Science.gov

Sample records for dry powder aerosols

  1. Liposomal dry powders as aerosols for pulmonary delivery of proteins.

    PubMed

    Lu, Dongmei; Hickey, Anthony J

    2005-12-21

    The purpose of this research was to develop liposomal dry powder aerosols for protein delivery. The delivery of stable protein formulations is essential for protein subunit vaccine delivery, which requires local delivery to macrophages in the lungs. Beta-glucuronidase (GUS) was used as a model protein to evaluate dry powder liposomes as inhaled delivery vehicles. Dimyristoyl phosphatylcholine:cholesterol (7:3) was selected as the liposome composition. The lyophilization of liposomes, micronization of the powders, aerosolization using a dry powder inhaler (DPI), and in vitro aerodynamic fine particle fraction upon collection in a twin-stage liquid impinger were evaluated. After lyophilization and jet-milling, the total amount of GUS and its activity, representing encapsulation efficiency and stability, were evaluated. The GUS amount and activity were measured and compared with freshly-prepared liposomes in the presence of mannitol, 43% of initial GUS amount, 29% of GUS activity after lyophilization and 36% of GUS amount, 22% of activity after micronization were obtained. Emitted doses from dry powder inhaler were 53%, 58%, 66%, and 73% for liposome powder:mannitol carrier ratios of 1:0, 1:4, 1:9, and 1:19. Fifteen percent of the liposome particles were less than 6.4 mum in aerodynamic diameter. The results demonstrate that milled liposome powders containing protein molecules can be aerosolized effectively at a fixed flow rate. Influences of different cryoprotectants on lyophilization of protein liposome formulations are reported. The feasibility of using liposomal dry powder aerosols for protein delivery has been demonstrated but further optimization is required in the context of specific therapeutic proteins.

  2. Improving aerosolization of drug powders by reducing powder intrinsic cohesion via a mechanical dry coating approach.

    PubMed

    Zhou, Qi Tony; Qu, Li; Larson, Ian; Stewart, Peter J; Morton, David A V

    2010-07-15

    The aim of this study was to investigate the effect of coating on the aerosolization of three model micronized powders. Three model powder materials (salbutamol sulphate, salmeterol xinafoate, triamcinolone acetonide) were chosen not only for their different chemical properties but also for their different physical properties such as shape and size distribution. Each powder was coated with 5% (w/w) magnesium stearate using two different dry mechanofusion approaches. After mechanofusion, both poured and tapped densities for all three model drug powders significantly increased. There were significant improvements in aerosolization behavior from an inhaler device for all model powders after mechanofusion. Such improvements in aerosolization were attributed to the reduction in agglomerate strength caused by decreasing powder intrinsic cohesion via surface modification. The work also indicated that the effect of the coating was dependant on the initial particle properties.

  3. Pulmonary Delivery of Vancomycin Dry Powder Aerosol to Intubated Rabbits.

    PubMed

    Sullivan, Bradley P; El-Gendy, Nashwa; Kuehl, Christopher; Berkland, Cory

    2015-08-03

    Antibiotic multiresistant pneumonia is a risk associated with long-term mechanical ventilation. Vancomycin is commonly prescribed for methicillin-resistant Staphylococcus aureus infections; however, current formulations of vancomycin are only given intravenously. High doses of vancomycin have been associated with severe renal toxicity. In this study, we characterized dry powder vancomyin as a potential inhaled therapeutic aerosol and compared pharmacokinetic profiles of iv and pulmonary administered vancomycin in intubated rabbits through an endotracheal tube system. Cascade impaction studies indicated that using an endotracheal tube, which bypasses deposition in the mouth and throat, increased the amount of drug entering the lung. Bypassing the endotracheal tube with a catheter further enhanced drug deposition in the lung. Interestingly, intubated rabbits administered 1 mg/kg vancomycin via inhalation had similar AUC to rabbits that were administered 1 mg/kg vancomycin via a single bolus iv infusion; however, inhalation of vancomycin reduced Cmax and increased Tmax, indicating that inhaled vancomycin resulted in more sustained pulmonary levels of vancomycin. Collectively, these results suggested that dry powder vancomycin can successfully be delivered by pulmonary inhalation in intubated patients. Furthermore, as inhaled vancomycin is delivered locally to the site of pulmonary infection, this delivery route could reduce the total dose required for therapeutic efficacy and simultaneously reduce the risk of renal toxicity by eliminating the high levels of systemic drug exposure required to push the pulmonary dose to therapeutic thresholds during iv administration.

  4. Pulmonary delivery of vancomycin dry powder aerosol to intubated rabbits

    PubMed Central

    Sullivan, Bradley P.; El-Gendy, Nashwa; Kuehl, Christopher; Berkland, Cory

    2016-01-01

    Antibiotic multi-resistant pneumonia is a risk associated with long term mechanical ventilation. Vancomycin is commonly prescribed for methicillin-resistant staphylococcus aureus infections; however, current formulations of vancomycin are only given intravenously. High doses of vancomycin have been associated with severe renal toxicity. In this study we characterized dry powder vancomyin as a potential inhaled therapeutic aerosol and compared pharmacokinetic profiles of i.v. and pulmonary administered vancomycin in intubated rabbits using a novel endotracheal tube catheter system. Cascade Impaction studies indicated that using an endotracheal tube, which bypasses deposition the mouth and throat, increased the amount of drug entering the lung. Drug deposition in the lung was further enhanced by using an endotracheal tube catheter, which did not alter the aerosol fine particle fraction. Interestingly, intubated rabbits administered 1 mg/kg vancomycin via inhalation had similar AUC to rabbits that were administered 1 mg/kg vancomycin via a single bolus i.v. infusion; however, inhalation of vancomycin reduced Cmax and increased Tmax, suggesting that inhaled vancomycin resulted in more sustained pulmonary levels of vancomycin. Collectively, these results suggested that dry powder vancomycin can successfully be delivered by pulmonary inhalation in intubated patients. Furthermore, as inhaled vancomycin is delivered locally to the site of pulmonary infection, this delivery route could reduce the total dose required for therapeutic efficacy and simultaneously reduce the risk of renal toxicity by eliminating the high levels of systemic drug exposure required to push the pulmonary dose to therapeutic thresholds during i.v. administration. PMID:25915095

  5. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers

    PubMed Central

    Li, Xiaojian; Vogt, Frederick G.; Hayes, Don

    2014-01-01

    Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451

  6. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery.

    PubMed

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug - cyclosporine A - for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters.

  7. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

    PubMed Central

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters. PMID:23569375

  8. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried microparticulate/nanoparticulate antibiotic dry powders of tobramycin and azithromycin for pulmonary inhalation aerosol delivery.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-02-14

    The purpose of this study was to systematically design pure antibiotic drug dry powder inhalers (DPIs) for targeted antibiotic pulmonary delivery in the treatment of pulmonary infections and comprehensively correlate the physicochemical properties in the solid-state and spray-drying conditions effects on aerosol dispersion performance as dry powder inhalers (DPIs). The two rationally chosen model antibiotic drugs, tobramycin (TOB) and azithromycin (AZI), represent two different antibiotic drug classes of aminoglycosides and macrolides, respectively. The particle size distributions were narrow, unimodal, and in the microparticulate/nanoparticulate size range. The SD particles possessed relatively spherical particle morphology, smooth surface morphology, low residual water content, and the absence of long-range molecular order. The emitted dose (ED%), fine particle fraction (FPF%) and respirable fraction (RF%) were all excellent. The MMAD values were in the inhalable range (<10 μm) with smaller MMAD values for SD AZI powders in contrast to SD TOB powders. Positive linear correlations were observed between the aerosol dispersion performance parameter of FPF with increasing spray-drying pump rates and also with the difference between thermal parameters expressed as Tg-To (i.e. the difference between the glass transition temperature and outlet temperature) for SD AZI powders. The aerosol dispersion performance for SD TOB appeared to be influenced by its high water vapor sorption behavior (hygroscopicity) and pump rates or To. Aerosol dispersion performance of SD powders were distinct for both antibiotic drug aerosol systems and also between different pump rates for each system.

  9. Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols.

    PubMed

    Park, Chun-Woong; Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Zwischenberger, Joseph B; Park, Eun-Seok; Mansour, Heidi M

    2013-10-15

    Respirable microparticles/nanoparticles of the antibiotics vancomycin (VCM) and clarithromycin (CLM) were successfully designed and developed by novel organic solution advanced spray drying from methanol solution. Formulation optimization was achieved through statistical experimental design of pump feeding rates of 25% (Low P), 50% (Medium P) and 75% (High P). Systematic and comprehensive physicochemical characterization and imaging were carried out using scanning electron microscopy (SEM), hot-stage microscopy (HSM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Karl Fischer titration (KFT), laser size diffraction (LSD), gravimetric vapor sorption (GVS), confocal Raman microscopy (CRM) and spectroscopy for chemical imaging mapping. These novel spray-dried (SD) microparticulate/nanoparticulate dry powders displayed excellent aerosol dispersion performance as dry powder inhalers (DPIs) with high values in emitted dose (ED), respirable fraction (RF), and fine particle fraction (FPF). VCM DPIs displayed better aerosol dispersion performance compared to CLM DPIs which was related to differences in the physicochemical and particle properties of VCM and CLM. In addition, organic solution advanced co-spray drying particle engineering design was employed to successfully produce co-spray-dried (co-SD) multifunctional microparticulate/nanoparticulate aerosol powder formulations of VCM and CLM with the essential lung surfactant phospholipid, dipalmitoylphosphatidylcholine (DPPC), for controlled release pulmonary nanomedicine delivery as inhalable dry powder aerosols. Formulation optimization was achieved through statistical experimental design of molar ratios of co-SD VCM:DPPC and co-SD CLM:DPPC. XRPD and DSC confirmed that the phospholipid bilayer structure in the solid-state was preserved following spray drying. Co-SD VCM:DPPC and co-SD CLM:DPPC dry powder aerosols demonstrated controlled release of antibiotic drug that was fitted to various

  10. Aerosolization properties, surface composition and physical state of spray-dried protein powders.

    PubMed

    Bosquillon, Cynthia; Rouxhet, Paul G; Ahimou, François; Simon, Denis; Culot, Christine; Préat, Véronique; Vanbever, Rita

    2004-10-19

    Powder aerosols made of albumin, dipalmitoylphosphatidylcholine (DPPC) and a protein stabilizer (lactose, trehalose or mannitol) were prepared by spray-drying and analyzed for aerodynamic behavior, surface composition and physical state. The powders exited a Spinhaler inhaler as particle aggregates, the size of which depending on composition, spray-drying parameters and airflow rate. However, due to low bulk powder tap density (<0.15 g/cm3), the aerodynamic size of a large fraction of aggregates remained respirable (<5 microm). Fine particle fractions ranged between 21% and 41% in an Andersen cascade impactor operated at 28.3 l/min, with mannitol and lactose providing the most cohesive and free-flowing powders, respectively. Particle surface analysis by X-ray photoelectron spectroscopy (XPS) revealed a surface enrichment with DPPC relative to albumin for powders prepared under certain spray-drying conditions. DPPC self-organized in a gel phase in the particle and no sugar or mannitol crystals were detected by X-ray diffraction. Water sorption isotherms showed that albumin protected lactose from moisture-induced crystallization. In conclusion, a proper combination of composition and spray-drying parameters allowed to obtain dry powders with elevated fine particle fractions (FPFs) and a physical environment favorable to protein stability.

  11. Influence of formulation and preparation process on ambroxol hydrochloride dry powder inhalation characteristics and aerosolization properties.

    PubMed

    Ren, Yachao; Yu, Chaoqun; Meng, Kangkang; Tang, Xing

    2008-09-01

    The objective of this study is to evaluate the influence of formulation and preparation process on ambroxol hydrochloride (AH) dry powder inhalation (DPI) characteristics and aerosolization properties. Spray-dried samples of AH, AH/leucine, and AH/leucine/mannitol were prepared from their corresponding water solutions under the same conditions to study the influence of the composition, and the AH/leucine/mannitol (2.5/0.5/1 by weight) formulation was used for investigation of the effect of the preparation process. Following spray-drying, the resulting powders were characterized using scanning electron microscopy, laser diffraction, tapped density, and angle of repose measurements, and the aerosolization performance was determined using a twin-stage liquid impinger. AH/leucine/mannitol (2.5/0.5/1 by weight) obtained by cospray-drying improved the AH aerosolization properties. The AH/leucine/mannitol (2.5/0.5/1 by weight) preparation exhibited the following properties: 62.34% yield, 0.34 g/cm(3) tap density, 2.71 microm d(ae), 33.45 degrees angle of repose, and 30.93% respirable fraction. The influence of the preparation process on DPI characteristics and aerosolization properties was relatively small, but the influence of the composition was relatively large. Optimization of DPI can be achieved by selecting the most appropriate formulation and preparation process.

  12. Spray-freeze-dried liposomal ciprofloxacin powder for inhaled aerosol drug delivery.

    PubMed

    Sweeney, Lyle G; Wang, Zhaolin; Loebenberg, Raimar; Wong, Jonathan P; Lange, Carlos F; Finlay, Warren H

    2005-11-23

    Spray-freeze drying was utilized to manufacture a liposomal powder formulation containing ciprofloxacin as a model active component. The powder forms liposomally encapsulated ciprofloxacin when wetted. Aerosol properties of this formulation were assessed using a new passive inhaler, in which the powder was entrained at a flow rate of 60l/min. A mass median aerodynamic diameter (MMAD) of 2.8 microm was achieved for this formulation. Using the experimental dispersion testing data, ciprofloxacin concentration in the airway surface liquid (ASL) was calculated using a Lagrangian deposition model. The reconstitution of the powder in various aqueous media gave drug encapsulation efficiencies as follows: 50% in water, 93.5% in isotonic saline, 80% in bovine mucin, 75% in porcine mucus and 73% in five-fold-diluted ex vivo human cystic fibrosis patient sputum.

  13. CFD analysis of the aerosolization of carrier-based dry powder inhaler formulations

    NASA Astrophysics Data System (ADS)

    Zhou, Qi (Tony); Tong, Zhenbo; Tang, Patricia; Yang, Runyu; Chan, Hak-Kim

    2013-06-01

    This study applied computational fluid dynamics (CFD) analysis to investigate the role of device design on the aerosolization of a carrier-based dry powder inhaler (DPI). The inhaler device was modified by reducing the inlet size, decreasing the mouthpiece length and increasing the mesh grid voidage. The flow patterns in the inhaler device were examined. It was observed that there was no significant influence on the aerosol performance with the reduced mouthpiece. When the inlet size was reduced to one third of the original one, the fine particle fraction (FPF), defined as mount of inhalable fine particles below 5μm in the aerosol, was improved significantly from 17.7% to 24.3%. The CFD analysis indicated that the increase in FPF was due to increasing air velocity for the smaller inlet. No significant difference was shown in FPF when the grid voidage was increased, but more drugs deposited in the mouthpiece and throat.

  14. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery

    PubMed Central

    Duan, Jinghua; Vogt, Frederick G; Li, Xiaojian; Hayes, Don; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design and develop respirable antibiotics moxifloxacin (MOXI) hydrochloride and ofloxacin (OFLX) microparticles and nanoparticles, and multifunctional antibiotics particles with or without lung surfactant 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced by advanced spray-drying particle engineering from an organic solution in closed mode (no water) from dilute solution. Scanning electron microscopy indicated that these particles had both optimal particle morphology and surface morphology, and the particle size distributions were suitable for pulmonary delivery. Comprehensive and systematic physicochemical characterization and in vitro aerosol dispersion performance revealed significant differences between these two fluoroquinolone antibiotics following spray drying as drug aerosols and as cospray-dried antibiotic drug: DPPC aerosols. Fourier transform infrared spectroscopy and confocal Raman microspectroscopy were employed to probe composition and interactions in the solid state. Spray-dried MOXI was rendered noncrystalline (amorphous) following organic solution advanced spray drying. This was in contrast to spray-dried OFLX, which retained partial crystallinity, as did OFLX:DPPC powders at certain compositions. Aerosol dispersion performance was conducted using inertial impaction with a dry powder inhaler device approved for human use. The present study demonstrates that the use of DPPC offers improved aerosol delivery of MOXI as cospray-dried microparticulate/nanoparticulate powders, whereas residual partial crystallinity influenced aerosol dispersion of OFLX and most of the compositions of OFLX:DPPC inhalation powders. PMID:24092972

  15. Efficient Nose-to-Lung (N2L) Aerosol Delivery with a Dry Powder Inhaler

    PubMed Central

    Golshahi, Laleh; Behara, Srinivas R.B.; Tian, Geng; Farkas, Dale R.; Hindle, Michael

    2015-01-01

    Abstract Purpose: Delivering aerosols to the lungs through the nasal route has a number of advantages, but its use has been limited by high depositional loss in the extrathoracic airways. The objective of this study was to evaluate the nose-to-lung (N2L) delivery of excipient enhanced growth (EEG) formulation aerosols generated with a new inline dry powder inhaler (DPI). The device was also adapted to enable aerosol delivery to a patient simultaneously receiving respiratory support from high flow nasal cannula (HFNC) therapy. Methods: The inhaler delivered the antibiotic ciprofloxacin, which was formulated as submicrometer combination particles containing a hygroscopic excipient prepared by spray-drying. Nose-to-lung delivery was assessed using in vitro and computational fluid dynamics (CFD) methods in an airway model that continued through the upper tracheobronchial region. Results: The best performing device contained a 2.3 mm flow control orifice and a 3D rod array with a 3-4-3 rod pattern. Based on in vitro experiments, the emitted dose from the streamlined nasal cannula had a fine particle fraction <5 μm of 95.9% and mass median aerodynamic diameter of 1.4 μm, which was considered ideal for nose-to-lung EEG delivery. With the 2.3-343 device, condensational growth in the airways increased the aerosol size to 2.5–2.7 μm and extrathoracic deposition was <10%. CFD results closely matched the in vitro experiments and predicted that nasal deposition was <2%. Conclusions: The developed DPI produced high efficiency aerosolization with significant size increase of the aerosol within the airways that can be used to enable nose-to-lung delivery and aerosol administration during HFNC therapy. PMID:25192072

  16. L-Leucine as an excipient against moisture on in vitro aerosolization performances of highly hygroscopic spray-dried powders.

    PubMed

    Li, Liang; Sun, Siping; Parumasivam, Thaigarajan; Denman, John A; Gengenbach, Thomas; Tang, Patricia; Mao, Shirui; Chan, Hak-Kim

    2016-05-01

    L-Leucine (LL) has been widely used to enhance the dispersion performance of powders for inhalation. LL can also protect powders against moisture, but this effect is much less studied. The aim of this study was to investigate whether LL could prevent moisture-induced deterioration in in vitro aerosolization performances of highly hygroscopic spray-dried powders. Disodium cromoglycate (DSCG) was chosen as a model drug and different amounts of LL (2-40% w/w) were added to the formulation, with the aim to explore the relationship between powder dispersion, moisture protection and physicochemical properties of the powders. The powder formulations were prepared by spray drying of aqueous solutions containing known concentrations of DSCG and LL. The particle sizes were measured by laser diffraction. The physicochemical properties of fine particles were characterized by X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic vapor sorption (DVS). The surface morphology and chemistry of fine particles were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In vitro aerosolization performances were evaluated by a next generation impactor (NGI) after the powders were stored at 60% or 75% relative humidity (RH), and 25°C for 24h. Spray-dried (SD) DSCG powders were amorphous and absorbed 30-45% (w/w) water at 70-80% RH, resulting in deterioration in the aerosolization performance of the powders. LL did not decrease the water uptake of DSCG powders, but it could significantly reduce the effect of moisture on aerosolization performances. This is due to enrichment of crystalline LL on the surface of the composite particles. The effect was directly related to the percentage of LL coverage on the surface of particles. Formulations having 61-73% (molar percent) of LL on the particle surface (which correspond to 10-20% (w

  17. Investigation on the aerosol performance of dry powder inhalation hypromellose capsules with different lubricant levels.

    PubMed

    Saleem, I Y; Diez, F; Jones, B E; Kayali, N; Polo, L

    2015-08-15

    HPMC capsules are made by a dipping process and a surface lubricant for the mould pins is an essential processing aid for removing dried capsules shells. For the purpose of this study, the level was determined by quantifying methyloleate (MO) a component found in the lubricant but not in the hypromellose capsules. Here we investigated the influence of the lubricant, low (10.81 μg/capsule=60 mg/kg MO), medium (15.97 μg/capsule=90 mg/kg MO) and high (23.23 μg/capsule=127 mg/kg MO) content on powder (binary mixture of salbutamol: lactose, 1:50 w/w) aerosolization properties was investigated. Results indicated significantly lower emitted dose from capsules with 60 mg/kg MO. Furthermore, the 90 and 127 mg/kg MO level of lubricant capsules produced almost double the Fine Particle Dose & Fine Particle Fraction compared with the low level of lubricant. The data indicates that lubricant level within capsules has an influence on deposition profiles and amount of drug remaining in capsule and inhaler device after actuation. It is suggested lubricant levels greater than 60 mg/kg MO per capsule are required to minimise powder retention within capsules and maximise deposition profiles. AFM (atomic force microscopy) data suggest that internal surface roughness may be related with this phenomena.

  18. A dry powder combination of pyrazinoic acid and its n-propyl ester for aerosol administration to animals.

    PubMed

    Durham, P G; Young, E F; Braunstein, M S; Welch, J T; Hickey, A J

    2016-12-05

    Combining the advantage of higher efficacy due to local pulmonary administration of pyrazinoic acid (POA) and potent effect of pyrazinoic acid ester (PAE) delivered as an aerosol would aid in tuberculosis therapy. A combination spray dried dry powder, composed of POA, PAE (n-propyl POA), maltodextrin and leucine, was prepared for aerosol delivery to animals. Solid-state characteristics of morphology (scanning electron microscopy) crystallinity (X-ray powder diffraction), thermal properties (thermogravimetric analysis and differential scanning calorimetry) and moisture content (Karl Fisher) were evaluated. Particle size distributions, by volume (laser diffraction) for the dispersed powder and by mass (inertial impaction) were determined. Efficient delivery of the powder to a nose only animal exposure chamber employed a novel rotating brush/micro-fan apparatus. Spherical, crystalline particles were prepared. The volume median diameter, ∼1.5μm, was smaller than the mass median aerodynamic diameter, ∼3.0μm, indicating modest aggregation. Drug content variations were observed across the particle size distribution and may be explained by PAE evaporative losses. Delivery to the nose-only exposure chamber indicated that boluses could be administered at approximately 3min intervals to avoid aerosol accumulation and effect uniform dose delivery with successive doses suitable for future pharmacokinetic and pharmacodynamic studies.

  19. Characterization and aerosol dispersion performance of advanced spray-dried chemotherapeutic PEGylated phospholipid particles for dry powder inhalation delivery in lung cancer.

    PubMed

    Meenach, Samantha A; Anderson, Kimberly W; Zach Hilt, J; McGarry, Ronald C; Mansour, Heidi M

    2013-07-16

    Pulmonary inhalation chemotherapeutic drug delivery offers many advantages for lung cancer patients in comparison to conventional systemic chemotherapy. Inhalable particles are advantageous in their ability to deliver drug deep in the lung by utilizing optimally sized particles and higher local drug dose delivery. In this work, spray-dried and co-spray dried inhalable lung surfactant-mimic PEGylated lipopolymers as microparticulate/nanoparticulate dry powders containing paclitaxel were rationally designed via organic solution advanced spray drying (no water) in closed-mode from dilute concentration feed solution. Dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) with varying PEG chain length were mixed with varying amounts of paclitaxel in methanol to produce co-spray dried microparticles and nanoparticles. Scanning electron microscopy showed the spherical particle morphology of the inhalable particles. Thermal analysis and X-ray powder diffraction confirmed the retention of the phospholipid bilayer structure in the solid-state following spray drying, the degree of solid-state molecular order, and solid-state phase transition behavior. The residual water content of the particles was very low as quantified analytically Karl Fisher titration. The amount of paclitaxel loaded into the particles was quantified which indicated high encapsulation efficiencies (43-99%). Dry powder aerosol dispersion performance was measured in vitro using the Next Generation Impactor (NGI) coupled with the Handihaler dry powder inhaler device and showed mass median aerodynamic diameters in the range of 3.4-7 μm. These results demonstrate that this novel microparticulate/nanoparticulate chemotherapeutic PEGylated phospholipid dry powder inhalation aerosol platform has great potential in lung cancer drug delivery.

  20. The effect of excipients on the stability and aerosol performance of salmon calcitonin dry powder inhalers prepared via the spray freeze drying process.

