant growth and final above- and below-ground dry biomass after 13 weeks were recorded. Nutrient uptake via roots was also evaluated, using stable nitrogen isotope analysis. Key Results Insect feeding resulted in significantly higher growth and above- and below-ground biomass compared with soil fertilization. No additional benefits of fertilization were discernable when plants were insect-fed, indicating that roots were not efficient in nutrient absorption. Conclusions The first evidence of strong reliance on insect prey feeding in a dry-soil carnivorous plant with well-developed roots is provided, suggesting that carnivory per se does not preclude persistence in dry habitats. Instead, the combination of carnivory and xeromorphic root features allows Drosophyllum to thrive on non-waterlogged soils. New evidence is added to recent research emphasizing the role of root systems of carnivorous plants in explaining their distribution, partly challenging the cost–benefit hypothesis. PMID:28065921

  18. The effect of freezing and drying on leaching of DOM from above ground vascular plant material from the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Khosh, M. S.; McClelland, J. W.

    2014-12-01

    Our understanding of the seasonal dynamics of fluvial dissolved organic matter (DOM) concentrations and fluxes in Arctic catchments has increased substantially during recent years, especially during the spring, which historically has been an under-sampled time period. While a number of studies have observed peaks in both DOM concentrations and fluxes during the spring snowmelt, our knowledge of the mechanisms that control these observations are still lacking. During the initial snowmelt period, frozen ground and the snow matrix act to constrain melt-water to the soil surface. We hypothesize that restriction of flow during this time facilitates leaching of DOM from senescent above ground vegetation and detritus contributing to the high DOM concentrations observed during the spring melt. This study focuses on the effect of freezing and drying on the leaching of dissolved organic carbon and nitrogen (DOC and DON) from above ground vascular plant material. Specifically, we examined the treatment effects of freezing, drying, and freeze-drying on three genera of common Alaskan Arctic vascular plants; Eriophorum (spp.), Carex (spp.), and Salix (spp.). Frozen and freeze-dried plant material released more DOC over the experimental 96 hour leaching period compared to plant material that was only dried. Qualitatively, these patterns were similar among the different plant types, while quantitatively Salix leached more DOC than either Eriophorum or Carex in all treatments. Similar patterns were also seen for DON between the different treatments and among the different plant types. Compositionally, DOM that was leached from frozen and freeze-dried material had higher C:N ratios than material that was only dried. Comparatively, DOM leached from Salix had much higher C:N ratios than either Eriophorum or Carex. During the first 24 hours of leaching, C:N ratios tended to increase followed by a subsequent leveling or decrease, suggesting that the composition of leached DOM varied

  19. Sludge-Drying Lagoons: a Potential Significant Methane Source in Wastewater Treatment Plants.

    PubMed

    Pan, Yuting; Ye, Liu; van den Akker, Ben; Ganigué Pagès, Ramon; Musenze, Ronald S; Yuan, Zhiguo

    2016-02-02

    "Sludge-drying lagoons" are a preferred sludge treatment and drying method in tropical and subtropical areas due to the low construction and operational costs. However, this method may be a potential significant source of methane (CH4) because some of the organic matter would be microbially metabolized under anaerobic conditions in the lagoon. The quantification of CH4 emissions from lagoons is difficult due to the expected temporal and spatial variations over a lagoon maturing cycle of several years. Sporadic ebullition of CH4, which cannot be easily quantified by conventional methods such as floating hoods, is also expected. In this study, a novel method based on mass balances was developed to estimate the CH4 emissions and was applied to a full-scale sludge-drying lagoon over a three year operational cycle. The results revealed that processes in a sludge-drying lagoon would emit 6.5 kg CO2-e per megaliter of treated sewage. This would represent a quarter to two-thirds of the overall greenhouse gas (GHG) emissions from wastewater-treatment plants (WWTPs). This work highlights the fact that sludge-drying lagoons are a significant source of CH4 that adds substantially to the overall GHG footprint of WWTPs despite being recognized as a cheap and energy-efficient means of drying sludge.

  20. Specific plant induced biofilm formation in Methylobacterium species.

    PubMed

    Rossetto, Priscilla B; Dourado, Manuella N; Quecine, Maria C; Andreote, Fernando D; Araújo, Welington L; Azevedo, João L; Pizzirani-Kleiner, Aline A

    2011-07-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes.

  1. Dust input in the formation of rock varnish from the Dry Valleys (Antarctica)

    NASA Astrophysics Data System (ADS)

    Zerboni, A.; Guglielmin, M.

    2017-12-01

    Rock varnish is a glossy, yellowish to dark brown coating that covers geomorphically stable, aerially exposed rock surfaces and landforms in warm and cold arid lands. In warm deserts, rock varnish consists of clay minerals, Mn-Fe oxides/hydroxides, and Si+alkalis dust; it occasionally containis sulphates, phosphates, and organic remains. In Antarctica, rock varnish developed on a variety of bedrocks and has been described being mostly formed of Si, Al, Fe, and sulphates, suggesting a double process in its formation, including biomineralization alternated to dust accretion. We investigated rock coatings developed on sandstones outcropping in the Dry Valleys of Antarctica and most of the samples highlithed an extremely complex varnish structure, alternating tihn layer of different chemical compostion. Optical microscope evidenced the occurrence of highly birefringent minerals, occasionally thinly laminated and consisitng of Si and Al-rich minerals (clays). These are interlayered by few micron-thick dark lenses and continous layers. The latter are well evident under the scanning electron microscope and chemical analysis confirmed that they consist of different kinds of sulphates; jarosite is the most represented species, but gypsum crystals were also found. Fe-rich hypocoatings and intergranula crusts were also detected, sometimes preserving the shape of the hyphae they have replaced. Moreover, small weathering pits on sandstone surface display the occurrence of an amorphous, dark Mn/Fe-rich rock varnish. The formation of rock varnish in the Dry Valleys is a complex process, which required the accretion of airborne dust of variable composition and subsequent recrystallization of some constituent, possibly promoted by microorganisms. In particualr, the formation of sulphates seems to preserve the memory of S-rich dust produced by volcanic eruptions. On the contrary, the formation of Mn-rich varnish should be in relation with the occurrence of higher environmental

  2. Influence of drying of chara cellulose on length/length distribution of microfibrils after acid hydrolysis.

    PubMed

    Horikawa, Yoshiki; Shimizu, Michiko; Saito, Tsuguyuki; Isogai, Akira; Imai, Tomoya; Sugiyama, Junji

    2018-04-01

    Chara is a genus of freshwater alga that is evolutionarily observed at the aquatic-terrestrial boundary, whose cellulose microfibrils are similar to those of terrestrial plants regarding the crystallinity and biosynthesis of cellulose. Oven-dried and never-dried celluloses samples were prepared from chara. Terrestrial plant cellulose samples were used as references. The lengths and length distributions of oven-dried and never-dried chara cellulose microfibrils after acid hydrolysis with or without pretreatment by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, which was used for efficient fibrillation of acid-hydrolyzed products, were observed by transmission electron microscopy. All terrestrial plant celluloses and oven-dried chara cellulose had short nanocrystal-like morphologies of 100-300 nm in length after acid hydrolysis. In contrast, the never-dried chara cellulose had much longer microfibrils of ∼970 nm in length after acid hydrolysis. These results indicated that disordered regions present periodically along the cellulose microfibrils, which cause the formation of cellulose nanocrystals after acid hydrolysis, are not present in inherent chara cellulose microfibrils in water, but are formed artificially under drying or dehydration conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Specific plant induced biofilm formation in Methylobacterium species

    PubMed Central

    Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.

    2011-01-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703

  4. Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity

    NASA Astrophysics Data System (ADS)

    Liu, Tengyu; Huang, Dan Dan; Li, Zijun; Liu, Qianyun; Chan, ManNin; Chan, Chak K.

    2018-04-01

    The formation of secondary organic aerosol (SOA) has been widely studied in the presence of dry seed particles at low relative humidity (RH). At higher RH, initially dry seed particles can exist as wet particles due to water uptake by the seeds as well as the SOA. Here, we investigated the formation of SOA from the photooxidation of toluene using an oxidation flow reactor in the absence of NOx under a range of OH exposures on initially wet or dry ammonium sulfate (AS) seed particles at an RH of 68 %. The ratio of the SOA yield on wet AS seeds to that on dry AS seeds, the relative SOA yield, decreased from 1.31 ± 0.02 at an OH exposure of 4.66 × 1010 molecules cm-3 s to 1.01 ± 0.01 at an OH exposure of 5.28 × 1011 molecules cm-3 s. This decrease may be due to the early deliquescence of initially dry AS seeds after being coated by highly oxidized toluene-derived SOA. SOA formation lowered the deliquescence RH of AS and resulted in the uptake of water by both AS and SOA. Hence the initially dry AS seeds contained aerosol liquid water (ALW) soon after SOA formed, and the SOA yield and ALW approached those of the initially wet AS seeds as OH exposure and ALW increased, especially at high OH exposure. However, a higher oxidation state of the SOA on initially wet AS seeds than that on dry AS seeds was observed at all levels of OH exposure. The difference in mass fractions of m / z 29, 43 and 44 of SOA mass spectra, obtained using an aerosol mass spectrometer (AMS), indicated that SOA formed on initially wet seeds may be enriched in earlier-generation products containing carbonyl functional groups at low OH exposures and later-generation products containing acidic functional groups at high exposures. Our results suggest that inorganic dry seeds become at least partially deliquesced particles during SOA formation and hence that ALW is inevitably involved in the SOA formation at moderate RH. More laboratory experiments conducted with a wide variety of SOA

  5. Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying.

    PubMed

    Holbrook, N Michele; Shashidhar, V R; James, Richard A; Munns, Rana

    2002-06-01

    The hypothesis that ABA produced by roots in drying soil is responsible for stomatal closure was tested with grafted plants constructed from the ABA-deficient tomato mutants, sitiens and flacca and their near-isogenic wild-type parent. Three types of experiments were conducted. In the first type, reciprocal grafts were made between the wild type and sitiens or flacca. Stomatal conductance accorded with the genotype of the shoot, not the root. Stomates closed in all of the grafted plants in response to soil drying, regardless of the root genotype, i.e. regardless of the ability of the roots to produce ABA. In the second type of experiment, wild-type shoots were grafted onto a split-root system consisting of one wild-type root grafted to one mutant (flacca or sitiens) root. Water was withheld from one root system, while the other was watered well so that the shoots did not experience any decline in water potential or loss of turgor. Stomates closed to a similar extent when water was withheld from the mutant roots or the wild-type roots. In the third type of experiment, grafted plants with wild-type shoots and either wild-type or sitiens roots were established in pots that could be placed inside a pressure chamber, and the pressure increased as the soil dried so that the shoots remained fully turgid throughout. Stomates closed as the soil dried, regardless of whether the roots were wild type or sitiens. These experiments demonstrate that stomatal closure in response to soil drying can occur in the absence of leaf water deficit, and does not require ABA production by roots. A chemical signal from roots leading to a change in apoplastic ABA levels in leaves may be responsible for the stomatal closure.

  6. Color formation in nitrite-free dried hams as related to Zn-protoporphyrin IX and Zn-chelatase activity.

    PubMed

    Parolari, Giovanni; Benedini, Riccardo; Toscani, Tania

    2009-08-01

    The development of red pigment Zn-protoporphyrin IX (ZPP) in nitrite-free Parma hams was investigated in 5 leg muscles at several stages of processing and the activity of muscle Zn-chelatase was concurrently assayed for its potential role in ZPP formation. A steady increase of the pigment was observed throughout the manufacturing stages at mild temperatures while no development was observed during the prior cold resting phase. The enzyme was partly inactivated according to a muscle-dependent pattern, resulting in similar ZPP contents, hence color, in finished hams. It is concluded that enzyme-dependent synthesis of ZPP in nitrite-free dried hams contributes to color development, enabling muscles in dried hams to become more similar in redness than in green thighs. Therefore, checking raw meat for the enzyme content may be a means to control color formation in nitrite-free dry-cured meat derivatives.

  7. EVALUATION OF FGD DRY INJECTION SORBENTS AND ADDITIVES - VOLUME 2 - PILOT PLANT EVALUATION OF HIGH REACTIVITY SORBENTS

    EPA Science Inventory

    The report describes a mini-pilot test program to investigate potential new sorbents and processes for dry SO2 removal. Initial tests showed that the 85 cu m/h pilot plant could be used successfully to evaluate both spray dryer and dry injection processes using traditional calciu...

  8. User's manual for the BNW-I optimization code for dry-cooled power plants. Volume I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D.J.; Daniel, D.J.; De Mier, W.V.

    1977-01-01

    This User's Manual provides information on the use and operation of three versions of BNW-I, a computer code developed by Battelle, Pacific Northwest Laboratory (PNL) as a part of its activities under the ERDA Dry Cooling Tower Program. These three versions of BNW-I were used as reported elsewhere to obtain comparative incremental costs of electrical power production by two advanced concepts (one using plastic heat exchangers and one using ammonia as an intermediate heat transfer fluid) and a state-of-the-art system. The computer program offers a comprehensive method of evaluating the cost savings potential of dry-cooled heat rejection systems and componentsmore » for power plants. This method goes beyond simple ''figure-of-merit'' optimization of the cooling tower and includes such items as the cost of replacement capacity needed on an annual basis and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence, the BNW-I code is a useful tool for determining potential cost savings of new heat transfer surfaces, new piping or other components as part of an optimized system for a dry-cooled power plant.« less

  9. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods

    NASA Astrophysics Data System (ADS)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin

    2018-07-01

    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient ( R 2 ), varience ( S 2 ) and root mean square deviation ( D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  10. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods

    NASA Astrophysics Data System (ADS)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin

    2018-01-01

    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient (R 2 ), varience (S 2 ) and root mean square deviation (D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  11. Studies on mycorrhizal inoculation on dry matter yield and root colonization of some medicinal plants grown in stress and forest soils.

    PubMed

    Chandra, K K; Kumar, Neeraj; Chand, Gireesh

    2010-11-01

    Five medicinal plants viz. Abelmoschatus moschatus Linn., Clitoria tematea L., Plumbagozeylanica L., Psorolea corylifolia L. and Withania sominifera L. were grown in a polypot experiment in five soils representing coal mine soil, coppermine soil, fly ash, skeletal soil and forest soil with and without mycorrhizal inoculations in a completely randomized block design. Dry matter yield and mycorrhizal root colonization of plants varied both in uninoculated and inoculated conditions. The forest soil rendered highest dry matter due to higher yield of A. moschatus, P. zeylanica and P corylifolia while fly ash showed lowest dry matter without any inoculants. P. cematea were best in coalmine soil and W. sominifera in copper mine soil without mycorrhizal inoculation. The mycorrhiza was found to enhance the dry matter yield. This contributed minimum 0.19% to maximum up to 422.0% in different soils as compared to uninoculated plants. The mycorrhizal dependency was noticed maximum in plants grown in fly ash followed by coal mine soil, copper mine soil, skeletal soil and forest soil. The mycorrhizal response was increased maximum in W. sominifera due to survival in fly ash after inoculation followed by P corylifolia and P cematea. Percent root colonization in inoculated plant was increased minimum of 1.10 fold to maximum of 12.0 folds in comparison to un-inoculated plants . The native mycorrhiza fungi were also observed to colonize 4.0 to 32.0% roots in plants understudy. This study suggests that mycorrhizal inoculation increased the dry matter yield of medicinal plants in all soils under study. It also helps in survival of W. sominifera in fly ash.

  12. Rice Chalky Ring Formation Caused by Temporal Reduction in Starch Biosynthesis during Osmotic Adjustment under Foehn-Induced Dry Wind

    PubMed Central

    Wada, Hiroshi; Masumoto-Kubo, Chisato; Gholipour, Yousef; Nonami, Hiroshi; Tanaka, Fukuyo; Erra-Balsells, Rosa; Tsutsumi, Koichi; Hiraoka, Kenzo; Morita, Satoshi

    2014-01-01

    Foehn-like extreme hot and dry wind conditions (34°C, >2.5 kPa vapor pressure deficit, and 7 m s−1) strongly affect grain quality in rice (Oryza sativa L.). This is a current concern because of the increasing frequency and intensity of combined heat and water-deficit stress under climate change. Foehn-induced dry wind conditions during the grain-filling stage increase ring-shaped chalkiness as a result of spatiotemporal reduction in starch accumulation in the endosperm, but kernel growth is sometimes maintained by osmotic adjustment. Here, we assess the effects of dry wind on chalky ring formation in environmentally controlled growth chambers. Our results showed that hot and dry wind conditions that lasted for >24 h dramatically increased chalky ring formation. Hot and dry wind conditions temporarily reduced panicle water potential to –0.65 MPa; however, kernel growth was maintained by osmotic adjustment at control levels with increased transport of assimilate to the growing kernels. Dynamic tracer analysis with a nano-electrospray-ionization Orbitrap mass spectrometer and quantitative polymerase chain reaction analysis revealed that starch degradation was negligible in the short-term treatment. Overall expression of starch synthesis-related genes was found to be down-regulated at moderately low water potential. Because the events observed at low water potential preceded the packing of starch granules in cells, we concluded that reduced rates of starch biosynthesis play a central role in the events of cellular metabolism that are altered at osmotic adjustment, which leads to chalky ring formation under short-term hot and dry wind conditions. PMID:25330305

  13. Rice chalky ring formation caused by temporal reduction in starch biosynthesis during osmotic adjustment under foehn-induced dry wind.

    PubMed

    Wada, Hiroshi; Masumoto-Kubo, Chisato; Gholipour, Yousef; Nonami, Hiroshi; Tanaka, Fukuyo; Erra-Balsells, Rosa; Tsutsumi, Koichi; Hiraoka, Kenzo; Morita, Satoshi

    2014-01-01

    Foehn-like extreme hot and dry wind conditions (34°C, >2.5 kPa vapor pressure deficit, and 7 m s(-1)) strongly affect grain quality in rice (Oryza sativa L.). This is a current concern because of the increasing frequency and intensity of combined heat and water-deficit stress under climate change. Foehn-induced dry wind conditions during the grain-filling stage increase ring-shaped chalkiness as a result of spatiotemporal reduction in starch accumulation in the endosperm, but kernel growth is sometimes maintained by osmotic adjustment. Here, we assess the effects of dry wind on chalky ring formation in environmentally controlled growth chambers. Our results showed that hot and dry wind conditions that lasted for >24 h dramatically increased chalky ring formation. Hot and dry wind conditions temporarily reduced panicle water potential to -0.65 MPa; however, kernel growth was maintained by osmotic adjustment at control levels with increased transport of assimilate to the growing kernels. Dynamic tracer analysis with a nano-electrospray-ionization Orbitrap mass spectrometer and quantitative polymerase chain reaction analysis revealed that starch degradation was negligible in the short-term treatment. Overall expression of starch synthesis-related genes was found to be down-regulated at moderately low water potential. Because the events observed at low water potential preceded the packing of starch granules in cells, we concluded that reduced rates of starch biosynthesis play a central role in the events of cellular metabolism that are altered at osmotic adjustment, which leads to chalky ring formation under short-term hot and dry wind conditions.

  14. Effect of different drying methods on concentrations of several phytochemicals in herbal preparation of 8 medicinal plants leaves.

    PubMed

    Mahanom, H; Azizah, A; Dzulkifly, M

    1999-12-01

    The effect of oven drying at 50ᵒC ± 1ᵒC for 9 hour, 70ᵒC ± 1ᵒC for 5 hour and freeze drying on retention of chlorophyll, riboflavin, niacin, ascorbic acid and carotenoids in herbal preparation consisting of 8 medicinal plants was evaluated. The medicinal plants selected were leaves of Apium graveolens (saderi), Averrhoa bilimbi (belimbing buluh), Centella asiatica (pegaga), Mentha arvensis (pudina), Psidium guajava (jambu batu), Sauropus androgynous (cekor manis), Solanum nigrum (terung meranti) and Polygonum minus (kesum ). Results revealed that both type and conditions of the drying treatments affected retention of all phytochemicals analysed. Herbal preparation developed using oven drying was found to have inferior phytochemicals content compared to that obtained by freeze dryer. Nevertheless, the herbal preparation developed using all treatments still retain appreciable amount of phytochemicals studied, especially carotenoids, ascorbic acid, niacin and riboflavin and thus have potential for commercial purposes.

  15. The length of the dry season may be associated with leaf scleromorphism in cerrado plants.

    PubMed

    Souza, Marcelo C; Franco, Augusto C; Haridasan, Mundayatan; Rossatto, Davi R; de Araújo, Janaína F; Morellato, Leonor P C; Habermann, Gustavo

    2015-09-01

    Despite limitations of low fertility and high acidity of the soils, the cerrado flora is the richest amongst savannas. Many cerrado woody species show sclerophyllous leaves, which might be related to the availability of water and nutrients in the soil. To better understand the function and structure of cerrado vegetation within its own variations, we compared two cerrado communities: one in its core region in central Brazil (Brasília, DF) and the other on its southern periphery (Itirapina, SP). We contrasted the length of the dry season, soil fertility rates, leaf concentrations of N, P, K, Ca and Mg and the specific leaf area (SLA) between these communities. The dry season was shorter on the periphery, where the soil was more fertile although more acidic. Plants from the periphery showed higher SLA and higher leaf concentrations of N, P, Ca and Mg. We propose that the higher SLA of plants from the periphery is related to the shorter dry season, which allows better conditions for nutrient uptake.

  16. Differences in Leaf Flammability, Leaf Traits and Flammability-Trait Relationships between Native and Exotic Plant Species of Dry Sclerophyll Forest

    PubMed Central

    Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.

    2013-01-01

    The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169

  17. Influence of aerosol dry deposition on photosynthetically active radiation available to plants: A case study in the Yangtze Delta Region of China

    NASA Astrophysics Data System (ADS)

    Bergin, M. H.; Greenwald, R.; Xu, J.; Berta, Y.; Chameides, W. L.

    In this paper, a new mechanism is proposed by which aerosols decrease the amount of photosynthetically active radiation (PAR) available to plants for photosynthesis. The mechanism involves the scattering and absorption of PAR by water insoluble aerosol particles (WIA) which deposit on leaves and are not washed off by precipitation. A simple model is developed that predicts the change in the transmittance of PAR, TPAR, for plant leaves due to WIA dry deposition as a function of aerosol chemical, physical, and optical properties. Model estimates for the agricultural Yangtze delta region of China indicate that over a 2-month period during a growing season, dry deposition of WIA may account for a ∼35% reduction in PAR available for plant photosynthesis. Although, the estimate is sensitive to several factors that are uncertain including aerosol dry deposition velocity, leaf area index, and removal rate of particles by precipitation. Results suggest that impacts on crop yields due to aerosol dry deposition could be considerable in this region and suggest a previously neglected economic incentive for China to mitigate air pollution. Additionally, WIA dry deposition may influence carbon uptake by plants in other locations that experience regional haze.

  18. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Harun Bilirgen; Ursla Levy

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energymore » extracted from boiler flue gas.« less

  19. Importance of Silicon and Mechanisms of Biosilica Formation in Plants

    PubMed Central

    Siti Nor Akmar, Abdullah; Rafii, Mohd Y.; Tengoua, F. F.; Nurul Mayzaitul Azwa, Jamaludin; Shabanimofrad, M.

    2015-01-01

    Silicon (Si) is one of the most prevalent macroelements, performing an essential function in healing plants in response to environmental stresses. The purpose of using Si is to induce resistance to distinct stresses, diseases, and pathogens. Additionally, Si can improve the condition of soils, which contain toxic levels of heavy metals along with other chemical elements. Silicon minimizes toxicity of Fe, Al, and Mn, increases the availability of P, and enhances drought along with salt tolerance in plants through the formation of silicified tissues in plants. However, the concentration of Si depends on the plants genotype and organisms. Hence, the physiological mechanisms and metabolic activities of plants may be affected by Si application. Peptides as well as amino acids can effectively create polysilicic species through interactions with different species of silicate inside solution. The carboxylic acid and the alcohol groups of serine and asparagine tend not to engage in any significant role in polysilicates formation, but the hydroxyl group side chain can be involved in the formation of hydrogen bond with Si(OH)4. The mechanisms and trend of Si absorption are different between plant species. Furthermore, the transportation of Si requires an energy mechanism; thus, low temperatures and metabolic repressors inhibit Si transportation. PMID:25685787

  20. Forage Production on Dry Rangelands of Binary Grass-Legume Mixtures at Four Plant Densities

    USDA-ARS?s Scientific Manuscript database

    Forage production on Western US rangelands can be increased with the right combination of plants. Our objective was to demonstrate the relative forage production advantage of including a legume on dry rangelands. A falcata and rhizomatous alfalfa (medicago sativa L.), alti wildrye [Leymus andustus...

  1. Effect of empty fruit bunch to the accumulated plant height, mass of fresh and dry weight of tomato plant treated with organic and inorganic fertilizer

    NASA Astrophysics Data System (ADS)

    Elias, Aishah; Mutalib, Sahilah Abd.; Mustapha, Wan Aida Wan

    2016-11-01

    A glasshouse experiment was conducted to study the effect of different type of compost and fertilizers on the growth of tomato (Lycopersicon esculentum). The experiment consisted of sixteen treatments. Compost of Empty fruit bunch (EFB) and cow dung is mixed in the ratio of 3:2:1 (soil: compost: sand) and put into 25.4 mm2 polyethylene bag. Organic fertilizer of 10 ml were added twice a week, while inorganic fertilizer was applied at the rate of 3 g per polyethylene bag of soil three weeks after sowing. Treatment without fertilizer application was established as a control. The treatments were laid in a split-split plot design with three replications. Plant growth was assessed using accumulating plant height, fresh weight and dry weight. The application of organic plus inorganic fertilizer had significant effects on plant height. The application of organic fertilizer combination with cow dung gave significant difference to plant mass (fresh and dry). The data obtained from these treatments were significantly higher than the data obtained from the control (without fertilizer). In conclusion, the type of compost did not gave significant difference towards plant height while it only gave significant difference towards plant mass.

  2. A new method to enhance rhizosheath formation

    NASA Astrophysics Data System (ADS)

    Ahmadi, katayoun; Zarebanadkouki, Mohsen; Kuzyakov, Yakov; Carminati, Andrea

    2016-04-01

    The rhizosheath is defined as the soil that adheres to the roots by help of root hairs and mucilage. Rhizosheath maintain the contact between roots and soil improving water and nutrient uptake. Here we introduce: (1) a technique to quantify the formation of rhizosheath around the roots, and (2) a method to enhance the formation of rhizosheath around the roots. Additionally, we measured the relation between rhizosheath thickness and the carbon content and enzyme activities in the rhizosphere. We grew lupine plants in aluminum containers (28×30×1 cm) filled with a sandy soil. When plants were two weeks-old and the soil had a water content of 30%, we stopped the irrigation and let the plants to uptake water to a soil water content of 4-5%. Thereafter, half of the plants (4 plants) were irrigated with water and the other half with water with an additive (international patent is pending). We repeated the drying and rewetting cycle three times. At the end of the third drying cycle, when plants were 40 days old and soil had a water content of 4-5%,the containers were opened and roots and their surrounding soils were gently collected. We used imaging to quantify the rhizosheath formation. The method consists of scanning the roots and the surrounding soil using the Winrhizo software. By image analysis we quantified the thickness of roots and their rhizosheath. The plants irrigated with the additive had 63% thicker rhizopsheath than plants irrigated with water. So, the additive enhanced gelation of mucilage exuded by the roots. Carbon content and enzyme activity in the collected rhizosheath showed that the rhizosheath of plants irrigated with the additive had higher carbon content and enzyme activity than the rhizopsheath of plants irrigated with water. The new method to increase rhizosheath has the great advantage that can be easily applied to the irrigation water to improve plant uptake of water and nutrients in semiarid and arid areas.

  3. Influence of additives on melt viscosity, surface tension, and film formation of dry powder coatings.

    PubMed

    Sauer, Dorothea; McGinity, James W

    2009-06-01

    Limited information on thermally cured dry-powder coatings used for solid dosage forms has been available in the literature. The aim of this study was to characterize the film formation process of Eudragit L 100-55 dry-powder coatings and to investigate the influence of film additives on melt viscosity and surface tension. The coating process employed no liquids and the plasticizer was combined with the polymer using hot melt extrusion. Thermoanalytical methods including differential scanning calorimetry and thermogravimetric analysis (TGA) were used to investigate the thermal properties of the dry-coating formulations. The rheological behavior of the coating formulations were characterized with the extrusion torque, and the surface energy parameters were determined from contact angle measurements. The influence of the level of triethyl citrate (TEC) as plasticizer and polyethylene glycol (PEG) 3350 in the polymer film on film formation was investigated using a digital force tester. TGA confirmed thermal stability of all coating excipients at the investigated curing conditions. Increasing TEC levels and the addition of PEG 3350 as a low melting excipient in the coating reduced the viscosity of the polymer. Plasticization of the polymer with TEC increased the surface free energy, whereas the admixture of 10% PEG 3350 did not affect the surface free energy of Eudragit L 100-55. The spreading coefficient of the polymers over two sample tablet formulations was reduced with increasing surface free energy. During the curing process, puncture strength, and elongation of powder-cast films increased. The effect of curing time on the mechanical properties was dependent on the plasticizer content. The incorporation of TEC and PEG 3350 into the Eudragit L 100-55 powder coating formulation improved film formation. Mechanical testing of powder-cast films showed an increase of both elongation and puncture strength over the curing process as criterion for polymer particle fusion

  4. Resolution of the direct containment heating issue for all Westinghouse plants with large dry containments or subatmospheric containments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilch, M.M.; Allen, M.D.; Klamerus, E.W.

    1996-02-01

    This report uses the scenarios described in NUREG/CR-6075 and NUREG/CR-6075, Supplement 1, to address the direct containment heating (DCH) issue for all Westinghouse plants with large dry or subatmospheric containments. DCH is considered resolved if the conditional containment failure probability (CCFP) is less than 0.1. Loads versus strength evaluations of the CCFP were performed for each plant using plant-specific information. The DCH issue is considered resolved for a plant if a screening phase results in a CCFP less than 0.01, which is more stringent than the overall success criterion. If the screening phase CCFP for a plant is greater thanmore » 0.01, then refined containment loads evaluations must be performed and/or the probability of high pressure at vessel breach must be analyzed. These analyses could be used separately or could be integrated together to recalculate the CCFP for an individual plant to reduce the CCFP to meet the overall success criterion of less than 0.1. The CCFPs for all of the Westinghouse plants with dry containments were less than 0.01 at the screening phase, and thus, the DCH issue is resolved for these plants based on containment loads alone. No additional analyses are required.« less

  5. Environmental conditions regulate the impact of plants on cloud formation.

    PubMed

    Zhao, D F; Buchholz, A; Tillmann, R; Kleist, E; Wu, C; Rubach, F; Kiendler-Scharr, A; Rudich, Y; Wildt, J; Mentel, Th F

    2017-02-20

    The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate.

  6. Salinity and Alkaline pH of Irrigation Water Affect Marigold Plants: I. Growth and Shoot Dry Weight Partitioning

    USDA-ARS?s Scientific Manuscript database

    Marigold, is one of the most popular annual ornamental plants. Both the short-statured cultivars (Tagetes patula L.) and the taller cultivars (T. erecta L.) are used as container plants, in landscape and garden settings. Tagetes erecta varieties make excellent cut and dried flowers for the florist...

  7. Biofilm formation in an ice cream plant.

    PubMed

    Gunduz, Gulten Tiryaki; Tuncel, Gunnur

    2006-01-01

    The sites of biofilm formation in an ice cream plant were investigated by sampling both the production line and the environment. Experiments were carried out twice within a 20-day period. First, stainless steel coupons were fixed to surfaces adjacent to food contact surfaces, the floor drains and the doormat. They were taken for the analysis of biofilm at three different production stages. Then, biofilm forming bacteria were enumerated and also presence of Listeria monocytogenes was monitored. Biofilm forming isolates were selected on the basis of colony morphology and Gram's reaction; Gram negative cocci and rod, Gram positive cocci and spore forming isolates were identified. Most of the biofilm formations were seen on the conveyor belt of a packaging machine 8 h after the beginning of the production, 6.5 x 10(3) cfu cm(-2). Most of the Gram negative bacteria identified belong to Enterobacteriaceae family such as Proteus, Enterobacter, Citrobacter, Shigella, Escherichia, Edwardsiella. The other Gram negative microflora included Aeromonas, Plesiomonas, Moraxella, Pseudomonas or Alcaligenes spp. were also isolated. Gram positive microflora of the ice cream plant included Staphyloccus, Bacillus, Listeria and lactic acid bacteria such as Streptococcus, Leuconostoc or Pediococcus spp. The results from this study highlighted the problems of spread of pathogens like Listeria and Shigella and spoilage bacteria. In the development of cleaning and disinfection procedures in ice cream plants, an awareness of these biofilm-forming bacteria is essential for the ice cream plants.

  8. Environmental conditions regulate the impact of plants on cloud formation

    PubMed Central

    Zhao, D. F.; Buchholz, A.; Tillmann, R.; Kleist, E.; Wu, C.; Rubach, F.; Kiendler-Scharr, A.; Rudich, Y.; Wildt, J.; Mentel, Th. F.

    2017-01-01

    The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate. PMID:28218253

  9. Graft union formation in tomato plants: peroxidase and catalase involvement.

    PubMed

    Fernandez-Garcia, Nieves; Carvajal, Micaela; Olmos, Enrique

    2004-01-01

    The use of grafted plants in vegetable crop production is now being expanded greatly. However, few data are available on the formation of graft unions in vegetables. In this work, the structural development of the graft union formation in tomato plants is studied, together with the possible relationship with activities of peroxidases and catalases. Tomato (Lycopersicon esculentum Mill.) seedlings of cultivar Fanny were grafted on the rootstock of cultivar AR-9704 using the 'tongue approach grafting' method, and were grown in a crop chamber. A study of the structural development of the graft union and the involvement of peroxidases and catalases in the process of graft formation was carried out during the first stages of the graft union (4, 8 and 15 d after grafting). Observation of the structure of the graft union showed formation of xylem and phloem vessels through the graft union 8 d after grafting. In addition, root hydraulic conductance, L0, indicate that the graft union is fully functional 8 d after grafting, which coincided with an increase of peroxidase and catalase activities. These results suggest that increased peroxidase and catalase activities might be implicated in graft development in tomato plants.

  10. Functional strategies of tropical dry forest plants in relation to growth form and isotopic composition

    NASA Astrophysics Data System (ADS)

    Santiago, L. S.; Silvera, K.; Andrade, J. L.; Dawson, T. E.

    2017-11-01

    Tropical dry forests (TDFs) undergo a substantial dry season in which plant species must endure several months of drought. Although TDFs support a diverse array of plant growth forms, it is not clear how they vary in mechanisms for coping with seasonal drought. We measured organic tissue stable isotopic composition of carbon (δ13C) and nitrogen (δ15N) across six plant growth forms including epiphytes, terrestrial succulents, trees, shrubs, herbs, and vines, and oxygen (δ18O) of four growth forms, to distinguish among patterns of resource acquisition and evaluate mechanisms for surviving annual drought in a lowland tropical dry forest in Yucatan, Mexico. Terrestrial succulent and epiphyte δ13C was around -14‰, indicating photosynthesis through the Crassulacean acid metabolism pathway, and along with one C4 herb were distinct from mean values of all other growth forms, which were between -26 and -29‰ indicating C3 photosynthesis. Mean tissue δ15N across epiphytes was -4.95‰ and was significantly lower than all other growth forms, which had values around +3‰. Tissue N concentration varied significantly among growth forms with epiphytes and terrestrial succulents having significantly lower values of about 1% compared to trees, shrubs, herbs and vines, which were around 3%. Tissue C concentration was highest in trees, shrubs and vines, intermediate in herbs and epiphytes and lowest in terrestrial succulents. δ18O did not vary among growth forms. Overall, our results suggest several water-saving aspects of resource acquisition, including the absolute occurrence of CAM photosynthesis in terrestrial succulents and epiphytes, high concentrations of leaf N in some species, which may facilitate CO2 drawdown by photosynthetic enzymes for a given stomatal conductance, and potentially diverse N sources ranging from atmospheric N in epiphytes with extremely depleted δ15N values, and a large range of δ15N values among trees, many of which are legumes and dry season

  11. [Effects of irrigation and planting pattern on winter wheat water consumption characteristics and dry matter production].

    PubMed

    Dong, Hao; Chen, Yu-Hai; Zhou, Xun-Bo

    2013-07-01

    Taking high-yield winter wheat cultivar 'Jimai 22' as test material, a field experiment was conducted in 2008-2010 to study the effects of different irrigation and planting modes on the water consumption characteristics and dry matter accumulation and distribution of winter wheat. Three planting patterns (uniform row, wide-narrow row, and furrow) and four irrigation schedules (no irrigation, W0; irrigation at jointing stage, W1; irrigation at jointing and anthesis stages, W2; and irrigation at jointing, anthesis, and milking stages, W3; with 60 mm per irrigation) were installed. With increasing amount of irrigation, the total water consumption and the ratio of irrigation water to total water consumption under different planting patterns all increased, while the soil water consumption and its ratio to total water consumption decreased significantly. As compared with W0, the other three irrigation schedules had a higher dry matter accumulation after anthesis and a higher grain yield, but a lower water use efficiency (WUE). Under the same irrigation schedules, furrow pattern had higher water consumption ratio, grain yield, and WUE. Taking the grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages would be the optimal water-saving and planting modes for the winter wheat production in North China Plain.

  12. New insights on molecular regulation of biofilm formation in plant-associated bacteria.

    PubMed

    Castiblanco, Luisa F; Sundin, George W

    2016-04-01

    Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extracellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multicellular behavior. © 2015 Institute of Botany, Chinese Academy of Sciences.

  13. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation.

    PubMed

    Chiumenti, Alessandro; da Borso, Francesco; Limina, Sonia

    2018-01-01

    For years, anaerobic digestion processes have been implemented for the management of organic wastes, agricultural residues, and animal manure. Wet anaerobic digestion still represents the most common technology, while dry fermentation, dedicated to the treatment of solid inputs (TS>20%) can be considered as an emerging technology, not in terms of technological maturity, but of diffusion. The first agricultural dry anaerobic digestion plant constructed in Italy was monitored from the start-up, for over a year. The plant was fed with manure and agricultural products, such as corn silage, triticale, ryegrass, alfalfa, and straw. Three Combined Heat and Power units, for a total installed power of 910kW e , converted biogas into thermal and electric energy. The monitoring included the determination of quality and quantity of input feedstocks, of digestate (including recirculation rate), of leachate, biogas quality (CH 4 , CO 2 , H 2 S), biogas yield, energy production, labor requirement for loading, and unloading operations. The results of the monitoring were compared to performance data obtained in several full scale wet digestion plants. The dry fermentation plant revealed a start-up phase that lasted several months, during which the average power resulted in 641kW e (70.4% of nominal power), and the last period the power resulted in 788kW e (86.6% of installed power). Improving the balance of the input, the dry fermentation process demonstrated biogas yields similar to wet anaerobic digestion, congruent to the energy potential of the biomasses used in the process. Furthermore, the operation of the plant required significant man labor, mainly related to loading and unloading of the anaerobic cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Optimum hexametaphosphate concentration to inhibit efflorescence formation in dry fermented sausages.

    PubMed

    Walz, Felix H; Gibis, Monika; Fritz, Maren; Herrmann, Kurt; Hinrichs, Jörg; Weiss, Jochen

    2018-05-01

    The occurrence of efflorescences on the surface of dry fermented sausages represents a current issue for the meat processing industry. Preventing the efflorescence formation by the addition of sodium hexametaphosphate (SHMP) was shown to be promising in a previous study. The optimum SHMP addition was studied by adding SHMP (0.0, 1.0, 3.0, and 5.0g/kg) directly to the sausage batter. Visual and chemical analyses were conducted during 8weeks of storage under modified atmosphere. Visual analyses revealed significant lower amounts of efflorescences on the sausage surface after 8weeks when 1.0 (27.1%), 3.0 (9.0%), and 5.0g/kg SHMP (3.4%) were added, compared to the control with 38.0% efflorescences. SHMP significantly affected the occurrence (8weeks) of magnesium on the surface: +85.5%, +23.7%, +3.5%, and -28.2% for 0.0, 1.0, 3.0, and 5.0g/kg, respectively. The addition of 4.785g/kg was calculated to fully inhibit the formation of efflorescences by complexing magnesium ions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Preschool Children's Explanations of Plant Growth and Rain Formation: A Comparative Analysis

    NASA Astrophysics Data System (ADS)

    Christidou, Vasilia; Hatzinikita, Vassilia

    2006-09-01

    This paper explores the different types and characteristics of preschool children's explanations of plant growth and rain formation. The children's explanations were categorized as naturalistic, non-naturalistic, or synthetic, i.e., explanations containing both naturalistic and non-naturalistic parts. In regards to plant growth the children tended to rely on synthetic or on naturalistic explanations, which involved direct and indirect agents (such as water, a person, fertilizers, roots) enabling the plant to grow. Non-naturalistic explanations of plant growth, or the non-naturalistic parts of synthetic explanations, were mainly animistic (anthropomorphic). In the case of rain formation the children most frequently used non-naturalistic explanations, which were mainly teleological or metaphysical. The naturalistic explanations recorded on rain formation, as well as the naturalistic parts of synthetic explanations tended to have a non-agentive character, i.e., children considered rainwater as preexisting in containers such as the clouds. Overall, the explanations recorded about plant growth tended to be more complex than the ones for rain formation. It is suggested that science activities designed for preschool children should take into account the types and characteristics of their explanations in order to select which phenomena are appropriate for this age group, and aim at fostering the children's ability at formulating naturalistic explanations.

  16. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.

    PubMed

    Saad, Juniza Md; Williams, Paul T

    2016-12-01

    Catalytic dry reforming of mixed waste plastics, from a range of different municipal, commercial and industrial sources, were processed in a two-stage fixed bed reactor. Pyrolysis of the plastics took place in the first stage and dry (CO 2 ) reforming of the evolved pyrolysis gases took place in the second stage in the presence of Ni/Al 2 O 3 and Ni-Co/Al 2 O 3 catalysts in order to improve the production of syngas from the dry reforming process. The results showed that the highest amount of syngas yield was obtained from the dry reforming of plastic waste from the agricultural industry with the Ni/Al 2 O 3 catalyst, producing 153.67mmol syngas g -1 waste . The addition of cobalt metal as a promoter to the Ni/Al 2 O 3 catalyst did not have a major influence on syngas yield. Overall, the catalytic-dry reforming of waste plastics from various waste treatment plants showed great potential towards the production of synthesis gases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska

    USGS Publications Warehouse

    Mack, M.C.; Treseder, K.K.; Manies, K.L.; Harden, J.W.; Schuur, E.A.G.; Vogel, J.G.; Randerson, J.T.; Chapin, F. S.

    2008-01-01

    Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ???116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ?? 21 g m-2 (mean ?? 1SE) and vascular ANPP had recovered to 138 ?? 32 g m-2 y -1, which was not different than that of a nearby unburned stand (160 ?? 48 g m-2 y-1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ?? 180 (dry) and 4008 ?? 233 g m-2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ?? 68 g m-2 y -1 in the mature site, but in the dry chronosequence it peaked at 410 ?? 43 g m-2 y-1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls

  18. Prevention of artificial dental plaque formation in vitro by plant extracts.

    PubMed

    Smullen, J; Finney, M; Storey, D M; Foster, H A

    2012-10-01

    A number of previous studies have shown that plant extracts can inhibit formation of dental plaque. The ability of extracts of Rosmarinus officianalis L., Salvia officianalis L., unfermented cocoa, red grape seed and green tea to inhibit plaque bacteria, glucosyltransferase activity, glucan and plaque formation in an in vitro model using bovine teeth was examined. The antimicrobial activity of the plant extracts against oral bacteria was determined using a standard susceptibility agar dilution technique. Inhibition of growth and acid production from glucose and sucrose by Streptococcus mutans in liquid culture was investigated. Prevention of plaque formation on bovine teeth initiated by Strep. mutans was studied using an artificial mouth. The plant extracts inhibited the growth of oral bacteria and prevented acid production by Strep. mutans. Extracts inhibited glucosyltransferase activity and glucan production and inhibited adhesion to glass. Extracts of R. officianalis L. and S. officianalis L. at 0·25 mg ml(-1) reduced plaque growth by >80%. Green tea extract completely inhibited plaque formation but resulted in a greenish discolouration of the teeth which could not be removed by scrubbing. The plant extracts, particularly those from R. officianalis L. and S. officianalis L., inhibited glucosyltranferase activity, glucan production and plaque formation in vitro. The results suggest that the extracts of R. officianalis L. and S. officianalis L. may be useful as antiplaque agents in foods and dental preparations. Bovine teeth can be used as an alternative to hydroxyapatite for studies of plaque formation, but they need to be carefully sterilized before use. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  19. Effects of high- and low-intensity fires on soil properties and plant growth in a Bolivian dry forest

    Treesearch

    Deborah K. Kennard; H.L. Gholz

    2001-01-01

    We compared soil nutrient availabiiity and soil physical properties among four treatments (high-intensity fire, low- intensity fire, plant removal, and harvesting gap) and a control (intact forest understory) over a period of 18 months in a tropical dry forest in Bolivia. The effect of treatments on plant growth was tested using a shade intolerant tree species (

  20. Optimization of instant powdered chicken feet broth’s drying temperature and time on pilot plant scale production

    NASA Astrophysics Data System (ADS)

    Hidayati, N.; Widyaningsih, T. D.

    2018-03-01

    Chicken feet by-product of chicken industries amounted to approximately 65,894 tons/year commonly used as broths. These by-products are potentially produced into an instant form as an anti-inflammatory functional food on industrial scale. Therefore, it is necessary to optimize the critical parameters of the drying process. The aim of this study was to determine the optimum temperature and time of instant powdered chicken feet broth’s drying on pilot plant scale, to find out product’s comparison of the laboratory and pilot plant scale, and to assess financial feasibility of the business plan. The optimization of pilot plant scale’s research prepared and designed with Response Surface Methodology-Central Composite Design. The optimized factors were powdered broth’s drying temperature (55°C, 60°C, 65°C) and time (10 minutes, 11 minutes, 12 minutes) with the response observed were water and chondroitin sulphate content. The optimum condition obtained was drying process with temperature of 60.85°C for 10,05 minutes resulting in 1.90 ± 0.02% moisture content, 32.48 ± 0.28% protein content, 12.05 ± 0.80% fat content, 28.92 ± 0.09 % ash content, 24.64 ± 0.52% carbohydrate content, 1.26 ± 0.05% glucosamine content, 0.99 ± 0.23% chondroitin sulphate content, 50.87 ± 1.00% solubility, 8.59 ± 0.19% water vapour absorption, 0.37% levels of free fatty acid, 13.66 ± 4.49% peroxide number, lightness of 60.33 ± 1.24, yellowness of 3.83 ± 0.26 and redness of 21.77 ± 0.42. Financial analysis concluded that this business project was feasible to run.

  1. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling.

    PubMed

    Belimov, Andrey A; Dodd, Ian C; Hontzeas, Nikos; Theobald, Julian C; Safronova, Vera I; Davies, William J

    2009-01-01

    Decreased soil water availability can stimulate production of the plant hormone ethylene and inhibit plant growth. Strategies aimed at decreasing stress ethylene evolution might attenuate its negative effects. An environmentally benign (nonchemical) method of modifying crop ethylene relations - soil inoculation with a natural root-associated bacterium Variovorax paradoxus 5C-2 (containing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase that degrades the ethylene precursor ACC), was assessed with pea (Pisum sativum) plants grown in drying soil. Inoculation with V. paradoxus 5C-2, but not with a transposome mutant with massively decreased ACC deaminase activity, improved growth, yield and water-use efficiency of droughted peas. Systemic effects of V. paradoxus 5C-2 included an amplified soil drying-induced increase of xylem abscisic acid (ABA) concentration, but an attenuated soil drying-induced increase of xylem ACC concentration. A local bacterial effect was increased nodulation by symbiotic nitrogen-fixing bacteria, which prevented a drought-induced decrease in nodulation and seed nitrogen content. Successfully deploying a single bacterial gene in the rhizosphere increased yield and nutritive value of plants grown in drying soil, via both local and systemic hormone signalling. Such bacteria may provide an easily realized, economic means of sustaining crop yields and using irrigation water more efficiently in dryland agriculture.

  2. Salt drying: a low-cost, simple and efficient method for storing plants in the field and preserving biological repositories for DNA diversity research.

    PubMed

    Carrió, Elena; Rosselló, Josep A

    2014-03-01

    Although a variety of methods have been optimized for the collection and storage of plant specimens, most of these are not suited for field expeditions for a variety of logistic reasons. Drying specimens with silica gel in polyethylene bags is currently the standard for field-sampling methods that are suitable for subsequent DNA extraction. However, silica-gel repositories are not readily available in remote areas, and its use is not very cost-effective for the long-term storage of collections or in developing countries with limited research budgets. Salting is an ancient and traditional drying process that preserves food samples by dehydrating tissues and inhibiting water-dependent cellular metabolism. We compared salt and silica-gel drying methods with respect to dehydration rates overtime, DNA quality and polymerase chain reaction(PCR) success to assess whether dry salting can be used as an effective plant preservation method for DNA analysis. Specimens from eleven plant species covering a variety of leaf structures, leaf thicknesses and water contents were analysed. Experimental work indicated that (i) levels of dehydration in sodium chloride were usually comparable to those obtained when silica gel was used, (ii) no spoilage, fungal or bacterial growth was observed for any of the species with all drying treatments and (iii) good yields of quality genomic DNA suitable for PCR applications were obtained in the salt-drying treatments. The preservation of plant tissues in commercial table salt appears to be a satisfactory, and versatile method that may be suitable in remote areas where cryogenic resources and silica repositories are not available. © 2013 John Wiley & Sons Ltd.

  3. Peduncles elicit large-mammal endozoochory in a dry-fruited plant

    PubMed Central

    Zhou, Youbing; Newman, Chris; Xie, Zongqiang; Macdonald, David W.

    2013-01-01

    Background and Aims Plants have evolved a variety of seed dispersal mechanisms to overcome lack of mobility. Many species embed seeds in fleshy pulp to elicit endozoochory, i.e. disseminating seed through the animal gut. In contrast to well-studied fleshy fruited plants, dry-fruited plants may exploit this dispersal mutualism by producing fleshy appendages as a nutritional reward to entice animals to swallow their diaspores, but this has been little studied. In this study, it is hypothesized that these accessory fruits represent co-adaptations facilitating the syndrome of mammalian endozoochorous dispersal. Methods Field observations (focal tree watches, faecal surveys and fruiting phenology) with experimental manipulations (examination of seed germination and feeding trials) were conducted over 2 years in a native population of the raisin tree, Hovenia dulcis, which produces enlarged, twisted brown peduncles with external black seeds, in central China. Key Results Birds were not observed to swallow seeds or carry infructescences away during 190 h of focal tree watches. However, H. dulcis seeds were detected in 247 faecal samples, representative of two herbivore and four carnivore mammalian species. Feeding trials revealed that peduncles attracted mammals to consume the entire infructescence, thereby facilitating effective seed dispersal. The germination rate of egested seeds proved higher than that of unconsumed seeds. It was also noted that this mutualism was most vulnerable in degraded forest. Conclusions Hovenia dulcis peduncle sets are confirmed to adapt primarily to mammalian endozoochory, a mutualistic association similar in function to fleshy pulp or foliage. This demonstrates that plant organ systems can be adapted to unique mutualisms that utilize animal dispersal agents. Such an ecological role has until now been attributed only to bird epizoochory. Future studies should consider more widely the putative role of peduncle sets and mammalian endozoochory

  4. Exogenous application of methyl jasmonate induces a defense response and resistance against Sclerotinia sclerotiorum in dry bean plants.

    PubMed

    Oliveira, Marília Barros; Junior, Murillo Lobo; Grossi-de-Sá, Maria Fátima; Petrofeza, Silvana

    2015-06-15

    Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic fungal pathogen that causes a disease known as white mold, which is a major problem for dry bean (Phaseolus vulgaris L.) and other crops in many growing areas in Brazil. To investigate the role of methyl jasmonate (MeJA) in defending dry bean plants against S. sclerotiorum, we used suppression subtractive hybridization (SSH) of cDNA and identified genes that are differentially expressed during plant-pathogen interactions after treatment. Exogenous MeJA application enhanced resistance to the pathogen, and SSH analyses led to the identification of 94 unigenes, presumably involved in a variety of functions, which were classified into several functional categories, including metabolism, signal transduction, protein biogenesis and degradation, and cell defense and rescue. Using RT-qPCR, some unigenes were found to be differentially expressed in a time-dependent manner in dry bean plants during the interaction with S. sclerotiorum after MeJA treatment, including the pathogenesis-related protein PR3 (chitinase), PvCallose (callose synthase), PvNBS-LRR (NBS-LRR resistance-like protein), PvF-box (F-box family protein-like), and a polygalacturonase inhibitor protein (PGIP). Based on these expression data, the putative roles of differentially expressed genes were discussed in relation to the disease and MeJA resistance induction. Changes in the activity of the pathogenesis-related proteins β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase, and peroxidase in plants after MeJA treatment and following inoculation of the pathogen were also investigated as molecular markers of induced resistance. Foliar application of MeJA induced partial resistance against S. sclerotiorum in plants as well as a consistent increase in pathogenesis-related protein activities. Our findings provide new insights into the physiological and molecular mechanisms of resistance induced by MeJA in the P. vulgaris-S. sclerotiorum pathosystem

  5. 7 CFR 58.813 - Dry whey.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Dry whey. 58.813 Section 58.813 Agriculture... Products Bearing Usda Official Identification § 58.813 Dry whey. The quality requirements for dry whey shall be in accordance with the U.S. Standards for Dry Whey. Supplemental Specifications for Plants...

  6. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  7. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  8. Impact of processing conditions on the kinetic of vitamin C degradation and 2-furoylmethyl amino acid formation in dried strawberries.

    PubMed

    Gamboa-Santos, Juliana; Megías-Pérez, Roberto; Soria, A Cristina; Olano, Agustín; Montilla, Antonia; Villamiel, Mar

    2014-06-15

    In this paper, a study on the usefulness of the determination of vitamin C together with indicators of the initial steps of Maillard reaction (2-furoylmethyl amino acids, 2-FM-AA) during the convective drying of strawberries has been carried out for the first time, paying special attention to the kinetics of degradation and formation, respectively, of both parameters. Formation of 2-FM-AA of Lys, Arg and GABA and vitamin C loss increased with time and temperature following, respectively, a zero and first-order kinetics. As supported by its lower activation energy, 2-FM-GABA (55.9 kJ/mol) and 2-FM-Lys+2-FM-Arg (58.2 kJ/mol) were shown to be slightly more sensitive indicators than vitamin C (82.1 kJ/mol). The obtained results, together with a complementary study on the rehydration ability and sensorial attributes of samples, pointed out the suitability of the convective drying system to obtain dried strawberries of high nutritive quality and bioactivity and good consumer acceptance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Cumulative ventilation air drying potential as an indication of dry mass content in wastewater sludge in a thin-layer solar drying facility

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr

    2013-12-01

    Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.

  10. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings

    PubMed Central

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R.

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of

  11. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings.

    PubMed

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of

  12. Evaluating the use of plant hormones and biostimulators in forage pastures to enhance shoot dry biomass production by perennial ryegrass (Lolium perenne L.).

    PubMed

    Zaman, Mohammad; Kurepin, Leonid V; Catto, Warwick; Pharis, Richard P

    2016-02-01

    Fertilisation of established perennial ryegrass forage pastures with nitrogen (N)-based fertilisers is currently the most common practice used on farms to increase pasture forage biomass yield. However, over-fertilisation can lead to undesired environmental impacts, including nitrate leaching into waterways and increased gaseous emissions of ammonia and nitrous oxide to the atmosphere. Additionally, there is growing interest from pastoral farmers to adopt methods for increasing pasture dry matter yield which use 'natural', environmentally safe plant growth stimulators, together with N-based fertilisers. Such plant growth stimulators include plant hormones and plant growth promotive microorganisms such as bacteria and fungi ('biostimulators', which may produce plant growth-inducing hormones), as well as extracts of seaweed (marine algae). This review presents examples and discusses current uses of plant hormones and biostimulators, applied alone or together with N-based fertilisers, to enhance shoot dry matter yield of forage pasture species, with an emphasis on perennial ryegrass. © 2015 Society of Chemical Industry.

  13. Formation of monodisperse mesoporous silica microparticles via spray-drying.

    PubMed

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong

    2014-03-15

    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Formation of methane and nitrous oxide in plants

    NASA Astrophysics Data System (ADS)

    Keppler, Frank; Lenhart, Katharina

    2017-04-01

    and mosses, so called cryptogamic covers, were recently identified to release substantial amounts of nitrous oxide (Lenhart et al. 2015). In this presentation we will give a brief overview of recent observations of aerobic methane formation and nitrous oxide emissions from terrestrial vegetation. Furthermore, we will present new results from laboratory incubation experiments that provide further insights into the formation of methane and nitrous oxide from plants. References: Bruhn, D. et al.: Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen. Plant Biology 16, 512-516, 2014. Chang, C. et al.: Nitrous Oxide Emission through Plants. Soil Science Society of America Journal 62, 35-38, 1998. Dean, J. V., Harper, J. E.: Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay. Plant Physiology 82, 718-723, 1986. Keppler, F., Boros, M., Frankenberg, C., Lelieveld, J., McLeod, A., Pirttilä, A. M., Röckmann, T., Schnitzler, J.: Methane formation in aerobic environments, Environmental Chemistry, 6, 459-465, 2009. Lenhart, K. et al.: Nitrous oxide and methane emissions from cryptogamic covers. Global Change Biology 21, 3889-3900, 2015. Pihlatie, M., Ambus, P., Rinne, J., Pilegaard, K., Vesala, T.: Plant-mediated nitrous oxide emissions from beech (Fagus sylvatica) leaves. New Phytologist 168, 93-98, 2005. Wang, Z.-P., Chang, S. X., Chen, H., Han, X.-G.: Widespread non-microbial methane production by organic compounds and the impact of environmental stresses, Earth-Science Reviews, 127, 193-202, 2013.

  15. 7 CFR 58.251 - Dry buttermilk and dry buttermilk product.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Requirements for Finished Products Bearing Usda Official Identification § 58.251 Dry buttermilk...

  16. Ecohydrology and biogeochemistry of seasonally-dry ecosystems

    NASA Astrophysics Data System (ADS)

    Feng, X.; Porporato, A. M.

    2010-12-01

    The composition and the dynamic in various types of seasonally dry ecosystems are largely determined by rainfall seasonality and distribution. The intermittency of rainfall in these ecosystems has played a dominant role in the life cycle of native plants such that phenological events such as growth or reproduction have oftentimes become synchronized with the onset of the dry or the wet season. Characteristic amongst such types of ecosystems are the tropical dry and Mediterranean ecosystems, both of which receive similar amount of precipitation yet are markedly distinct in their synchronization of rainfall fluctuations and temperature. Seasonally dry ecosystems cover more than 16 million square kilometers in the tropics, with short but intense wet seasons followed by long dry seasons and elevated temperature throughout the year. Native vegetation grows during the wet season and adopts dormancy or seasonal deciduousness to cope with the dry season. In the Mediterranean climates, precipitations and temperature are out of phase, with wet temperate winters and hot dry summers. Dimorphic root systems are prevalent, where deep rooted plants exploit the winter recharge while the shallow rooted species take advantage of the infrequent summer rains. Using a stochastic soil moisture model we analyze how temporal shifts, or the lack thereof, in temperature and precipitation patterns affect the development of water stress during the dry season and its feedbacks on soil-plant biogeochemistry. We especially focus on the role of differences in temperature and seasonal potential evapotranspiration between tropical dry and Mediterranean climates. We also compare irrigation needs and the effects of projected climatic conditions in those regions. Understanding how plants adopt different water use strategies in the context of shifted climatic patterns will shed light on how these regions of high biodiversity may cope with rapidly-changing climatic conditions.