    PubMed

    Poursina, Narges; Vatanara, Alireza; Rouini, Mohammad Reza; Gilani, Kambiz; Najafabadi, Abdolhossein Rouholamini

    2016-06-01

    Spray freeze drying was developed to produce dry powders suitable for applications such as inhalation delivery. In the current study, the spray freeze drying technique was employed to produce inhalable salmon calcitonin microparticles. Effects of the carrier type, concentration of hydroxyl propyl-β-cyclodextrin and the presence of Tween 80 on the chemical and structural stability, as well as on the aerosol performance of the particles were investigated. The results indicated that hydroxyl propyl-β-cyclodextrin had the most important effect on the chemical stability of the powder and strongly increased its stability by increasing its concentration in the formulation. Chemically stable formulations (over 90 % recovery) were selected for further examinations. Fluorescence spectroscopy and circular dichroism suggested that the formulations were structurally stable. Aerosol performance showed that the Tween-free powders produced higher fine particle fraction values than the formulations containing Tween (53.7 vs. 41.92 % for trehalose content and 52.85 vs. 43.06 % for maltose content).

  1. Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols.

    PubMed

    Lee, Hyo-Jung; Kang, Ji-Hyun; Lee, Hong-Goo; Kim, Dong-Wook; Rhee, Yun-Seok; Kim, Ju-Young; Park, Eun-Seok; Park, Chun-Woong

    2016-01-01

    The objectives of this study were to prepare bosentan hydrate (BST) microparticles as dry powder inhalations (DPIs) via spray drying and jet milling under various parameters, to comprehensively characterize the physicochemical properties of the BST hydrate microparticles, and to evaluate the aerosol dispersion performance and dissolution behavior as DPIs. The BST microparticles were successfully prepared for DPIs by spray drying from feeding solution concentrations of 1%, 3%, and 5% (w/v) and by jet milling at grinding pressures of 2, 3, and 4 MPa. The physicochemical properties of the spray-dried (SD) and jet-milled (JM) microparticles were determined via scanning electron microscopy, atomic force microscopy, dynamic light scattering particle size analysis, Karl Fischer titration, surface analysis, pycnometry, differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The in vitro aerosol dispersion performance and drug dissolution behavior were evaluated using an Anderson cascade impactor and a Franz diffusion cell, respectively. The JM microparticles exhibited an irregular corrugated surface and a crystalline solid state, while the SD microparticles were spherical with a smooth surface and an amorphous solid state. Thus, the in vitro aerosol dispersion performance and dissolution behavior as DPIs were considerably different due to the differences in the physicochemical properties of the SD and JM microparticles. In particular, the highest grinding pressures under jet milling exhibited excellent aerosol dispersion performance with statistically higher values of 56.8%±2.0% of respirable fraction and 33.8%±2.3% of fine particle fraction and lower mass median aerodynamic diameter of 5.0±0.3 μm than the others (P<0.05, analysis of variance/Tukey). The drug dissolution mechanism was also affected by the physicochemical properties that determine the dissolution kinetics of the SD and JM microparticles, which were well

  2. Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols

    PubMed Central

    Lee, Hyo-Jung; Kang, Ji-Hyun; Lee, Hong-Goo; Kim, Dong-Wook; Rhee, Yun-Seok; Kim, Ju-Young; Park, Eun-Seok; Park, Chun-Woong

    2016-01-01

    The objectives of this study were to prepare bosentan hydrate (BST) microparticles as dry powder inhalations (DPIs) via spray drying and jet milling under various parameters, to comprehensively characterize the physicochemical properties of the BST hydrate microparticles, and to evaluate the aerosol dispersion performance and dissolution behavior as DPIs. The BST microparticles were successfully prepared for DPIs by spray drying from feeding solution concentrations of 1%, 3%, and 5% (w/v) and by jet milling at grinding pressures of 2, 3, and 4 MPa. The physicochemical properties of the spray-dried (SD) and jet-milled (JM) microparticles were determined via scanning electron microscopy, atomic force microscopy, dynamic light scattering particle size analysis, Karl Fischer titration, surface analysis, pycnometry, differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The in vitro aerosol dispersion performance and drug dissolution behavior were evaluated using an Anderson cascade impactor and a Franz diffusion cell, respectively. The JM microparticles exhibited an irregular corrugated surface and a crystalline solid state, while the SD microparticles were spherical with a smooth surface and an amorphous solid state. Thus, the in vitro aerosol dispersion performance and dissolution behavior as DPIs were considerably different due to the differences in the physicochemical properties of the SD and JM microparticles. In particular, the highest grinding pressures under jet milling exhibited excellent aerosol dispersion performance with statistically higher values of 56.8%±2.0% of respirable fraction and 33.8%±2.3% of fine particle fraction and lower mass median aerodynamic diameter of 5.0±0.3 μm than the others (P<0.05, analysis of variance/Tukey). The drug dissolution mechanism was also affected by the physicochemical properties that determine the dissolution kinetics of the SD and JM microparticles, which were well

  3. Investigation of the Changes in Aerosolization Behavior Between the Jet-Milled and Spray-Dried Colistin Powders Through Surface Energy Characterization.

    PubMed

    Jong, Teresa; Li, Jian; Morton, David A V; Zhou, Qi Tony; Larson, Ian

    2016-03-01

    This study aimed to investigate the surface energy factors behind improved aerosolization performance of spray-dried colistin powder formulations compared with those produced by jet milling. Inhalable colistin powder formulations were produced by jet milling or spray drying (with or without l-leucine). Scanning electron micrographs showed the jet-milled particles had irregularly angular shapes, whereas the spray-dried particles were more spherical. Significantly higher fine particle fractions were measured for the spray-dried (43.8%-49.6%) versus the jet-milled formulation (28.4%) from a Rotahaler at 60 L/min; albeit the size distribution of the jet-milled powder was smaller. Surprisingly, addition of l-leucine in the spray drying feed solution gave no significant improvement in fine particle fraction. As measured by inverse gas chromatography, spray-dried formulations had significantly (p < 0.001) lower dispersive, specific, and total surface energy values and more uniform surface energy distributions than the jet-milled powder. Interestingly, no significant difference was measured in the specific and total surface energy values between the spray-dried formulation with or without l-leucine. Based on our previous findings in the self-assembling behavior of colistin in aqueous solution and the surface energy data obtained here, we propose the self-assembly of colistin molecules during spray drying contributed significantly to the reduction of surface free energy and the superior aerosolization performance.

  4. Investigation of the changes in aerosolization behavior between the jet-milled and spray-dried colistin powders through surface energy characterization

    PubMed Central

    Jong, Teresa; Li, Jian; Mortonx, David A.V.; Zhou, Qi (Tony); Larson, Ian

    2016-01-01

    This study aimed to investigate the surface energy factors behind improved aerosolization performance of spray-dried colistin powder formulations compared to those produced by jet-milling. Inhalable colistin powder formulations were produced by jet-milling or spray-drying (with or without L-leucine). Scanning electron micrographs showed the jet-milled particles had irregularly angular shapes, while the spray-dried particles were more spherical. Significantly higher fine particle fractions (FPFs) were measured for the spray-dried (43.8-49.6%) vs. the jet-milled formulation (28.4 %) from a Rotahaler at 60L/min; albeit the size distribution of the jet-milled powder was smaller. Surprisingly, addition of L-leucine in the spray drying feed-solution gave no significant improvement in FPF. As measured by inverse gas chromatography, spray-dried formulations had significantly (p<0.001) lower dispersive, specific and total surface energy values and more uniform surface energy distributions than the jet-milled powder. Interestingly, no significant difference was measured in the specific and total surface energy values between the spray-dried formulation with or without L-leucine. Based upon our previous findings in the self-assembling behavior of colistin in aqueous solution and the surface energy data obtained here, we propose the self-assembly of colistin molecules during spray-drying, contributed significantly to the reduction of surface free energy and the superior aerosolization performance. PMID:26886330

  5. Pharmaceutical aerosols deposition patterns from a Dry Powder Inhaler: Euler Lagrangian prediction and validation.

    PubMed

    Ravi Kannan, Ravishekar; Przekwas, A J; Singh, Narender; Delvadia, Renishkumar; Tian, Geng; Walenga, Ross

    2017-04-01

    This study uses Computational Fluid Dynamics (CFD) to predict, analyze and validate the deposition patterns in a human lung for a Budesonide drug delivered from the Novolizer Dry Powder Inhaler device. We used a test case of known deposition patterns to validate our computational Euler Lagrangian-based deposition predictions. Two different lung models are used: (i) a basic ring-less trachea model and (ii) an advanced Human Zygote5 model. Unlike earlier attempts, the current simulations do not include the device in the computational domain. This greatly reduces the computational effort. To mimic the device, we model the inlet particle jet stream from the device as a spray entering the mouth in a conical fashion. Deposition studies in the various lung regions were performed. We were able to computationally predict and then demonstrate the enhanced deposition in the tracheal and first generation rings/ridges. The enhanced vorticity creation due to the ring structure and the geometrical design contributes to larger deposition in the Zygote5 model. These are in accord with existing data, unlike the ring-less model. Our validated results indicate the need to (i) introduce the ridges in the experimental casts and the CFD surface meshes to be anatomically consistent and obtain physiologically consistent depositions; (ii) introduce a factor to account for the recirculating lighter particles in empirical models.

  6. Dry powder inhalers of gentamicin and leucine: formulation parameters, aerosol performance and in vitro toxicity on CuFi1 cells.

    PubMed

    Aquino, R P; Prota, L; Auriemma, G; Santoro, A; Mencherini, T; Colombo, G; Russo, P

    2012-04-15

    The high hygroscopicity of gentamicin (G) as raw material hampers the production of respirable particles during aerosol generation and prevents its direct use as powder for inhalation in patients suffering from cystic fibrosis (CF). Therefore, this research aimed to design a new dry powder formulation of G studying dispersibility properties of an aminoacid, L-leucine (leu), and appropriate process conditions. Spray-dried powders were characterized as to water uptake, particle size distribution, morphology and stability, in correlation with process parameters. Aerodynamic properties were analyzed both by Single Stage Glass Impinger and Andersen Cascade Impactor. Moreover, the potential cytotoxicity on bronchial epithelial cells bearing a CFTR F508/F508 mutant genotype (CuFi1) were tested. Results indicated that leu may improve the aerosol performance of G-dried powders. The maximum fine particle fraction (FPF) of about 58.3% was obtained when water/isopropyl alcohol 7:3 system and 15-20% (w/w) of leu were used, compared to a FPF value of 13.4% for neat G-dried powders. The enhancement of aerosol efficiency was credited both to the improvement of the powder flowability, caused by the dispersibility enhancer (aminoacid), and to the modification of the particle surface due to the influence of the organic co-solvent on drying process. No significant degradation of the dry powder was observed up to 6 months of storage. Moreover, particle engineering did not affect either the cell viability or cell proliferation of CuFi1 over a 24 h period.

  7. Design, characterization, and aerosol dispersion performance modeling of advanced co-spray dried antibiotics with mannitol as respirable microparticles/nanoparticles for targeted pulmonary delivery as dry powder inhalers.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-09-01

    Dry powder inhalation aerosols of antibiotic drugs (a first-line aminoglycoside, tobramycin, and a first-line macrolide, azithromycin) and a sugar alcohol mucolytic agent (mannitol) as co-spray dried (co-SD) particles at various molar ratios of drug:mannitol were successfully produced by organic solution advanced co-spray drying from dilute solute concentration. These microparticulate/nanoparticulate aerosols consisting of various antibiotic drug:mannitol molar ratios were rationally designed with a narrow and unimodal primary particle size distribution, spherical particle shape, relatively smooth particle surface, and very low residual water content to minimize the interparticulate interactions and enhance in vitro aerosolization. These microparticulate/nanoparticulate inhalation powders were high-performing aerosols as reflected in the aerosol dispersion performance parameters of emitted dose, fine particle fraction (FPF), respirable fraction (RF), and mass median aerodynamic diameter (MMAD). The glass transition temperature (Tg) values were significantly above room temperature, which indicated that the co-SD powders were all in the amorphous glassy state. The Tg values for co-SD tobramycin:mannitol powders were significantly lower than those for co-SD azithromycin:mannitol powders. The interplay between aerosol dispersion performance parameters and Tg was modeled where higher Tg values (i.e., more ordered glass) were correlated with higher values in FPF and RF and lower values in MMAD.

  8. The influence of crystallization conditions on the morphology of lactose intended for use as a carrier for dry powder aerosols.

    PubMed

    Zeng, X M; Martin, G P; Marriott, C; Pritchard, J

    2000-06-01

    Lactose has been widely used as a carrier for inhalation aerosols. The carrier morphology is believed to affect the delivery of the drug. The aim of this study was to investigate the effects of crystallization conditions on the morphology of alpha-lactose monohydrate intended for use as the carrier for dry powder aerosols. The crystallization of lactose was carried out from aqueous solutions at different supersaturations, temperatures, different stages of crystallization and in the presence of different water-miscible organic solvents. The majority of lactose crystals were found to be either tomahawk-shaped or pyramidal after crystallization at an initial lactose concentration between 33-43% w/w, but these became prismatic if the lactose concentration was increased to 50% w/w. A further increase in the lactose concentration to 60% w/w led to the preparation of elongated cuboidal crystals. Higher initial lactose concentrations tended to result in the crystallization of more elongated particles. Crystallization at 40 degrees C was shown to prepare lactose crystals with a more regular shape and a smoother surface than those crystallized at 0 degrees C. Lactose particles generated during the later stage of crystallization were found to be more regular in shape with a smoother surface than those prepared in the earlier stage. The addition of 10% (v/v) methanol or ethanol or acetone to the mother liquor increased the growth rate of lactose particles whereas addition of propanol or glycerine inhibited the rate of crystal growth. Lactose crystals prepared in the presence of glycerine were more regularly shaped with a smoother surface than those prepared in the presence of ethanol or acetone. All the resultant crystals were shown to comprise alpha-lactose monohydrate. Lactose crystals could be prepared with a precisely defined morphology by means of carefully controlling the crystallization conditions.

  9. Influence of surface characteristics of modified glass beads as model carriers in dry powder inhalers (DPIs) on the aerosolization performance.

    PubMed

    Zellnitz, Sarah; Schroettner, Hartmuth; Urbanetz, Nora Anne

    2015-01-01

    The aim of this work is to investigate the effect of surface characteristics (surface roughness and specific surface area) of surface-modified glass beads as model carriers in dry powder inhalers (DPIs) on the aerosolization, and thus, the in vitro respirable fraction often referred to as fine particle fraction (FPF). By processing glass beads in a ball mill with different grinding materials (quartz and tungsten carbide) and varying grinding time (4 h and 8 h), and by plasma etching for 1 min, glass beads with different shades of surface roughness and increased surface area were prepared. Compared with untreated glass beads, the surface-modified rough glass beads show increased FPFs. The drug detachment from the modified glass beads is also more reproducible than from untreated glass beads indicated by lower standard deviations for the FPFs of the modified glass beads. Moreover, the FPF of the modified glass beads correlates with their surface characteristics. The higher the surface roughness and the higher the specific surface area of the glass beads the higher is the FPF. Thus, surface-modified glass beads make an ideal carrier for tailoring the performance of DPIs in the therapy of asthma and chronically obstructive pulmonary diseases.

  10. Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 2. Ipratropium bromide monohydrate and fluticasone propionate.

    PubMed

    Xu, Zhen; Mansour, Heidi M; Mulder, Tako; McLean, Richard; Langridge, John; Hickey, Anthony J

    2010-08-01

    The objectives of this study were: systematic investigation of dry powder aerosol performance using standardized entrainment tubes (SETs) and lactose-based formulations with two model drugs; mechanistic evaluation of performance data by powder aerosol deaggregation equation (PADE). The drugs (IPB and FP) were prepared in sieved and milled lactose carriers (2% w/w). Aerosol studies were performed using SETs (shear stresses tau(s) = 0.624-13.143 N/m(2)) by twin-stage liquid impinger, operated at 60 L/min. PADE was applied for formulation screening. Excellent correlation was observed when PADE was adopted correlating FPF to tau(s). Higher tau(s) corresponded to higher FPF values followed by a plateau representing invariance of FPF with increasing tau(s). The R(2) values for PADE linear regression were 0.9905-0.9999. Performance described in terms of the maximum FPF (FPF(max): 15.0-37.6%) resulted in a rank order of ML-B/IPB > ML-A/IPB > SV-A/IPB > SV-B/IPB > ML-B/FP > ML-A/FP > SV-B/FP > SV-A/FP. The performance of IPB was superior to FP in all formulations. The difference in lactose monohydrate carriers was less pronounced for the FPF in IPB than in FP formulations. The novel PADE offers a robust method for evaluating aerodynamic performance of dry powder formulations within a defined tau(s) range.

  11. The effects of excipients and particle engineering on the biophysical stability and aerosol performance of parathyroid hormone (1-34) prepared as a dry powder for inhalation.

    PubMed

    Shoyele, Sunday A; Sivadas, Neeraj; Cryan, Sally-Ann

    2011-03-01

    Pulmonary delivery of therapeutic peptides and proteins has many advantages including high relative bioavailability, rapid systemic absorption and onset of action and a non-invasive mode of administration which improves patient compliance. In this study, we investigated the effect of spray-drying (SD) and spray freeze-drying processes on the stability and aerosol performance of parathyroid hormone (PTH) (1-34) microparticles. In this study, the stabilisation effect of trehalose (a non-reducing sugar) and Brij 97 (a non-ionic surfactant) on spray-dried PTH particles was assessed using analytical techniques including circular dichroism (CD), fluorescence spectroscopy, modulated differential scanning calorimetry and an in vitro bioactivity assay. Physical characterisation also included electron microscopy, tap density measurement and laser light diffraction. The aerosol aerodynamic performance of the formulations was assessed using the Andersen cascade impactor. Based on these studies, a formulation for spray freeze-drying was selected and the effects of the two particle engineering techniques on the biophysical stability and aerosol performance of the resulting powders was determined. CD, fluorescence spectroscopy and bioactivity data suggest that trehalose when used alone as a stabilising excipient produces a superior stabilising effect than when used in combination with a non-ionic surfactant. This highlights the utility of CD and fluorescence spectroscopy studies for the prediction of protein bioactivity post-processing. Therefore, a method and formulation suitable for the preparation of PTH as a dry powder was developed based on spray-drying PTH with trehalose as a stabiliser with the bioactivity of SD PTH containing trehalose being equivalent to that of unprocessed PTH.

  12. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols.

    PubMed

    Meenach, Samantha A; Vogt, Frederick G; Anderson, Kimberly W; Hilt, J Zach; McGarry, Ronald C; Mansour, Heidi M

    2013-01-01

    Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol) (PEG)ylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG) with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 nm to 1.2 μm in diameter, which is optimal for deep-lung alveolar penetration. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were performed to analyze solid-state transitions and long-range molecular order, respectively, and allowed for the confirmation of the presence of phospholipid bilayers in the solid state of the particles. The residual water content of the particles was very low, as quantified analytically via Karl Fischer titration. The composition of the particles was confirmed using attenuated total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and confocal Raman microscopy (CRM), and chemical imaging confirmed the chemical homogeneity of the particles. The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™) coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the

  13. An investigation into the effect of fine lactose particles on the fluidization behaviour and aerosolization performance of carrier-based dry powder inhaler formulations.

    PubMed

    Kinnunen, Hanne; Hebbink, Gerald; Peters, Harry; Shur, Jagdeep; Price, Robert

    2014-08-01

    The effect of milled and micronized lactose fines on the fluidization and in vitro aerosolization properties of dry powder inhaler (DPI) formulations was investigated, and the suitability of static and dynamic methods for characterizing general powder flow properties of these blends was assessed. Lactose carrier pre-blends were prepared by adding different lactose fines (Lactohale® (LH) 300, 230 and 210) with coarse carrier lactose (Lactohale100) at 2.5, 5, 10 and 20 wt% concentrations. Powder flow properties of lactose pre-blends were characterized using the Freeman Technology FT4 and Schulze RST-XS ring shear tester. A strong correlation was found between the basic flow energy (BFENorm) measured using the Freeman FT4 Rheometer and the flowability number (ffc) measured on Schulze RST-XS. These data indicate that both static and dynamic methods are suitable for characterizing general powder flow properties of lactose carriers. Increasing concentration of fines corresponded with an increase in the normalized fluidization energy (FENorm). The inclusion of fine particles of lactose resulted in a significant (p < 0.05) increase in fine particle delivery of budesonide and correlated with FENorm. This trend was strongest for lactose containing up to 10 wt% LH300. A similar trend was found for the milled lactose grades LH230 and LH210. However, the increase in FENorm upon addition of milled fines only corresponded to a very slight improvement in the performance. These data suggest that whilst the fluidization energy correlated with fine particle delivery, this relationship is specific to lactose grades of similar particle size.

  14. Dry PMR-15 Resin Powders

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D.; Roberts, Gary D.

    1988-01-01

    Shelf lives of PMR-15 polymides lengthened. Procedure involves quenching of monomer reactions by vacuum drying of PRM-15 resin solutions at 70 to 90 degree F immediately after preparation of solutions. Absence of solvent eliminates formation of higher esters and reduces formation of imides to negligible level. Provides fully-formulated dry PMR-15 resin powder readily dissolvable in solvent at room temperature immediately before use. Resins used in variety of aerospace, aeronautical, and commercial applications.

  15. Wetter for fine dry powder

    DOEpatents

    Hall, James E.; Williams, Everett H.

    1977-01-01

    A system for wetting fine dry powders such as bentonite clay with water or other liquids is described. The system includes a wetting tank for receiving water and a continuous flow of fine powder feed. The wetting tank has a generally square horizontal cross section with a bottom end closure in the shape of an inverted pyramid. Positioned centrally within the wetting tank is a flow control cylinder which is supported from the walls of the wetting tank by means of radially extending inclined baffles. A variable speed motor drives a first larger propeller positioned immediately below the flow control cylinder in a direction which forces liquid filling the tank to flow downward through the flow control cylinder and a second smaller propeller positioned below the larger propeller having a reverse pitch to oppose the flow of liquid being driven downward by the larger propeller.

  16. Investigation of dry powder inhaler (DPI) resistance and aerosol dispersion timing on emitted aerosol aerodynamic particle sizing by multistage cascade impactor when sampled volume is reduced from compendial value of 4 L.

    PubMed

    Mohammed, Hlack; Arp, Jan; Chambers, Frank; Copley, Mark; Glaab, Volker; Hammond, Mark; Solomon, Derek; Bradford, Kerry; Russell, Theresa; Sizer, Yvonne; Nichols, Steven C; Roberts, Daryl L; Shelton, Christopher; Greguletz, Roland; Mitchell, Jolyon P

    2014-10-01

    Compendial methods determining dry powder inhaler (DPI)-emitted aerosol aerodynamic particle size distribution (APSD) collect a 4-L air sample containing the aerosol bolus, where the flow, which propagates through the cascade impactor (CI) measurement system from the vacuum source, is used to actuate the inhaler. A previous article described outcomes with two CIs (Andersen eight-stage cascade impactor (ACI) and Next-Generation Pharmaceutical Impactor (NGI)) when the air sample volume was ≤4 L with moderate-resistance DPIs. This article extends that work, examining the hypothesis that DPI flow resistance may be a factor in determining outcomes. APSD measurements were made using the same CI systems with inhalers representing low and high flow resistance extremes (Cyclohaler® and HandiHaler® DPIs, respectively). The ratio of sample volume to internal dead space (normalized volume (V*)) was varied from 0.25 to 1.98 (NGI) and from 0.43 to 3.46 (ACI). Inhaler resistance was a contributing factor to the rate of bolus transfer; the higher resistance DPI completing bolus relocation to the NGI pre-separator via the inlet when V* was as small as 0.25, whereas only ca. 50% of the bolus mass was collected at this condition with the Cyclohaler® DPI. Size fractionation of the bolus from either DPI was completed within the ACI at smaller values of V* than within the NGI. Bolus transfer from the Cyclohaler® capsule and from the HandiHaler® to the ACI system were unaffected by the different flow rise time observed in the two different flow controller systems, and the effects the ACI-based on APSD measurements were marginal.

  17. Understanding the influence of powder flowability, fluidization and de-agglomeration characteristics on the aerosolization of pharmaceutical model powders.

    PubMed

    Zhou, Qi Tony; Armstrong, Brian; Larson, Ian; Stewart, Peter J; Morton, David A V

    2010-08-11

    The aim of this study was to investigate the influence of the intrinsic inter-particulate cohesion of model pharmaceutical powders on their aerosolization from a dry powder inhaler. Two cohesive poly-disperse lactose powders with median particle sizes of around 4 and 20 microm were examined. The results showed that after dry coating with magnesium stearate, their flowability, fluidization and de-agglomeration behaviours could be substantially improved, as indicated by powder rheometry, shear testing and laser diffraction aerosol testing. This was achieved by reducing their cohesiveness via surface modification. In contrast to some previous reports, this study demonstrated how powder aerosolization may be improved more significantly and consistently (for widely varying air flow rates) by substantially reducing their inter-particulate cohesive forces. This study contributes to the understanding of the relationship between intrinsic cohesive nature and bulk properties such as flowability, fluidization and de-agglomeration and its impact on their aerosolization, which is fundamental and critical in the optimal design of dry powder inhaler formulations. The intensive mechanical dry coating technique also demonstrated a promising potential to improve aerosolization efficiency of fine cohesive model powders.

  18. Direct lung delivery of a dry powder formulation of DTPA with improved aerosolization properties: effect on lung and systemic decorporation of plutonium.

    PubMed

    Gervelas, C; Serandour, A-L; Geiger, S; Grillon, G; Fritsch, P; Taulelle, C; Le Gall, B; Benech, H; Deverre, J-R; Fattal, E; Tsapis, N

    2007-03-12

    DTPA, an actinide chelating agent, has demonstrated its ability to complex plutonium (Pu) and to facilitate its urinary excretion after internal contamination. This process, known as decorporation is crucial to diminish the burden of Pu in the body. The ability to deliver a chelating agent directly to the alveolar region may increase its local concentration as compared to systemic delivery and therefore increase the extent of decorporation. Second, inhalation offers the potential for needle-free, systemic delivery of small molecules and would be convenient in case of nuclear accident as a first pass emergency treatment. To benefit from the improvement of inhalation technology, we have formulated DTPA into porous particles by spray-drying with dl-Leucine, DPPC and ammonium bicarbonate. The optimized particles possess a volume mean geometric diameter around 4.5 mum and crumpled paper morphology. The in vitro aerodynamic evaluation shows that about 56% of the powder should deposits in the lungs, with about 27% in the alveolar region, an improvement as compared with the micronized powder available with the Spinhaler. After pulmonary administration to rats contaminated with PuO(2), a 3-fold increase of the Pu urinary excretion was observed, but the dissolution of PuO(2) in the lungs was not enhanced.

  19. Deposition of corticosteroid aerosol in the human lung by Respimat Soft Mist inhaler compared to deposition by metered dose inhaler or by Turbuhaler dry powder inhaler.

    PubMed

    Pitcairn, Gary; Reader, Sandie; Pavia, Demetri; Newman, Steve

    2005-01-01

    Fourteen mild-to-moderate asthmatic patients completed a randomized four-way crossover scintigraphic study to determine the lung deposition of 200 microg budesonide inhaled from a Respimat Soft Mist Inhaler (Respimat SMI), 200 microg budesonide inhaled from a Turbuhaler dry powder inhaler (Turbuhaler DPI, used with fast and slow peak inhaled flow rates), and 250 microg beclomethasone dipropionate inhaled from a pressurized metered dose inhaler (Becloforte pMDI). Mean (range) whole lung deposition of drug from the Respimat SMI (51.6 [46-57]% of the metered dose) was significantly (p < 0.001) greater than that from the Turbuhaler DPI used with both fast and slow inhaled flow rates (28.5 [24-33]% and 17.8 [14-22]%, respectively) or from the Becloforte pMDI (8.9 [6-12]%). The deposition pattern within the lungs was more peripheral for Respimat SMI than for Turbuhaler DPI. The results of this study showed that Respimat SMI deposited corticosteroid more efficiently in the lungs than either of two widely used inhaler devices, Turbuhaler DPI or Becloforte pMDI.

  20. Experimental investigation of design parameters on dry powder inhaler performance.

    PubMed

    Ngoc, Nguyen Thi Quynh; Chang, Lusi; Jia, Xinli; Lau, Raymond

    2013-11-30

    The study aims to investigate the impact of various design parameters of a dry powder inhaler on the turbulence intensities generated and the performance of the dry powder inhaler. The flow fields and turbulence intensities in the dry powder inhaler are measured using particle image velocimetry (PIV) techniques. In vitro aerosolization and deposition a blend of budesonide and lactose are measured using an Andersen Cascade Impactor. Design parameters such as inhaler grid hole diameter, grid voidage and chamber length are considered. The experimental results reveal that the hole diameter on the grid has negligible impact on the turbulence intensity generated in the chamber. On the other hand, hole diameters smaller than a critical size can lead to performance degradation due to excessive particle-grid collisions. An increase in grid voidage can improve the inhaler performance but the effect diminishes at high grid voidage. An increase in the chamber length can enhance the turbulence intensity generated but also increases the powder adhesion on the inhaler wall.

  1. LaRC dry powder towpreg process

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.; Baucom, Robert M.

    1991-01-01

    The dry powder towpreg process overcomes many of the difficulties associated with melt, solution and slurry prepregging of advanced composite materials. In the process, fluidized powder is deposited on spread tow bundles and melted on the fibers by radiant heating to adhere the polymer to the fiber. Bench scale design and operating data have been correlated for use in process scale up to commercial operation. Powdered towpreg has been woven and molded into preform material of good quality. Cost estimates suggest that processing costs are comparable to those of conventional hot melt prepreg. In the future, from a part fabrication point of view, powder coated prepreg tape, woven broad goods and woven and braided preforms may be considered as options to similar materials made by other methods.

  2. Powder dispersion mechanisms within a dry powder inhaler using microscale particle image velocimetry.

    PubMed

    Kou, Xiang; Wereley, Steven T; Heng, Paul W S; Chan, Lai Wah; Carvajal, M Teresa

    2016-12-05

    The goal of this work was to evaluate the ability of Particle Image Velocimetry (PIV) to visually assess dry powder dispersion within an inhaler. Herein, the study reports particle movement characterization of entrained low-micron particles within an inhaler to further scheme of potential mechanisms. Carrier based DPI formulations were prepared and placed in a transparent model Rotahaler(®) chamber for the aerosolization experiments. Then using the PIV, a high-speed camera, the dried powder dispersion was directly observed and analyzed for all, neat, binary and ternary systems. Powder dispersion mechanisms proposed include drag force, impact with obstacle and particle-particle collision; these different mechanisms depended on the powder flow properties. A revised ratio of aerodynamic response time (τA) to the mean time between collisions (τC) was found to be 6.8 indicating that particle collisions were of strong influence to particle dispersion. With image analysis techniques, visualization of particle flow pattern and collision regions was possible; suggesting that the various mechanisms proposed did govern the powder dispersion.

  3. Effect of sampling volume on dry powder inhaler (DPI)-emitted aerosol aerodynamic particle size distributions (APSDs) measured by the Next-Generation Pharmaceutical Impactor (NGI) and the Andersen eight-stage cascade impactor (ACI).

    PubMed

    Mohammed, Hlack; Roberts, Daryl L; Copley, Mark; Hammond, Mark; Nichols, Steven C; Mitchell, Jolyon P

    2012-09-01

    Current pharmacopeial methods for testing dry powder inhalers (DPIs) require that 4.0 L be drawn through the inhaler to quantify aerodynamic particle size distribution of "inhaled" particles. This volume comfortably exceeds the internal dead volume of the Andersen eight-stage cascade impactor (ACI) and Next Generation pharmaceutical Impactor (NGI) as designated multistage cascade impactors. Two DPIs, the second (DPI-B) having similar resistance than the first (DPI-A) were used to evaluate ACI and NGI performance at 60 L/min following the methodology described in the European and United States Pharmacopeias. At sampling times ≥2 s (equivalent to volumes ≥2.0 L), both impactors provided consistent measures of therapeutically important fine particle mass (FPM) from both DPIs, independent of sample duration. At shorter sample times, FPM decreased substantially with the NGI, indicative of incomplete aerosol bolus transfer through the system whose dead space was 2.025 L. However, the ACI provided consistent measures of both variables across the range of sampled volumes evaluated, even when this volume was less than 50% of its internal dead space of 1.155 L. Such behavior may be indicative of maldistribution of the flow profile from the relatively narrow exit of the induction port to the uppermost stage of the impactor at start-up. An explanation of the ACI anomalous behavior from first principles requires resolution of the rapidly changing unsteady flow and pressure conditions at start up, and is the subject of ongoing research by the European Pharmaceutical Aerosol Group. Meanwhile, these experimental findings are provided to advocate a prudent approach by retaining the current pharmacopeial methodology.

  4. Weavability of dry polymer powder towpreg

    NASA Technical Reports Server (NTRS)

    Hugh, Maylene K.; Marchello, Joseph M.; Maiden, Janice R.; Johnston, Norman J.

    1993-01-01

    Carbon fiber yarns (3k, 6k, 12k) were impregnated with LARC (tm) thermoplastic polyimide dry powder. Parameters for weaving these yarns were established. Eight-harness satin fabrics were successfully woven from each of the three classes of yarns and consolidated into test specimens to determine mechanical properties. It was observed that for optimum results warp yarns should have flexural rigidities between 10,000 and 100,000 mg-cm. Tow handling minimization, low tensioning, and tow bundle twisting were used to reduce fiber breakage, the separation of filaments, and tow-to-tow abrasion. No apparent effect of tow size or twist was observed on either tension or compression modulus. However, fiber damage and processing costs favor the use of 12k yarn bundles versus 3k or 6k yarn bundles in the weaving of powder-coated towpreg.

  5. Dry powder segregation and flowability: Experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Ely, David R.

    Dry powder blending is a very important industrial and physical process used in the production of numerous pharmaceutical dosage forms such as tablets, capsules, and dry powder aerosols. Key aspects of this unit operation are process monitoring and control. Process control is particularly difficult due to the complexity of particle-particle interactions, which arise from the adhesion/cohesion characteristics of interfaces and morphological characteristics such as particle size, shape, and dispersity. The effects of such characteristics need to be understood in detail in order to correlate individual particle properties to bulk powder properties. The present dissertation numerically and experimentally quantifies the mixing process to rationalize particle-particle interactions. In particular, near infrared spectroscopy (NIRS) was used to non-invasively characterize in real-time the blending processes and thus investigate the dynamics of blending under different operating conditions. A novel image analysis technique was developed to quantify the scale of segregation from images obtained non-destructively via near infrared chemical imaging (NIR-CI). Although NIR-CI data acquisition times are too long for real-time data collection, NIR-CI has an advantage, in that it provides the spatial distribution of the drug. Therefore, NIRS and NIR-CI are complementary techniques for investigating the complex process of blending dry powders and assessing end-product quality. Additionally, the discrete element method was used to investigate the effect of powder cohesion on the packing fraction. Simulations indicated an exponential relationship between the random loose packing fraction and cohesive forces. Specifically, the packing fraction decreased asymptotically with increased ratio of cohesive force to particle weight. Thus, increasing this force ratio above a critical value has negligible impact on the packing fraction. Such result directly impacts the Hausner ratio flowability

  6. Alternative sugars as potential carriers for dry powder inhalations.

    PubMed

    Steckel, Hartwig; Bolzen, Nina

    2004-02-11

    Most dry powder inhaler (DPI) formulations rely on lactose monohydrate as a carrier in the drug powder blends. However, lactose cannot be used for compounds that interact with the reducing sugar function of the lactose, such as formoterol, budesonide or peptides and proteins. In this study, alternative carriers like mannitol, glucose, sorbitol, maltitol and xylitol have therefore been evaluated for their potential use in DPI formulations. Raw materials were characterised physico-chemically and blends with the model drug substance budesonide were tested with respect to the aerosolization behaviour of the powders. It was found out that similarly to the problems known for lactose monohydrate, such as supplier variability, variability between different qualities of one supplier, the same difficulties apply to the alternative carriers investigated. Different sources and qualities of mannitol led to significant differences in the fine particle fraction (FPF), varying from 15 to 50% for two different qualities of mannitol. Similar observations were made for the other carrier materials studied. Also, the influence of conditioning the raw material at different relative humidity was found to have substantial influence on the performance of drug/carrier blends which is characterised by a strong decrease in the FPF. In summary, mannitol showed potential as a drug carrier to be used in DPIs whereas the more hygroscopic sugars only showed poor dispersibility.

  7. Nutritional composition of ginger powder prepared using various drying methods.

    PubMed

    Sangwan, A; Kawatra, A; Sehgal, S

    2014-09-01

    A study was undertaken to prepare ginger powder using various drying methods and their nutritional evaluation was carried out. Ginger (Zingiber officinale) was dried using shade, solar, oven and microwave drying methods. All the samples were ground in grinder to make fine powder. Sensory analysis indicated that acceptability of all types of ginger powders were in the range of 'liked very much' to 'liked moderately' by the panelists. The mean score obtained for colour was higher in shade dried ginger powder i.e., 8.20 as compared to oven dried (7.60), solar dried (7.70) and microwave dried ginger powder (7.80). Moisture content ranged from 3.55 % in solar dried ginger powder to 3.78 % in shade dried ginger powder. Slightly higher moisture content was found in shade dried ginger powder. Protein, crude fiber, fat and ash contents ranged from 5.02 to 5.82, 4.97 to 5.61, 0.76 to 0.90 and 3.38 to 3.66 %, respectively. β-carotene and ascorbic acid content was found maximum in shade dried ginger powder i.e., 0.81 mg/100 g and 3.83 mg/100 g, respectively. Polyphenol content was almost similar in all the samples whereas calcium was slightly higher in the shade dried ginger powder i.e., 69.21 mg/100 g. Results have shown that ginger powder prepared from various drying methods had good sensory and nutritional profile.

  8. Design and development of dry powder sulfobutylether-β-cyclodextrin complex for pulmonary delivery of fisetin.

    PubMed

    Mohtar, Noratiqah; Taylor, Kevin M G; Sheikh, Khalid; Somavarapu, Satyanarayana

    2017-04-01

    This study has investigated complexation of fisetin, a natural flavonoid, with three types of cyclodextrins to improve its solubility. Sulfobutylether-β-cyclodextrin (SBE-β-CD) showed the highest complexation efficiency while maintaining the in vitro antioxidant activity of fisetin. Addition of 20%v/v ethanol in water improved the amount of solubilized fisetin in the complex 5.9-fold compared to the system containing water alone. Spray drying of fisetin-SBE-β-CD complex solution in the presence of ethanol produced a dry powder with improved aerosolization properties when delivered from a dry powder inhaler, indicated by a 2-fold increase in the fine particle fraction (FPF) compared to the powder produced from the complex solution containing water alone. The pitted morphological surface of these particles suggested a more hollow internal structure, indicating a lighter and less dense powder. Incorporation of 20%w/w leucine improved the particle size distribution of the powder and further increased the FPF by 2.3-fold. This formulation also showed an EC50 value equivalent to fisetin alone in the A549 cell line. In conclusion, an inhalable dry powder containing fisetin-SBE-β-CD complex was successfully engineered with an improved aqueous solubility of fisetin. The dry powder may be useful to deliver high amounts of fisetin to the deep lung region for therapeutic purposes.

  9. Spray-freeze-dried dry powder inhalation of insulin-loaded liposomes for enhanced pulmonary delivery.

    PubMed

    Bi, Ru; Shao, Wei; Wang, Qun; Zhang, Na

    2008-11-01

    Nowadays, growing attention has been paid to the pulmonary region as a target for the delivery of peptide and protein drugs, especially macromolecules with systemic effect like insulin, since the pulmonary route exhibits numerous benefits to be an alternative for repeated injection. Furthermore, encapsulation of insulin into liposomal carriers is an attractive way to increase drug retention time and control the drug release in the lung; however, its long-term stability during storage in the reservoir and the process of aerosolization might be suspected when practically applied. Thus, the aim of this study was to design and characterize dry powder inhalation of insulin-loaded liposomes prepared by novel spray-freeze-drying method for enhanced pulmonary delivery. Process variables such as compressed air pressure, pump speed, and concentration were optimized for parameters such as mean particle diameter, moisture content, and fine particle fraction of the produced powders. Influence of different kinds and amounts of lyoprotectants was also evaluated for the best preservation of the drug entrapped in the liposome bilayers after the dehydration-rehydration cycle. The in vivo study of intratracheal instillation of insulin-loaded liposomes to diabetic rats showed successful hypoglycemic effect with low blood glucose level and long-lasting period and a relative pharmacological bioavailability as high as 38.38% in the group of 8 IU/kg dosage.

  10. Characterisation of spray dried soy sauce powders made by adding crystalline carbohydrates to drying carrier.

    PubMed

    Wang, Wei; Zhou, Weibiao

    2015-02-01

    This study aimed to reduce stickiness and caking of spray dried soy sauce powders by introducing a new crystalline structure into powder particles. To perform this task, soy sauce powders were formulated by using mixtures of cellulose and maltodextrin or mixtures of waxy starch and maltodextrin as drying carriers, with a fixed carrier addition rate of 30% (w/v) in the feed solution. The microstructure, crystallinity, solubility as well as stickiness and caking strength of all the different powders were analysed and compared. Incorporating crystalline carbohydrates in the drying carrier could significantly reduce the stickiness and caking strength of the powders when the ratio of crystalline carbohydrates to maltodextrin was above 1:5 and 1:2, respectively. X-ray Diffraction (XRD) results showed that adding cellulose or waxy starch could induce the crystallinity of powders. Differential Scanning Calorimetry (DSC) results demonstrated that the native starch added to the soy sauce powders did not fully gelatinize during spray drying.

  11. The Dry Aerosol Deposition Device (DADD): An Instrument for Depositing Microbial Aerosols onto Surfaces

    DTIC Science & Technology

    2008-12-01

    AFRL-RX-TY-TR-2008-4592 THE DRY AEROSOL DEPOSITION DEVICE (DADD): AN INSTRUMENT FOR DEPOSITING MICROBIAL AEROSOLS ONTO SURFACES...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 30-NOV-2008 Final Technical Report 01-OCT-2004 -- 02-OCT-2008 The Dry Aerosol Deposition ...Device (DADD): An Instrument for Depositing Microbial Aerosols Onto Surfaces FA4819-07-D-0001 99999F DODT 00 DODT0056 Heimbuch, Brian K.; Kinney

  12. The Dry Aerosol Deposition Device (DADD): An Instrument for Depositing Microbial Aerosols onto Surfaces (PREPRINT)

    DTIC Science & Technology

    2008-12-01

    AFRL-RX-TY-TP-2008-4617 PREPRINT THE DRY AEROSOL DEPOSITION DEVICE (DADD): AN INSTRUMENT FOR DEPOSITING MICROBIAL AEROSOLS ONTO SURFACES... Deposition Device (DADD): 3  An Instrument for Depositing Microbial Aerosols onto Surfaces 4  5  Authors and affiliation 6  7  Heimbuch, B.K., Kinney...footprint, variable loading, etc.). We developed a Dry Aerosol 33  Deposition Device (DADD) that uses impaction rather than settling for loading surfaces

  13. Low-Flow-Rate Dry-Powder Feeder

    NASA Technical Reports Server (NTRS)

    Ramsey, Keith E.

    1994-01-01

    Apparatus feeds small, precise flow of dry powder through laser beam of optical analyzer measuring patterns of light created by forward scattering (Fraunhofer diffraction) of laser beam from powder particles. From this optical measurement, statistical distribution of sizes of powder particles computed. Rates of flow optimized for measurement of particle-size distributions. Developed for analyzing particle-size distributions of solid-propellant powders. Also adapted to pharmaceutical industry, in manufacture of metal powder, and in other applications where particle-size distributions of materials used to control rates of chemical reactions and/or physical characteristics of processes.

  14. Low-Flow-Rate Dry-Powder Feeder

    NASA Technical Reports Server (NTRS)

    Ramsey, Keith E.

    1994-01-01

    Apparatus feeds small, precise flow of dry powder through laser beam of optical analyzer, measuring patterns of light created by forward scattering (Fraunhofer diffraction) of laser beam from powder particles. From measurement, statistical distribution of sizes of powder particles computed. Developed for analyzing particle-size distributions of solid-propellant powders. Also adapted to use in pharmaceutical industry, in manufacture of metal powder, and in other applications in which particle-size distributions of materials used to control rates of chemical reactions and/or physical characteristics of processes.

  15. Development of Biodegradable Polycation-Based Inhalable Dry Gene Powders by Spray Freeze Drying

    PubMed Central

    Okuda, Tomoyuki; Suzuki, Yumiko; Kobayashi, Yuko; Ishii, Takehiko; Uchida, Satoshi; Itaka, Keiji; Kataoka, Kazunori; Okamoto, Hirokazu

    2015-01-01

    In this study, two types of biodegradable polycation (PAsp(DET) homopolymer and PEG-PAsp(DET) copolymer) were applied as vectors for inhalable dry gene powders prepared by spray freeze drying (SFD). The prepared dry gene powders had spherical and porous structures with a 5~10-μm diameter, and the integrity of plasmid DNA could be maintained during powder production. Furthermore, it was clarified that PEG-PAsp(DET)-based dry gene powder could more sufficiently maintain both the physicochemical properties and in vitro gene transfection efficiencies of polyplexes reconstituted after powder production than PAsp(DET)-based dry gene powder. From an in vitro inhalation study using an Andersen cascade impactor, it was demonstrated that the addition of l-leucine could markedly improve the inhalation performance of dry powders prepared by SFD. Following pulmonary delivery to mice, both PAsp(DET)- and PEG-PAsp(DET)-based dry gene powders could achieve higher gene transfection efficiencies in the lungs compared with a chitosan-based dry gene powder previously reported by us. PMID:26343708

  16. Dry powder inhalable formulations for anti-tubercular therapy.

    PubMed

    Parumasivam, Thaigarajan; Chang, Rachel Yoon Kyung; Abdelghany, Sharif; Ye, Tian Tian; Britton, Warwick John; Chan, Hak-Kim

    2016-07-01

    Tuberculosis (TB) is an intracellular infectious disease caused by the airborne bacterium, Mycobacterium tuberculosis. Despite considerable research efforts, the treatment of TB continues to be a great challenge in part due to the requirement of prolonged therapy with multiple high-dose drugs and associated side effects. The delivery of pharmacological agents directly to the respiratory system, following the natural route of infection, represents a logical therapeutic approach for treatment or vaccination against TB. Pulmonary delivery is non-invasive, avoids first-pass metabolism in the liver and enables targeting of therapeutic agents to the infection site. Inhaled delivery also potentially reduces the dose requirement and the accompanying side effects. Dry powder is a stable formulation of drug that can be stored without refrigeration compared to liquids and suspensions. The dry powder inhalers are easy to use and suitable for high-dose formulations. This review focuses on the current innovations of inhalable dry powder formulations of drug and vaccine delivery for TB, including the powder production method, preclinical and clinical evaluations of inhaled dry powder over the last decade. Finally, the risks associated with pulmonary therapy are addressed. A novel dry powder formulation with high percentages of respirable particles coupled with a cost effective inhaler device is an appealing platform for TB drug delivery.

  17. Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)

    NASA Astrophysics Data System (ADS)

    Spicer, Patrick T.; Small, William B.; Small, William B.; Lynch, Matthew L.; Burns, Janet L.

    2002-08-01

    Cubosomes are dispersed nanostructured particles of cubic phase liquid crystal that have stimulated significant research interest because of their potential for application in controlled-release and drug delivery. Despite the interest, cubosomes can be difficult to fabricate and stabilize with current methods. Most of the current work is limited to liquid phase processes involving high shear dispersion of bulk cubic liquid crystalline material into sub-micron particles, limiting application flexibility. In this work, two types of dry powder cubosome precursors are produced by spray-drying: (1) starch-encapsulated monoolein is produced by spray-drying a dispersion of cubic liquid crystalline particles in an aqueous starch solution and (2) dextran-encapsulated monoolein is produced by spray-drying an emulsion formed by the ethanol-dextran-monoolein-water system. The encapsulants are used to decrease powder cohesion during drying and to act as a soluble colloidal stabilizer upon hydration of the powders. Both powders are shown to form (on average) 0.6 μm colloidally-stable cubosomes upon addition to water. However, the starch powders have a broader particle size distribution than the dextran powders because of the relative ease of spraying emulsions versus dispersions. The developed processes enable the production of nanostructured cubosomes by end-users rather than just specialized researchers and allow tailoring of the surface state of the cubosomes for broader application.

  18. Characterisation of Aronia powders obtained by different drying processes.

    PubMed

    Horszwald, Anna; Julien, Heritier; Andlauer, Wilfried

    2013-12-01

    Nowadays, food industry is facing challenges connected with the preservation of the highest possible quality of fruit products obtained after processing. Attention has been drawn to Aronia fruits due to numerous health promoting properties of their products. However, processing of Aronia, like other berries, leads to difficulties that stem from the preparation process, as well as changes in the composition of bioactive compounds. Consequently, in this study, Aronia commercial juice was subjected to different drying techniques: spray drying, freeze drying and vacuum drying with the temperature range of 40-80 °C. All powders obtained had a high content of total polyphenols. Powders gained by spray drying had the highest values which corresponded to a high content of total flavonoids, total monomeric anthocyanins, cyaniding-3-glucoside and total proanthocyanidins. Analysis of the results exhibited a correlation between selected bioactive compounds and their antioxidant capacity. In conclusion, drying techniques have an impact on selected quality parameters, and different drying techniques cause changes in the content of bioactives analysed. Spray drying can be recommended for preservation of bioactives in Aronia products. Powder quality depends mainly on the process applied and parameters chosen. Therefore, Aronia powders production should be adapted to the requirements and design of the final product.

  19. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1994-12-06

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figures.

  20. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1995-01-01

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  1. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1995-12-26

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figs.

  2. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1994-01-01

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  3. Spherical agglomerates of pure drug nanoparticles for improved pulmonary delivery in dry powder inhalers

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Dong, Yuancai; Pastorin, Giorgia; Ng, Wai Kiong; Tan, Reginald B. H.