  17. Possible Mechanism for Formation of Nonwettable "Dry Spots" on a Heated Surface during Nucleate Pool Boiling: II. Feedwater Stop Regime

    NASA Astrophysics Data System (ADS)

    Zhukov, Yu. M.; Urtenov, D. S.

    2017-12-01

    The problems of simulation of heterogeneous nucleate pool boiling on a horizontal surface on the ascending branch of the boiling curve from the formation of a steam lens (SL) to the boiling crisis are considered. The proposed hypothesis provides in a number of cases a logically consistent interpretation of experiments and outlines the organizational principle of transferring the wall-liquid-steam system into the regime of nonwettable "dry spot" formation. The model includes the following types of nucleate boiling: (a) cyclic boiling with the contact line reverse to the bubble bottom center and bubble departure from the surface (at low heat flux q and the contact angle θ < 90°); (b) single steam bubble conversion into a steam lens, i.e., local film boiling with the possibility of spreading of a single "dry spot" at the variation of the contact angle θ ≥ 90°, and substantial growth of the departure diameter D d and SL lifetime τd; (c) formation of a single steam cluster of four SLs at a given pressure, the liquid underheating, and the average wall overheating.

  18. Biofilm formation by enteric pathogens and its role in plant colonization and persistence

    PubMed Central

    Yaron, Sima; Römling, Ute

    2014-01-01

    The significant increase in foodborne outbreaks caused by contaminated fresh produce, such as alfalfa sprouts, lettuce, melons, tomatoes and spinach, during the last 30 years stimulated investigation of the mechanisms of persistence of human pathogens on plants. Emerging evidence suggests that Salmonella enterica and Escherichia coli, which cause the vast majority of fresh produce outbreaks, are able to adhere to and to form biofilms on plants leading to persistence and resistance to disinfection treatments, which subsequently can cause human infections and major outbreaks. In this review, we present the current knowledge about host, bacterial and environmental factors that affect the attachment to plant tissue and the process of biofilm formation by S. enterica and E. coli, and discuss how biofilm formation assists in persistence of pathogens on the plants. Mechanisms used by S. enterica and E. coli to adhere and persist on abiotic surfaces and mammalian cells are partially similar and also used by plant pathogens and symbionts. For example, amyloid curli fimbriae, part of the extracellular matrix of biofilms, frequently contribute to adherence and are upregulated upon adherence and colonization of plant material. Also the major exopolysaccharide of the biofilm matrix, cellulose, is an adherence factor not only of S. enterica and E. coli, but also of plant symbionts and pathogens. Plants, on the other hand, respond to colonization by enteric pathogens with a variety of defence mechanisms, some of which can effectively inhibit biofilm formation. Consequently, plant compounds might be investigated for promising novel antibiofilm strategies. PMID:25351039

  19. Population growth rate of dry bulb mite, Aceria tulipae (Keifer) (Acariformes: Eriophyidae) on agriculturally important plants and implications on taxonomic status

    USDA-ARS?s Scientific Manuscript database

    Dry bulb mite (DBM), Aceria tulipae, is an economically important mite with a worldwide distribution and a broad host range. As a generalist, it is the most important eriophyoid mite attacking bulbous plants such as garlic, onion, and tulip. To date, DBM has been recorded on host plants belonging to...

  20. Microencapsulation of soybean oil by spray drying using oleosomes

    NASA Astrophysics Data System (ADS)

    Maurer, S.; Ghebremedhin, M.; Zielbauer, B. I.; Knorr, D.; Vilgis, T. A.

    2016-02-01

    The food industry has discovered that oleosomes are beneficial as carriers of bioactive ingredients. Oleosomes are subcellular oil droplets typically found in plant seeds. Within seeds, they exist as pre-emulsified oil high in unsaturated fatty acids, stabilised by a monolayer of phospholipids and proteins, called oleosins. Oleosins are anchored into the oil core with a hydrophobic domain, while the hydrophilic domains remain on the oleosome surface. To preserve the nutritional value of the oil and the function of oleosomes, microencapsulation by means of spray drying is a promising technique. For the microencapsulation of oleosomes, maltodextrin was used. To achieve a high oil encapsulation efficiency, optimal process parameters needed to be established. In order to better understand the mechanisms of drying behind powder formation and the associated powder properties, the findings obtained using different microscopic and spectroscopic measurements were correlated with each other. By doing this, it was found that spray drying of pure oleosome emulsions resulted in excessive component segregation and thus in a poor encapsulation efficiency. With the addition of maltodextrin, the oil encapsulation efficiency was significantly improved.

  1. Dry and Semi-Dry Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy

  2. Suggestion on the safety classification of spent fuel dry storage in China’s pressurized water reactor nuclear power plant

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua

    2018-01-01

    China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.

  3. Effect of salt concentrations and drying methods on the quality and formation of histamine in dried milkfish (Chanos chanos).

    PubMed

    Hwang, Chiu-Chu; Lin, Chia-Min; Kung, Hsien-Feng; Huang, Ya-Ling; Hwang, Deng-Fwu; Su, Yi-Cheng; Tsai, Yung-Hsiang

    2012-11-15

    The effects of salt concentrations (0-15.0%) and drying methods on the quality of dried milkfish were studied. The results showed that the levels of aerobic plate counts, total coliform, water activity, moisture contents, total volatile basic nitrogen (TVBN) and thiobarbituric acid (TBA) of the dried milkfish samples prepared with the same drying method decreased with increased salt concentrations. The samples prepared with the cold-air drying method had better quality in term of lower TVBN and TBA values than those of samples prepared with other drying methods. The histamine contents in all samples, except two, prepared with various salt concentrations by different drying methods were less than 1.9 mg/100 g. Two unsalted samples prepared with hot-air drying at 35 °C and sun drying methods were found to contain histamine at levels of 249.7 and 67.4 mg/100 g, respectively, which were higher than the potential hazard level of 50 mg/100 g. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Plant metabolism and cell wall formation in space (microgravity) and on Earth

    NASA Technical Reports Server (NTRS)

    Lewis, Norman G.

    1994-01-01

    Variations in cell wall chemistry provide vascular plants with the ability to withstand gravitational forces, as well as providing facile mechanisms for correctional responses to various gravitational stimuli, e.g., in reaction wood formation. A principal focus of our current research is to precisely and systematically dissect the essentially unknown mechanism(s) of vascular plant cell wall assembly, particularly with respect to formation of its phenolic constituents, i.e., lignins and suberins, and how gravity impacts upon these processes. Formation of these phenolic polymers is of particular interest, since it appears that elaboration of their biochemical pathways was essential for successful land adaptation. By extrapolation, we are also greatly intrigued as to how the microgravity environment impacts upon 'normal' cell wall assembly mechanisms/metabolism.

  5. Preschool Children's Explanations of Plant Growth and Rain Formation: A Comparative Analysis

    ERIC Educational Resources Information Center

    Christidou, Vasilia; Hatzinikita, Vassilia

    2006-01-01

    This paper explores the different types and characteristics of preschool children's explanations of plant growth and rain formation. The children's explanations were categorized as naturalistic, non-naturalistic, or synthetic, i.e., explanations containing both naturalistic and non-naturalistic parts. In regards to plant growth the children…

  6. [Effects of applying nitrogen fertilizer at different stages in ploughed furrow on dry matter production and yield of rice].

    PubMed

    Shi, Kun; Hao, Shufeng; Xie, Hongtu; Zhang, Xudong

    2002-12-01

    The effects of applying nitrogen fertilizer in ploughed furrow at different stages on dry matter production and yield of rice were studied in a field experiment in 1999. The results showed that applying N fertilizer at booting stage (BS) had better effects on dry weight (2.9 g.hill-1) of leaf, stem and whole plant than at panicle primordia formation stage (PPFS), tillering stage (TS) and regular N fertilization (RF). Meanwhile, the dry weight of leaf and sheath as well as the leaf area index (LAI, 8.9) could be maintained at a high level for a relative long time in BS treatment, compared with PPFS, TS and RF treatments. Similar phenomenon was observed in the growth velocity (0.73 g.d-1.hill-1) of stem and whole plant, and the dry weight (10434 kg.hm-2) of seed. The grain yield of rice followed the sequence of BS > or = PPFS > TS > or = RF. Thus, the optimum stage of applying N fertilizer in ploughed furrow was the booting stage.

  7. Degradation of anionic surfactants during drying of UASBR sludges on sand drying beds.

    PubMed

    Mungray, Arvind Kumar; Kumar, Pradeep

    2008-09-01

    Anionic surfactant (AS) concentrations in wet up-flow anaerobic sludge blanket reactor (UASBR) sludges from five sewage treatment plants (STPs) were found to range from 4480 to 9,233 mg kg(-1)dry wt. (average 7,347 mg kg(-1)dry wt.) over a period of 18 months. After drying on sand drying beds (SDBs), AS in dried-stabilized sludges averaged 1,452 mg kg(-1)dry wt., a reduction of around 80%. The kinetics of drying followed simple first-order reduction of moisture with value of drying constant (k(d))=0.051 d(-1). Reduction of AS also followed first-order kinetics. AS degradation rate constant (k(AS)) was found to be 0.034 d(-1) and half-life of AS as 20 days. The order of rates of removal observed was k(d)>k(AS)>k(COD)>k(OM) (drying >AS degradation>COD reduction>organic matter reduction). For the three applications of dried-stabilized sludges (soil, agricultural soil, grassland), values of risk quotient (RQ) were found to be <1, indicating no risk.

  8. Developing resilient green roofs in a dry climate.

    PubMed

    Razzaghmanesh, M; Beecham, S; Brien, C J

    2014-08-15

    Living roofs are an emerging green infrastructure technology that can potentially be used to ameliorate both climate change and urban heat island effects. There is not much information regarding the design of green roofs for dry climates and so the aim of this study was to develop low maintenance and unfertilized green roofs for a dry climate. This paper describes the effects of four important elements of green roofs namely slope, depth, growing media and plant species and their possible interactions in terms of plant growth responses in a dry climate. Sixteen medium-scale green roofs were set up and monitored during a one year period. This experiment consisted of twelve vegetated platforms and four non-vegetated platforms as controls. The design for the experiment was a split-split-plot design in which the factors Slope (1° and 25°) and Depth (100mm, 300 mm) were randomized to the platforms (main plots). Root depth and volume, average height of plants, final dry biomass and ground cover, relative growth rate, final dry shoot-root ratio, water use efficiency and leaf succulence were studied during a twelve month period. The results showed little growth of the plants in media type A, whilst the growth was significant in both media types B and C. On average, a 90% survival rate of plants was observed. Also the growth indices indicated that some plants can grow efficiently in the harsh environment created by green roofs in a dry climate. The root growth pattern showed that retained water in the drainage layer is an alternative source of water for plants. It was also shown that stormwater can be used as a source of irrigation water for green roofs during six months of the year at the study site. In summary, mild sloping intensive systems containing media type C and planted with either Chrysocephalum apiculatum or Disphyma crassifolium showed the best performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Formation of dry gram-negative bacteria biocontrol products and small pilot tests against potato dry rot

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas fluorescens strains S11:P:12, P22:Y:05, and S22:T:04 reduce important potato maladies in storage including dry rot, late blight, pink rot, and sprouting. Experiments were conducted to identify methods for producing a dried, efficacious biological control product from one or more of these...

  10. Dioxin formation and control in a gasification-melting plant.

    PubMed

    Kawamoto, Katsuya; Miyata, Haruo

    2015-10-01

    We investigated dioxin formation and removal in a commercial thermal waste treatment plant employing a gasification and melting process that has become widespread in the last decade in Japan. The aim was to clarify the possibility of dioxin formation in a process operation at high temperatures and the applicability of catalytic decomposition of dioxins. Also, the possible use of dioxin surrogate compounds for plant monitoring was further evaluated. The main test parameter was the influence of changes in the amount and type of municipal solid waste (MSW) supplied to the thermal waste treatment plant which from day to day operation is a relevant parameter also from commercial perspective. Here especially, the plastic content on dioxin release was assessed. The following conclusions were reached: (1) disturbance of combustion by adding plastic waste above the capability of the system resulted in a considerable increase in dioxin content of the flue gas at the inlet of the bag house and (2) bag filter equipment incorporating a catalytic filter effectively reduced the gaseous dioxin content below the standard of 0.1 ng toxic equivalency (TEQ)/m(3) N, by decomposition and partly adsorption, as was revealed by total dioxin mass balance and an increased levels in the fly ash. Also, the possible use of organohalogen compounds as dioxin surrogate compounds for plant monitoring was further evaluated. The levels of these surrogates did not exceed values corresponding to 0.1 ng TEQ/m(3) N dioxins established from former tests. This further substantiated that surrogate measurement therefore can well reflect dioxin levels.

  11. Dynamics of organochlorine contaminants in surface water and in Myriophyllum aquaticum plants of the River Xanaes in central Argentina during the annual dry season.

    PubMed

    Schreiber, René; Harguinteguy, Carlos A; Manetti, Martin D

    2013-10-01

    The dynamics of organochlorine pesticides (OCPs) and their major metabolites were studied in surface waters and plants of the River Xanaes (province of Córdoba, Argentina) during the annual dry season. The results of the 5-month monitoring study (April to August 2010) showed similar low contamination levels in nonagricultural mountain and agricultural areas in both water and plants. The concentrations of compounds detected in the surface water were <4.5 ng L(-1), whereas concentrations of these substances in Myriophyllum aquaticum plants were <5 μg kg(-1) (dry weight) with the exception of trans-permethrin (17.6 μg kg(-1), dry weight). Because no notable differences in the contamination level between samples from the mountain and the agricultural area were observed, it was assumed that OCPs may not play an important role in today's pesticide use in this area. Furthermore, the concentration-time trends for OCPs in the submerged plants showed a generally similar elimination behaviour independent of compound and sampling site, thus indicating an integral rather then a substance-specific process, such as partitioning between the plant and the ambient water. As known, rooted macrophytes can take up contaminants by way of roots, so sediments may be the principal source. To understand the dynamics of these compounds in the river area more deeply, thus further research should include study of the river sediment.

  12. Drying-induced physico-chemical changes in cranberry products.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Honke, Joanna; Ciska, Ewa; Andlauer, Wilfried

    2018-02-01

    Sugar-free cranberry juice (XAD) and juice with 15% of maltodextrin were dried by freeze-, vacuum and spray drying methods. Total phenolics (589-6435mg/kg dry matter) including 5 flavonols, 3 phenolic acids, 2 procyanidins and 5 anthocyanins were stronger affected by juice formulation than by drying methods. Spray drying of juice, regardless of its formulation, was competitive to freeze drying in terms of polyphenols' retention. Increase in temperature up to 100°C during vacuum drying of XAD extracts resulted in degradation of polyphenolics (down to 4%), except chlorogenic acid. Its content increased with rise in temperature and accelerated hydroxymethylfurfural formation. The stronger the impact of drying, the more chlorogenic acid is present in cranberry products. In all powders analysed, formation of furoylmethyl amino acids was noted. Antioxidant capacity of cranberry products was influenced by juice formulation and was linked to content of polyphenols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of chronic anthropogenic disturbance and rainfall on the specialization of ant-plant mutualistic networks in the Caatinga, a Brazilian dry forest.

    PubMed

    Câmara, Talita; Leal, Inara R; Blüthgen, Nico; Oliveira, Fernanda M P; Queiroz, Rubens T de; Arnan, Xavier

    2018-03-05

    Anthropogenic disturbance and climate change might negatively affect the ecosystem services provided by mutualistic networks. However, the effects of such forces remain poorly characterized. They may be especially important in dry forests, which (1) experience chronic anthropogenic disturbances (CADs) as human populations exploit forest resources, and (2) are predicted to face a 22% decline in rainfall under climate change. In this study, we investigated the separate and combined effects of CADs and rainfall levels on the specialization of mutualistic networks in the Caatinga, a seasonally dry tropical forest typical of north-eastern Brazil. More specifically, we examined interactions between plants bearing extrafloral nectaries (EFNs) and ants. We analysed whether differences in network specialization could arise from environmentally mediated variation in the species composition, namely via the replacement of specialist by generalist species. We characterized these ant-plant networks in 15 plots (20 × 20 m) that varied in CAD intensity and mean annual rainfall. We quantified CAD intensity by calculating three indices related to the main sources of disturbance in the Caatinga: livestock grazing (LG), wood extraction (WE) and miscellaneous resource use (MU). We determined the degree of ant-plant network specialization using four metrics: generality, vulnerability, interaction evenness and H 2 '. Our results indicate that CADs differentially influenced network specialization: we observed positive, negative, and neutral responses along LG, MU and WE gradients, respectively. The pattern was most pronounced with LG. Rainfall also shaped network specialization, markedly increasing it. While LG and rainfall were associated with changes in network species composition, this trend was not related to the degree of species specialization. This result suggests that shifts in network specialization might be related to changes in species behaviour, not species composition

  14. PCDD/F enviromental impact from municipal solid waste bio-drying plant.

    PubMed

    Rada, E C; Ragazzi, M; Zardi, D; Laiti, L; Ferrari, A

    2011-06-01

    The present work indentifies some environmental and health impacts of a municipal solid waste bio-drying plant taking into account the PCDD/F release into the atmosphere, its concentration at ground level and its deposition. Four scenarios are presented for the process air treatment and management: biofilter or regenerative thermal oxidation treatment, at two different heights. A Gaussian dispersion model, AERMOD, was used in order to model the dispersion and deposition of the PCDD/F emissions into the atmosphere. Considerations on health risk, from different exposure pathways are presented using an original approach. The case of biofilter at ground level resulted the most critical, depending on the low dispersion of the pollutants. Suggestions on technical solutions for the optimization of the impact are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. 7 CFR 58.248 - Nonfat dry milk.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Requirements for Finished Products Bearing Usda Official Identification § 58.248 Nonfat dry milk. (a) Nonfat dry milk in commercial...

  16. 7 CFR 58.250 - Dry whole milk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Requirements for Finished Products Bearing Usda Official Identification § 58.250 Dry whole milk. Dry whole milk in commercial bulk...

  17. 7 CFR 58.248 - Nonfat dry milk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Requirements for Finished Products Bearing Usda Official Identification § 58.248 Nonfat dry milk. (a) Nonfat dry milk in commercial...

  18. 7 CFR 58.248 - Nonfat dry milk.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Requirements for Finished Products Bearing Usda Official Identification § 58.248 Nonfat dry milk. (a) Nonfat dry milk in commercial...

  19. Zeolite Formation and Weathering Processes in Dry Valleys of Antartica: Martian Analogs

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Wentworth, S. J.; McKay, D. S.; Socki, R. A.

    2004-01-01

    Terrestrial weathering processes in cold-desert climates such as the Dry Valleys of Antarctica may provide an excellent analog to chemical weathering and diagenesis of soils on Mars. Detailed studies of soil development and the chemical and mineralogical alterations occurring within soil columns in Wright Valley, Antarctica show incredible complexity in the upper meter of soil. Previous workers noted the ice-free Dry Valleys are the best terrestrial approximations to contemporary Mars. Images returned from the Pathfinder and Spirit landers show similarities to surfaces observed within the Dry Valleys. Similarities to Mars that exist in these valleys are: mean temperatures always below freezing (-20 C), no rainfall, sparse snowfall-rapidly removed by sublimation, desiccating winds, diurnal freeze-thaw cycles (even during daylight hours), low humidity, oxidative environment, relatively high solar radiation and low magnetic fields . The Dry Valley soils contain irregular distributions and low abundances of soil microorganisms that are somewhat unusual on Earth. Physical processes-such as sand abrasion-are dominant mechanisms of rock weathering in Antarctica. However, chemical weathering is also an important process even in such extreme climates. For example, ionic migration occurs even in frozen soils along liquid films on individual soil particles. It has also been shown that water with liquid-like properties is present in soils at temperatures on the order of approx.-80 C and it has been observed that the percentage of oxidized iron increases with increasing soil age and enrichments in oxidized iron occurs toward the surface. The presence of evaporates is evident and appear similar to "evaporite sites" within the Pathfinder and Spirit sites. Evaporites indicate ionic migration and chemical activity even in the permanently frozen zone. The presence of evaporates indicates that chemical weathering of rocks and possibly soils has been active. Authogenic zeolites have

  20. Dry coniferous forest restoration and understory plant diversity: The importance of community heterogeneity and the scale of observation

    Treesearch

    Erich Kyle Dodson; David W. Peterson

    2010-01-01

    Maintaining understory plant species diversity is an important management goal as forest restoration and fuel reduction treatments are applied extensively to dry coniferous forests of western North America. However, understory diversity is a function of both local species richness (number of species in a sample unit) and community heterogeneity (beta diversity) at...

  1. Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity

    PubMed Central

    McAdam, Scott A. M.

    2017-01-01

    Angiosperms are able to respond rapidly to the first sign of dry conditions, a decrease in air humidity, more accurately described as an increase in the vapor pressure deficit between the leaf and the atmosphere (VPD), by abscisic acid (ABA)-mediated stomatal closure. The genes underlying this response offer valuable candidates for targeted selection of crop varieties with improved drought tolerance, a critical goal for current plant breeding programs, to maximize crop production in drier and increasingly marginalized environments, and meet the demands of a growing population in the face of a changing climate. Here, we review current understanding of the genetic mechanisms underpinning ABA-mediated stomatal closure, a key means for conserving water under dry conditions, examine how these mechanisms evolved, and discuss what remains to be investigated. PMID:29113039

  2. Using the "Kalanchoe daigremontiana" Plant To Show the Effects of Photoperiodism on Plantlet Formation.

    ERIC Educational Resources Information Center

    Hershey, David R.

    2002-01-01

    Describes an activity demonstrating the importance of photoperiod on plant development. Uses the plant devil's backbone for the experiment and studies the details of photoperiodic requirement for plantlet formation. (Contains 12 references.) (YDS)

  3. Adventitious Root Formation of Forest Trees and Horticultural Plants - From Genes to Applications

    USDA-ARS?s Scientific Manuscript database

    Adventitious root formation is a key step in the clonal propagation of forest trees and horticultural crops. Difficulties in forming adventitious roots (ARs) on stem cuttings and plants produced in vitro hinders the propagation of elite trees and efficient production of many horticultural plant spec...

  4. Comparison of standard moisture loss-on-drying methods for the determination of moisture content of corn distillers dried grains with solubles.

    PubMed

    Ileleji, Klein E; Garcia, Arnoldo A; Kingsly, Ambrose R P; Clementson, Clairmont L

    2010-01-01

    This study quantified the variability among 14 standard moisture loss-on-drying (gravimetric) methods for determination of the moisture content of corn distillers dried grains with solubles (DDGS). The methods were compared with the Karl Fischer (KF) titration method to determine their percent variation from the KF method. Additionally, the thermo-balance method using a halogen moisture analyzer that is routinely used in fuel ethanol plants was included in the methods investigated. Moisture contents by the loss-on-drying methods were significantly different for DDGS samples from three fuel ethanol plants. The percent deviation of the moisture loss-on-drying methods decreased with decrease in drying temperature and, to a lesser extent, drying time. This was attributed to an overestimation of moisture content in DDGS due to the release of volatiles at high temperatures. Our findings indicate that the various methods that have been used for moisture determination by moisture loss-on-drying will not give identical results and therefore, caution should be exercised when selecting a moisture loss-on-drying method for DDGS.

  5. Dried, ground banana plant leaves (Musa spp.) for the control of Haemonchus contortus and Trichostrongylus colubriformis infections in sheep.

    PubMed

    Gregory, L; Yoshihara, E; Ribeiro, B L M; Silva, L K F; Marques, E C; Meira, E B S; Rossi, R S; Sampaio, P H; Louvandini, H; Hasegawa, M Y

    2015-12-01

    To evaluate the anthelmintic effect of Musa spp. leaves, 12 animals were artificially infected with Haemonchus contortus, and another 12 animals were infected with Trichostrongylus colubriformis. Then, both treatment groups were offered 400 g of dried ground banana plant leaves, and the control animals were offered only 1000 g of coast cross hay. During the trials, the animals received weekly physical examinations. The methods used to evaluate the efficiency of this treatment were packed cell volume, total plasma protein and faecal egg counts, and egg hatchability tests were performed on days -2, +3, +6, +9, +13 and +15. Coproculture tests were performed on day -2 to confirm monospecific infections. In the FEC and EHT, a statistically significant difference (0.04, 0.005; p < 0.05) was noted for T. colubriformis. There were no statistically significant differences (p > 0.05) for Haemochus contortus group in all tests. Our results confirmed previous findings suggesting that dried ground banana plant leaves possess anthelmintic activity.

  6. Whole-Genome Sequences of Cronobacter sakazakii Isolates Obtained from Foods of Plant Origin and Dried-Food Manufacturing Environments.

    PubMed

    Jang, Hyein; Addy, Nicole; Ewing, Laura; Jean-Gilles Beaubrun, Junia; Lee, YouYoung; Woo, JungHa; Negrete, Flavia; Finkelstein, Samantha; Tall, Ben D; Lehner, Angelika; Eshwar, Athmanya; Gopinath, Gopal R

    2018-04-12

    Here, we present draft genome sequences of 29 Cronobacter sakazakii isolates obtained from foods of plant origin and dried-food manufacturing facilities. Assemblies and annotations resulted in genome sizes ranging from 4.3 to 4.5 Mb and 3,977 to 4,256 gene-coding sequences with G+C contents of ∼57.0%.

  7. A Bacillus subtilis Sensor Kinase Involved in Triggering Biofilm Formation on the Roots of Tomato Plants

    PubMed Central

    Chen, Yun; Cao, Shugeng; Chai, Yunrong; Clardy, Jon; Kolter, Roberto; Guo, Jian-hua; Losick, Richard

    2012-01-01

    SUMMARY The soil bacterium Bacillus subtilis is widely used in agriculture as a biocontrol agent able to protect plants from a variety of pathogens. Protection is thought to involve the formation of bacterial communities - biofilms - on the roots of the plants. Here we used confocal microscopy to visualize biofilms on the surface of the roots of tomato seedlings and demonstrated that biofilm formation requires genes governing the production of the extracellular matrix that holds cells together. We further show that biofilm formation was dependent on the sensor histidine kinase KinD and in particular on an extracellular CACHE domain implicated in small molecule sensing. Finally, we report that exudates of tomato roots strongly stimulated biofilm formation ex planta and that an abundant small molecule in the exudates, l-malic acid, was able to stimulate biofilm formation at high concentrations in a manner that depended on the KinD CACHE domain. We propose that small signaling molecules released by the roots of tomato plants are directly or indirectly recognized by KinD, triggering biofilm formation. PMID:22716461

  8. Solar drying of whole mint plant under natural and forced convection

    PubMed Central

    Sallam, Y.I.; Aly, M.H.; Nassar, A.F.; Mohamed, E.A.

    2013-01-01

    Two identical prototype solar dryers (direct and indirect) having the same dimensions were used to dry whole mint. Both prototypes were operated under natural and forced convection modes. In the case of the later one the ambient air was entered the dryer with the velocity of 4.2 m s−1. The effect of flow mode and the type of solar dryers on the drying kinetics of whole mint were investigated. Ten empirical models were used to fit the drying curves; nine of them represented well the solar drying behavior of mint. The results indicated that drying of mint under different operating conditions occurred in the falling rate period, where no constant rate period of drying was observed. Also, the obtained data revealed that the drying rate of mint under forced convection was higher than that of mint under natural convection, especially during first hours of drying (first day). The values of the effective diffusivity coefficient for the mint drying ranged between 1.2 × 10−11 and 1.33 × 10−11 m2 s−1. PMID:25750751

  9. Influence of management regime and harvest date on the forage quality of rangelands plants: the importance of dry matter content

    PubMed Central

    Bumb, Iris; Garnier, Eric; Bastianelli, Denis; Richarte, Jean; Bonnal, Laurent; Kazakou, Elena

    2016-01-01

    In spite of their recognized ecological value, relatively little is known about the nutritional value of species-rich rangelands for herbivores. We investigated the sources of variation in dry matter digestibility (DMD), neutral detergent fibre content (NDF) and nitrogen concentration (NC) in plants from species-rich Mediterranean rangelands in southern France, and tested whether the dry matter content (DMC) was a good predictor of the forage quality of different plant parts. Sixteen plant species with contrasting growth forms (rosette, tussock, extensive and stemmed-herb) were studied, representative of two management regimes imposed in these rangelands: (i) fertilization and intensive grazing and (ii) non-fertilization and moderate grazing. Among the 16 plant species, four species were found in both treatments, allowing us to assess the intraspecific variability in forage quality and DMC across the treatments. The components of nutritional value (DMD, NDF and NC) as well as the DMC of leaves, stems and reproductive plant parts, were assessed at the beginning of the growing season and at peak standing biomass. All components of nutritional value and DMC were affected by species growth form: rosettes had higher DMD and NC than tussocks; the reverse being found for NDF and DMC. As the season progressed, DMD and NC of the different plant parts decreased while NDF and DMC increased for all species. DMC was negatively related to DMD and NC and positively to NDF, regardless of the source of variation (species, harvest date, management regime or plant part). Path analysis indicated that NDF was the main determinant of DMD. Better assessment of forage quality in species-rich systems requires consideration of their growth form composition. DMC of all plant parts, which is closely related to NDF, emerged as a good predictor and easily measured trait to estimate DMD in these species-rich systems. PMID:27339049

  10. Whole-Genome Sequences of Cronobacter sakazakii Isolates Obtained from Foods of Plant Origin and Dried-Food Manufacturing Environments

    PubMed Central

    Addy, Nicole; Ewing, Laura; Jean-Gilles Beaubrun, Junia; Lee, YouYoung; Woo, JungHa; Negrete, Flavia; Finkelstein, Samantha; Tall, Ben D.; Lehner, Angelika; Eshwar, Athmanya; Gopinath, Gopal R.

    2018-01-01

    ABSTRACT Here, we present draft genome sequences of 29 Cronobacter sakazakii isolates obtained from foods of plant origin and dried-food manufacturing facilities. Assemblies and annotations resulted in genome sizes ranging from 4.3 to 4.5 Mb and 3,977 to 4,256 gene-coding sequences with G+C contents of ∼57.0%. PMID:29650569

  11. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process.

    PubMed

    Grohganz, Holger; Lee, Yan-Ying; Rantanen, Jukka; Yang, Mingshi

    2013-04-15

    Freeze-drying and spray-drying are often applied drying techniques for biopharmaceutical formulations. The formation of different solid forms upon drying is often dependent on the complex interplay between excipient selection and process parameters. The purpose of this study was to investigate the influence of the chosen drying method on the solid state form. Mannitol-lysozyme solutions of 20mg/mL, with the amount of lysozyme varying between 2.5% and 50% (w/w) of total solid content, were freeze-dried and spray-dried, respectively. The resulting solid state of mannitol was analysed by near-infrared spectroscopy in combination with multivariate analysis and further, results were verified with X-ray powder diffraction. It was seen that the prevalence of the mannitol polymorphic form shifted from β-mannitol to δ-mannitol with increasing protein concentration in freeze-dried formulations. In spray-dried formulations an increase in protein concentration resulted in a shift from β-mannitol to α-mannitol. An increase in final drying temperature of the freeze-drying process towards the temperature of the spray-drying process did not lead to significant changes. It can thus be concluded that it is the drying process in itself, rather than the temperature, that leads to the observed solid state changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Degradation Dynamics and Dietary Risk Assessments of Two Neonicotinoid Insecticides during Lonicera japonica Planting, Drying, and Tea Brewing Processes.

    PubMed

    Fang, Qingkui; Shi, Yanhong; Cao, Haiqun; Tong, Zhou; Xiao, Jinjing; Liao, Min; Wu, Xiangwei; Hua, Rimao

    2017-03-01

    The degradation dynamics and dietary risk assessments of thiamethoxam and thiacloprid during Lonicera japonica planting, drying, and tea brewing processes were systematically investigated using high-performance liquid chromatography. The half-lives of thiamethoxam and thiacloprid were 1.0-4.1 d in the honeysuckle flowers and leaves, with degradation rate constants k ranging from -0.169 to -0.696. The safety interval time was 7 d. The sun- and oven-drying (70 °C) percent digestions were 59.4-81.0% for the residues, which were higher than the shade- and oven-drying percentages at lower temperatures (30, 40, 50, and 60 °C, which ranged from 37.7% to 57.0%). The percent transfers of thiamethoxam and thiacloprid were 0-48.4% and 0-25.2%, respectively, for the different tea brewing conditions. On the basis of the results of this study, abiding by the safety interval time is important, and using reasonable drying methods and tea brewing conditions can reduce the transfer of thiamethoxam and thiacloprid to humans.

  13. Prediction of porosity of food materials during drying: Current challenges and directions.

    PubMed

    Joardder, Mohammad U H; Kumar, C; Karim, M A

    2017-07-18

    Pore formation in food samples is a common physical phenomenon observed during dehydration processes. The pore evolution during drying significantly affects the physical properties and quality of dried foods. Therefore, it should be taken into consideration when predicting transport processes in the drying sample. Characteristics of pore formation depend on the drying process parameters, product properties and processing time. Understanding the physics of pore formation and evolution during drying will assist in accurately predicting the drying kinetics and quality of food materials. Researchers have been trying to develop mathematical models to describe the pore formation and evolution during drying. In this study, existing porosity models are critically analysed and limitations are identified. Better insight into the factors affecting porosity is provided, and suggestions are proposed to overcome the limitations. These include considerations of process parameters such as glass transition temperature, sample temperature, and variable material properties in the porosity models. Several researchers have proposed models for porosity prediction of food materials during drying. However, these models are either very simplistic or empirical in nature and failed to consider relevant significant factors that influence porosity. In-depth understanding of characteristics of the pore is required for developing a generic model of porosity. A micro-level analysis of pore formation is presented for better understanding, which will help in developing an accurate and generic porosity model.

  14. The interplay of stress and mowing disturbance for the intensity and importance of plant interactions in dry calcareous grasslands.

    PubMed

    Maalouf, Jean-Paul; Le Bagousse-Pinguet, Yoann; Marchand, Lilian; Touzard, Blaise; Michalet, Richard

    2012-09-01

    There is still debate regarding the direction and strength of plant interactions under intermediate to high levels of stress. Furthermore, little is known on how disturbance may interact with physical stress in unproductive environments, although recent theory and models have shown that this interplay may induce a collapse of plant interactions and diversity. The few studies assessing such questions have considered the intensity of biotic interactions but not their importance, although this latter concept has been shown to be very useful for understanding the role of interactions in plant communities. The objective of this study was to assess the interplay between stress and disturbance for plant interactions in dry calcareous grasslands. A field experiment was set up in the Dordogne, southern France, where the importance and intensity of biotic interactions undergone by four species were measured along a water stress gradient, and with and without mowing disturbance. The importance and intensity of interactions varied in a very similar way along treatments. Under undisturbed conditions, plant interactions switched from competition to neutral with increasing water stress for three of the four species, whereas the fourth species was not subject to any significant biotic interaction along the gradient. Responses to disturbance were more species-specific; for two species, competition disappeared with mowing in the wettest conditions, whereas for the two other species, competition switched to facilitation with mowing. Finally, there were no significant interactions for any species in the disturbed and driest conditions. At very high levels of stress, plant performances become too weak to allow either competition or facilitation and disturbance may accelerate the collapse of interactions in dry conditions. The results suggest that the importance and direction of interactions are more likely to be positively related in stressful environments.

  15. The interplay of stress and mowing disturbance for the intensity and importance of plant interactions in dry calcareous grasslands

    PubMed Central

    Maalouf, Jean-Paul; Le Bagousse-Pinguet, Yoann; Marchand, Lilian; Touzard, Blaise; Michalet, Richard

    2012-01-01

    Background and Aims There is still debate regarding the direction and strength of plant interactions under intermediate to high levels of stress. Furthermore, little is known on how disturbance may interact with physical stress in unproductive environments, although recent theory and models have shown that this interplay may induce a collapse of plant interactions and diversity. The few studies assessing such questions have considered the intensity of biotic interactions but not their importance, although this latter concept has been shown to be very useful for understanding the role of interactions in plant communities. The objective of this study was to assess the interplay between stress and disturbance for plant interactions in dry calcareous grasslands. Methods A field experiment was set up in the Dordogne, southern France, where the importance and intensity of biotic interactions undergone by four species were measured along a water stress gradient, and with and without mowing disturbance. Key Results The importance and intensity of interactions varied in a very similar way along treatments. Under undisturbed conditions, plant interactions switched from competition to neutral with increasing water stress for three of the four species, whereas the fourth species was not subject to any significant biotic interaction along the gradient. Responses to disturbance were more species-specific; for two species, competition disappeared with mowing in the wettest conditions, whereas for the two other species, competition switched to facilitation with mowing. Finally, there were no significant interactions for any species in the disturbed and driest conditions. Conclusions At very high levels of stress, plant performances become too weak to allow either competition or facilitation and disturbance may accelerate the collapse of interactions in dry conditions. The results suggest that the importance and direction of interactions are more likely to be positively related in

  16. Self-heating of dried industrial tannery wastewater sludge induced by pyrophoric iron sulfides formation.

    PubMed

    Bertani, R; Biasin, A; Canu, P; Della Zassa, M; Refosco, D; Simionato, F; Zerlottin, M

    2016-03-15

    Similarly to many powders of solids, dried sludge originated from tannery wastewater may result in a self-heating process, under given circumstances. In most cases, it causes a moderate heating (reaching 70-90°C), but larger, off-design residence times in the drier, in a suboxic atmosphere, extremely reactive solids can be produced. Tannery waste contains several chemicals that mostly end up in the wastewater treatment sludge. Unexpected and uncontrolled self heating could lead to a combustion and even to environmental problems. Elaborating on previous studies, with the addition of several analytical determinations, before and after the self-heating, we attempted to formulate a mechanism for the onset of heating. We demonstrated that the system Fe/S/O has been involved in the process. We proved that the formation of small quantities of pyrophoric iron sulfides is the key. They are converted to sulfated by reaction with water and oxygen with exothermic processes. The pyrite/pyrrhotite production depends on the sludge drying process. The oxidation of sulfides to oxides and sulfates through exothermic steps, reasonably catalyzed by metals in the sludge, occurs preferentially in a moist environment. The mechanism has been proved by reproducing in the laboratory prolonged heating under anoxic/suboxic atmosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    PubMed

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  18. Understanding the operational parameters affecting NDMA formation at Advanced Water Treatment Plants.

    PubMed

    Farré, Maria José; Döderer, Katrin; Hearn, Laurence; Poussade, Yvan; Keller, Jurg; Gernjak, Wolfgang

    2011-01-30

    N-nitrosodimethylamine (NDMA) can be formed when secondary effluents are disinfected by chloramines. By means of bench scale experiments this paper investigates operational parameters than can help Advanced Water Treatment Plants (AWTPs) to reduce the formation of NDMA during the production of high quality recycled water. The formation of NDMA was monitored during a contact time of 24h using dimethylamine as NDMA model precursor and secondary effluent from wastewater treatment plants. The three chloramine disinfection strategies tested were pre-formed and in-line formed monochloramine, and pre-formed dichloramine. Although the latter is not employed on purpose in full-scale applications, it has been suggested as the main contributing chemical generating NDMA during chloramination. After 24h, the NDMA formation decreased in both matrices tested in the order: pre-formed dichloramine>in-line formed monochloramine≫pre-formed monochloramine. The most important parameter to consider for the inhibition of NDMA formation was the length of contact time between disinfectant and wastewater. Formation of NDMA was initially inhibited for up to 6h with concentrations consistently <10 ng/L during these early stages of disinfection, regardless of the disinfection strategy. The reduction of the contact time was implemented in Bundamba AWTP (Queensland, Australia), where NDMA concentrations were reduced by a factor of 20 by optimizing the disinfection strategy. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. The mechanism of metal nanoparticle formation in plants: limits on accumulation

    NASA Astrophysics Data System (ADS)

    Haverkamp, R. G.; Marshall, A. T.

    2009-08-01

    Metal nanoparticles have many potential technological applications. Biological routes to the synthesis of these particles have been proposed including production by vascular plants, known as phytoextraction. While many studies have looked at metal uptake by plants, particularly with regard to phytoremediation and hyperaccumulation, few have distinguished between metal deposition and metal salt accumulation. This work describes the uptake of AgNO3, Na3Ag(S2O3)2, and Ag(NH3)2NO3 solutions by hydroponically grown Brassica juncea and the quantitative measurement of the conversion of these salts to silver metal nanoparticles. Using X-ray absorption near edge spectroscopy (XANES) to determine the metal speciation within the plants, combined with atomic absorption spectroscopy (AAS) for total Ag, the quantity of reduction of AgI to Ag0 is reported. Transmission electron microscopy (TEM) showed Ag particles of 2-35 nm. The factors controlling the amount of silver accumulated are revealed. It is found that there is a limit on the amount of metal nanoparticles that may be deposited, of about 0.35 wt.% Ag on a dry plant basis, and that higher levels of silver are obtained only by the concentration of metal salts within the plant, not by deposition of metal. The limit on metal nanoparticle accumulation, across a range of metals, is proposed to be controlled by the total reducing capacity of the plant for the reduction potential of the metal species and limited to reactions occurring at an electrochemical potential greater than 0 V (verses the standard hydrogen electrode).

  20. Microbial mediated soil structure formation under wetting and drying cycles along a climate gradient (arid to humid) on hillslopes in Chile

    NASA Astrophysics Data System (ADS)

    Bernhard, Nadine; Moskwa, Lisa-Marie; Kühn, Peter; Mueller, Carsten W.; Wagner, Dirk; Scholten, Thomas

    2017-04-01

    It is well-known that the land surface resistance against erosion is largely controlled by the structure stability of the soil given by its inherent properties. Microbial activity plays a vital role in soil structure development, and thus affecting soil physical parameters. Accordingly the influence of biota shaping the earth's surface has been described through mechanisms such as mineral weathering, formation of ions and biofilms controlling land surface resistance against erosion. However the role of microorganisms for the development of soil stabilizing properties is still unclear and a precise quantitative understanding of the mechanisms under different climate conditions is widely missing. The objectives of our study are to examine to which extend microbiological processes control soil structure formation and stability and whether this is influenced by climate and topographic position. Soil samples were taken along a climate gradient and from different topographic positions of hillslopes in the Chilean Coastal Cordillera in austral autumn 2016. The variables of lithology, human disturbances and relief were held as far as possible constant whereas climate varies along the transect. We implemented 10 wet-dry cycles on air dried and sieved natural and sterile samples to enhance particle aggregation and increase structure stability. Throughout the entire experiment temperature is held constant at 20 °C to avoid changes in microbial activity. Samples are moistened and dried and each kept at the same respective pF-values for the same duration to add the same stress to each sample. Aggregate stability will be measured using wet sieving, ultrasonic dispersion and simulated rainfall. The results will be compared with on-site rainfall simulation experiments on hillslopes in the Chilean Coastal Cordillera to link laboratory results with natural field conditions. The experiment gives first insight into the aggregate formation process over time with and without

  1. 7 CFR 58.153 - Dry storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Dry storage. 58.153 Section 58.153 Agriculture... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Storage of Finished Product § 58.153 Dry storage. The product should be stored at least 18 inches from the wall in aisles, rows, or...

  2. 7 CFR 58.153 - Dry storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Dry storage. 58.153 Section 58.153 Agriculture... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Storage of Finished Product § 58.153 Dry storage. The product should be stored at least 18 inches from the wall in aisles, rows, or...

  3. 7 CFR 58.153 - Dry storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Dry storage. 58.153 Section 58.153 Agriculture... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Storage of Finished Product § 58.153 Dry storage. The product should be stored at least 18 inches from the wall in aisles, rows, or...

  4. 7 CFR 58.153 - Dry storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Dry storage. 58.153 Section 58.153 Agriculture... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Storage of Finished Product § 58.153 Dry storage. The product should be stored at least 18 inches from the wall in aisles, rows, or...

  5. 7 CFR 58.153 - Dry storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Dry storage. 58.153 Section 58.153 Agriculture... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Storage of Finished Product § 58.153 Dry storage. The product should be stored at least 18 inches from the wall in aisles, rows, or...

  6. Dry Climate as Major Factor Controlling Formation of Hydrated Sulfate Minerals in Valles Marineris on Mars

    NASA Astrophysics Data System (ADS)

    Szynkiewicz, A.

    2016-12-01

    In this study, a model for the formation of hydrated sulfate salts (Mg-Ca-Na sulfates) in the Rio Puerco watershed of New Mexico, a terrestrial analog site from the semi-arid Southwest U.S., was used to assess the origin and climate condition that may have controlled deposition of hydrated sulfates in Valles Marineris on Mars. In this analog site, the surface accumulation of sulfate minerals along canyon walls, slopes and valley surfaces closely resemble occurrences of hydrated sulfates in Valles Marineris on Mars. Significant surface accumulations of Mg-Ca-Na sulfates are a result of prevailing semiarid conditions and a short-lived hydrological cycle that mobilizes sulfur present in the bedrock as sulfides, sulfate minerals, and atmospheric deposition. Repeating cycles of salt dissolution and re-precipitation appear to be the underpinning processes that serve to transport sulfate from bedrock to sulfate salts (e.g., efflorescences) and into surface water. This process occurs in the shallow surface environment and is not accompanied by deep groundwater flow because of prevailing dry conditions and low annual precipitation. Generally, close resemblance of surface occurrence and mineralogical composition of sulfate salts between the studied terrestrial analog and Valles Marineris suggest that a similar sulfate cycle, involving limited water activity during formation of hydrated sulfates, was once present in Valles Marineris. Measured as efflorescence, the distributed surface mass of hydrated sulfates in Valles Marineris is relatively small (4 to 42%) when compared to terrestrial settings with higher surface accumulation of sulfate minerals such as the White Sands gypsum dune field. Under semi-arid conditions similar to the studied analog in the Rio Pueurco watershed, it would take only 100 to 1,000 years to activate an equivalent flux of aqueous sulfate in Valles Marineris, when comparing terrestrial annual sulfate fluxes from the Rio Puerco watershed with the amount

  7. Effect of drying conditions on drying kinetics and quality of aromatic Pandanus amaryllifolius leaves.

    PubMed

    Rayaguru, Kalpana; Routray, Winny

    2010-12-01

    Pandanus amaryllifolius is a plant with aromatic leaves, which impart the characteristic flavour of aromatic rice. The quality of aromatic Pandanus leaves dried at low temperature (35 °C) and low RH (27%) in a heat pump dryer was evaluated and compared with those obtained from hot air drying at 45 °C. Thin-layer drying kinetics has been studied for both the conditions. To determine the kinetic parameters, the drying data were fitted to various semi-theoretical models. The goodness of fit was determined using the coefficient of determination, reduced chi square, and root mean square error. Aroma, colour, and overall acceptability determination of fresh and dried leaves were made using sensory evaluation. Drying of leaves took place mainly under the falling-rate period. The Page equation was found to be best among the proposed models to describe the thin-layer drying of Pandanus leaves with higher coefficient of determination. The effective moisture diffusivity values were also determined. The effect of low RH was prominent during the initial drying when the product was moist. The effect of temperature was prominent in the later part of drying, which acted as a driving force for moisture diffusion and hence the total drying time was reduced. Retention of aromatic compound 2-acetyl-1-pyrroline content was more in low temperature dried samples with higher sensory scores.

  8. Blood drop patterns: Formation and applications.

    PubMed

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  9. Induction of "pore" formation in plant cell membranes by toluene.

    PubMed

    Lerner, H R; Ben-Bassat, D; Reinhold, L; Poljakoff-Mayber, A

    1978-02-01

    Treatment with aqueous toluene-ethanol has been shown to induce "pore" formation in plant cell membranes. The evidence is as follows: [List: see text]While the principal experimental material was roots of Atriplex nummularia Lindl., the fact that similar results were also observed with leaves of Pisum sativum L. and with the alga Chlorella pyrenoidosa Chik. suggests that the phenomenon is general.Although the phenomenon of pore induction is qualitatively similar to that in microorganisms, the pores induced appear to be smaller. It is proposed that induced leakage could be the basis for the development of simple and rapid methods for plant biochemical studies.

  10. Freeze-dried plasma enhances clot formation and inhibits fibrinolysis in the presence of tissue plasminogen activator similar to pooled liquid plasma.

    PubMed

    Huebner, Benjamin R; Moore, Ernest E; Moore, Hunter B; Sauaia, Angela; Stettler, Gregory; Dzieciatkowska, Monika; Hansen, Kirk; Banerjee, Anirban; Silliman, Christopher C

    2017-08-01

    Systemic hyperfibrinolysis is an integral part of trauma-induced coagulopathy associated with uncontrolled bleeding. Recent data suggest that plasma-first resuscitation attenuates hyperfibrinolysis; however, the availability, transport, storage, and administration of plasma in austere environments remain challenging and have limited its use. Freeze-dried plasma (FDP) is a potential alternative due to ease of storage, longer shelf life, and efficient reconstitution. FDP potentially enhances clot formation and resists breakdown better than normal saline (NS) and albumin and similar to liquid plasma. Healthy volunteers underwent citrated blood draw followed by 50% dilution with NS, albumin, pooled plasma (PP), or pooled freeze-dried plasma (pFDP). Citrated native and tissue plasminogen activator (t-PA)-challenge (75 ng/mL) thrombelastography were done. Proteins in PP, pFDP, and albumin were analyzed by mass spectroscopy. pFDP and PP had superior clot-formation rates (angle) and clot strength (maximum amplitude) compared with NS and albumin in t-PA-challenge thrombelastographies (angle: pFDP, 67.9 degrees; PP, 67.8 degrees; NS, 40.6 degrees; albumin, 35.8 degrees; maximum amplitude: pFDP, 62.4 mm; PP, 63.5 mm; NS, 44.8 mm; albumin, 41.1 mm). NS and albumin dilution increased susceptibility to t-PA-induced hyperfibrinolysis compared with pFDP and PP (NS, 62.4%; albumin, 62.6%; PP, 8.5%; pFDP, 6.7%). pFDP was similar to PP in the attenuation of t-PA-induced fibrinolysis. Most proteins (97%) were conserved during the freeze-dry process, with higher levels in 12% of pFDP proteins compared with PP. pFDP enhances clot formation and attenuates hyperfibrinolysis better than NS and albumin and is a potential alternative to plasma resuscitation in the treatment of hemorrhagic shock. © 2017 AABB.

  11. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 2− and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 −–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 +–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 −–N and NH4 +–N was ~31.38% and ~20.50% for the contents of NO3 −–N and NH4 +–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238

  12. Underground thermal generation of hydrocarbons from dry, southwestern coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderborgh, N.E.; Elliott, G.R.B.

    1978-01-01

    The LASL underground coal conversion concept produces intermediate-BTU fuel gas for nearby industries such as ''minemouth'' electric power plants, plus major byproducts in the form of liquid and gaseous hydrocarbons for feedstocks to chemical plants e.g., substitute natural gas (SNG) producers. The concept involves controlling the water influx and drying the coal, generating hydrocarbons, by pyrolysis and finally gasifying the residual char with O/sub 2//CO/sub 2/ or air/CO/sub 2/ mixtures to produce industrial fuel gases. Underground conversion can be frustrated by uncontrolled water in the coal bed. Moisture can (a) prevent combustion, (b) preclude fuel gas formation by lowering reactionmore » zone temperatures and creating kinetic problems, (c) ruin product gas quality by dropping temperatures into a thermodynamically unsatisfactory regime, (d) degrade an initially satisfactory fuel gas by consuming carbon monoxide, (e) waste large amounts of heat, and (f) isolate reaction zones so that the processing will bypass blocks of coal.« less

  13. Unique organogel formation with macroporous materials constructed by the freeze-drying of aqueous cyclodextrin solutions.

    PubMed

    Marui, Yasuhiro; Kikuzawa, Akira; Kida, Toshiyuki; Akashi, Mitsuru

    2010-07-06

    Macroporous cyclodextrin materials (MP-alpha-, beta-, and gamma-CDs) were easily fabricated by the freeze-drying of aqueous solutions of alpha-, beta-, and gamma-CDs. These MP-CDs showed the absorption ability toward various organic solvents and oils to give organogels at ambient temperature. The morphological changes of the MP-CD microstructures were observed through the absorption of organic solvents. In particular, the absorption of polar organic solvents with hydrogen-bond forming ability, including 1,4-dioxane and ethanol, by the MP-CDs caused remarkable morphological changes in the microstructures. The absorption of these polar solvents by MP-alpha- and gamma-CDs resulted in the formation of channel-type assemblies of alpha- and gamma-CDs, respectively.

  14. Indoor organic and inorganic pollutants: In-situ formation and dry deposition in Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Allen, Andrew G.; Miguel, Antonio H.

    We have measured indoor and outdoor levels of particle- and gas-phase pollutants, collected in offices, restaurants and a hotel at six different sites in and around the cities of São Paulo and Campinas, Brazil, during summer 1993. Gas-phase species included acetic acid, formic acid, nitrous acid, hydrochloric acid, sulfur dioxide, nitric acid, oxalic acid, and pyruvic acid. Fine mode (< 3 μm dp) and coarse mode (> 3 μm dp) species measured included chloride, potassium, acetate, nitrate, magnesium, formate, sodium, pyruvate, nitrite, calcium, sulfate, oxalate, and ammonium. One sample (˜ 6 h) was simultaneously collected indoors and outdoors at each site during regular working hours. Indoor samplers were located ca. 1.5 m from the floor, and the outdoors immediately outside the window. Indoor/outdoor concentration ratios suggest that fine potassium chloride was produced indoors in appreciable amounts at both restaurants studied and, to a lesser extent, in the three offices as well. Indoor fine nitrate particles found in restaurants appear to have been produced by fuel combustion; a small fraction may have resulted from dry deposition of nitric acid onto existing fine particles. Indoor and outdoor concentrations of fine- and coarse-mode acetate suggest their production at all sites. The average concentration of gas-phase acetic acid was 42 μg m -3 indoors compared to 9.0 μg m -3 outdoors. In-situ formation of nitrous acid and acetic acid appears to have occurred at all indoor sites. High levels of formic and acetic acids were produced indoors at a pizzeria that used wood for cooking. Nitrous acid average concentrations for all sites were 8.4 μm m -3 indoors and 3.2 μm m -3 outdoors. Indoor/outdoor ratios at all sites suggest that dry deposition indoors may have occurred for hydrochloric acid, nitric acid and sulfur dioxide and that fine-mode sulfate infiltrate buildings from outside at most sites.

  15. The Formation and Function of Plant Cuticles1

    PubMed Central

    Yeats, Trevor H.; Rose, Jocelyn K.C.

    2013-01-01

    The plant cuticle is an extracellular hydrophobic layer that covers the aerial epidermis of all land plants, providing protection against desiccation and external environmental stresses. The past decade has seen considerable progress in assembling models for the biosynthesis of its two major components, the polymer cutin and cuticular waxes. Most recently, two breakthroughs in the long-sought molecular bases of alkane formation and polyester synthesis have allowed construction of nearly complete biosynthetic pathways for both waxes and cutin. Concurrently, a complex regulatory network controlling the synthesis of the cuticle is emerging. It has also become clear that the physiological role of the cuticle extends well beyond its primary function as a transpiration barrier, playing important roles in processes ranging from development to interaction with microbes. Here, we review recent progress in the biochemistry and molecular biology of cuticle synthesis and function and highlight some of the major questions that will drive future research in this field. PMID:23893170

  16. Research on Formation Mechanisms of Hot Dry Rock Resources in China

    NASA Astrophysics Data System (ADS)

    Wang, G.; Xi, Y.

    2017-12-01

    As an important geothermal resource, hot dry rock(HDR) reserves have been studied in many countries. HDR resources in China have huge capacity and have become one of the most important resources for the potential replacement of fossil fuels. However, HDR resources are difficult to develop and utilise. Technologies for use with HDR, such as high-temperature drilling, reservoir characterisation, reservoir fracturing, microseismic monitoring and high-temperature power stations, originate from the field of oil and drilling. Addressing how to take advantage of these developed technologies is a key factor in the development of HDR reserves. Based on the thermal crustal structure in China, HDR resources can be divided into four types: high radioactive heat production, sedimentary basin, modern volcano and the inner-plate active tectonic belt. The prospective regions of HDR resources are located in South Tibet, West Yunnan, the southeast coast of China, Bohai Rim, Songliao Basin and Guanzhong Basin. The related essential technologies are relatively mature, and the prospect of HDR power generation is promising. Therefore, analysing the formation mechanisms of HDR resources and promoting the transformation of technological achievements, large-scale development and the utilisation of HDR resources can be achieved in China.

  17. Influence of air-drying temperature on drying kinetics, colour, firmness and biochemical characteristics of Atlantic salmon (Salmo salar L.) fillets.

    PubMed

    Ortiz, Jaime; Lemus-Mondaca, Roberto; Vega-Gálvez, Antonio; Ah-Hen, Kong; Puente-Diaz, Luis; Zura-Bravo, Liliana; Aubourg, Santiago

    2013-08-15

    In this work the drying kinetics of Atlantic salmon (Salmo salar L.) fillets and the influence of air drying temperature on colour, firmness and biochemical characteristics were studied. Experiments were conducted at 40, 50 and 60°C. Effective moisture diffusivity increased with temperature from 1.08×10(-10) to 1.90×10(-10) m(2) s(-1). The colour difference, determined as ΔE values (from 9.3 to 19.3), as well as firmness (from 25 to 75 N mm(-1)) of dried samples increased with dehydration temperature. The lightness value L(∗) and yellowness value b(∗) indicated formation of browning products at higher drying temperatures, while redness value a(∗) showed dependence on astaxanthin value. Compared with fresh fish samples, palmitic acid and tocopherol content decreased in a 20% and 40%, respectively, with temperature. While eicosapentaenoic acid (EPA) content remained unchanged and docosahexaenoic acid (DHA) content changed slightly. Anisidine and thiobarbituric acid values indicated the formation of secondary lipid oxidation products, which is more relevant for longer drying time than for higher drying temperatures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Nitrogen and dry-matter partitioning in soybean plants during onset of and recovery from nitrogen stress

    NASA Technical Reports Server (NTRS)

    Tolley-Henry, L.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1986-01-01

    The study tested the hypothesis that resupplying nitrogen after a period of nitrogen stress leads to restoration of the balance between root and shoot growth and normal functional activity. Nonnodulated soybean plants were grown hydroponically for 14 days with 1.0 mM NO3- in a complete nutrient solution. One set of plants was continued on the complete nutrient solution for 25 days; a second set was given 0.0 mM NO3- for 25 days; and the third set was given 0.0 mM NO3- for 10 days followed by transfer to the complete solution with 1.0 mM NO3- for 15 days. In continuously nitrogen-stressed plants, emergence and expansion of main-stem and branch leaves were severely inhibited as low nitrogen content limited further growth. This was followed by a shift in partitioning of dry matter from the leaves to the roots, resulting in an initial stimulation of root growth and a decreased shoot:root ratio. Reduced nitrogen also was redistributed from the leaves into the stem and roots. When nitrogen stress was relieved, leaf initiation and expansion were renewed. With the restoration of the balance between root and shoot function, the shoot:root ratio and distribution of reduced nitrogen within the plant organs returned to levels similar to those of nonstressed plants.

  19. Combined control of morphology and polymorph in spray drying of mannitol for dry powder inhalation

    NASA Astrophysics Data System (ADS)

    Lyu, Feng; Liu, Jing J.; Zhang, Yang; Wang, Xue Z.

    2017-06-01

    The morphology and polymorphism of mannitol particles were controlled during spray drying with the aim of improving the aerosolization properties of inhalable dry powders. The obtained microparticles were characterized using scanning electron microscopy, infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction and inhaler testing with a next generation impactor. Mannitol particles of varied α-mannitol content and surface roughness were prepared via spray drying by manipulating the concentration of NH4HCO3 in the feed solution. The bubbles produced by NH4HCO3 led to the formation of spheroid particles with a rough surface. Further, the fine particle fraction was increased by the rough surface of carriers and the high α-mannitol content. Inhalable dry powders with a 29.1 ± 2.4% fine particle fraction were obtained by spray-drying using 5% mannitol (w/v)/2% NH4HCO3 (w/v) as the feed solution, proving that this technique is an effective method to engineer particles for dry powder inhalation.

  20. Severe dry winter affects plant phenology and carbon balance of a cork oak woodland understorey

    NASA Astrophysics Data System (ADS)

    Correia, A. C.; Costa-e-Silva, F.; Dubbert, M.; Piayda, A.; Pereira, J. S.

    2016-10-01

    Mediterranean climates are prone to a great variation in yearly precipitation. The effects on ecosystem will depend on the severity and timing of droughts. In this study we questioned how an extreme dry winter affects the carbon flux in the understorey of a cork oak woodland? What is the seasonal contribution of understorey vegetation to ecosystem productivity? We used closed-system portable chambers to measure CO2 exchange of the dominant shrub species (Cistus salviifolius, Cistus crispus and Ulex airensis), of the herbaceous layer and on bare soil in a cork oak woodland in central Portugal during the dry winter year of 2012. Shoot growth, leaf shedding, flower and fruit setting, above and belowground plant biomass were measured as well as seasonal leaf water potential. Eddy-covariance and micrometeorological data together with CO2 exchange measurements were used to access the understorey species contribution to ecosystem gross primary productivity (GPP). The herbaceous layer productivity was severely affected by the dry winter, with half of the yearly maximum aboveground biomass in comparison with the 6 years site average. The semi-deciduous and evergreen shrubs showed desynchronized phenophases and lagged carbon uptake maxima. Whereas shallow-root shrubs exhibited opportunistic characteristics in exploiting the understorey light and water resources, deep rooted shrubs showed better water status but considerably lower assimilation rates. The contribution of understorey vegetation to ecosystem GPP was lower during summer with 14% and maximum during late spring, concomitantly with the lowest tree productivity due to tree canopy renewal. The herbaceous vegetation contribution to ecosystem GPP never exceeded 6% during this dry year stressing its sensitivity to winter and spring precipitation. Although shrubs are more resilient to precipitation variability when compared with the herbaceous vegetation, the contribution of the understorey vegetation to ecosystem GPP can

  1. Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas

    USGS Publications Warehouse

    Namgail, T.; Rawat, G.S.; Mishra, C.; van Wieren, S.E.; Prins, H.H.T.

    2012-01-01

    A non-linear relationship between phytodiversity and altitude has widely been reported, but the relationship between phytomass and altitude remains little understood. We examined the phytomass and diversity of vascular plants along altitudinal gradients on the dry alpine rangelands of Ladakh, western Himalaya. We used generalized linear and generalized additive models to assess the relationship between these vegetation parameters and altitude. We found a hump-shaped relationship between aboveground phytomass and altitude. We suspect that this is engendered by low rainfall and trampling/excessive grazing at lower slopes by domestic livestock, and low temperature and low nutrient levels at higher slopes. We also found a unimodal relationship between plant species-richness and altitude at a single mountain as well as at the scale of entire Ladakh. The species-richness at the single mountain peaked between 5,000 and 5,200 m, while it peaked between 3,500 and 4,000 m at entire Ladakh level. Perhaps biotic factors such as grazing and precipitation are, respectively, important in generating this pattern at the single mountain and entire Ladakh. ?? 2011 The Author(s).

  2. The plant cell cycle: Pre-Replication complex formation and controls

    PubMed Central

    Brasil, Juliana Nogueira; Costa, Carinne N. Monteiro; Cabral, Luiz Mors; Ferreira, Paulo C. G.; Hemerly, Adriana S.

    2017-01-01

    Abstract The multiplication of cells in all living organisms requires a tight regulation of DNA replication. Several mechanisms take place to ensure that the DNA is replicated faithfully and just once per cell cycle in order to originate through mitoses two new daughter cells that contain exactly the same information from the previous one. A key control mechanism that occurs before cells enter S phase is the formation of a pre-replication complex (pre-RC) that is assembled at replication origins by the sequential association of the origin recognition complex, followed by Cdt1, Cdc6 and finally MCMs, licensing DNA to start replication. The identification of pre-RC members in all animal and plant species shows that this complex is conserved in eukaryotes and, more importantly, the differences between kingdoms might reflect their divergence in strategies on cell cycle regulation, as it must be integrated and adapted to the niche, ecosystem, and the organism peculiarities. Here, we provide an overview of the knowledge generated so far on the formation and the developmental controls of the pre-RC mechanism in plants, analyzing some particular aspects in comparison to other eukaryotes. PMID:28304073

  3. Virus-induced gene silencing offers a functional genomics platform for studying plant cell wall formation.

    PubMed

    Zhu, Xiaohong; Pattathil, Sivakumar; Mazumder, Koushik; Brehm, Amanda; Hahn, Michael G; Dinesh-Kumar, S P; Joshi, Chandrashekhar P

    2010-09-01

    Virus-induced gene silencing (VIGS) is a powerful genetic tool for rapid assessment of plant gene functions in the post-genomic era. Here, we successfully implemented a Tobacco Rattle Virus (TRV)-based VIGS system to study functions of genes involved in either primary or secondary cell wall formation in Nicotiana benthamiana plants. A 3-week post-VIGS time frame is sufficient to observe phenotypic alterations in the anatomical structure of stems and chemical composition of the primary and secondary cell walls. We used cell wall glycan-directed monoclonal antibodies to demonstrate that alteration of cell wall polymer synthesis during the secondary growth phase of VIGS plants has profound effects on the extractability of components from woody stem cell walls. Therefore, TRV-based VIGS together with cell wall component profiling methods provide a high-throughput gene discovery platform for studying plant cell wall formation from a bioenergy perspective.

  4. Formation and Change of Chloroplast-Located Plant Metabolites in Response to Light Conditions.

    PubMed

    Chen, Yiyong; Zhou, Bo; Li, Jianlong; Tang, Hao; Tang, Jinchi; Yang, Ziyin

    2018-02-26

    Photosynthesis is the central energy conversion process for plant metabolism and occurs within mature chloroplasts. Chloroplasts are also the site of various metabolic reactions involving amino acids, lipids, starch, and sulfur, as well as where the production of some hormones takes place. Light is one of the most important environmental factors, acting as an essential energy source for plants, but also as an external signal influencing their growth and development. Plants experience large fluctuations in the intensity and spectral quality of light, and many attempts have been made to improve or modify plant metabolites by treating them with different light qualities (artificial lighting) or intensities. In this review, we discuss how changes in light intensity and wavelength affect the formation of chloroplast-located metabolites in plants.

  5. Porous membrane utilization in plant nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Hinkle, C. R.; Prince, R. P.; Knott, W. M., III

    1987-01-01

    A spacecraft hydroponic plant growth unit of tubular configuration, employing a microporous membrane as a capilary interface between plant roots and a nutrient solution, is presented. All three of the experimental trials undertaken successfully grew wheat from seed to harvest. Attention is given to the mass/seed, number of seeds/head, ratio of seed dry mass to total plant dry mass, production of tillers, and mass of seed/plant. Dry matter production is found to be reduced with increasing suction pressure; this is true for both average seed and average total dry matter/plant. This may be due to a reduction in water and nutrient availability through the microporous membrane.

  6. Ecophysiological and phenological strategies in seasonally-dry ecosystems: an ecohydrological approach

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Manzoni, Stefano; Thompson, Sally; Molini, Annalisa; Porporato, Amilcare

    2015-04-01

    Seasonally-dry climates are particularly challenging for vegetation, as they are characterized by prolonged dry periods and often marked inter-annual variability. During the dry season plants face predictable physiological stress due to lack of water, whereas the inter-annual variability in rainfall timing and amounts requires plants to develop flexible adaptation strategies. The variety of strategies observed across seasonally-dry (Mediterranean and tropical) ecosystems is indeed wide - ranging from near-isohydric species that adjust stomatal conductance to avoid drought, to anisohydric species that maintain gas exchange during the dry season. A suite of phenological strategies are hypothesized to be associated to ecophysiological strategies. Here we synthetize current knowledge on ecophysiological and phenological adaptations through a comprehensive ecohydrological model linking a soil water balance to a vegetation carbon balance. Climatic regimes are found to select for different phenological strategies that maximize the long-term plant carbon uptake. Inter-annual variability of the duration of the wet season allows coexistence of different drought-deciduous strategies. In contrast, short dry seasons or access to groundwater favour evergreen species. Climatic changes causing more intermittent rainfall and/or shorter wet seasons are predicted to favour drought-deciduous species with opportunistic water use.

  7. Lipoxygenases and their metabolites in formation of plant stress tolerance.

    PubMed

    Babenko, L M; Shcherbatiuk, M M; Skaterna, T D; Kosakivska, I V

    2017-01-01

    The review focuses on the analysis of new information concerning molecular enzymology of lipoxygenases – proteins involved in lipid peroxidation and found in animals and plants. Modern concept of structural features, catalytic characteristics and functions of lipoxygenase family enzymes as well as products of their catalytic activity in plants have been discussed and summarized. Issues of enzyme localization in plant cells and tissues, evolution and distribution of lipoxygenases, involvement in production of signaling substances involved in formation of adaptation response to abiotic and biotic stress factors and in regulation of lipoxygenase signal system activity are highlighted. Participants of the elements signaling of LOX-pathway reception and transduction into genome are considered. Special attention is given to jasmonates, metabolites of the allene oxide synthase branch of the lipoxygenase cascade, because these metabolites have high biological activity, are ubiquitously present in all plant organisms, and are involved in regulation of vitally important processes. Data concerning lipoxygenase phylogeny, possible occurrence of a common predecessor for modern isoforms of the enzyme in pro- and eukaryote have been examined. Some results of our studies that open up possibilities of using the lipoxygenase catalytic activity characteristics as biological markers in plant stress tolerance researches are given.

  8. Drought and Winter Drying (Pest Alert)

    Treesearch

    USDA Forest Service

    Drought and winter drying have periodically caused major damage to trees. Drought reduces the amount of water available in the soil. In the case of winter drying, the water may be in the soil, but freezing of the soil makes the water unavailable to the tree. In both cases, more water is lost through transpiration than is available to the plant. Symptoms of drought and...

  9. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Nenad Sarunac; Harun Bilirgen

    2005-04-01

    This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also givenmore » for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.« less

  10. The growth and survival of plants in urban green roofs in a dry climate.

    PubMed

    Razzaghmanesh, M; Beecham, S; Kazemi, F

    2014-04-01

    Green roofs as one of the components of water-sensitive urban design have become widely used in recent years. This paper describes performance monitoring of four prototype-scale experimental green roofs in a northern suburb of Adelaide, South Australia, undertaken over a 1-year period. Four species of indigenous Australian ground cover and grass species comprising Carpobrotus rossii, Lomandra longifolia 'Tanika,' Dianella caerula 'Breeze' and Myoporum parvifolium were planted in extensive and intensive green roof configurations using two different growing media. The first medium consisted of crushed brick, scoria, coir fibre and composted organics while the second comprised scoria, composted pine bark and hydro-cell flakes. Plant growth indices including vertical and horizontal growth rate, leaf succulence, shoot and root biomasses, water use efficiency and irrigation regimes were studied during a 12-month period. The results showed that the succulent species, C. rossii, can best tolerate the hot, dry summer conditions of South Australia, and this species showed a 100% survival rate and had the maximum horizontal growth rate, leaf succulence, shoot biomass and water use efficiency. All of the plants in the intensive green roofs with the crushed brick mix media survived during the term of this study. It was shown that stormwater can be used as a source of irrigation water for green roofs during 8 months of the year in Adelaide. However, supplementary irrigation is required for some of the plants over a full annual cycle. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. DIVALENT INORGANIC REACTIVE GASEOUS MERCURY EMISSIONS FROM A MERCURY CELL CHLOR-ALKALI PLANT AND ITS IMPACT ON NEAR FIELD ATMOSPHERIC DRY DEPOSITION

    EPA Science Inventory

    The emission of inorganic divalent reactive gaseous mercury (RGM) from a mercury cell chlor-alkali plant (MCCAP) cell building and the impact on near field (100 km) dry deposition was investigated as part of a larger collaborative study between EPA, University of Michigan, Oak ...

  12. Plant calcium oxalate crystal formation, function, and its impact on human health

    USDA-ARS?s Scientific Manuscript database

    Crystals of calcium oxalate have been observed among members from most taxonomic groups of photosynthetic organisms ranging from the smallest algae to the largest trees. The biological roles for calcium oxalate crystal formation in plant growth and development include high capacity calcium regulatio...

  13. The Effect of Dry Eye Disease on Scar Formation in Rabbit Glaucoma Filtration Surgery

    PubMed Central

    Ji, Hong; Zhu, Yingting; Zhang, Yingying; Jia, Yu; Li, Yiqing; Ge, Jian; Zhuo, Yehong

    2017-01-01

    The success rate of glaucoma filtration surgery is closely related to conjunctival inflammation, and the main mechanism of dry eye disease (DED) is inflammation. The aim of this study was to evaluate the effect of DED on bleb scar formation after rabbit glaucoma filtration surgery. Sixteen New Zealand white rabbits were randomly divided into control and DED groups. A DED model was induced by twice-daily topical administration of 0.1% benzalkonium chloride (BAC) drops for three weeks. Ocular examinations were performed to verify the DED model. Surgical effects were assessed, and histologic assessments were performed on the 28th postoperative day. Higher fluorescein staining scores, lower basal tear secretion levels and goblet cell counts, and increased interleukin 1β (IL-1β) levels were observed in the DED group. The DED eyes displayed significantly higher intraocular pressure (IOP)% on the 14th postoperative day; a smaller bleb area on days 14, 21 and 28; and a shorter bleb survival time. Moreover, proliferating cell nuclear antigen (PCNA) and alpha-smooth muscle actin (α-SMA) levels were significantly increased in the DED group. These results demonstrate that DED promotes filtering bleb scar formation and shortens bleb survival time; these effects may be mediated via IL-1β. PMID:28555041

  14. Novel dry forests in southwestern Puerto Rico

    Treesearch

    Sandra Molina Colón; Ariel E. Lugo; Olga Ramos

    2011-01-01

    We report results of new research on (1) community composition of novel subtropical dry forests developing on abandoned pastures and agricultural fields in both private and protected public lands and (2) seed germination and growth rates of plantings of native tree species on degraded soils. We found that novel dry forests were dominated by introduced species, which...

  15. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.

    PubMed

    Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu

    2016-10-01

    We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. Enzyme Production by Industrially Relevant Fungi Cultured on Coproduct From Corn Dry Grind Ethanol Plants

    NASA Astrophysics Data System (ADS)

    Ximenes, Eduardo A.; Dien, Bruce S.; Ladisch, Michael R.; Mosier, Nathan; Cotta, Michael A.; Li, Xin-Liang

    Distillers dried grain with solubles (DDGS) is the major coproduct produced at a dry grind ethanol facility. Currently, it is sold primarily as a ruminant animal feed. DDGS is low cost and relatively high in protein and fiber contents. In this study, DDGS was investigated as carbon source for extracellular hydrolytic enzyme production. Two filamentous fungi, noted for their high cellulolytic and hemicellulolytic enzyme titers, were grown on DDGS: Trichoderma reesei Rut C-30 and Aspergillus niger NRRL 2001. DDGS was either used as delivered from the plant (untreated) or after being pretreated with hot water. Both microorganisms secreted a broad range of enzymes when grown on DDGS. Higher xylanase titers were obtained when cultured on hot water DDGS compared with growth on untreated DDGS. Maximum xylanase titers were produced in 4 d for A. niger and 8 d for T. reesei in shake flask cultures. Larger amounts of enzymes were produced in bioreactors (5L) either equipped with Rushton (for T. reesei) or updraft marine impellers (A. niger). Initial production titers were lower for bioreactor than for flask cultures, especially for T. reesei cultures. Improvement of enzyme titers were obtained using fed-batch feeding schemes.

  17. 7 CFR 58.249 - Instant nonfat dry milk.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Requirements for Finished Products Bearing Usda Official Identification § 58.249 Instant nonfat dry milk. (a) Only instant nonfat dry... compliance with these requirements may be identified with the official USDA U.S. Extra Grade, processed and...

  18. 7 CFR 58.249 - Instant nonfat dry milk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Requirements for Finished Products Bearing Usda Official Identification § 58.249 Instant nonfat dry milk. (a) Only instant nonfat dry... compliance with these requirements may be identified with the official USDA U.S. Extra Grade, processed and...

  19. Three air quality studies: Great Lakes ozone formation and nitrogen dry deposition; and Tucson aerosol chemical characterization

    NASA Astrophysics Data System (ADS)

    Foley, Theresa

    The Clean Air Act of 1970 was promulgated after thousands of lives were lost in four catastrophic air pollution events. It authorized the establishment of National Ambient Air Quality Standards or (NAAQS) for six pollutants that are harmful to human health and welfare: carbon monoxide, lead, nitrogen dioxide, particulate matter, ozone and sulfur dioxide. The Clean Air Act also led to the establishment of the United Stated Environmental Protection Agency (US EPA) to set and enforce regulations. The first paper in this dissertation studies ozone in the Lake Michigan region (Foley, T., Betterton, E.A., Jacko, R., Hillery, J., 2011. Lake Michigan air quality: The 1994-2003 LADCO Aircraft Project (LAP). Atmospheric Environment 45, 3192-3202.) The Chicago-Milwaukee-Gary metropolitan area has been unable to meet the ozone NAAQS since the Clean Air Act was implemented. The Lake Michigan Air Directors' Consortium (LADCO) hypothesized that land breezes transport ozone precursor compounds over the lake, where a large air/water temperature difference creates a shallow conduction layer, which is an efficient reaction chamber for ozone formation. In the afternoon, lake breezes and prevailing synoptic winds then transport ozone back over the land. To further evaluate this hypothesis, LADCO sponsored the 1994-2003 LADCO Aircraft Project (LAP) to measure the air quality over Lake Michigan and the surrounding areas. This study has found that the LAP data supports this hypothesis of ozone formation, which has strong implications for ozone control strategies in the Lake Michigan region. The second paper is this dissertation (Foley, T., Betterton, E.A., Wolf, A.M.A., 2012. Ambient PM10 and metal concentrations measured in the Sunnyside Unified School District, Tucson, Arizona. Journal of the Arizona-Nevada Academy of Science, 43, 67-76) evaluated the airborne concentrations of PM10 (particulate matter with an aerodynamic diameter of 10 microns or less) and eight metalloids and metals

  20. Prevention of Bacterial Biofilms Formation on Urinary Catheter by Selected Plant Extracts.

    PubMed

    Adesina, T D; Nwinyi, O C; Olugbuyiro, J A O

    2015-02-01

    In this study, we investigated the feasibility of using Psidium guajava, Mangifera indica and Ocimum gratissimum leaf extracts in preventing Escherichia coli biofilm formation. The plants extractions were done with methanol under cold extraction. The various concentrations 5.0, 10.0 and 20.0 mg mL(-1) were used to coat 63 catheters under mild heat from water bath. Biofilm formation on the catheter was induced using cultures of E. coli. Biofilm formation was evaluated using aerobic plate count and turbidity at 600 nm. From the obtained results, Psidium guajava, Mangifera indica and Ocimum gratissimum delayed the onset of biofilm formation for a week. Ocimum gratissimum coated catheter had the highest inhibitory effect at 5.0, 10.0 and 20.0 mg mL(-1) with bacterial count ranging from 2.2 x 10(5)-7.0 x 10(4) and 5.7 x 10(5)-3.7 x10(5) for 120 and 128 h, respectively. The Psidium guajava coated catheter had the lowest inhibitory effect at 5.0, 10.0 and 20.0 mg mL(-1), with bacterial count ranging between 4.3 x 10(5)-1.9 x 10(3) and 7.7 x 10(5)-3.8 x 10(5) for 120 and 128 h, respectively. Despite the antimicrobial activities, the differences in the activity of these plant extracts were statistically not significant (p < 0.05).

  1. Pharmaceutical Particle Engineering via Spray Drying

    PubMed Central

    2007-01-01

    This review covers recent developments in the area of particle engineering via spray drying. The last decade has seen a shift from empirical formulation efforts to an engineering approach based on a better understanding of particle formation in the spray drying process. Microparticles with nanoscale substructures can now be designed and their functionality has contributed significantly to stability and efficacy of the particulate dosage form. The review provides concepts and a theoretical framework for particle design calculations. It reviews experimental research into parameters that influence particle formation. A classification based on dimensionless numbers is presented that can be used to estimate how excipient properties in combination with process parameters influence the morphology of the engineered particles. A wide range of pharmaceutical application examples—low density particles, composite particles, microencapsulation, and glass stabilization—is discussed, with specific emphasis on the underlying particle formation mechanisms and design concepts. PMID:18040761

  2. Quantification of appetite suppressing steroid glycosides from Hoodia gordonii in dried plant material, purified extracts and food products using HPLC-UV and HPLC-MS methods.

    PubMed

    Janssen, Hans-Gerd; Swindells, Chris; Gunning, Philip; Wang, Weijun; Grün, Christian; Mahabir, Krishna; Maharaj, Vinesh J; Apps, Peter J

    2008-06-09

    High-performance liquid chromatography (HPLC)-UV and HPLC-Mass Spectrometry (MS) methods were developed for the quantitative analysis of the family of Hoodia gordonii steroid glycosides with appetite suppressing properties in dried plant material, in purified and enriched extracts and in various prototype food-products fortified with H. gordonii extracts. For solid materials, e.g. dried plants or for non-fatty foods, extraction of the steroid glycosides is performed using methanol. For products where the steroid glycosides are present in an oil matrix, direct injection of the oil after dilution in tetrahydrofuran is applied. The HPLC separation is performed on an octyl-modified reversed-phase column in the gradient mode with UV detection at lambda = 220 nm. Quantification is performed against an external calibration line prepared using either one of the pure steroid glycosides or geranyl-tiglate. Short- and long-term repeatabilities of the methods are better than 3 and 6%, respectively. Recoveries are better than 85%, even in the analysis of the least abundant steroid glycosides in a complex yoghurt drink. Linearity is better than 3-4 orders of magnitude and the detection limits are below approximately 2 microg g(-1) for the individual steroid glycosides in dried plant material and food products. HPLC-MS is used to confirm that the steroid glycosides contain the characteristic steroid core, the carbohydrate chain and the tigloyl group.

  3. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation.

    PubMed

    Schwartz, Z; Mellonig, J T; Carnes, D L; de la Fontaine, J; Cochran, D L; Dean, D D; Boyan, B D

    1996-09-01

    Demineralized freeze-dried bone allograft (DFDBA) has been used extensively in periodontal therapy. The rationale for use of DFDBA includes the fact that proteins capable of inducing new bone; i.e., bone morphogenetic proteins, can be isolated from bone grafts. Commercial bone banks have provided DFDBA to the dental practitioner for many years; however, these organizations have not verified the osteoinductive capacity of their DFDBA preparations. The aim of this study was to determine the ability of commercial DFDBA preparations to induce new bone formation. DFDBA with particle sizes ranging from 200 to 500 microns was received from six bone banks using various bone production methods. Different lots of DFDBA from the same tissue bank were sometimes available. A total of 14 lots were examined. The surface area of bone particles in each sample was measured morphometrically and the pH of a solution containing the particles after suspension in distilled water determined. Samples from each DFDBA lot were implanted intramuscularly (10 mg) or subcutaneously (20 mg) into three different animals and tissue biopsies harvested after 4 weeks. One sample from each tissue bank was implanted and harvested after 8 weeks. At harvest, each area where DFDBA had been implanted was excised and examined by light microscopy. The ability of DFDBA to produce new bone was evaluated and the amount of residual bone particles measured. The results show that bone particles from all tissue banks had a variety of shapes and sizes, both before implantation and after 1 or 2 months of implantation. The pH of particle suspensions also varied between batches, as well as between tissue banks. None of the DFDBA induced new bone formation when implanted subcutaneously. Intramuscular implants from three banks induced new bone formation after 1 and 2 months. DFDBA from two banks caused new bone formation only after 2 months. However, DFDBA from one bank did not induce new bone at all. Particle size before

  4. Contribution of plant lignin to the soil organic matter formation and stabilization

    USDA-ARS?s Scientific Manuscript database

    Lignin is the third most abundant plant constituent after cellulose and hemicellulose and thought to be one of the building blocks for soil organic matter formation. Lignin can be used as a predictor for long-term soil organic matter stabilization and C sequestration. Soils and humic acids from fo...

  5. Influence of biofilm formation on corrosion and scaling in geothermal plants

    NASA Astrophysics Data System (ADS)

    Kleyböcker, Anne; Lerm, Stephanie; Monika, Kasina; Tobias, Lienen; Florian, Eichinger; Andrea, Seibt; Markus, Wolfgramm; Hilke, Würdemann

    2017-04-01

    Process failures may occur due to corrosion and scaling processes in open loop geothermal systems. Especially after heat extraction, sulfate reducing bacteria (SRB) contribute to corrosion processes due to a more favorable temperature for their growth. In biofilms containing FeS scales, corrosion processes are enhanced. Furthermore, scales can lead to reduced pipe profiles, to a diminished heat transfer and a decrease in the wellbore injectivity. Inhibitors are frequently applied to minimize scaling in technical systems. A prerequisite for the application of inhibitors in geothermal plants located in the Molasse basin is their degradability under reservoir conditions, e. g. in a reduced environment. In order to determine the effects of scale-inhibitors on the subsurface and microbial processes, laboratory experiments were performed focusing on the microbial inhibitor degradation. First results indicate that the inhibitor degradation under anaerobic conditions is possible. Besides the inhibitor application also other techniques are investigated to economically reduce corrosion and scaling in geothermal plants. In a mobile bypass system, the influence of biofilm formation on corrosion and scaling was investigated. The bypass system was tested at a geothermal heat store in the North German Basin. The plant is operated with highly saline fluid (salinity 130 g/L) and known to be affected by SRB. The SRB contributed to corrosion damages especially at the pump in the well on the cold side. Heat shocks were successfully used in the bypass system to reduce biofilm formation as well as corrosion and scaling processes.

  6. An effective system to produce smoke solutions from dried plant tissue for seed germination studies1

    PubMed Central

    Coons, Janice; Coutant, Nancy; Lawrence, Barbara; Finn, Daniel; Finn, Stephanie

    2014-01-01

    • Premise of the study: An efficient and inexpensive system was developed to produce smoke solutions from plant material to research the influence of water-soluble compounds from smoke on seed germination. • Methods and Results: Smoke solutions (300 mL per batch) were produced by burning small quantities (100–200 g) of dried plant material from a range of species in a bee smoker attached by a heater hose to a side-arm flask. The flask was attached to a vacuum water aspirator, to pull the smoke through the water. The entire apparatus was operated in a laboratory fume hood. • Conclusions: Compared with other smoke solution preparation systems, the system described is easy to assemble and operate, inexpensive to build, and effective at producing smoke solutions from desired species in a small indoor space. Quantitative measurements can be made when using this system, allowing for replication of the process. PMID:25202613

  7. Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest

    NASA Astrophysics Data System (ADS)

    Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo

    2018-02-01

    The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community

  8. 7 CFR 58.210 - Dry storage of product.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58.210 Dry storage of product. Storage rooms for the dry storage of product shall be adequate in size, kept clean, orderly, free from rodents, insects, and mold, and maintained in good repair. They shall be...

  9. Considering Plants.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1991-01-01

    Examples from research that incorporate plants to illustrate biological principles are presented. Topics include dried pea shape, homeotic genes, gene transcription in plants that are touched or wounded, production of grasslands, seaweed defenses, migrating plants, camouflage, and family rivalry. (KR)

  10. Description and cost analysis of a deluge dry/wet cooling system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, L.E.; Bamberger, J.A.; Braun, D.J.

    1978-06-01

    The use of combined dry/wet cooling systems for large base-load power plants offers the potential for significant water savings as compared to evaporatively cooled power plants and significant cost savings in comparison to dry cooled power plants. The results of a detailed engineering and cost study of one type of dry/wet cooling system are described. In the ''deluge'' dry/wet cooling method, a finned-tube heat exchanger is designed to operate in the dry mode up to a given ambient temperature. To avoid the degradation of performance for higher ambient temperatures, water (the delugeate) is distributed over a portion of the heatmore » exchanger surface to enhance the cooling process by evaporation. The deluge system used in this study is termed the HOETERV system. The HOETERV deluge system uses a horizontal-tube, vertical-plate-finned heat exchanger. The delugeate is distributed at the top of the heat exchanger and is allowed to fall by gravity in a thin film on the face of the plate fin. Ammonia is used as the indirect heat transfer medium between the turbine exhaust steam and the ambient air. Steam is condensed by boiling ammonia in a condenser/reboiler. The ammonia is condensed in the heat exchanger by inducing airflow over the plate fins. Various design parameters of the cooling system have been studied to evaluate their impact on the optimum cooling system design and the power-plant/utility-system interface. Annual water availability was the most significant design parameter. Others included site meteorology, heat exchanger configuration and air flow, number and size of towers, fan system design, and turbine operation. It was concluded from this study that the HOETERV deluge system of dry/wet cooling, using ammonia as an intermediate heat transfer medium, offers the potential for significant cost savings compared with all-dry cooling, while achieving substantially reduced water consumption as compared to an evaporatively cooled power plant. (LCL)« less

  11. A retrospective study on the use of a dental dressing to reduce dry socket incidence in smokers.

    PubMed

    Murph, James T; Jaques, Susan H; Knoell, Alexander N; Archibald, Geoffrey D; Yang, Stan

    2015-01-01

    This study assessed the effectiveness of using an oxidized cellulose dental dressing in order to reduce the rate of alveolar osteitis after posterior tooth extraction in smokers. Dry socket incidences of heavy smokers from 4 independent dental clinics, which routinely used oxidized cellulose dental dressings to mitigate dry socket formation between March 2011 and December 2012, were compiled and evaluated. All extraction sites healed uneventfully except for those cases that developed dry sockets. Overall, 1.7% of male patients and 2.2% of female patients developed dry sockets. No conclusive relationship was found between the number of cigarettes smoked and dry socket formation among patients in this study. The results of this study were consistent with the view that gender, age, postextraction regimen, and multiple extractions affect dry socket formation. The results indicate that an oxidized cellulose dental dressing postextraction is a safe and effective method for mitigating dry socket formation among smokers.

  12. Evaluation of economically feasible, natural plant extract-based microbiological media for producing biomass of the dry rot biocontrol strain Pseudomonas fluorescens P22Y05 in liquid culture.

    PubMed

    Khalil, Sadia; Ali, Tasneem Adam; Skory, Chris; Slininger, Patricia J; Schisler, David A

    2016-02-01

    The production of microbial biomass in liquid media often represents an indispensable step in the research and development of bacterial and fungal strains. Costs of commercially prepared nutrient media or purified media components, however, can represent a significant hurdle to conducting research in locations where obtaining these products is difficult. A less expensive option for providing components essential to microbial growth in liquid culture is the use of extracts of fresh or dried plant products obtained by using hot water extraction techniques. A total of 13 plant extract-based media were prepared from a variety of plant fruits, pods or seeds of plant species including Allium cepa (red onion bulb), Phaseolus vulgaris (green bean pods), and Lens culinaris (lentil seeds). In shake flask tests, cell production by potato dry rot antagonist Pseudomonas fluorescens P22Y05 in plant extract-based media was generally statistically indistinguishable from that in commercially produced tryptic soy broth and nutrient broth as measured by optical density and colony forming units/ml produced (P ≤ 0.05, Fisher's protected LSD). The efficacy of biomass produced in the best plant extract-based media or commercial media was equivalent in reducing Fusarium dry rot by 50-96% compared to controls. In studies using a high-throughput microbioreactor, logarithmic growth of P22Y05 in plant extract-based media initiated in 3-5 h in most cases but specific growth rate and the time of maximum OD varied as did the maximum pH obtained in media. Nutrient analysis of selected media before and after cell growth indicated that nitrogen in the form of NH4 accumulated in culture supernatants, possibly due to unbalanced growth conditions brought on by a scarcity of simple sugars in the media tested. The potential of plant extract-based media to economically produce biomass of microbes active in reducing plant disease is considerable and deserves further research.

  13. Reduction in energy usage during dry grind ethanol production by enhanced enzymatic dewatering of whole stillage: plant trial, process model and economic analysis

    USDA-ARS?s Scientific Manuscript database

    A plant trial was conducted at a 54 MGPY dry grind fuel ethanol facility to evaluate the use of enhanced water removal from whole stillage by enzyme addition during fermentation. Laboratory data had previously shown significant improvements in water removal that could potentially result in significa...

  14. Formation of Authigenic Sulfates in Cold Dry Glaciers: Terrestrial and Planetary Implications of Sublimites

    NASA Astrophysics Data System (ADS)

    Massé, M.; Rondeau, B.; Ginot, P.; Schmitt, B.; Bourgeois, O.; Mitri, G.

    2015-12-01

    Salts are common on planetary surfaces, and sulfates have been widely observed on Earth, Mars (Gendrin et al., 2005) and on some of Jupiter's and Saturn's icy moons like Europa (Dalton et al., 2007). These minerals can form under a wide range of conditions, and the determination of sulfate formation processes can provide key elements for deciphering past planetary surface conditions. Most terrestrial sulfates form as evaporites in warm environments with high water/rock ratios, but these conditions are rarely encountered on other planets. Here we describe the formation of cryogenic sulfates in an extreme cold and dry environment: the Guanaco glacier located in the Chilean Andes (Fig.1a, Rabatel et al., 2011). Field analyses reveal that it is a cold-based glacier, its surface temperature remains below 0°C throughout the year, and ablation occurs mostly by sublimation. Ablation creates ice cliffs punctuated of pluricentimetric whitish, tapered crystals embedded in the ice (Fig.1b, c). By Raman and chemistry, they proved to be gypsum, covered by micrometric crystals of jarosite, halotrichite and native sulfur. The euhedral morphology of these soft minerals indicates that they are neoformed and have not been transported in the ice. This is supported by the absence of gypsum crystals in ice cores drilled through the glacier. We infer that the crystallization thus occurred at the glacier surface during ice sublimation and does not involve liquid water. To distinguish this original salt formation process from the more common evaporites, we name these minerals "sublimites". Though this formation process is uncommon and generates minor quantities of sulfates on Earth, it may be dominant on other bodies in the Solar System where sublimation is effective. Examples of planetary sublimites may include gypsum on the North Polar Cap of Mars (Massé et al., 2012), and other sulfates on icy moons where sublimation has been observed (Howard et al., 2008).

  15. Caribbean dry forest networking: an opportunity for conservation

    Treesearch

    K. Banda-Rodriguez; J. Weintritt; R.T. Pennington

    2016-01-01

    Seasonally dry tropical forest is the most threatened tropical forest in the world. Though its overall plant species diversity is lower than in neighboring biomes such as rain forest, species endemism can be high, and its conservation has often been neglected. Caribbean dry forests face diverse threats including tourism, agriculture, and climate change. The Latin...

  16. Use of dried aquatic plant roots to adsorb heavy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robichaud, K.D.

    1996-12-31

    The removal of heavy metal ions by dried aquatic macrophytes was investigated. The ability of the biomass, Eichhornia crassipes (water hyacinth), Typha latifolia (cattail), Sparganium minimum (burr reed) and Menyanthes trifoliata to abstract lead and mercury ions is presented here, along with a conceptual filter design. This paper examines an alternative to both the traditional and recent systems designed for metal removal. It involves the use of dried aquatic macrophytes. There are numerous advantages for the use of dried macrophytes in the treatment of industrial wastewater. First, it is cost-effective. There are also funding opportunities through a variety of Environmentalmore » Protection Agency`s (EPA) programs. It is more environmentally conscious because a wetland, the harvesting pond, has been created. And, it creates public goodwill by providing a more appealing, less hardware-intensive, natural system.« less

  17. Experimental evaluation of drying characteristics of sewage sludge and hazelnut shell mixtures

    NASA Astrophysics Data System (ADS)

    Pehlivan, Hüseyin; Ateş, Asude; Özdemir, Mustafa

    2016-11-01

    In this study the drying behavior of organic and agricultural waste mixtures has been experimentally investigated. The usability of sewage sludge as an organic waste and hazelnut shell as an agricultural waste was assessed in different mixture range. The paper discusses the applicability of these mixtures as a recovery energy source. Moisture content of mixtures has been calculated in laboratory and plant conditions. Indoor and outdoor solar sludge drying plants were constructed in pilot scale for experimental purposes. Dry solids and climatic conditions were constantly measured. A total more than 140 samples including for drying has been carried out to build up results. Indoor and outdoor weather conditions are taken into consideration in winter and summer. The most effective drying capacity is obtained in mixture of 20 % hazelnut shell and 80 % sewage sludge.

  18. Metabolic analysis of the increased adventitious rooting mutant of Artemisia annua reveals a role for the plant monoterpene borneol in adventitious root formation.

    PubMed

    Tian, Na; Liu, Shuoqian; Li, Juan; Xu, Wenwen; Yuan, Lin; Huang, Jianan; Liu, Zhonghua

    2014-08-01

    Adventitious root (AR) formation is a critical process for plant clonal propagation. The role of plant secondary metabolites in AR formation is still poorly understood. Chemical and physical mutagenesis in combination with somatic variation were performed on Artemisia annua in order to obtain a mutant with changes in adventitious rooting and composition of plant secondary metabolites. Metabolic and morphological analyses of the iar (increased adventitious rooting) mutant coupled with in vitro assays were used to elucidate the relationship between plant secondary metabolites and AR formation. The only detected differences between the iar mutant and wild-type were rooting capacity and borneol/camphor content. Consistent with this, treatment with borneol in vitro promoted adventitious rooting in wild-type. The enhanced rooting did not continue upon removal of borneol. The iar mutant displayed no significant differences in AR formation upon treatment with camphor. Together, our results suggest that borneol promotes adventitious rooting whereas camphor has no effect on AR formation. © 2013 Scandinavian Plant Physiology Society.

  19. Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1,more » Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.« less

  20. Quantitative evaluation of haze formation of koji and progression of internal haze by drying of koji during koji making.

    PubMed

    Ito, Kazunari; Gomi, Katsuya; Kariyama, Masahiro; Miyake, Tsuyoshi

    2017-07-01

    The construction of an experimental system that can mimic koji making in the manufacturing setting of a sake brewery is initially required for the quantitative evaluation of mycelia grown on/in koji pellets (haze formation). Koji making with rice was investigated with a solid-state fermentation (SSF) system using a non-airflow box (NAB), which produced uniform conditions in the culture substrate with high reproducibility and allowed for the control of favorable conditions in the substrate during culture. The SSF system using NAB accurately reproduced koji making in a manufacturing setting. To evaluate haze formation during koji making, surfaces and cross sections of koji pellets obtained from koji making tests were observed using a digital microscope. Image analysis was used to distinguish between haze and non-haze sections of koji pellets, enabling the evaluation of haze formation in a batch by measuring the haze rate of a specific number of koji pellets. This method allowed us to obtain continuous and quantitative data on the time course of haze formation. Moreover, drying koji during the late stage of koji making was revealed to cause further penetration of mycelia into koji pellets (internal haze). The koji making test with the SSF system using NAB and quantitative evaluation of haze formation in a batch by image analysis is a useful method for understanding the relations between haze formation and koji making conditions. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Characterization of wet and dry deposition in the downwind of industrial sources in a dry tropical area.

    PubMed

    Singh, R K; Agrawal, M

    2001-12-19

    An atmospheric deposition study was conducted in the downwind of Shaktinagar Thermal Power Plant (STPP), Renusagar Thermal Power Plant (RTPP), and Anpara Thermal Power Plant (ATPP), at Singrauli region, Uttar Pradesh (UP), India to characterize dry and wet deposition in relation to different pollution loading. During the study period, dry and wet depositions and levels of gaseous pollutants (SO2 and NO2) were estimated across the sites. Dry deposition was collected on a monthly basis and wet deposition on an event basis. Depositions were analyzed for pH, nitrate (NO3-), ammonium (NH4+), and sulphate (SO4(2-)) contents. Dry deposition rate both collected as clearfall and throughfall varied between 0.15 to 2.28 and 0.33 to 3.48 g m(-2) day(-1), respectively, at control and maximally polluted sites. The pH of dry deposition varied from 5.81 to 6.89 during winter and 6.09 to 7.02 during summer across the sites. During the rainy season, the mean pH of clear wet deposition varied from 6.56 to 7.04 and throughfall varied from 6.81 to 7.22. The concentrations of NO2 and SO2 pollutants were highest during the winter season. Mean SO2 concentrations varied from 18 to 75 g m(-3) at control and differently polluted sites during the winter season. The variation in NO2 concentrations did not show a pattern similar to that of SO2. The highest NO2 concentration during the winter season was 50 g m(-3), observed near RTPP. NO2 concentration did not show much variation among different sites, suggesting that the sources of NO2 emission are evenly distributed along the sites. The concentrations of NH4+, NO3-, and SO4(2-) ions in dry deposition were found to be higher in summer as compared to the winter season. In dry deposition (clearfall) the concentrations of NH4+, NO3-, and SO4(2-) varied from 0.13 to 1.0, 0.81 to 1.95, and 0.82 to 3.27 mg l(-1), respectively, during winter. In wet deposition (clearfall), the above varied from 0.14 to 0.74, 0.81 to 1.82, and 0.67 to 2.70 mg l(-1

  2. On the track of transfer cell formation by specialized plant-parasitic nematodes.

    PubMed

    Rodiuc, Natalia; Vieira, Paulo; Banora, Mohamed Youssef; de Almeida Engler, Janice

    2014-01-01

    Transfer cells are ubiquitous plant cells that play an important role in plant development as well as in responses to biotic and abiotic stresses. They are highly specialized and differentiated cells playing a central role in the acquisition, distribution and exchange of nutrients. Their unique structural traits are characterized by augmented ingrowths of invaginated secondary wall material, unsheathed by an amplified area of plasma membrane enriched in a suite of solute transporters. Similar morphological features can be perceived in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic relationship, these obligatory biotrophic plant pathogens engage different approaches when reprogramming root cells into giant cells or syncytia, respectively. Both nematode feeding-cells types will serve as the main source of nutrients until the end of the nematode life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram plant host cells. In this review we will discuss the structure, function and formation of these specialized multinucleate cells that act as nutrient transfer cells accumulating and synthesizing components needed for survival and successful offspring of plant-parasitic nematodes. Plant cells with transfer-like functions are also a renowned subject of interest involving still poorly understood molecular and cellular transport processes.

  3. Mycobiota and toxigenic Penicillium species on two Spanish dry-cured ham manufacturing plants.

    PubMed

    Alapont, C; López-Mendoza, M C; Gil, J V; Martínez-Culebras, P V

    2014-01-01

    The present study reports the natural mycobiota occurring in dry-cured hams, and in particular on the incidence of mycotoxin-producing fungi. A total of 338 fungal colonies were isolated from three stages of production, these being the post-salting, ripening and aging stages in two manufacturing plants. The results show that fungi were more frequently isolated from the aging stage and that the predominant filamentous fungal genus isolated was Penicillium. Seventy-four of the 338 fungal strains were selected for identification at the species level by using morphological criteria and internal transcribed spacers sequencing. Of the 74 fungal strains, 59 were Penicillium strains. Sixteen Penicillium species were identified, with P. commune (24 strains) and P. chrysogenum (13 strains) being the most abundant. The potential ability to produce cyclopiazonic acid (CPA) and ochratoxin A (OTA) was studied by isolating the culture followed by HPLC analysis of these mycotoxins in the culture extracts. The results indicated that 25 (33.7%) of the 74 fungal strains produced CPA. Worth noting is the high percentage of CPA-producing strains of P. commune (66.6%) of which some strains were highly toxigenic. P. polonicum strains were also highly toxigenic. With respect to OTA-producing fungi, a low percentage of fungal strains (9.5%) were able to produce OTA at moderate levels. OTA-producing fungi belonged to different Penicillium species including P. chrysogenum, P. commune, P. polonicum and P. verrucosum. These results indicate that there is a possible risk factor posed by CPA and OTA contamination of dry-cured hams.

  4. Production of cocrystals in an excipient matrix by spray drying.

    PubMed

    Walsh, David; Serrano, Dolores R; Worku, Zelalem Ayenew; Norris, Brid A; Healy, Anne Marie

    2018-01-30

    Spray drying is a well-established scale-up technique for the production of cocrystals. However, to the best of our knowledge, the effect of introducing a third component into the feed solution during the spray drying process has never been investigated. Cocrystal formation in the presence of a third component by a one-step spray drying process has the potential to reduce the number of unit operations which are required to produce a final pharmaceutical product (e.g. by eliminating blending with excipient). Sulfadimidine (SDM), a poorly water soluble active pharmaceutical ingredient (API), and 4-aminosalicylic acid (4ASA), a hydrophilic molecule, were used as model drug and coformer respectively to form cocrystals by spray drying in the presence of a third component (excipient). The solubility of the cocrystal in the excipient was measured using a thermal analysis approach. Trends in measured solubility were in agreement with those determined by calculated Hansen Solubility Parameter (HSP) values. The ratio of cocrystal components to excipient was altered and cocrystal formation at different weight ratios was assessed. Cocrystal integrity was preserved when the cocrystal components were immiscible with the excipient, based on the difference in Hansen Solubility Parameters (HSP). For immiscible systems (difference in HSP > 9.6 MPa 0.5 ), cocrystal formation occurred even when the proportion of excipient was high (90% w/w). When the excipient was partly miscible with the cocrystal components, cocrystal formation was observed post spray drying, but crystalline API and coformer were also recovered in the processed powder. An amorphous dispersion was formed when the excipient was miscible with the cocrystal components even when the proportion of excipient used as low (10% w/w excipient). For selected spray dried cocrystal-excipient systems an improvement in tableting characteristics was observed, relative to equivalent physical mixtures. Copyright © 2017 Elsevier

  5. Influence of insecticidal plant materials used during storage on sensory attributes and instrumental hardness of dry edible beans (Phaseolus vulgaris L.).

    PubMed

    Dunkel, F V; Serugendo, A; Breene, W M; Sriharan, S

    1995-07-01

    Three plant products with known insecticidal properties, a dry extract of flowers of Chrysanthemum cinerariaefolium (Trevir.) Vis. produced in Rwanda, an ethanol extract of seeds of neem, Azadirachta indica A. Juss, and crushed leaves of Tetradenia riparia Hochst Codd, a traditional Rwandan medicine, were mixed with beans, Phaseolus vulgaris L., for storage protection. These plant-protected beans were compared with "off the shelf' beans that were being sold to consumers by the Rwandan National Agricultural Products Marketing Organization (OPROVIA). A trained sensory panel determined that beans treated with neem and C. cinerariaefolium were as acceptable after 8 months storage as those being sold throughout Rwanda by the marketing organization. Beans marketed by this organization were all treated with the standard insecticide application in Rwanda, 0.01% weight/weight pirimiphos methyl in a powder formulation. Instrumental hardness (% hard-to-cook/mean gram force) after 20 months of storage was acceptable for beans stored with neem or with C. cinerariaefolium or with the conventional government application of pirimiphos methyl. Use of either neem or C. cinerariaefolium for storage protection should not affect consumer acceptance of dry beans.

  6. Comparison of the phytochemical profiles of five native plant species in two different forest formations.

    PubMed

    Pilatti, D M; Fortes, A M T; Jorge, T C M; Boiago, N P

    2018-06-14

    The expression of chemical compounds by individual plants of the same species in different locations may be affected by abiotic factors resulting in differences in the production of allelopathic compounds. The objective of this study was to compare the phytochemical profiles of plant species from two different forest formations in the state of Paraná, Brazil. The forest formations were Seasonal Semideciduous Forest (SSF) and Lowland Ombrophilous Dense Forest (LODF), and the five study species were Jacaranda micrantha, Cecropia pachystachya, Mimosa bimucronata, Schinus terebinthifolius and Cedrela fissilis. Secondary metabolites were extracted by exhaustive extraction with methanol, and the crude extract was fractionated using column chromatography. The fractions were used to calculate the retention factor of the main compounds using thin layer chromatography and phytochemical tests. The classes of compounds identified were practically the same among the analyzed species, however, at different levels of concentration. The type of tannins found in S. terebinthifolius differed between the two forest formations.

  7. Tropical savannas and dry forests.

    PubMed

    Pennington, R Toby; Lehmann, Caroline E R; Rowland, Lucy M

    2018-05-07

    In the tropics, research, conservation and public attention focus on rain forests, but this neglects that half of the global tropics have a seasonally dry climate. These regions are home to dry forests and savannas (Figures 1 and 2), and are the focus of this Primer. The attention given to rain forests is understandable. Their high species diversity, sheer stature and luxuriance thrill biologists today as much as they did the first explorers in the Age of Discovery. Although dry forest and savanna may make less of a first impression, they support a fascinating diversity of plant strategies to cope with stress and disturbance including fire, drought and herbivory. Savannas played a fundamental role in human evolution, and across Africa and India they support iconic megafauna. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Role of cyclic di-GMP in Xylella fastidiosa biofilm formation, plant virulence, and insect transmission.

    PubMed

    Chatterjee, Subhadeep; Killiny, Nabil; Almeida, Rodrigo P P; Lindow, Steven E

    2010-10-01

    Xylella fastidiosa must coordinately regulate a variety of traits contributing to biofilm formation, host plant and vector colonization, and transmission between plants. Traits such as production of extracellular polysaccharides (EPS), adhesins, extracellular enzymes, and pili are expressed in a cell-density-dependent fashion mediated by a cell-to-cell signaling system involving a fatty acid diffusible signaling factor (DSF). The expression of gene PD0279 (which has a GGDEF domain) is downregulated in the presence of DSF and may be involved in intracellular signaling by modulating the levels of cyclic di-GMP. PD0279, designated cyclic di-GMP synthase A (cgsA), is required for biofilm formation, plant virulence, and vector transmission. cgsA mutants exhibited a hyperadhesive phenotype in vitro and overexpressed gumJ, hxfA, hxfB, xadA, and fimA, which promote attachment of cells to surfaces and, hence, biofilm formation. The mutants were greatly reduced in virulence to grape albeit still transmissible by insect vectors, although at a reduced level compared with transmission rates of the wild-type strain, despite the fact that similar numbers of cells of the cgsA mutant were acquired by the insects from infected plants. High levels of EPS were measured in cgsA mutants compared with wild-type strains, and scanning electron microscopy analysis also revealed a thicker amorphous layer surrounding the mutants. Overexpression of cgsA in a cgsA-complemented mutant conferred the opposite phenotypes in vitro. These results suggest that decreases of cyclic di-GMP result from the accumulation of DSF as cell density increases, leading to a phenotypic transition from a planktonic state capable of colonizing host plants to an adhesive state that is insect transmissible.

  9. Induction of “Pore” Formation in Plant Cell Membranes by Toluene 1

    PubMed Central

    Lerner, Henri R.; Ben-Bassat, David; Reinhold, Leonora; Poljakoff-Mayber, Alexandra

    1978-01-01

    Treatment with aqueous toluene-ethanol has been shown to induce “pore” formation in plant cell membranes. The evidence is as follows: [List: see text] While the principal experimental material was roots of Atriplex nummularia Lindl., the fact that similar results were also observed with leaves of Pisum sativum L. and with the alga Chlorella pyrenoidosa Chik. suggests that the phenomenon is general. Although the phenomenon of pore induction is qualitatively similar to that in microorganisms, the pores induced appear to be smaller. It is proposed that induced leakage could be the basis for the development of simple and rapid methods for plant biochemical studies. PMID:16660262

  10. European dry cooling tower operating experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSteese, J.G.; Simhan, K.

    1976-03-01

    Interviews were held with representatives of major plants and equipment manufacturers to obtain current information on operating experience with dry cooling towers in Europe. The report documents the objectives, background, and organizational details of the study, and presents an itemized account of contacts made to obtain information. Plant selection was based on a merit index involving thermal capacity and length of service. A questionnaire was used to organize operational data, when available, into nine major categories of experience. Information was also solicited concerning the use of codes and standards to ensure the achievement of cooling tower performance. Several plant operatorsmore » provided finned-tube samples for metallographic analysis. Additionally, information on both operating experience and developing technology was supplied by European technical societies and research establishments. Information obtained from these contacts provides an updated and representative sample of European experience with dry cooling towers, which supplements some of the detailed reviews already available in the literature. In addition, the study presents categorized operating experience with installations which have not been reviewed so extensively, but nevertheless, have significant operational histories when ranked by the merit index. The contacts and interviews reported in the survey occurred between late March and October 1975. The study was motivated by the expressed interest of U.S. utility industry representatives who expect European experience to provide a basis of confidence that dry cooling is a reliable technology, applicable when necessary, to U.S. operating requirements.« less

  11. Cluster-root formation and carboxylate release in three Lupinus species as dependent on phosphorus supply, internal phosphorus concentration and relative growth rate.

    PubMed

    Wang, Xing; Pearse, Stuart J; Lambers, Hans

    2013-11-01

    Some Lupinus species produce cluster roots in response to low plant phosphorus (P) status. The cause of variation in cluster-root formation among cluster-root-forming Lupinus species is unknown. The aim of this study was to investigate if cluster-root formation is, in part, dependent on different relative growth rates (RGRs) among Lupinus species when they show similar shoot P status. Three cluster-root-forming Lupinus species, L. albus, L. pilosus and L. atlanticus, were grown in washed river sand at 0, 7·5, 15 or 40 mg P kg(-1) dry sand. Plants were harvested at 34, 42 or 62 d after sowing, and fresh and dry weight of leaves, stems, cluster roots and non-cluster roots of different ages were measured. The percentage of cluster roots, tissue P concentrations, root exudates and plant RGR were determined. Phosphorus treatments had major effects on cluster-root allocation, with a significant but incomplete suppression in L. albus and L. pilosus when P supply exceeded 15 mg P kg(-1) sand. Complete suppression was found in L. atlanticus at the highest P supply; this species never invested more than 20 % of its root weight in cluster roots. For L. pilosus and L. atlanticus, cluster-root formation was decreased at high internal P concentration, irrespective of RGR. For L. albus, there was a trend in the same direction, but this was not significant. Cluster-root formation in all three Lupinus species was suppressed at high leaf P concentration, irrespective of RGR. Variation in cluster-root formation among the three species cannot be explained by species-specific variation in RGR or leaf P concentration.

  12. Application of a coupled smoothed particle hydrodynamics (SPH) and coarse-grained (CG) numerical modelling approach to study three-dimensional (3-D) deformations of single cells of different food-plant materials during drying.

    PubMed

    Rathnayaka, C M; Karunasena, H C P; Senadeera, W; Gu, Y T

    2018-03-14

    Numerical modelling has gained popularity in many science and engineering streams due to the economic feasibility and advanced analytical features compared to conventional experimental and theoretical models. Food drying is one of the areas where numerical modelling is increasingly applied to improve drying process performance and product quality. This investigation applies a three dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) and Coarse-Grained (CG) numerical approach to predict the morphological changes of different categories of food-plant cells such as apple, grape, potato and carrot during drying. To validate the model predictions, experimental findings from in-house experimental procedures (for apple) and sources of literature (for grape, potato and carrot) have been utilised. The subsequent comaprison indicate that the model predictions demonstrate a reasonable agreement with the experimental findings, both qualitatively and quantitatively. In this numerical model, a higher computational accuracy has been maintained by limiting the consistency error below 1% for all four cell types. The proposed meshfree-based approach is well-equipped to predict the morphological changes of plant cellular structure over a wide range of moisture contents (10% to 100% dry basis). Compared to the previous 2-D meshfree-based models developed for plant cell drying, the proposed model can draw more useful insights on the morphological behaviour due to the 3-D nature of the model. In addition, the proposed computational modelling approach has a high potential to be used as a comprehensive tool in many other tissue morphology related investigations.

  13. An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense.

    PubMed

    Nakata, Paul A

    2015-01-01

    The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants.

  14. Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection.

    PubMed

    Wierzchos, Jacek; Sancho, Leopoldo García; Ascaso, Carmen

    2005-04-01

    In some zones of Antarctica's cold and dry desert, the extinction of cryptoendolithic microorganisms leaves behind inorganic traces of microbial life. In this paper, we examine the transition from live microorganisms, through their decay, to microbial fossils using in situ microscopy (transmission electron microscopy, scanning electron microscopy in back-scattered electron mode) and microanalytical (energy dispersive X-ray spectroscopy) techniques. Our results demonstrate that, after their death, endolithic microorganisms inhabiting Commonwealth Glacier sandstone from the Antarctica McMurdo Dry Valleys become mineralized. In some cases, epicellular deposition of minerals and/or simply filling up of empty moulds by minerals leads to the formation of cell-shaped structures that may be considered biomarkers. The continuous deposition of allochthonous clay minerals and sulfate-rich salts fills the sandstone pores. This process can give rise to microbial fossils with distinguishable cell wall structures. Often, fossilized cell interiors were of a different chemical composition to the mineralized cell walls. We propose that the microbial fossil formation observed was induced by mineral precipitation resulting from inorganic processes occurring after the death of cryptoendolithic microorganisms. Nevertheless, it must have been the organic template that provoked the diffusion of mineral elements and gave rise to their characteristic distribution pattern inside the fossilized cells.

  15. A field study of lignite as a drying aid in the superheated steam drying of anaerobically digested sludge.

    PubMed

    Hoadley, A F A; Qi, Y; Nguyen, T; Hapgood, K; Desai, D; Pinches, D

    2015-10-01

    Dried sludge is preferred when the sludge is either to be incinerated or used as a soil amendment. This paper focuses on superheated steam drying which has many benefits, because the system is totally enclosed, thereby minimising odours and particulate emissions. This work reports on field trials at a wastewater treatment plant where anaerobically digested sludge is dried immediately after being dewatered by belt press. The trials showed that unlike previous off-site tests, the sludge could be dried without the addition of a filter aid at a low production rate. However, the trials also confirmed that the addition of the lignite (brown coal) into the anaerobically digested sludge led to a more productive drying process, improved product quality and a greater fraction of the product being in the desired product size range. It is concluded that these results were achieved because the lignite helped to control the granule size in the dryer. Furthermore neither Salmonella spp or E coli were detected in the dried samples. Tests on spontaneous combustion show that this risk is increased in proportion to the amount of lignite used as a drying aid. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. Surface Sampling of Spores in Dry-Deposition Aerosols▿

    PubMed Central

    Edmonds, Jason M.; Collett, Patricia J.; Valdes, Erica R.; Skowronski, Evan W.; Pellar, Gregory J.; Emanuel, Peter A.