    2013-04-01

    The aim of this study was to produce micron-sized spherical agglomerates of pure drug nanoparticles to achieve improved aerosol performance in dry powder inhalers (DPIs). Sodium cromoglicate was chosen as the model drug. Pure drug nanoparticles were prepared through a bottom-up particle formation process, liquid antisolvent precipitation, and then rapidly agglomerated into porous spherical microparticles by immediate (on-line) spray drying. Nonporous spherical drug microparticles with similar geometric size distribution were prepared by conventional spray drying of the aqueous drug solution, which together with the mechanically micronized drug particles were used as the control samples. The three samples were characterized by field emission scanning electron microscopy, laser diffraction, Brunauer-Emmett-Teller analysis, density measurement, powder X-ray diffraction, and in vitro aerosol deposition measurement with a multistage liquid impinger. It was found that drug nanoparticles with a diameter of 100 nm were precipitated and agglomerated into highly porous spherical microparticles with a volume median diameter ( D 50 %) of 2.25 ± 0.08 μm and a specific surface area of 158.63 ± 3.27 m2/g. In vitro aerosol deposition studies showed the fine particle fraction of such spherical agglomerates of drug nanoparticles was increased by more than 50 % in comparison with the control samples, demonstrating significant improvements in aerosol performance. The results of this study indicated the potential of the combined particle engineering process of liquid antisolvent precipitation followed by immediate (on-line) spray drying in the development of novel DPI drug products with improved aerosol performance.

  4. Experimental observations of dry powder inhaler dose fluidisation.

    PubMed

    Tuley, Rob; Shrimpton, John; Jones, Matthew D; Price, Rob; Palmer, Mark; Prime, Dave

    2008-06-24

    Dry powder inhalers (DPIs) are widely used to deliver respiratory medication as a fine powder. This study investigates the physical mechanism of DPI operation, assessing the effects of geometry, inhalation and powder type on dose fluidisation. Patient inhalation through an idealised DPI was simulated as a linearly increasing pressure drop across three powder dose reservoir geometries permitting an analysis of shear and normal forces on dose evacuation. Pressure drop gradients of 3.3, 10 and 30 kPa s(-1)were applied to four powder types (glass, aluminium, and lactose 6 and 16% fines) and high speed video of each powder dose fluidisation was recorded and quantitatively analysed. Two distinct mechanisms are identified, labelled 'fracture' and 'erosion'. 'Fracture' mode occurs when the initial evacuation occurs in several large agglomerates whilst 'erosion' mode occurs gradually, with successive layers being evacuated by the high speed gas flow at the bed/gas interface. The mechanism depends on the powder type, and is independent of the reservoir geometries or pressure drop gradients tested. Both lactose powders exhibit fracture characteristics, while aluminium and glass powders fluidise as an erosion. Further analysis of the four powder types by an annular shear cell showed that the fluidisation mechanism cannot be predicted using bulk powder properties.

  5. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems...

  6. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall... fire-control components of each dry powder chemical system shall be a type approved by the...

  7. 30 CFR 75.1101-14 - Installation of dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall... fire-control components of each dry powder chemical system shall be a type approved by the...

  8. Freeze drying vs microwave drying-methods for synthesis of sinteractive thoria powders

    NASA Astrophysics Data System (ADS)

    Annie, D.; Chandramouli, V.; Anthonysamy, S.; Ghosh, Chanchal; Divakar, R.

    2017-02-01

    Thoria powders were synthesized by oxalate precipitation from an aqueous solution of the nitrate. The filtered precipitates were freeze dried or microwave dried before being calcined at 1073 K. The thoria powders obtained were characterized for crystallite size, specific surface area, bulk density, particle size distribution and residual carbon. Microstructure of the product was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Sinterability of the synthesized powders was studied by measuring the density of the sintered compacts. Powders that can be consolidated and sintered to densities ∼96% theoretical density (TD) at 1773 K were obtained.

  9. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1992-04-21

    A free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7 [times] 10[sup [minus]3] to about 7 [times] 10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 9 figs.

  10. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1993-10-19

    Free flowing, conformable powder-like mix of silica particles and a phase change material (pcm) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 10 figures.

  11. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1994-02-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.

  12. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1992-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  13. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1993-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garmets, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  14. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1993-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  15. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1994-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  16. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1993-05-18

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the p.c.m. must be added to the silica in an amount of 80 wt. % or less p.c.m. per combined weight of silica and p.c.m. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a p.c.m. material. The silica-p.c.m. mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  17. Development and evaluation of a dry powder formulation of liposome-encapsulated oseltamivir phosphate for inhalation.

    PubMed

    Tang, Yue; Zhang, Heyang; Lu, Xifeng; Jiang, Liqun; Xi, Xinyuan; Liu, Jianping; Zhu, Jiabi

    2015-01-01

    This study aims to develop oseltamivir phosphate (OP) liposomes as inhalation powders by spray-drying based on the single factor investigation, which was mainly composed of lactose, L-leucine and mannitol. It was found that the ratio of OP and liposomes (1:10), inlet temperature (110 °C) and airflow rate (2.3 mL/min) showed optimized physical properties of OP liposomes. Deposition was evaluated after the aerosolization of powders at 600 L/h via the Aerolizer® into a twin-stage impinger. The concentrations of OP and oseltamivir carboxylate (OSCA) in rats plasma using LC-MS have been determined and performed via pharmacokinetic software DAS 2.0 package. The liposomal OP dry powders displayed an average particle size around 3.5 µm with fine particle fraction (FPF = 35.40%). In vitro evaluation demonstrated a sustained release pattern accounting for 20% drug release compared to that of OP solution up to 90% drug release in 2 h. And the cumulative release percentage was up to 50% in 20 h. Atrioventricular fitting results indicated that all preparations were best fitted with a two-compartment model. There was a significant difference in MRT, Cmax and Tmax (p < 0.01) between the two groups of liposomal OP dry powders and OP solution with t-test, which indicated that the drug released slowly from liposomal OP dry powders in the lung. To sum up, dry powders formulation of liposome-encapsulated OP for inhalation was suitable for pulmonary administration, which offering the opportunity to reduce dosing frequency.

  18. Phytohemagglutination Activity in Extruded Dry Bean Powder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry beans are a highly nutritious food. Besides making beans palatable, cooking is required to denature lectin, a protein found in beans. If consumed raw or undercooked, lectin poisoning can occur. Symptoms of lectin poisoning include vomiting, diarrhea, and abdominal pain, and occur within hours of...

  19. Applying a novel electrostatic dry powder coating technology to pellets.

    PubMed

    Yang, Qingliang; Ma, Yingliang; Zhu, Jesse

    2015-11-01

    The present study aimed to apply a novel dry powder technology to coat pellets with different coating materials grounded into fine powders. Piroxicam, a non-steroidal anti-inflammatory drug, was used as the active pharmaceutical ingredient (API). Eudragit® EPO, Eudragit® RS/RL and Acryl EZE were used as the coating materials to achieve immediate release, sustained release and delayed release, respectively. Three steps including preheating, powder adhesion and curing were carried out to form the coating film while liquid plasticizers were used to decrease the glass transition temperature of coating powders and also served to reduce the electrical resistance of pellets. Results of SEM indicated coating film could be better formed by increasing curing temperature or extending curing time. Dissolution tests showed that three different drug release profiles, including immediate release, sustained release and delayed release, were achieved by this coating technology with different coating formulations. And the dry powder coated pellets using this developed technology exhibited an excellent stability with 1 month at 40 °C/75% RH. The coating procedure could be shortened to within 120 min and the use of fluidized hot air was minimized, both cutting down the overall cost dramatically compared to organic solvent coating and aqueous coating. All results demonstrated that the novel electrostatic dry powder coating method is a promising technology in the pharmaceutical coating industry.

  20. Spray dried glyceryl monooleate-magnesium trisilicate dry powder as cubic phase precursor.

    PubMed

    Shah, Manish H; Biradar, Shailesh V; Paradkar, Anant R

    2006-10-12

    Glyceryl monooleate (GMO) is a polar amphiphilic lipid, which forms different sequential lyotropic liquid crystals upon hydration. GMO has been utilized for various delivery systems and routes of administrations. Owing to sticky and waxy nature of GMO, preparation of oral solid dosage form utilizing GMO is still a challenge for pharmaceutical researchers. Therefore, the objective of the present work was to fabricate dry powder precursors using GMO, which upon hydration in situ forms cubic phase and can be wisely used for fabrication of oral solid dosage forms. In addition to this, dry powder precursor was evaluated for drug loading, in vitro release behavior and in vivo performance of model drug diclofenac sodium (DiNa). The dry powder precursor was obtained by spray-drying GMO with DiNa using magnesium trisilicate (MTS) as adsorbent. The percent drug entrapment of various batches of powder precursor was in the range of 84-93% indicating high content uniformity. SEM and image analysis showed that as the amount of MTS in powder precursor was increased, the particle size decreased. Furthermore, the viscosity of powder precursor was function of amount of MTS. The rate of water uptake of powder precursor was higher due to uniform layer of GMO on the MTS surface, which led to faster transformation of lamellar phase into cubic phase. The polarizing light microscopy confirmed that cubic phase was formed upon hydration of powder precursor. The drug released from powder precursor was initially governed by the cubic phase formed and in later stage it depends upon dynamic swelling behavior of hexagonally packed cylindrical aggregates. The drug loaded powder precursor was found to have more effective and prolonged anti-inflammatory and analgesic activity as compared to pure drug. Thus the dry powder precursor of cubic phase was prepared in which drug release was entirely governed by the mesophases formed.

  1. Characterization of a New High-Dose Dry Powder Inhaler (DPI) Based on a Fluidized Bed Design

    PubMed Central

    Farkas, Dale R.; Hindle, Michael; Longest, P. Worth

    2015-01-01

    The objective of this study was to develop a new high-efficiency dry powder inhaler (DPI) that can effectively aerosolize large masses (25–100 mg) of spray dried powder formulations. The DPI was designed to implement a concept similar to a fluidized bed for aerosolization using small mixing balls made of polytetrafluoroethylene (PTFE) along with a larger, hollow dosing sphere filled with the powder. The performance of the fluidized bed DPI was compared, based on emitted dose (ED) and aerosolization efficiency, to other recently developed capsule-based DPIs that were designed to accommodate smaller powder masses (~2–20 mg). The inhalers were tested with spray dried excipient enhanced growth formulations that contained an antibiotic (ciprofloxacin) and hygroscopic excipient (mannitol). The new fluidized bed design produced an ED of 71% along with a mass median aerodynamic diameter (MMAD) of 1.53 µm and fine particle fractions (FPFs) less than 5 µm and 1 µm of 93% and 36%, respectively, when used to deliver a 100 mg loaded mass of EEG powder with the advantage of not requiring multiple capsules. Surprisingly, performance of the device was further improved by removing the mixing balls from the inhaler and only retaining the dose containment sphere. PMID:25986955

  2. Characterization of a New High-Dose Dry Powder Inhaler (DPI) Based on a Fluidized Bed Design.

    PubMed

    Farkas, Dale R; Hindle, Michael; Longest, P Worth

    2015-11-01

    The objective of this study was to develop a new high-efficiency dry powder inhaler (DPI) that can effectively aerosolize large masses (25-100 mg) of spray dried powder formulations. The DPI was designed to implement a concept similar to a fluidized bed for aerosolization using small mixing balls made of polytetrafluoroethylene along with a larger, hollow dosing sphere filled with the powder. The performance of the fluidized bed DPI was compared, based on emitted dose (ED) and aerosolization efficiency, to other recently developed capsule-based DPIs that were designed to accommodate smaller powder masses (~2-20 mg). The inhalers were tested with spray dried excipient enhanced growth (EEG) formulations that contained an antibiotic (ciprofloxacin) and hygroscopic excipient (mannitol). The new fluidized bed design produced an ED of 71% along with a mass median aerodynamic diameter of 1.53 μm and fine particle fractions <5 and 1 μm of 93 and 36%, respectively, when used to deliver a 100 mg loaded mass of EEG powder with the advantage of not requiring multiple capsules. Surprisingly, performance of the device was further improved by removing the mixing balls from the inhaler and only retaining the dose containment sphere.

  3. Effect of compression pressure on inhalation grade lactose as carrier for dry powder inhalations

    PubMed Central

    Raut, Neha Sureshrao; Jamaiwar, Swapnil; Umekar, Milind Janrao; Kotagale, Nandkishor Ramdas

    2016-01-01

    Introduction: This study focused on the potential effects of compression forces experienced during lactose (InhaLac 70, 120, and 230) storage and transport on the flowability and aerosol performance in dry powder inhaler formulation. Materials and Methods: Lactose was subjected to typical compression forces 4, 10, and 20 N/cm2. Powder flowability and particle size distribution analysis of un-compressed and compressed lactose was evaluated by Carr's index, Hausner's ratio, the angle of repose and by laser diffraction method. Aerosol performance of un-compressed and compressed lactose was assessed in dispersion studies using glass twin-stage-liquid-impenger at flow rate 40-80 L/min. Results: At compression forces, the flowability of compressed lactose was observed same or slightly improved. Furthermore, compression of lactose caused a decrease in in vitro aerosol dispersion performance. Conclusion: The present study illustrates that, as carrier size increases, a concurrent decrease in drug aerosolization performance was observed. Thus, the compression of the lactose fines onto the surfaces of the larger lactose particles due to compression pressures was hypothesized to be the cause of these observed performance variations. The simulations of storage and transport in an industrial scale can induce significant variations in formulation performance, and it could be a source of batch-to-batch variations. PMID:27014618

  4. NASA. Langley Research Center dry powder towpreg system

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Marchello, Joseph M.

    1990-01-01

    Dry powder polymer impregnated carbon fiber tows were produced for preform weaving and composite materials molding applications. In the process, fluidized powder is deposited on spread tow bundles and melted on the fibers by radiant heating to adhere the polymer to the fiber. Unit design theory and operating correlations were developed to provide the basis for scale up of the process to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed, resin feeder, and quality control system. Bench scale experiments, at tow speeds up to 50 cm/sec, demonstrated that process variables can be controlled to produce weavable LARC-TPI carbon fiber towpreg. The towpreg made by the dry powder process was formed into unidirectional fiber moldings and was woven and molded into preform material of good quality.

  5. Recent advances in liposomal dry powder formulations: preparation and evaluation.

    PubMed

    Misra, Ambikanandan; Jinturkar, Kaustubh; Patel, Deepa; Lalani, Jigar; Chougule, Mahavir

    2009-01-01

    Liposomal drug dry powder formulations have shown many promising features for pulmonary drug administration, such as selective localization of drug within the lung, controlled drug release, reduced local and systemic toxicities, propellant-free nature, patient compliance, high dose carrying capacity, stability and patent protection. Critical review of the recent developments will provide a balanced view on benefits of liposomal encapsulation while developing dry powder formulations and will help researchers to update themselves and focus their research in more relevant areas. In liposomal dry powder formulations (LDPF), drug encapsulated liposomes are homogenized, dispersed into the carrier and converted into dry powder form by using freeze drying, spray drying and spray freeze drying. Alternatively, LDPF can also be formulated by supercritical fluid technologies. On inhalation with a suitable inhalation device, drug encapsulated liposomes get rehydrated in the lung and release the drug over a period of time. The prepared LDPF are evaluated in vitro and in vivo for lung deposition behavior and drug disposition in the lung using a suitable inhaler device. The most commonly used liposomes are composed of lung surfactants and synthetic lipids. Delivery of anticancer agents for lung cancer, corticosteroids for asthma, immunosuppressants for avoiding lung transplantation rejection, antifungal drugs for lung fungal infections, antibiotics for local pulmonary infections and cystic fibrosis and opioid analgesics for pain management using liposome technology are a few examples. Many liposomal formulations have reached the stage of clinical trials for the treatment of pulmonary distress, cystic fibrosis, lung fungal infection and lung cancer. These formulations have given very promising results in both in vitro and in vivo studies. However, modifications to new therapies for respiratory diseases and systemic delivery will provide new challenges in conducting well

  6. Nanospray Drying as a Novel Technique for the Manufacturing of Inhalable NSAID Powders

    PubMed Central

    Rita Patrizia, Aquino; Mariateresa, Stigliani; Pasquale, Del Gaudio; Teresa, Mencherini; Francesca, Sansone; Paola, Russo

    2014-01-01

    The aim of this research was to evaluate the potential of the nanospray drier as a novel apparatus for the manufacturing of a dry powder for inhalation containing ketoprofen lysinate, a nonsteroidal anti-inflammatory drug able to control the inflammation in cystic fibrosis patients. We produced several ketoprofen lysinate and leucine powder batches by means of nanospray dryer, studying the influence of process parameters on yield, particle properties (size distribution and morphology), and, mainly, aerodynamic properties of powders. Micronized particles were prepared from different hydroalcoholic solutions (alcohol content from 0 to 30% v/v) using ketoprofen in its lysine salt form and leucine as dispersibility enhancer in different ratios (from 5 to 15% w/w) with a total solid concentration ranging from 1 to 7% w/v. Results indicated that the spray head equipped with a 7 µm nozzle produced powders too big to be inhaled. The reduction of nozzle size from 7 to 4 µm led to smaller particles suitable for inhalation but, at the same time, caused a dramatic increase in process time. The selection of process variables, together with the nozzle pretreatment with a surfactant solution, allowed us to obtain a free flowing powder with satisfying aerosol performance, confirming the usefulness of the nanospray drier in the production of powder for inhalation. PMID:25580462

  7. A comparison between spray drying and spray freeze drying for dry powder inhaler formulation of drug-loaded lipid-polymer hybrid nanoparticles.

    PubMed

    Wang, Yajie; Kho, Katherine; Cheow, Wean Sin; Hadinoto, Kunn

    2012-03-15

    Lipid-polymer hybrid nanoparticles - polymeric nanoparticles enveloped by lipid layers - have emerged as a potent therapeutic nano-carrier alternative to liposomes and polymeric nanoparticles. Herein we perform comparative studies of employing spray drying (SD) and spray freeze drying (SFD) to produce inhalable dry-powder form of drug-loaded lipid-polymer hybrid nanoparticles. Poly(lactic-co-glycolic acid), lecithin, and levofloxacin are employed as the polymer, lipid, and drug models, respectively. The hybrid nanoparticles are transformed into micro-scale nanoparticle aggregates (or nano-aggregates) via SD and SFD, where the effects of (1) different excipients (i.e. mannitol, polyvinyl alcohol (PVA), and leucine), and (2) nanoparticle to excipient ratio on nano-aggregate characteristics (e.g. size, flowability, aqueous reconstitution, aerosolization efficiency) are examined. In both methods, PVA is found more effective than mannitol for aqueous reconstitution, whereas hydrophobic leucineis needed to achieve effective aerosolization as it reduces nano-aggregate agglomeration. Using PVA, both methods are equally capable of producing nano-aggregates having size, density, flowability, yield and reconstitutibility in the range ideal for inhaled delivery. Nevertheless, nano-aggregates produced by SFD are superior to SD in terms of their aerosolization efficiency manifested in the higher emitted dose and fine particle fraction with lower mass median aerodynamic diameter.

  8. Aggregated Nanotransfersomal Dry Powder Inhalation of Itraconazole for Pulmonary Drug Delivery

    PubMed Central

    Hassanpour Aghdam, Mehdi; Ghanbarzadeh, Saeed; Javadzadeh, Yousef; Hamishehkar, Hamed

    2016-01-01

    Purpose: Local therapy is a valuable and strategic approach in the treatment of lung associated diseases and dry powder inhalation (DPI) formulations play the key role in this plan. Transfersome has been introduced as a novel biocompatible vesicular system with potential for administration in pulmonary drug delivery. The present study was designed to prepare Itraconazole-loaded nanotrantransfersomal DPI formulation. Methods: Itraconazole-loaded nanotransfersomes with three different types of surfactant in varying concentrations were prepared and characterized in the point of particle size distribution and morphology by laser light scattering and scanning electron microscopy (SEM) methods. The optimized transferosomal formulations were co-spray dried with mannitol and the aerosolization efficiency and aerodynamic properties of dry powders were determined by next generation impactor using a validated HPLC technique. Results: The volume mean diameter of optimized nanotransfersomal formulation with lecithin:Span® 60 in the ratio of 90:10 was 171 nm with narrow size distribution pattern which increased up to 518 nm after drug loading. Different types of surfactant did not influence the particle size significantly. SEM images confirmed the formation of aggregated nanoparticles in the suitable range (1-5 µm) for the pulmonary drug delivery. Aerosolization evaluation of co-spray dried formulations with different amounts of mannitol indicated that 2:1 ratio of mannitol:transfersome (w:w) showed the best aerosolization efficiency (fine particle fraction (FPF)=37%). Increasing of mannitol significantly decreased the FPF of the optimized formulations. Conclusion: The results of this study was introduced the potential application of nanotransfersomes in the formulation of DPIs for lung delivery of various drugs. PMID:27123418

  9. Development of liposomal salbutamol sulfate dry powder inhaler formulation.

    PubMed

    Huang, Wen-Hua; Yang, Zhi-Jun; Wu, Heng; Wong, Yuen-Fan; Zhao, Zhong-Zhen; Liu, Liang

    2010-01-01

    The purpose of our study was to develop a formulation of liposomal salbutamol sulfate (SBS) dry powder inhaler (DPI) for the treatment of asthma. Liposomes of high encapsulation efficiency (more than 80%) were prepared by a vesicular phospholipid gel (VPG) technique. SBS VPG liposomes were subjected to lyophilization using different kinds of cryoprotectants in various mass ratios. Coarse lactose (63-106 microm) in different mass ratios was used as a carrier. Magnesium stearate (0.5%) was added as a lubricator. The dry liposomal powders were then crushed by ball milling and sieved through a 400-mesh sieve to control the mean particle size at about 10 microm. The effects of different kinds of cryoprotectants and the amount of lactose carrier on the fine particle fraction (FPF) of SBS were investigated. The results showed that the developed formulation of liposomal dry powder inhaler was obtained using lactose as a cryoprotectant with a mass ratio of lyophilized powder to carrier lactose at 1 : 5; 0.5% magnesium stearate was used as a lubricator. The value of FPF for SBS was 41.51+/-2.22% for this formulation. Sustained release of SBS from the VPG liposomes was found in the in vitro release study. The study results offer the promising possibility of localized pulmonary liposomal SBS delivery in the anhydrous state.

  10. Novel budesonide particles for dry powder inhalation (DPI) prepared using a microfluidic reactor coupled with ultrasonic spray freeze drying.

    PubMed

    Saboti, Denis; Maver, Uroš; Chan, Hak-Kim; Planinšek, Odon

    2017-03-09

    Budesonide is a potent active pharmaceutical ingredient, often administered using respiratory devices such as metered dose inhalers (MDI), nebulizers and dry powder inhalers (DPI). Inhalable drug particles are conventionally produced by crystallization followed by milling. This approach tends to generate partially amorphous materials that require post-processing to improve the formulations' stability. Other methods involve homogenization or precipitation and often require the use of stabilizers, mostly surfactants. The purpose of this study was therefore to develop a novel method for preparation of fine budesonide particles using a microfluidic reactor coupled with ultrasonic spray freeze drying, and hence avoiding the need of additional homogenization or stabilizer use. A T-junction microfluidic reactor was employed to produce particle suspension (using an ethanol-water, methanol-water and an acetone-water system), which was directly fed into an ultrasonic atomization probe, followed by direct feeding to liquid nitrogen. Freeze drying was the final preparation step. The result were fine crystalline budesonide powders which, when blended with lactose and dispersed in an Aerolizer at 100 L/min, generated fine particle fraction in the range 47.6±2.8% to 54.9±1.8%, thus exhibiting a good aerosol performance. Subsequent sample analysis confirmed the suitability of the developed method to produce inhalable drug particles without additional homogenization or stabilizers. The developed method provides a viable solution for particle isolation in microfluidics in general.

  11. Quality characteristic of spray-drying egg white powders.

    PubMed

    Ma, Shuang; Zhao, Songning; Zhang, Yan; Yu, Yiding; Liu, Jingbo; Xu, Menglei

    2013-10-01

    Spray drying is a useful method for developing egg process and utilization. The objective of this study was to evaluate effects on spray drying condition of egg white. The optimized conditions were spraying flow 22 mL/min, feeding temperature 39.8 °C and inlet-air temperature 178.2 °C. Results of sulfydryl (SH) groups measurement indicated conformation structure have changed resulting in protein molecule occur S-S crosslinking phenomenon when heating. It led to free SH content decreased during spray drying process. There was almost no change of differential scanning calorimetry between fresh egg white and spray-drying egg white powder (EWP). For a given protein, the apparent SH reactivity is in turn influenced by the physico-chemical characteristics of the reactant. The phenomenon illustrated the thermal denaturation of these proteins was unrelated to their free SH contents. Color measurement was used to study browning level. EWP in optimized conditions revealed insignificant brown stain. Swelling capacity and scanning electron micrograph both proved well quality characteristic of spray-drying EWP. Results suggested spray drying under the optimized conditions present suitable and alternative method for egg processing industrial implementation. Egg food industrialization needs new drying method to extend shelf-life. The purpose of the study was to provide optimal process of healthy and nutritional instant spray-drying EWP and study quality characteristic of spray-drying EWP.