    2009-01-01

    The ability to reliably and reproducibly sample surfaces contaminated with a biological agent is a critical step in measuring the extent of contamination and determining if decontamination steps have been successful. The recovery operations following the 2001 attacks with Bacillus anthracis spores were complicated by the fact that no standard sample collection format or decontamination procedures were established. Recovery efficiencies traditionally have been calculated based upon biological agents which were applied to test surfaces in a liquid format and then allowed to dry prior to sampling tests, which may not be best suited for a real-world event with aerosolized biological agents. In order to ascertain if differences existed between air-dried liquid deposition and biological spores which were allowed to settle on a surface in a dried format, a study was undertaken to determine if differences existed in surface sampling recovery efficiencies for four representative surfaces. Studies were then undertaken to compare sampling efficiencies between liquid spore deposition and aerosolized spores which were allowed to gradually settle under gravity on four different test coupon types. Tests with both types of deposition compared efficiencies of four unique swabbing materials applied to four surfaces with various surface properties. Our studies demonstrate that recovery of liquid-deposited spores differs significantly from recovery of dry aerosol-deposited spores in most instances. Whether the recovery of liquid-deposited spores is overexaggerated or underrepresented with respect to that of aerosol-deposited spores depends upon the surface material being tested. PMID:18997021

  17. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of calcium formate as an additive on desulfurization in power plants.

    PubMed

    Li, Zhenhua; Xie, Chunfang; Lv, Jing; Zhai, Ruiguo

    2018-05-01

    SO 2 in flue gas needs to be eliminated to alleviate air pollution. As the quality of coal decreases and environmental standard requirements become more stringent, the high-efficiency desulfurization of flue gas faces more and more challenges. As an economical and environmentally friendly solution, the effect of calcium formate as an additive on desulfurization efficiency in the wet flue gas desulfurization (WFGD) process was studied for the first time. Improvement of the desulfurization efficiency was achieved with limited change in pH after calcium formate was added into the reactor, and it was found to work better than other additives tested. The positive effects were further verified in a power plant, which showed that adding calcium formate could promote the dissolution of calcium carbonate, accelerate the growth of gypsum crystals and improve the efficiency of desulfurization. Thus, calcium formate was proved to be an effective additive and can potentially be used to reduce the amount of limestone slurry required, as well as the energy consumption and operating costs in industrial desulfurization. Copyright © 2017. Published by Elsevier B.V.

  19. Spray drying formulation of amorphous solid dispersions.

    PubMed

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Biogeochemical Relationships of a Subtropical Dry Forest on Karst

    Treesearch

    E. Medina; E. Cuevas; H. Marcano-Vega; E. Meléndez-Ackerman; E.H. Helmer

    2017-01-01

    Tropical dry forests on calcareous substrate constitute the main vegetation cover in many islands of the Caribbean. Dry climate and nutrient scarcity in those environments are ideal to investigate the potential role of high levels of soil calcium (Ca) in regulating plant selection and productivity. We analyzed the elemental composition of soil, loose litter, and leaf...

  1. A surprising method for green extraction of essential oil from dry spices: Microwave dry-diffusion and gravity.

    PubMed

    Farhat, Asma; Fabiano-Tixier, Anne-Sylvie; Visinoni, Franco; Romdhane, Mehrez; Chemat, Farid

    2010-11-19

    Without adding any solvent or water, we proposed a novel and green approach for the extraction of secondary metabolites from dried plant materials. This "solvent, water and vapor free" approach based on a simple principle involves the application of microwave irradiation and earth gravity to extract the essential oil from dried caraway seeds. Microwave dry-diffusion and gravity (MDG) has been compared with a conventional technique, hydrodistillation (HD), for the extraction of essential oil from dried caraway seeds. Essential oils isolated by MDG were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained by HD, but MDG was better than HD in terms of rapidity (45min versus 300min), energy saving, and cleanliness. The present apparatus permits fast and efficient extraction, reduces waste, avoids water and solvent consumption, and allows substantial energy savings. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Mechanisms of Drying of Skin Forming Materials

    NASA Astrophysics Data System (ADS)

    Hassan, Haydar Mahmood

    Available from UMI in association with The British Library. The literature relating to evaporation from single droplets of pure liquids, and to the drying of droplets containing solids and of droplet sprays has been reviewed. The heat and mass transfer rates for a single droplet suspended from a nozzle were studied within a 42mm I.D. horizontal wind tunnel designed to supply hot dry air, to simulate conditions encountered in practical spray dryer. A novel rotating glass nozzle was developed to facilitate direct measurements of droplet weight and core temperature. This design minimised heat conduction through the nozzle. Revised correlations were obtained for heat and mass transfer coefficients, for evaporation from pure water droplets suspended from a rotating nozzle. (UNFORMATTED TABLE OR EQUATION FOLLOWS)eqalign {rm Nu&= rm 2.0 + 0.27 ({1over B})^{0.18}Re^{0.5}Pr ^{0.33}crrm Sh&= rm 2.0 + 0.575({Ta-Ts over Tamb})^{ -0.04}Re^{0.5}Sc^{0.33 }cr}(TABLE/EQUATION ENDS)Experimental drying studies were carried out on single droplets of different types of skin-forming materials, namely, custard, starch, gelatin, skim milk and fructose at air temperatures ranging from 19^circC to 198 ^circC. Dried crusts were recovered and examined by Scanning Electron Microscopy. Skin-forming materials were classified into three types according to the mechanisms of skin formation. In the first type (typified by droplets of custard and starch) skin formed due to gelatinisation at high temperatures. Increasing the drying temperature resulted in increased crust resistance to mass transfer due to increased granule swelling and the crust resistance was completely transferred to a skin resistance at drying temperatures >150 ^circC. In the second type e.g. gelatin droplets the skin formed immediately drying had taken place at any drying temperature. At drying temperature >60^circC a more resistant skin was formed. In the third type (typified by droplets of skim milk and fructose) the skin

  3. Spectroscopic analysis of seasonal changes in live fuel moisture content and leaf dry mass

    Treesearch

    Yi Qi; Philip E. Dennison; W. Matt Jolly; Rachael C. Kropp; Simon C. Brewer

    2014-01-01

    Live fuel moisture content (LFMC), the ratio of water mass to dry mass contained in live plant material, is an important fuel property for determining fire danger and for modeling fire behavior. Remote sensing estimation of LFMC often relies on an assumption of changing water and stable dry mass over time. Fundamental understanding of seasonal variation in plant water...

  4. Subsurface Salts in Antarctic Dry Valley Soils

    NASA Technical Reports Server (NTRS)

    Englert, P.; Bishop, J. L.; Gibson, E. K.; Koeberl, C.

    2013-01-01

    The distribution of water-soluble ions, major and minor elements, and other parameters were examined to determine the extent and effects of chemical weathering on cold desert soils. Patterns at the study sites support theories of multiple salt forming processes, including marine aerosols and chemical weathering of mafic minerals. Periodic solar-mediated ionization of atmospheric nitrogen might also produce high nitrate concentrations found in older sediments. Chemical weathering, however, was the major contributor of salts in Antarctic Dry Valleys. The Antarctic Dry Valleys represent a unique analog for Mars, as they are extremely cold and dry desert environments. Similarities in the climate, surface geology, and chemical properties of the Dry Valleys to that of Mars imply the possible presence of these soil formation mechanisms on Mars, other planets and icy satellites.

  5. Whole plant senescence of sunflower following seedhead removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, InSun; Below, F.E.

    1989-09-01

    This study was undertaken to further clarify the relationship between seed development and monocarpic senescence of sunflower (Helianthus annuus L.). Field-grown plants with and without seedheads were evaluated for rate and duration of accumulation of dry weight, reduced N, and P by whole shoots, and for partitioning of these constituents within the individual plant parts. Concurrent with seedhead removal, ({sup 15}N)nitrate was applied to the plants in a selected are of the experimental plot. Whole plants (above ground portions) were harvested seven times during the seed-filling period and analyzed from dry weight, reduced N, and P. Although seedhead removal depressedmore » the rates of dry weight, reduced N, and P accumulation by whole shoots, it extended the duration of accumulation of these constituents, relative to headed control plants. As a result, the final whole shoot dry weight and N and P contents at seed maturity were similar for deheaded and headed plants. Seedhead removal also affected the partitioning of dry matter, reduced N, and P but the relative proportions varied as a function of constituent and growth stage. Analysis of {sup 15}N present in whole shoots at physiological maturity showed that similar amounts of nitrate were absorbed during the postflowering period by headed and deheaded plants. These data indicate that the absence of seeds does not affect the total accumulation of dry matter, reduced N, or P, by sunflower plants, but does alter the rates of accumulation and partitioning of these constituents.« less

  6. [Signaling Systems of Rhizobia (Rhizobiaceae) and Leguminous Plants (Fabaceae) upon the Formation of a Legume-Rhizobium Symbiosis (Review)].

    PubMed

    Glyan'ko, A K

    2015-01-01

    Data from the literature and our own data on the participation and interrelation of bacterial signaling Nod-factors and components of the calcium, NADPH-oxidase, and NO-synthase signaling systems of a plant at the preinfection and infectious stages of the formation of a legume-rhizobium symbiosis are summarized in this review. The physiological role of Nod-factors, reactive oxygen species (ROS), calcium (Ca2+), NADPH-oxidase, nitric oxide (NO), and their cross influence on the processes determining the formation of symbiotic structures on the roots of the host plant is discussed.

  7. β-Diversity of Functional Groups of Woody Plants in a Tropical Dry Forest in Yucatan

    PubMed Central

    López-Martínez, Jorge Omar; Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Meave, Jorge Arturo; Gallardo-Cruz, José Alberto

    2013-01-01

    Two main theories have attempted to explain variation in plant species composition (β-diversity). Niche theory proposes that most of the variation is related to environment (environmental filtering), whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning), and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation) vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position), whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity –possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity patterns and

  8. An engineering and economic evaluation of quick germ-quick fiber process for dry-grind ethanol facilities: analysis.

    PubMed

    Rodríguez, Luis F; Li, Changying; Khanna, Madhu; Spaulding, Aslihan D; Lin, Tao; Eckhoff, Steven R

    2010-07-01

    An engineering economic model, which is mass balanced and compositionally driven, was developed to compare the conventional corn dry-grind process and the pre-fractionation process called quick germ-quick fiber (QQ). In this model, documented in a companion article, the distillers dried grains with solubles (DDGS) price was linked with its protein and fiber content as well as with the long-term average relationship with the corn price. The detailed economic analysis showed that the QQ plant retrofitted from conventional dry-grind ethanol plant reduces the manufacturing cost of ethanol by 13.5 cent/gallon and has net present value of nearly $4 million greater than the conventional dry-grind plant at an interest rate of 4% in 15years. Ethanol and feedstock price sensitivity analysis showed that the QQ plant gains more profits when ethanol price increases than conventional dry-grind ethanol plant. An optimistic analysis of the QQ process suggests that the greater value of the modified DDGS would provide greater resistance to fluctuations in corn price for QQ facilities. This model can be used to provide decision support for ethanol producers. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Effect of drying method to antioxidants capacity of Limnophila aromatica

    NASA Astrophysics Data System (ADS)

    Yen, Tran Thi Ngoc; Vu, Nguyen Hoang

    2017-09-01

    Limnophila aromatica is widely used in South East Asian countries to make spices in food and medicine in traditional medicine. The use value of vegetables is known because some of the lesser constituents in plants are called antioxidants. These active ingredients have not been fully researched and their pharmacological effects are underestimated. In this study, the drying temperature at 40 °C was showed that the antioxidant activity decreased the most. The drying temperature of 50 °C is suitable for convection drying method and drying temperature of 60 °C suitable for vacuum drying, as it retains the most antioxidant properties. Regarding the drying method, freeze drying proved to be effective when retaining high antioxidant capacity. Using The convection drying at 50 °C and the vacuum drying at 60 °C, the antioxidant activity of Limnophila aromatica was not different. Over 6 weeks of preservation, the dried product has deterioration in antioxidant properties.

  10. Effect of Microwave Vacuum Drying on the Drying Characteristics, Color, Microstructure, and Antioxidant Activity of Green Coffee Beans.

    PubMed

    Dong, Wenjiang; Cheng, Ke; Hu, Rongsuo; Chu, Zhong; Zhao, Jianping; Long, Yuzhou

    2018-05-11

    The aim of this study is to investigate the effect of microwave vacuum drying (MVD) on the drying characteristics and quality attributes of green coffee beans. We specifically focused on the effective moisture diffusion coefficient ( D eff ), surface temperature, glass transition temperature ( T g ), water state, and microstructure. The kinetics of color changes during drying, total phenolic content (TPC), and antioxidant activity (DPPH, FRAP, and ABTS) were also characterized. Microwave power during MVD affected the porosity of coffee beans, their color, TPC, and antioxidant activity. The Allometric 1 model was the most suitable for simulating surface temperature rise kinetics. Thermal processing of green coffee beans resulted in increased b* , L* , Δ E , and TPC values, and greater antioxidant capacity. These findings may provide a theoretical reference for the technical improvement, mechanisms of flavor compound formation, and quality control of dried green coffee beans.

  11. Polyamine formation by arginine decarboxylase as a transducer of hormonal, environmental and stress stimuli in higher plants

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Flores, H. E.; Kaur-Sawhney, R.

    1982-01-01

    Recent evidence implicates polyamines including putrescine in the regulation of such diverse plant processes as cell division, embryogenesis and senescence. We find that the enzyme arginine decarboxylase, which controls the rate of putrescine formation in some plant systems, is activated by light acting through P(r) phytochrome as a receptor, by the plant hormone gibberellic acid, by osmotic shock and by other stress stimuli. We therefore propose arginine decarboxylase as a possible transducer of the various initially received tropistic stimuli in plants. The putrescine formed could act by affecting cytoskeletal components.

  12. The glabra1 Mutation Affects Cuticle Formation and Plant Responses to Microbes1[C][W][OA

    PubMed Central

    Xia, Ye; Yu, Keshun; Navarre, Duroy; Seebold, Kenneth; Kachroo, Aardra; Kachroo, Pradeep

    2010-01-01

    Systemic acquired resistance (SAR) is a form of defense that provides resistance against a broad spectrum of pathogens in plants. Previous work indicates a role for plastidial glycerolipid biosynthesis in SAR. Specifically, mutations in FATTY ACID DESATURASE7 (FAD7), which lead to reduced trienoic fatty acid levels and compromised plastidial lipid biosynthesis, have been associated with defective SAR. We show that the defective SAR in Arabidopsis (Arabidopsis thaliana) fad7-1 plants is not associated with a mutation in FAD7 but rather with a second-site mutation in GLABRA1 (GL1), a gene well known for its role in trichome formation. The compromised SAR in gl1 plants is associated with impairment in their cuticles. Furthermore, mutations in two other components of trichome development, GL3 and TRANSPARENT TESTA GLABRA1, also impaired cuticle development and SAR. This suggests an overlap in the biochemical pathways leading to cuticle and trichome development. Interestingly, exogenous application of gibberellic acid (GA) not only enhanced SAR in wild-type plants but also restored SAR in gl1 plants. In contrast to GA, the defense phytohoromes salicylic acid and jasmonic acid were unable to restore SAR in gl1 plants. GA application increased levels of cuticular components but not trichome formation on gl1 plants, thus implicating cuticle, but not trichomes, as an important component of SAR. Our findings question the prudence of using mutant backgrounds for genetic screens and underscore a need to reevaluate phenotypes previously studied in the gl1 background. PMID:20699396

  13. Preparation and Characterization of Ato Nanoparticles by Coprecipitation with Modified Drying Method

    NASA Astrophysics Data System (ADS)

    Liu, Shimin; Liang, Dongdong; Liu, Jindong; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan

    Antimony-doped tin oxide (ATO) nanoparticles were prepared by coprecipitation by packing drying and traditional direct drying (for comparison) methods. The as-prepared ATO nanoparticles were characterized by TG, XRD, EDS, TEM, HRTEM, BET, bulk density and electrical resistivity measurements. Results indicated that the ATO nanoparticles obtained by coprecipitation with direct drying method featured hard-agglomerated morphology, high bulk density, low surface area and low electrical resistivity, probably due to the direct liquid evaporation during drying, the fast shrinkage of the precipitate, the poor removal efficiency of liquid molecules and the hard agglomerate formation after calcination. Very differently, the ATO product obtained by the packing and drying method featured free-agglomerated morphology, low bulk density, high surface area and high electrical resistivity ascribed probably to the formed vapor cyclone environment and liquid evaporation-resistance, avoiding fast liquid removal and improving the removal efficiency of liquid molecules. The intrinsic formation mechanism of ATO nanoparticles from different drying methods was illustrated based on the dehydration process of ATO precipitates. Additionally, the packing and drying time played key roles in determining the bulk density, morphology and electrical conductivity of ATO nanoparticles.

  14. Cluster-root formation and carboxylate release in three Lupinus species as dependent on phosphorus supply, internal phosphorus concentration and relative growth rate

    PubMed Central

    Wang, Xing; Pearse, Stuart J.; Lambers, Hans

    2013-01-01

    Background and Aims Some Lupinus species produce cluster roots in response to low plant phosphorus (P) status. The cause of variation in cluster-root formation among cluster-root-forming Lupinus species is unknown. The aim of this study was to investigate if cluster-root formation is, in part, dependent on different relative growth rates (RGRs) among Lupinus species when they show similar shoot P status. Methods Three cluster-root-forming Lupinus species, L. albus, L. pilosus and L. atlanticus, were grown in washed river sand at 0, 7·5, 15 or 40 mg P kg−1 dry sand. Plants were harvested at 34, 42 or 62 d after sowing, and fresh and dry weight of leaves, stems, cluster roots and non-cluster roots of different ages were measured. The percentage of cluster roots, tissue P concentrations, root exudates and plant RGR were determined. Key Results Phosphorus treatments had major effects on cluster-root allocation, with a significant but incomplete suppression in L. albus and L. pilosus when P supply exceeded 15 mg P kg−1 sand. Complete suppression was found in L. atlanticus at the highest P supply; this species never invested more than 20 % of its root weight in cluster roots. For L. pilosus and L. atlanticus, cluster-root formation was decreased at high internal P concentration, irrespective of RGR. For L. albus, there was a trend in the same direction, but this was not significant. Conclusions Cluster-root formation in all three Lupinus species was suppressed at high leaf P concentration, irrespective of RGR. Variation in cluster-root formation among the three species cannot be explained by species-specific variation in RGR or leaf P concentration. PMID:24061491

  15. Polygonal crack patterns by drying thin films under quasi-two-dimensional confinement

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Lowensohn, Janna; Burton, Justin

    Cracks patterns such as T/Y junction cracks in dried mud are ubiquitous in nature. Although the conditions for cracking in solids is well-known, cracks in colloidal and granular systems are more complex. Here we report the formations of polygonal cracks by drying thin films of corn starch ( 10 μm in diameter) under quasi-2D confinement. We find there are two drying stages before the films are completely dried. Initially, a compaction front invades throughout the film. Then, a second drying stage ''percolates'' throughout the film with a characteristic branching pattern, leading to a dense packing of particles connected by liquid capillary bridges. Finally, polygonal cracks appear as the remaining liquid dries. The same drying kinetics occur for films with different thickness, h, except that fractal-like fracture patterns form in thin films, where the thickness is comparable to the particle size, while polygons form in thick films with many layers of particles. We also find that the average area of the polygons, A, in fully dried films scales with the thickness, A hβ , where β 1 . 5 , and the prefactor depends on the initial packing fraction of the suspension. This form is consistent with a simple energy balance criterion for crack formation.

  16. Zeolites replacing plant fossils in the Denver formation, Lakewood, Colorado.

    USGS Publications Warehouse

    Modreski, P.J.; Verbeek, E.R.; Grout, M.A.

    1984-01-01

    Well-developed crystals of heulandite and stilbite, within fossil wood, occur in sedimentary rocks in Lakewood, Jefferson County. The rocks belong to the Denver formation, a locally fossiliferous deposit of fluvial claystone, siltstone, sandstone and conglomerate, containing some volcanic mudflows (andesitic) of late Cretaceous to Palaeocene age. Altered volcanic glass released Na and Ca into the ground-water and subsequently zeolites were crystallized in the open spaces between grains and within fossil plant structures. Minor pyrite, quartz (jasper), calcite and apatite also occur as replacements of fossil wood. Similar zeolite occurrences in other areas are reviewed.-R.S.M.

  17. Effects of arbuscular mycorrhizal fungi and soil nutrient addition on the growth of Phragmites australis under different drying-rewetting cycles.

    PubMed

    Liang, Jin-Feng; An, Jing; Gao, Jun-Qin; Zhang, Xiao-Ya; Yu, Fei-Hai

    2018-01-01

    The frequency of soil drying-rewetting cycles is predicted to increase under future global climate change, and arbuscular mycorrhizal fungi (AMF) are symbiotic with most plants. However, it remains unknown how AMF affect plant growth under different frequencies of soil drying-rewetting cycles. We subjected a clonal wetland plant Phragmites australis to three frequencies of drying-rewetting cycles (1, 2, or 4 cycles), two nutrient treatments (with or without), and two AMF treatments (with or without) for 64 days. AMF promoted the growth of P. australis, especially in the 2 cycles of the drying-rewetting treatment. AMF had a significant positive effect on leaf mass and number of ramets in the 2 cycles of the drying-rewetting treatment with nutrient addition. In the 2 cycles of drying-rewetting treatment without nutrient addition, AMF increased leaf area and decreased belowground to aboveground biomass ratio. These results indicate that AMF may assist P. australis in coping with medium frequency of drying-rewetting cycles, and provide theoretical guidance for predicting how wetland plants respond to future global climate change.

  18. Dry Eye Management: Targeting the Ocular Surface Microenvironment.

    PubMed

    Zhang, Xiaobo; M, Vimalin Jeyalatha; Qu, Yangluowa; He, Xin; Ou, Shangkun; Bu, Jinghua; Jia, Changkai; Wang, Junqi; Wu, Han; Liu, Zuguo; Li, Wei

    2017-06-29

    Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment.

  19. Dry Eye Management: Targeting the Ocular Surface Microenvironment

    PubMed Central

    Zhang, Xiaobo; Jeyalatha M, Vimalin; Qu, Yangluowa; He, Xin; Ou, Shangkun; Bu, Jinghua; Jia, Changkai; Wang, Junqi; Wu, Han; Liu, Zuguo

    2017-01-01

    Dry eye can damage the ocular surface and result in mild corneal epithelial defect to blinding corneal pannus formation and squamous metaplasia. Significant progress in the treatment of dry eye has been made in the last two decades; progressing from lubricating and hydrating the ocular surface with artificial tear to stimulating tear secretion; anti-inflammation and immune regulation. With the increase in knowledge regarding the pathophysiology of dry eye, we propose in this review the concept of ocular surface microenvironment. Various components of the microenvironment contribute to the homeostasis of ocular surface. Compromise in one or more components can result in homeostasis disruption of ocular surface leading to dry eye disease. Complete evaluation of the microenvironment component changes in dry eye patients will not only lead to appropriate diagnosis, but also guide in timely and effective clinical management. Successful treatment of dry eye should be aimed to restore the homeostasis of the ocular surface microenvironment. PMID:28661456

  20. Dry spells assessment with reference to the maize crop in the Luvuvhu River catchment of South Africa

    NASA Astrophysics Data System (ADS)

    Masupha, Teboho Elisa; Moeletsi, Mokhele Edmond; Tsubo, Mitsuru

    2016-04-01

    Agricultural productivity in South Africa is negatively affected by drought as a result of frequent periodic dry spells and increasing crop water demands resulting in poor crop development and low yields. Thus, we embarked on this study which aims at investigating dry spell occurrences in relation to growing season of maize in the Luvuvhu River Catchment. Daily rainfall data (1945-2014) from 12 stations which represent the catchment fairly well was utilized in this study. Three consecutive planting dates were staggered based on three consecutive onsets of the rainy season. Dry spells were categorized into three groups: short, medium and long dry spells. The data was then subjected to theoretical distribution fitting using the Anderson-Darling goodness-of-fit test; and probabilities of occurrence were computed using a probabilistic model that best fits the data. Trend analysis was performed on the frequency of dry spells per growing period using the non-parametric Spearman's rank correlation test. Out results indicated high probabilities (≥80%) of short dry spells at all the stations irrespective of the timing of planting. Further analysis revealed that a risk of yield reduction with planting following the first onset of rains was higher than that with planting following the second and third onsets. In order to minimize this risk, farmers can be advised to plant between mid-November to mid-December. Trend analysis indicated no trend for all the various dry spell lengths except for Thohoyandou with a decreasing trend and Sigonde with a weak increasing trend in long dry spells. Such findings can be used to describe drought conditions for improvement of agricultural productivity and food security, in a given area.

  1. Towards restoration of Hawaiian tropical dry forests: the Kaupulehu outplanting programme

    Treesearch

    Susan Cordell; Moana McClellan; Yvonne Yarber Carter; Lisa J. Hadway

    2008-01-01

    Hawaiian tropical dry forests contain diverse assemblages of woody canopy species, including many endemic and endangered species that warrant conservation attention before completely disappearing. Today, tropical dry forests in Hawaii are not viable ecosystems. Poor land use practices, fragmentation, non-native plant invasions, and inadequate native vegetation...

  2. Analysis of problems with dry fermentation process for biogas production

    NASA Astrophysics Data System (ADS)

    Pilát, Peter; Patsch, Marek; Jandačka, Jozef

    2012-04-01

    The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas station that allows analysis of optimal parameters of the dry anaerobic fermentation, in particular, however, affect the reaction temperature on yield and quality of biogas.

  3. Anaerobic digestion of whole stillage from dry-grind corn ethanol plant under mesophilic and thermophilic conditions.

    PubMed

    Eskicioglu, Cigdem; Kennedy, Kevin J; Marin, Juan; Strehler, Benjamin

    2011-01-01

    Anaerobic digestion of whole stillage from a dry-grind corn-based ethanol plant was evaluated by batch and continuous-flow digesters under thermophilic and mesophilic conditions. At whole corn stillage concentrations of 6348 to 50,786 mg total chemical oxygen demand (TCOD)/L, at standard temperature (0 °C) and pressure (1 atm), preliminary biochemical methane potential assays produced 88±8 L (49±5 L CH4) and 96±19 L (65±14 L CH4) biogas per L stillage from mesophilic and thermophilic digesters, respectively. Continuous-flow studies for the full-strength stillage (TCOD=254 g/L) at organic loadings of 4.25, 6.30 and 9.05 g TCOD/L days indicated unstable performance for the thermophilic digester. Among the sludge retention times (SRTs) of 60, 45 and 30 days tested, the mesophilic digestion was successful only at 60 days-SRT which does not represent a practical operation time for a large scale bioethanol plant. Future laboratory studies will focus on different reactor configurations to reduce the SRT needed in the digesters. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Geochemical patterns and microbial contribution to iron plaque formation in the rice plant rhizosphere

    NASA Astrophysics Data System (ADS)

    Maisch, Markus; Murata, Chihiro; Unger, Julia; Kappler, Andreas; Schmidt, Caroline

    2015-04-01

    Rice is the major food source for more than half of the world population and 80 percent of the worldwide rice cultivation is performed on water logged paddy soils. The establishment of reducing conditions in the soil and across the soil-water interface not only stimulates the microbial production and release of the greenhouse gas methane. These settings also create optimal conditions for microbial iron(III) reduction and therefore saturate the system with reduced ferrous iron. Through the reduction and dissolution of ferric minerals that are characterized by their high surface activity, sorbed nutrients and contaminants (e.g. arsenic) will be mobilized and are thus available for uptake by plants. Rice plants have evolved a strategy to release oxygen from their roots in order to prevent iron toxification in highly ferrous environments. The release of oxygen to the reduced paddy soil causes ferric iron plaque formation on the rice roots and finally increases the sorption capacity for toxic metals. To this date the geochemical and microbiological processes that control the formation of iron plaque are not deciphered. It has been hypothesized that iron(II)-oxidizing bacteria play a potential role in the iron(III) mineral formation along the roots. However, not much is known about the actual processes, mineral products, and geochemical gradients that establish within the rhizosphere. In the present study we have developed a growth set-up that allows the co-cultivation of rice plants and iron(II)-oxidizing bacteria, as well as the visual observation and in situ measurement of geochemical parameters. Oxygen and dissolved iron(II) gradients have been measured using microelectrodes and show geochemical hot spots that offer optimal growth conditions for microaerophilic iron(II) oxidizers. First mineral identification attempts of iron plaque have been performed using Mössbauer spectroscopy and microscopy. The obtained results on mineraology and crystallinity have been

  5. Estimating dry grass residues using landscape integration analysis

    NASA Technical Reports Server (NTRS)

    Hart, Quinn J.; Ustin, Susan L.; Duan, Lian; Scheer, George

    1993-01-01

    The acreage of grassland and grassland-savannah is extensive in California, making direct measurement and assessment logistically impossible. Grasslands cover the entire Central Valley up to about 1200 m elevation in the Coast Range and Sierra Nevada Range. Kuchler's map shows 5.35 M ha grassland with an additional 3.87 M ha in Oak savannah. The goal of this study was to examine the use of high spectral resolution sensors to distinguish between dry grass and soil in remotely sensed images. Spectral features that distinguish soils and dry plant material in the shortwave infrared (SWIR) region are thought to be primarily caused by cellulose and lignin, biochemicals which are absent from soils or occur as breakdown products in humid substances that lack the narrow-band features. We have used spectral mixing analysis (SMA) combined with Geographic Information Systems (GIS) analysis to characterize plant communities and dry grass biomass. The GIS was used to overlay elevation maps, and vegetation maps, with the SMA results. The advantage of non-image data is that it provides an independent source of information for the community classification.

  6. Utilization of geothermal heat in tropical fruit-drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, B.H.; Lopez, L.P.; King, R.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits producedmore » on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.« less

  7. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.

    PubMed

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-04-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.

  8. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells

    PubMed Central

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-01-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle–like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo. PMID:27054467

  9. [Purine in common plant food in China].

    PubMed

    Rong, Shengzhong; Zou, Lina; Wang, Zhaoxu; Pan, Hongzhi; Yang, Yuexin

    2012-01-01

    To determine the content of purine in plant food in China with HPLC. HPLC analysis was applied on Waters Atlantis T3 column (4.6mm x 250mm x 5 microm), using 10.0 mmol/L NH4COOH (pH 3.6) and CH3OH (99%/1%) as mobile phase and running at a flow rate of 1.0 ml/min. The column temperature was 30 degrees C, and the detection wavelength was at 254nm. The content of purine varied significantly in different kinds of plant food. The content of purine in dried fungi and dried legumes and legume products was higher than that in other food, the content of purine in vegetables and vegetable products and fruits and fruit products was low. As a whole, the content of purine was: dried fungi and algae > dried legumes and legume products > nuts and fresh > seeds fungi and algae > cereal and cereals products > vegetables and vegetable products > fruit and fruit products > tubers, starches and products. The content of purine of dried fungi and algae and dried legumes and legume products in plant food was high. The content of purine was varied significantly in different kinds of plant food.

  10. Xyloglucan is released by plants and promotes soil particle aggregation.

    PubMed

    Galloway, Andrew F; Pedersen, Martin J; Merry, Beverley; Marcus, Susan E; Blacker, Joshua; Benning, Liane G; Field, Katie J; Knox, J Paul

    2018-02-01

    Soil is a crucial component of the biosphere and is a major sink for organic carbon. Plant roots are known to release a wide range of carbon-based compounds into soils, including polysaccharides, but the functions of these are not known in detail. Using a monoclonal antibody to plant cell wall xyloglucan, we show that this polysaccharide is secreted by a wide range of angiosperm roots, and relatively abundantly by grasses. It is also released from the rhizoids of liverworts, the earliest diverging lineage of land plants. Using analysis of water-stable aggregate size, dry dispersion particle analysis and scanning electron microscopy, we show that xyloglucan is effective in increasing soil particle aggregation, a key factor in the formation and function of healthy soils. To study the possible roles of xyloglucan in the formation of soils, we analysed the xyloglucan contents of mineral soils of known age exposed upon the retreat of glaciers. These glacial forefield soils had significantly higher xyloglucan contents than detected in a UK grassland soil. We propose that xyloglucan released from plant rhizoids/roots is an effective soil particle aggregator and may, in this role, have been important in the initial colonization of land. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Response morphology and anatomy of tobacco (Nicotiana tabacum L.) plant on waterlogging

    NASA Astrophysics Data System (ADS)

    Nurhidayati, Tutik; Wardhani, Selfrina Puri; Purnobasuki, Hery; Hariyanto, Sucipto; Jadid, Nurul; Nurcahyani, Desy Dwi

    2017-11-01

    This study has conducted research on morphological and anatomical responses of some varieties of tobacco plants to waterlogging stress. Parameters measured were morphology, anatomy, and plants sensitivity index. Results were analyzed using two-way ANOVA followed by the Tukey test. The results show that waterlogging stress can reduce the growth of tobacco plants, including a decrease in plant height with the lowest value of 15.6 cm, root length reduction to the lowest value of 4.6 cm and plant dry weight reduction to the lowest value of 0.26 gr. But waterlogging stress can increase the number of adventitious roots with the highest value of 18.33. In addition, waterlogging stress can lead to the formation of aerenchyma tissue. The sensitivity index showed that plant varieties that are resistant to waterlogging stress are the varieties Kemloko 3 (index value of 0.03), varieties of Paiton 2 (index value of 0.18), and the varieties Kemloko 2 (index value of 0.42).

  12. Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying.

    PubMed

    Jiang, Hao; Zhang, Min; Mujumdar, Arun S; Lim, Rui-Xin

    2014-07-01

    To overcome the flaws of high energy consumption of freeze drying (FD) and the non-uniform drying of microwave freeze drying (MFD), pulse-spouted microwave vacuum drying (PSMVD) was developed. The results showed that the drying time can be dramatically shortened if microwave was used as the heating source. In this experiment, both MFD and PSMVD could shorten drying time by 50% as compared to the FD process. Depending on the heating method, MFD and PSMVD dried banana cubes showed trends of expansion while FD dried samples demonstrated trends of shrinkage. Shrinkage also brought intensive structure and highest fracturability of all three samples dried by different methods. The residual ascorbic acid content of PSMVD dried samples can be as high as in FD dried samples, which were superior to MFD dried samples. The tests confirmed that PSMVD could bring about better drying uniformity than MFD. Besides, compared with traditional MFD, PSMVD can provide better extrinsic feature, and can bring about improved nutritional features because of the higher residual ascorbic acid content. © 2013 Society of Chemical Industry.

  13. Miocene fossil plants from Bukpyeong Formation of Bukpyeong Basin in Donghae City, Gangwon-do Province, Korea and their palaeoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Jeong, Eun Kyoung; Kim, Hyun Joo; Uemura, Kazuhiko; Kim, Kyungsik

    2016-04-01

    The Tertiary sedimentary basins are distributed along the eastern coast of Korean Peninsula. The northernmost Bukpyeong Basin is located in Donghae City, Gangwon-do Province, Korea. The Bukpyeong Basin consists of Bukpyeong Formation and Dogyeongri Conglomerate in ascending order. The geologic age of Bukpyeong Formation has been suggested as from Early Miocene to Pliocene, In particular, Lee & Jacobs (2010) suggested the age of the Bukpyeong Formation as late Early Miocene to early Middle Miocene based on the fossils of rodent teeth. Sedimentary environment has been thought as mainly fresh water lake and/or swamp partly influenced by marine water. Lately, new outcrops of Bukpyeong Formation were exposed during the road construction and abundant fossil plants were yielded from the newly exposed outcrops. As a result of palaeobotanical studies 47 genera of 23 families have been found. This fossil plant assemblage is composed of gymnosperms and dicotyledons. Gymnosperms were Pinaceae (e.g., Pinus, Tsuga), Sciadopityaceae (e.g., Sciadopitys) and Cupressaceae with well-preserved Metasequoia cones. Dicotyledons were deciduous trees such as Betulaceae (e.g., Alnus, Carpinus) and Sapindaceae (e.g., Acer, Aesculus, Sapindus), and evergreen trees such as evergreen Fagaceae (e.g., Castanopsis, Cyclobalanopsis, Pasania) and Lauraceae (e.g., Cinnamomum, Machilus). In addition, fresh water plants such as Hemitrapa (Lytraceae) and Ceratophyllum (Ceratophyllaceae) were also found. The fossil plant assemblage of the Bukpyeong Formation supported the freshwater environment implied by previous studies. It can be suggested that the palaeoflora of Bukpyeong Formation was oak-laurel forest with broad-leaved evergreen and deciduous trees accompanying commonly by conifers of Pinaceae and Cupressaceae under warm-temperate climate.

  14. Dried-leaf Artemisia annua: A practical malaria therapeutic for developing countries?

    PubMed Central

    Weathers, Pamela J; Towler, Melissa; Hassanali, Ahmed; Lutgen, Pierre; Engeu, Patrick Ogwang

    2015-01-01

    Artemisinin from the plant Artemisia annua (A. annua) L, and used as artemisinin combination therapy (ACT), is the current best therapeutic for treating malaria, a disease that hits children and adults especially in developing countries. Traditionally, A. annua was used by the Chinese as a tea to treat “fever”. More recently, investigators have shown that tea infusions and oral consumption of the dried leaves of the plant have prophylactic and therapeutic efficacy. The presence of a complex matrix of chemicals within the leaves seems to enhance both the bioavailability and efficacy of artemisinin. Although about 1000-fold less potent than artemisinin in their antiplasmodial activity, these plant chemicals are mainly small molecules that include other artemisinic compounds, terpenes (mainly mono and sesqui), flavonoids, and polyphenolic acids. In addition, polysaccharide constituents of A. annua may enhance bioavailability of artemisinin. Rodent pharmacokinetics showed longer T1/2 and Tmax and greater Cmax and AUC in Plasmodium chabaudi-infected mice treated with A. annua dried leaves than in healthy mice. Pharmacokinetics of deoxyartemisinin, a liver metabolite of artemisinin, was more inhibited in infected than in healthy mice. In healthy mice, artemisinin serum levels were > 40-fold greater in dried leaf fed mice than those fed with pure artemisinin. Human trial data showed that when delivered as dried leaves, 40-fold less artemisinin was required to obtain a therapeutic response compared to pure artemisinin. ACTs are still unaffordable for many malaria patients, and cost estimates for A. annua dried leaf tablet production are orders of magnitude less than for ACT, despite improvements in the production capacity. Considering that for > 2000 years this plant was used in traditional Chinese medicine for treatment of fever with no apparent appearance of artemisinin drug resistance, the evidence argues for inclusion of affordable A. annua dried leaf tablets into

  15. Conceptual designs and cost estimates of mechanical draft wet/dry and natural draft dry cooling systems using Curtiss-Wright integral fin-tube heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haberski, R.J.; Bentz, J.C.

    1979-04-01

    This study was performed to establish a conceptual design and cost evaluation of an advanced technology mechanical draft wet/dry and natural draft dry cooling systems for large electric power plants using a high performance integral fin-tube heat transfer surface. This study was part of an overall DOE program to develop and demonstrate advanced concept cooling systems for large electric power plants. The results obtained show significant economic advantages compared to results previously published for conventional cooling systems. These advantages are due to the higher heat transfer and lower pressure loss which occur with the use of the selected multi-port integralmore » fin-tubes.« less

  16. Capillary-Driven Solute Transport and Precipitation in Porous Media during Dry-Out

    NASA Astrophysics Data System (ADS)

    Ott, Holger; Andrew, Matthew; Blunt, Martin; Snippe, Jeroen

    2014-05-01

    The injection of dry or under-saturated gases or supercritical (SC) fluids into water bearing formations might lead to a formation dry-out in the vicinity of the injection well. The dry-out is caused by the evaporation/dissolution of formation water into the injected fluid and the subsequent transport of dissolved water in the injected fluid away from the injection well. Dry-out results in precipitation from solutes of the formation brine and consequently leads to a reduction of the rock's pore space (porosity) and eventually to a reduction of permeability near the injection well, or even to the loss of injectivity. Recently evidence has been found that the complexity of the pore space and the respective capillary driven solute transport plays a key role. While no effective-permeability (Keff) reduction was observed in a single-porosity sandstone, multi porosity carbonate rocks responded to precipitation with a strong reduction of Keff. The reason for the different response of Keff to salt precipitation is suspected to be in the exact location of the precipitate (solid salt) in the pore space. In this study, we investigate dry-out and salt precipitation due to supercritical CO2 injection in single and multi-porosity systems under near well-bore conditions. We image fluid saturation changes by means of μCT scanning during desaturation. We are able to observe capillary driven transport of the brine phase and the respective transport of solutes on the rock's pore scale. Finally we have access to the precipitated solid-salt phase and their distribution. The results can proof the thought models behind permeability porosity relationships K(φ) for injectivity modeling. The topic and the mechanisms we show are of general interest for drying processes in porous material such as soils and paper.

  17. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 1: Cost of feedstock supply logistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, Shahabaddine; Mani, Sudhagar; Togore, Sam

    2010-01-01

    Supply of corn stover to produce heat and power for a typical 170 dam3 dry mill ethanol plant is proposed. The corn ethanol plant requires 5.6 MW of electricity and 52.3 MW of process heat, which creates the annual stover demand of as much as 140 Gg. The corn stover supply system consists of collection, preprocessing, transportation and on-site fuel storage and preparation to produce heat and power for the ethanol plant. Economics of the entire supply system was conducted using the Integrated Biomass Supply Analysis and Logistics (IBSAL) simulation model. Corn stover was delivered in three formats (square bales,more » dry chops and pellets) to the combined heat and power plant. Delivered cost of biomass ready to be burned was calculated at 73 $ Mg-1 for bales, 86 $ Mg-1 for pellets and 84 $ Mg-1 for field chopped biomass. Among the three formats of stover supply systems, delivered cost of pelleted biomass was the highest due to high pelleting cost. Bulk transport of biomass in the form of chops and pellets can provide a promising future biomass supply logistic system in the US, if the costs of pelleting and transport are minimized.« less

  18. Maize proximate composition and physical properties correlations to dry-grind ethanol concentrations

    USDA-ARS?s Scientific Manuscript database

    Dry grind ethanol plants incur economic losses due to seasonal variations in ethanol yields. One possible cause associated with ethanol yield variability is incoming grain quality. There is little published information on factors causing variation in dry grind ethanol concentrations. The objective o...

  19. Dry coolers and air-condensing units (Review)

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Anan'ev, P. A.

    2016-03-01

    The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that

  20. Dry and wet granular shock waves.

    PubMed

    Zaburdaev, V Yu; Herminghaus, S

    2007-03-01

    The formation of a shock wave in one-dimensional granular gases is considered, for both the dry and the wet cases, and the results are compared with the analytical shock wave solution in a sticky gas. Numerical simulations show that the behavior of the shock wave in both cases tends asymptotically to the sticky limit. In the inelastic gas (dry case) there is a very close correspondence to the sticky gas, with one big cluster growing in the center of the shock wave, and a step-like stationary velocity profile. In the wet case, the shock wave has a nonzero width which is marked by two symmetric heavy clusters performing breathing oscillations with slowly increasing amplitude. All three models have the same asymptotic energy dissipation law, which is important in the context of the free cooling scenario. For the early stage of the shock formation and asymptotic oscillations we provide analytical results as well.

  1. A study on the dewatering of industrial waste sludge by fry-drying technology.

    PubMed

    Ohm, Tae-In; Chae, Jong-Seong; Kim, Jeong-Eun; Kim, Hee-Kyum; Moon, Seung-Hyun

    2009-08-30

    In sludge treatment, drying sludge using typical technology with high water content to a water content of approximately 10% is always difficult because of adhesive characteristics of sludge. Many methods have been applied, including direct and indirect heat drying, but these approaches of reducing water content to below 40% after drying is very inefficient in energy utilization of drying sludge. In this study, fry-drying technology with a high heat transfer coefficient of approximately 500 W/m(2) degrees C was used to dry industrial wastewater sludge. Also waste oil was used in the fry-drying process, and because the oil's boiling point is between 240 and 340 degrees C and the specific heat is approximately 60% of that of water. In the fry-drying system, the sludge is input by molding it into a designated form after heating the waste oil at temperatures between 120 and 170 degrees C. At these temperatures, the heated oil rapidly evaporates the water contained in the sludge, leaving the oil itself. After approximately 10 min, the water content of the sludge was less than 10%, and its heating value surpassed 5300 kcal/kg. Indeed, this makes the organic sludge appropriate for use as a solid fuel. The wastewater sludge used in this study was the designated waste discharged from chemical, leather and plating plants. These samples varied in characteristics, especially with regard to heavy metal concentration. After drying the three kinds of wastewater sludge at oil temperatures 160 degrees C for 10 min, it was found that the water content in the sludge from the chemical, leather, and plating plants reduced from 80.0 to 5.5%, 81.6 to 1.0%, and 65.4 to 0.8%, respectively. Furthermore, the heat values of the sludge from the chemical, leather, and plating plants prior to fry-drying were 217, 264, and 428 kcal/kg, respectively. After drying, these values of sludge increased to 5317, 5983 and 6031 kcal/kg, respectively. The heavy metals detected in the sludge after drying were

  2. [Regenerative morphological traits in a woody species community in Tumbesian tropical dry forest].

    PubMed

    Romero-Saritama, José Miguel; Pérez-Rúuz, César

    2016-06-01

    The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary

  3. Efficacy of dry-ice blasting in preventive maintenance of auto robotic assemblies

    NASA Astrophysics Data System (ADS)

    Baluch, Nazim; Mohtar, Shahimi; Abdullah, Che Sobry

    2016-08-01

    Welding robots are extensively applied in the automotive assemblies and `Spot Welding' is the most common welding application found in the auto stamping assembly manufacturing. Every manufacturing process is subject to variations - with resistance welding, these include; part fit up, part thickness variations, misaligned electrodes, variations in coating materials or thickness, sealers, weld force variations, shunting, machine tooling degradation; and slag and spatter damage. All welding gun tips undergo wear; an elemental part of the process. Though adaptive resistance welding control automatically compensates to keep production and quality up to the levels needed as gun tips undergo wear so that the welds remain reliable; the system cannot compensate for deterioration caused by the slag and spatter on the part holding fixtures, sensors, and gun tips. To cleanse welding robots of slag and spatter, dry-ice blasting has proven to be an effective remedy. This paper describes Spot welding process, analyses the slag and spatter formation during robotic welding of stamping assemblies, and concludes that the dry ice blasting process's utility in cleansing of welding robots in auto stamping plant operations is paramount and exigent.

  4. Biocides in urban wastewater treatment plant influent at dry and wet weather: concentrations, mass flows and possible sources.

    PubMed

    Bollmann, Ulla E; Tang, Camilla; Eriksson, Eva; Jönsson, Karin; Vollertsen, Jes; Bester, Kai

    2014-09-01

    In recent years, exterior thermal insulation systems became more and more important leading to an increasing amount of houses equipped with biocide-containing organic façade coatings or fungicide treated wood. It is known that these biocides, e.g. terbutryn, carbendazim, and diuron, as well as wood preservatives as propiconazole, leach out of the material through contact with wind driven rain. Hence, they are present in combined sewage during rain events in concentrations up to several hundred ng L(-1). The present study focused on the occurrence of these biocides in five wastewater treatment plants in Denmark and Sweden during dry and wet weather. It was discovered, that biocides are detectable not only during wet weather but also during dry weather when leaching from façade coatings can be excluded as source. In most cases, the concentrations during dry weather were in the same range as during wet weather (up to 100 ng L(-1)); however, for propiconazole noteworthy high concentrations were detected in one catchment (4.5 μg L(-1)). Time resolved sampling (12 × 2 h) enabled assessments about possible sources. The highest mass loads during wet weather were detected when the rain was heaviest (e.g. up to 116 mg h(-1) carbendazim or 73 mg h(-1) mecoprop) supporting the hypothesis that the biocides were washed off by wind driven rain. Contrary, the biocide emissions during dry weather were rather related to household activities than with emissions from buildings, i.e., emissions were highest during morning and evening hours (up to 50 mg h(-1)). Emissions during night were significantly lower than during daytime. Only for propiconazole a different emission behaviour during dry weather was observed: the mass load peaked in the late afternoon (3 g h(-1)) and declined slowly afterwards. Most likely this emission was caused by a point source, possibly from inappropriate cleaning of spray equipment for agriculture or gardening. Copyright © 2014 Elsevier

  5. Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions.

    PubMed

    Heber, U; Bilger, W; Bligny, R; Lange, O L

    2000-11-01

    Adaptation to excessive light is one of the requirements of survival in an alpine environment particularly for poikilohydric organisms which in contrast to the leaves of higher plants tolerate full dehydration. Changes in modulated chlorophyll fluorescence and 820-nm absorption were investigated in the lichens Xanthoria elegans (Link) Th. Fr. and Rhizocarpon geographicum (L.) DC, in the moss Grimmia alpestris Limpr. and the higher plants Geum montanum L., Gentiana lutea L. and Pisum sativum L., all collected at altitudes higher than 2000 m above sea level. In the dehydrated state, chlorophyll fluorescence was very low in the lichens and the moss, but high in the higher plants. It increased on rehydration in the lichens and the moss, but decreased in the higher plants. Light-induced charge separation in photosystem II was indicated by pulse-induced fluorescence increases only in dried leaves, not in the dry moss and dry lichens. Strong illumination caused photodamage in the dried leaves, but not in the dry moss and dry lichens. Light-dependent increases in 820-nm absorption revealed formation of potential quenchers of chlorophyll fluorescence in all dehydrated plants, but energy transfer to quenchers decreased chlorophyll fluorescence only in the moss and the lichens, not in the higher plants. In hydrated systems, coupled cyclic electron transport is suggested to occur concurrently with linear electron transport under strong actinic illumination particularly in the lichens because far more electrons became available after actinic illumination for the reduction of photo-oxidized P700 than were available in the pool of electron carriers between photosystems II and I. In the moss Grimmia, but not in the lichens or in leaves, light-dependent quenching of chlorophyll fluorescence was extensive even under nitrogen, indicating anaerobic thylakoid acidification by persistent cyclic electron transport. In the absence of actinic illumination, acidification by ca. 8% CO2 in

  6. Drying Milk With Boiler Exhaust

    NASA Technical Reports Server (NTRS)

    Broussard, M. R.

    1984-01-01

    Considerable energy saved in powdered-milk industry. Only special requirement boiler fired with natural gas or other clean fuel. Boiler flue gas fed to spray drier where it directly contacts product to be dried. Additional heat supplied by auxillary combustor when boiler output is low. Approach adaptable to existing plants with minimal investment because most already equipped with natural-gas-fired boilers.

  7. Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.

    PubMed

    Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir

    2006-06-01

    Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.

  8. A biochemically semi-detailed model of auxin-mediated vein formation in plant leaves.

    PubMed

    Roussel, Marc R; Slingerland, Martin J

    2012-09-01

    We present here a model intended to capture the biochemistry of vein formation in plant leaves. The model consists of three modules. Two of these modules, those describing auxin signaling and transport in plant cells, are biochemically detailed. We couple these modules to a simple model for PIN (auxin efflux carrier) protein localization based on an extracellular auxin sensor. We study the single-cell responses of this combined model in order to verify proper functioning of the modeled biochemical network. We then assemble a multicellular model from the single-cell building blocks. We find that the model can, under some conditions, generate files of polarized cells, but not true veins. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Effects of past burning frequency on plant species structure and composition in dry dipterocarp forest

    NASA Astrophysics Data System (ADS)

    Wanthongchai, Dr.; Bauhus, Prof.; Goldammer, Prof.

    2009-04-01

    Anthropogenic burning in dry dipterocarp forests (DDF) has become a common phenomenon throughout Thailand. It is feared that too frequent fires may affect vegetation structure and composition and thus impact on ecosystem productivity. The aim of this study was to quantify the effects of prescribed fires on sites with different past burning regimes on vegetation structure and composition in the Huay Kha Khaeng Wildlife Sanctuary (HKK), Thailand. Fire frequency was determined from satellite images and ranged from frequent, infrequent, rare and unburned with fire occurrences of 7, 2, 1 and 0 out of the past 10 years, respectively. The pre-burn fuel loads, the overstorey and understorey vegetation structure and composition were determined to investigate the effects of the contrasting past burning regimes. The burning experiment was carried out, applying a three-strip head-fire burning technique. The vegetation structure and composition were sampled again one year after the fire to assess the fire impacts. Aboveground fine fuel loads increased with the length of fire-free interval. The woody plant structures of the frequently burned stand differed from those of the other less frequently burned stands. The species composition of the overstorey on the frequently burned site, in particular that of small sized trees (4.5-10 cm dbh), also differed significantly from that of the other sites. Whilst the ground vegetation including shrubs and herbs did not differ between the past burning regimes, frequent burning obviously promoted the proliferation of graminoid vegetation. There was no clear evidence showing that the prescribed fires affected the mortality of trees (dbh> 4.5 cm) on the sites of the different past burning regimes. The effects of prescribed burning on the understorey vegetation structures varied between the past burning regimes and the understorey vegetation type. Therefore, it is recommended that the DDF at HKK should be subjected to a prescribed fire frequency

  10. Method of preparing and handling chopped plant materials

    DOEpatents

    Bransby, David I.

    2002-11-26

    The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

  11. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species.

    PubMed

    Yang, J X; Guo, Q J; Yang, J; Zhou, X Y; Ren, H Y; Zhang, H Z; Xu, R X; Wang, X D; Peters, M; Zhu, G X; Wei, R F; Tian, L Y; Han, X K

    2016-01-01

    Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals.

  12. Apoplastic sugars and cell-wall invertase are involved in formation of the tolerance of cold-resistant potato plants to hypothermia.

    PubMed

    Deryabin, A N; Burakhanova, E A; Trunova, T I

    2015-01-01

    We studied the involvement of apoplastic sugars (glucose, fructose, and sucrose) and the cell-wall invertase (CWI) in the formation of the tolerance of cold-resistant potato plants (Solanum tuberosum L., cv Désirée) to hypothermia. The activity of CW1 and the content in the cell and the apoplast substrate (sucrose) and the reaction products of this enzyme (glucose and fructose) have a significant influence on the formation of the tolerance of cold-resistant potato plants to hypothermia.

  13. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, Uthamalingam

    1996-01-01

    A process for the preparation of amorphous precursor powders for Pb-doped Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains.

  14. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, U.

    1996-06-04

    A process for the preparation of amorphous precursor powders for Pb-doped Bi{sub 2}Sr{sub 2} Ca{sub 2}Cu{sub 3}O{sub x} (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains. 11 figs.

  15. Effects of wet- and dry-season fires on Jacquemontia curtisii, a South Florida pine forest endemic

    USGS Publications Warehouse

    Spier, L.P.; Snyder, J.R.

    1998-01-01

    South Florida pine forests have a diverse endemic flora that has evolved under the influence of recurrent fire. We studied the response of Jacquemontia curtisii Peter ex Hallier f. (pineland clustervine), a perennial herbaceous member of that flora, to experimental fires during wet and dry seasons. In each of three populations, three treatments were applied: wet-season (June) prescribed fire, dry-season (January) prescribed fire, and an unburned control. Flowering, fruiting, and seedling establishment were followed for up to one year. Mortality of adult plants was twice as great after wet-season burns than after dry-season burns even though fire temperatures were higher in the dry-season burns. Within a season of burning, mortality was greater for the more severely burned plants or the smaller plants. Wet-season burns produced over three times more flowers than not burning, in spite of mortality of more than half the plants. Burning stimulated germination from the soil seed bank. Dry-season burns resulted in five times more seedlings than wet-season burns and more of these seedlings were alive one year after the burn. It is likely that the long-term viability of Jacquemontia curtisii populations is favored by diversity in fire season and severity.

  16. Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections

    PubMed Central

    Leung, Sharon S.Y.; Parumasivam, Thaigarajan; Gao, Fiona G.; Carrigy, Nicholas B.; Vehring, Reinhard; Finlay, Warren H.; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2016-01-01

    Purpose The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. Method A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. Results A significant titer loss (~ 2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 104 pfu and SD-F2 = 11.0 ± 1.4 × 104 pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 104 pfu and SFD-F2 = 2.1 ± 0.3 × 104 pfu). Conclusion Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2. PMID:26928668

  17. Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure.

    PubMed

    Fuentes, Verónica; Ventanas, Jesús; Morcuende, David; Estévez, Mario; Ventanas, Sonia

    2010-07-01

    The effect of HHP treatment (600 MPa) on the oxidative stability of lipids and proteins of vacuum-packaged Iberian dry-cured ham and the impact on the sensory characteristics of the product was investigated. In order to assess how different commercial presentations are affected by HHP treatment, three different presentations of vacuum-packaged Iberian dry-cured ham were considered, namely, (i) intact format (IF) corresponding to non-sliced vacuum-packaged dry-cured ham, (ii) conventional-sliced format (CSF) corresponding to dry-cured ham slices placed stretched out in the package and (iii) alternative-sliced format (ASF) corresponding to dry-cured ham slices piled up horizontally. The oxidation of dry-cured ham lipids and proteins was enhanced by HHP-treatment with the presentation being highly influential on these oxidative reactions. Pre-slicing dry-cured ham results in a more susceptible product to oxidative reactions during pressurisation and subsequent refrigerated storage. Possible mechanisms, by which HHP-induced oxidative reactions would affect particular sensory traits in vacuum-packaged Iberian dry-cured ham such as colour, texture and flavour attributes, are discussed. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. The endogenous plant hormones and ratios regulate sugar and dry matter accumulation in Jerusalem artichoke in salt-soil.

    PubMed

    Li, Lingling; Shao, Tianyun; Yang, Hui; Chen, Manxia; Gao, Xiumei; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2017-02-01

    The changes in content of endogenous hormones in stolons and tubers of Jerusalem artichoke (Helianthus tuberosus L.) regulate tuber growth, but the specific knowledge about the importance of balance among the endogenous hormones is lacking. Two varieties of Jerusalem artichoke (NY-1 and QY-2) were tested for the endogenous zeatin (ZT), auxins (IAA), gibberellins (GA 3 ) and abscisic acid (ABA) in regulating sugar and dry matter accumulation in tubers. The dry matter content and sugar accumulation in tubers were correlated positively with endogenous ZT and negatively with GA 3 content and GA 3 /ABA and IAA/ABA content ratios. Throughout the tuber formation, ZT content was higher in NY-1 than QY-2 tubers, whereas ABA content was higher in QY-2 than NY-1 tubers. The content ratios GA 3 /ABA and IAA/ABA were greater in NY-1 than QY-2 before tuber initiation, but QY-2 surpassed NY-1 during the tuber growth stage. The GA 3 /ABA and IAA/ABA content ratios declined during tuber growth. The results suggested that a dynamic balance of endogenous hormones played an important role in tuber development. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The Role of Edaphic Environment and Climate in Structuring Phylogenetic Pattern in Seasonally Dry Tropical Plant Communities

    PubMed Central

    Moro, Marcelo Freire; Silva, Igor Aurélio; de Araújo, Francisca Soares; Nic Lughadha, Eimear; Meagher, Thomas R.; Martins, Fernando Roberto

    2015-01-01

    Seasonally dry tropical plant formations (SDTF) are likely to exhibit phylogenetic clustering owing to niche conservatism driven by a strong environmental filter (water stress), but heterogeneous edaphic environments and life histories may result in heterogeneity in degree of phylogenetic clustering. We investigated phylogenetic patterns across ecological gradients related to water availability (edaphic environment and climate) in the Caatinga, a SDTF in Brazil. Caatinga is characterized by semiarid climate and three distinct edaphic environments – sedimentary, crystalline, and inselberg –representing a decreasing gradient in soil water availability. We used two measures of phylogenetic diversity: Net Relatedness Index based on the entire phylogeny among species present in a site, reflecting long-term diversification; and Nearest Taxon Index based on the tips of the phylogeny, reflecting more recent diversification. We also evaluated woody species in contrast to herbaceous species. The main climatic variable influencing phylogenetic pattern was precipitation in the driest quarter, particularly for herbaceous species, suggesting that environmental filtering related to minimal periods of precipitation is an important driver of Caatinga biodiversity, as one might expect for a SDTF. Woody species tended to show phylogenetic clustering whereas herbaceous species tended towards phylogenetic overdispersion. We also found phylogenetic clustering in two edaphic environments (sedimentary and crystalline) in contrast to phylogenetic overdispersion in the third (inselberg). We conclude that while niche conservatism is evident in phylogenetic clustering in the Caatinga, this is not a universal pattern likely due to heterogeneity in the degree of realized environmental filtering across edaphic environments. Thus, SDTF, in spite of a strong shared environmental filter, are potentially heterogeneous in phylogenetic structuring. Our results support the need for scientifically

  20. Optimisation potential for a SBR plant based upon integrated modelling for dry and wet weather conditions.

    PubMed

    Rönner-Holm, S G E; Kaufmann Alves, I; Steinmetz, H; Holm, N C

    2009-01-01

    Integrated dynamic simulation analysis of a full-scale municipal sequential batch reactor (SBR) wastewater treatment plant (WWTP) was performed using the KOSMO pollution load simulation model for the combined sewer system (CSS) and the ASM3 + EAWAG-BioP model for the WWTP. Various optimising strategies for dry and storm weather conditions were developed to raise the purification and hydraulic performance and to reduce operation costs based on simulation studies with the calibrated WWTP model. The implementation of some strategies on the plant led to lower effluent values and an average annual saving of 49,000 euro including sewage tax, which is 22% of the total running costs. Dynamic simulation analysis of CSS for an increased WWTP influent over a period of one year showed high potentials for reducing combined sewer overflow (CSO) volume by 18-27% and CSO loads for COD by 22%, NH(4)-N and P(total) by 33%. In addition, the SBR WWTP could easily handle much higher influents without exceeding the monitoring values. During the integrated simulation of representative storm events, the total emission load for COD dropped to 90%, the sewer system emitted 47% less, whereas the pollution load in the WWTP effluent increased to only 14% with 2% higher running costs.

  1. Grinding and cooking dry-mill germ to optimize aqueous enzymatic oil extraction

    USDA-ARS?s Scientific Manuscript database

    The many recent dry grind plants that convert corn to ethanol are potential sources of substantial amounts of corn oil. This report describes an aqueous enzymatic extraction (AEE) method to separate oil from dry-mill corn germ (DMG). The method is an extension of AEE previously developed for wet...

  2. The climatic, biotic and tectonic evolution of the Paleogene Renova formation of southwestern Montana

    NASA Astrophysics Data System (ADS)

    Lielke, Kevin John

    The Renova Formation of southwestern Montana contains an important record of Paleogene floral, faunal, climate and tectonic change in the northern Rocky Mountains. The period between the end of the early Eocene and the early Oligocene (˜49--32 Ma) was a time of rapid and far-reaching climate change. This period saw the end of global greenhouse climate and the establishment of icehouse conditions across the Earth. These changes led to profound alterations in both marine and terrestrial ecosystems. This study examines the late Eocene/early Oligocene history of the northern Rocky Mountains by means of an integrated study of the sedimentology, tectonics and fossil content of the Renova Formation. The first part of this study examines plant fossils found in the Renova Formation in order to examine changes in the composition of the vegetation across the late Eocene/ early Oligocene (E/O) boundary. Plant remains are an effective proxy for climate and are used to estimate multiple climatic parameters across the E/O boundary. The second part of this study examines the paleotopography and paleodrainage patterns of the basins which accumulated the Renova sediments. This is accomplished by a combination of sedimentary facies and detrital zircon analysis. The third part of this study examines the tectonic underpinnings of Paleogene southwestern Montana through a combination of geologic field work and geodynamic modeling. The results of this study indicate that a seasonal summer dry climate became established in the northern Rocky Mountains by early Oligocene time. This is indicated by the elimination of subtropical plant species, the establishment of dry-adapted species and by paleoclimate parameters calculated from leaf physiognomy. Geodynamic calculations and field data indicate that the Renova Formation was deposited in a series of sub-basins separated by relict paleotopography and inverted topography formed by contemporary lava flows. Normal faulting was not active until

  3. Single droplet drying step characterization in microsphere preparation.

    PubMed

    Al Zaitone, Belal; Lamprecht, Alf

    2013-05-01

    Spray drying processes are difficult to characterize since process parameters are not directly accessible. Acoustic levitation was used to investigate microencapsulation by spray drying on one single droplet facilitating the analyses of droplet behavior upon drying. Process parameters were simulated on a poly(lactide-co-glycolide)/ethyl acetate combination for microencapsulation. The results allowed quantifying the influence of process parameters such as temperature (0-40°C), polymer concentration (5-400 mg/ml), and droplet size (0.5-1.37 μl) on the drying time and drying kinetics as well as the particle morphology. The drying of polymer solutions at temperature of 21°C and concentration of 5 mg/ml, shows that the dimensionless particle diameter (Dp/D0) approaches 0.25 and the particle needs 350 s to dry. At 400 mg/ml, Dp/D0=0.8 and the drying time increases to one order of magnitude and a hollow particle is formed. The study demonstrates the benefit of using the acoustic levitator as a lab scale method to characterize and study the microparticle formation. This method can be considered as a helpful tool to mimic the full scale spray drying process by providing identical operational parameters such as air velocity, temperature, and variable droplet sizes. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Study of a dry room in a battery manufacturing plant using a process model

    NASA Astrophysics Data System (ADS)

    Ahmed, Shabbir; Nelson, Paul A.; Dees, Dennis W.

    2016-09-01

    The manufacture of lithium ion batteries requires some processing steps to be carried out in a dry room, where the moisture content should remain below 100 parts per million. The design and operation of such a dry room adds to the cost of the battery. This paper studied the humidity management of the air to and from the dry room to understand the impact of design and operating parameters on the energy demand and the cost contribution towards the battery manufacturing cost. The study was conducted with the help of a process model for a dry room with a volume of 16,000 cubic meters. For a defined base case scenario it was found that the dry room operation has an energy demand of approximately 400 kW. The paper explores some tradeoffs in design and operating parameters by looking at the humidity reduction by quenching the make-up air vs. at the desiccant wheel, and the impact of the heat recovery from the desiccant regeneration cycle.

  5. Influence of meat source, pH and production time on zinc protoporphyrin IX formation as natural colouring agent in nitrite-free dry fermented sausages.

    PubMed

    De Maere, Hannelore; Chollet, Sylvie; De Brabanter, Jos; Michiels, Chris; Paelinck, Hubert; Fraeye, Ilse

    2018-01-01

    Nitrite is commonly used in meat products due to its plural technological advantages. However, it is controversial because of its detrimental side effects on health. Within the context of nitrite reduction, zinc protoporphyrin IX (Zn(II)PPIX) formation in meat products as natural red colouring agent has been suggested. This investigation presents the evaluation of naturally occurring pigments, namely Zn(II)PPIX, protoporphyrin IX (PPIX) and heme in nitrite-free dry fermented sausages in function of time, meat source (pork, horsemeat and a combination of both meat sources) and pH condition. In function of time, Zn(II)PPIX and PPIX were formed and heme content decreased. Higher pH conditions promoted Zn(II)PPIX and PPIX formation, whereas the influence of pH on heme was less clear. The use of horsemeat also promoted Zn(II)PPIX formation. Moreover, even similar amounts were formed when it was combined with pork. Product redness, however, could not be related to Zn(II)PPIX formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effect of Drying Temperature on Rosmarinic Acid and Sinensetin Concentration in Orthosiphon stamineus Herbal Leaves

    NASA Astrophysics Data System (ADS)

    Abdullah, Sriyana; Razak Shaari, Abdul; Hajar Rukunudin, Ibni; Syarhabil Ahmad, Muhammad

    2018-03-01

    The objective of this work was to investigate the effects of drying temperature on the concentration of O rthosiphon stamineus biomarker compounds which were rosmarinic acid (RA) and sinensetin (SEN). The thin layer drying approach was used to dry O. stamineus leaves at various temperatures of 30, 40 and 50°C using a laboratory scale hot air dryer. The dried leaves were then extracted using 60% aqueous methanol prior to quantification. The RA and SEN concentrations in the dried leaves extracts were quantified by the high performance liquid chromatography. The concentration of RA for the dried leaves at 30 and 40°C were higher as compared to that of the fresh leaves. This may due to the response of the plant cells to abiotic stress. The concentration of RA also showed a significant reduction when the temperature was increased to 50°C. In contrast, the SEN concentration in O. stamineus dried leaf extract was lower than that of the fresh samples. The concentrations of SEN depicted insignificant effects by drying at 30 and 50°C, and the highest value was obtained in the samples dried at 40°C. Results showed that the drying process was found to affect the concentration of both compounds; therefore suitable drying conditions should be adopted to enhance the medicinal values of the plant species.

  7. Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii.

    PubMed

    Duongthingoc, Diep; George, Paul; Katopo, Lita; Gorczyca, Elizabeth; Kasapis, Stefan

    2013-12-01

    This work investigates the effect of whey protein agglomeration on the survivability of Saccharomyces boulardii within spray dried microcapsules. It attempts to go beyond phenomenological observations by establishing a relationship between physicochemical characteristics of the polymeric matrix and its effect on probiotic endurance upon spray drying. It is well known that this type of thermal shock has lethal consequences on the yeast cells. To avoid such undesirable outcome, we take advantage of the early agglomeration phenomenon observed for whey protein by adjusting the pH value of preparations close to isoelectric point (pH 4-5). During the subsequent process of spray drying, development of whey protein agglomerates induces formation of an early crust, and the protein in this molten globular state creates a cohesive network encapsulating the yeast cells. It appears that the early crust formation at a given sample pH and temperature regime during spray drying benefits the survivability of S. boulardii within microcapsules. Copyright © 2013. Published by Elsevier Ltd.

  8. Potential of Chilopsis Linearis for Gold Phytomining: Using XAS to Determine Gold Reduction And Nanoparticle Formation Within Plant Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E, Rodriguez; Parsons, J.G.; Peralta-Videa, J.R.

    This study reports on the capability of the desert plant Chilopsis linearis (Cav.) Sweet (desert willow) to uptake gold (Au) from gold-enriched media at different plant-growth stages. Plants were exposed to 20, 40, 80, 160, and 320 mg Au L{sup -1} in agar-based growing media for 13, 18, 23, and 35 d. The Au content and oxidation state of Au in the plants were determined using an inductively coupled plasma/optical emission spectrometer (ICP/OES) and X-ray absorption spectroscopy (XAS), respectively. Gold concentrations ranging from 20 to 80 mg Au L{sup -1} did not significantly affect Chilopsis linearis plant growth. The concentrationmore » of gold in the plants increased as the age of the plant increased. The Au concentrations in leaves for the 20, 40, 80, and 160 mg Au L{sup -1} treatments were 32, 60, 62, and 179 mg Au kg{sup -1} dry weight mass, respectively, demonstrating the gold uptake capability of desert willow. The XAS data indicated that desert willow produced gold nanoparticles within plant tissues. Plants exposed to 160 mg Au L{sup -1} formed nanoparticles that averaged approximately 8, 35, and 18 in root, stem, and leaves, respectively. It was observed that the average size of the Au nanoparticles formed by the plants is related to the total Au concentration in tissues and their location in the plant.« less

  9. Formation of nano-laminated structures in a dry sliding wear-induced layer under different wear mechanisms of 20CrNi2Mo steel

    NASA Astrophysics Data System (ADS)

    Yin, Cun-hong; Liang, Yi-long; Jiang, Yun; Yang, Ming; Long, Shao-lei

    2017-11-01

    The microstructures of 20CrNi2Mo steel underneath the contact surface were examined after dry sliding. Scanning Electronic Microscopy (SEM), Transmission Electron Microscopy (TEM), Electron Backscattered Diffraction (EBSD) and an ultra-micro-hardness tester were used to characterize the worn surface and dry sliding wear-induced layer. Martensite laths were ultra-refined due to cumulative strains and a large strain gradient that occurred during cyclic loading in wear near the surface. The microstructure evolution in dominant abrasive wear differs from that in adhesive wear. In dominant abrasive wear, only bent martensite laths with high-density deformation dislocations were observed. In contrast, in dominant adhesive wear, gradient structures were formed along the depth from the wear surface. Cross-sectional TEM foils were prepared in a focused ion beam (FIB) to observe the gradient structures in a dry sliding wear-induced layer at depths of approximately 1-5 μm and 5-20 μm. The gradient structures contained nano-laminated structures with an average thickness of 30-50 nm and bent martensite laths. We found that the original martensite laths coordinated with the strain energy and provided origin boundaries for the formation of gradient structures. Geometrically necessary boundaries (GNBs) and isolated dislocation boundaries (IDBs) play important roles in forming the nano-laminated structures.

  10. Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation.

    PubMed

    Alvarez, M Lucrecia; Topal, Emel; Martin, Federico; Cardineau, Guy A

    2010-01-01

    Improving foreign protein accumulation is crucial for enhancing the commercial success of plant-based production systems since product yields have a major influence on process economics. Cereal grain evolved to store large amounts of proteins in tightly organized aggregates. In maize, gamma-Zein is the major storage protein synthesized by the rough endoplasmic reticulum (ER) and stored in specialized organelles called protein bodies (PB). Zera (gamma-Zein ER-accumulating domain) is the N-terminal proline-rich domain of gamma-zein that is sufficient to induce the assembly of PB formation. Fusion of the Zera domain to proteins of interest results in assembly of dense PB-like, ER-derived organelles, containing high concentration of recombinant protein. Our main goal was to increase recombinant protein accumulation in plants in order to enhance the efficiency of orally-delivered plant-made vaccines. It is well known that oral vaccination requires substantially higher doses than parental formulations. As a part of a project to develop a plant-made plague vaccine, we expressed our model antigen, the Yersinia pestis F1-V antigen fusion protein, with and without a fused Zera domain. We demonstrated that Zera-F1-V protein accumulation was at least 3x higher than F1-V alone when expressed in three different host plant systems: Ncotiana benthamiana, Medicago sativa (alfalfa) and Nicotiana tabacum NT1 cells. We confirmed the feasibility of using Zera technology to induce protein body formation in non-seed tissues. Zera expression and accumulation did not affect plant development and growth. These results confirmed the potential exploitation of Zera technology to substantially increase the accumulation of value-added proteins in plants.

  11. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant

    PubMed Central

    Conner, Joann A.; Mookkan, Muruganantham; Huo, Heqiang; Chae, Keun; Ozias-Akins, Peggy

    2015-01-01

    Apomixis is a naturally occurring mode of asexual reproduction in flowering plants that results in seed formation without the involvement of meiosis or fertilization of the egg. Seeds formed on an apomictic plant contain offspring genetically identical to the maternal plant. Apomixis has significant potential for preserving hybrid vigor from one generation to the next in highly productive crop plant genotypes. Apomictic Pennisetum/Cenchrus species, members of the Poaceae (grass) family, reproduce by apospory. Apospory is characterized by apomeiosis, the formation of unreduced embryo sacs derived from nucellar cells of the ovary and, by parthenogenesis, the development of the unreduced egg into an embryo without fertilization. In Pennisetum squamulatum (L.) R.Br., apospory segregates as a single dominant locus, the apospory-specific genomic region (ASGR). In this study, we demonstrate that the PsASGR-BABY BOOM-like (PsASGR-BBML) gene is expressed in egg cells before fertilization and can induce parthenogenesis and the production of haploid offspring in transgenic sexual pearl millet. A reduction of PsASGR-BBML expression in apomictic F1 RNAi transgenic plants results in fewer visible parthenogenetic embryos and a reduction of embryo cell number compared with controls. Our results endorse a key role for PsASGR-BBML in parthenogenesis and a newly discovered role for a member of the BBM-like clade of APETALA 2 transcription factors. Induction of parthenogenesis by PsASGR-BBML will be valuable for installing parthenogenesis to synthesize apomixis in crops and will have further application for haploid induction to rapidly obtain homozygous lines for breeding. PMID:26305939

  12. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant.

    PubMed

    Conner, Joann A; Mookkan, Muruganantham; Huo, Heqiang; Chae, Keun; Ozias-Akins, Peggy

    2015-09-08

    Apomixis is a naturally occurring mode of asexual reproduction in flowering plants that results in seed formation without the involvement of meiosis or fertilization of the egg. Seeds formed on an apomictic plant contain offspring genetically identical to the maternal plant. Apomixis has significant potential for preserving hybrid vigor from one generation to the next in highly productive crop plant genotypes. Apomictic Pennisetum/Cenchrus species, members of the Poaceae (grass) family, reproduce by apospory. Apospory is characterized by apomeiosis, the formation of unreduced embryo sacs derived from nucellar cells of the ovary and, by parthenogenesis, the development of the unreduced egg into an embryo without fertilization. In Pennisetum squamulatum (L.) R.Br., apospory segregates as a single dominant locus, the apospory-specific genomic region (ASGR). In this study, we demonstrate that the PsASGR-BABY BOOM-like (PsASGR-BBML) gene is expressed in egg cells before fertilization and can induce parthenogenesis and the production of haploid offspring in transgenic sexual pearl millet. A reduction of PsASGR-BBML expression in apomictic F1 RNAi transgenic plants results in fewer visible parthenogenetic embryos and a reduction of embryo cell number compared with controls. Our results endorse a key role for PsASGR-BBML in parthenogenesis and a newly discovered role for a member of the BBM-like clade of APETALA 2 transcription factors. Induction of parthenogenesis by PsASGR-BBML will be valuable for installing parthenogenesis to synthesize apomixis in crops and will have further application for haploid induction to rapidly obtain homozygous lines for breeding.

  13. Potential gases emissions from the combustion of municipal solid waste by bio-drying.

    PubMed

    Zhang, Dong-Qing; He, Pin-Jing; Shao, Li-Ming

    2009-09-15

    One aerobic and two combined hydrolytic-aerobic processes were set up to investigate the influence of bio-drying on the potential emissions of combustion gases and the quantitative relationships of potential emissions with organics degradation. Results showed that the bio-drying would result in the increase of the HCl and SO(2) emissions and potential for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) formation, but the decrease of NO(x) emissions in the combustion. The potential emissions of combustion gases were correlated with organics degradation (correlation coefficient, r=0.67 for HCl, r=0.96 for SO(2), r=0.91 for PCDD/Fs and r=-0.60 for NO(x)). Interestingly, the total emissions of combustion gases based on input waste could be minimized by bio-drying. The bio-drying caused a reduction of NO(x) emissions but a negligible variation of total emissions of HCl and SO(2) as well as the potential for total PCDD/Fs formation. Moreover, the bio-drying could significantly improve the ratio of gas emissions to low heating values. The mixed waste after bio-drying was more favorable for combustion and the combined process with insufficient aeration during the hydrolytic stage was proposed for the bio-drying operation.

  14. Evaporator fouling tendencies of thin stillage and concentrates from the dry grind process

    USDA-ARS?s Scientific Manuscript database

    In the US, more than 200 maize processing plants use multiple effect evaporators to remove water from thin stillage and steepwater during dry grind and wet milling processes, respectively. During the dry grind process, unfermentables are centrifuged and the liquid fraction, thin stillage, is concen...

  15. Plant growth, biomass partitioning and soil carbon formation in response to altered lignin biosynthesis in Populus tremuloides.

    PubMed

    Hancock, Jessica E; Loya, Wendy M; Giardina, Christian P; Li, Laigeng; Chiang, Vincent L; Pregitzer, Kurt S

    2007-01-01

    We conducted a glasshouse mesocosm study that combined (13)C isotope techniques with wild-type and transgenic aspen (Populus tremuloides) in order to examine how altered lignin biosynthesis affects plant production and soil carbon formation. Our transgenic aspen lines expressed low stem lignin concentration but normal cellulose concentration, low lignin stem concentration with high cellulose concentration or an increased stem syringyl to guaiacyl lignin ratio. Large differences in stem lignin concentration observed across lines were not observed in leaves or fine roots. Nonetheless, low lignin lines accumulated 15-17% less root C and 33-43% less new soil C than the control line. Compared with the control line, transformed aspen expressing high syringyl lignin accumulated 30% less total plant C - a result of greatly reduced total leaf area - and 70% less new soil C. These findings suggest that altered stem lignin biosynthesis in Populus may have little effect on the chemistry of fine roots or leaves, but can still have large effects on plant growth, biomass partitioning and soil C formation.

  16. Modelling the contribution of biogenic volatile organic compounds to new particle formation in the Jülich plant atmosphere chamber

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Liao, L.; Mogensen, D.; Dal Maso, M.; Rusanen, A.; Kerminen, V.-M.; Mentel, T. F.; Wildt, J.; Kleist, E.; Kiendler-Scharr, A.; Tillmann, R.; Ehn, M.; Kulmala, M.; Boy, M.

    2015-09-01

    We used the Aerosol Dynamics gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM) to simulate the contribution of BVOC plant emissions to the observed new particle formation during photooxidation experiments performed in the Jülich Plant-Atmosphere Chamber and to evaluate how well smog chamber experiments can mimic the atmospheric conditions during new particle formation events. ADCHAM couples the detailed gas-phase chemistry from Master Chemical Mechanism with a novel aerosol dynamics and particle phase chemistry module. Our model simulations reveal that the observed particle growth may have either been controlled by the formation rate of semi- and low-volatility organic compounds in the gas phase or by acid catalysed heterogeneous reactions between semi-volatility organic compounds in the particle surface layer (e.g. peroxyhemiacetal dimer formation). The contribution of extremely low-volatility organic gas-phase compounds to the particle formation and growth was suppressed because of their rapid and irreversible wall losses, which decreased their contribution to the nano-CN formation and growth compared to the atmospheric situation. The best agreement between the modelled and measured total particle number concentration (R2 > 0.95) was achieved if the nano-CN was formed by kinetic nucleation involving both sulphuric acid and organic compounds formed from OH oxidation of BVOCs.

  17. Patterns and consequences of re-invasion into a Hawaiian dry forest restoration

    Treesearch

    Erin J. Questad; Jarrod M. Thaxton; Susan Cordell

    2012-01-01

    The restoration of native plant diversity may be an effective tool for weed control, but its use has not been tested in the heavily invaded Hawaiian dry forest ecosystem. In addition, the ecological mechanisms by which invasive plants may cause declines in native plant diversity are generally not well understood. We examined invasion resistance and the relationships...

  18. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].

    PubMed

    Schulze, E -D; Lange, O L; Koch, W

    1972-12-01

    The influence of climatic factors on net photosynthesis, dark respiration and transpiration was investigated in the Negev Desert at the end of the dry summer period when plant water stress was at a maximum. Species studied included: dominant species of the natural vegetation (Artemisia herba-alba, Hammada scoparia, Noaea mucronata, Reaumuria negevensis, Salsola inermis, Zygophyllum dumosum), cultivated plants receiving rainfall and run-off water during the winter season in the run-off farm Avdat (Prunus armeniaca, Vitis vinifera), and irrigated cultivated plants receiving additional water during the summer season (Citrullus colocynthis, Datura metel). 1. Light saturation of net photosynthesis was reached at 60-90 klx conforming to the high solar radiation intensities of the desert. 2. Maximum rates of CO 2 uptake per unit of dry weight for the irrigated mesomorphic plants was ten times that of the wild plants. However, in comparison to the other species, maximal rates of CO 2 uptake for wild plants were higher when calculated on a leaf area basis than when represented on a dry weight basis. Maximum rates of net photosynthesis per unit chlorophyll content for some of the wild plants (Salsola and Noaea) were comparable to those of the cultivated Vitis and irrigated Citrullus and Datura, Hammada exhibited even higher rates than Prunus. This demonstrates the great photosynthetic capacity of the wild plants even at the end of the dry season. 3. The upper temperature compensation point for net photosynthesis of the wild plants was unusually high as an adaptation to the temperatures of the habitat. Compensation points higher than 49°C exceed the maxima known so far for other flowering species. Maximum rates of net photosynthesis of Hammada were measured when the temperature of the photosynthetic organs was 37°C; at 49°C photosynthesis was only reduced by 50%. 4. Leaf temperature affects plant gas exchange by influencing stomatal aperture. Diffusion resistance of leaves

  19. Study of a dry room in a battery manufacturing plant using a process model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Shabbir; Nelson, Paul A.; Dees, Dennis W.

    The manufacture of lithium ion batteries requires some processing steps to be carried out in a dry room, where the moisture content should remain below 100 parts per million. The design and operation of such a dry room adds to the cost of the battery. This paper studies the humidity management of the air to and from the dry room to understand the impact of design and operating parameters on the energy demand and the cost contribution towards the battery manufacturing cost. The study is conducted with the help of a process model for a dry room with a volumemore » of 16000 cubic meters. For a defined base case scenario it is found that the dry room operation has an energy demand of approximately 400 kW. The paper explores some tradeoffs in design and operating parameters by looking at the humidity reduction by quenching the make-up air vs. at the desiccant wheel, and the impact of the heat recovery from the desiccant regeneration cycle.« less

  20. Adaptive transgenerational plasticity in an annual plant: grandparental and parental drought stress enhance performance of seedlings in dry soil.

    PubMed

    Herman, Jacob J; Sultan, Sonia E; Horgan-Kobelski, Tim; Riggs, Charlotte

    2012-07-01

    Stressful parental (usually maternal) environments can dramatically influence expression of traits in offspring, in some cases resulting in phenotypes that are adaptive to the inducing stress. The ecological and evolutionary impact of such transgenerational plasticity depends on both its persistence across generations and its adaptive value. Few studies have examined both aspects of transgenerational plasticity within a given system. Here we report the results of a growth-chamber study of adaptive transgenerational plasticity across two generations, using the widespread annual plant Polygonum persicaria as a naturally evolved model system. We grew five inbred Polygonum genetic lines in controlled dry vs. moist soil environments for two generations in a fully factorial design, producing replicate individuals of each genetic line with all permutations of grandparental and parental environment. We then measured the effects of these two-generational stress histories on traits critical for functioning in dry soil, in a third (grandchild) generation of seedling offspring raised in the dry treatment. Both grandparental and parental moisture environment significantly influenced seedling development: seedlings of drought-stressed grandparents or parents produced longer root systems that extended deeper and faster into dry soil compared with seedlings of the same genetic lines whose grandparents and/or parents had been amply watered. Offspring of stressed individuals also grew to a greater biomass than offspring of nonstressed parents and grandparents. Importantly, the effects of drought were cumulative over the course of two generations: when both grandparents and parents were drought-stressed, offspring had the greatest provisioning, germinated earliest, and developed into the largest seedlings with the most extensive root systems. Along with these functionally appropriate developmental effects, seedlings produced after two previous drought-stressed generations had

  1. A study of the dry forest communities in the Dominican Republic.

    PubMed

    García-Fuentes, Antonio; Torres-Cordero, Juan A; Ruiz-Valenzuela, Luis; Lendínez-Barriga, María Lucía; Quesada-Rincón, Juan; Valle-Tendero, Francisco; Veloz, Alberto; León, Yolanda M; Salazar-Mendías, Carlos

    2015-03-01

    This paper is a floristic and phytosociological study of the dry forest communities of the Dominican Republic. A total of 69 relevés in dry forest biotopes were carried out. The samples were subsequently subjected to Detrended Correspondence Analysis for the determination and study of possible groupings. The study does not cover tree formations growing on serpentines, nor the so-called semideciduous forests, peculiar to areas with higher rainfall. A total of nine phytocoenoses were identified. The most significant results led to the description of six new phytosociological associations: Simaroubetum berteroani (thorny dry forest on coastal dunes), Phyllostylo rhamnoidis-Prosopidetum juliflorae (southern Dominican disturbed dry forest), Consoleo moniliformis-Camerarietum linearifoliae (dry forest on hard limestones), Lemaireocereo hystricis-Prosopidetum juliflorae (northern Dominican disturbed dry forest), Lycio americani-Prosopidetum juliflorae (disturbed dry forest on saline soils) and Guettardo ellipticae-Guapiretum discoloris (dry forest on flat-topped hillocks in Montecristi). This is an important step forward in the phytosociological and floristic studies of the Caribbean territories.

  2. Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding

    PubMed Central

    Rehder, Sönke; Klukkert, Marten; Löbmann, Korbinian A. M.; Strachan, Clare J.; Sakmann, Albrecht; Gordon, Keith; Rades, Thomas; Leopold, Claudia S.

    2011-01-01

    Cocrystal formation rates during dry grinding and liquid-assisted grinding were investigated by X-ray powder diffractometry and Raman spectroscopy. Two polymorphic forms of piracetam were used to prepare known piracetam cocrystals as model substances, i.e., piracetam-citric acid and piracetam-tartaric acid cocrystals. Raman spectroscopy in combination with principal component analysis was used to visualize the cocrystal formation pathways. During dry grinding, cocrystal formation appeared to progress via an amorphous intermediate stage, which was more evident for the piracetam-citric acid than for the piracetam-tartaric acid cocrystal. It was shown that liquid-assisted grinding led to faster cocrystal formation than dry grinding, which may be explained by the higher transformation rate due to the presence of liquid. The cocrystal formation rate did not depend on the applied polymorphic form of the piracetam and no polymorphic cocrystals were obtained. PMID:24309304

  3. Design of Tomato Drying System by Utilizing Brine Geothermal

    NASA Astrophysics Data System (ADS)

    Afuar, W.; Sibarani, B.; Abdurrahman, G.; Hendrarsakti, J.

    2016-09-01

    Cultivation of tomato plants in Indonesia has been started since 1961.Tomatoes generally will rot in three days if left on storage. Moreover, low quality tomatoes have cheaper price. After harvested, tomatoes need to be treated by drying process so it can last longer. Energy for drying tomatoes can be obtained by utilizing heat from geothermal brine. Purpose of this research is to design a tomato drying system by extracting heat of geothermal brine from separator with certain flow rate to heat up water by using a heat exchanger. Furthermore, this water will be used to heat up the surrounding air which is circulated by blower system to heat up the tomatoes chamber. Tomatoes drying process needs temperature range of 50-70°C to evaporate water content from 95.7% to 26%. After that treatment, the tomatoes are expected to have better durability. The objective of this study is to determine the quantity of hot brine which is needed for drying tomatoes and to design a drying system so that tomatoes can last longer.

  4. A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro

    PubMed Central

    Purushotham, Pallinti; Cho, Sung Hyun; Díaz-Moreno, Sara M.; Kumar, Manish; Nixon, B. Tracy; Bulone, Vincent; Zimmer, Jochen

    2016-01-01

    Plant cell walls are a composite material of polysaccharides, proteins, and other noncarbohydrate polymers. In the majority of plant tissues, the most abundant polysaccharide is cellulose, a linear polymer of glucose molecules. As the load-bearing component of the cell wall, individual cellulose chains are frequently bundled into micro and macrofibrils and are wrapped around the cell. Cellulose is synthesized by membrane-integrated and processive glycosyltransferases that polymerize UDP-activated glucose and secrete the nascent polymer through a channel formed by their own transmembrane regions. Plants express several different cellulose synthase isoforms during primary and secondary cell wall formation; however, so far, none has been functionally reconstituted in vitro for detailed biochemical analyses. Here we report the heterologous expression, purification, and functional reconstitution of Populus tremula x tremuloides CesA8 (PttCesA8), implicated in secondary cell wall formation. The recombinant enzyme polymerizes UDP-activated glucose to cellulose, as determined by enzyme degradation, permethylation glycosyl linkage analysis, electron microscopy, and mutagenesis studies. Catalytic activity is dependent on the presence of a lipid bilayer environment and divalent manganese cations. Further, electron microscopy analyses reveal that PttCesA8 produces cellulose fibers several micrometers long that occasionally are capped by globular particles, likely representing PttCesA8 complexes. Deletion of the enzyme’s N-terminal RING-finger domain almost completely abolishes fiber formation but not cellulose biosynthetic activity. Our results demonstrate that reconstituted PttCesA8 is not only sufficient for cellulose biosynthesis in vitro but also suffices to bundle individual glucan chains into cellulose microfibrils. PMID:27647898

  5. A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro.

    PubMed

    Purushotham, Pallinti; Cho, Sung Hyun; Díaz-Moreno, Sara M; Kumar, Manish; Nixon, B Tracy; Bulone, Vincent; Zimmer, Jochen

    2016-10-04

    Plant cell walls are a composite material of polysaccharides, proteins, and other noncarbohydrate polymers. In the majority of plant tissues, the most abundant polysaccharide is cellulose, a linear polymer of glucose molecules. As the load-bearing component of the cell wall, individual cellulose chains are frequently bundled into micro and macrofibrils and are wrapped around the cell. Cellulose is synthesized by membrane-integrated and processive glycosyltransferases that polymerize UDP-activated glucose and secrete the nascent polymer through a channel formed by their own transmembrane regions. Plants express several different cellulose synthase isoforms during primary and secondary cell wall formation; however, so far, none has been functionally reconstituted in vitro for detailed biochemical analyses. Here we report the heterologous expression, purification, and functional reconstitution of Populus tremula x tremuloides CesA8 (PttCesA8), implicated in secondary cell wall formation. The recombinant enzyme polymerizes UDP-activated glucose to cellulose, as determined by enzyme degradation, permethylation glycosyl linkage analysis, electron microscopy, and mutagenesis studies. Catalytic activity is dependent on the presence of a lipid bilayer environment and divalent manganese cations. Further, electron microscopy analyses reveal that PttCesA8 produces cellulose fibers several micrometers long that occasionally are capped by globular particles, likely representing PttCesA8 complexes. Deletion of the enzyme's N-terminal RING-finger domain almost completely abolishes fiber formation but not cellulose biosynthetic activity. Our results demonstrate that reconstituted PttCesA8 is not only sufficient for cellulose biosynthesis in vitro but also suffices to bundle individual glucan chains into cellulose microfibrils.

  6. Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both tertiary and quaternary diversification.

    PubMed Central

    Pennington, R Toby; Lavin, Matt; Prado, Darién E; Pendry, Colin A; Pell, Susan K; Butterworth, Charles A

    2004-01-01

    Historical climate changes have had a major effect on the distribution and evolution of plant species in the neotropics. What is more controversial is whether relatively recent Pleistocene climatic changes have driven speciation, or whether neotropical species diversity is more ancient. This question is addressed using evolutionary rate analysis of sequence data of nuclear ribosomal internal transcribed spacers in diverse taxa occupying neotropical seasonally dry forests, including Ruprechtia (Polygonaceae), robinioid legumes (Fabaceae), Chaetocalyx and Nissolia (Fabaceae), and Loxopterygium (Anacardiaceae). Species diversifications in these taxa occurred both during and before the Pleistocene in Central America, but were primarily pre-Pleistocene in South America. This indicates plausibility both for models that predict tropical species diversity to be recent and that invoke a role for Pleistocene climatic change, and those that consider it ancient and implicate geological factors such as the Andean orogeny and the closure of the Panama Isthmus. Cladistic vicariance analysis was attempted to identify common factors underlying evolution in these groups. In spite of the similar Mid-Miocene to Pliocene ages of the study taxa, and their high degree of endemism in the different fragments of South American dry forests, the analysis yielded equivocal, non-robust patterns of area relationships. PMID:15212100

  7. Dewetting-mediated pattern formation inside the coffee ring

    NASA Astrophysics Data System (ADS)

    Li, Weibin; Lan, Ding; Wang, Yuren

    2017-04-01

    The rearrangement of particles in the final stage of droplet evaporation has been investigated by utilizing differential interference contrast microscopy and the formation mechanism of a network pattern inside a coffee ring has been revealed. A tailored substrate with a circular hydrophilic domain is prepared to obtain thin liquid film containing monolayer particles. Real-time bottom-view images show that the evolution of a dry patch could be divided into three stages: rupture initiation, dry patch expansion, and drying of the residual liquid. A growing number of dry patches will repeat these stages to form the network patterns inside the ringlike stain. It can be shown that the suction effect promotes the rupture of the liquid film and the formation of the dry patch. The particle-assembling process is totally controlled by the liquid film dewetting and dominated by the surface tension of the liquid film, which eventually determine the ultimate deposition patterns.

  8. Fresh, dried or smoked? repellent properties of volatiles emitted from ethnomedicinal plant leaves against malaria and yellow fever vectors in Ethiopia

    PubMed Central

    2011-01-01

    Background In the search for plant-based mosquito repellents, volatile emanations were investigated from five plant species, Corymbia citriodora, Ocimum suave, Ocimum lamiifolium, Olea europaea and Ostostegia integrifolia, traditionally used in Ethiopia as protection against mosquitoes. Methods The behaviour of two mosquitoes, the malaria vector Anopheles arabiensis and the arbovirus vector Aedes aegypti, was assessed towards volatiles collected from the headspace of fresh and dried leaves, and the smoke from burning the dried leaves in a two-choice landing bioassay and in the background of human odour. Results Volatile extracts from the smoke of burning dried leaves were found to be more repellent than those from fresh leaves, which in turn were more repellent to mosquitoes than volatiles from dried leaves. Of all smoke and fresh volatile extracts, those from Co. citriodora (52-76%) and Oc. suave (58-68%) were found to be the most repellent, Os. integrifolia (29-56%) to be intermediate while Ol. europaea (23-40%) and Os. integrifolia (19-37%) were the least repellent. One volatile present in each of the fresh leaf extracts of Co. citriodora, Oc. suave and Os. integrifolia was ß-ocimene. The levels of ß-ocimene reflected the mosquito repellent activity of these three fresh leaf extracts. Female host-seeking mosquitoes responded dose-dependently to ß-ocimene, both physiologically and behaviourally, with a maximal behavioural repulsion at 14% ß-ocimene. ß-ocimene (14%) repels mosquitoes in our 6-minute landing assays comparable to the synthetic insect repellent N,N-diethyl-m-toluamide (10% DEET). Conclusions Volatiles in the smoke of burning as well as fresh leaves of Co. citriodora and Oc. suave have significant repellent properties against host seeking An. arabiensis and Ae. aegypti mosquitoes. ß-ocimene, present in the fresh leaf headspace of Co. citriodora, Oc. suave and Os. integrifolia, is a significantly effective volatile mosquito repellent in the

  9. Fresh, dried or smoked? Repellent properties of volatiles emitted from ethnomedicinal plant leaves against malaria and yellow fever vectors in Ethiopia.

    PubMed

    Dube, Fitsum Fikru; Tadesse, Kassahun; Birgersson, Göran; Seyoum, Emiru; Tekie, Habte; Ignell, Rickard; Hill, Sharon R

    2011-12-19

    In the search for plant-based mosquito repellents, volatile emanations were investigated from five plant species, Corymbia citriodora, Ocimum suave, Ocimum lamiifolium, Olea europaea and Ostostegia integrifolia, traditionally used in Ethiopia as protection against mosquitoes. The behaviour of two mosquitoes, the malaria vector Anopheles arabiensis and the arbovirus vector Aedes aegypti, was assessed towards volatiles collected from the headspace of fresh and dried leaves, and the smoke from burning the dried leaves in a two-choice landing bioassay and in the background of human odour. Volatile extracts from the smoke of burning dried leaves were found to be more repellent than those from fresh leaves, which in turn were more repellent to mosquitoes than volatiles from dried leaves. Of all smoke and fresh volatile extracts, those from Co. citriodora (52-76%) and Oc. suave (58-68%) were found to be the most repellent, Os. integrifolia (29-56%) to be intermediate while Ol. europaea (23-40%) and Os. integrifolia (19-37%) were the least repellent. One volatile present in each of the fresh leaf extracts of Co. citriodora, Oc. suave and Os. integrifolia was ß-ocimene. The levels of ß-ocimene reflected the mosquito repellent activity of these three fresh leaf extracts. Female host-seeking mosquitoes responded dose-dependently to ß-ocimene, both physiologically and behaviourally, with a maximal behavioural repulsion at 14% ß-ocimene. ß-ocimene (14%) repels mosquitoes in our 6-minute landing assays comparable to the synthetic insect repellent N,N-diethyl-m-toluamide (10% DEET). Volatiles in the smoke of burning as well as fresh leaves of Co. citriodora and Oc. suave have significant repellent properties against host seeking An. arabiensis and Ae. aegypti mosquitoes. ß-ocimene, present in the fresh leaf headspace of Co. citriodora, Oc. suave and Os. integrifolia, is a significantly effective volatile mosquito repellent in the laboratory. In addition to its repellent

  10. A protein kinase from Colletotrichum trifolii is induced by plant cutin and is required for appressorium formation.

    PubMed

    Dickman, M B; Ha, Y S; Yang, Z; Adams, B; Huang, C

    2003-05-01

    When certain phytopathogenic fungi contact plant surfaces, specialized infection structures (appressoria) are produced that facilitate penetration of the plant external barrier; the cuticle. Recognition of this hydrophobic host surface must be sensed by the fungus, initiating the appropriate signaling pathway or pathways for pathogenic development. Using polymerase chain reaction and primers designed from mammalian protein kinase C sequences (PKC), we have isolated, cloned, and characterized a protein kinase from Colletotrichum trifolii, causal agent of alfalfa anthracnose. Though sequence analysis indicated conserved sequences in mammalian PKC genes, we were unable to induce activity of the fungal protein using known activators of PKC. Instead, we show that the C. trifolii gene, designated LIPK (lipid-induced protein kinase) is induced specifically by purified plant cutin or long-chain fatty acids which are monomeric constituents of cutin. PKC inhibitors prevented appressorium formation and, to a lesser extent, spore germination. Overexpression of LIPK resulted in multiple, abnormally shaped appressoria. Gene replacement of lipk yielded strains which were unable to develop appressoria and were unable to infect intact host plant tissue. However, these mutants were able to colonize host tissue following artificial wounding, resulting in typical anthracnose lesions. Taken together, these data indicate a central role in triggering infection structure formation for this protein kinase, which is induced specifically by components of the plant cuticle. Thus, the fungus is able to sense and use host surface chemistry to induce a protein kinase-mediated pathway that is required for pathogenic development.

  11. Evaluation of solar sludge drying alternatives by costs and area requirements.

    PubMed

    Kurt, Mayıs; Aksoy, Ayşegül; Sanin, F Dilek

    2015-10-01

    Thermal drying is a common method to reach above 90% dry solids content (DS) in sludge. However, thermal drying requires high amount of energy and can be expensive. A greenhouse solar dryer (GSD) can be a cost-effective substitute if the drying performance, which is typically 70% DS, can be increased by additional heat. In this study feasibility of GSD supported with solar panels is evaluated as an alternative to thermal dryers to reach 90% DS. Evaluations are based on capital and O&M costs as well as area requirements for 37 wastewater treatment plants (WWTPs) with various sludge production rates. Costs for the supported GSD system are compared to that of conventional and co-generation thermal dryers. To calculate the optimal costs associated with the drying system, an optimization model was developed in which area limitation was a constraint. Results showed that total cost was minimum when the DS in the GSD (DS(m,i)) was equal to the maximum attainable value (70% DS). On average, 58% of the total cost and 38% of total required area were associated with the GSD. Variations in costs for 37 WWTPs were due to differences in initial DS (DS(i,i)) and sludge production rates, indicating the importance of dewatering to lower drying costs. For large plants, GSD supported with solar panels provided savings in total costs especially in long term when compared to conventional and co-generation thermal dryers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biological Invasion Influences the Outcome of Plant-Soil Feedback in the Invasive Plant Species from the Brazilian Semi-arid.

    PubMed

    de Souza, Tancredo Augusto Feitosa; de Andrade, Leonaldo Alves; Freitas, Helena; da Silva Sandim, Aline

    2017-05-30

    Plant-soil feedback is recognized as the mutual interaction between plants and soil microorganisms, but its role on the biological invasion of the Brazilian tropical seasonal dry forest by invasive plants still remains unclear. Here, we analyzed and compared the arbuscular mycorrhizal fungi (AMF) communities and soil characteristics from the root zone of invasive and native plants, and tested how these AMF communities affect the development of four invasive plant species (Cryptostegia madagascariensis, Parkinsonia aculeata, Prosopis juliflora, and Sesbania virgata). Our field sampling revealed that AMF diversity and frequency of the Order Diversisporales were positively correlated with the root zone of the native plants, whereas AMF dominance and frequency of the Order Glomerales were positively correlated with the root zone of invasive plants. We grew the invasive plants in soil inoculated with AMF species from the root zone of invasive (I changed ) and native (I unaltered ) plant species. We also performed a third treatment with sterilized soil inoculum (control). We examined the effects of these three AMF inoculums on plant dry biomass, root colonization, plant phosphorous concentration, and plant responsiveness to mycorrhizas. We found that I unaltered and I changed promoted the growth of all invasive plants and led to a higher plant dry biomass, mycorrhizal colonization, and P uptake than control, but I changed showed better results on these variables than I unaltered . For plant responsiveness to mycorrhizas and fungal inoculum effect on plant P concentration, we found positive feedback between changed-AMF community (I changed ) and three of the studied invasive plants: C. madagascariensis, P. aculeata, and S. virgata.

  13. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor

    PubMed Central

    Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin

    2014-01-01

    In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin. PMID:24729702

  14. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor.

    PubMed

    Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin

    2014-01-01

    In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin.

  15. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature.

    PubMed

    Ohm, Tae-In; Chae, Jong-Seong; Lim, Kwang-Soo; Moon, Seung-Hyun

    2010-06-15

    We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 degrees C, 150 degrees C, and 160 degrees C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 degrees C. At 150 degrees C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 degrees C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil>waste engine oil>B-C heavy oil>waste cooking oil. The duration at 150 degrees C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Obtaining a Dry Extract from the Mikania laevigata Leaves with Potential for Antiulcer Activity

    PubMed Central

    Pinto, Mariana Viana; Oliveira, Ezequiane Machado; Martins, Jose Luiz Rodrigues; de Paula, Jose Realino; Costa, Elson Alves; da Conceição, Edemilson Cardoso; Bara, Maria Teresa Freitas

    2017-01-01

    Background: Mikania laevigata leaves are commonly used in Brazil as a medicinal plant. Objective: To obtain hydroalcoholic dried extract by nebulization and evaluate its antiulcerogenic potential. Materials and Methods: Plant material and hydroalcoholic extract were processed and analyzed for their physicochemical characteristics. A method using HPLC was validated to quantify coumarin and o-coumaric acid. Hydroalcoholic extract was spray dried and the powder obtained was characterized in terms of its physicochemical parameters and potential for antiulcerogenic activity. Results: The analytical method proved to be selective, linear, precise, accurate, sensitive, and robust. M. laevigata spray dried extract was obtained using colloidal silicon dioxide as adjuvant and was shown to possess 1.83 ± 0.004% coumarin and 0.80 ± 0.012% o-coumaric acid. It showed significant antiulcer activity in a model of an indomethacin-induced gastric lesion in mice and also produced a gastroprotective effect. Conclusion: This dried extract from M. laevigata could be a promising intermediate phytopharmaceutical product. SUMMARY Research and development of standardized dried extract of Mikania laevigata leaves obtained through spray drying and the production process was monitored by the chemical profile, physicochemical properties and potential for anti-ulcerogenic activity. Abbreviations used: DE: M. laevigata spray dried extract, HE: hydroalcoholic extract. PMID:28216886

  17. Anti-inflammatory activity of dried flower extracts of Aegle marmelos in Wistar rats.

    PubMed

    Kumari, K D K P; Weerakoon, T C S; Handunnetti, S M; Samarasinghe, K; Suresh, T S

    2014-02-12

    Almost all part of the plant Aegle marmelos (Bael tree) has been used in the traditional medicine systems of Asian countries to treat various diseases over many centuries. The water extract of the dried flowers of Aegle marmelos is a commonly used beverage among Sri Lankan population in rural areas. Although extensive investigations done on many parts of the plant there are no experimental data available on the extracts of flowers. Anti-inflammatory effect of the water extract of dried flowers of Aegle marmelos (WEAM) was evaluated in the present study. The anti-inflammatory effect of the WEAM was evaluated by inhibition of the rat paw oedema, induced by carrageenan. The mechanism of the anti-inflammatory effect was assessed by the inhibition of production of nitric oxide (NO) by rat peritoneal cells, infiltration of rat peritoneal cells, anti-histamine effect, membrane stabilization activity, the antioxidant capacity and inhibition of lipid peroxidation by the WEAM. The maximum percentage inhibition of paw oedema was exhibited by the dose of 200 mg/kg at 2 h. The WEAM showed a significant increment of rat peritoneal cell infiltration, inhibition of NO production by rat peritoneal cells and inhibition of wheal formation on the skin of the rat after injection of histamine. The WEAM protected the erythrocyte membrane from heat-induced lysis in a dose-dependent manner and showed a significant anti-oxidant effect and lipid peroxidation inhibition activity. The WEAM possesses significant anti-inflammatory effect by multiple mechanisms in Wistar rats. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Powder compression mechanics of spray-dried lactose nanocomposites.

    PubMed

    Hellrup, Joel; Nordström, Josefina; Mahlin, Denny

    2017-02-25

    The aim of this study was to investigate the structural impact of the nanofiller incorporation on the powder compression mechanics of spray-dried lactose. The lactose was co-spray-dried with three different nanofillers, that is, cellulose nanocrystals, sodium montmorillonite and fumed silica, which led to lower micron-sized nanocomposite particles with varying structure and morphology. The powder compression mechanics of the nanocomposites and physical mixtures of the neat spray-dried components were evaluated by a rational evaluation method with compression analysis as a tool, using the Kawakita equation and the Shapiro-Konopicky-Heckel equation. Particle rearrangement dominated the initial compression profiles due to the small particle size of the materials. The strong contribution of particle rearrangement in the materials with fumed silica continued throughout the whole compression profile, which prohibited an in-depth material characterization. However, the lactose/cellulose nanocrystals and the lactose/sodium montmorillonite nanocomposites demonstrated high yield pressure compared with the physical mixtures indicating increased particle hardness upon composite formation. This increase has likely to do with a reinforcement of the nanocomposite particles by skeleton formation of the nanoparticles. In summary, the rational evaluation of mechanical properties done by applying powder compression analysis proved to be a valuable tool for mechanical evaluation for this type of spray-dried composite materials, unless they demonstrate particle rearrangement throughout the whole compression profile. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The distribution of dry matter growth between shoot and roots in loblolly pine

    Treesearch

    F. Thomas Ledig; F. Herbert Bormann; Karl F. Wenger

    1970-01-01

    The allometric relationship, log (y) = a + k•log (x)-where x is one plant organ (e g., dry weight of roots) and y is another (e.g., dry weight of shoot)-was used to study the relative distribution of growth within loblolly pine seedlings. The relative...

  20. Photoperiod and growing degree days effect on dry matter partitioning in Jerusalem artichoke

    USDA-ARS?s Scientific Manuscript database

    The effect of photoperiod and growing degree days (GDD) on dry matter and dry partitioning in Jerusalem artichoke was investigated during 2008-09 and 2009-10. Three Jerusalem artichoke genotypes (CN-52867, JA-89 and HEL-65) were planted in 15 day-intervals between with thirteen different dates (Sep...

  1. Structural integrity and developmental potential of spermatozoa following microwave-assisted drying in the domestic cat model.

    PubMed

    Patrick, Jennifer L; Elliott, Gloria D; Comizzoli, Pierre

    2017-11-01

    Characterizing the resilience of mammalian cells to non-physiological conditions is necessary to develop preservation and long-term storage strategies at low or ambient temperatures. Using the domestic cat model, the objective of the study was to characterize structural integrity (morphology and DNA damage) as well as functional properties (sperm aster formation and embryo formation after sperm injection) of spermatozoa after microwave-assisted drying to a moisture content compatible with storage in a glassy state at supra-zero temperatures. In Experiment 1, cat epididymal spermatozoa were porated with hemolysin and dried (using a commercial microwave oven set to 20% power) in the presence of trehalose for up to 50 min in a low humidity environment (11%) before measuring moisture content and sample temperature. In Experiment 2, morphology and DNA integrity were evaluated in sperm dried for up to 30 min (using the same method as above) versus fresh spermatozoa. In Experiment 3, the functionality of sperm dried for 30 min versus fresh sperm cells was evaluated after injection into oocytes based on sperm aster formation (5 h post-injection) and embryo development in vitro over 7 days. Moisture contents compatible with dry state storage were reached after 30 min of microwave-assisted drying. After rehydration, sperm morphology was not affected and the percentages of cells with damaged DNA (∼6.5%) was similar to the fresh controls. Sperm aster diameters appeared to be generally smaller for dried-rehydrated cells compared to the fresh controls. This observation was consistent with a lower proportion of blastocyst formation after injection with dried spermatozoa (6.5%) compared to fresh spermatozoa (15%). However, the blastocyst quality based on the total blastomere number was not affected by the sperm treatment. This is the first and encouraging report in any species so far demonstrating that spermatozoa can be dried using microwaves without causing irreversible

  2. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant.

    PubMed

    Yang, Junxing; Liu, Zhiyan; Wan, Xiaoming; Zheng, Guodi; Yang, Jun; Zhang, Hanzhi; Guo, Lin; Wang, Xuedong; Zhou, Xiaoyong; Guo, Qingjun; Xu, Ruixiang; Zhou, Guangdong; Peters, Marc; Zhu, Guangxu; Wei, Rongfei; Tian, Liyan; Han, Xiaokun

    2016-06-01

    Human activities have resulted in lead and sulfur accumulation in paddy soils in parts of southern China. A combined soil-sand pot experiment was conducted to investigate the influence of S supply on iron plaque formation and Pb accumulation in rice (Oryza sativa L.) under two Pb levels (0 and 600 mg kg(-1)), combined with four S concentrations (0, 30, 60, and 120 mg kg(-1)). Results showed that S supply significantly decreased Pb accumulation in straw and grains of rice. This result may be attributed to the enhancement of Fe plaque formation, decrease of Pb availability in soil, and increase of reduced glutathione (GSH) in rice leaves. Moderate S supply (30 mg kg(-1)) significantly increased Fe plaque formation on the root surface and in the rhizosphere, whereas excessive S supply (60 and 120 mg kg(-1)) significantly decreased the amounts of iron plaque on the root surface. Sulfur supply significantly enhanced the GSH contents in leaves of rice plants under Pb treatment. With excessive S application, the rice root acted as a more effective barrier to Pb accumulation compared with iron plaque. Excessive S supply may result in a higher monosulfide toxicity and decreased iron plaque formation on the root surface during flooded conditions. However, excessive S supply could effectively decrease Pb availability in soils and reduce Pb accumulation in rice plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. (Non) formation of methanol by direct hydrogenation of formate on copper catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yong; Mims, Charles A.; Disselkamp, Robert S.

    2010-10-14

    We have attempted to hydrogenate adsorbed formate species on copper catalysts to probe the importance of this postulated mechanistic step in methanol synthesis. Surface formate coverages up to 0.25 were produced at temperatures between 413K and 453K on supported (Cu/SiO2) copper and unsupported copper catalysts. The adlayers were produced by various methods including (1) steady state catalytic conditions in CO2-H2 (3:1, 6 bar) atmospheres, and (2) by exposure of the catalysts to formic acid. As reported in earlier work, the catalytic surface at steady state contains bidentate formate species with coverages up to saturation levels of ~ 0.25 at themore » low temperatures of this study. The reactivity of these formate adlayers was investigated at relevant reaction temperatures in atmospheres containing up to 6 bar H2 partial pressure by simultaneous mass spectrometry (MS) and infrared (IR) spectroscopy measurements. The yield of methanol during the attempted hydrogenation (“titration”) of these adlayers was insignificant (<0.2 mol % of the formate adlayer) even in dry hydrogen partial pressures up to 6 bar. Hydrogen titration of formate species produced from formic acid also failed to produce significant quantities of methanol, and attempted titration in gases consisting of CO-hydrogen mixtures or dry CO2 were also unproductive. The formate decomposition kinetics, measured by IR, were also unaffected by these changes in the gas composition. Similar experiments on unsupported copper also failed to show any methanol. From these results, we conclude that methanol synthesis on copper cannot result from the direct hydrogenation of (bidentate) formate species in simple steps involving adsorbed H species alone. Furthermore, experiments performed on both supported (Cu/SiO2) and unsupported copper catalysts gave similar results implying that the methanol synthesis reaction mechanism only involves metal surface chemistry. Pre-exposure of the bidentate formate adlayer to

  4. Thermal characterization and syngas production from the pyrolysis of biophysical dried and traditional thermal dried sewage sludge.

    PubMed

    Han, Rong; Zhao, Chenxi; Liu, Jinwen; Chen, Aixia; Wang, Hongtao

    2015-12-01

    A novel method for energy recycling from sewage sludge was developed through biophysical drying coupled with fast pyrolysis. Thermal decomposition properties of biophysical-dried sludge (BDS) and thermal-dried sludge (TDS) were characterized through thermogravimetric (TG) coupled with mass spectrometry (MS) analysis. BDS exhibited typical peaks in each differential thermogravimetric (DTG) region and presented slower mass loss rates in H, C, and L regions (180-550°C) but remarkable weight loss in region I (>550°C) compared with TDS. The charring process centered at region I, was responsible for the prominent H2 emission from BDS. The pseudo multicomponent model showed that the Em values of BDS and TDS were 48.84 and 37.75 kJ/mol, respectively. Furthermore, fast pyrolysis of BDS was proven to facilitate syngas and char formation more than TDS. For the yielded syngas, the thermal conversion of BDS was characterized by high H2 and CH4 content beyond 700°C. Copyright © 2015. Published by Elsevier Ltd.

  5. Long-term residual dry matter mapping for monitoring California hardwood rangelands

    Treesearch

    Norman R. Harris; William E. Frost; Neil K. McDougald; Melvin R. George; Donald L. Nielsen

    2002-01-01

    Long-term residual dry matter mapping on the San Joaquin Experimental Range provides a working example of this monitoring technique for grazing management and research. Residual dry matter (RDM) is the amount of old plant material left on the ground at the beginning of a new growing season. RDM indicates the previous season’s use and can be used to describe the health...

  6. Plant sexual systems and a review of the breeding system studies in the Caatinga, a Brazilian tropical dry forest.

    PubMed

    Machado, Isabel Cristina; Lopes, Ariadna Valentina; Sazima, Marlies

    2006-02-01

    The reproductive biology of a community can provide answers to questions related to the maintenance of the intraspecific pollen flow and reproductive success of populations, sharing and competition for pollinators and also questions on conservation of natural habitats affected by fragmentation processes. This work presents, for the first time, data on the occurrence and frequency of plant sexual systems for Caatinga communities, and a review of the breeding system studies of Caatinga species. The sexual systems of 147 species from 34 families and 91 genera occurring in three Caatinga areas in north-eastern Brazil were analysed and compared with worldwide studies focusing on reproductive biology of different tropical communities. The frequency of hermaphrodite species was 83.0 % (122 species), seven of these (or 4.8 % of the total) being heterostylous. Monoecy occurred in 9.5 % (14) of the species, and andromonoecy in 4.8 % (seven). Only 2.7 % (four) of the species were dioecious. A high percentage of hermaphrodite species was expected and has been reported for other tropical ecosystems. With respect to the breeding system studies with species of the Caatinga, the authors' data for 21 species and an additional 18 species studied by others (n = 39) revealed a high percentage (61.5 %) of obligatory self-incompatibility. Agamospermy was not recorded among the Caatinga studied species. The plant sexual systems in the Caatinga, despite the semi-arid climate, are similar to other tropical dry and wet forest communities, including those with high rainfall levels, except for the much lower percentage of dioecious species. The high frequency of self-incompatible species is similar to that reported for Savanna areas in Brazil, and also for dry (deciduous and semideciduous) and humid tropical forest communities.