  12. Dry season aerosol iron solubility in tropical northern Australia

    NASA Astrophysics Data System (ADS)

    Winton, V. Holly L.; Edwards, Ross; Bowie, Andrew R.; Keywood, Melita; Williams, Alistair G.; Chambers, Scott D.; Selleck, Paul W.; Desservettaz, Maximilien; Mallet, Marc D.; Paton-Walsh, Clare

    2016-10-01

    Marine nitrogen fixation is co-limited by the supply of iron (Fe) and phosphorus in large regions of the global ocean. The deposition of soluble aerosol Fe can initiate nitrogen fixation and trigger toxic algal blooms in nitrate-poor tropical waters. We present dry season soluble Fe data from the Savannah Fires in the Early Dry Season (SAFIRED) campaign in northern Australia that reflects coincident dust and biomass burning sources of soluble aerosol Fe. The mean soluble and total aerosol Fe concentrations were 40 and 500 ng m-3 respectively. Our results show that while biomass burning species may not be a direct source of soluble Fe, biomass burning may substantially enhance the solubility of mineral dust. We observed fractional Fe solubility up to 12 % in mixed aerosols. Thus, Fe in dust may be more soluble in the tropics compared to higher latitudes due to higher concentrations of biomass-burning-derived reactive organic species in the atmosphere. In addition, biomass-burning-derived particles can act as a surface for aerosol Fe to bind during atmospheric transport and subsequently be released to the ocean upon deposition. As the aerosol loading is dominated by biomass burning emissions over the tropical waters in the dry season, additions of biomass-burning-derived soluble Fe could have harmful consequences for initiating nitrogen-fixing toxic algal blooms. Future research is required to quantify biomass-burning-derived particle sources of soluble Fe over tropical waters.

  13. Powder compression mechanics of spray-dried lactose nanocomposites.

    PubMed

    Hellrup, Joel; Nordström, Josefina; Mahlin, Denny

    2017-02-25

    The aim of this study was to investigate the structural impact of the nanofiller incorporation on the powder compression mechanics of spray-dried lactose. The lactose was co-spray-dried with three different nanofillers, that is, cellulose nanocrystals, sodium montmorillonite and fumed silica, which led to lower micron-sized nanocomposite particles with varying structure and morphology. The powder compression mechanics of the nanocomposites and physical mixtures of the neat spray-dried components were evaluated by a rational evaluation method with compression analysis as a tool, using the Kawakita equation and the Shapiro-Konopicky-Heckel equation. Particle rearrangement dominated the initial compression profiles due to the small particle size of the materials. The strong contribution of particle rearrangement in the materials with fumed silica continued throughout the whole compression profile, which prohibited an in-depth material characterization. However, the lactose/cellulose nanocrystals and the lactose/sodium montmorillonite nanocomposites demonstrated high yield pressure compared with the physical mixtures indicating increased particle hardness upon composite formation. This increase has likely to do with a reinforcement of the nanocomposite particles by skeleton formation of the nanoparticles. In summary, the rational evaluation of mechanical properties done by applying powder compression analysis proved to be a valuable tool for mechanical evaluation for this type of spray-dried composite materials, unless they demonstrate particle rearrangement throughout the whole compression profile.

  14. A dry powder stump applicator for a feller-buncher.

    SciTech Connect

    Karsky, Richard, J.; Cram Michelle; Thistle, Harold

    1998-07-11

    Karsky, D., M. Cram, and H. Thistle. 1998. A dry powder borax stump applicator for a feller-buncher. Presented at the 1998 ASAE Annual International Meeting at Colorado Springs Resort, Orlando, Florida, July 11-16, 1998. Paper No. 987023. ASAE, 2950 Niles Road, St. Joseph, MI 49085-9659. Annosum root rot affects conifers throughout the Northern Hemisphere, infecting the roots and eventually killing the trees. An applicator attachment has been developed that mounts to the back of a feller-buncher saw head, that can reduce mortality from Heterobasidion annosum. The attachment applies a borax powder to a stump immediately after the tree has been cut. This document provides information on the design, development and testing of an applicator for applying dry borax on tree stumps at the time of harvesting to reduce future losses due to root rot.

  15. Towards the optimisation and adaptation of dry powder inhalers.

    PubMed

    Cui, Y; Schmalfuß, S; Zellnitz, S; Sommerfeld, M; Urbanetz, N

    2014-08-15

    Pulmonary drug delivery by dry powder inhalers is becoming more and more popular. Such an inhalation device must insure that during the inhalation process the drug powder is detached from the carrier due to fluid flow stresses. The goal of the project is the development of a drug powder detachment model to be used in numerical computations (CFD, computational fluid dynamics) of fluid flow and carrier particle motion through the inhaler and the resulting efficiency of drug delivery. This programme will be the basis for the optimisation of inhaler geometry and dry powder inhaler formulation. For this purpose a multi-scale approach is adopted. First the flow field through the inhaler is numerically calculated with OpenFOAM(®) and the flow stresses experienced by the carrier particles are recorded. This information is used for micro-scale simulations using the Lattice-Boltzmann method where only one carrier particle covered with drug powder is placed in cubic flow domain and exposed to the relevant flow situations, e.g. plug and shear flow with different Reynolds numbers. Therefrom the fluid forces on the drug particles are obtained. In order to allow the determination of the drug particle detachment possibility by lift-off, sliding or rolling, also measurements by AFM (atomic force microscope) were conducted for different carrier particle surface structures. The contact properties, such as van der Waals force, friction coefficient and adhesion surface energy were used to determine, from a force or moment balance (fluid forces versus contact forces), the detachment probability by the three mechanisms as a function of carrier particle Reynolds number. These results will be used for deriving the drug powder detachment model.

  16. Crystal coating via spray drying to improve powder tabletability.

    PubMed

    Vanhoorne, V; Peeters, E; Van Snick, B; Remon, J P; Vervaet, C

    2014-11-01

    A continuous crystal coating method was developed to improve both flowability and tabletability of powders. The method includes the introduction of solid, dry particles into an atomized spray during spray drying in order to coat and agglomerate individual particles. Paracetamol was used as a model drug as it exhibits poor flowability and high capping tendency upon compaction. The particle size enlargement and flowability were evaluated by the mean median particle size and flow index of the resulting powders. The crystal coating coprocessing method was successful for the production of powders containing 75% paracetamol with excellent tableting properties. However, the extent of agglomeration achieved during coprocessing was limited. Tablets compressed on a rotary tablet press in manual mode showed excellent compression properties without capping tendency. A formulation with 75% paracetamol, 5% PVP and 20% amorphous lactose yielded a tensile strength of 1.9 MPa at a compression pressure of 288 MPa. The friability of tablets compressed at 188 MPa was only 0.6%. The excellent tabletability of this formulation was attributed to the coating of paracetamol crystals with amorphous lactose and PVP through coprocessing and the presence of brittle and plastic components in the formulation. The coprocessing method was also successfully applied for the production of directly compressible lactose showing improved tensile strength and friability in comparison to a spray dried direct compression lactose grade.

  17. 30 CFR 75.1101-20 - Safeguards for dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Safeguards for dry powder chemical systems. 75...-20 Safeguards for dry powder chemical systems. Adequate guards shall be provided along all belt conveyors in the vicinity of each dry powder chemical system to protect persons whose vision is...

  18. 30 CFR 75.1101-20 - Safeguards for dry powder chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Safeguards for dry powder chemical systems. 75...-20 Safeguards for dry powder chemical systems. Adequate guards shall be provided along all belt conveyors in the vicinity of each dry powder chemical system to protect persons whose vision is...

  19. 30 CFR 75.1101-20 - Safeguards for dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Safeguards for dry powder chemical systems. 75...-20 Safeguards for dry powder chemical systems. Adequate guards shall be provided along all belt conveyors in the vicinity of each dry powder chemical system to protect persons whose vision is...

  20. 30 CFR 75.1101-13 - Dry powder chemical systems; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Dry powder chemical systems; general. 75.1101-13 Section 75.1101-13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-13 Dry powder chemical systems; general. Self-contained dry powder chemical systems may be...

  1. 30 CFR 75.1101-17 - Sealing of dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Sealing of dry powder chemical systems. 75.1101-17 Section 75.1101-17 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-17 Sealing of dry powder chemical systems. Each dry powder chemical system shall be adequately...

  2. 30 CFR 75.1101-17 - Sealing of dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Sealing of dry powder chemical systems. 75.1101-17 Section 75.1101-17 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-17 Sealing of dry powder chemical systems. Each dry powder chemical system shall be adequately...

  3. 30 CFR 75.1101-17 - Sealing of dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Sealing of dry powder chemical systems. 75.1101-17 Section 75.1101-17 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-17 Sealing of dry powder chemical systems. Each dry powder chemical system shall be adequately...

  4. 30 CFR 75.1101-17 - Sealing of dry powder chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Sealing of dry powder chemical systems. 75.1101-17 Section 75.1101-17 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-17 Sealing of dry powder chemical systems. Each dry powder chemical system shall be adequately...

  5. 30 CFR 75.1101-13 - Dry powder chemical systems; general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Dry powder chemical systems; general. 75.1101-13 Section 75.1101-13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-13 Dry powder chemical systems; general. Self-contained dry powder chemical systems may be...

  6. 30 CFR 75.1101-20 - Safeguards for dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Safeguards for dry powder chemical systems. 75...-20 Safeguards for dry powder chemical systems. Adequate guards shall be provided along all belt conveyors in the vicinity of each dry powder chemical system to protect persons whose vision is...

  7. 30 CFR 75.1101-13 - Dry powder chemical systems; general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Dry powder chemical systems; general. 75.1101-13 Section 75.1101-13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-13 Dry powder chemical systems; general. Self-contained dry powder chemical systems may be...

  8. 30 CFR 75.1101-15 - Construction of dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Construction of dry powder chemical systems. 75.1101-15 Section 75.1101-15 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-15 Construction of dry powder chemical systems. (a) Each self-contained dry powder system shall...

  9. 30 CFR 75.1101-15 - Construction of dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Construction of dry powder chemical systems. 75.1101-15 Section 75.1101-15 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-15 Construction of dry powder chemical systems. (a) Each self-contained dry powder system shall...

  10. 30 CFR 75.1101-13 - Dry powder chemical systems; general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Dry powder chemical systems; general. 75.1101-13 Section 75.1101-13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-13 Dry powder chemical systems; general. Self-contained dry powder chemical systems may be...

  11. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined weekly and a functional test of the complete system shall be conducted at least once each year. (b)...

  12. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined weekly and a functional test of the complete system shall be conducted at least once each year. (b)...

  13. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined weekly and a functional test of the complete system shall be conducted at least once each year. (b)...

  14. 30 CFR 75.1101-22 - Inspection of dry powder chemical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection of dry powder chemical systems. 75...-22 Inspection of dry powder chemical systems. (a) Each dry powder chemical system shall be examined weekly and a functional test of the complete system shall be conducted at least once each year. (b)...

  15. Dry Powder Formulation of Plasmid DNA and siRNA for Inhalation.

    PubMed

    Chow, Michael Y T; Lam, Jenny K W

    2015-01-01

    Nucleic acid therapeutics has huge potential for the treatment of a wide range of diseases including respiratory diseases. Plasmid DNA (pDNA) and small interfering RNA (siRNA) are the two most widely investigated nucleic acids for therapeutic development. However, efficient and safe delivery of nucleic acids is still a major hurdle in translating nucleic acid therapy into clinical practice. For the treatment of respiratory diseases, administration via inhalation is the most direct and effective way to deliver therapeutic nucleic acids to the lungs. Although liquid aerosol formulation is investigated in most of the studies, it is not desirable in terms of maintaining the stability of nucleic acid especially during long-term storage. This problem could be circumvented by formulating the therapeutic nucleic acids into dry powder for inhalation, and should be considered as the future direction of developing inhalable nucleic acids. In this review, the three major particle engineering methods investigated for the preparation of inhalable pDNA and siRNA formulations, including spray drying (SD), spray freeze drying (SFD) and supercritical fluid (SFC) drying, are discussed and compared. Moreover, common assessment methods and the challenges of evaluating the biological activities of inhalable nucleic acid powders are also reviewed.

  16. Aerodynamic properties, solubility and in vitro antibacterial efficacy of dry powders prepared by spray drying: Clarithromycin versus its hydrochloride salt.

    PubMed

    Manniello, Michele Dario; Del Gaudio, Pasquale; Porta, Amalia; Aquino, Rita Patrizia; Russo, Paola

    2016-07-01

    Antibiotic therapy for a direct administration to the lung in cystic fibrosis patients has to provide suitable availability, possibly in the lower respiratory tract, characterized by the presence of thick secretions. One of the crucial steps in the therapeutic management of the respiratory disease could be the drug solubilization directly in this site of action. The aim of the study was to prepare respirable powders of clarithromycin, while improving drug aqueous solubility. With this aim, several batches of micronized particles were prepared by spray drying different feed solutions, varying the solvent composition (water/isopropyl alcohol ratio), the drug concentration and pH of the liquid feeds. Particle size distribution of raw materials and engineered particles was determined using a light-scattering laser granulometer while particle morphology was assessed by scanning electron microscopy. The in vitro deposition of the micronized clarithromycin powders was evaluated by means of a Single-Stage Glass Impinger using the RS01 model7 by Plastiape® as device for the aerosolization. Solubility measurements of raw and spray-dried (SD) drug were carried out at 37°C in phosphate buffer (0.05M, pH 6.8). Results indicate that morphology and aerodynamic properties of SD particles were strongly influenced by organic solvent concentration and pH of the liquid feeds processed, both modifying drug solubility. Spherical particles and crystals were obtained at higher pH and lower organic solvent content, while wrinkled particles with very interesting aerodynamic properties and higher drug solubility were obtained at lower pH values. Thanks to a fine tuning of the process parameters and liquid feed composition, we produced SD powders with good aerodynamic properties, without using any excipients. Furthermore, SD powders of clarithromycin hydrochloric salt showed higher activity against Pseudomonas aeruginosa growth, compared to clarithromycin raw material.

  17. Stable Dry Powder Formulation for Nasal Delivery of Anthrax Vaccine

    PubMed Central

    Wang, Sheena H.; Kirwan, Shaun M.; Abraham, Soman N.; Staats, Herman F.; Hickey, Anthony J.

    2013-01-01

    There is a current biodefense interest in protection against Anthrax. Here we developed a new generation of stable and effective anthrax vaccine. We studied the immune response elicited by rPA delivered intranasally with a novel mucosal adjuvant, a mast cell activator Compound 48/80. The vaccine formulation was prepared in a powder form by spray-freeze-drying (SFD) under optimized conditions to produce particles with a target size of D50=25μm, suitable for delivery to the rabbit nasal cavity. Physicochemical properties of the powder vaccines were characterized to assess their delivery and storage potential. Structural stability of rPA was confirmed by CD and ATR-FTIR, while functional stability of rPA and C48/80 was monitored by cell-based assays. Animal study was performed using a unitdose powder device for direct nasal application. Results showed that C48/80 provided effective mucosal adjuvant activity in rabbits. Freshly prepared SFD powder vaccine formulations or powders stored for over two years at room temperature elicited significantly elevated serum PA-specific and lethal toxin neutralization antibody titers that were comparable to that induced by IM immunization with rPA. Nasal delivery of this vaccine formulation may be a viable alternative to the currently licensed vaccine, or an attractive vaccine platform for other mucosally transmitted diseases. PMID:21905034

  18. Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01.

    PubMed

    Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Christensen, Dennis; Larsen, Niels Bent; Hinrichs, Wouter Leonardus Joseph; Andersen, Peter; Rantanen, Jukka; Nielsen, Hanne Mørck; Yang, Mingshi; Foged, Camilla

    2013-05-10

    Dry powder vaccine formulations are highly attractive due to improved storage stability and the possibility for particle engineering, as compared to liquid formulations. However, a prerequisite for formulating vaccines into dry formulations is that their physicochemical and adjuvant properties remain unchanged upon rehydration. Thus, we have identified and optimized the parameters of importance for the design of a spray dried powder formulation of the cationic liposomal adjuvant formulation 01 (CAF01) composed of dimethyldioctadecylammonium (DDA) bromide and trehalose 6,6'-dibehenate (TDB) via spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol. Trehalose and lactose were in the glassy state upon co-spray drying with the liposomes, whereas mannitol appeared crystalline, suggesting that the ability of the stabilizer to form a glassy matrix around the liposomes is one of the prerequisites for stabilization. Systematic studies on the effect of process parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome formulations.

  19. Preparation and characterization of spray-dried inhalable powders containing nanoaggregates for pulmonary delivery of anti-tubercular drugs.

    PubMed

    Kaur, Ranjot; Garg, Tarun; Das Gupta, Umesh; Gupta, Pushpa; Rath, Goutam; Goyal, Amit Kumar

    2016-01-01

    This study aims to prepare spray-dried inhalable powders containing anti-tubercular drugs-loaded HPMC nanoaggregates for sustained delivery of drugs to the lung. Nanoaggregates were prepared by precipitation technique. Results showed that the powders obtained had excellent aerosolization property. High drug encapsulation efficiency was achieved in HPMC nano aggregates, ranging from 60% to 70%. A single pulmonary dose resulted in therapeutic drug concentrations 40% to 60% in the lungs and in other organs (< 5%) for 24 h. From this study, we can conclude that delivering drugs through pulmonary route is advantageous for local action in lungs.

  20. Development and Comparison of New High Efficiency Dry Powder Inhalers for Carrier-Free Formulations

    PubMed Central

    Behara, Srinivas R.B.; Longest, P. Worth; Farkas, Dale R.; Hindle, Michael

    2013-01-01

    High efficiency dry powder inhalers (DPIs) were developed and tested for use with carrier-free formulations across a range of different inhalation flow rates. Performance of a previously reported DPI was compared with two new designs in terms of emitted dose (ED) and aerosolization characteristics using in vitro experiments. The two new designs oriented the capsule chamber (CC) at different angles to the main flow passage, which contained a 3D rod array for aerosol deaggregation. Computational fluid dynamics simulations of a previously developed deaggregation parameter, the NDSD, were used to explain device performance. Orienting the CC at 90° to the mouthpiece, the CC90-3D inhaler provided the best performance with an ED=73.4%, fine particle fractions (FPF) less than 5µm and 1µm of 95.1% and 31.4%, respectively, and a MMAD=1.5µm. For the carrier-free formulation, deaggregation was primarily influenced by capsule aperture position and the NDSD parameter. The new CC-3D inhalers reduced the percent difference in FPF and MMAD between low and high flows by 1–2 orders of magnitude compared with current commercial devices. In conclusion, the new CC-3D inhalers produced extremely high quality aerosols with little sensitivity to flow rate and are expected to deliver approximately 95% of the ED to the lungs. PMID:24307605

  1. Murine pharmacokinetics of rifapentine delivered as an inhalable dry powder.

    PubMed

    Chan, John G Y; Tyne, Anneliese S; Pang, Angel; McLachlan, Andrew J; Perera, Vidya; Chan, Joseph C Y; Britton, Warwick J; Chan, Hak Kim; Duke, Colin C; Young, Paul M; Traini, Daniela

    2015-03-01

    A novel inhalable rifapentine dry powder formulation could improve pulmonary rifapentine concentrations resulting in a significantly shorter time to treat tuberculosis infection. The pharmacokinetics of rifapentine (20mg/kg) in healthy mice was compared following intratracheal (IT) and intraperitoneal (IP) administration. Plasma, bronchoalveolar lavage (BAL) and tissue samples were collected and drug levels were quantified at time points up to 24h. Concentration-time data were analysed using a mixed-effects modelling approach to provide model-based estimates of area under the concentration-time curve from time 0 to infinity (AUC0-∞). IT delivery had considerably higher peak rifapentine lung and BAL concentrations and associated AUC0-∞ compared with IP delivery. The plasma AUC0-∞ following IT dry powder delivery was ca. four-fold smaller than the value for IP delivery. Inhaled delivery of rifapentine has the potential to selectively enhance therapeutic efficacy at the pulmonary site of infection whilst minimising systemic exposure and related toxicity.

  2. Synergistic combination dry powders for inhaled antimicrobial therapy

    NASA Astrophysics Data System (ADS)

    Heng, Desmond; Lee, Sie Huey; Teo, Jeanette; Ng, Wai Kiong; Chan, Hak-Kim; Tan, Reginald B. H.

    2013-06-01

    Combination products play an important role in medicine as they offer improved clinical effectiveness, enhanced patient adherence, and reduced administrative costs. In combination antimicrobial therapy, the desired outcome is to extend the antimicrobial spectrum and to achieve a possible synergistic effect. However, adverse antagonistic species may sometimes emerge from such combinations, leading to treatment failure. Therefore, it is crucial to screen the drug candidates for compatibility and possible antagonistic interactions. This work aims to develop a novel synergistic dry powder inhaler (DPI) formulation for antimicrobial combination therapy via the pulmonary route. Binary and ternary combinations were prepared via spray drying on a BUCHI® Nano Spray Dryer B-90. All powders were within the respirable size range, and were consisted of spherical particles that were slightly corrugated. The powers yielded fine particle fractions (of the loaded dose) of over 40% when dispersed using an Aerolizer® DPI at 60 L/min. Time-kill studies carried out against common respiratory tract pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumonia and Acinetobacter baumannii at 1x the minimum inhibitory concentration (MIC) over 24 hours revealed no antagonistic behavior for both combinations. While the interactions were generally found to be indifferent, a favorable synergistic effect was detected in the binary combination when it was tested against Pseudomonas aeruginosa bacteria.

  3. Physicochemical characterization and stability of rifampicin liposome dry powder formulations for inhalation.

    PubMed

    Changsan, Narumon; Chan, Hak-Kim; Separovic, Frances; Srichana, Teerapol

    2009-02-01

    Liposomes were used to encapsulate rifampicin (RIF) as an alternative formulation for delivery to the respiratory tract. Factors affecting the stability of liposomes containing RIF were determined. Four liposome suspensions were prepared, containing different millimole ratios of cholesterol (CH) and soybean L-infinity-phosphatidylcholine (SPC) by the chloroform film method, followed by freeze-drying. Cryo-transmission electron microscopy, photon correlation spectroscopy, (2)H and (31)P solid-state nuclear magnetic resonance were used to characterize the liposome suspensions. Differential scanning calorimetry and X-ray diffraction were used to examine the properties of the powder formulations. The powder was dispersed through an Andersen cascade impactor to evaluate the performance of the aerosolized powder. The liposomes were a mixture of 200-300 nm unilamellar and multilamellar vesicles. Higher CH content in the liposome formulation resulted in a smaller change in size distribution with time, and higher CH content was associated with an increase in the (2)H NMR splitting, indicative of an increase in order of the lipid acyl chains. Furthermore, the SS-NMR results indicated that RIF was located between the acyl chains of the phospholipid bilayer and associated with CH molecules. Fifty percent encapsulation of RIF was obtained when the lipid content was high (SPC 10 mM: CH 10 mM). Mannitol was found to be a suitable cryoprotectant, which is attributed to its crystallinity, and use of mannitol gave particles with a mass median aerodynamic diameter of less than 5 microm. In terms of chemical stability, RIF in dry powder formulations was considerably more stable when compared to RIF aqueous solutions and RIF liposomal suspensions.

  4. Estimating aerosol light-scattering enhancement from dry aerosol optical properties at different sites

    NASA Astrophysics Data System (ADS)

    Titos, Gloria; Jefferson, Anne; Sheridan, Patrick; Andrews, Elisabeth; Lyamani, Hassan; Ogren, John; Alados-Arboledas, Lucas

    2014-05-01

    Microphysical and optical properties of aerosol particles are strongly dependent on the relative humidity (RH). Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in-situ measurements with satellite and remote sensing retrievals. The scattering enhancement factor, f(RH), is defined as the ratio of the scattering coefficient at a high and reference RH. Predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we explore the relationship between aerosol light-scattering enhancement and dry aerosol optical properties such as the single scattering albedo (SSA) and the scattering Ångström exponent (SAE) at multiple sites around the world. The measurements used in this study were conducted by the US Department of Energy at sites where different aerosol types predominate (pristine marine, polluted marine, dust dominated, agricultural and forest environments, among others). In all cases, the scattering enhancement decreases as the SSA decreases, that is, as the contribution of absorbing particles increases. On the other hand, for marine influenced environments the scattering enhancement clearly increases as the contribution of coarse particles increases (SAE decreases), evidence of the influence of hygroscopic coarse sea salt particles. For other aerosol types the relationship between f(RH) and SAE is not so straightforward. Combining all datasets, f(RH) was found to exponentially increase with SSA with a high correlation coefficient.

  5. Studies on the bronchodilator, tremorogenic, cardiovascular and hypokalaemic effects of fenoterol dry powder in asthma.