  7. Plant Sexual Systems and a Review of the Breeding System Studies in the Caatinga, a Brazilian Tropical Dry Forest

    PubMed Central

    MACHADO, ISABEL CRISTINA; LOPES, ARIADNA VALENTINA; SAZIMA, MARLIES

    2006-01-01

    • Backgrounds and Aims The reproductive biology of a community can provide answers to questions related to the maintenance of the intraspecific pollen flow and reproductive success of populations, sharing and competition for pollinators and also questions on conservation of natural habitats affected by fragmentation processes. This work presents, for the first time, data on the occurrence and frequency of plant sexual systems for Caatinga communities, and a review of the breeding system studies of Caatinga species. • Methods The sexual systems of 147 species from 34 families and 91 genera occurring in three Caatinga areas in north-eastern Brazil were analysed and compared with worldwide studies focusing on reproductive biology of different tropical communities. • Key Results The frequency of hermaphrodite species was 83·0 % (122 species), seven of these (or 4·8 % of the total) being heterostylous. Monoecy occurred in 9·5 % (14) of the species, and andromonoecy in 4·8 % (seven). Only 2·7 % (four) of the species were dioecious. A high percentage of hermaphrodite species was expected and has been reported for other tropical ecosystems. With respect to the breeding system studies with species of the Caatinga, the authors' data for 21 species and an additional 18 species studied by others (n = 39) revealed a high percentage (61·5 %) of obligatory self-incompatibility. Agamospermy was not recorded among the Caatinga studied species. • Conclusions The plant sexual systems in the Caatinga, despite the semi-arid climate, are similar to other tropical dry and wet forest communities, including those with high rainfall levels, except for the much lower percentage of dioecious species. The high frequency of self-incompatible species is similar to that reported for Savanna areas in Brazil, and also for dry (deciduous and semideciduous) and humid tropical forest communities. PMID:16377654

  8. Production of Inhalation Phage Powders Using Spray Freeze Drying and Spray Drying Techniques for Treatment of Respiratory Infections.

    PubMed

    Leung, Sharon S Y; Parumasivam, Thaigarajan; Gao, Fiona G; Carrigy, Nicholas B; Vehring, Reinhard; Finlay, Warren H; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2016-06-01

    The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. A significant titer loss (~2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 10(4) pfu and SD-F2 = 11.0 ± 1.4 × 10(4) pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 10(4) pfu and SFD-F2 = 2.1 ± 0.3 × 10(4) pfu). Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2.

  9. [Indoor simulation on dew formation on plant leaves].

    PubMed

    Gao, Zhi-Yong; Wang, You-Ke; Wei, Xin-Guang; Liu, Shou-Yang; He, Zi-Li; Zhou, Yu-Hong

    2014-03-01

    Dew forming on plant leaves through water condensation plays a significant ecological role in arid and semi-arid areas as an ignorable fraction of water resources. In this study, an artificial intelligent climate chamber and an automatic temperature-control system for leaves were implemented to regulate the ambient temperature, the leaf surface temperature and the leaf inclination for dew formation. The impact of leaf inclination, ambient temperature and dew point-leaf temperature depression on the rate and quantity of dew accumulation on leaf surface were analyzed. The results indicated that the accumulation rate and the maximum volume of dew on leaves decreased with increasing the leaf inclination while increased with the increment of dew point-leaf temperature depression, ambient temperature and relative humidity. Under the horizontal configuration, dew accumulated linearly on leaf surface over time until the maximum volume (0.80 mm) was reached. However, dew would fall down after reaching the maximum volume when the leaf inclination existed (45 degrees or 90 degrees), significantly slowing down the accumulative rate, and the zigzag pattern for the dynamic of dew accumulation appeared.

  10. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    PubMed

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Poorter, Lourens; Bongers, Frans

    2014-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest

  11. Functional Trait Strategies of Trees in Dry and Wet Tropical Forests Are Similar but Differ in Their Consequences for Succession

    PubMed Central

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A.; Poorter, Lourens; Bongers, Frans

    2015-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a ‘Community-Weighted Mean’ plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest

  12. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender.

    PubMed

    Schwartz, Z; Somers, A; Mellonig, J T; Carnes, D L; Dean, D D; Cochran, D L; Boyan, B D

    1998-04-01

    Demineralized freeze-dried bone allografts (DFDBA) have been used extensively in periodontal therapy. DFDBA is used because it contains bone morphogenetic protein (BMP), which induces new bone formation during the healing process. Most commercial bone banks do not verify the presence or activity of BMP in DFDBA nor the ability of DFDBA to induce new bone. Recently, we showed that different bone bank preparations of DFDBA, even from the same bank, varied considerably in their ability to induce new bone, suggesting inherent differences in the quality of the material. Therefore, we examined whether donor age or gender contributed to the variability seen with these preparations. Twenty-seven batches of DFDBA from different donors were donated by one bone bank which had been shown previously to supply DFDBA that was consistently able to induce new bone formation. Each batch was implanted bilaterally in the thigh muscle of nude mice. After 56 days, the implants were excised and examined by light microscopy and histomorphometry. Seventy percent of the preparations tested induced new bone formation. Most of these preparations produced ossicles containing cortical bone surrounding bone marrow-like tissue. The ability to induce bone appears to be age-dependent, with DFDBA from older donors being less likely to have strong bone-inducing activity. By contrast, no difference in ability to induce new bone was noticed between male or female donors. The results of this study confirm that commercial preparations of DFDBA differ in their ability to induce new bone formation. In fact, some of the batches had no activity at all. The ability of DFDBA to induce new bone formation is suggested to be age-dependent, but not gender-dependent by our study. These results indicate that commercial bone banks need to verify the ability of DFDBA to induce new bone formation and should reconsider the advisability of using bone from older donors.

  13. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    PubMed

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  14. Trehalose and sorbitol alter the kinetic pattern of inactivation of glutamate dehydrogenase during drying in levitated microdroplets.

    PubMed

    Lorenzen, Elke; Lee, Geoffrey

    2013-12-01

    A single-droplet acoustic levitator was used to determine the drying rate and the kinetics of inactivation of glutamate dehydrogenase in the presence of added trehalose or sorbitol. The solution was also spray dried under the same process condition of drying gas temperature on a bench-top machine. Both trehalose and sorbitol delay the point of onset of enzyme inactivation which lies after the critical point of drying. Both carbohydrates also reduce the apparent rate constant of inactivation calculated during the subsequent inactivation phase. The carbohydrates stabilise, therefore, the enzyme during droplet drying and particle formation mainly during the falling rate drying period. There is no difference between the stabilising effects of the two carbohydrates when examined as levitated single droplets. This suggests the importance of water replacement as a stabilising mechanism in the levitated droplets/particles. On spray drying, the trehalose stabilises the enzyme better than does the sorbitol at a drying gas (outlet) temperature of 60°C. This suggests glass formation with the trehalose but not the sorbitol during the very rapid drying process of small-atomised droplets in the spray dryer. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. A study of inter-particle bonds in dry bauxite waste resulting in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Wagh, Arun S.; Thompson, Bentley

    1988-02-01

    Bauxite and Alumina production are one of the main activities of several third world countries such as Jamaica, Brazil, India, Guinea, eastern European countries such as Hungary and Rumania and advanced countries such as Australia, West Germany, Japan and the United States. The mining operations lead to dust pollution, but the refining of bauxite to alumina yield large amounts of highly caustic sludge waste, called "Red Mud". Millions of tons of the waste produced in every country are stored in containment dams or natural valleys. This leads to ground water pollution, destruction of plant and bird life and is hazardous to human settlement in earthquake prone regions like Jamaica. As a result several companies have been looking into dry mud stacking which involves thickening the mud in the refining plants and sprying it on the slopes to sun dry it. Typically it involves a drying field of about two hundred acres, which could act as a potential source of caustic dust. In Jamaica one company has started disposing of the mud in this way. The aerosol formation from such areas depends mainly on the integrity of the top dry layers. Presently this is done by studying the approximate parameters such as the friability of the mud. However, following the recent advances in powder technology it has been possible for us to develop an instrument to study the average interparticle forces between the red mud particles. The instrument is based on the principle of a tensometer and a split cell is used to load specimens. A load cell is used to measure the force and a chart recorder is used for plotting separation and the force. The present study reports elemental composition of the dust and its health hazards. It also reports the physical measurement of the average interparticle force as a function of their separation in the Jamaican mud. The effect of ultraviolet radiation on the strength of the material is studied to see the effect of sun-drying of the waste. The five-fold increase

  16. Jasmonates trigger prey-induced formation of 'outer stomach' in carnivorous sundew plants.

    PubMed

    Nakamura, Yoko; Reichelt, Michael; Mayer, Veronika E; Mithöfer, Axel

    2013-05-22

    It has been widely accepted that the growth-related phytohormone auxin is the endogenous signal that initiates bending movements of plant organs. In 1875, Charles Darwin described how the bending movement of leaves in carnivorous sundew species formed an 'outer stomach' that allowed the plants to enclose and digest captured insect prey. About 100 years later, auxin was suggested to be the factor responsible for this movement. We report that prey capture induces both leaf bending and the accumulation of defence-related jasmonate phytohormones. In Drosera capensis fed with fruitflies, within 3 h after prey capture and simultaneous with leaf movement, we detected an increase in jasmonic acid and its isoleucine conjugate. This accumulation was spatially restricted to the bending segment of the leaves. The application of jasmonates alone was sufficient to trigger leaf bending. Only living fruitflies or the body fluids of crushed fruitflies induced leaf curvature; neither dead flies nor mechanical treatment had any effect. Our findings strongly suggest that the formation of the 'outer stomach' in Drosera is a chemonastic movement that is triggered by accumulation of endogenous jasmonates. These results suggest that in carnivorous sundew plants the jasmonate cascade might have been adapted to facilitate carnivory rather than to defend against herbivores.

  17. Plant hydraulic responses to long-term dry season nitrogen deposition alter drought tolerance in a Mediterranean-type ecosystem.

    PubMed

    Pivovaroff, Alexandria L; Santiago, Louis S; Vourlitis, George L; Grantz, David A; Allen, Michael F

    2016-07-01

    Anthropogenic nitrogen (N) deposition represents a significant N input for many terrestrial ecosystems. N deposition can affect plants on scales ranging from photosynthesis to community composition, yet few studies have investigated how changes in N availability affect plant water relations. We tested the effects of N addition on plant water relations, hydraulic traits, functional traits, gas exchange, and leaf chemistry in a semi-arid ecosystem in Southern California using long-term experimental plots fertilized with N for over a decade. The dominant species were Artemisia california and Salvia mellifera at Santa Margarita Ecological Reserve and Adenostoma fasciculatum and Ceanothus greggii at Sky Oaks Field Station. All species, except Ceanothus, showed increased leaf N concentration, decreased foliar carbon to N ratio, and increased foliar N isotopic composition with fertilization, indicating that added N was taken up by study species, yet each species had a differing physiological response to long-term N addition. Dry season predawn water potentials were less negative with N addition for all species except Adenostoma, but there were no differences in midday water potentials, or wet season water potentials. Artemisia was particularly responsive, as N addition increased stem hydraulic conductivity, stomatal conductance, and leaf carbon isotopic composition, and decreased wood density. The alteration of water relations and drought resistance parameters with N addition in Artemisia, as well as Adenostoma, Ceanothus, and Salvia, indicate that N deposition can affect the ability of native Southern California shrubs to respond to drought.

  18. Water-Hydrogel Binding Affinity Modulates Freeze-Drying-Induced Micropore Architecture and Skeletal Myotube Formation.

    PubMed

    Rich, Max H; Lee, Min Kyung; Marshall, Nicholas; Clay, Nicholas; Chen, Jinrong; Mahmassani, Ziad; Boppart, Marni; Kong, Hyunjoon

    2015-08-10

    Freeze-dried hydrogels are increasingly used to create 3D interconnected micropores that facilitate biomolecular and cellular transports. However, freeze-drying is often plagued by variance in micropore architecture based on polymer choice. We hypothesized that water-polymer binding affinity plays a significant role in sizes and numbers of micropores formed through freeze-drying, influencing cell-derived tissue quality. Poly(ethylene glycol)diacrylate (PEGDA) hydrogels with alginate methacrylate (AM) were used due to AM's higher binding affinity for water than PEGDA. PEGDA-AM hydrogels with larger AM concentrations resulted in larger sizes and numbers of micropores than pure PEGDA hydrogels, attributed to the increased mass of water binding to the PEGDA-AM gel. Skeletal myoblasts loaded in microporous PEGDA-AM hydrogels were active to produce 3D muscle-like tissue, while those loaded in pure PEGDA gels were localized on the gel surface. We propose that this study will be broadly useful in designing and improving the performance of various microporous gels.

  19. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION

    EPA Science Inventory

    A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...

  20. Vitamin B12-Containing Plant Food Sources for Vegetarians

    PubMed Central

    Watanabe, Fumio; Yabuta, Yukinori; Bito, Tomohiro; Teng, Fei

    2014-01-01

    The usual dietary sources of Vitamin B12 are animal-derived foods, although a few plant-based foods contain substantial amounts of Vitamin B12. To prevent Vitamin B12 deficiency in high-risk populations such as vegetarians, it is necessary to identify plant-derived foods that contain high levels of Vitamin B12. A survey of naturally occurring plant-derived food sources with high Vitamin B12 contents suggested that dried purple laver (nori) is the most suitable Vitamin B12 source presently available for vegetarians. Furthermore, dried purple laver also contains high levels of other nutrients that are lacking in vegetarian diets, such as iron and n-3 polyunsaturated fatty acids. Dried purple laver is a natural plant product and it is suitable for most people in various vegetarian groups. PMID:24803097

  1. Impacts of artificial reservoirs on floristic diversity and plant functional traits in dry forests after 15 years.

    PubMed

    Lopes, S F; Vale, V S; Prado Júnior, J A; Schiavini, I

    2015-08-01

    Dams are of paramount importance to a wide variety of human services and many of their environmental problems are known; however, there are few studies in the world addressing the impacts on the native vegetation previously distant from water bodies which became close to the lakeshore created by a dam. Thus, this paper aims to analyze the responses of a dry forest to a dam after 15 years. For this, 20 random samples of 40 trees were made, 10 close to the lakeshore and 10 distant from it, by applying the central square point method. Close to the dam, we found higher values regarding basal area, number of trees, number of evergreen trees, and zoochoric syndrome, but there were lower values of Shannon's diversity index. Therefore, the impacts of the dam after 15 years caused several changes to the tree community. The greater basal area close to the dam suggests that water deficit during the dry season was decreased and plants have thicker trunks. On the other hand, this sector had much more zoochoric syndrome and a larger number of evergreen trees than plots which are distant from water, suggesting changes with regard to the community's ecological functions. Furthermore, structural floristic data shows that the sector close to the dam is less similar to other deciduous forests within the same geographical region than the sector distant from water, thus providing evidence of the impacts of dams on the tree community.

  2. [Microcrystalline cellulose and their flow -- morphological properties modifications as an effective excpients in tablet formulation technology containing lattice established API and also dry plant extract].

    PubMed

    Zgoda, Marian Mikołaj; Nachajski, Michał Jakub; Kołodziejczyk, Michał Krzysztof

    2009-01-01

    The production technology of powder cellulose (Arbocel) and microcrystaline cellulose (Vivapur) and their application in the composition of direct compression tablet mass was provided. The function of silicified microcrystaline cellulose type Prosolv in the direct compression process of dry plant extract was discussed. An analysis of the chemical structure of cellulose fiber (Vitacel) enabled determining its properties and applications in the manufacture of diet supplement, pharmaceutical and food products.

  3. Development of an electromechanical principle for wet and dry milling

    NASA Astrophysics Data System (ADS)

    Halbedel, Bernd; Kazak, Oleg

    2018-05-01

    The paper presents a novel electromechanical principle for wet and dry milling of different materials, in which the milling beads are moved under a time- and local-variable magnetic field. A possibility to optimize the milling process in such a milling machine by simulation of the vector gradient distribution of the electromagnetic field in the process room is presented. The mathematical model and simulation methods based on standard software packages are worked out. The results of numerical simulations and experimental measurements of the electromagnetic field in the working chamber of a developed and manufactured laboratory plant correlate well with each other. Using the obtained operating parameters, dry milling experiments with crushed cement clinker and wet milling experiments of organic agents in the laboratory plant are performed and the results are discussed here.

  4. Controlling the physical form of mannitol in freeze-dried systems.

    PubMed

    Mehta, Mehak; Bhardwaj, Sunny P; Suryanarayanan, Raj

    2013-10-01

    A potential drawback with the use of mannitol as a bulking agent is its existence as mannitol hemihydrate (MHH; C₆H₁₄O₆·0.5H₂O) in the lyophile. Once formed during freeze-drying, MHH dehydration may require secondary drying under aggressive conditions which can be detrimental to the stability of thermolabile components. If MHH is retained in the lyophile, the water released by MHH dehydration during storage has the potential to cause product instability. We systematically identified the conditions under which anhydrous mannitol and MHH crystallized in frozen systems with the goal of preventing MHH formation during freeze-drying. When mannitol solutions were cooled, the temperature of solute crystallization was the determinant of the physical form of mannitol. Based on low temperature X-ray diffractometry (using both laboratory and synchrotron sources), MHH formation was observed when solute crystallization occurred at temperatures ≤ -20 °C, while anhydrous mannitol crystallized at temperatures ≤ -10 °C. The transition temperature (anhydrate - MHH) appears to be ∼-15 °C. The use of a freeze-dryer with controlled ice nucleation technology enabled anhydrous mannitol crystallization at ∼-5 °C. Thus, ice crystallization followed by annealing at temperatures ≤ -10 °C can be an effective strategy to prevent MHH formation. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Provisioning of bioavailable carbon between the wet and dry phases in a semi-arid floodplain.

    PubMed

    Baldwin, Darren S; Rees, Gavin N; Wilson, Jessica S; Colloff, Matthew J; Whitworth, Kerry L; Pitman, Tara L; Wallace, Todd A

    2013-06-01

    Ecosystem functioning on arid and semi-arid floodplains may be described by two alternate traditional paradigms. The pulse-reserve model suggests that rainfall is the main driver of plant growth and subsequent carbon and energy reserve formation in the soil of arid and semi-arid regions. The flood pulse concept suggests that periodic flooding facilitates the two-way transfer of materials between a river and its adjacent floodplain, but focuses mainly on the period when the floodplain is inundated. We compared the effects of both rainfall and flooding on soil moisture and carbon in a semi-arid floodplain to determine the relative importance of each for soil moisture recharge and the generation of a bioavailable organic carbon reserve that can potentially be utilised during the dry phase. Flooding, not rainfall, made a substantial contribution to moisture in the soil profile. Furthermore, the growth of aquatic macrophytes during the wet phase produced at least an order of magnitude more organic material than rainfall-induced pulse-reserve responses during the dry phase, and remained as recognizable soil carbon for years following flood recession. These observations have led us to extend existing paradigms to encompass the reciprocal provisioning of carbon between the wet and dry phases on the floodplain, whereby, in addition to carbon fixed during the dry phase being important for driving biogeochemical transformations upon return of the next wet phase, aquatic macrophyte carbon fixed during the wet phase is recognized as an important source of energy for the dry phase. Reciprocal provisioning presents a conceptual framework on which to formulate questions about the resistance and ecosystem resilience of arid and semi-arid floodplains in the face of threats like climate change and alterations to flood regimes.

  6. The exopolysaccharide of Xylella fastidiosa is essential for biofilm formation, plant virulence, and vector transmission.

    PubMed

    Killiny, N; Martinez, R Hernandez; Dumenyo, C Korsi; Cooksey, D A; Almeida, R P P

    2013-09-01

    Exopolysaccharides (EPS) synthesized by plant-pathogenic bacteria are generally essential for virulence. The role of EPS produced by the vector-transmitted bacterium Xylella fastidiosa was investigated by knocking out two genes implicated in the EPS biosynthesis, gumD and gumH. Mutant strains were affected in growth characteristics in vitro, including adhesion to surfaces and biofilm formation. In addition, different assays were used to demonstrate that the mutant strains produced significantly less EPS compared with the wild type. Furthermore, gas chromatography-mass spectrometry showed that both mutant strains did not produce oligosaccharides. Biologically, the mutants were deficient in movement within plants, resulting in an avirulent phenotype. Additionally, mutant strains were affected in transmission by insects: they were very poorly transmitted by and retained within vectors. The gene expression profile indicated upregulation of genes implicated in cell-to-cell signaling and adhesins while downregulation in genes was required for within-plant movement in EPS-deficient strains. These results suggest an essential role for EPS in X. fastidiosa interactions with both plants and insects.

  7. Drying of polymer films: study of demixing phenomena

    NASA Astrophysics Data System (ADS)

    Fichot, Julie; Heyd, Rodolphe; Saboungi, Marie-Louise; Josserend, Christophe; Combard, Emilie; Tranchant, Jean Francois

    2011-03-01

    Understanding the mechanisms that control the stability of polymeric films is important in beauty care. We have prepared films starting from a water-soluble organic polymer, a preservative and water. We study the drying of these films as a function of several physicochemical parameters that control their interfaces such as temperature, humidity and the nature of the support. The viscoelastic properties of the solutions before spreading out are analyzed with a rheometer in order to adjust the temperature. The topography of the films is observed by optical microscopy and the evolution of the drying is determined with a precision gravimetric balance. The behavior of the films on a nanometric scale is followed by AFM. During the drying process, droplets appear on the surface of the film, made up of water surrounded by a shell of preservative. As the films dries, the water evaporates from the droplets and the preservative spreads on the surface of the film, leading to the formation of craters on the surface of the dried film. The dimensions and numbers of the craters depend strongly on the type and concentration of the preservative employed.

  8. Modelling Contribution of Biogenic VOCs to New Particle Formation in the Jülich Plant Atmosphere Chamber

    NASA Astrophysics Data System (ADS)

    Liao, L.; Boy, M.; Mogensen, D.; Mentel, T. F.; Kleist, E.; Kiendler-Scharr, A.; Tillman, R.; Kulmala, M. T.; Dal Maso, M.

    2012-12-01

    Biogenic VOCs are substantially emitted from vegetation to atmosphere. The oxidation of BVOCs by OH, O3, and NO3 in air generating less volatile compounds may lead to the formation and growth of secondary organic aerosol, and thus presents a link to the vegetation, aerosol, and climate interaction system (Kulmala et al, 2004). Studies including field observations, laboratory experiments and modelling have improved our understanding on the connection between BVOCs and new particle formation mechanism in some extent (see e.g. Tunved et al., 2006; Mentel et al., 2009). Nevertheless, the exact formation process still remains uncertain, especially from the perspective of BVOC contributions. The purpose of this work is using the MALTE aerosol dynamics and air chemistry box model to investigate aerosol formation from reactions of direct tree emitted VOCs in the presence of ozone, UV light and artificial solar light in an atmospheric simulation chamber. This model employs up to date air chemical reactions, especially the VOC chemistry, which may potentially allow us to estimate the contribution of BVOCs to secondary aerosol formation, and further to quantify the influence of terpenes to the formation rate of new particles. Experiments were conducted in the plant chamber facility at Forschungszentrum Jülich, Germany (Jülich Plant Aerosol Atmosphere Chamber, JPAC). The detail regarding to the chamber facility has been written elsewhere (Mentel et al., 2009). During the experiments, sulphuric acid was measured by CIMS. VOC mixing ratios were measured by two GC-MS systems and PTR-MS. An Airmodus Particle size magnifier coupled with a TSI CPC and a PH-CPC were used to count the total particle number concentrations with a detection limit close to the expected size of formation of fresh nanoCN. A SMPS measured the particle size distribution. Several other parameters including ozone, CO2, NO, Temperature, RH, and flow rates were also measured. MALTE is a modular model to predict

  9. A Rich Morphological Diversity of Biosaline Drying Patterns Is Generated by Different Bacterial Species, Different Salts and Concentrations: Astrobiological Implications

    NASA Astrophysics Data System (ADS)

    Gómez Gómez, José María; Medina, Jesús; Rull, Fernando

    2016-07-01

    Biosaline formations (BSFs) are complex self-organized biomineral patterns formed by "hibernating" bacteria as the biofilm that contains them dries out. They were initially described in drying biofilms of Escherichia coli cells + NaCl. Due to their intricate 3-D morphology and anhydrobiosis, these biomineralogical structures are of great interest in astrobiology. Here we report experimental data obtained with various alkali halide salts (NaF, NaCl, NaBr, LiCl, KCl, CsCl) on BSF formation with E. coli and Bacillus subtilis bacteria at two saline concentrations: 9 and 18 mg/mL. Our results indicate that, except for LiCl, which is inactive, all the salts assayed are active during BSF formation and capable of promoting the generation of distinctive drying patterns at each salt concentration. Remarkably, the BSFs produced by these two bacterial species produce characteristic architectural hallmarks as the BSF dries. The potential biogenicity of these biosaline drying patterns is studied, and the astrobiological implications of these findings are discussed.

  10. Amelioration of iron toxicity: A mechanism for aluminum-induced growth stimulation in tea plants.

    PubMed

    Hajiboland, Roghieh; Barceló, Juan; Poschenrieder, Charlotte; Tolrà, Roser

    2013-11-01

    Tea plants (Camellia sinensis) are well adapted to acid soils with high Al availability. These plants not only accumulate high leaf Al concentrations, but also respond to Al with growth stimulation. Decreased oxidative stress has been associated with this effect. Why tea plants not exposed to Al suffer from oxidative stress has not been clarified. In this study, hydroponically grown tea plants treated with 0 to 300 μM Al were analyzed for growth, Al and Fe accumulation, and Al distribution by means of morin and hematoxylin staining. Roots of control plants stained black with hematoxylin. This indicates the formation of a Fe-hematoxylin complex. Young leaves of controls accumulated more than 1000 mg Fe kg(-1) dry weight. This concentration is above the Fe-toxicity threshold in most species. Supply of Al stimulated growth and reduced Fe uptake and transport. These results indicate that Al-induced growth stimulation might be due to alleviation of a latent Fe toxicity occurring in tea plants without Al supply. © 2013.

  11. Nitrogen mineralization from anaerobically digested centrifuge cake and aged air-dried biosolids.

    PubMed

    Kumar, Kuldip; Hundal, Lakhwinder S; Cox, Albert E; Granato, Thomas

    2014-09-01

    This study was conducted to estimate nitrogen (N) mineralization of anaerobically digested centrifuge cake from the Stickney Water Reclamation Plant (SWRP) and Calumet Water Reclamation Plant (CWRP), lagoon-aged air-dried biosolids from the CWRP, and Milorganite at three rates of application (0, 12.5 and 25 Mg ha(-1)). The N mineralized varied among biosolids as follows: Milorganite (44%) > SWRP centrifuge cake (35%) > CWRP centrifuge cake (31%) > aged air-dried (13%). The N mineralized in the SWRP cake (32%) and CWRP aged air-dried biosolids (12%) determined from the 15N study were in agreement with the first study. The N mineralization value for centrifuge cake biosolids observed in our study is higher than the value given in the Part 503 rule and Illinois Part 391 guidelines. These results will be used to fine-tune biosolids application rate to match crop N demand without compromising yield while minimizing any adverse effect on the environment.

  12. A review on plant importance, biotechnological aspects, and cultivation challenges of jojoba plant.

    PubMed

    Al-Obaidi, Jameel R; Halabi, Mohammed Farouq; AlKhalifah, Nasser S; Asanar, Shanavaskhan; Al-Soqeer, Abdulrahman A; Attia, M F

    2017-08-24

    Jojoba is considered a promising oil crop and is cultivated for diverse purposes in many countries. The jojoba seed produces unique high-quality oil with a wide range of applications such as medical and industrial-related products. The plant also has potential value in combatting desertification and land degradation in dry and semi-dry areas. Although the plant is known for its high-temperature and high-salinity tolerance growth ability, issues such as its male-biased ratio, relatively late flowering and seed production time hamper the cultivation of this plant. The development of efficient biotechnological platforms for better cultivation and an improved production cycle is a necessity for farmers cultivating the plant. In the last 20 years, many efforts have been made for in vitro cultivation of jojoba by applying different molecular biology techniques. However, there is a lot of work to be done in order to reach satisfactory results that help to overcome cultivation problems. This review presents a historical overview, the medical and industrial importance of the jojoba plant, agronomy aspects and nutrient requirements for the plant's cultivation, and the role of recent biotechnology and molecular biology findings in jojoba research.

  13. Selenium accumulation by plants

    PubMed Central

    White, Philip J.

    2016-01-01

    Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg–1 dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg–1 dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg–1 dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated

  14. Selenium accumulation by plants.

    PubMed

    White, Philip J

    2016-02-01

    Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins

  15. Drying and decontamination of raw pistachios with sequential infrared drying, tempering and hot air drying.

    PubMed

    Venkitasamy, Chandrasekar; Brandl, Maria T; Wang, Bini; McHugh, Tara H; Zhang, Ruihong; Pan, Zhongli

    2017-04-04

    Pistachio nuts have been associated with outbreaks of foodborne disease and the industry has been impacted by numerous product recalls due to contamination with Salmonella enterica. The current hot air drying of pistachios has low energy efficiency and drying rates, and also does not guarantee the microbial safety of products. In the study described herein, dehulled and water-sorted pistachios with a moisture content (MC) of 38.14% (wet basis) were dried in a sequential infrared and hot air (SIRHA) drier to <9% MC. The decontamination efficacy was assessed by inoculating pistachios with Enterococcus faecium, a surrogate of Salmonella enterica used for quality control in the almond industry. Drying with IR alone saved 105min (34.4%) of drying time compared with hot air drying. SIRHA drying of pistachios for 2h with infrared (IR) heat followed by tempering at a product temperature of 70°C for 2h and then by hot air drying shortened the drying time by 40min (9.1%) compared with drying by hot air only. This SIRHA method also reduced the E. faecium cell population by 6.1-logCFU/g kernel and 5.41-logCFU/g shell of pistachios. The free fatty acid contents of SIRHA dried pistachios were on par with that of hot air dried samples. Despite significant differences in peroxide values (PV) of pistachio kernels dried with the SIRHA method compared with hot air drying at 70°C, the PV were within the permissible limit of 5Meq/kg for edible oils. Our findings demonstrate the efficacy of SIRHA drying in achieving simultaneous drying and decontamination of pistachios. Published by Elsevier B.V.

  16. Change of Bioactive Constituent in Clinacanthus nutans Leaves under Sun Drying

    NASA Astrophysics Data System (ADS)

    Abdullah, Sriyana; Aziz, Muhamad Faris Abdul

    2018-03-01

    Clinacanthus nutans (C. nutans) or locally known as belalai gajah is a folk medicine since ancient time. This research project was established to investigate the effects of under sun drying on the C. nutans bioactive constituent. The drying experiments were conducted using different drying surfaces i.e. perforated, black polythene and white polythene. The fresh and dried leaves were then extracted using a sonicator to evaluate its bioactive constituent. The total phenolic content (TPC) in the C. nutans extracts were determined using Follin Ciocalteu reagent method to represent the bioactive constituent. Drying over the white polythene surface showed the slowest reduction of moisture content as compared to the perforated polythene and black surfaces. Results also showed no significant effect of the drying surfaces on the TPC. However, the TPC in the dried leaves was significantly higher than in the fresh leaves. This may be due to the plant cells response to abiotic stress and the inhibition of oxidation enzymes. Therefore, drying C. nutanc leaves under sun light could be considered in order to preserve the concentration of phenolic compounds and for minimizing energy consumption.

  17. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    PubMed

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Investigations on N-nitrosopyrrolidine in dry-cured bacon.

    PubMed

    Fiddler, W; Pensabene, J W; Gates, R A; Foster, J M; Smith, W J

    1989-01-01

    Dry-cured or "country-style" bacon is a low volume specialty product typically made by small producers whose production practices vary widely. These practices include the direct application of dry-cure formulations containing varying concentrations of salt, sugar, flavoring agents, sodium nitrite, and sometimes sodium nitrate, and the use of lengthy curing and processing times. Because of the possibility of generating higher levels of N-nitrosopyrrolidine (NPYR) after frying in this product type compared with pump-cured bacon, an investigation was carried out on dry-cured bacon obtained from cooperating state or federally inspected establishments. Three different samples from each of the 16 plants were analyzed. Only one sample from each of 2 different producers exceeded the Food Safety and Inspection Service (FSIS) action level of 17 ppb NPYR, indicating that the majority of samples tested were in compliance. A significant correlation (P less than 0.01) was found between residual NaNO2 prior to frying and NPYR after frying. The elimination of added nitrate in the dry-cure formulations is recommended.

  19. Plant growth, biomass partitioning and soil carbon formation in response to altered lignin biosynthesis in Populus tremuloides

    Treesearch

    Jessica E. Hancock; Wendy M. Loya; Christian P. Giardina; Laigeng Li; Vincent L. Chiang; Kurt S. Pregitzer

    2007-01-01

    We conducted a glasshouse mesocosm study that combined 13C isotope techniques with wild-type and transgenic aspen (Populus tremuloides) in order to examine how altered lignin biosynthesis affects plant production and soil carbon formation. Our transgenic aspen lines expressed low stem lignin concentration but normal cellulose...

  20. Influence of curli expression on biofilm formation and attachment to plant surface by shiga toxigenic E. coli

    USDA-ARS?s Scientific Manuscript database

    Shiga-toxigenic Escherichia coli O157:H7 (STEC) outbreaks have been linked to consumption of fresh produce. Bacteria extracellular appendages, such as curli fibers and cellulose may play critical role in STEC biofilm formation and adherence to plant surface. We determined cellulose and curli product...

  1. Mechanisms of deterioration of nutrients. [freeze drying methods for space flight food

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1974-01-01

    Methods are reported by which freeze dried foods of improved quality will be produced. The applicability of theories of flavor retention has been demonstrated for a number of food polymers, both proteins and polysacchardies. Studies on the formation of structures during freeze drying have been continued for emulsified systems. Deterioration of organoleptic quality of freeze dried foods due to high temperature heating has been evaluated and improved procedures developed. The influence of water activity and high temperature on retention of model flavor materials and browning deterioration has been evaluated for model systems and food materials.

  2. Arrhenius activation energy of damage to catalase during spray-drying.

    PubMed

    Schaefer, Joachim; Lee, Geoffrey

    2015-07-15

    The inactivation of catalase during spray-drying over a range of outlet gas temperatures could be closely represented by the Arrhenius equation. From this an activation energy for damage to the catalase could be calculated. The close fit to Arrhenius suggests that the thermally-induced part of inactivation of the catalase during the complex drying and particle-formation processes takes place at constant temperature. These processes are rapid compared with the residence time of the powder in the collecting vessel of the cyclone where dried catalase is exposed to a constant temperature equal to approximately the drying gas outlet temperature. A lower activation energy after spray drying with the ultrasonic nozzle was found than with the 2-fluid nozzle under otherwise identical spray drying conditions. It is feasible that the ultrasonic nozzle when mounted in the lid of the spray dryer heats up toward the drying gas inlet temperature much more that the air-cooled 2-fluid nozzle. Calculation of the Arrhenius activation energy also showed how the stabilizing efficacy of trehalose and mannitol on the catalase varies in strength across the range of drying gas inlet and outlet temperatures examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Fuzzy Rule Suram for Wood Drying

    NASA Astrophysics Data System (ADS)

    Situmorang, Zakarias

    2017-12-01

    Implemented of fuzzy rule must used a look-up table as defuzzification analysis. Look-up table is the actuator plant to doing the value of fuzzification. Rule suram based of fuzzy logic with variables of weather is temperature ambient and humidity ambient, it implemented for wood drying process. The membership function of variable of state represented in error value and change error with typical map of triangle and map of trapezium. Result of analysis to reach 4 fuzzy rule in 81 conditions to control the output system can be constructed in a number of way of weather and conditions of air. It used to minimum of the consumption of electric energy by heater. One cycle of schedule drying is a serial of condition of chamber to process as use as a wood species.

  4. Patterns of Genetic Variation across Altitude in Three Plant Species of Semi-Dry Grasslands

    PubMed Central

    Hahn, Thomas; Kettle, Chris J.; Ghazoul, Jaboury; Frei, Esther R.; Matter, Philippe; Pluess, Andrea R.

    2012-01-01

    Background Environmental gradients caused by altitudinal gradients may affect genetic variation within and among plant populations and inbreeding within populations. Populations in the upper range periphery of a species may be important source populations for range shifts to higher altitude in response to climate change. In this study we investigate patterns of population genetic variation at upper peripheral and lower more central altitudes in three common plant species of semi-dry grasslands in montane landscapes. Methodology/Principal Findings In Briza media, Trifolium montanum and Ranunculus bulbosus genetic diversity, inbreeding and genetic relatedness of individuals within populations and genetic differentiation among populations was characterized using AFLP markers. Populations were sampled in the Swiss Alps at 1800 (upper periphery of the study organisms) and at 1200 m a.s.l. Genetic diversity was not affected by altitude and only in B. media inbreeding was greater at higher altitudes. Genetic differentiation was slightly greater among populations at higher altitudes in B. media and individuals within populations were more related to each other compared to individuals in lower altitude populations. A similar but less strong pattern of differentiation and relatedness was observed in T. montanum, while in R. bulbosus there was no effect of altitude. Estimations of population size and isolation of populations were similar, both at higher and lower altitudes. Conclusions/Significance Our results suggest that altitude does not affect genetic diversity in the grassland species under study. Genetic differentiation of populations increased only slightly at higher elevation, probably due to extensive (historic) gene flow among altitudes. Potentially pre-adapted genes might therefore spread easily across altitudes. Our study indicates that populations at the upper periphery are not genetically depauperate or isolated and thus may be important source populations for

  5. Quantification of the effects of architectural traits on dry mass production and light interception of tomato canopy under different temperature regimes using a dynamic functional–structural plant model

    PubMed Central

    Chen, Tsu-Wei; Nguyen, Thi My Nguyet; Kahlen, Katrin; Stützel, Hartmut

    2014-01-01

    There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional–structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length:width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is ‘ideal’ in a given environment. PMID:25183746

  6. The determination of optimum condition in water hyacinth drying process by mixed adsorption drying method and modified fly ash as an adsorbent

    NASA Astrophysics Data System (ADS)

    Saputra, Asep Handaya; Putri, Rizky Anggreini

    2017-05-01

    Water hyacinth is an aquatic weed that has a very fast growth which makes it becomes a problem to the ecosystem. On the other hand, water hyacinth has a high fiber content (up to 20% by weight) which makes it potential to become raw material for composites and textile industries. As an aquatic plant, water hyacinth has a high initial moisture content that reaches more than 90%. Meanwhile the moisture content of fiber as a raw material for composite and textile industry should not be more than 10% to maintain the good quality of the products. Mixed adsorption drying method is one of the innovative method that can replace conventional drying process. Fluidization method which has been commonly used in agricultural and pharmaceutical products drying, can be enhanced by combining it with the adsorption method as performed in this study. In mixed fluidization-adsorption drying method, fly ash as adsorbent and water hyacinth fiber were put together into the fluidization column where the drying air evaporate the moisture content in water hyacinth fiber. In addition, the adsorbent adsorb the moisture content in the drying air to make the moisture content of the drying air remain low. The drying process is performed in various temperature and composition of water hyacinth and adsorbent in order to obtain the optimum drying condition. In addition, the effect of fly ash pellet and fly ash powder to the drying process was also performed. The result shows that the higher temperature and the more amount of adsorbent results in the faster drying rate. Fly ash pellet shows a better adsorption since it has a smaller pore diameter and wider surface area. The optimum temperature obtained from this study is 60°C and the optimum ratio of water hyacinth and fly ash is 50:50.

  7. Determination of the ascorbic acid content of two medicinal plants in Nigeria.

    PubMed

    H A, Okeri; P O, Alonge

    2006-01-01

    The fresh and dried leaves of two edible plants, Oldenlandia corymbosa and Dissotis rotundifolia have been assayed for their ascorbic acid content. They were found to be rich sources of ascorbic acid (vitamin C) when compared with some common garden fruits and vegetables. Students' t-test statistical analysis using INSTAT.EXE program for the results (mean+/-SEM) shows that there was no significant difference for the fresh leaves of the individual plants and also there is no significant difference for the dried leaves (P=0.05). However, there was significant difference between ascorbic acid content of the fresh and dried leaves of the same plant, obviously indicating that the fresh leaves contain more ascorbic acid than the dried leaves.

  8. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  9. Pyridine metabolism in tea plants: salvage, conjugate formation and catabolism.

    PubMed

    Ashihara, Hiroshi; Deng, Wei-Wei

    2012-11-01

    Pyridine compounds, including nicotinic acid and nicotinamide, are key metabolites of both the salvage pathway for NAD and the biosynthesis of related secondary compounds. We examined the in situ metabolic fate of [carbonyl-(14)C]nicotinamide, [2-(14)C]nicotinic acid and [carboxyl-(14)C]nicotinic acid riboside in tissue segments of tea (Camellia sinensis) plants, and determined the activity of enzymes involved in pyridine metabolism in protein extracts from young tea leaves. Exogenously supplied (14)C-labelled nicotinamide was readily converted to nicotinic acid, and some nicotinic acid was salvaged to nicotinic acid mononucleotide and then utilized for the synthesis of NAD and NADP. The nicotinic acid riboside salvage pathway discovered recently in mungbean cotyledons is also operative in tea leaves. Nicotinic acid was converted to nicotinic acid N-glucoside, but not to trigonelline (N-methylnicotinic acid), in any part of tea seedlings. Active catabolism of nicotinic acid was observed in tea leaves. The fate of [2-(14)C]nicotinic acid indicates that glutaric acid is a major catabolite of nicotinic acid; it was further metabolised, and carbon atoms were finally released as CO(2). The catabolic pathway observed in tea leaves appears to start with the nicotinic acid N-glucoside formation; this pathway differs from catabolic pathways observed in microorganisms. Profiles of pyridine metabolism in tea plants are discussed.

  10. Comparison of Selected Metals Content in Cambodian Striped Snakehead Fish (Channa striata) Using Solar Drying System and Open Sun Drying

    PubMed Central

    Abu Bakar, Nur Faizah; Fudholi, Ahmad; Ruslan, Mohd Hafidz; Saroeun, Im

    2015-01-01

    The content of 12 elements in Cambodian dried striped snakehead fish was determined using inductively coupled plasma mass spectrometry. The present study compares the level of the trace toxic metals and nutritional trace elements in the fish processed using solar drying system (SDS) and open sun drying (OSD). The skin of SDS fish has lower level of As, Pb, and Cd compared to the OSD sample. As such, the flesh of the fish accumulated higher amount of toxic metals during OSD compared to SDS. However, arsenic was detected in both samples within the safe limit. The nutritional elements (Fe, Mn, Mg, Se, Mo, Cu, Ni, and Cr) were higher in the skin sample SDS fish compared to OSD fish. These beneficial metals were not accumulated in the flesh sample SDS fish demonstrating lower level compared to drying under conventional system. The reddish coloration of the SDS fish was due to the presence of high Cu content in both the skin and flesh samples which possibly account for no mold formation 5 days after packaging. As conclusion, drying of Cambodian C. striata using solar-assisted system has proven higher content of the nutritious elements compared to using the conventional system despite only slight difference in the toxic metals level between the two systems. PMID:25688274

  11. Biopesticide effect of green compost against fusarium wilt on melon plants.

    PubMed

    Ros, M; Hernandez, M T; Garcia, C; Bernal, A; Pascual, J A

    2005-01-01

    The biopesticide effect of four green composts against fusarium wilt in melon plants and the effect of soil quality in soils amended with composts were assayed. The composts consisted of pruning wastes, with or without addition of coffee wastes (3/1 and 4/1, dry wt/dry wt) or urea (1000/1, dry wt/dry wt). In vitro experiments suggested the biopesticide effect of the composts against Fusarium oxysporum, while only the compost of pine bark and urea (1000/1dry wt/dry wt) had an abiotic effect. Melon plant growth with composts and F. oxysporum was one to four times greater than in the non-amended soil, although there was no significant decrease in the level of the F. oxysporum in the soil. The addition of composts to the soil also improved its biological quality, as assessed by microbiological and biochemical parameters: ATP and hydrolases involved in the P (phosphatase), C (beta-glucosidase) and N (urease) cycles. Green composts had greater beneficial characteristics, improved plant growth and controlled fusarium wilt in melon plants. These composts improve the soil quality of semi-arid agricultural soils. Biotic and abiotic factors from composts have been tested as responsible of their biopesticide activity against fusarium wilt.

  12. Therapeutic Efficacy of Topically Applied Antioxidant Medicinal Plant Extracts in a Mouse Model of Experimental Dry Eye

    PubMed Central

    Lee, Jee Bum; Li, Ying; Choi, Ji Suk; Lee, Hyo Seok

    2016-01-01

    Purpose. To investigate the therapeutic effects of topical administration of antioxidant medicinal plant extracts in a mouse model of experimental dry eye (EDE). Methods. Eye drops containing balanced salt solution (BSS) or 0.001%, 0.01%, and 0.1% extracts were applied for the treatment of EDE. Tear volume, tear film break-up time (BUT), and corneal fluorescein staining scores were measured 10 days after desiccating stress. In addition, we evaluated the levels of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, IL-6, interferon- (IFN-) γ, and IFN-γ associated chemokines, percentage of CD4+C-X-C chemokine receptor type 3 positive (CXCR3+) T cells, goblet cell density, number of 4-hydroxy-2-nonenal (4-HNE) positive cells, and extracellular reactive oxygen species (ROS) production. Results. Compared to the EDE and BSS control groups, the mice treated with topical application of the 0.1% extract showed significant improvements in all clinical parameters, IL-1β, IL-6, TNF-α, and IFN-γ levels, percentage of CD4+CXCR3+ T cells, goblet cell density, number of 4-HNE-positive cells, and extracellular ROS production (P < 0.05). Conclusions. Topical application of 0.1% medicinal plant extracts improved clinical signs, decreased inflammation, and ameliorated oxidative stress marker and ROS production on the ocular surface of the EDE model mice. PMID:27313829

  13. Can mechanics control pattern formation in plants?

    PubMed

    Dumais, Jacques

    2007-02-01

    Development of the plant body entails many pattern forming events at scales ranging from the cellular level to the whole plant. Recent evidence suggests that mechanical forces play a role in establishing some of these patterns. The development of cellular configurations in glandular trichomes and the rippling of leaf surfaces are discussed in depth to illustrate how intricate patterns can emerge from simple and well-established molecular and cellular processes. The ability of plants to sense and transduce mechanical signals suggests that complex interactions between mechanics and chemistry are possible during plant development. The inclusion of mechanics alongside traditional molecular controls offers a more comprehensive view of developmental processes.

  14. Effects of drying on nitrification activity in zeoponic medium used for long-term space missions

    NASA Technical Reports Server (NTRS)

    McGilloway, R. L.; Weaver, R. W.

    2004-01-01

    One component of a proposed life support system is the use of zeoponic substrates, which slowly release NH4+ into "soil" solution, for the production of plants. Nitrifying bacteria that convert NH4+ to NO3- are among the important microbial components of these systems. Survival of nitrifying bacteria in dry zeoponic substrates is needed, because the substrate would likely be stored in an air-dry state between croppings. Substrate was enriched for nitrifying bacteria and allowed to air-dry in a laminar flow hood. Stored substrate was analyzed for nitrifier survivability by measuring nitrifier activity at the beginning, 3 days, 1, 2, and 3 weeks. After rewetting, activity was approximately 9 micrograms N g-1 h-1 regardless of storage time. Nitrification rates did not decrease during storage. It seems unlikely that drying between plantings would result in practical reductions in nitrification, and reinoculation with nitrifying bacteria would not be necessary.

  15. Management type affects composition and facilitative processes in altoandine dry grassland

    NASA Astrophysics Data System (ADS)

    Catorci, Andrea; Cesaretti, Sabrina; Velasquez, Jose Luis; Burrascano, Sabina; Zeballos, Horacio

    2013-10-01

    We performed our study in the Dry Puna of the southern Peruvian Andes. Through a comparative approach we aimed to assess the effects of the two management systems, low grazing pressure by wild camelids vs. high grazing pressure by domestic livestock and periodic burning. Our general hypothesis was that the traditional high disturbance regime affects the dry Puna species diversity and composition through modifications of the magnitude of plant-plant-interactions and changes of the community structure due to shifts in species dominance. In 40 plots of 10 × 10 m, the cover value of each species was recorded and the species richness, floristic diversity, and community similarity of each treatment were compared. For each disturbance regime, differences of soil features (organic matter, carbon/nitrogen ratio, and potassium content) were tested. To evaluate plant-plant interactions, 4 linear transect divided into 500 plots of 10 × 10 cm were laid out and co-occurrence analysis was performed. We found that different disturbance regimes were associated with differences in the floristic composition, and that the high disturbance condition had lower species diversity and evenness. A decrease of tall species such as Festuca orthophylla and increase of dwarf and spiny Tetraglochin cristatum shrubs was observed as well. In addition, different disturbance intensities caused differences in the functional composition of the plant communities, since species with avoidance strategies are selected by high grazing pressure. High disturbance intensity was also associated to differences of soil features and to different clumped spatial structure of the dry Puna. Our results indicate also that: positive interactions are often species-specific mainly depending on the features of nurse and beneficiary species; the importance of positive interaction is higher at low grazing pressure than at high disturbance intensity; the magnitude and direction of the herbivory-mediated facilitation

  16. 7. VIEW OF BRINING TANK Newer, concrete model. After drying, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF BRINING TANK Newer, concrete model. After drying, skins were rolled in borax and packed into barrels, such as those seen in background. - Sealing Plant, St. George Island, Pribilof Islands, Saint George, Aleutians West Census Area, AK

  17. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 2. MODEL EVALUATION

    EPA Science Inventory

    The multilayer biochemical dry deposition model (MLBC) described in the accompanying paper was tested against half-hourly eddy correlation data from six field sites under a wide range of climate conditions with various plant types. Modeled CO2, O3, SO2<...

  18. Dynamics of air gap formation around roots with changing soil water content.

    NASA Astrophysics Data System (ADS)

    Vetterlein, D.; Carminati, A.; Weller, U.; Oswald, S.; Vogel, H.-J.

    2009-04-01

    Most models regarding uptake of water and nutrients from soil assume intimate contact between roots and soil. However, it is known for a long time that roots may shrink under drought conditions. Due to the opaque nature of soil this process could not be observed in situ until recently. Combining tomography of the entire sample (field of view of 16 x 16 cm, pixel side 0.32 mm) with local tomography of the soil region around roots (field of view of 5 x 5 cm, pixel side 0.09 mm), the high spatial resolution required to image root shrinkage and formation of air-filled gaps around roots could be achieved. Applying this technique and combining it with microtensiometer measurements, measurements of plant gas exchange and microscopic assessment of root anatomy, a more detailed study was conducted to elucidate at which soil matric potential roots start to shrink in a sandy soil and which are the consequences for plant water relations. For Lupinus albus grown in a sandy soil tomography of the entire root system and of the interface between taproot and soil was conducted from day 11 to day 31 covering two drying cycles. Soil matric potential decreased from -36 hPa at day 11 after planting to -72, -251, -429 hPa, on day 17, 19, 20 after planting. On day 20 an air gap started to occur around the tap root and extended further on day 21 with matric potential below -429 hPa (equivalent to 5 v/v % soil moisture). From day 11 to day 21 stomatal conductivity decreased from 467 to 84 mmol m-2 s-1, likewise transpiration rate decreased and plants showed strong wilting symptoms on day 21. Plants were watered by capillary rise on day 21 and recovered completely within a day with stomatal conductivity increasing to 647 mmol m-2 s-1. During a second drying cycle, which was shorter as plants continuously increased in size, air gap formed again at the same matric potential. Plant stomatal conductance and transpiration decreased in a similar fashion with decreasing matric potential and

  19. Increased Frequency of Large Blowdown Formation in Years With Hotter Dry Seasons in the Northwestern Amazon

    NASA Astrophysics Data System (ADS)

    Rifai, S. W.; Anderson, L. O.; Bohlman, S.

    2015-12-01

    Blowdowns, which are large tree mortality events caused by downbursts, create large pulses of carbon emissions in the short term and alter successional dynamics and species composition of forests, thus affecting long term biogeochemical cycling of tropical forests. Changing climate, especially increasing temperatures and frequency of extreme climate events, may cause changes in the frequency of blowdowns, but there has been little spatiotemporal analysis to associate the interannual variation in the frequency of blowdowns with annual climate parameters. We mapped blowdowns greater than 25 ha using a time series of Landsat images from 1984-2012 in the northwestern Amazon to estimate the annual size distribution of these blowdowns. The difference in forest area affected by blowdowns between the years with the highest and lowest blowdown activity were on the order of 10 - 30 times greater depending on location. Spatially, we found the probability of large blowdowns to be higher in regions with higher annual rainfall. Temporally, we found a positive correlation between the probability of large blowdown events and maximum dry season air temperature (R2 = 0.1-0.46). Mean and maximum blowdown size also increased with maximum dry season air temperature. The strength of these relationships varied between scene locations which may be related to cloud cover obscuring the land surface in the satellite images, or biophysical characteristics of the sites. Potentially, elevated dry season temperatures during the transition from the dry season to the wet season (October - December) may exacerbate atmospheric instabilities, which promote downburst occurrences. Most global circulation models predict dry season air temperatures to increase 2-5 ℃ in the northwestern Amazon by 2050. Should the blowdown disturbance regime continue increasing with elevated dry season temperatures, the northwestern Amazon is likely to experience more catastrophic tree mortality events which has direct

  20. Transformation of phosphorus during drying and roasting of sewage sludge.

    PubMed

    Li, Rundong; Yin, Jing; Wang, Weiyun; Li, Yanlong; Zhang, Ziheng

    2014-07-01

    Sewage sludge (SS), a by-product of wastewater treatment, consists of highly concentrated organic and inorganic pollutants, including phosphorus (P). In this study, P with different chemical fractions in SS under different drying and roasting temperatures was investigated with the use of appropriate standards, measurements, and testing protocol. The drying and roasting treatment of SS was conducted in a laboratory-scale furnace. Two types of SS samples under different treatment temperatures were analyzed by (31)P NMR spectroscopy. These samples were dried by a vacuum freeze dryer at -50°C and a thermoelectric thermostat drying box at 105°C. Results show that the inorganic P (IP) content increased as the organic P content decreased, and the bio-availability of P increased because IP is a form of phosphorousthat can be directly absorbed by plants. (31)P NMR analysis results indicate the change in P fractions at different temperatures. Non-apatite P was the dominant form of P under low-temperature drying and roasting, whereas apatite P was the major one under high-temperature drying and roasting. Results indicate that temperature affects the transformation of P. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Evaluation of the biological tolerability of the starch-based medical device 4DryField® PH in vitro and in vivo a rat model.

    PubMed

    Poehnert, Daniel; Abbas, Mahmoud; Maegel, Lavinia; Sambale, Franziska; Lavrentieva, Antonina; Kreipe, Hans-Heinrich; Klempnauer, Jürgen; Winny, Markus

    2015-10-01

    To evaluate in vitro cytotoxicity/biocompatibility as well as in vivo tolerability of the novel polysaccharide 4DryField® PH, certified for haemostasis and adhesion prevention. In vitro cytotoxicity/viability testing according to ISO EN 10,993 using murine and human tumour cell lines incubated with 4DryField® PH (PlantTec Medical GmbH). Using a rat model the impact of 4DryField® PH on animals viability and in vivo effects were macro- and micropathologically assessed. In vitro testing revealed no cytotoxic effect of 4DryField® PH nor enhancement of viability to tumour cell lines. In vivo viability of rats was unimpaired by 4DryField® PH. Bodyweight loss in animals with abdominal injury plus treatment with 4DryField® PH was in the range of controls and less than in injured rats without treatment. At day 7 after surgery no formation of adhesions, neither macroscopic nor histological remnants nor signs of foreign body reaction were present in animals without injury. In animals with peritoneal injury and 4DryField® PH application, histopathological observation revealed minor residuals of polysaccharide in the depth of wound cavity embedded in a thickened subperitoneal layer; however, with a suggested intact neoperitoneum. The presence of mononuclear cells surrounding polysaccharide particles in varying states of degradation was observable as well. 4DryField® PH is not cytotoxic and does not enhance viability of tumour cell lines. High dose of 4DryField® PH of 1.09 g/kg bodyweight is well tolerated and reduces weight loss in animals with peritoneal injury. The biocompatibility of 4DryField® PH can be rated as being excellent. © The Author(s) 2015.

  2. Diagnosing dry eye with dynamic-area high-speed videokeratoscopy

    NASA Astrophysics Data System (ADS)

    Alonso-Caneiro, David; Turuwhenua, Jason; Iskander, D. Robert; Collins, Michael J.

    2011-07-01

    Dry eye syndrome is one of the most commonly reported eye health conditions. Dynamic-area high-speed videokeratoscopy (DA-HSV) represents a promising alternative to the most invasive clinical methods for the assessment of the tear film surface quality (TFSQ), particularly as Placido-disk videokeratoscopy is both relatively inexpensive and widely used for corneal topography assessment. Hence, improving this technique to diagnose dry eye is of clinical significance and the aim of this work. First, a novel ray-tracing model is proposed that simulates the formation of a Placido image. This model shows the relationship between tear film topography changes and the obtained Placido image and serves as a benchmark for the assessment of indicators of the ring's regularity. Further, a novel block-feature TFSQ indicator is proposed for detecting dry eye from a series of DA-HSV measurements. The results of the new indicator evaluated on data from a retrospective clinical study, which contains 22 normal and 12 dry eyes, have shown a substantial improvement of the proposed technique to discriminate dry eye from normal tear film subjects. The best discrimination was obtained under suppressed blinking conditions. In conclusion, this work highlights the potential of the DA-HSV as a clinical tool to diagnose dry eye syndrome.

  3. Relationship between plant growth and cytological effect in root apical meristem after exposure of wheat dry seeds to carbon ion beams

    NASA Astrophysics Data System (ADS)

    Liu, Qingfang; Wang, Zhuanzi; Zhou, Libin; Qu, Ying; Lu, Dong; Yu, Lixia; Du, Yan; Jin, Wenjie; Li, Wenjian

    2013-06-01

    In order to analyze the relationship between plant growth and cytological effects, wheat dry seeds were exposed to various doses of 12C6+ beams and the biological endpoints reflecting plant growth and root apical meristem (RAM) activities were investigated. The results showed that most of the seeds were able to germinate normally within all dose range, while the plant survival rate descended at higher doses. The seedling growth including root length and seedling height also decreased significantly at higher doses. Mitotic index (MI) in RAM had no changes at 10 and 20 Gy and decreased obviously at higher doses and the proportion of prophase cells had the same trend with MI. These data suggested that RAM cells experienced cell cycle arrest, which should be responsible for the inhibition of root growth after exposure to higher doses irradiation. Moreover, various types of chromosome aberrations (CAs) were observed in the mitotic cells. The frequencies of mitotic cells with lagging chromosomes and these with anaphase bridges peaked around 60 Gy, while the frequencies of these with fragments increased as the irradiation doses increased up to 200 Gy. The total frequencies of mitotic cells with CAs induced by irradiation increased significantly with the increasing doses. The serious damage of mitotic chromosomes maybe caused cell cycle arrest or cell death. These findings suggested that the influences of 12C6+ beams irradiation on plant growth were related to the alternation of mitotic activities and the chromosomal damages in RAM.

  4. Bioanalytical assessment of the formation of disinfection byproducts in a drinking water treatment plant.

    PubMed

    Neale, Peta A; Antony, Alice; Bartkow, Michael E; Farré, Maria José; Heitz, Anna; Kristiana, Ina; Tang, Janet Y M; Escher, Beate I

    2012-09-18

    Disinfection of drinking water is the most successful measure to reduce water-borne diseases and protect health. However, disinfection byproducts (DBPs) formed from the reaction of disinfectants such as chlorine and monochloramine with organic matter may cause bladder cancer and other adverse health effects. In this study the formation of DBPs through a full-scale water treatment plant serving a metropolitan area in Australia was assessed using in vitro bioanalytical tools, as well as through quantification of halogen-specific adsorbable organic halogens (AOXs), characterization of organic matter, and analytical quantification of selected regulated and emerging DBPs. The water treatment train consisted of coagulation, sand filtration, chlorination, addition of lime and fluoride, storage, and chloramination. Nonspecific toxicity peaked midway through the treatment train after the chlorination and storage steps. The dissolved organic matter concentration decreased after the coagulation step and then essentially remained constant during the treatment train. Concentrations of AOXs increased upon initial chlorination and continued to increase through the plant, probably due to increased chlorine contact time. Most of the quantified DBPs followed a trend similar to that of AOXs, with maximum concentrations observed in the final treated water after chloramination. The mostly chlorinated and brominated DBPs formed during treatment also caused reactive toxicity to increase after chlorination. Both genotoxicity with and without metabolic activation and the induction of the oxidative stress response pathway showed the same pattern as the nonspecific toxicity, with a maximum activity midway through the treatment train. Although measured effects cannot be directly translated to adverse health outcomes, this study demonstrates the applicability of bioanalytical tools to investigate DBP formation in a drinking water treatment plant, despite bioassays and sample preparation not

  5. A Raman Microspectroscopy Study of Water and Trehalose in Spin-Dried Cells

    PubMed Central

    Abazari, Alireza; Chakraborty, Nilay; Hand, Steven; Aksan, Alptekin; Toner, Mehmet

    2014-01-01

    Long-term storage of desiccated nucleated mammalian cells at ambient temperature may be accomplished in a stable glassy state, which can be achieved by removal of water from the biological sample in the presence of glass-forming agents including trehalose. The stability of the glass may be compromised due to a nonuniform distribution of residual water and trehalose within and around the desiccated cells. Thus, quantification of water and trehalose contents at the single-cell level is critical for predicting the glass formation and stability for dry storage. Using Raman microspectroscopy, we estimated the trehalose and residual water contents in the microenvironment of spin-dried cells. Individual cells with or without intracellular trehalose were embedded in a solid thin layer of extracellular trehalose after spin-drying. We found strong evidence suggesting that the residual water was bound at a 2:1 water/trehalose molar ratio in both the extracellular and intracellular milieus. Other than the water associated with trehalose, we did not find any more residual water in the spin-dried sample, intra- or extracellularly. The extracellular trehalose film exhibited characteristics of an amorphous state with a glass transition temperature of ∼22°C. The intracellular milieu also dried to levels suitable for glass formation at room temperature. These findings demonstrate a method for quantification of water and trehalose in desiccated specimens using confocal Raman microspectroscopy. This approach has broad use in desiccation studies to carefully investigate the relationship of water and trehalose content and distribution with the tolerance to drying in mammalian cells. PMID:25418294

  6. Application of superabsorbent polymers (SAP) as desiccants to dry maize and reduce aflatoxin contamination.

    PubMed

    Mbuge, Duncan O; Negrini, Renata; Nyakundi, Livine O; Kuate, Serge P; Bandyopadhyay, Ranajit; Muiru, William M; Torto, Baldwyn; Mezzenga, Raffaele

    2016-08-01

    The ability of superabsorbent polymers (SAP) in drying maize and controlling aflatoxin contamination was studied under different temperatures, drying times and SAP-to-maize ratios. Temperature and drying time showed significant influence on the aflatoxin formation. SAP-to-maize ratios between 1:1 and 1:5 showed little or no aflatoxin contamination after drying to the optimal moisture content (MC) of 13 %, while for ratios 1:10 and 1:20, aflatoxin contamination was not well controlled due to the overall higher MC and drying time, which made these ratios unsuitable for the drying process. Results clearly show that temperature, frequency of SAP change, drying time and SAP-to-maize ratio influenced the drying rate and aflatoxin contamination. Furthermore, it was shown that SAP had good potential for grain drying and can be used iteratively, which can make this system an optimal solution to reduce aflatoxin contamination in maize, particular for developing countries and resource-lacking areas.

  7. Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing

    NASA Astrophysics Data System (ADS)

    Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; Dees, Dennis W.

    2016-08-01

    Successful deployment of electric vehicles requires maturity of the manufacturing process to reduce the cost of the lithium ion battery (LIB) pack. Drying the coated cathode layer and subsequent recovery of the solvent for recycle is a vital step in the lithium ion battery manufacturing plant and offers significant potential for cost reduction. A spreadsheet model of the drying and recovery of the solvent, is used to study the energy demand of this step and its contribution towards the cost of the battery pack. The base case scenario indicates that the drying and recovery process imposes an energy demand of ∼10 kWh per kg of the solvent n-methyl pyrrolidone (NMP), and is almost 45 times the heat needed to vaporize the NMP. For a plant producing 100 K battery packs per year for 10 kWh plug-in hybrid vehicles (PHEV), the energy demand is ∼5900 kW and the process contributes 107 or 3.4% to the cost of the battery pack. The cost of drying and recovery is equivalent to 1.12 per kg of NMP recovered, saving 2.08 per kg in replacement purchase.

  8. Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea

    PubMed Central

    Lux, Alexander; Vaculík, Marek; Martinka, Michal; Lišková, Desana; Kulkarni, Manoj G.; Stirk, Wendy A.; Van Staden, Johannes

    2011-01-01

    Background and Aims Merwilla plumbea is an important African medicinal plant. As the plants grow in soils contaminated with metals from mining activities, the danger of human intoxication exists. An experiment with plants exposed to cadmium (Cd) was performed to investigate the response of M. plumbea to this heavy metal, its uptake and translocation to plant organs and reaction of root tissues. Methods Plants grown from seeds were cultivated in controlled conditions. Hydroponic cultivation is not suitable for this species as roots do not tolerate aquatic conditions, and additional stress by Cd treatment results in total root growth inhibition and death. After cultivation in perlite the plants exposed to 1 and 5 mg Cd L−1 in half-strength Hoagland's solution were compared with control plants. Growth parameters were evaluated, Cd content was determined by inductively coupled plasma mass spectroscopy (ICP-MS) and root structure was investigated using various staining procedures, including the fluorescent stain Fluorol yellow 088 to detect suberin deposition in cell walls. Key Results The plants exposed to Cd were significantly reduced in growth. Most of the Cd taken up by plants after 4 weeks cultivation was retained in roots, and only a small amount was translocated to bulbs and leaves. In reaction to higher Cd concentrations, roots developed a hypodermal periderm close to the root tip. Cells produced by cork cambium impregnate their cell walls by suberin. Conclusions It is suggested that the hypodermal periderm is developed in young root parts in reaction to Cd toxicity to protect the root from radial uptake of Cd ions. Secondary meristems are usually not present in monocotyledonous species. Another interpretation explaining formation of protective suberized layers as a result of periclinal divisions of the hypodermis is discussed. This process may represent an as yet unknown defence reaction of roots when exposed to elemental stress. PMID:21118841

  9. Formation and fates of nitrosamines and their formation potentials from a surface water source to drinking water treatment plants in Southern Taiwan.

    PubMed

    Chen, Wei-Hsiang; Wang, Chung-Ya; Huang, Tsung-Hsien

    2016-10-01

    Nitrosamines are toxic and emerging disinfection byproducts. In this study, three drinking water treatment plants (DWTPs) in southern Taiwan treating the same source water in Gaoping River with comparable technologies were selected. The objective was to evaluate the formation and fates of six nitrosamines and their formation potentials (FPs) from a surface water source to drinking water. Albeit decreased further downstream in the river, four nitrosamine-FPs were observed in the source water due to anthropogenic pollution in the upstream areas. In the DWTPs, nitrosamines were formed and NDMA was the main species. While high organic carbon concentrations indicated elevated nitrosamine-FPs in the source water, NDMA formation in the DWTPs was more positively associated with reductions of water parameters that quantify organic matters with double bonded ring structures. Although precursor removal via pre-oxidation is a viable approach to limit nitrosamine formation during post-disinfection, this study clearly indicates that a great portion of NDMA in treated water has been formed in the 1st oxidation step of drinking water treatment. The pre-oxidation simulations in the lab demonstrated the impact of pre-chlorination on nitrosamine formation. Given the limited removal in conventional treatment processes, avoiding nitrosamine-FPs in sources and/or nitrosamine formation during pre-oxidation become important issues to control the threats of nitrosamines in drinking water. Under current circumstance in which pre-oxidation is widely used to optimize the treatment effectiveness in many DWTPs, its adverse effect by forming nitrosamines needs to be carefully minimized and using technologies other than pre-chlorination (e.g., pre-ozonation) may be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Mechanical Failure of Fine Root Cortical Cells Initiates Plant Hydraulic Decline during Drought.

    PubMed

    Cuneo, Italo F; Knipfer, Thorsten; Brodersen, Craig R; McElrone, Andrew J

    2016-11-01

    Root systems perform the crucial task of absorbing water from the soil to meet the demands of a transpiring canopy. Roots are thought to operate like electrical fuses, which break when carrying an excessive load under conditions of drought stress. Yet the exact site and sequence of this dysfunction in roots remain elusive. Using in vivo x-ray computed microtomography, we found that drought-induced mechanical failure (i.e. lacunae formation) in fine root cortical cells is the initial and primary driver of reduced fine root hydraulic conductivity (Lp r ) under mild to moderate drought stress. Cortical lacunae started forming under mild drought stress (-0.6 MPa Ψ stem ), coincided with a dramatic reduction in Lp r , and preceded root shrinkage or significant xylem embolism. Only under increased drought stress was embolism formation observed in the root xylem, and it appeared first in the fine roots (50% loss of hydraulic conductivity [P 50 ] reached at -1.8 MPa) and then in older, coarse roots (P 50 = -3.5 MPa). These results suggest that cortical cells in fine roots function like hydraulic fuses that decouple plants from drying soil, thus preserving the hydraulic integrity of the plant's vascular system under early stages of drought stress. Cortical lacunae formation led to permanent structural damage of the root cortex and nonrecoverable Lp r , pointing to a role in fine root mortality and turnover under drought stress. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Comparison of Proteins in Whole Blood and Dried Blood Spot Samples by LC/MS/MS

    NASA Astrophysics Data System (ADS)

    Chambers, Andrew G.; Percy, Andrew J.; Hardie, Darryl B.; Borchers, Christoph H.

    2013-09-01

    Dried blood spot (DBS) sampling methods are desirable for population-wide biomarker screening programs because of their ease of collection, transportation, and storage. Immunoassays are traditionally used to quantify endogenous proteins in these samples but require a separate assay for each protein. Recently, targeted mass spectrometry (MS) has been proposed for generating highly-multiplexed assays for biomarker proteins in DBS samples. In this work, we report the first comparison of proteins in whole blood and DBS samples using an untargeted MS approach. The average number of proteins identified in undepleted whole blood and DBS samples by liquid chromatography (LC)/MS/MS was 223 and 253, respectively. Protein identification repeatability was between 77 %-92 % within replicates and the majority of these repeated proteins (70 %) were observed in both sample formats. Proteins exclusively identified in the liquid or dried fluid spot format were unbiased based on their molecular weight, isoelectric point, aliphatic index, and grand average hydrophobicity. In addition, we extended this comparison to include proteins in matching plasma and serum samples with their dried fluid spot equivalents, dried plasma spot (DPS), and dried serum spot (DSS). This work begins to define the accessibility of endogenous proteins in dried fluid spot samples for analysis by MS and is useful in evaluating the scope of this new approach.

  12. Multifractality analysis of crack images from indirect thermal drying of thin-film dewatered sludge

    NASA Astrophysics Data System (ADS)

    Wang, Weiyun; Li, Aimin; Zhang, Xiaomin; Yin, Yulei

    2011-07-01

    Crack formation is inevitable during sludge drying because of the existence of uneven thermal stress. Experiments have been conducted to study crack pattern formation in thin film sludge. Crack images show that the thinner the sewage sludge film, the more even the crack distribution. The crack changes from a flaky texture to a banded structure with increasing thickness. Multifractal methods are proposed to analyze the crack image of four different thicknesses of dried sludge. Several parameters are conducted for quantification of the crack image and the results indicate that the width of spectra increases with thicker sludge film, that is to say, nonunifromity of crack distribution increases with increasing thickness, which proves that the multifractal method is sensitive enough to quantify the crack distribution and can be seen as a new approach for the changing research of crack images of sewage sludge drying.

  13. Formation of virions is strictly required for turnip yellows virus long-distance movement in plants.

    PubMed

    Hipper, Clémence; Monsion, Baptiste; Bortolamiol-Bécet, Diane; Ziegler-Graff, Véronique; Brault, Véronique

    2014-02-01

    Viral genomic RNA of the Turnip yellows virus (TuYV; genus Polerovirus; family Luteoviridae) is protected in virions formed by the major capsid protein (CP) and the minor component, the readthrough (RT*) protein. Long-distance transport, used commonly by viruses to systemically infect host plants, occurs in phloem sieve elements and two viral forms of transport have been described: virions and ribonucleoprotein (RNP) complexes. With regard to poleroviruses, virions have always been presumed to be the long-distance transport form, but the potential role of RNP complexes has not been investigated. Here, we examined the requirement of virions for polerovirus systemic movement by analysing CP-targeted mutants that were unable to form viral particles. We confirmed that TuYV mutants that cannot encapsidate into virions are not able to reach systemic leaves. To completely discard the possibility that the introduced mutations in CP simply blocked the formation or the movement of RNP complexes, we tested in trans complementation of TuYV CP mutants by providing WT CP expressed in transgenic plants. WT CP was able to facilitate systemic movement of TuYV CP mutants and this observation was always correlated with the formation of virions. This demonstrated clearly that virus particles are essential for polerovirus systemic movement.

  14. The volatile oil composition of fresh and air-dried buds of Cannabis sativa.

    PubMed

    Ross, S A; ElSohly, M A

    1996-01-01

    The composition of the steam-distilled volatile oil of fresh and air-dried, indoor-grown marijuana was studied by GC/FID and GC/MS. In all, 68 components were detected of which 57 were fully identified. Drying of the plant material had no effect on the qualitative composition of the oil and did not affect the ability of individuals familiar with marijuana smell to recognize the odor.

  15. Metabolism of acetaminophen (paracetamol) in plants--two independent pathways result in the formation of a glutathione and a glucose conjugate.

    PubMed

    Huber, Christian; Bartha, Bernadett; Harpaintner, Rudolf; Schröder, Peter

    2009-03-01

    Pharmaceuticals and their metabolites are detected in the aquatic environment and our drinking water supplies. The need for high quality drinking water is one of the most challenging problems of our times, but still only little knowledge exists on the impact of these compounds on ecosystems, animals, and man. Biological waste water treatment in constructed wetlands is an effective and low-cost alternative, especially for the treatment of non-industrial, municipal waste water. In this situation, plants get in contact with pharmaceutical compounds and have to tackle their detoxification. The mechanisms for the detoxification of xenobiotics in plants are closely related to the mammalian system. An activation reaction (phase I) is followed by a conjugation (phase II) with hydrophilic molecules like glutathione or glucose. Phase III reactions can be summarized as storage, degradation, and transport of the xenobiotic conjugate. Until now, there is no information available on the fate of pharmaceuticals in plants. In this study, we want to investigate the fate and metabolism of N-acetyl-4-aminophenol (paracetamol) in plant tissues using the cell culture of Armoracia rusticana L. as a model system. A hairy root culture of A. rusticana was treated with acetaminophen in a liquid culture. The formation and identification of metabolites over time were analyzed using HPLC-DAD and LC-MSn techniques. With LC-MS technique, we were able to detect paracetamol and identify three of its metabolites in root cells of A. rusticana. Six hours after incubation with 1 mM of acetaminophen, the distribution of acetaminophen and related metabolites in the cells resulted in 18% paracetamol, 64% paracetamol-glucoside, 17% paracetamol glutathione, and 1% of the corresponding cysteine conjugate. The formation of two independently formed metabolites in plant root cells again revealed strong similarities between plant and mammalian detoxification systems. The detoxification mechanism of

  16. Chemically characterized Mentha cardiaca L. essential oil as plant based preservative in view of efficacy against biodeteriorating fungi of dry fruits, aflatoxin secretion, lipid peroxidation and safety profile assessment.

    PubMed

    Dwivedy, Abhishek Kumar; Prakash, Bhanu; Chanotiya, Chandan Singh; Bisht, Deepa; Dubey, Nawal Kishore

    2017-08-01

    The study reports Mentha cardiaca essential oil (EO) as plant based preservative against fungal and aflatoxin contamination of stored dry fruits. Mycoflora analysis of the dry fruits revealed Aspergillus favus LHP-PV-1 as the most aflatoxigenic isolate with highest Aflatoxin B 1 content. M. cardiaca EO showed broad fungitoxic spectrum inhibiting the tested moulds contaminating dry fruits. It's minimum inhibitory concentration (MIC), minimum aflatoxin inhibitory concentration (MAIC) and minimum fungicidal concentration (MFC) against A. favus LHP-PV-1 were recorded to be 1.25, 1.0 and 2.25 µL/mL respectively. The EO caused decrease in ergosterol content and enhanced leakage of Ca 2+ , K + and Mg 2+ ions from treated fungal cells, depicting fungal plasma membrane as the site of antifungal action. The EO showed promising DPPH free radical scavenging activity (IC 50 value:15.89 µL/mL) and favourable safety profile with LD 50 value (7133.70 mg/kg body wt.) when estimated through acute oral toxicity on mice. Carvone (61.62%) was recorded as the major component of the oil during chemical characterisation through GC-MS. Based on strong antifungal, antiaflatoxigenic and antioxidant potential, the chemically characterised M. cardiaca EO may be recommended as safe plant based preservative and shelf life enhancer of food items. This is the first report on antifungal and antiaflatoxigenic activity of M. cardiaca EO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Agent selection and protective effects during single droplet drying of bacteria.

    PubMed

    Khem, Sarim; Woo, Meng Wai; Small, Darryl M; Chen, Xiao Dong; May, Bee K

    2015-01-01

    The protective mechanisms of whey protein isolate (WPI), trehalose, lactose, and skim milk on Lactobacillus plantarum A17 during convective droplet drying has been explored. A single droplet drying technique was used to monitor cell survival, droplet temperature and corresponding changes in mass. WPI and skim milk provided the highest protection amongst the materials tested. In situ analysis of the intermediate stage of drying revealed that for WPI and skim milk, crust formation reduces the rate of sudden temperature increase thereby imparting less stress on the cells. Irreversible denaturation of the WPI components might have also contributed to the protection of the cells. Skim milk, however, 'loses' the protective behaviour towards the latter stages of drying. This indicates that the concentration of the WPI components could be another possible factor determining the sustained protective behaviour during the later stages of drying when the moisture content is low. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Storage Stability of Dried Microsclerotia of the Biological Control Pathogen Mycoleptodiscus Terrestris

    DTIC Science & Technology

    2009-09-01

    asexual spores (sporogenic germination), or by sexual fruit bodies (carpogenic germination) (Webster and Weber 2007). Plating of dried microsclerotia...While drying the fungus does not appear to impact efficacy, it is unknown how prolonged storage might affect the viability and virulence of the organism...agar (Table 1). Warm water temperatures (25 ºC ± 1 ºC) and the presence of a host plant may have affected both germination and sporulation of the

  19. Modeling multiple resource limitation in tropical dry forests

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Xu, X.; Zarakas, C.

    2015-12-01

    Tropical dry forests (TDFs) are characterized by a long dry season when little rain falls. At the same time, many neotropical soils are highly weathered and relatively nutrient poor. Because TDFs are often subject to both water and nutrient constraints, the question of how they will respond to environmental perturbations is both complex and highly interesting. Models, our basic tools for projecting ecosystem responses to global change, can be used to address this question. However, few models have been specifically parameterized for TDFs. Here, we present a new version of the Ecosystem Demography 2 (ED2) model that includes a new parameterization of TDFs. In particular, we focus on the model's framework for representing limitation by multiple resources (carbon, water, nitrogen, and phosphorus). Plant functional types are represented in terms of a dichotomy between "acquisitive" and "conservative" resource acquisition strategies. Depending on their resource acquisition strategy and basic stoichiometry, plants can dynamically adjust their allocation to organs (leaves, stem, roots), symbionts (e.g. N2-fixing bacteria), and mycorrhizal fungi. Several case studies are used to investigate how resource acquisition strategies affect ecosystem responses to environmental perturbations. Results are described in terms of the basic setting (e.g., rich vs. poor soils; longer vs. shorter dry season), and well as the type and magnitude of environmental perturbation (e.g., changes in precipitation or temperature; changes in nitrogen deposition). Implications for ecosystem structure and functioning are discussed.

  20. Liver biopsy as diagnostic method for poisoning by swainsonine-containing plants

    USDA-ARS?s Scientific Manuscript database

    With the aim to investigate the use of hepatic biopsies for the diagnosis of poisoning by swainsonine-containing plants, dry leaves of Ipomoea marcellia containing 0.02% of swainsonine were administered to goats. Group I, with six goats, ingested 4g/kg of dry plant (0.8mg of swainsonina/kg) until th...

  1. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Grotzinger, J. P.; Arvidson, R. E.; Bell, J. F.; Calvin, W.; Clark, B. C.; Fike, D. A.; Golombek, M.; Greeley, R.; Haldemann, A.; Herkenhoff, K. E.; Jolliff, B. L.; Knoll, A. H.; Malin, M.; McLennan, S. M.; Parker, T.; Soderblom, L.; Sohl-Dickstein, J. N.; Squyres, S. W.; Tosca, N. J.; Watters, W. A.

    2005-11-01

    Outcrop exposures of sedimentary rocks at the Opportunity landing site (Meridiani Planum) form a set of genetically related strata defined here informally as the Burns formation. This formation can be subdivided into lower, middle, and upper units which, respectively, represent eolian dune, eolian sand sheet, and mixed eolian sand sheet and interdune facies associations. Collectively, these three units are at least 7 m thick and define a "wetting-upward" succession which records a progressive increase in the influence of groundwater and, ultimately, surface water in controlling primary depositional processes. The Burns lower unit is interpreted as a dry dune field (though grain composition indicates an evaporitic source), whose preserved record of large-scale cross-bedded sandstones indicates either superimposed bedforms of variable size or reactivation of lee-side slip faces by episodic (possibly seasonal) changes in wind direction. The boundary between the lower and middle units is a significant eolian deflation surface. This surface is interpreted to record eolian erosion down to the capillary fringe of the water table, where increased resistance to wind-induced erosion was promoted by increased sediment cohesiveness in the capillary fringe. The overlying Burns middle unit is characterized by fine-scale planar-laminated to low-angle-stratified sandstones. These sandstones accumulated during lateral migration of eolian impact ripples over the flat to gently undulating sand sheet surface. In terrestrial settings, sand sheets may form an intermediate environment between dune fields and interdune or playa surfaces. The contact between the middle and upper units of the Burns formation is interpreted as a diagenetic front, where recrystallization in the phreatic or capillary zones may have occurred. The upper unit of the Burns formation contains a mixture of sand sheet facies and interdune facies. Interdune facies include wavy bedding, irregular lamination with

  2. Solubility parameters of hypromellose acetate succinate and plasticization in dry coating procedures.

    PubMed

    Klar, Fabian; Urbanetz, Nora Anne

    2016-10-01

    Solubility parameters of HPMCAS have not yet been investigated intensively. On this account, total and three-dimensional solubility parameters of HPMCAS were determined by using different experimental as well as computational methods. In addition, solubility properties of HPMCAS in a huge number of solvents were tested and a Teas plot for HPMCAS was created. The total solubility parameter of about 24 MPa(0.5) was confirmed by various procedures and compared with values of plasticizers. Twenty common pharmaceutical plasticizers were evaluated in terms of their suitability for supporting film formation of HPMCAS under dry coating conditions. Therefore, glass transition temperatures of mixtures of polymer and plasticizers were inspected and film formation of potential ones was further investigated in dry coating of pellets. Contact angles of plasticizers on HPMCAS were determined in order to give a hint of achievable coating efficiencies in dry coating, but none was found to spread on HPMCAS. A few common substances, e.g. dimethyl phthalate, glycerol monocaprylate, and polyethylene glycol 400, enabled plasticization of HPMCAS; however, only triethyl citrate and triacetin were found to be suitable for use in dry coating. Addition of acetylated monoglycerides to triacetin increased coating efficiency, which was likewise previously demonstrated for triethyl citrate.

  3. "I eat the manofê so it is not forgotten": local perceptions and consumption of native wild edible plants from seasonal dry forests in Brazil.

    PubMed

    Cruz, Margarita Paloma; Medeiros, Patrícia Muniz; Sarmiento-Combariza, Iván; Peroni, Nivaldo; Albuquerque, Ulysses Paulino

    2014-05-23

    There is little information available on the factors influencing people's selection of wild plants for consumption. Studies suggest a suitable method of understanding the selection of edible plants is to assess people's perceptions of these resources. The use and knowledge of wild resources is disappearing, as is the opportunity to use them. This study analyzes people's perceptions of native wild edible plants in a rural Caatinga (seasonal dry forest) community in Northeast Brazil and the relationships between the use of these resources and socioeconomic factors. Semi-structured interviews with 39 people were conducted to form a convenience sample to gather information regarding people's perceptions of 12 native wild edible plant species. The relationships between variables were assessed by simple linear regression analysis, Pearson and Spearman correlation analyses, and in the case of nominal variables, contingency tables. The discourse of participants regarding their opinions of the use of wild plants as food was analyzed through the collective subject discourse analysis technique. Perceptions were classified into 18 categories. The most cited category was organoleptic characteristics of the edible part; more specifically, flavor. Flavor was the main positive perception associated with plant use, whereas the negative perception that most limited the use of these plants was cultural acceptance. Perceptions of the use of wild edible plants were directly correlated with both interviewee age and income. Within the studied community, people's perceptions of native wild edible plants are related to their consumption. Moreover, the study found that young people have less interest in these resources. These findings suggest that changing perceptions may affect the conservation of plants, traditional practices and the associated knowledge.

  4. The physico-chemical basis for the freeze-drying process.

    PubMed

    MacKenzie, A P

    1976-10-01

    To the extent that the final form and quality of a freeze-dried product depends on the way the freeze-drying is conducted, an understanding of the many factors involved is most important. The numerous effects of the design and mode of operation of the freeze-drying equipment on the course of the process need to be known, as do the properties intrinsic to the material to be freeze-dried. Much can be learned and predicted from the study of the "supplemented phase diagram", a series of experimental plots describing the equilibrium and the non-equilibrium phase behavior of the system in question. Such diagrams map and distinguish eutectic and amorphous phase behavior. Further information is available from gravimetric studies allowing the construction of "desorption isotherms", the plots describing the loss of sorbed water accompanying the sublimation of ice, frequently termed "secondary drying". These plots relate the water retained by the product to the "water activity", or relative humidity at different temperatures. Observations in the freeze-drying microscope contribute additional information, in that they reveal the actual course of the process at the microscopic level. These and other laboratory findings facilitate the analysis and comparison of pilot-plant and commercical scale processing experiences. Where scientific and engineering factors appear to interrelate, the nature and extent of the interdependence can often be determined.

  5. Physicochemical characterization and water vapor sorption of organic solution advanced spray-dried inhalable trehalose microparticles and nanoparticles for targeted dry powder pulmonary inhalation delivery.

    PubMed

    Li, Xiaojian; Mansour, Heidi M

    2011-12-01

    Novel advanced spray-dried inhalable trehalose microparticulate/nanoparticulate powders with low water content were successfully produced by organic solution advanced spray drying from dilute solution under various spray-drying conditions. Laser diffraction was used to determine the volumetric particle size and size distribution. Particle morphology and surface morphology was imaged and examined by scanning electron microscopy. Hot-stage microscopy was used to visualize the presence/absence of birefringency before and following particle engineering design pharmaceutical processing, as well as phase transition behavior upon heating. Water content in the solid state was quantified by Karl Fisher (KF) coulometric titration. Solid-state phase transitions and degree of molecular order were examined by differential scanning calorimetry (DSC) and powder X-ray diffraction, respectively. Scanning electron microscopy showed a correlation between particle morphology, surface morphology, and spray drying pump rate. All advanced spray-dried microparticulate/nanoparticulate trehalose powders were in the respirable size range and exhibited a unimodal distribution. All spray-dried powders had very low water content, as quantified by KF. The absence of crystallinity in spray-dried particles was reflected in the powder X-ray diffractograms and confirmed by thermal analysis. DSC thermal analysis indicated that the novel advanced spray-dried inhalable trehalose microparticles and nanoparticles exhibited a clear glass transition (T(g)). This is consistent with the formation of the amorphous glassy state. Spray-dried amorphous glassy trehalose inhalable microparticles and nanoparticles exhibited vapor-induced (lyotropic) phase transitions with varying levels of relative humidity as measured by gravimetric vapor sorption at 25°C and 37°C.

  6. Fundamentals of freeze-drying.

    PubMed

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    Given the increasing importance of reducing development time for new pharmaceutical products, formulation and process development scientists must continually look for ways to "work smarter, not harder." Within the product development arena, this means reducing the amount of trial and error empiricism in arriving at a formulation and identification of processing conditions which will result in a quality final dosage form. Characterization of the freezing behavior of the intended formulation is necessary for developing processing conditions which will result in the shortest drying time while maintaining all critical quality attributes of the freeze-dried product. Analysis of frozen systems was discussed in detail, particularly with respect to the glass transition as the physical event underlying collapse during freeze-drying, eutectic mixture formation, and crystallization events upon warming of frozen systems. Experiments to determine how freezing and freeze-drying behavior is affected by changes in the composition of the formulation are often useful in establishing the "robustness" of a formulation. It is not uncommon for seemingly subtle changes in composition of the formulation, such as a change in formulation pH, buffer salt, drug concentration, or an additional excipient, to result in striking differences in freezing and freeze-drying behavior. With regard to selecting a formulation, it is wise to keep the formulation as simple as possible. If a buffer is needed, a minimum concentration should be used. The same principle applies to added salts: If used at all, the concentration should be kept to a minimum. For many proteins a combination of an amorphous excipient, such as a disaccharide, and a crystallizing excipient, such as glycine, will result in a suitable combination of chemical stability and physical stability of the freeze-dried solid. Concepts of heat and mass transfer are valuable in rational design of processing conditions. Heat transfer by conduction

  7. Microbial safety of air-dried and rewetted biosolids.

    PubMed

    Rouch, Duncan A; Mondal, Tania; Pai, Sneha; Glauche, Florian; Fleming, Vennessa A; Thurbon, Nerida; Blackbeard, Judy; Smith, Stephen R; Deighton, Margaret

    2011-06-01

    To assess microbial safety of treated sewage sludge (biosolids), we examined the inactivation of microbial indicators for potential bacterial, viral and protozoan pathogens. The levels of indicators were determined throughout the air-drying and storage phases of anaerobically digested sewage sludge. Samples were collected from two wastewater treatment plants (WWTPS) in Victoria, Australia. Established methods were applied for analysis of bacteria and coliphages, based on membrane filtration and layered plates, respectively. In the pan drying phase, the prevalence of Escherichia coli was reduced by >5 log10 compared with sludge entering the pan. Thus, after pan drying of 8-11 months at WWTP A and 15 months at WWTP B, the numbers of E. coli were reduced to below 10(2) cfu/g dry solids (DS). This level is acceptable for unrestricted use in agriculture in Australia (P1 treatment grade), the UK (enhanced treatment status) and the USA (Class A pathogen reduction). Coliphage numbers also decreased substantially during the air-drying phase, indicating that enteric viruses are also likely to be destroyed during this phase. Clostridium perfringens appeared to be an overly conservative indicator. Survival, but not regrowth, of E. coli or Salmonella was observed in rewetted biosolids (15-20% moisture content), after being seeded with these species, indicating a degree of safety of stored biosolids upon rewetting by rain.

  8. Phenolic composition of basil plants is differentially altered by plant nutrient status and inoculation with mycorrhizal fungi

    USDA-ARS?s Scientific Manuscript database

    Quality of basil plants (Ocimum basilicum) used in certain fresh and dry products is a function of its production of secondary metabolites, including phenolic compounds. Nutrient availability, particularly phosphorus (P), can alter plant production of secondary metabolites, and root infection by arb...

  9. Plant taphonomy in incised valleys: Implications for interpreting paleoclimate from fossil plants

    USGS Publications Warehouse

    Demko, T.M.; Dubiel, R.F.; Parrish, Judith T.

    1998-01-01

    Paleoclimatic interpretations of the Upper Triassic Chinle Formation (Colorado Plateau) based on plants conflict with those based on the sedimentary rocks. The plants are suggestive of a humid, equable climate, whereas the rocks are more consistent with deposition under highly seasonal precipitation and ground-water conditions. Fossil plant assemblages are limited to the lower members of the Chinle Formation, which were deposited within incised valleys that were cut into underlying Lower to Middle Triassic and older rocks. In contrast, the upper members of the formation, which were deposited across the fluvial plain after the incised valleys were filled, have few preserved fossil plants. The taphonomic characteristics of the plant fossil assemblages, within the stratigraphic and hydrologic context of the incised valley-fill sequence, explain the vertical and lateral distribution of these assemblages. The depositional, hydrological, and near-surface geochemical conditions were more conducive to preservation of the plants. Fossil plant assemblages in fully terrestrial incised-valley fills should be taphonomically biased toward riparian wetland environments. If those assemblages are used to interpret paleoclimate, the paleoclimatic interpretations will also be biased. The bias may be particularly strong in climates such as those during deposition of the Chinle Formation, when the riparian wetlands may reflect local hydrologic conditions rather than regional climate, and should be taken into account when using these types of plant assemblages in paleoclimatic interpretations.

  10. Infrared Drying as a Quick Preparation Method for Dried Tangerine Peel

    PubMed Central

    Xu, Mingyue; Zhao, Chengying; Ahmad, Aftab; Zhang, Huijuan; Xiao, Hang

    2017-01-01

    To establish the most convenient and effective method to dry tangerine peels, different methods (sun drying, hot-air drying, freeze drying, vacuum drying, and medium- and short-wave infrared drying) were exploited. Our results indicated that medium- and short-wave infrared drying was the best method to preserve nutraceutical components; for example, vitamin C was raised to 6.77 mg/g (D.W.) from 3.39 mg/g (sun drying). Moreover, the drying time can be shortened above 96% compared with sun drying. Importantly, the efficiency of DPPH radical scavenging was enhanced from 26.66% to 55.92%. These findings would provide a reliable and time-saving methodology to produce high-quality dried tangerine peels. PMID:29348752

  11. Desiccation of a Sessile Drop of Blood: Cracks Formation and Delamination

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Brutin, David

    2011-11-01

    The evaporation of drops of biological fluids has been studied since few years du to several applications in medical fields such as medical tests, drug screening, biostabilization... The evaporation of a drop of whole blood leads to the formation of final typical pattern of cracks. Flow motion, adhesion, gelation and fracturation all occur during the evaporation of this complex matter. During the drying, a sol-gel transition develops. The drying kinetics is explained by a simple model of evaporation taking account of the evolution of the gelation front. The system solidifies and when stresses are too important, cracks nucleate. The cracks formation and the structure of the crack pattern are investigated. The initial crack spacing is found in good agreement with the implementation in open geometry of the model of cracks formation induced by evaporation proposed by Allain and Limat. Finally, the drop is still drying after the end of the formation of cracks which leads, like in the situation of colloid suspensions, to the observation of a delamination phenomenon.

  12. The Characters of Dry Soil Layer on the Loess Plateau in China and Their Influencing Factors

    PubMed Central

    Yan, Weiming; Deng, Lei; Zhong, Yangquanwei; Shangguan, Zhouping

    2015-01-01

    A dry soil layer (DSL) is a common soil desiccation phenomenon that generally forms at a particular depth in the soil profile because of climatic factors and poor land management, and this phenomenon can influence the water cycle and has been observed on the Loess Plateau of China and other similar regions around the world. Therefore, an investigation of the DSL formation depth (DSLFD), thickness (DSLT) and mean water content (MWDSL) on the Loess Plateau can provide valuable information. This paper synthesized 69 recent publications (1,149 observations of DSLs from 73 sites) that focused on DSLs in this region, and the results indicated that DSLs are significantly affected by climatic and vegetation factors. The mean annual precipitation had a significant positive relationship with DSLFD (p = 0.0003) and MWDSL (p<0.0001) and a negative relationship with DSLT (p = 0.0071). Crops had the lowest DSLT and highest MWDSL values compared with other vegetation types. A significant correlation was observed between the occurrence of DSLs and the years since planting for grasses, shrubs, trees and orchards, and the severity of DSLs increased with increasing planting years and wheat yield. Our results suggest that optimizing land-use management can mitigate DSL formation and development on the Loess Plateau. Understanding the dominant factors affecting DSLs will provide information for use in guidelines for the sustainable development of economies and restoration of natural environments experiencing water deficiencies. PMID:26241046

  13. The Characters of Dry Soil Layer on the Loess Plateau in China and Their Influencing Factors.

    PubMed

    Yan, Weiming; Deng, Lei; Zhong, Yangquanwei; Shangguan, Zhouping

    2015-01-01

    A dry soil layer (DSL) is a common soil desiccation phenomenon that generally forms at a particular depth in the soil profile because of climatic factors and poor land management, and this phenomenon can influence the water cycle and has been observed on the Loess Plateau of China and other similar regions around the world. Therefore, an investigation of the DSL formation depth (DSLFD), thickness (DSLT) and mean water content (MWDSL) on the Loess Plateau can provide valuable information. This paper synthesized 69 recent publications (1,149 observations of DSLs from 73 sites) that focused on DSLs in this region, and the results indicated that DSLs are significantly affected by climatic and vegetation factors. The mean annual precipitation had a significant positive relationship with DSLFD (p = 0.0003) and MWDSL (p<0.0001) and a negative relationship with DSLT (p = 0.0071). Crops had the lowest DSLT and highest MWDSL values compared with other vegetation types. A significant correlation was observed between the occurrence of DSLs and the years since planting for grasses, shrubs, trees and orchards, and the severity of DSLs increased with increasing planting years and wheat yield. Our results suggest that optimizing land-use management can mitigate DSL formation and development on the Loess Plateau. Understanding the dominant factors affecting DSLs will provide information for use in guidelines for the sustainable development of economies and restoration of natural environments experiencing water deficiencies.

  14. Plant Hormones: How They Affect Root Formation.

    ERIC Educational Resources Information Center

    Reinhard, Diana Hereda

    This science study aid, produced by the U.S. Department of Agriculture, includes a series of plant rooting activities for secondary science classes. The material in the pamphlet is written for students and includes background information on plant hormones, a vocabulary list, and five learning activities. Objectives, needed materials, and…

  15. Different Seed Selection and Conservation Practices for Fresh Market and Dried Chile Farmers in Aguascalientes, Mexico

    PubMed Central

    de Jesús Luna-Ruíz, José; Gepts, Paul

    2010-01-01

    Different Seed Selection and Conservation Practices for Fresh Market and Dried Chile Farmers in Aguascalientes, Mexico. The process of selecting and saving seed is the most basic and oldest of agricultural practices. In today’s modern and highly capital-intensive agriculture, seeds are often treated like another chemical input. This study sought to examine seed selection and saving practices among chile farmers in Aguascalientes, Mexico, where both industrial and traditional agriculture are practiced. We observed a clear division among farmers who plant chile peppers commercially. Sixty-eight chile pepper farmers were surveyed in order to document seed selection and saving practices. Fifteen respondents (22%) planted chile peppers destined for the fresh market and all utilized purchased commercial seed of F1 hybrid varieties. Fifty-three farmers (78%) planted chiles to be dried and either saved their own or purchased seeds that others had saved and selected. Farmers who saved their own seed sought to maintain an ideotype, rather than directionally select for certain traits, much like Cleveland et al. (2000) chronicled in central Mexican maize farmers. Farmers would benefit from a participatory plant-breeding program in order to maintain productive seed stock for the continued cultivation of dried chile pepper in the state. PMID:21212817

  16. Different Seed Selection and Conservation Practices for Fresh Market and Dried Chile Farmers in Aguascalientes, Mexico.

    PubMed

    Kraft, Kraig H; de Jesús Luna-Ruíz, José; Gepts, Paul

    2010-12-01

    Different Seed Selection and Conservation Practices for Fresh Market and Dried Chile Farmers in Aguascalientes, Mexico. The process of selecting and saving seed is the most basic and oldest of agricultural practices. In today's modern and highly capital-intensive agriculture, seeds are often treated like another chemical input. This study sought to examine seed selection and saving practices among chile farmers in Aguascalientes, Mexico, where both industrial and traditional agriculture are practiced. We observed a clear division among farmers who plant chile peppers commercially. Sixty-eight chile pepper farmers were surveyed in order to document seed selection and saving practices. Fifteen respondents (22%) planted chile peppers destined for the fresh market and all utilized purchased commercial seed of F1 hybrid varieties. Fifty-three farmers (78%) planted chiles to be dried and either saved their own or purchased seeds that others had saved and selected. Farmers who saved their own seed sought to maintain an ideotype, rather than directionally select for certain traits, much like Cleveland et al. (2000) chronicled in central Mexican maize farmers. Farmers would benefit from a participatory plant-breeding program in order to maintain productive seed stock for the continued cultivation of dried chile pepper in the state.

  17. The iron content and ferritin contribution in fresh, dried, and toasted nori, Pyropia yezoensis.

    PubMed

    Masuda, Taro; Yamamoto, Ami; Toyohara, Haruhiko

    2015-01-01

    Iron is one of the essential trace elements for humans. In this study, the iron contents in fresh, dried, and toasted nori (Pyropia yezoensis) were analyzed. The mean iron content of fresh, dried, and toasted nori were 19.0, 22.6, and 26.2 mg/100 g (dry weight), respectively. These values were superior to other food of plant origin. Furthermore, most of the iron in nori was maintained during processing, such as washing, drying, and toasting. Then, the form of iron in fresh, dried, and toasted nori was analyzed. As a result, an iron storage protein ferritin contributed to iron storage in raw and dried nori, although the precise rate of its contribution is yet to be determined, while ferritin protein cage was degraded in the toasted nori. It is the first report that verified the ferritin contribution to iron storage in such edible macroalgae with commercial importance.

  18. Simultaneous column chromatographic extraction and purification of abscisic acid in peanut plants for direct HPLC analysis.

    PubMed

    Zhang, Ya-Wen; Fan, Wei-Wei; Li, Hui; Ni, He; Han, Han-Bing; Li, Hai-Hang

    2015-10-01

    Abscisic acid (ABA), a universal signaling molecule, plays important roles in regulating plant growth, development and stress responses. The low contents and complex components in plants make it difficult to be accurately analyzed. A novel one-step sample preparation method for ABA in plants was developed. Fresh peanut (Arachis hypogaea) plant materials were fixed by oven-drying, microwave drying, boiling or Carnoy's fixative, and loaded onto a mini-preparing column. After washed the impurities, ABA was eluted with a small amount of solvent. ABA in plant materials was completely extracted and purified in 2mL solution and directly analyzed by HPLC, with a 99.3% recovery rate. Multiple samples can be simultaneously prepared. Analyses using this method indicated that the endogenous ABA in oven-dried peanut leaves increased 20.2-fold from 1.01 to 20.37μgg(-1) dry weight within 12h and then decreased in 30% polyethylene glycol 6000 treated plants, and increased 3.34-fold from 0.85 to 2.84μgg(-1) dry weight in 5 days and then decreased in soil drought treated plants. The method combined the column chromatographic extraction and solid-phase separation technologies in one step and can completely extracted plant endogenous ABA in a purified and highly concentrated form for direct HPLC analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Analyzing the edge effects in a Brazilian seasonally dry tropical forest.

    PubMed

    Arruda, D M; Eisenlohr, P V

    2016-02-01

    Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests) they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I) Are there differences in canopy cover along the edge-interior gradient during the dry season? (II) How does the microclimate (air temperature, soil temperature, and relative humidity) vary along that gradient? (III) How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV) Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.

  20. Anti-infective effects of Brazilian Caatinga plants against pathogenic bacterial biofilm formation.

    PubMed

    Silva, Laura Nunes; Trentin, Danielle da Silva; Zimmer, Karine Rigon; Treter, Janine; Brandelli, Clara Lia Costa; Frasson, Amanda Piccoli; Tasca, Tiana; da Silva, Alexandre Gomes; da Silva, Márcia Vanusa; Macedo, Alexandre José

    2015-03-01

    The local communities living in the Brazilian Caatinga biome have a significant body of traditional knowledge on a considerable number of medicinal plants used to heal several maladies. Based on ethnopharmacological data, this study screened 23 aqueous plant extracts against two well-known models of biofilm-forming bacteria: Staphylococcus epidermidis and Pseudomonas aeruginosa. Crystal violet assay and scanning electron microscopy (SEM) were used to evaluate the effect of extracts on biofilm formation and measurements of the absorbance at 600 nm to assess bacterial growth. Selected extracts were investigated regarding the cytotoxicity by MTT assay using mammal cells and the qualitative phytochemical fingerprint by thin layer chromatography. Harpochilus neesianus Mart. ex Nees. (Acanthaceae) leaves, Apuleia leiocarpa Vogel J. F. Macbr. (Fabaceae), and Poincianella microphylla Mart. ex G. Don L. P. Queiroz (Fabaceae) fruits showed non-biocidal antibiofilm action against S. epidermidis with activities of 69, 52, and 63%, respectively. SEM confirmed that biofilm structure was strongly prevented and that extracts promoted overproduction of the matrix and/or bacterial morphology modification. Poincianella microphylla demonstrated toxicity at 4.0 mg/mL and 2.0 mg/mL, A. leiocarpa presented toxicity only at 4.0 mg/mL, whereas H. neesianus presented the absence of toxicity against Vero cell line. Preliminary phytochemical analysis revealed the presence of flavonoids, terpenoids, steroids, amines, and polyphenols. This work provides a scientific basis which may justify the ethnopharmacological use of the plants herein studied, indicating extracts that possess limited mammal cytotoxicity in vitro and a high potential as a source of antibiofilm drugs prototypes.

  1. A symbiosis-dedicated SYNTAXIN OF PLANTS 13II isoform controls the formation of a stable host-microbe interface in symbiosis.

    PubMed

    Huisman, Rik; Hontelez, Jan; Mysore, Kirankumar S; Wen, Jiangqi; Bisseling, Ton; Limpens, Erik

    2016-09-01

    Arbuscular mycorrhizal (AM) fungi and rhizobium bacteria are accommodated in specialized membrane compartments that form a host-microbe interface. To better understand how these interfaces are made, we studied the regulation of exocytosis during interface formation. We used a phylogenetic approach to identify target soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (t-SNAREs) that are dedicated to symbiosis and used cell-specific expression analysis together with protein localization to identify t-SNAREs that are present on the host-microbe interface in Medicago truncatula. We investigated the role of these t-SNAREs during the formation of a host-microbe interface. We showed that multiple syntaxins are present on the peri-arbuscular membrane. From these, we identified SYNTAXIN OF PLANTS 13II (SYP13II) as a t-SNARE that is essential for the formation of a stable symbiotic interface in both AM and rhizobium symbiosis. In most dicot plants, the SYP13II transcript is alternatively spliced, resulting in two isoforms, SYP13IIα and SYP13IIβ. These splice-forms differentially mark functional and degrading arbuscule branches. Our results show that vesicle traffic to the symbiotic interface is specialized and required for its maintenance. Alternative splicing of SYP13II allows plants to replace a t-SNARE involved in traffic to the plasma membrane with a t-SNARE that is more stringent in its localization to functional arbuscules. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Drying and decontamination of pistachios with sequential infrared drying, tempering and hot air drying

    USDA-ARS?s Scientific Manuscript database

    The pistachio industry is in need of improved drying technology as the current hot air drying has low energy efficiency and drying rate and high labor cost and also does not produce safe products against microbial contamination. In the current study, dehulled and water- sorted pistachios with a mois...

  3. Drying hardwood lumber

    Treesearch

    Joseph Denig; Eugene M. Wengert; William T. Simpson

    2000-01-01

    Drying Hardwood Lumber focuses on common methods for drying lumber of different thickness, with minimal drying defects, for high quality applications. This manual also includes predrying treatments that, when part of an overall quality-oriented drying system, reduce defects and improve drying quality, especially of oak lumber. Special attention is given to drying white...

  4. Foliar loading and metabolic assimilation of dry deposited nitric acid air pollutants by trees

    Treesearch

    Pamela E. Padgett; Hillary Cook; Andrzej Bytnerowicz; Robert L. Heath

    2009-01-01

    Dry deposition of nitric acid vapor (HNO(3)) is a major contributor to eutrophication of natural ecosystems. Although soil fertilization by nitrogen deposition is considered to be the primary pathway for changes in plant nutrient status and shifts in ecological structure, the aerial portion of plants offer many times the surface area in which to...

  5. Endocarpic microorganisms of two types of windrow-dried peanut fruit (Arachis hypogaea L.).

    PubMed

    Porter, D M; Garren, K H

    1970-07-01

    The endocarpic microorganisms of peanut fruit dried in either a random windrow (plants left as they fell from the digger) or an inverted windrow (plants inverted to expose fruit to sunlight) were different from that of freshly dug fruit. Chaetomium, Penicillium, Trichoderma, Rhizoctonia, and Fusarium were the dominant fungi found associated with shells (pericarp) of freshly dug fruit. The dominant fungi of shells of windrowed fruit included Chaetomium, Rhizoctonia, Fusarium, Sclerotium, and Alternaria. Seeds of freshly dug fruit were dominated by Penicillium and Aspergillus. The only dominant species in seed of windrowed fruit was Penicillium. Microorganisms were isolated from shells and seed of freshly dug fruit at a frequency of 79% and 52%, respectively. The percentage of infestation was reduced by drying in the field. This was particularly true of the inverted windrow. The proportion of shells and seed infested with a microorganism was reduced 13% and 36%, respectively, after field drying for 5 to 7 days in random and inverted windrows. Microorganisms were isolated much more frequently from shell pieces (73%) than from seed (36%).

  6. Generation of 1:1 Carbamazepine:Nicotinamide cocrystals by spray drying.

    PubMed

    Patil, Shashank P; Modi, Sameer R; Bansal, Arvind K

    2014-10-01

    The present study investigates the potential of spray drying as a technique for generation of pharmaceutical cocrystals. Carbamazepine-Nicotinamide cocrystal (CNC) was chosen as model cocrystal system for this study. Firstly, CNC was generated using liquid assisted grinding and used for generation of phase solubility diagram (PSD) and ternary phase diagram (TPD). Both PSD and TPD were carefully evaluated for phase behavior of CNC when equilibrated with solvent. The undersaturated region with respect to CNC, as depicted by TPD, was selected as target region to initiate cocrystallization experiments. Various points in this region, representative of different compositions of Carbamazepine, Nicotinamide and CNC, were selected and spray drying was carried out. The spray dried product was characterized for solid state properties and was compared with CNC generated by liquid assisted grinding. Spray drying successfully generated CNC of similar quality as those generated by liquid assisted grinding. Moreover, there was no significant impact of process variables on formation of CNC. Spray drying, owing to its simplicity and industrial scalability, can be a promising method for large scale cocrystal generation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units.

    PubMed

    Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin

    2014-12-01

    An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. [Drying characteristics and apparent change of sludge granules during drying].

    PubMed

    Ma, Xue-Wen; Weng, Huan-Xin; Zhang, Jin-Jun

    2011-08-01

    Three different weight grades of sludge granules (2.5, 5, 10 g) were dried at constant temperature of 100, 200, 300, 400 and 500 degrees C, respectively. Then characteristics of weight loss and change of apparent form during sludge drying were analyzed. Results showed that there were three stages during sludge drying at 100-200 degrees C: acceleration phase, constant-rate phase, and falling-rate phase. At 300-500 degrees C, there were no constant-rate phase, but due to lots of cracks generated at sludge surface, average drying rates were still high. There was a quadratic nonlinear relationship between average drying rate and drying temperature. At 100-200 degrees C, drying processes of different weight grade sludge granules were similar. At 300-500 degrees C, drying processes of same weight grade of sludge granules were similar. Little organic matter decomposed till sludge burning at 100-300 degrees C, while some organic matter began to decompose at the beginning of sludge drying at 400-500 degrees C.

  9. Phase formation of V{sub 2}O{sub 5}.xNb{sub 2}O{sub 5} compounds via gels and freeze-dried precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langbein, Hubert; Mayer-Uhma, Tobias

    2009-03-05

    An X-ray powder diffraction study of the phase formation in the system V{sub 2}O{sub 5}/Nb{sub 2}O{sub 5} is performed. Freeze-dried ammonium vanadate and ammonium oxalato niobate, alkoxide-derived xerogels and a mixture of active oxides are used as precursors to compare the resulting phase composition. Thermal decomposition of the freeze-dried precursor is monitored with DTA/TG and mass spectrometry. In the quasi-binary system V{sub 2}O{sub 5}-Nb{sub 2}O{sub 5} metastable VNbO{sub 5}, V{sub 4}Nb{sub 18}O{sub 55}, VNb{sub 9}O{sub 25} and solid solutions of V{sub 2}O{sub 5} in TT-Nb{sub 2}O{sub 5} as also thermodynamically stable VNb{sub 9}O{sub 25} exist. The thermal decomposition of freeze-driedmore » vanadate-oxalatoniobate solution allows the synthesis of all these phases in a relative simple manner. Structural relationships between an intermediate phase and the product, or, in the case of solid-state reactions, between one of the starting oxide and the product, favour the desired reaction. Therefore, the structure of a former phase influences or directs the structure of the product similar to a topotactic reaction.« less

  10. Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro.

    PubMed

    de Souza, Alessandra A; Takita, Marco A; Coletta-Filho, Helvécio D; Caldana, Camila; Yanai, Giane M; Muto, Nair H; de Oliveira, Regina C; Nunes, Luiz R; Machado, Marcos A

    2004-08-15

    A biofilm is a community of microorganisms attached to a solid surface. Cells within biofilms differ from planktonic cells, showing higher resistance to biocides, detergent, antibiotic treatments and host defense responses. Even though there are a number of gene expression studies in bacterial biofilm formation, limited information is available concerning plant pathogen. It was previously demonstrated that the plant pathogen Xylella fastidiosa could grow as a biofilm, a possibly important factor for its pathogenicity. In this study we utilized analysis of microarrays to specifically identify genes expressed in X. fastidiosa cells growing in a biofilm, when compared to planktonic cells. About half of the differentially expressed genes encode hypothetical proteins, reflecting the large number of ORFs with unknown functions in bacterial genomes. However, under the biofilm condition we observed an increase in the expression of some housekeeping genes responsible for metabolic functions. We also found a large number of genes from the pXF51 plasmid being differentially expressed. Some of the overexpressed genes in the biofilm condition encode proteins involved in attachment to surfaces. Other genes possibly confer advantages to the bacterium in the environment that it colonizes. This study demonstrates that the gene expression in the biofilm growth condition of the plant pathogen X. fastidiosa is quite similar to other characterized systems.

  11. Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems.

    PubMed

    Ballesteros, Daniel; Walters, Christina

    2011-11-01

    Slow movement of molecules in glassy matrices controls the kinetics of chemical and physical reactions in dry seeds. Variation in physiological activity among seeds suggests that there are differences in mobility among seed glasses. Testing this hypothesis is difficult because few tools are available to measure molecular mobility within dry seeds. Here, motional properties within dry pea cotyledons were assessed using dynamic mechanical analysis. The technique detected several molecular relaxations between -80 and +80°C and gave a more detailed description of water content-temperature effects on molecular motion than previously understood from studies of glass formation in seeds at glass transition (Tg). Diffusive movement is delimited by the α relaxation, which appears to be analogous to Tg. β and γ relaxations were also detected at temperatures lower than α relaxations, clearly demonstrating intramolecular motion within the glassy matrix of the pea cotyledon. Glass transitions, or the mechanical counterpart α relaxation, appear to be less relevant to seed aging during dry storage than previously thought. On the other hand, β relaxation occurs at temperature and moisture conditions typically used for seed storage and has established importance for physical aging of synthetic polymer glasses. Our data show that the nature and extent of molecular motion varies considerably with moisture and temperature, and that the hydrated conditions used for accelerated aging experiments and ultra-dry conditions sometimes recommended for seed storage give greater molecular mobility than more standard seed storage practices. We believe characterization of molecular mobility is critical for evaluating how dry seeds respond to the environment and persist through time. Published 2011. This article is a US Government work and is in the public domain in the USA.

  12. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.; Lv, Q.

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO 2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO 2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO 2 Brayton cycle is that it enablesmore » dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately« less

  13. Ecohydrological Consequences of Critical Zone Structure in the Franciscan Formation, Northern California Coast Ranges

    NASA Astrophysics Data System (ADS)

    Hahm, W. J.; Dietrich, W. E.; Dawson, T. E.; Lovill, S.; Rempe, D.