    PubMed Central

    Bauer, K G; Kaik, B; Sertl, K; Kaik, G A

    1993-01-01

    1. The airway and tremor response and cardiovascular and hypokalaemic effects of single and cumulative doses of fenoterol given by dry powder capsules (DPC) and by metered dose inhaler (MDI) were studied in asthmatics in two randomized, crossover trials. 2. Single doses of fenoterol DPC and MDI (0.2 mg, 0.4 mg), investigated in 24 subjects, produced similar, dose-dependent increases in FEV1. Fenoterol DPC caused less tremor response and less hypokalaemic effects than fenoterol MDI. 3. Cumulative doses of fenoterol DPC and MDI (0.2, 0.6, 1.4, 3.0, 6.2 mg), investigated in 12 subjects, produced a comparable bronchodilatation (mean maximum increase in FEV1 was 0.53 +/- 0.06/0.52 +/- 0.081 for DPC/MDI) and a similar, dose-dependent rise in heart rate (35 +/- 3.81/41 +/- 2.25 beats min(-1)). The rise in tremor and the fall in plasma potassium were smaller after DPC than after MDI. The mean maximum changes were 51.58 +/- 6.41/95.83 +/- 6.75 cm s(-2) for tremor and -0.68 +/- 0.09/-0.96 +/- 0.10 mmol l(-1) for potassium. 4. Our findings may result from a difference in the pharmacokinetics of the dry powder and the aerosol formulation, particularly differences in distribution and absorption. 5. In conclusion, fenoterol DPC used in low therapeutic doses (0.2,0.4 mg), is preferable to the MDI. Fenoterol DPC used as rescue medication in high cumulative doses, do not suggest a greater safety margin than the MDI and the same restrictions should be considered for the fenoterol dry powder formulation as suggested for the MDI. PMID:12959305

  6. Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks.

    PubMed

    Muddle, Joanna; Kirton, Stewart B; Parisini, Irene; Muddle, Andrew; Murnane, Darragh; Ali, Jogoth; Brown, Marc; Page, Clive; Forbes, Ben

    2017-01-01

    Dry powder inhalers are increasingly popular for delivering drugs to the lungs for the treatment of respiratory diseases, but are complex products with multivariate performance determinants. Heuristic product development guided by in vitro aerosol performance testing is a costly and time-consuming process. This study investigated the feasibility of using artificial neural networks (ANNs) to predict fine particle fraction (FPF) based on formulation device variables. Thirty-one ANN architectures were evaluated for their ability to predict experimentally determined FPF for a self-consistent dataset containing salmeterol xinafoate and salbutamol sulfate dry powder inhalers (237 experimental observations). Principal component analysis was used to identify inputs that significantly affected FPF. Orthogonal arrays (OAs) were used to design ANN architectures, optimized using the Taguchi method. The primary OA ANN r(2) values ranged between 0.46 and 0.90 and the secondary OA increased the r(2) values (0.53-0.93). The optimum ANN (9-4-1 architecture, average r(2) 0.92 ± 0.02) included active pharmaceutical ingredient, formulation, and device inputs identified by principal component analysis, which reflected the recognized importance and interdependency of these factors for orally inhaled product performance. The Taguchi method was effective at identifying successful architecture with the potential for development as a useful generic inhaler ANN model, although this would require much larger datasets and more variable inputs.

  7. Effect of drying parameters on physiochemical and sensory properties of fruit powders processed by PGSS-, Vacuum- and Spray-drying.

    PubMed

    Feguš, Urban; Žigon, Uroš; Petermann, Marcus; Knez, Željko

    2015-01-01

    Aim of this experimental work was to investigate the possibility of producing fruit powders without employing drying aid and to investigate the effect of drying temperatures on the final powder characteristics. Raw fruit materials (banana puree, strawberry puree and blueberry concentrate) were processed using three different drying techniques each operating at a different temperature conditions: vacuum-drying (-27-17 °C), Spray-drying (130-160 °C) and PGSS-drying (112-152 °C). Moisture content, total colour difference, antioxidant activity and sensory characteristics of the processed fruit powders were analysed. The results obtained from the experimental work indicate that investigated fruit powders without or with minimal addition of maltodextrin can be produced. Additionally, it was observed that an increase in process temperature results in a higher loss of colour, antioxidant activity and intensity of the flavour profile.

  8. Dry powder inhalation of antibiotics in cystic fibrosis therapy: part 2. Inhalation of a novel colistin dry powder formulation: a feasibility study in healthy volunteers and patients.

    PubMed

    Le Brun, P P H; de Boer, A H; Mannes, G P M; de Fraîture, D M I; Brimicombe, R W; Touw, D J; Vinks, A A; Frijlink, H W; Heijerman, H G M

    2002-07-01

    The aim of the present study was to perform a proof of principle study with a new colistin dry powder inhalation system in six healthy volunteers and five patients with cystic fibrosis. All subjects were asked to inhale 25 mg colistin sulfate dry powder. The patients were also asked to nebulize 160 mg colistin sulfomethate as a solution. Colistin serum concentrations were determined as an indirect parameter to compare both forms of administration. Pulmonary function tests were performed. Peak serum colistin concentrations ranged from 14 to 59 microg/l in volunteers after inhalation of 25 mg as dry powder. In patients, peak concentrations ranged from 18 to 64 microg/l after nebulization of 160 mg colistin sulfomethate solution and from 77 to 159 microg/l after inhalation of 25 mg colistin sulfate dry powder. Pulmonary function tests were not significantly different after inhalation of the dry powder by the volunteers nor after nebulization of the solution by the patients. In some patients a decrease in pulmonary function and moderate to severe cough was observed after inhalation of the dry powder. The new colistin inhaler provides an attractive alternative for nebulized colistin and was highly appreciated by the patients. The decrease in pulmonary function and cough in patients is a drawback, which may be overcome by dose reduction and a further improvement of the new dosage form.

  9. Development of a microparticle-based dry powder inhalation formulation of ciprofloxacin hydrochloride applying the quality by design approach.

    PubMed

    Karimi, Keyhaneh; Pallagi, Edina; Szabó-Révész, Piroska; Csóka, Ildikó; Ambrus, Rita

    2016-01-01

    Pulmonary drug delivery of ciprofloxacin hydrochloride offers effective local antibacterial activity and convenience of easy application. Spray drying is a trustworthy technique for the production of ciprofloxacin hydrochloride microparticles. Quality by design (QbD), an up-to-date regulatory-based quality management method, was used to predict the final quality of the product. According to the QbD-based theoretical preliminary parameter ranking and priority classification, dry powder inhalation formulation tests were successfully performed in practice. When focusing on the critical parameters, the practical development was more effective and was in correlation with our previous findings. Spray drying produced spherical microparticles. The dry powder formulations prepared were examined by particle size analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction, differential scanning calorimetry, and in vitro drug release and aerodynamic particle size analyses were also performed. These formulations showed an appropriate particle size ranging between 2 and 4 μm and displayed an enhanced aerosol performance with fine particle fraction up to 80%.

  10. Development of a microparticle-based dry powder inhalation formulation of ciprofloxacin hydrochloride applying the quality by design approach

    PubMed Central

    Karimi, Keyhaneh; Pallagi, Edina; Szabó-Révész, Piroska; Csóka, Ildikó; Ambrus, Rita

    2016-01-01

    Pulmonary drug delivery of ciprofloxacin hydrochloride offers effective local antibacterial activity and convenience of easy application. Spray drying is a trustworthy technique for the production of ciprofloxacin hydrochloride microparticles. Quality by design (QbD), an up-to-date regulatory-based quality management method, was used to predict the final quality of the product. According to the QbD-based theoretical preliminary parameter ranking and priority classification, dry powder inhalation formulation tests were successfully performed in practice. When focusing on the critical parameters, the practical development was more effective and was in correlation with our previous findings. Spray drying produced spherical microparticles. The dry powder formulations prepared were examined by particle size analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction, differential scanning calorimetry, and in vitro drug release and aerodynamic particle size analyses were also performed. These formulations showed an appropriate particle size ranging between 2 and 4 μm and displayed an enhanced aerosol performance with fine particle fraction up to 80%. PMID:27784991

  11. Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders.

    PubMed

    Nunes, Juliana C; Lago, Mabel G; Castelo-Branco, Vanessa N; Oliveira, Felipe R; Torres, Alexandre Guedes; Perrone, Daniel; Monteiro, Mariana

    2016-04-15

    We studied the chemical composition of oven and freeze dried guava powders for future use as antioxidant-rich flavour enhancers. Among thirty-one volatiles in guava powders, terpenes were predominant, even after both drying processes. In contrast, esters and aldehydes, volatiles characteristic of fresh guava fruit, appeared to have been decreased by drying. Insoluble phenolics were predominant and among the sixteen compounds identified, quercetin-3-O-rutinoside and naringenin corresponded to 56% of total phenolics. Drying processes decreased total phenolics contents by up to 44%. Oven drying promoted the release of insoluble flavonoids, generating mainly quercetin. Antioxidant capacity also decreased due to both drying processes, but guava powders still presented similar antioxidant capacity in comparison to other tropical fruit powders. Our results suggest that oven drying is a viable option for the production of a functional ingredient that would improve the phenolic content of cereal foods while adding desirable guava flavour.

  12. 30 CFR 75.1101-13 - Dry powder chemical systems; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dry powder chemical systems; general. 75.1101-13 Section 75.1101-13 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-13 Dry powder chemical systems;...

  13. 30 CFR 75.1101-15 - Construction of dry powder chemical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Construction of dry powder chemical systems. 75.1101-15 Section 75.1101-15 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-15 Construction of dry powder...

  14. A levodopa dry powder inhaler for the treatment of Parkinson's disease patients in off periods.

    PubMed

    Luinstra, Marianne; Grasmeijer, Floris; Hagedoorn, Paul; Moes, Jan Reindert; Frijlink, Henderik W; de Boer, Anne H

    2015-11-01

    Adequate treatment of Parkinson's patients in off periods with orally administered levodopa is hindered by a poor bioavailability and a slow onset of action. Hence, there is a need for a fast and reliable alternative as for instance via pulmonary administration of the drug. We developed a levodopa containing powder formulation for pulmonary delivery by a recently presented high dose dry powder inhaler (Cyclops). The objective was to produce the drug formulation by means of simple techniques such as micronization, either as pure active substance or with a minimum amount of excipients. After an initial screening on dispersion behaviour, the most promising formulation in the Cyclops was characterized in vitro over a range of pressure drops (2-6 kPa) and doses (20, 30 and 40 mg), representative of those to be expected in practice. A co-micronized levodopa formulation with 2% L-leucine appeared to yield the best aerosol properties for inhalation and highest delivered dose reproducibility. The combination of this particular formulation and the Cyclops inhaler seems to meet the basic requirements for satisfactory deposition in the airways. This formulation is therefore expected to be a promising candidate for the treatment of Parkinson's patients in an off period.

  15. Inhibition by sodium cromoglycate of bronchoconstriction stimulated by respiratory heat loss: comparison of pressurised aerosol and powder.

    PubMed Central

    Latimer, K M; Roberts, R; Morris, M M; Hargreave, F E

    1984-01-01

    The protective effect was examined of three doses (2, 10, and 20 mg) of sodium cromoglycate inhaled from a pressurised metered dose inhaler on the response to isocapnic hyperventilation of cold dry air in 10 asthmatic subjects. This was compared with the effect of cromoglycate powder (20 mg) inhaled from a Spincap and with placebo given on two occasions. The medications were inhaled on separate days, in random order and with the use of a double blind double dummy technique, 20 minutes before isocapnic hyperventilation of two fold increasing volumes of air (-15 degrees C, 0% humidity) to produce a 20% fall in the post-treatment FEV1. The response was expressed as the provocative dose of respiratory heat loss required to cause a fall in FEV1 of 15% (PD15, kcal/min). The mean baseline spirometric indices exceeded 85% of predicted normal values on each test day; both placebo treatments reduced the baseline FEV1 by comparison with all active treatments (p less than 0.0001). Comparison of the PD15 on the two placebo days confirmed excellent reproducibility. All doses of cromoglycate shifted the respiratory heat loss dose-response curve to the right of the placebo curve; PD15 after all active treatments exceeded PD15 after placebo (p less than 0.0001). There was no cromoglycate dose-response relationship between the three doses of aerosol (p greater than 0.05), or between any dose of aerosol and powder (p greater than 0.05). It is concluded that cromoglycate aerosol inhaled from a pressurised inhaler in a dose of 2 mg gives the same magnitude of protection against bronchoconstriction stimulated by airway cooling as 20 mg of pressurised aerosol or powder from a Spincap. PMID:6426073

  16. Constant size, variable density aerosol particles by ultrasonic spray freeze drying.

    PubMed

    D'Addio, Suzanne M; Chan, John Gar Yan; Kwok, Philip Chi Lip; Prud'homme, Robert K; Chan, Hak-Kim

    2012-05-10

    This work provides a new understanding of critical process parameters involved in the production of inhalation aerosol particles by ultrasonic spray freeze drying to enable precise control over particle size and aerodynamic properties. A series of highly porous mannitol, lysozyme, and bovine serum albumin (BSA) particles were produced, varying only the solute concentration in the liquid feed, c(s), from 1 to 5 wt%. The particle sizes of mannitol, BSA, and lysozyme powders were independent of solute concentration, and depend only on the drop size produced by atomization. Both mannitol and lysozyme formulations showed a linear relationship between the computed Fine Particle Fraction (FPF) and the square root of c(s), which is proportional to the particle density, ρ, given a constant particle size d(g). The FPF decreased with increasing c(s) from 57.0% to 16.6% for mannitol and 44.5% to 17.2% for lysozyme. Due to cohesion, the BSA powder FPF measured by cascade impaction was less than 10% and independent of c(s). Ultrasonic spray freeze drying enables separate control over particle size, d(g), and aerodynamic size, d(a) which has allowed us to make the first experimental demonstration of the widely accepted rule d(a)=d(g)(ρ/ρ(o))(1/2) with particles of constant d(g), but variable density, ρ (ρ(o) is unit density).

  17. The effect of water to ethanol feed ratio on physical properties and aerosolization behavior of spray dried cromolyn sodium particles.

    PubMed

    Gilani, Kambiz; Najafabadi, Abdolhossien Rouholamini; Barghi, Mohammadali; Rafiee-Tehrani, Morteza

    2005-05-01

    Cromolyn sodium (CS) was spray dried under constant operation conditions from different water to ethanol feed ratios (50:50-0:100). The spray dried CS samples were characterized for their physicochemical properties including crystallinity, particle size distribution, morphology, density, and water/ethanol content. To determine quantitatively the crystallinity of the powders, an X-ray diffraction (XRD) method was developed using samples with different crystallinity prepared by physical mixing of 100% amorphous and 100% crystalline CS materials. The aerodynamic behavior of the CS samples was determined using an Andersen Cascade Impactor (ACI) with a Spinhaler at an air flow of 60 L/min. Binary mixtures of each spray dried CS powder and Pharmatose 325, a commercial alpha-lactose monohydrate available for DPI formulations, were prepared and in vitro aerosol deposition of the drug from the mixtures was analyzed using ACI to evaluate the effect of carrier on deposition profiles of the spray dried samples. CS spray dried from absolute ethanol exhibited XRD pattern characteristic for crystalline materials and different from patterns of the other samples. The crystallinity of spray dried CS obtained in the presence of water varied from 0% to 28.37%, depending on the ratio of water to ethanol in the feed suspensions. All samples presented different particle size, water/ethanol content, and bulk density values. CS particles spray dried from absolute ethanol presented uniform elongated shape whereas the other samples consisted mainly of particles with irregular shape. Overall, fine particle fraction increased significantly (p < 0.01) with decreasing d50% and water and ethanol content of spray dried CS samples. Significant difference (p < 0.01) in deposition profiles of the drug were observed between corresponding carrier free and carrier blended formulations. The difference in deposition profiles of CS aerosolized from various spray dried samples were described according to

  18. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method.

    PubMed

    Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard

    2015-08-01

    We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying.

  19. Effect of oil droplet size on the oxidative stability of spray-dried flaxseed oil powders.

    PubMed

    Shiga, Hirokazu; Loon Neoh, Tze; Ninomiya, Ai; Adachi, Sae; Pasten, Ignacio Lopez; Adachi, Shuji; Yoshii, Hidefumi

    2017-04-01

    The effect of the size of oil droplets on the oxidative stability of flaxseed oil in spray-dried powders was investigated. Maltodextrin with a dextrose equivalent of 25 was used as a wall material, and sodium caseinate and transglutaminase-polymerized sodium caseinate were used as emulsifiers. The oxidative stability of flaxseed oil encapsulated in the spray-dried powders was evaluated using lipid oxidation and conductometric determination tests at 105 °C. The powders containing larger oil droplets exhibited higher surface oil content after spray drying, and higher peroxide value and conductivity after storage at 105 °C. Removal of the surface oil from the powders by washing with hexane significantly decreased the conductivity. The results indicated that the surface oil of the spray-dried flaxseed oil powders affected the oxidation stability.

  20. [Study on totai flavonoids of Epimedium assisted with soybean polysaccharide spray-drying powder].

    PubMed

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Deng, Jia-hui

    2015-08-01

    In order to evaluate the characteristics of the spray drying of total flavonoids of Epimedium extracts assisted with soybean polysaccharide, a certain percentage of soybean polysaccharide or polyvidone were added to the total flavonoids of Epimedium extract to conduct the spray drying. The effect of soybean polysaccharides against the wall sticking effect of the spray drying was detected, as well as the powder property of total flavonoids of Epimedium spray drying powder and the dissolution in vitro behavior of the effective component. Compared with the total flavonoids of Epimedium spray drying powder, soybean polysaccharide revealed a significant anti-wall sticking effect. The spray drying power which had no notable change in the grain size made a increase in the fluidity, improvement in the moisture absorption and remarkable rise in the dissolution in vitro behavior. It was worth further studying the application of soybean polysaccharide in spray drying power of traditional Chinese medicine.

  1. Feasibility of spray drying bacteriophages into respirable powders to combat pulmonary bacterial infections.

    PubMed

    Vandenheuvel, Dieter; Singh, Abhishek; Vandersteegen, Katrien; Klumpp, Jochen; Lavigne, Rob; Van den Mooter, Guy

    2013-08-01

    The use of bacterial viruses for antibacterial treatment (bacteriophage therapy) is currently being reevaluated. In this study, we analyze the potential of processing bacteriophages in a dry powder formulation, using a laboratory spray dryer. The phages were dried in the presence of lactose, trehalose or dextran 35, serving as an excipient to give the resulting powder the necessary bulk mass and offer protection to the delicate phage structure. Out of the three excipients tested, trehalose was found to be the most efficient in protecting the phages from temperature and shear stress throughout the spray drying process. A low inlet air temperature and atomizing force appeared to be the best parameter conditions for phage survival. Pseudomonas podovirus LUZ19 was remarkably stable, suffering less than 1 logarithmic unit reduction in phage titer. The phage titer of Staphyloccus phage Romulus-containing powders, a member of the Myoviridae family, showed more than 2.5 logarithmic units reduction. On the other hand, Romulus-containing powders showed more favorable characteristics for pulmonary delivery, with a high percentage of dry powder particles in the pulmonary deposition fraction (1-5 μm particle diameter). Even though the parameters were not optimized for spray drying all phages, it was demonstrated that spray drying phages with this industrial relevant and scalable set up was possible. The resulting powders had desirable size ranges for pulmonary delivery of phages with dry powder inhalers (DPIs).

  2. Heat-Stable Dry Powder Oxytocin Formulations for Delivery by Oral Inhalation.

    PubMed

    Fabio, Karine; Curley, Kieran; Guarneri, Joseph; Adamo, Benoit; Laurenzi, Brendan; Grant, Marshall; Offord, Robin; Kraft, Kelly; Leone-Bay, Andrea

    2015-12-01

    In this work, heat stable dry powders of oxytocin (OT) suitable for delivery by oral inhalation were prepared. The OT dry powders were prepared by spray drying using excipients chosen to promote OT stability including trehalose, isoleucine, polyvinylpyrrolidone, citrate (sodium citrate and citric acid), and zinc salts (zinc chloride and zinc citrate). Characterization by laser diffraction indicated that the OT dry powders had a median particle size of 2 μm, making them suitable for delivery by inhalation. Aerodynamic performance upon discharge from proprietary dry powder inhalers was evaluated by Andersen cascade impaction (ACI) and in an anatomically correct airway (ACA) model, and confirmed that the powders had excellent aerodynamic performance, with respirable fractions up to 77% (ACI, 30 L/min). Physicochemical characterization demonstrated that the powders were amorphous (X-ray diffraction) with high glass transition temperature (modulated differential scanning calorimetry, MDSC), suggesting the potential for stabilization of the OT in a glassy amorphous matrix. OT assay and impurity profile were conducted by reverse phase HPLC and liquid chromatography-mass spectrometry (LC-MS) after storage up to 32 weeks at 40°C/75%RH. Analysis demonstrated that OT dry powders containing a mixture of citrate and zinc salts retained more than 90% of initial assay after 32 weeks storage and showed significant reduction in dimers and trisulfide formation (up to threefold reduction compared to control).

  3. Effects of extrusion cooking on the chemical composition and functional properties of dry common bean powders.

    PubMed

    Ai, Yongfeng; Cichy, Karen A; Harte, Janice B; Kelly, James D; Ng, Perry K W

    2016-11-15

    The impact of extrusion cooking on the chemical composition and functional properties of bean powders from four common bean varieties was investigated. The raw bean powders were extruded under eight different conditions, and the extrudates were then dried and ground (particle size⩽0.5mm). Compared with corresponding non-extruded (raw) bean powders (particle size⩽0.5mm), the extrusion treatments did not substantially change the protein and starch contents of the bean powders and showed inconsistent effects on the sucrose, raffinose and stachyose contents. The extrusion cooking did cause complete starch gelatinization and protein denaturation of the bean powders and thus changed their pasting properties and solvent-retention capacities. The starch digestibilities of the cooked non-extruded and cooked extruded bean powders were comparable. The extruded bean powders displayed functional properties similar to those of two commercial bean powders.

  4. Submicron silicon powder production in an aerosol reactor

    NASA Technical Reports Server (NTRS)

    Wu, J. J.; Flagan, R. C.; Gregory, O. J.

    1986-01-01

    Powder synthesis by thermally induced vapor phase reactions is described. The powder generated by this technique consists of spherical, nonagglomerated particles of high purity. The particles are uniform in size, in the 0.1-0.2-micron size range. Most of the particles are crystalline spheres. A small fraction of the spheres are amorphous. Chain agglomerates account for less than 1 percent of the spherules.

  5. Difference in resistance to humidity between commonly used dry powder inhalers: an in vitro study

    PubMed Central

    Janson, Christer; Lööf, Thomas; Telg, Gunilla; Stratelis, Georgios; Nilsson, Folke

    2016-01-01

    Multi-dose dry powder inhalers (DPIs) are commonly used in asthma and chronic obstructive lung disease (COPD) treatment. A disadvantage is their sensitivity to humidity. In real life, DPIs are periodically exposed to humid conditions, which may affect aerosol characteristics and lung deposition. This study compared DPI aerosol performance after exposure to humidity. Budesonide (BUD) inhalers (Turbuhaler; Novolizer; Easyhaler) and budesonide/formoterol (BUD/FORM) inhalers (Turbuhaler; Spiromax; Easyhaler) were stored in 75% relative humidity (RH) at both ambient temperature and at −0 °C. Delivered dose (DD) and fine-particle dose (FPD) were tested in vitro before and after storage. BUD inhalers: Turbuhaler and Novolizer showed only small decreases (<15%) in FPD in 40 °C/75% RH, whereas FPD for Easyhaler decreased by >60% (P=0.01) after 1.5 months of storage. Easyhaler also decreased significantly after 6 months of storage in ambient/75%RH by 25% and 54% for DD and FPD, respectively, whereas only small decreases were seen for Turbuhaler and Novolizer (<15%). BUD/FORM inhalers: Turbuhaler and Spiromax DD were unchanged in 40 °C/75% RH, whereas Easyhaler showed a small decrease. FPD (budesonide) decreased for Turbuhaler, Spiromax and Easyhaler by 18%, 10% and 68% (all significant), respectively, at 40 °C/75% RH. In ambient/75%RH, DD was unchanged for all inhalers, whereas FPD (budesonide) decreased for Spiromax (7%, P=0.02) and Easyhaler (34%, (P<0.01)). There are significant differences in device performance after exposure to humid conditions. A clinically relevant decrease of more than half FPD was seen for one of the inhalers, a decrease that may affect patients’ clinical outcomes. Prescriber and patient knowledge on device attributes are essential to ensure optimal drug delivery to the lungs. PMID:27853177

  6. Technical procedure features of nickel dry-powder developer manufacturing by method of plasma-electrolytic dispergating

    NASA Astrophysics Data System (ADS)

    Gumerov, A. Z.; Nasibullin, R. T.; Sarimov, L. R.

    2017-01-01

    The following work describes means of nickel dry-powder developer manufacturing by plasma-electrolytic dispergating. For that purpose, a plasma-electrothermic device was developed that allows to manufacture dry-powders with wide range of parameters. Technical conditions for nickel dry-powder developer manufacturing by method of plasma-electrolytic dispergating were defined. By factorial design method regression equations were obtained, that make it possible to plan the process of dry-powders manufacturing with set average particle size and set manufacturing process rate. The described means allows to manufacture nicol dry-powder developer with a particle size of aprox. 100 nm.

  7. The rheology and hydrodynamics of dry powder lubrication

    NASA Technical Reports Server (NTRS)

    Heshmat, Hooshang

    1991-01-01

    This paper conceptualizes a powder lubrication mechanisms which closely resembles that of a hydrodynamic fluid film. Based on the observations of past investigations and on the author's experiments, it is postulated that a layered shearing of the compacted powder generates velocity, density, and temperature profiles akin to fluid film bearings. Thus, a lubricant consisting of a fine powder unserted either deliberately or one generated by the water of the mating surfaces, constitutes a viable lubricant that generates the required flows and pressures to prevent contact between the surfaces.

  8. Effects of extrusion cooking on the chemical composition and functional properties of dry bean powders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aimed to investigate the impacts of extrusion cooking on the chemical composition and functional properties of bean powders from four bean varieties. The raw bean powders were extruded under eight different conditions, and the extrudates were then dried and ground (particle size = 0.5 mm)...

  9. Lung bioavailability of chlorofluorocarbon free, dry powder and chlorofluorocarbon containing formulations of salbutamol.

    PubMed

    Clark, D J; Lipworth, B J

    1996-03-01

    With the future advent of a world wide ban on chlorofluorocarbon containing aerosols, a study was designed to compare the in vivo lung bioavailability of salbutamol via chlorofluorocarbon-containing metered-dose inhaler (CFC), chlorofluorocarbon-free metered-dose inhaler (CFC-free), and dry powder inhaler (DPI). Twelve healthy male subjects were given 1200 micrograms salbutamol and measurements made of plasma and urinary salbutamol. CFC-free produced significantly higher plasma salbutamol levels (ng ml-1; mean and 95% CI for difference) than either CFC or DPI: Cmax, CFC-free 4.18 vs CFC 3.29 (95% CI 0.10-1.68), vs DPI 3.42 (95% CI -0.03-1.56). The ratio for the difference in Cmax between CFC and CFC-free formulations was 1.32 (95% CI 1.02-1.61). There were no significant differences between CFC and DPI formulations. Urinary salbutamol results did not reveal any significant differences between the three inhalers (micrograms 30 min-1): CFC-free 42.4, CFC 43.8, DPI 45.3. Thus, the lung bioavailability of CFC-free was greater than that of CFC or DPI formulations of salbutamol.

  10. Effect of interactive ternary mixtures on dispersion characteristics of ipratropium bromide in dry powder inhaler formulations.

    PubMed

    Beilmann, Bianca; Kubiak, René; Grab, Peter; Häusler, Heribert; Langguth, Peter

    2007-04-20

    The purpose of this investigation was to evaluate the effect of mixing order and the influence of adding fines on in vitro performance of ipratropium bromide (ITB) dry powder inhaler formulations. Coarse lactose (CL) in varying mass ratio with or without addition of micronized lactose (ML) and ITB in different mixing sequences was used to formulate ternary mixtures. A binary mixture composed of CL and ITP served as control. The in vitro deposition of ITB from these formulations was measured using an Andersen cascade impactor (aerosolization at 39 L/min) employing a HandiHaler as the delivery device. It was observed that mixing order has a significant effect (P < .05) on in vitro deposition of ITB. Formulations with preblending of CL and ITB produced similar deposition profiles as the control, regardless of the added ML. In contrast, formulations without preblending resulted in significantly higher fine particle dose (FPD) as compared with the control. In addition, an increased quantity of ML generally resulted in an increase in drug deposition. The results show that the effect of ML on dispersion of ITB is highly dependent upon the mixing order. The evaluation of atomic force measurement (AFM) to forecast drug detachment and predict the aerodynamic characteristics resulted in similar attraction forces for the different pairs lactose/lactose (42.66 +/- 25.01 nN) and lactose/ITB (46.77 +/- 17.04 nN).

  11. The Diskus™: a review of its position among dry powder inhaler devices

    PubMed Central

    Chrystyn, H

    2007-01-01

    The use of dry powder inhalers (DPIs) to administer treatments for respiratory diseases has increased significantly in recent years. There is now a wide range of DPIs available that vary considerably in design, required operational techniques, output characteristics and drug delivery across a range of inhalation patterns. Different patient populations may find individual types of DPI easier to use correctly than others and selecting the right DPI for particular patient requirements will improve compliance with therapy. For example, some DPIs offer a greater resistance against inspirational flow rate than others which affects the total emitted dose and also fine particle mass of the aerosol released. An individual patient may therefore receive different amounts of drug when inhaling from different DPIs. Therefore, it is important that the prescriber is fully aware of the characteristics of the different types of DPI, so that he or she can prescribe the device that is most appropriate to an individual patient's needs. This review explores the characteristics of currently available DPIs and evaluates their efficacy and patient acceptability. The differences in output characteristics, ease of use and patient preferences between available devices is shown to affect treatment efficacy and patient compliance with therapy. Changing the DPI prescribed to a patient to a cheaper or generic device may therefore adversely affect disease control and thereby increase the cost of treatment. PMID:17504364

  12. Inhalable liposomal dry powder of gemcitabine-HCl: Formulation, in vitro characterization and in vivo studies.

    PubMed

    Gandhi, Manit; Pandya, Tosha; Gandhi, Ravi; Patel, Sagar; Mashru, Rajashree; Misra, Ambikanandan; Tandel, Hemal

    2015-12-30

    Pulmonary drug delivery system facilitates local instillation of anticancer drugs to lungs which has proven to be pioneering approach for treatment of lung cancer. This approach led the groundwork for delivering liposomal formulation directly to lungs. Gemcitabine-HCl is currently considered as most effective drug for management of lung cancer. However, its application is limited owing to its metabolism by enzymes present in plasma resulting in reduced efficacy and higher toxicity. In present study, lyophilisation technique was used to convert liposomes into dry powder inhaler, which was formulated using emulsification solvent evaporation technique. The physicochemical properties including size, morphology, entrapment efficiency, loading efficiency etc. of formulated liposomes were evaluated. The prepared liposomal DPI (LDPI) formulations were then examined for solid state characteristics and aerosol performance using cascade impactor. From all the formulations prepared, the LDPI formulated using trehalose as cryoprotectant presented required properties along with desirable deposition pattern. Finally, the optimized formulation was selected for in vitro cell line studies; in vivo studies and stability study. This formulated inhalable particles offers a promising approach for the management of lung cancer through regional chemotherapy.

  13. Surface Energy Determined by Inverse Gas Chromatography as a Tool to Investigate Particulate Interactions in Dry Powder Inhalers.

    PubMed

    Das, Shyamal C; Tucker, Ian G; Stewart, Peter J

    2015-01-01

    Dry powder inhalers (DPIs) usually contain drug particles <6 µm which agglomerate and/ or adhere on the surfaces of large carriers particles. The detachment of drug particles from carriers and de-agglomeration of drug particles into primary particles is essential for drug deposition in the deep lung. These processes are influenced by the surface energy of particles. Inverse gas chromatography (IGC) has been used to determine the surface energy of powder particles used in DPI to characterize materials and to understand aerosolization behaviour. Early studies used an infinite dilution technique to determine nonpolar surface energy and free energy of adsorption for polar interactions separately. Although some correlations were observed with the change in nonpolar surface energy before and after micronization, milling and storage, a lack of consistency in the change of free energy of adsorption was common. Moreover, a consistent relationship between complex de-agglomeration behaviour and surface energy has not been established and there are even some examples of negative correlation. In fact, nonpolar surface energy at infinite dilution is an incomplete representation of powder surface characteristics. The techniques for measuring polar surface energy, total surface energy and surface energy distribution have provided more revealing information about surface energetics of powders. Surface energy distributions determined by IGC or surface energy analyser have been successfully used to understand energetic heterogeneity of surfaces, characterize different polymorphs and understand changes due to micronization, structural relaxation, dry coating and storage. Efforts have been made to utilize surface energy distribution data to calculate powder strength distribution and to explain complex de-agglomeration behaviour of DPI formulations.

  14. Microparticulate/Nanoparticulate Powders of a Novel Nrf2 Activator and an Aerosol Performance Enhancer for Pulmonary Delivery Targeting the Lung Nrf2/Keap-1 Pathway.

    PubMed

    Muralidharan, Priya; Hayes, Don; Black, Stephen M; Mansour, Heidi M

    2016-01-01

    This systematic and comprehensive study reports for the first time on the successful rational design of advanced inhalable therapeutic dry powders containing dimethyl fumarate, a first-in-class Nrf2 activator drug to treat pulmonary inflammation, using particle engineering design technology for targeted delivery to the lungs as advanced spray dried (SD) one-component DPIs. In addition, two-component co-spray dried (co-SD) DMF:D-Man DPIs with high drug loading were successfully designed for targeted lung delivery as advanced DPIs using organic solution advanced spray drying in closed mode. Regional targeted deposition using design of experiments (DoE) for in vitro predictive lung modeling based on aerodynamic properties was tailored based on composition and spray drying parameters. These findings indicate the significant potential of using D-Man in spray drying to improve particle formation and aerosol performance of small molecule with a relatively low melting point. These respirable microparticles/nanoparticles in the solid-state exhibited excellent aerosol dispersion performance with an FDA-approved human DPI device. Using in vitro predictive lung deposition modeling, the aerosol deposition patterns of these particles show the capability to reach lower airways to treat inflammation in this region in pulmonary diseases such as acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), and pulmonary endothelial disease.

  15. Comparative Evaluation of Physicochemical Properties of Pine Needle Powders Prepared by Different Drying Methods

    PubMed Central

    Chung, Ha-Sook; Lee, Jun Ho

    2015-01-01

    Systematic study of how different drying methods, namely hot-air drying, vacuum-drying, and freeze-drying, affect color, browning index, degree of rehydration, water solubility, and vitamin C content is critical for utilizing pine needle powders (PNP) as a novel ingredient in functional foods. Samples prepared by vacuum-drying showed a significantly higher L*-value, whereas higher a*- and b*-values were detected in the hot-air dried samples (P<0.05). The browning index was significantly higher in samples prepared by vacuum-drying compared to samples prepared by freeze-drying (P<0.05). Freeze-dried PNP exhibited a significantly higher degree of rehydration than hot-air dried samples (P<0.05). Water solubilities of freeze-dried and hot-air dried samples were significantly higher than that of vacuum-dried sample (P<0.05). Vitamin C was less destroyed during freeze-drying compared to hot-air or vacuum-drying (P<0.05). Freeze-dried samples displayed a clear porous structure and appeared to have a bigger space, whereas hot-air dried samples showed lower porosity than vacuum and freeze-dried samples. PMID:26176003

  16. A study of inter-particle bonds in dry bauxite waste resulting in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Wagh, Arun S.; Thompson, Bentley

    1988-02-01

    Bauxite and Alumina production are one of the main activities of several third world countries such as Jamaica, Brazil, India, Guinea, eastern European countries such as Hungary and Rumania and advanced countries such as Australia, West Germany, Japan and the United States. The mining operations lead to dust pollution, but the refining of bauxite to alumina yield large amounts of highly caustic sludge waste, called "Red Mud". Millions of tons of the waste produced in every country are stored in containment dams or natural valleys. This leads to ground water pollution, destruction of plant and bird life and is hazardous to human settlement in earthquake prone regions like Jamaica. As a result several companies have been looking into dry mud stacking which involves thickening the mud in the refining plants and sprying it on the slopes to sun dry it. Typically it involves a drying field of about two hundred acres, which could act as a potential source of caustic dust. In Jamaica one company has started disposing of the mud in this way. The aerosol formation from such areas depends mainly on the integrity of the top dry layers. Presently this is done by studying the approximate parameters such as the friability of the mud. However, following the recent advances in powder technology it has been possible for us to develop an instrument to study the average interparticle forces between the red mud particles. The instrument is based on the principle of a tensometer and a split cell is used to load specimens. A load cell is used to measure the force and a chart recorder is used for plotting separation and the force. The present study reports elemental composition of the dust and its health hazards. It also reports the physical measurement of the average interparticle force as a function of their separation in the Jamaican mud. The effect of ultraviolet radiation on the strength of the material is studied to see the effect of sun-drying of the waste. The five-fold increase

  17. Preparation, characterization and pulmonary pharmacokinetics of a new inhalable zanamivir dry powder.

    PubMed

    Cai, Xingshi; Yang, Yang; Xie, Xiangyang; Yu, Fanglin; Yang, Yanfang; Yang, Zhenbo; Zhang, Tao; Mei, Xingguo

    2016-07-01

    This work describes a new dry powder for inhalation containing zanamivir, which is less hygroscopic than Relenza®. The powders were prepared via a spray-drying technique using mannitol as the carrier. A 5(3) central composite design was used to optimize the formulations. The final optimized powders, characterized with an angle of repose 37.48°, an aerodynamic diameter of 2.346 μm and in vitro deposition of 58.54%, were obtained by using the predicted variable values. Relenza® absorbed a significant amount of water at 66%, 75% and 85% relative humidity (RH; weight changes of approximately 1.38%, 2.18% and 3.72%, respectively). In contrast, the weight change for the zanamivir dry powder inhalation (DPI) was negligible when the RH was increased to 66%. The in vivo potential for the optimized powders was studied further in rats via the endotracheal administration of an 8.4 mg/kg dose. The bioavailability was 116% relative to Relenza®. Fluorescence imaging monitored the zanamivir dry powder inhalers in rats. The results indicated that the zanamivir DPIs were effectively delivered to the lung. These results indicate that the spray-dried zanamivir DPIs were promising for pulmonary delivery.

  18. Nano-amorphous spray dried powder to improve oral bioavailability of itraconazole.

    PubMed

    Kumar, Sumit; Shen, Jie; Burgess, Diane J

    2014-10-28

    The objective of this study was to formulate nano-amorphous spray-dried powders of itraconazole to enhance its oral bioavailability. A combination approach of solvent-antisolvent precipitation followed by spray drying was used. DoE studies were utilized to understand the critical processing parameters: antisolvent-to-solvent ratio, drug concentration and stabilizer concentration. Particle size was the critical quality attribute. Spray drying of the nano-precipitated formulation was performed with several auxiliary excipients to obtain nano-sized amorphous powder formulations. PLM, DSC and PXRD were utilized to characterize the spray-dried powders. In vitro dissolution and in vivo bioavailability studies of the nano-amorphous powders were performed. The particle size of the nano-formulations was dependent on the drug concentration. The smallest size precipitates were obtained with low drug concentration. All high molecular weight auxiliary excipients and mannitol containing formulations were unstable and crystallized during spray drying. Formulations containing disaccharides were amorphous and non-aggregating. In vitro dissolution testing and in vivo studies showed the superior performance of nano-amorphous formulations compared to melt-quench amorphous and crystalline itraconazole formulations. This study shows superior oral bioavailability of nano-amorphous powders compared to macro-amorphous powders. The nano-amorphous formulation showed similar bioavailability to the nano-crystalline formulation but with a faster absorption profile.

  19. Physicochemical properties of whole fruit plum powders obtained using different drying technologies.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Lech, Krzysztof; Łysiak, Grzegorz P; Figiel, Adam

    2016-09-15

    Physicochemical quality parameters of plum powders obtained by applying conventional drying methods and their combination devised to process plums were evaluated. The effect of freeze-drying (FD), vacuum drying (VD), convective drying (CD), microwave-vacuum drying (MVD) and combination of convective pre-drying and microwave finish-drying (CPD-MVFD) affected physical (bulk density, porosity, colour, solubility) and chemical (polyphenolic compounds determined by UPLC and antioxidant capacity by TEAC ABTS and FRAP methods) properties of plum powders. The MVD at 1.2 W g(-1) and a novel combination for plum powders production - CPD-MVFD at 70 °C/1.2 W g(-1) allowed the best preservation of phenolic compounds and increased the efficiency of production. Results obtained support the use of MVD and its combination for better quality of dried plum products. The study proved that the determination of the browning index and HMF level (formed via Maillard reaction) might be good tool for monitoring the thermal processing of plum powders.

  20. Effect of sucrose on physical properties of spray-dried whole milk powder.

    PubMed

    Ma, U V Lay; Ziegler, G R; Floros, J D

    2008-11-01

    Spray-dried whole milk powders were prepared from whole condensed milk with various sucrose concentrations (0%, 2.5%, 5%, 7.5%, and 10% w/w), and their glass transition temperature and some physical properties of importance in chocolate manufacture were evaluated. In milk powder samples, the glass transition temperature and free-fat content decreased in a nonlinear manner with sucrose addition. Moreover, increasing sucrose concentration reduced the formation of dents on the particle surface. Addition of sucrose in whole condensed milk increased linearly the apparent particle density and in a nonlinear manner the particle size of spray-dried milk powders. The particle size volume distribution of milk powders with the highest sucrose concentration differed from the log-normal distribution of the other samples due to the formation of large agglomerates. Neither vacuole volume, nor the amorphous state of milk powders was affected by sucrose addition.

  1. Suitability of differently formulated dry powder Newcastle disease vaccines for mass vaccination of poultry.

    PubMed

    Huyge, Katrien; Van Reeth, Kristien; De Beer, Thomas; Landman, Wil J M; van Eck, Jo H H; Remon, Jean Paul; Vervaet, Chris

    2012-04-01

    Dry powders containing a live-attenuated Newcastle disease vaccine (LZ58 strain) and intended for mass vaccination of poultry were prepared by spray drying using mannitol in combination with trehalose or inositol, polyvinylpyrrolidone (PVP) and/or bovine serum albumin (BSA) as stabilizers. These powders were evaluated for vaccine stabilizing capacity during production and storage (at 6 °C and 25 °C), moisture content, hygroscopicity and dry powder dispersibility. A mixture design, varying the ratio of mannitol, inositol and BSA, was used to select the stabilizer combination which resulted in the desired powder properties (i.e. good vaccine stability during production and storage, low moisture content and hygroscopicity and good dry dispersibility). Inositol-containing powders had the same vaccine stabilizing capacity as trehalose powders, but were less hygroscopic. Incorporation of BSA enhanced the vaccine stability in the powders compared to PVP-containing formulations. However, increasing the BSA concentration increased the hygroscopicity and reduced the dry dispersibility of the powder. No valid mathematical model could be calculated for vaccine stability during production or storage, but the individual experiments indicated that a formulation combining mannitol, inositol and BSA in a ratio of 73.3:13.3:13.3 (wt/wt) resulted in the lowest vaccine titre loss during production (1.6-2.0 log(10) 50% egg infectious dose (EID(50)) and storage at 6 °C (max. 0.8 log(10) EID(50) after 6 months) in combination with a low moisture content (1.1-1.4%), low hygroscopicity (1.9-2.1% water uptake at 60% relative humidity) and good dry dispersibility properties.

  2. Dry powder inhalation of antibiotics in cystic fibrosis therapy, part 1: development of a powder formulation with colistin sulfate for a special test inhaler with an air classifier as de-agglomeration principle.

    PubMed

    de Boer, A H; Le Brun, P P H; van der Woude, H G; Hagedoorn, P; Heijerman, H G M; Frijlink, H W

    2002-07-01

    The aim of this study was to investigate the pulmonary administration of antibiotics as dry powder to patients with cystic fibrosis (CF), as an alternative for nebulization. This part of the study describes the development of a powder formulation with colistin sulfate as model substance. The aim of the new dosage form was to increase pulmonary deposition, therapeutic efficiency and, by that, compliance by the CF patients. A physical powder mixture of colistin and a size fraction of lactose (106-150 microm) was prepared and the mixture was optimized with respect to colistin content (83.3%) for use in a special test inhaler. A laser diffraction apparatus with special inhaler adapter was applied for analysis of the size distribution of the aerosol cloud from the inhaler. The size distributions of the aerosol clouds from the test inhaler at flow rates between 30 and 60 l/min for the optimized formulation showed nearly the same median diameter as that for the primary drug particles. But the X(100)-value was much lower, because of an effective large particle separation from the inspiratory air by an air classifier in the test inhaler. The results suggest that dry powder inhalation might be a suitable and highly efficient alternative for nebulization of antibiotic drugs in CF therapy.

  3. Effect of device design on the in vitro performance and comparability for capsule-based dry powder inhalers.

    PubMed

    Shur, Jagdeep; Lee, Sau; Adams, Wallace; Lionberger, Robert; Tibbatts, James; Price, Robert

    2012-12-01

    This study investigated the effect of modifying the design of the Cyclohaler on its aerosolization performance and comparability to the HandiHaler at multiple flow rates. The Cyclohaler and HandiHaler were designated as model test and reference unit-dose, capsule-based dry powder inhalers (DPIs), respectively. The flow field, pressure drop, and carrier particle trajectories within the Cyclohaler and HandiHaler were modeled via computational fluid dynamics (CFD). With the goal of achieving in vitro comparability to the HandiHaler, the CFD results were used to identify key device attributes and to design two modifications of the Cyclohaler (Mod 1 and Mod 2), which matched the specific resistance of the HandiHaler but exhibited different cyclonic flow conditions in the device. Aerosolization performance of the four DPI devices was evaluated by using the reference product's capsule and formulation (Spiriva capsule) and a multistage cascade impactor. The in vitro data showed that Mod 2 provided a closer match to the HandiHaler than the Cyclohaler and Mod 1 at 20, 39, and 55 l/min. The in vitro and CFD results together suggest that matching the resistance of test and reference DPI devices is not sufficient to attain comparable aerosolization performance, and the improved in vitro comparability of Mod 2 to the HandiHaler may be related to the greater degree of similarities of the flow rate of air through the pierced capsule (Q(c)) and the maximum impact velocity of representative carrier particles (V(n)) in the Cyclohaler-based device. This investigation illustrates the importance of enhanced product understanding, in this case through the CFD modeling and in vitro characterization of aerosolization performance, to enable identification and modification of key design features of a test DPI device for achieving comparable aerosolization performance to the reference DPI device.

  4. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  5. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  6. Dry powder inhaler formulation of lipid-polymer hybrid nanoparticles via electrostatically-driven nanoparticle assembly onto microscale carrier particles.

    PubMed

    Yang, Yue; Cheow, Wean Sin; Hadinoto, Kunn

    2012-09-15

    Lipid-polymer hybrid nanoparticles have emerged as promising nanoscale carriers of therapeutics as they combine the attractive characteristics of liposomes and polymers. Herein we develop dry powder inhaler (DPI) formulation of hybrid nanoparticles composed of poly(lactic-co-glycolic acid) and soybean lecithin as the polymer and lipid constituents, respectively. The hybrid nanoparticles are transformed into inhalable microscale nanocomposite structures by a novel technique based on electrostatically-driven adsorption of nanoparticles onto polysaccharide carrier particles, which eliminates the drawbacks of conventional techniques based on controlled drying (e.g. nanoparticle-specific formulation, low yield). First, we engineer polysaccharide carrier particles made up of chitosan cross-linked with tripolyphosphate and dextran sulphate to exhibit the desired aerosolization characteristics and physical robustness. Second, we investigate the effects of nanoparticle to carrier mass ratio and salt inclusion on the adsorption efficiency, in terms of the nanoparticle loading and yield, from which the optimal formulation is determined. Desorption of the nanoparticles from the carrier particles in phosphate buffer saline is also examined. Lastly, we characterize aerosolization efficiency of the nanocomposite product in vitro, where the emitted dose and respirable fraction are found to be comparable to the values of conventional DPI formulations.

  7. Comparison of particle sizing techniques in the case of inhalation dry powders.

    PubMed

    Bosquillon, C; Lombry, C; Preat, V; Vanbever, R

    2001-12-01

    The objectives of this work were (i) to validate electrical zone sensing and laser diffraction for the analysis of primary particle size in the case of inhalation dry powders and (ii) to study the influence of the aggregation state of the powder on the sizing techniques. Free-flowing dry powders were prepared by spray-drying with a combination of albumin, lactose, and dipalmitoylphosphatidylcholine. The replacement of lactose by mannitol, the removal of albumin, and the atomization at high relative humidity all increased powder cohesion. Automated measurements were compared with primary particle sizes collected by light and electron microscopy. The mass mode obtained by electrical zone sensing and the mass median diameter measured by laser diffraction following dispersion with compressed air at a pressure of 3 bar or following suspension in water and ultrasonic dispersion at a power of 60 W for 30 s each provided primary particle sizes close to microscopy measurements. However, these conditions only applied in the case of slightly to moderately aggregated powders. For strongly agglomerated powders, an exact measurement of the size was only collected by laser diffraction in the wet state combined with ultrasonic dispersion. Our study underlies how measurement of primary particle size highly depends on both powder material and proper particle dispersion.