    2016-12-01

    Water availability regulates ecosystem function, particularly in seasonally dry climates where lack of moisture in the growing season acts as an ecological bottleneck. Water within hillslopes is extracted by plants during transpiration and also delivered to streams to support baseflow for riparian ecosystems and human use. How water is stored and then released from hillslopes is strongly influenced by the structure of the critical zone (CZ) that emerges from the complex interaction of lithology, climate, and tectonics. Here we show how contrasting CZ development has extreme ecohydrological consequences in the seasonally dry climate of the Northern California Coast Ranges. To explore how the CZ transmits and stores water, we studied hydrologic dynamics at two sites with similar climate across belts of the Franciscan Formation in the Eel River CZO. We monitored plant water use, precipitation inputs and stream runoff, groundwater and vadose zone moisture dynamics and documented near-surface hydraulic conductivity and runoff-generation processes. We investigated CZ structure via boreholes and geophysical methods. We find that CZ thickness determines the extent to which hillslopes `shed' or `store' wet season precipitation, and fundamentally controls the structure of plant communities and summer low-flows. In a climate where winter precipitation regularly exceeds 2000 mm, the thin CZ of the sheared argillite matrix Central belt rapidly fills, resulting in wet-season saturation overland flow that drives flashy winter runoff in channels that then quickly run dry in the early summer. The maximum unsaturated moisture storage of approximately 200 mm is sufficient to host an ecologically diverse yet sparsely forested oak savanna. In contrast, the thick CZ of the interbedded argillite and greywacke Coastal belt stores up to 600 mm of winter precipitation in the unsaturated zone and a seasonal groundwater system within fractured bedrock provides year-round flow to channels

  14. Correlation between plant physiology and CO2 removable

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Shamsuri, Mohd Mahathir Suhaimi; Hariri, Azian; Kadir, Aeslina Abdul; Idris, Ahmad Fu'ad; Afandi, Azizi

    2017-09-01

    Certain plants that are able to live in the building are known as indoor plants. Plants have tolerance with indoor environment in order to survive. Usually these plants are able to improve indoor air quality (IAQ). Absorption of carbon dioxide (CO2) by plants is one of the indicators that plants are still alive during photosynthesis process. The possibility of plants structure (plant physiology) to affect CO2 absorption had been the concerns of former researchers. This research intends to study the significant of plant structure (leaf area, fresh weight, and dry weight) that leads to reducing the concentration of CO2 by seven plant species (Anthurium, Dumb Cane, Golden Pothos, Kadaka Fern, Prayer Plants, Spider Plants, and Syngonium). The data of CO2 reduction by plants has been obtained from previous studies. Based on results show that, the leaf area is the most contributing the significant effect to the plant absorb CO2 compare to fresh weight and dry weight. It can be prove by Pearson Correlation, where only the value of leaf area is more than 0.5 for every four conditions. This study can be conclude that the leaf area is quite plays an important role to the plant treat air from CO2, while concentration of light and CO2 will become catalytic factor for the plants improve their photosynthesis process.

  15. Inherited Biotic Protection in a Neotropical Pioneer Plant

    PubMed Central

    Dejean, Alain; Corbara, Bruno; Leroy, Céline; Delabie, Jacques H. C.; Rossi, Vivien; Céréghino, Régis

    2011-01-01

    Chelonanthus alatus is a bat-pollinated, pioneer Gentianaceae that clusters in patches where still-standing, dried-out stems are interspersed among live individuals. Flowers bear circum-floral nectaries (CFNs) that are attractive to ants, and seed dispersal is both barochorous and anemochorous. Although, in this study, live individuals never sheltered ant colonies, dried-out hollow stems - that can remain standing for 2 years - did. Workers from species nesting in dried-out stems as well as from ground-nesting species exploited the CFNs of live C. alatus individuals in the same patches during the daytime, but were absent at night (when bat pollination occurs) on 60.5% of the plants. By visiting the CFNs, the ants indirectly protect the flowers - but not the plant foliage - from herbivorous insects. We show that this protection is provided mostly by species nesting in dried-out stems, predominantly Pseudomyrmex gracilis. That dried-out stems remain standing for years and are regularly replaced results in an opportunistic, but stable association where colonies are sheltered by one generation of dead C. alatus while the live individuals nearby, belonging to the next generation, provide them with nectar; in turn, the ants protect their flowers from herbivores. We suggest that the investment in wood by C. alatus individuals permitting still-standing, dried-out stems to shelter ant colonies constitutes an extended phenotype because foraging workers protect the flowers of live individuals in the same patch. Also, through this process these dried-out stems indirectly favor the reproduction (and so the fitness) of the next generation including both their own offspring and that of their siblings, all adding up to a potential case of inclusive fitness in plants. PMID:21483861

  16. Investigation of the chemical pathway of gaseous nitrogen dioxide formation during flue gas desulfurization with dry sodium bicarbonate injection

    NASA Astrophysics Data System (ADS)

    Stein, Antoinette Weil

    The chemical reaction pathway for the viable flue gas desulfurization process, dry sodium bicarbonate injection, was investigated to mitigate undesirable plume discoloration. Based on a foundation of past findings, a simplified three-step reaction pathway was hypothesized for the formation of the plume-discoloring constituent, NO2. As the first step, it was hypothesized that sodium sulfite formed by sodium bicarbonate reaction with flue gas SO 2. As the second step, it was hypothesized that sodium nitrate formed by sodium sulfite reaction with flue gas NO. And as the third step, it was hypothesized that NO2 and sodium sulfate formed by sodium nitrate reaction with SO2. The second and third hypothesized steps were experimentally investigated using an isothermal fixed bed reactor. As reported in the past, technical grade sodium sulfite was found to be un-reactive with NO and O2. Freshly prepared sodium sulfite, maintained unexposed to moist air, was shown to react with NO and O2 resulting in a mixture of sodium nitrite and sodium nitrate together with a significant temperature rise. This reaction was found to proceed only when oxygen was present in the flue gas. As reported in the past, technical grade sodium nitrate was shown to be un-reactive with SO2. But freshly formed sodium nitrate kept unexposed to humidity was found to be reactive with SO2 and O 2 resulting in the formation of NO2 and sodium sulfate polymorphic Form I. The NO2 formation by this reaction was shown to be temperature dependent with maximum formation at 175°C. Plume mitigation methods were studied based on the validated three-step reaction pathway. Mitigation of NO2 was exhibited by limiting oxygen concentration in the flue gas to a level below 5%. It was also shown that significant NO2 mitigation was achieved by operating below 110°C or above 250°C. An innovative NO2 mitigation method was patented as a result of the findings of this study. The patented process incorporated a process step of

  17. The decrease in the IgG-binding capacity of intensively dry heated whey proteins is associated with intense Maillard reaction, structural changes of the proteins and formation of RAGE-ligands.

    PubMed

    Liu, Fahui; Teodorowicz, Małgorzata; van Boekel, Martinus A J S; Wichers, Harry J; Hettinga, Kasper A

    2016-01-01

    Heat treatment is the most common way of milk processing, inducing structural changes as well as chemical modifications in milk proteins. These modifications influence the immune-reactivity and allergenicity of milk proteins. This study shows the influence of dry heating on the solubility, particle size, loss of accessible thiol and amino groups, degree of Maillard reaction, IgG-binding capacity and binding to the receptor for advanced glycation end products (RAGE) of thermally treated and glycated whey proteins. A mixture of whey proteins and lactose was dry heated at 130 °C up to 20 min to mimic the baking process in two different water activities, 0.23 to mimic the heating in the dry state and 0.59 for the semi-dry state. The dry heating was accompanied by a loss of soluble proteins and an increase in the size of dissolved aggregates. Most of the Maillard reaction sites were found to be located in the reported conformational epitope area on whey proteins. Therefore the structural changes, including exposure of the SH group, SH-SS exchange, covalent cross-links and the loss of available lysine, subsequently resulted in a decreased IgG-binding capacity (up to 33%). The binding of glycation products to RAGE increased with the heating time, which was correlated with the stage of the Maillard reaction and the decrease in the IgG-binding capacity. The RAGE-binding capacity was higher in samples with a lower water activity (0.23). These results indicate that the intensive dry heating of whey proteins as it occurs during baking may be of importance to the immunological properties of allergens in cow's milk, both due to chemical modifications of the allergens and formation of AGEs.

  18. Rewetting Rate of Dry Rhizosphere Limited by Mucilage Viscosity and Mucilage Hydrophobicity

    NASA Astrophysics Data System (ADS)

    Reeder, Stacey; Zarebanadkouki, Mohsen; Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea; Kostka, Stanley

    2015-04-01

    During root water uptake from dry soils, the highly nonlinear relation between hydraulic conductivity and water content as well as the radial root geometry result in steep water potential gradients close to the root surface. The hydraulic properties of the rhizosphere - the interface between root and soil - are one of the most important and least understood components in controlling root water uptake. Previous research using young lupine plants revealed that after irrigation it took 1-2 days for the water content of the dry rhizosphere to increase. How can this delay be explained? Our hypotheses are that: a) mucilage - a polymeric plant exudate - alters rhizosphere hydraulic properties, b) its hydrophobic moieties make the rhizosphere water repellent when dry, c) mucilage is a highly viscous, gelatinous material, the dryer it gets the more viscous it becomes, d) mucilage viscosity reduces rhizosphere hydraulic conductivity. To test our hypotheses we used mucilage extracted from chia seed as an analogue for root mucilage. We measured: 1) the contact angle between water and pure dry and wet mucilage, dry soil treated with various concentrations of mucilage, 2) mucilage viscosity as function of concentration and shear rate, 3) saturated hydraulic conductivity as function of mucilage concentration, 4) swelling of dry mucilage in water. Finally, to mimic flow of water across the rhizosphere, we measured the capillary rise in soils treated with different mucilage concentrations. The results showed that: 1) dry mucilage has a contact angle > 90° while it loses its water repellency when it gets wet, 2) viscosity and saturated hydraulic conductivity can change several orders of magnitude with a small change in mucilage concentration, 3) 1g of dry mucilage absorbs 300g water in its fully swollen state, 4) the swelling rate of mucilage showed an exponential behavior with half time of 5 hours. Capillary rise became slower in soils with higher mucilage concentration, while the

  19. Identification of Chromium Resistant Bacteria from Dry Fly Ash Sample of Mejia MTPS Thermal Power Plant, West Bengal, India.

    PubMed

    Roychowdhury, Roopali; Mukherjee, Pritam; Roy, Madhumita

    2016-02-01

    Eight chromium resistant bacteria were isolated from a dry fly ash sample of DVC-MTPS thermal power plant located in Bankura, West Bengal, India. These isolates displayed different degrees of chromate reduction under aerobic conditions. According to 16S rDNA gene analysis, five of them were Staphylococcus, two were Bacillus and one was Micrococcus. The minimum inhibitory concentration towards chromium and the ability to reduce hexavalent chromium to trivalent chromium was highest in Staphylococcus haemolyticus strain HMR17. All the strains were resistant to multiple heavy metals (As, Cu, Cd, Co, Zn, Mn, Pb and Fe) and reduced toxic hexavalent chromium to relatively non toxic trivalent chromium even in the presence of these multiple heavy metals. All of them showed resistance to different antibiotics. In a soil microcosm study, S. haemolyticus strain HMR17 completely reduced 4 mM hexavalent chromium within 7 days of incubation.

  20. Hornwort Stomata: Architecture and Fate Shared with 400-Million-Year-Old Fossil Plants without Leaves.

    PubMed

    Renzaglia, Karen S; Villarreal, Juan Carlos; Piatkowski, Bryan T; Lucas, Jessica R; Merced, Amelia

    2017-06-01

    As one of the earliest plant groups to evolve stomata, hornworts are key to understanding the origin and function of stomata. Hornwort stomata are large and scattered on sporangia that grow from their bases and release spores at their tips. We present data from development and immunocytochemistry that identify a role for hornwort stomata that is correlated with sporangial and spore maturation. We measured guard cells across the genera with stomata to assess developmental changes in size and to analyze any correlation with genome size. Stomata form at the base of the sporophyte in the green region, where they develop differential wall thickenings, form a pore, and die. Guard cells collapse inwardly, increase in surface area, and remain perched over a substomatal cavity and network of intercellular spaces that is initially fluid filled. Following pore formation, the sporophyte dries from the outside inwardly and continues to do so after guard cells die and collapse. Spore tetrads develop in spore mother cell walls within a mucilaginous matrix, both of which progressively dry before sporophyte dehiscence. A lack of correlation between guard cell size and DNA content, lack of arabinans in cell walls, and perpetually open pores are consistent with the inactivity of hornwort stomata. Stomata are expendable in hornworts, as they have been lost twice in derived taxa. Guard cells and epidermal cells of hornworts show striking similarities with the earliest plant fossils. Our findings identify an architecture and fate of stomata in hornworts that is ancient and common to plants without sporophytic leaves. © 2017 American Society of Plant Biologists. All Rights Reserved.

  1. Select polyphenolic fractions from dried plum enhance osteoblast activity through BMP-2 signaling.

    PubMed

    Graef, Jennifer L; Rendina-Ruedy, Elizabeth; Crockett, Erica K; Ouyang, Ping; King, Jarrod B; Cichewicz, Robert H; Lucas, Edralin A; Smith, Brenda J

    2018-05-01

    Dried plum supplementation has been shown to enhance bone formation while suppressing bone resorption. Evidence from previous studies has demonstrated that these responses can be attributed in part to the fruit's polyphenolic compounds. The purpose of this study was to identify the most bioactive polyphenolic fractions of dried plum with a focus on their osteogenic activity and to investigate their mechanisms of action under normal and inflammatory conditions. Utilizing chromatographic techniques, six fractions of polyphenolic compounds were prepared from a crude extract of dried plum. Initial screening assays revealed that two fractions (DP-FrA and DP-FrB) had the greatest osteogenic potential. Subsequent experiments using primary bone-marrow-derived osteoblast cultures demonstrated these two fractions enhanced extracellular alkaline phosphatase (ALP), an indicator of osteoblast activity, and mineralized nodule formation under normal conditions. Both fractions enhanced bone morphogenetic protein (BMP) signaling, as indicated by increased Bmp2 and Runx2 gene expression and protein levels of phosphorylated Smad1/5. DP-FrB was most effective at up-regulating Tak1 and Smad1, as well as protein levels of phospho-p38. Under inflammatory conditions, TNF-α suppressed ALP and tended to decrease nodule formation (P=.0674). This response coincided with suppressed gene expression of Bmp2 and the up-regulation of Smad6, an inhibitor of BMP signaling. DP-FrA and DP-FrB partially normalized these responses. Our results show that certain fractions of polyphenolic compounds in dried plum up-regulate osteoblast activity by enhancing BMP signaling, and when this pathway is inhibited by TNF-α, the osteogenic response is attenuated. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Process simulation of modified dry grind ethanol plant with recycle of pretreated and enzymatically hydrolyzed distillers' grains.

    PubMed

    Kim, Youngmi; Mosier, Nathan; Ladisch, Michael R

    2008-08-01

    Distillers' grains (DG), a co-product of a dry grind ethanol process, is an excellent source of supplemental proteins in livestock feed. Studies have shown that, due to its high polymeric sugar contents and ease of hydrolysis, the distillers' grains have potential as an additional source of fermentable sugars for ethanol fermentation. The benefit of processing the distillers' grains to extract fermentable sugars lies in an increased ethanol yield without significant modification in the current dry grind technology. Three different potential configurations of process alternatives in which pretreated and hydrolyzed distillers' grains are recycled for an enhanced overall ethanol yield are proposed and discussed in this paper based on the liquid hot water (LHW) pretreatment of distillers' grains. Possible limitations of each proposed process are also discussed. This paper presents a compositional analysis of distillers' grains, as well as a simulation of the modified dry grind processes with recycle of distillers' grains. Simulated material balances for the modified dry grind processes are established based on the base case assumptions. These balances are compared to the conventional dry grind process in terms of ethanol yield, compositions of its co-products, and accumulation of fermentation inhibitors. Results show that 14% higher ethanol yield is achievable by processing and hydrolyzing the distillers' grains for additional fermentable sugars, as compared to the conventional dry grind process. Accumulation of fermentation by-products and inhibitory components in the proposed process is predicted to be 2-5 times higher than in the conventional dry grind process. The impact of fermentation inhibitors is reviewed and discussed. The final eDDGS (enhanced dried distillers' grains) from the modified processes has 30-40% greater protein content per mass than DDGS, and its potential as a value-added process is also analyzed. While the case studies used to illustrate the

  3. Remote sensing of total dry-matter accumulation in winter wheat

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Holben, B. N.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Red and photographic-infrared spectral data collected on 21 dates over the growing season with a hand-held radiometer was quantitatively correlated with total dry-matter accumulation in winter wheat. The spectral data were found to be highly related to vigor and condition of the plant canopy. Two periods of drought stress and subsequent recovery from it were readily apparent in the spectral data. Simple ratios of the spectral data compensated for variations in solar intensities and, when integrated over the growing season, explained 79% of the variation in total above-ground accumulation of dry matter.

  4. Callus induction of leaf explant Piper betle L. Var Nigra with combination of plant growth regulators indole-3-acetic acid (IAA), benzyl amino purin (BAP) and kinetin

    NASA Astrophysics Data System (ADS)

    Junairiah, Zuraidassanaaz, Nabilah Istighfari; Izdihar, Fairuz Nabil; Manuhara, Yosephine Sri Wulan

    2017-09-01

    The purpose of this research was to determine the combination of plant growth regulators IAA, BAP and kinetin towards callus induction and growth of leaf explants Piper betle L. VarNigra. Explants from leaf of Piper betle L. VarNigra was cultured on MS medium with 24 treatment combinations of plant growth regulators IAA and BAP and 24 treatment combinations of plant growth regulators IAA and kinetin with 0.0;0.5;1.0;1.5;2.0 mg/L concentration respectively, the observed variable were the length of time the formation of callus, callus morphology, fresh and dry weight of callus. The results of this research showed that the combination of growth regulators IAA with BAP and kinetin had effects on leaf growth of Piper betle L. VarNigra. During 8 weeks observation, it indicated that the combination of concentration IAA 0.5 mg/L and BAP 2.0 mg/L showed fastest callus formation at 8.5 days. Combination of concentration IAA 1.0 mg/L and BAP 1.5 mg/L showed the highest of fresh weight at 0.6596 grams, and the highest dry weight was obtained from the combination of concentration IAA 0.5 mg/L and BAP 0.5 mg/L at 0.0727 grams. Combination of concentration IAA 1.0 mg/L and kinetin 1.5 mg/L had the highest of fresh weight at 0.2972 grams and the highest dry weight at 0.1660 grams. Callus of Piper betle L. VarNigra had two textures, that were compact and friable, and also showed various kind of colors, like white, greenish white, yellowish white, tanned white, brown and black. Based on this research, that concentration IAA 1.0 mg/L and 1.5 mg/L kinetin was the best combination for induction of callus from leaf of Piper betle L. Var Nigra.

  5. ETHYLMERCURY: FORMATION IN PLANT TISSUES AND RELATION TO METHYLMERCURY FORMATION

    EPA Science Inventory

    Seedlings of the common dwarf garden pea, Pisum sativum, cv. Little Marvel, exposed to elemental mercury vapor formed both methylmercury and ethylmercury in all parts of the plant. Concentrations of both organomercury compounds fluctuated considerably over a 48-hour exposure peri...

  6. Bridging dry spells for maize cropping through supplemental irrigation in the Central Rift Valley of Ethiopia

    NASA Astrophysics Data System (ADS)

    Muluneh Bitew, Alemayehu; Keesstra, Saskia; Stroosnijder, Leo

    2015-04-01

    Maize yield in the Central Rift Valley of Ethiopia (CRV) suffers from dry spells at sensitive growth stages. Risk of crop failure makes farmers reluctant to invest in fertilizer. This makes the CRV food insecure. There are farms with well-maintained terraces and Rain Water Harvesting (RWH) systems using concrete farms ponds. We tested the hypothesis that in these farms supplemental irrigation with simultaneous crop intensification might boost production of a small maize area sufficient to improve food security. Intensification includes a higher plant density of a hybrid variety under optimum fertilization. First we assessed the probability of occurrence of dry spells. Then we estimated the availability of sufficient runoff in the ponds in dry years. During 2012 (dry) and 2013 (wet) on-farm field research was conducted with 10 combinations of supplemental irrigation and plant density. The simplest was rainfed farming with 30,000 plants ha-1. The most advanced was no water stress and 75,000 plants ha-1. Finally we compared our on-farm yield with that of neighbouring farmers. Because 2013 was a wet year no irrigation was needed. Our long term daily rainfall (1970-2011) analysis proves the occurrence of dry spells during the onset of the maize (Belg months March and April). In March there is hardly enough water in the ponds. So, we advise later sowing. Starting from April available water (runoff from a 2.2 ha catchment) matches crop water requirement (for 0.5 ha maize). Significant differences between grain and total biomass yield were observed between rainfed and other irrigation levels. However, since the largest difference is only 12%, the investment in irrigation non-critical drought years is not worth the effort. There was also a limited effect (18-22%) of increasing plant density. So, we advise not to use more than 45,000 plants ha-1. The grain yield and total biomass difference between farmers own practice and our on-farm research was 101% and 84% respectively

  7. A New Freezing Method Using Pre-Dehydration by Microwave-Vacuum Drying

    NASA Astrophysics Data System (ADS)

    Tsuruta, Takaharu; Hamidi, Nurkholis

    Partial dehydration by microwave-vacuum drying has been applied to tuna and strawberry in order to reduce cell-damages caused by the formation of large ice-crystals during freezing. The samples were subjected to microwave vacuum drying at pressure of 5 kPa and temperature less than 27°C to remove small amount of water prior to freezing. The tuna were cooled by using the freezing chamber at temperature -50°C or -150°C, while the strawberries were frozen at temperature -30°C or -80°C, respectively. The temperature transients in tuna showed that removing some water before freezing made the freezing time shorter. The observations of ice crystal clearly indicated that rapid cooling and pre-dehydration prior to freezing were effective in minimizing the size of ice crystal. It is also understood that the formation of large ice crystals has a close relation to the cell damages. After thawing, the observation of microstructure was done on the tuna and strawberry halves. The pre-dehydrated samples showed a better structure than the un-dehydrated one. It is concluded that the pre-dehydration by microwave-vacuum drying is one promising method for the cryo-preservation of foods.

  8. “I eat the manofê so it is not forgotten”: local perceptions and consumption of native wild edible plants from seasonal dry forests in Brazil

    PubMed Central

    2014-01-01

    Background There is little information available on the factors influencing people’s selection of wild plants for consumption. Studies suggest a suitable method of understanding the selection of edible plants is to assess people’s perceptions of these resources. The use and knowledge of wild resources is disappearing, as is the opportunity to use them. This study analyzes people’s perceptions of native wild edible plants in a rural Caatinga (seasonal dry forest) community in Northeast Brazil and the relationships between the use of these resources and socioeconomic factors. Methods Semi-structured interviews with 39 people were conducted to form a convenience sample to gather information regarding people’s perceptions of 12 native wild edible plant species. The relationships between variables were assessed by simple linear regression analysis, Pearson and Spearman correlation analyses, and in the case of nominal variables, contingency tables. The discourse of participants regarding their opinions of the use of wild plants as food was analyzed through the collective subject discourse analysis technique. Results Perceptions were classified into 18 categories. The most cited category was organoleptic characteristics of the edible part; more specifically, flavor. Flavor was the main positive perception associated with plant use, whereas the negative perception that most limited the use of these plants was cultural acceptance. Perceptions of the use of wild edible plants were directly correlated with both interviewee age and income. Conclusion Within the studied community, people’s perceptions of native wild edible plants are related to their consumption. Moreover, the study found that young people have less interest in these resources. These findings suggest that changing perceptions may affect the conservation of plants, traditional practices and the associated knowledge. PMID:24886156

  9. Development of evaluation models of manpower needs for dismantling the dry conversion process-related equipment in uranium refining and conversion plant (URCP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sari Izumo; Hideo Usui; Mitsuo Tachibana

    Evaluation models for determining the manpower needs for dismantling various types of equipment in uranium refining and conversion plant (URCP) have been developed. The models are widely applicable to other uranium handling facilities. Additionally, a simplified model was developed for easily and accurately calculating the manpower needs for dismantling dry conversion process-related equipment (DP equipment). It is important to evaluate beforehand project management data such as manpower needs to prepare an optimized decommissioning plan and implement effective dismantling activity. The Japan Atomic Energy Agency (JAEA) has developed the project management data evaluation system for dismantling activities (PRODIA code), which canmore » generate project management data using evaluation models. For preparing an optimized decommissioning plan, these evaluation models should be established based on the type of nuclear facility and actual dismantling data. In URCP, the dry conversion process of reprocessed uranium and others was operated until 1999, and the equipment related to the main process was dismantled from 2008 to 2011. Actual data such as manpower for dismantling were collected during the dismantling activities, and evaluation models were developed using the collected actual data on the basis of equipment classification considering the characteristics of uranium handling facility. (authors)« less

  10. Can plant resistance to specialist herbivores be explained by plant chemistry or resource use strategy?

    PubMed

    Kirk, Heather; Vrieling, Klaas; Pelser, Pieter B; Schaffner, Urs

    2012-04-01

    At both a macro- and micro-evolutionary level, selection of and performance on host plants by specialist herbivores are thought to be governed partially by host plant chemistry. Thus far, there is little evidence to suggest that specialists can detect small structural differences in secondary metabolites of their hosts, or that such differences affect host choice or performance of specialists. We tested whether phytochemical differences between closely related plant species are correlated with specialist host choice. We conducted no-choice feeding trials using 17 plant species of three genera of tribe Senecioneae (Jacobaea, Packera, and Senecio; Asteraceae) and a more distantly related species (Cynoglossum officinale; Boraginaceae) containing pyrrolizidine alkaloids (PAs), and four PA-sequestering specialist herbivores of the genus Longitarsus (Chrysomelidae). We also assessed whether variation in feeding by specialist herbivores is attributable to different resource use strategies of the tested plant species. Plant resource use strategy was quantified by measuring leaf dry matter content, which is related to both plant nutritive value and to plant investment in quantitative defences. We found no evidence that intra-generic differences in PA profiles affect feeding by specialist herbivores. Instead, our results indicate that decisions to begin feeding are related to plant resource use strategy, while decisions to continue feeding are not based on any plant characteristics measured in this study. These findings imply that PA composition does not significantly affect host choice by these specialist herbivores. Leaf dry matter content is somewhat phylogenetically conserved, indicating that plants may have difficulty altering resource use strategy in response to selection pressure by herbivores and other environmental factors on an evolutionary time scale.

  11. De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content

    Treesearch

    W. Matt Jolly; Ann M. Hadlow; Kathleen Huguet

    2014-01-01

    Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples from Pinus contorta for...

  12. Dry flue gas desulfurization by-product application effects on plant uptake and soil storage changes in a managed grassland.

    PubMed

    Burgess-Conforti, Jason R; Brye, Kristofor R; Miller, David M; Pollock, Erik D; Wood, Lisa S

    2018-02-01

    Environmental regulations mandate that sulfur dioxide (SO 2 ) be removed from the flue gases of coal-fired power plants, which results in the generation of flue gas desulfurization (FGD) by-products. These FGD by-products may be a viable soil amendment, but the large amounts of trace elements contained in FGD by-products are potentially concerning. The objective of this study was to evaluate the effects of land application of a high-Ca dry FGD (DFGD) by-product on trace elements in aboveground biomass and soil. A high-Ca DFGD by-product was applied once at a rate of 9 Mg ha -1 on May 18, 2015 to small plots with mixed-grass vegetation. Soil and biomass were sampled prior to application and several times thereafter. Aboveground dry matter and tissue As, Co, Cr, Hg, Se, U, and V concentrations increased (P < 0.05) following application, but did not differ (P > 0.05) from pre-application levels or the unamended control within 3 to 6 months of application. Soil pH in the amended treatment 6 months after application was greater (P < 0.05) than in the unamended control. Soil Ca, S, and Na contents also increased (P < 0.05), following by-product application compared to the unamended control. High-Ca DFGD by-products appear to be useful as a soil amendment, but cause at least a temporary increase in tissue concentrations of trace elements, which may be problematic for animal grazing situations.

  13. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis

    PubMed Central

    Habib, Cameron; Yu, Yiyang; Gozzi, Kevin; Ching, Carly; Shemesh, Moshe

    2017-01-01

    The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB) in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR), which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA). Derepression can be triggered by the presence of the inducer β-1,4-galactobiose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded ß-galactosidase GanA (by ganA), which hydrolyzes ß-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms. PMID:28617843

  14. Endocarpic Microorganisms of Two Types of Windrow-Dried Peanut Fruit (Arachis hypogaea L.) 1

    PubMed Central

    Porter, D. Morris; Garren, Kenneth H.

    1970-01-01

    The endocarpic microorganisms of peanut fruit dried in either a random windrow (plants left as they fell from the digger) or an inverted windrow (plants inverted to expose fruit to sunlight) were different from that of freshly dug fruit. Chaetomium, Penicillium, Trichoderma, Rhizoctonia, and Fusarium were the dominant fungi found associated with shells (pericarp) of freshly dug fruit. The dominant fungi of shells of windrowed fruit included Chaetomium, Rhizoctonia, Fusarium, Sclerotium, and Alternaria. Seeds of freshly dug fruit were dominated by Penicillium and Aspergillus. The only dominant species in seed of windrowed fruit was Penicillium. Microorganisms were isolated from shells and seed of freshly dug fruit at a frequency of 79% and 52%, respectively. The percentage of infestation was reduced by drying in the field. This was particularly true of the inverted windrow. The proportion of shells and seed infested with a microorganism was reduced 13% and 36%, respectively, after field drying for 5 to 7 days in random and inverted windrows. Microorganisms were isolated much more frequently from shell pieces (73%) than from seed (36%). Images PMID:5466133

  15. Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest.

    PubMed

    Waring, Bonnie G; Becknell, Justin M; Powers, Jennifer S

    2015-07-01

    Plants on infertile soils exhibit physiological and morphological traits that support conservative internal nutrient cycling. However, potential trade-offs among use efficiencies for N, P, and cations are not well explored in species-rich habitats where multiple elements may limit plant production. We examined uptake efficiency and use efficiency of N, P, K, Ca, Mg, Al, and Na in plots of regenerating tropical dry forests spanning a gradient of soil fertility. Our aim was to determine whether plant responses to multiple elements are correlated, or whether there are trade-offs among exploitation strategies across stands varying in community composition, soil quality, and successional stage. For all elements, both uptake efficiency and use efficiency decreased as availability of the corresponding element increased. Plant responses to N, Na, and Al were uncoupled from uptake and use efficiencies for P and essential base cations, which were tightly correlated. N and P use efficiencies were associated with shifts in plant species composition along the soil fertility gradient, and there was also a trend towards increasing N use efficiency with stand age. N uptake efficiency was positively correlated with the abundance of tree species that associate with ectomycorrhizal fungi. Taken together, our results suggest that successional processes and local species composition interact to regulate plant responses to availability of multiple resources. Successional tropical dry forests appear to employ different strategies to maximize response to N vs. P and K.

  16. Characterisation and detection of spoilage mould responsible for black spot in dry-cured fermented sausages.

    PubMed

    Lozano-Ojalvo, Daniel; Rodríguez, Alicia; Cordero, Mirian; Bernáldez, Victoria; Reyes-Prieto, Mariana; Córdoba, Juan J

    2015-02-01

    Moulds responsible for black spot spoilage of dry-cured fermented sausages were characterised. For this purpose, samples were taken from those dry-cured fermented sausages which showed black spot alteration. Most of the mould strains were first tentatively identified as Penicillium spp. due to their morphological characteristics in different culture conditions, with one strain as Cladosporium sp. The Cladosporium strain was the only one which provoked blackening in culture media. This strain was further characterised by sequencing of ITS1-5.8S-ITS2 rRNA and β-tubulin genes. This mould strain was able to reproduce black spot formation in dry-cured fermented sausage 'salchichón' throughout the ripening process. In addition, a specific and sensitive real-time PCR method was also developed to detect Cladosporium oxysporum responsible for the black spot formation in sausages. This method could be of great interest for the meat industry to detect samples contaminated with this mould before spoilage of product avoiding economic losses for this sector.

  17. Formation of Irreversible H-bonds in Cellulose Materials

    Treesearch

    Umesh P. Agarwal; Sally A. Ralph; Rick S. Reiner; Nicole M. Stark

    2015-01-01

    Understanding of formation of irreversible Hbonds in cellulose is important in a number of fields. For example, fields as diverse as pulp and paper and enzymatic saccharification of cellulose are affected. In the present investigation, the phenomenon of formation of irreversible H-bonds is studied in a variety of celluloses and under two different drying conditions....

  18. Effect of different drying methods on the composition of steviol glycosides in Stevia rebaudiana Bertoni leaves

    NASA Astrophysics Data System (ADS)

    Aranda-González, Irma; Betancur-Ancona, David; Chel-Guerrero, Luis; Moguel-Ordóñez, Yolanda

    2017-01-01

    Drying techniques can modify the composition of certain plant compounds. Therefore, the aim of the study was to assess the effect of different drying methods on steviol glycosides in Stevia rebaudiana Bertoni leaves. Four different drying methods were applied to Stevia rebaudiana Bertoni leaves, which were then subjected to aqueous extraction. Radiation or convection drying was performed in stoves at 60°C, whereas shade or sun drying methods were applied at 29.7°C and 70% of relative humidity. Stevioside, rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, dulcoside A, and steviolbioside were quantified by a validated HPLC method. Among steviol glycosides, the content (g 100 g-1 dry basis) of stevioside, rebaudioside A, rebaudioside B, and rebaudioside C varied according to the drying method. The total glycoside content was higher in sun-dried samples, with no significant differences compared to shade or convection drying, whereas radiation drying adversely affected the content of rebaudioside A and rebaudioside C (p <0.01) and was therefore a method lowering total glycoside content. The effect of the different drying methods was also reflected in the proportion of the sweetener profile. Convection drying could be suitable for modern food processing industries while shadow or sun drying may be a low-cost alternative for farmers.

  19. Creatine and creatinine evolution during the processing of dry-cured ham.

    PubMed

    Mora, Leticia; Hernández-Cázares, Aleida S; Sentandreu, Miguel Angel; Toldrá, Fidel

    2010-03-01

    Dry-curing of ham involves many biochemical reactions that depend on the processing conditions. The aim of this study was to evaluate the effect of the dry-cured processing on the concentration of creatine, creatinine and the creatinine/creatine ratio. Dry-cured hams under study were salted using three different salt mixtures (100% NaCl; NaCl and KCl at 50% each; and 55% NaCl, 25% KCl, 15% CaCl(2) and 5% MgCl(2)) in order to observe its influence on creatinine formation but no significant differences were found between them at any time of processing. However, significant differences between different post-salting times (20, 50 and 80 days) and the ripened hams (7, 9 and 11 months of ripening) were observed. Results showed that creatine and creatinine remain stable once the ripening period is reached. These results were confirmed when analysing dry-cured ham samples submitted to extreme conditions of temperature and time (20, 30, 40 and 70 degrees C during 0, 20, 40 and 60 min) as well as commercial dry-cured hams with more than 12 months of processing. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. BIOMASS DRYING TECHNOLOGIES

    EPA Science Inventory

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the d...

  1. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    NASA Astrophysics Data System (ADS)

    Díaz Téllez, J. P.; Harirchian-Saei, S.; Li, Y.; Menon, C.

    2013-10-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet-visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved.

  2. Sensory profiles for dried fig (Ficus carica L.) cultivars commercially grown and processed in California.

    PubMed

    Haug, Megan T; King, Ellena S; Heymann, Hildegarde; Crisosto, Carlos H

    2013-08-01

    A trained sensory panel evaluated the 6 fig cultivars currently sold in the California dried fig market. The main flavor and aroma attributes determined by the sensory panel were "caramel," "honey," "raisin," and "fig," with additional aroma attributes: "common date," "dried plum," and "molasses." Sensory differences were observed between dried fig cultivars. All figs were processed by 2 commercial handlers. Processing included potassium sorbate as a preservative and SO2 application as an antibrowning agent for white cultivars. As a consequence of SO2 use during processing, high sulfite residues affected the sensory profiles of the white dried fig cultivars. Significant differences between dried fig cultivars and sources demonstrate perceived differences between processing and storage methods. The panel-determined sensory lexicon can help with California fig marketing. © 2013 The Regents of California, Davis Campus Department of Plant Sciences.

  3. A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties.

    PubMed

    Krishnaiah, Duduku; Nithyanandam, Rajesh; Sarbatly, Rosalam

    2014-01-01

    Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.

  4. Influence of diesel contamination in soil on growth and dry matter partitioning of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Zharare, Godfrey Elijah

    2015-09-01

    Phytotoxic effect of diesel contaminated soil was investigated on growth and dry matter partitioning in Lactuca sativa and Ipomoea batatas in greenhouse pot experiment at two concentration range (0-30 ml and 0-6 ml diesel kg(-1) soil) for 14 weeks. The results indicated thatwhole plant biomass, stem length, root length, number of leaves and leaf chlorophyll in two plants were negatively correlated with increasing diesel concentrations. The critical concentration of diesel associated with 10% decrease in plant growth was 0.33 ml for lettuce and 1.50 ml for sweet potato. Thus, growth of lettuce in diesel contaminated soil was more sensitive than sweet potato. The pattern of dry matter partitioning between root and shoot in both plants were similar. In 0-6 ml diesel contamination range, allocation of dry matter to shoot system was favoured resulting in high shoot: root ratio of 4.54 and 12.91 for lettuce and sweet potato respectively. However, in 0-30 ml diesel contamination range, allocation of dry matter to root was favoured, which may have been an adaptive mechanism in which the root system was used for storage in addition to increasing the capacity for foraging for mineral nutrients and water. Although lettuce accumulated more metals in its tissue than sweet potato, the tissue mineral nutrients in both species did not vary to great extent. The critical diesel concentration for toxicity suggested that the cause of mortality and poor growth of sweet potato and lettuce grown in diesel contaminated soil was due to presence of hydrocarbons in diesel.

  5. Accelerated thermokarst formation in the McMurdo Dry Valleys, Antarctica.

    PubMed

    Levy, Joseph S; Fountain, Andrew G; Dickson, James L; Head, James W; Okal, Marianne; Marchant, David R; Watters, Jaclyn

    2013-01-01

    Thermokarst is a land surface lowered and disrupted by melting ground ice. Thermokarst is a major driver of landscape change in the Arctic, but has been considered to be a minor process in Antarctica. Here, we use ground-based and airborne LiDAR coupled with timelapse imaging and meteorological data to show that 1) thermokarst formation has accelerated in Garwood Valley, Antarctica; 2) the rate of thermokarst erosion is presently ~ 10 times the average Holocene rate; and 3) the increased rate of thermokarst formation is driven most strongly by increasing insolation and sediment/albedo feedbacks. This suggests that sediment enhancement of insolation-driven melting may act similarly to expected increases in Antarctic air temperature (presently occurring along the Antarctic Peninsula), and may serve as a leading indicator of imminent landscape change in Antarctica that will generate thermokarst landforms similar to those in Arctic periglacial terrains.

  6. Accelerated thermokarst formation in the McMurdo Dry Valleys, Antarctica

    PubMed Central

    Levy, Joseph S.; Fountain, Andrew G.; Dickson, James L.; Head, James W.; Okal, Marianne; Marchant, David R.; Watters, Jaclyn

    2013-01-01

    Thermokarst is a land surface lowered and disrupted by melting ground ice. Thermokarst is a major driver of landscape change in the Arctic, but has been considered to be a minor process in Antarctica. Here, we use ground-based and airborne LiDAR coupled with timelapse imaging and meteorological data to show that 1) thermokarst formation has accelerated in Garwood Valley, Antarctica; 2) the rate of thermokarst erosion is presently ~ 10 times the average Holocene rate; and 3) the increased rate of thermokarst formation is driven most strongly by increasing insolation and sediment/albedo feedbacks. This suggests that sediment enhancement of insolation-driven melting may act similarly to expected increases in Antarctic air temperature (presently occurring along the Antarctic Peninsula), and may serve as a leading indicator of imminent landscape change in Antarctica that will generate thermokarst landforms similar to those in Arctic periglacial terrains. PMID:23881292

  7. Nitrogen nutrition of tomato plant alters leafminer dietary intake dynamics.

    PubMed

    Coqueret, Victoire; Le Bot, Jacques; Larbat, Romain; Desneux, Nicolas; Robin, Christophe; Adamowicz, Stéphane

    2017-05-01

    The leafminer Tuta absoluta (Meyrick) is a major pest of the tomato crop and its development rate is known to decline when nitrogen availability for crop growth is limited. Because N limitation reduces plant primary metabolism but enhances secondary metabolism, one can infer that the slow larval development arises from lower leaf nutritive value and/or higher plant defence. As an attempt to study the first alternative, we examined the tomato-T. absoluta interaction in terms of resource supply by leaves and intake by larvae. Tomato plants were raised under controlled conditions on N-sufficient vs. N-limited complete nutrient solutions. Plants were kept healthy or artificially inoculated with larvae for seven days. Serial harvests were taken and the N, C, dry mass and water contents were determined in roots, stems and leaves. Leaf and mine areas were also measured and the N, C, dry mass and water surface densities were calculated in order to characterize the diet of the larvae. The infestation of a specific leaf lessened its local biomass by 8-26%, but this effect was undetectable at the whole plant scale. Infestation markedly increased resource density per unit leaf area (water, dry mass, C and N) suggesting that the insect induced changes in leaf composition. Nitrogen limitation lessened whole plant growth (by 50%) and infested leaflet growth (by 32-44%). It produced opposite effects on specific resource density per unit area, increasing that of dry mass and C while decreasing water and N. These changes were ineffective on insect mining activity, but slowed down larval development. Under N limitation, T. absoluta consumed less water and N but more dry mass and C. The resulting consequences were a 50-70% increase of C:N stoichiometry in their diet and the doubling of faeces excretion. The observed limitation of larval development is therefore consistent with a trophic explanation caused by low N and/or water intakes. Copyright © 2017 Elsevier Ltd. All rights

  8. Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient.

    PubMed

    Brenes-Arguedas, Tania; Coley, Phyllis D; Kursar, Thomas A

    2009-07-01

    Understanding the mechanisms that shape the distribution of organisms can help explain patterns of local and regional biodiversity and predict the susceptibility of communities to environmental change. In the species-rich tropics, a gradient in rainfall between wet evergreen and dry seasonal forests correlates with turnover of plant species. The strength of the dry season has previously been shown to correlate with species composition. Herbivores and pathogens (pests) have also been hypothesized to be important drivers of plant distribution, although empirical evidence is lacking. In this study we experimentally tested the existence of a gradient in pest pressure across a rainfall gradient in the Isthmus of Panama and measured the influence of pests relative to drought on species turnover. We established two common gardens on the dry and wet sides of the Isthmus using seedlings from 24 plant species with contrasting distributions along the Isthmus. By experimentally manipulating water availability and insect herbivore access, we showed that pests are not as strong a determinant of plant distributions as is seasonal drought. Seasonal drought in the dry site excluded wet-distribution species by significantly increasing their seedling mortality. Pathogen mortality and insect herbivore damage were both higher in the wet site, supporting the existence of a gradient in pest pressure. However, contrary to predictions, we found little evidence that dry-distribution species suffered significantly more pest attack than wet-distribution species. Instead, we hypothesize that dry-distribution species are limited from colonizing wetter forests by their inherently slower growth rates imposed by drought adaptations. We conclude that mechanisms limiting the recruitment of dry-distribution species in wet forests are not nearly as strong as those limiting wet-distribution species from dry forests.

  9. NDMA formation during drinking water treatment: A multivariate analysis of factors influencing formation.

    PubMed

    Leavey-Roback, Shannon L; Sugar, Catherine A; Krasner, Stuart W; Suffet, Irwin H Mel

    2016-05-15

    The formation of the carcinogen N-nitrosodimethylamine (NDMA) during drinking water treatment has raised concerns in the drinking water industry. Many bench-scale laboratory tests and pilot plant studies have been completed to try to determine which factors during water treatment increase or decrease the amount of NDMA formed in drinking water. This study used data from over 20 drinking water treatment plants in the United States and Canada to determine which factors are most highly correlated with the NDMA concentration in delivered water using a mixed effects model with a random intercept. This type of analysis has not been used previously with trihalomethane (THM) models due to the fact that those studies did not sample such a large number and range of plants as was done in this NDMA study. Ultraviolet absorbance at 254 nm (UV254) in the plant influent and pre-chlorination time used at the plant were highly correlated in all models with NDMA concentration in finished water as well as the percentage change between NDMA formation potential in the plant influent and actual formation in the finished water. Specifically, an increase in UV254 absorbance in a model was associated with an increase in NDMA and an increase in pre-chlorination time in a model was associated with a decrease in NDMA. Other water quality parameters including sucralose concentration in the plant influent, polyDADMAC polymer dose, pH, and chlorine-to-ammonia weight ratio used in the plant were also correlated with NDMA concentration in the distribution system. Lastly, NDMA precursor loading was correlated with the use of polyDADMAC (where precursors were added) and the use of ozone and granular activated carbon (GAC) treatment (where precursors were removed). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Surplus activated sludge dewatering in pilot-scale sludge drying reed beds.

    PubMed

    Stefanakis, A I; Akratos, C S; Melidis, P; Tsihrintzis, V A

    2009-12-30

    A pilot-scale experiment on dewatering of surplus activated sludge (SAS) is presented, where two pilot-scale vertical flow, sludge drying reed beds (SDRBs), planted with Phragmites australis are used. The bottom of the beds is filled with cobbles, connected to the atmosphere through perforated PVC ventilation tubes, in order to achieve oxygen diffusion through the overlying porous medium that is colonized by roots and an abundant nitrifying biomass. Two layers of gravel, of decreasing size from bottom to top, make the drainage layer where the reeds are planted. The two beds were fed according to the following cycle: one week feeding with SAS at rates one 30 kg/m(2)/year and the other 75 kg/m(2)/year, and resting for three weeks. The results show that planted SDRBs can effectively dewater SAS from domestic sewage, the produced residual sludge presents a high dry weight content, the degree of volume reduction depends upon the initial SAS concentration and can be of the order of 90%, and decomposition of organic matter and high levels of mineralization can be achieved. Furthermore, the percolating water is not septic. The fertilizer value of the treated SAS, which contains no added chemicals, is comparable to that of SAS treated by other methods.

  11. A year (2014-2015) of plants in Proteomics journal. Progress in wet and dry methodologies, moving from protein catalogs, and the view of classic plant biochemists.

    PubMed

    Sanchez-Lucas, Rosa; Mehta, Angela; Valledor, Luis; Cabello-Hurtado, Francisco; Romero-Rodrıguez, M Cristina; Simova-Stoilova, Lyudmila; Demir, Sekvan; Rodriguez-de-Francisco, Luis E; Maldonado-Alconada, Ana M; Jorrin-Prieto, Ana L; Jorrín-Novo, Jesus V

    2016-03-01

    The present review is an update of the previous one published in Proteomics 2015 Reviews special issue [Jorrin-Novo, J. V. et al., Proteomics 2015, 15, 1089-1112] covering the July 2014-2015 period. It has been written on the bases of the publications that appeared in Proteomics journal during that period and the most relevant ones that have been published in other high-impact journals. Methodological advances and the contribution of the field to the knowledge of plant biology processes and its translation to agroforestry and environmental sectors will be discussed. This review has been organized in four blocks, with a starting general introduction (literature survey) followed by sections focusing on the methodology (in vitro, in vivo, wet, and dry), proteomics integration with other approaches (systems biology and proteogenomics), biological information, and knowledge (cell communication, receptors, and signaling), ending with a brief mention of some other biological and translational topics to which proteomics has made some contribution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Microbial-caddisfly bioherm association from the Lower Cretaceous Shinekhudag Formation, Mongolia: Earliest record of plant armoring in fossil caddisfly cases

    PubMed Central

    Johnson, Cari L.; Loewen, Mark A.; Ritterbush, Kathleen A.; Constenius, Kurt N.; Dinter, Cory M.

    2017-01-01

    Caddisfly larvae construct underwater protective cases using surrounding materials, thus providing information on environmental conditions in both modern and ancient systems. Microbial bioherms associated with caddisfly cases are found in the Berriassian-Hauterivian (~140–130 Ma) Shinekhudag Formation of Mongolia, and yield new insights into aspects of lacustrine paleoecosystems and paleoenvironments. This formation contains the earliest record of plant-armored caddisfly cases and a rare occurrence of microbial-caddisfly association from the Mesozoic. The bioherms are investigated within the context of stratigraphic correlations, depositional environment interpretations, and basin-evolution models of the sedimentary fill. The bioherms form 0.5–2.0 m diameter mound-shaped bodies and are concentrated within a single, oil shale-bound stratigraphic interval. Each bioherm is composed of up to 40% caddisfly cases along with stromatolites of millimeter-scale, micritic laminations. Petrographic analyses reveal these bioherms are composed of non-systematic associations of columnar and oncoidal microbialites, constructed around colonies of caddisfly cases. The cases are straight to curved, slightly tapered, and tube-shaped, with a progressively increasing length and width trend (7–21 mm by 1.5–2.5 mm). Despite these variations, the case architectures reveal similar construction materials; the particles used for cases are dominated by plant fragments, ostracod valves, carbonate rocks, and rare mica and feldspar grains. Allochems within the bioherms include ooids, ostracods, plant fragments, rare gastropods, feldspar grains bound in micritic matrices, and are consolidated by carbonate dominated cements. The combination of microbial-caddisfly association, plant fragment case particles, and ooids/oncoids are indicative of a shallow, littoral lake setting. Stratigraphic juxtaposition of nearshore bioherms and the bounding distal oil-shale facies suggests that the bioherms

  13. Microbial-caddisfly bioherm association from the Lower Cretaceous Shinekhudag Formation, Mongolia: Earliest record of plant armoring in fossil caddisfly cases.

    PubMed

    Adiya, Tsolmon; Johnson, Cari L; Loewen, Mark A; Ritterbush, Kathleen A; Constenius, Kurt N; Dinter, Cory M

    2017-01-01

    Caddisfly larvae construct underwater protective cases using surrounding materials, thus providing information on environmental conditions in both modern and ancient systems. Microbial bioherms associated with caddisfly cases are found in the Berriassian-Hauterivian (~140-130 Ma) Shinekhudag Formation of Mongolia, and yield new insights into aspects of lacustrine paleoecosystems and paleoenvironments. This formation contains the earliest record of plant-armored caddisfly cases and a rare occurrence of microbial-caddisfly association from the Mesozoic. The bioherms are investigated within the context of stratigraphic correlations, depositional environment interpretations, and basin-evolution models of the sedimentary fill. The bioherms form 0.5-2.0 m diameter mound-shaped bodies and are concentrated within a single, oil shale-bound stratigraphic interval. Each bioherm is composed of up to 40% caddisfly cases along with stromatolites of millimeter-scale, micritic laminations. Petrographic analyses reveal these bioherms are composed of non-systematic associations of columnar and oncoidal microbialites, constructed around colonies of caddisfly cases. The cases are straight to curved, slightly tapered, and tube-shaped, with a progressively increasing length and width trend (7-21 mm by 1.5-2.5 mm). Despite these variations, the case architectures reveal similar construction materials; the particles used for cases are dominated by plant fragments, ostracod valves, carbonate rocks, and rare mica and feldspar grains. Allochems within the bioherms include ooids, ostracods, plant fragments, rare gastropods, feldspar grains bound in micritic matrices, and are consolidated by carbonate dominated cements. The combination of microbial-caddisfly association, plant fragment case particles, and ooids/oncoids are indicative of a shallow, littoral lake setting. Stratigraphic juxtaposition of nearshore bioherms and the bounding distal oil-shale facies suggests that the bioherms

  14. Simulated Digestion of Dried Leaves of Artemisia annua Consumed as a Treatment (pACT) for Malaria

    PubMed Central

    Weathers, Pamela J.; Jordan, Nikole; Lasin, Praphapan; Towler, Melissa J.

    2014-01-01

    Ethnopharmacological Relevance Artemisinin (AN) is produced by Artemisia annua, a medicinal herb long used as a tea infusion in traditional Chinese medicine to treat fever; it is also the key ingredient in current artemisinin-based combination therapies (ACTs) effective in treating malaria. Recently we showed that dried leaves from the whole plant A. annua that produces artemisinin and contains artemisinin-synergistic flavonoids seems to be more effective and less costly than ACT oral malaria therapy; however little is known about how digestion affects release of artemisinin and flavonoids from dried leaves. Material and Methods In the current study we used a simulated digestion system to determine how artemisinin and flavonoids are released prior to absorption into the bloodstream. Various delivery methods and staple foods were combined with dried leaves for digestion in order to investigate their impact on the bioavailability of artemisinin and flavonoids. Digestate was recovered at the end of the oral, gastric, and intestinal stages, separated into solid and liquid fractions, and extracted for measurement of artemisinin and total flavonoids. Results Compared to unencapsulated digested dried leaves, addition of sucrose, various cooking oils, and rice did not reduce the amount of artemisinin released in the intestinal liquid fraction, but the amount of released flavonoids nearly doubled. When dried leaves were encapsulated into either hydroxymethylcellulose or gelatin capsules, there was >50% decrease in released artemisinin but no change in released flavonoids. In the presence of millet or corn meal, the amount of released artemisinin declined, but there was no change in released flavonoids. Use of a mutant A. annua lacking artemisinin showed that the plant matrix is critical in determining how artemisinin is affected during the digestion process. Conclusions This study provides evidence showing how both artemisinin and flavonoids are affected by digestion and

  15. Comparison of metal lability in air-dried and fresh dewatered drinking water treatment residuals.

    PubMed

    Wang, Changhui; Pei, Yuansheng; Zhao, Yaqian

    2015-01-01

    In this work, the labilities of Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sr, V and Zn in air-dried (for 60 days) and fresh dewatered WTRs were compared using the Toxicity Characteristic Leaching Procedure (TCLP), fractionation, in vitro digestion and a plant enrichment test. The results showed that the air-dried and fresh dewatered WTRs had different properties, e.g., organic matter composition and available nutrients. The air-dried and fresh dewatered WTRs were non-haf zardous according to the TCLP assessment method used in the United States; however, the metals in the two types of WTRs had different lability. Compared with the metals in the fresh dewatered WTRs, those in the air-dried WTRs tended to be in more stable fractions and also exhibited lower bioaccessibility and bioavailability. Therefore, air-drying can decrease the metal lability and thereby reduce the potential metal pollution risk of WTRs.

  16. Carbohydrate storage and light requirements of tropical moist and dry forest tree species.

    PubMed

    Poorter, Lourens; Kitajima, Kaoru

    2007-04-01

    In many plant communities, there is a negative interspecific correlation between relative growth rates and survival of juveniles. This negative correlation is most likely caused by a trade-off between carbon allocation to growth vs. allocation to defense and storage. Nonstructural carbohydrates (NSC) stored in stems allow plants to overcome periods of stress and should enhance survival. In order to assess how species differ in carbohydrate storage in relation to juvenile light requirements, growth, and survival, we quantified NSC concentrations and pool sizes in sapling stems of 85 woody species in moist semi-evergreen and dry deciduous tropical forests in the rainy season in Bolivia. Moist forest species averaged higher NSC concentrations than dry forest species. Carbohydrate concentrations and pool sizes decreased with the light requirements of juveniles of the species in the moist forest but not in the dry forest. Combined, these results suggest that storage is especially important for species that regenerate in persistently shady habitats, as in the understory of moist evergreen forests. For moist forest species, sapling survival rates increased with NSC concentrations and pool sizes while growth rates declined with the NSC concentrations and pool sizes. No relationships were found for dry forest species. Carbon allocation to storage contributes to the growth-survival trade-off through its positive effect on survival. And, a continuum in carbon storage strategies contributes to a continuum in light requirements among species. The link between storage and light requirements is especially strong in moist evergreen forest where species sort out along a light gradient, but disappears in dry deciduous forest where light is a less limiting resource and species sort out along drought and fire gradients.

  17. Spray Drying as a Reliable Route to Produce Metastable Carbamazepine Form IV.

    PubMed

    Halliwell, Rebecca A; Bhardwaj, Rajni M; Brown, Cameron J; Briggs, Naomi E B; Dunn, Jaclyn; Robertson, John; Nordon, Alison; Florence, Alastair J

    2017-07-01

    Carbamazepine (CBZ) is an active pharmaceutical ingredient used in the treatment of epilepsy that can form at least 5 polymorphic forms. Metastable form IV was originally discovered from crystallization with polymer additives; however, it has not been observed from subsequent solvent-only crystallization efforts. This work reports the reproducible formation of phase pure crystalline form IV by spray drying of methanolic CBZ solution. Characterization of the material was carried out using diffraction, scanning electron microscopy, and differential scanning calorimetry. In situ Raman spectroscopy was used to monitor the spray-dried product during the spray drying process. This work demonstrates that spray drying provides a robust method for the production of form IV CBZ, and the combination of high supersaturation and rapid solid isolation from solution overcomes the apparent limitation of more traditional solution crystallization approaches to produce metastable crystalline forms. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Field Study on the formation and emission characteristics of PM2.5 in coal fired power plant unit

    NASA Astrophysics Data System (ADS)

    Xia, Yongjun; Huang, Guohui; Zhu, Yunpeng; Wang, Qian

    2018-05-01

    Particulate matter(PM) measurements were performed at the inlet and outlet of Fabric filter(FF) and the outlet of limestone-gypsum wet flue gas desulfurization (WFGD) tower at a 220MW pulverized coal fired power plant unit, and the PM formation characteristics, the performance characteristics of FF and the influence of WFGD to PM emission were discussed. The results showed that PM were of bimodal size distribution. The concentration of PMs larger than 2.5μm reduced in the WFGD while PMs less than 2.5μm particularly the PM diameter around 0.5μm increased due to the ultrafine PM aggregation as well as new PM formation from gypsum slurry entrainment.

  19. A role for plant microtubules in the formation of transmission-specific inclusion bodies of Cauliflower mosaic virus.

    PubMed

    Martinière, Alexandre; Gargani, Daniel; Uzest, Marilyne; Lautredou, Nicole; Blanc, Stéphane; Drucker, Martin

    2009-04-01

    Interactions between microtubules and viruses play important roles in viral infection. The best-characterized examples involve transport of animal viruses by microtubules to the nucleus or other intracellular destinations. In plant viruses, most work to date has focused on interaction between viral movement proteins and the cytoskeleton, which is thought to be involved in viral cell-to-cell spread. We show here, in Cauliflower mosaic virus (CaMV)-infected plant cells, that viral electron-lucent inclusion bodies (ELIBs), whose only known function is vector transmission, require intact microtubules for their efficient formation. The kinetics of the formation of CaMV-related inclusion bodies in transfected protoplasts showed that ELIBs represent newly emerging structures, appearing at late stages of the intracellular viral life cycle. Viral proteins P2 and P3 are first produced in multiple electron-dense inclusion bodies, and are later specifically exported to transiently co-localize with microtubules, before concentrating in a single, massive ELIB in each infected cell. Treatments with cytoskeleton-affecting drugs suggested that P2 and P3 might be actively transported on microtubules, by as yet unknown motors. In addition to providing information on the intracellular life cycle of CaMV, our results show that specific interactions between host cell and virus may be dedicated to a later role in vector transmission. More generally, they indicate a new unexpected function for plant cell microtubules in the virus life cycle, demonstrating that microtubules act not only on immediate intracellular or intra-host phenomena, but also on processes ultimately controlling inter-host transmission. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.

  20. Composition of hydroponic lettuce: effect of time of day, plant size, and season.

    PubMed

    Gent, Martin P N

    2012-02-01

    The diurnal variation of nitrate and sugars in leafy green vegetables may vary with plant size or the ability of plants to buffer the uptake, synthesis, and use of metabolites. Bibb lettuce was grown in hydroponics in a greenhouse and sampled at 3 h intervals throughout one day in August 2007 and another day in November 2008 to determine fresh weight, dry matter, and concentration of nitrate and sugars. Plantings differing in size and age were sampled on each date. The dry/fresh weight ratio increased during the daylight period. This increase was greater for small compared to large plants. On a fresh weight basis, tissue nitrate of small plants was only half that of larger plants. The variation in concentration with time was much less for nitrate than for soluble sugars. Soluble sugars were similar for all plant sizes early in the day, but they increased far more for small compared to large plants in the long days of summer. The greatest yield on a fresh weight basis was obtained by harvesting lettuce at dawn. Although dry matter or sugar content increased later in the day, there is no commercial benefit to delaying harvest as consumers do not buy lettuce for these attributes. Copyright © 2011 Society of Chemical Industry.