  8. Standardization of spray-dried powder of Piper betle hot water extract.

    PubMed

    Arawwawala, Liyanage Dona Ashanthi Menuka; Hewageegana, Horadugoda Gamage Sujatha Pushpakanthi; Arambewela, Lakshmi Sriyani Rajapaksha; Ariyawansa, Hettiarachchige Sami

    2011-04-01

    The leaves of Piper betle Linn. (Family: Piperaceae) possess several bioactivities and are used in the Traditional Medical systems of Sri Lanka. The present investigation was carried out to standardize the spray-dried powder of P. betle by (a) determination of physicochemical parameters, presence or absence of heavy metals, and microbial contamination; (b) screening for phytochemicals; and (c) development of High Pressure Liquid Chromatography (HPLC) fingerprint and densitogram. The percentages of moisture content, total ash, acid insoluble ash, water-soluble ash, and ethanol extractable matter of spray-dried powder of P. betle were 2.2-2.5, 6.8-7.0, 0.003-0.005, 4.1-4.3, and 15.8-16.2, respectively. The concentrations of all the tested heavy metals were below the WHO acceptable limits and bacterial species, such as Escherichia coli, Salmonella spp, Staphylococcus aureus, and Pseudomonas aeroginosa were not present in the P. betle spray-dried powder. Phenolic compounds, tannins, flavonoids steroids, and alkaloids were found to be present in the spray-dried powder of P. betle and HPLC fingerprint and densitogram clearly demonstrated the proportional differences of these chemical constituents. In conclusion, the results obtained from this study can be used to standardize the spray-dried powder of P. betle.

  9. Development of New Formulation Dry Powder for Pulmonary Delivery Using Amino Acids to Improve Stability.

    PubMed

    Suzuki, Yumiko; Okuda, Tomoyuki; Okamoto, Hirokazu

    2016-01-01

    Cationic polymers are being studied as non-viral gene delivery vectors. Poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PAsp(DET)) and their block copolymers with poly(ethylene glycol), PEG-PAsp(DET), have been reported as efficient biodegradable non-viral vectors which form a polyplex with plasmid DNA (pDNA). However, the polyplexes are not stable because PAsp(DET) and PEG-PAsp(DET) are easily subjected to hydrolysis; therefore, they need to be prepared on site. In this study, using the biodegradable polycations as non-viral vectors, PAsp(DET) and PEG-PAsp(DET), we investigated the effects of L-leucine (Leu) on the polyplex. We prepared solutions and dry powders with and without Leu. Both dry powders had large and porous particles and Leu acted as a dispersing agent. The transfection activity of the sample solutions decreased within a month. However, the decrease in the transfection activity was partially suppressed by the dry powder with Leu at 5 and 25°C at 3 months. Furthermore, transfection experiments revealed that Leu exhibited a pDNA-stabilizing effect in the solution and dry powder. Similar results were observed for pDNA integrity, where a polyplex was formed in the dry powder. The results suggest that Leu is a candidate stabilizer to protect pDNA from degradation.

  10. Cubic phase-forming dry powders for controlled drug delivery on mucosal surfaces.

    PubMed

    Moebus, K; Siepmann, J; Bodmeier, R

    2012-01-30

    The purpose of this study was to prepare and physicochemically characterize protein-loaded, glycerol monooleate (GMO)-based dry powder systems, which can be used for the controlled mucosal delivery of macromolecules (e.g., nasal, buccal, pulmonary). Bovine serum albumin (BSA)-loaded powders were prepared by spray-drying, freeze-drying and/or spray-freezing using different types of carrier materials, including mannitol, polyvinyl pyrrolidone (PVP 25) and polyethylene glycols (PEGs). The systems were characterized by optical and polarized light microscopy, X-ray powder diffraction, gel electrophoresis and diffusion studies. The type of carrier material strongly affected the resulting particle size and shape. The presence of GMO effectively slowed down BSA release. Importantly, broad ranges of release patterns could be achieved by varying the type of preparation method and composition of the dry powders. In all cases, the primary structure of the BSA remained intact. GMO, which is a wax solid at room temperature, has been successfully converted into dry powder formulations that offer potential for the controlled mucosal delivery of proteins.

  11. Standardization of spray-dried powder of Piper betle hot water extract

    PubMed Central

    Arawwawala, Liyanage Dona Ashanthi Menuka; Hewageegana, Horadugoda Gamage Sujatha Pushpakanthi; Arambewela, Lakshmi Sriyani Rajapaksha; Ariyawansa, Hettiarachchige Sami

    2011-01-01

    The leaves of Piper betle Linn. (Family: Piperaceae) possess several bioactivities and are used in the Traditional Medical systems of Sri Lanka. The present investigation was carried out to standardize the spray-dried powder of P. betle by (a) determination of physicochemical parameters, presence or absence of heavy metals, and microbial contamination; (b) screening for phytochemicals; and (c) development of High Pressure Liquid Chromatography (HPLC) fingerprint and densitogram. The percentages of moisture content, total ash, acid insoluble ash, water-soluble ash, and ethanol extractable matter of spray-dried powder of P. betle were 2.2-2.5, 6.8-7.0, 0.003-0.005, 4.1-4.3, and 15.8-16.2, respectively. The concentrations of all the tested heavy metals were below the WHO acceptable limits and bacterial species, such as Escherichia coli, Salmonella spp, Staphylococcus aureus, and Pseudomonas aeroginosa were not present in the P. betle spray-dried powder. Phenolic compounds, tannins, flavonoids steroids, and alkaloids were found to be present in the spray-dried powder of P. betle and HPLC fingerprint and densitogram clearly demonstrated the proportional differences of these chemical constituents. In conclusion, the results obtained from this study can be used to standardize the spray-dried powder of P. betle. PMID:21716924

  12. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, U.

    1996-06-04

    A process for the preparation of amorphous precursor powders for Pb-doped Bi{sub 2}Sr{sub 2} Ca{sub 2}Cu{sub 3}O{sub x} (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains. 11 figs.

  13. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, Uthamalingam

    1996-01-01

    A process for the preparation of amorphous precursor powders for Pb-doped Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains.

  14. Instability of bacteriophages in spray-dried trehalose powders is caused by crystallization of the matrix.

    PubMed

    Vandenheuvel, Dieter; Meeus, Joke; Lavigne, Rob; Van den Mooter, Guy

    2014-09-10

    Spray drying is a valuable technique in pharmaceutical dosage formulation, capable of producing amorphous, spherical powders, suitable for pulmonary deposition and further downstream processing. In this study, we show that spray drying bacteriophages together with trehalose results in an amorphous powder matrix with high glass transition temperature (between 116 and 118°C), typical for amorphous trehalose. These powders are stable at low temperatures (4°C) and relative humidity (0%). However, high humidity causes crystallization of the amorphous matrix, destroying the embedded phages. Furthermore, storage at higher temperature (25°C) causes thermal instability of the embedded phages. The results show that storage conditions are important parameters to take into account in phage therapy development. The resulting particles are hollow spheres, with suitable aerodynamic diameters for deposition into the deep lungs. This opens possibilities to use these phage-containing powder formulations to tackle pulmonary infectious diseases, especially caused by antibiotic resistant pathogens.

  15. Dry powder preparation of inulin fructotransferase from Arthrobacter aurescens SK 8.001 fermented liquor.

    PubMed

    Hang, Hua; Li, Yungao; Zhao, Meng; Jiang, Bo; Miao, Ming; Mu, Wanmeng; Zhang, Tao

    2013-06-20

    Difructosan anhydrides III (DFA III) are usually obtained by inulin conversion with inulin fructotransferase (IFTase). IFTase liquor is difficult to store for a long time, which could greatly restrict its application and DFA III production. To meet DFA III scale-up preparation, this work was explored to research dry powder preparation of IFTase from Arthrobacter aurescens SK 8.001 fermented liquor by ultrafiltration concentration, ammonium sulfate precipitation and freeze drying. IFTase powder (10.2g) was obtained from IFTase precipitation (126.4 g) and its specific activity determined was 16.4 U/mg. Dry powder of IFTase could maintain over 120 days at different temperatures. These results showed that it is easy to scale up DFA III preparation for industrial capacity.

  16. Optimization of spray drying process for developing seabuckthorn fruit juice powder using response surface methodology.

    PubMed

    Selvamuthukumaran, Meenakshisundaram; Khanum, Farhath

    2014-12-01

    The response surface methodology was used to optimize the spray drying process for development of seabuckthorn fruit juice powder. The independent variables were different levels of inlet air temperature and maltodextrin concentration. The responses were moisture, solubility, dispersibility, vitamin C and overall color difference value. Statistical analysis revealed that independent variables significantly affected all the responses. The Inlet air temperature showed maximum influence on moisture and vitamin C content, while the maltodextrin concentration showed similar influence on solubility, dispersibility and overall color difference value. Contour plots for each response were used to generate an optimum area by superimposition. The seabuckthorn fruit juice powder was developed using the derived optimum processing conditions to check the validity of the second order polynomial model. The experimental values were found to be in close agreement to the predicted values and were within the acceptable limits indicating the suitability of the model in predicting quality attributes of seabuckthorn fruit juice powder. The recommended optimum spray drying conditions for drying 100 g fruit juice slurry were inlet air temperature and maltodextrin concentration of 162.5 °C and 25 g, respectively. The spray dried juice powder contains higher amounts of antioxidants viz., vitamin C, vitamin E, total carotenoids, total anthocyanins and total phenols when compared to commercial fruit juice powders and they are also found to be free flowing without any physical alterations such as caking, stickiness, collapse and crystallization by exhibiting greater glass transition temperature.

  17. Dry powder process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs

    NASA Technical Reports Server (NTRS)

    Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    1997-01-01

    A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. A material is applied to each side of the towpreg to form a sandwich. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.

  18. A Dry Powder Process for Preparing Uni-Tape Prepreg from Polymer Powder Coated Filamentary Towpregs

    NASA Technical Reports Server (NTRS)

    Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    1995-01-01

    A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.

  19. Bend strengths of reaction bonded silicon nitride prepared from dry attrition milled silicon powder

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Glasgow, T. K.

    1979-01-01

    Dry attrition milled silicon powder was compacted, sintered in helium, and reaction bonded in nitrogen-4 volume percent hydrogen. Bend strengths of bars with as-nitrided surfaces averaged as high as 210 MPa at room temperature and 220 MPa at 1400 C. Bars prepared from the milled powder were stronger than those prepared from as-received powder at both room temperature and at 1400 C. Room temperature strength decreased with increased milling time and 1400 C strength increased with increased milling time.

  20. Toward intradermal vaccination: preparation of powder formulations by collapse freeze-drying.

    PubMed

    Etzl, Elsa E; Winter, Gerhard; Engert, Julia

    2014-03-01

    Intradermal powder immunization is an emerging technique in vaccine delivery. The purpose of this study was to generate powder particles for intradermal injection by freeze-drying and subsequent cryo-milling. Two different freeze-drying protocols were compared, a moderate freeze-drying cycle and an aggressive freeze-drying cycle, which induced a controlled collapse of the sugar matrix. Ovalbumin served as model antigen. The influence of collapse drying and cryo-milling on particle morphology and protein stability was investigated. Cryo-milling generated irregularly shaped particles of size 20-70 µm. The recovery of soluble monomer of ovalbumin was not changed during freeze-drying and after cryo-milling, or after 12 months of storage at 2-8 °C. A slight increase in higher molecular weight aggregates was found in formulations containing the polymer dextran after 12 months of storage at 50 °C. Light obscuration measurements showed an increase in cumulative particle counts after cryo-milling that did not further increase during storage at 2-8 °C for 12 months. The applicability of the cryo-milling process to other therapeutic proteins was shown using recombinant human granulocyte-colony stimulating factor. Collapse freeze-drying and subsequent cryo-milling allows the generation of particles suitable for intradermal powder injection.

  1. A novel aerosol generator for homogenous distribution of powder over the lungs after pulmonary administration to small laboratory animals.

    PubMed

    Tonnis, Wouter F; Bagerman, Marieke; Weij, Michel; Sjollema, Jelmer; Frijlink, Henderik W; Hinrichs, Wouter L J; de Boer, Anne H

    2014-11-01

    To evaluate powder formulations for pulmonary administration in pre-clinic research, the powder should be administered to the lungs of small laboratory animals. To do so properly, a device is needed that generates particles small enough to reach deep into the lungs. In this study a newly developed aerosol generator was tested for pulmonary administration of powder to the lungs of mice and its performance was compared to the only currently available device, the Penn-Century insufflator. Results showed that both devices generated powder particles of approximately the same size distribution, but the fine particle fraction needed for deep lung administration was strongly improved when the aerosol generator was used.Imaging studies in mice showed that powder particles from the aerosol generator deposited into the deep lung, where powder from the Penn-Century insufflator did not reach further than the conducting airways.Furthermore, powder administered by using the aerosol generator was more homogenously distributed over the five individual lungs lobes than powder administrated by using the Penn-Century insufflator.

  2. Development of a rapid screening protocol for selection of strains resistant to spray drying and storage in dry powder.

    PubMed

    Reimann, S; Grattepanche, F; Baggenstos, C; Rezzonico, E; Berger, B; Arigoni, F; Lacroix, C

    2010-06-01

    An efficient screening method for selection of Bifidobacterium longum strains resistant to spray drying and storage was developed based on randomly amplified polymorphic DNA (RAPD) for identification of the best survivors in mixed strains bacterial preparations. Three different primers were used to generate RAPD profiles of 22 B. longum strains. All strains were distinguished according to their RAPD profiles except for the strain NCC2705 and its H(2)O(2) resistant derivative variant. The 22 strains were grouped in 3 batches of 7, 7 and 8 strains and subjected to spray drying and storage at 30 and 37 °C under anaerobic conditions. Batch survival rates after spray drying reached 17.1±4.4%. Strains showing the highest prevalence and/or resistance to storage at 37 °C were selected from individual batches for subsequent spray drying and storage testing. After 67 days of storage, NCC572 was identified as the dominant strain in powder. The stability of strain NCC572 was confirmed by performing single spray drying and storage tests. Out of 22 B. longum strains, a robust strain was identified by combining RAPD with a simultaneous screening test for survival under spray drying and storage. The method allowed a fast screening of B. longum strains in mixture for resistance to spray drying and storage compared to traditional screening procedures carried out with individual strains, in the same conditions. This approach could be applied to other stress conditions.

  3. Non-steroidal anti-inflammatory drug for pulmonary administration: design and investigation of ketoprofen lysinate fine dry powders.

    PubMed

    Stigliani, Mariateresa; Aquino, Rita P; Del Gaudio, Pasquale; Mencherini, Teresa; Sansone, Francesca; Russo, Paola

    2013-05-01

    Pulmonary inflammation is an important therapeutic target in cystic fibrosis (CF) patients, aiming to limit and delay the lung damage. The purpose of the present research was to produce respirable engineered particles of ketoprofen lysinate, a non-steroidal anti-inflammatory drug able to fight lung inflammatory status by direct administration to the site of action. Micronized drug powders containing leucine as dispersibility enhancer were prepared by co-spray drying the active compound and the excipient from water or hydro-alcoholic feeds. Microparticles were fully characterized in terms of process yield, particle size distribution, morphology and drug content. The ability of the drug to reach the deepest airways after aerosolization of spray-dried formulations was evaluated by Andersen cascade impactor, using the monodose DPI as device. In order to investigate the behaviour of the drug once in contact with lung fluid, an artificial CF mucus was prepared. Drug permeation properties were evaluated interposing the mucus layer between the drug and a synthetic membrane mounted in Franz-type diffusion cells. Finally, the effect of the engineered particles on vitality of human airway epithelial cells of patients homozygous for ΔF 508 CF (CuFi1) was studied and compared to that of raw active compound. Results indicated that powders engineering changed the diameter and shape of the particles, making them suitable for inhalation. The mucus layer in the donor compartment of vertical diffusion cells slowed down drug dissolution and permeation, leucine having no influence. Cell proliferation studies evidenced that the spray drying process together with the addition of leucine reduced the cytotoxic effect of ketoprofen lysine salt as raw material, making the ketoprofen lysinate DPI a very promising product for the inflammation control in CF patients.

  4. A novel electrostatic dry powder coating process for pharmaceutical dosage forms: immediate release coatings for tablets.

    PubMed

    Qiao, Mingxi; Zhang, Liqiang; Ma, Yingliang; Zhu, Jesse; Chow, Kwok

    2010-10-01

    An electrostatic dry powder coating process for pharmaceutical solid dosage forms was developed for the first time by electrostatic dry powder coating in a pan coater system. Two immediate release coating compositions with Opadry® AMB and Eudragit® EPO were successfully applied using this process. A liquid plasticizer was sprayed onto the surface of the tablet cores to increase the conductivity of tablet cores to enhance particle deposition, electrical resistivity reduced from greater than 1×10(13)Ωm to less than 1×10(9)Ωm, and to lower the glass transition temperature (T(g)) of the coating polymer for film forming in the pan coater. The application of liquid plasticizer was followed by spraying charged coating particles using an electrostatic charging gun to enhance the uniform deposition on tablet surface. The coating particles were coalesced into a thin film by curing at an acceptable processing temperature as formation was confirmed by SEM micrographs. The results also show that the optimized dry powder coating process produces tablets with smooth surface, good coating uniformity and release profile that are comparable to that of the tablet cores. The data also suggest that this novel electrostatic dry powder coating technique is an alternative to aqueous- or solvent-based coating process for pharmaceutical products.

  5. Adenosine dry powder inhalation for bronchial challenge testing, part 2: proof of concept in asthmatic subjects.

    PubMed

    Lexmond, Anne J; van der Wiel, Erica; Hagedoorn, Paul; Bult, Wouter; Frijlink, Henderik W; ten Hacken, Nick H T; de Boer, Anne H

    2014-09-01

    Adenosine is an indirect stimulus to assess bronchial hyperresponsiveness (BHR(2)) in asthma. Bronchial challenge tests are usually performed with nebulised solutions of adenosine 5'-monophosphate (AMP(3)). The nebulised AMP test has several disadvantages, like long administration times and a restrictive maximum concentration that does not result in BHR in all patients. In this study, we investigated the applicability of dry powder adenosine for assessment of BHR in comparison to nebulised AMP. Dry powder adenosine was prepared in doubling doses (0.01-80 mg) derived from the nebulised AMP test with addition of two higher doses. Five asthmatic subjects performed two bronchial challenge tests, one with nebulised AMP following the 2-min tidal breathing method; the second with dry powder adenosine administered with an investigational inhaler and single slow inhalations (inspiratory flow rate 30-40 L/min). All subjects reached a 20% fall in FEV₁(4) with the new adenosine test (PD20(5)) compared to four subjects with the AMP test (PC₂₀(6)). Dry powder adenosine was well tolerated by all subjects and better appreciated than nebulised AMP. In conclusion, this new bronchial challenge test appears to be a safe and convenient alternative to the nebulised AMP test to assess BHR in asthmatic subjects.

  6. Systematic review of the dry powder inhalers colistimethate sodium and tobramycin in cystic fibrosis.

    PubMed

    Uttley, Lesley; Harnan, Sue; Cantrell, Anna; Taylor, Chris; Walshaw, Martin; Brownlee, Keith; Tappenden, Paul

    2013-12-01

    This systematic review evaluated evidence for two dry powder formulations, colistimethate sodium and tobramycin, for the treatment of chronic Pseudomonas aeruginosa in cystic fibrosis, as part of the UK national recommendation process for new technologies. Electronic bibliographic databases were searched in May 2012 (MEDLINE, MEDLINE in-Process, EMBASE, Cochrane Library databases, CINAHL, Web of Science, Conference Proceedings Citation Index and BIOSIS Previews). Relevant outcomes included rate and extent of microbial response (e.g. sputum density of P. aeruginosa), lung function (e.g. forced expiratory volume in 1 s (FEV1)), frequency, severity of acute exacerbations and adverse events. Three trials were included, and both dry powder formulations were reported to be non-inferior in the short term to nebulised tobramycin for FEV1. However, long-term follow-up data were missing and the effect on exacerbation rates was not always reported. Whilst short-term results showed that both dry powder drugs were non-inferior to nebulised tobramycin, there was no long-term follow-up and no phase 3 trials compared nebulised and dry powder colistimethate sodium. The use of FEV1 as the primary end-point may not accurately represent changes in lung health. This review illustrates the difficulty in assessing new technologies where the evidence base is poor.

  7. Optimised process and formulation conditions for extended release dry polymer powder-coated pellets.

    PubMed

    Terebesi, Ildikó; Bodmeier, Roland

    2010-05-01

    The objective of this study was to improve the film formation and permeability characteristics of extended release ethylcellulose coatings prepared by dry polymer powder coating for the release of drugs of varying solubility. Ethylcellulose (7 and 10 cp viscosity grades) and Eudragit(R) RS were used for dry powder coating of pellets in a fluidised bed ball coater. Pre-plasticised ethylcellulose powder was prepared by spray-drying aqueous ethylcellulose dispersions (Surelease(R) and Aquacoat(R)) or by hot melt extrusion/cryogenic grinding of plasticised ethylcellulose. Chlorpheniramine maleate and theophylline were used as model drugs of different solubilities. The film formation process, polymeric films and coated pellets were characterised by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM) and dissolution testing. Film formation and extended drug release was achieved with ethylcellulose, a polymer with a high glass transition temperature (T(g)) without the use of water, which is usually required in dry powder coating. DMA-measurements revealed that plasticised ethylcellulose had a modulus of elasticity (E') similar to the low T(g) Eudragit(R) RS. With increasing plasticiser concentration, the T(g) of ethylcellulose was reduced and the mechanical properties improved, thus facilitating coalescence of the polymer particles. SEM-pictures revealed the formation of a dense, homogeneous film. The lower viscosity grade ethylcellulose (7 cp) resulted in better film formation than the higher viscosity grade (10 cp) and required less stringent curing conditions. Successful extended release ethylcellulose coatings were also obtained by coating with pre-plasticised spray-dried ethylcellulose powders as an alternative to the separate application of pure ethylcellulose powder and plasticiser. The permeability of the extended release coating could be controlled by using powder blends of ethylcellulose with the

  8. Particle aerosolisation and break-up in dry powder inhalers: evaluation and modelling of impaction effects for agglomerated systems.

    PubMed

    Wong, William; Fletcher, David F; Traini, Daniela; Chan, Hak-kim; Crapper, John; Young, Paul M

    2011-07-01

    This study utilised a combination of computational fluid dynamics (CFD) and standardised entrainment tubes to investigate the influence of impaction on the break-up and aerosol performance of a model inhalation formulation. A series of entrainment tubes, with different impaction plate angles were designed in silico and the flow characteristics, and particle tracks, were simulated using CFD. The apparatuses were constructed using three-dimensional printing. The deposition and aerosol performance of a model agglomerate system (496.3-789.2 μm agglomerates containing 3.91 μm median diameter mannitol particles) were evaluated by chemical analysis and laser diffraction, respectively. Analysis of the mannitol recovery from the assembly and CFD simulations indicated that mass deposition on the plate was dependent on the impactor angle (45°-90°) but independent of the airflow rate (60-140 L·min(-1)). In comparison, wall losses, perpendicular to the impactor plate were dependent on both the impactor angle and flow rate. Analysis of the particle size distribution exiting the impactor assembly suggested mannitol aerosolisation to be independent of impactor angle but dependent on the air velocity directly above the impactor plate. It is proposed that particle-wall impaction results in initial agglomerate fragmentation followed by reentrainment in the airstream above the impaction plate. Such observations have significant implications in the design of dry powder inhaler devices.

  9. Promising ternary dry powder inhaler formulations of cromolyn sodium: formulation and in vitro-in vivo evaluation.

    PubMed

    Elbary, Ahmed Abd; El-laithy, Hanan M; Tadros, Mina I

    2007-06-01

    Glucose monohydrate and sorbitol were evaluated as alternative carriers to á-lactose monohydrate in dry powder inhalations. Cromolyn sodium (CS) - carrier binary formulae were prepared and tested in vitro by aerosolization via a twin stage impinger using three types of inhaler devices; Spinhaler, Aerolizer and Handihaler. Glucose monohydrate and sorbitol-containing formulae that were inhaled via a Handihaler showed significantly higher drug fine particle fractions (P<0.001) than that of the same formulae aerosolized via other devices. Upon storage of the prepared formulae under uncontrolled humidity, that may be encountered during storage and use, marked reductions in these fractions were observed. Incorporation of an optimum Aerosil 200 concentration, as a ternary component, minimized this effect. A urinary excretion pharmacokinetic method was used to evaluate the bioavailability of the selected ternary formulae, inhaled via a Handihaler, relative to the marketed Intal Spincaps, inhaled via a Spinhaler. It was found that the relative bioavailability percentages of the developed formulae were more than twice that of the marketed one suggesting possible future utilization of these more effective ternrry formulae using the more efficient Handihaler inhaler device.

  10. Spray Dried Sodium Zirconate: A Rapid Absorption Powder for CO2 Capture with Superior Cyclic Stability.

    PubMed

    Bamiduro, Faith; Ji, Guozhao; Brown, Andy P; Valerie A Dupont, Valerie A; Zhao, Ming; Milne, Steve J

    2017-04-03

    Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption enhanced steam reforming. This paper examines the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powder. Hollow spray-dried micro-granules with a wall thickness of 100-300 nm corresponding to the dimensions of the primary acetate derived particles gave ~75 wt % theoretical CO2 conversion after a process-relevant 5 min exposure to 15 vol % CO2. A conventional powder prepared by solid state reaction carbonated more slowly, only achieving 50 % conversion due to a greater proportion of the reaction requiring bulk diffusion through the densely agglomerated particles. The hollow granular structure of the spray dried powder was retained post-carbonation but chemical segregation resulted in islands of an amorphous Na-rich phase (Na2CO3) within a crystalline ZrO2 particle matrix. Despite this phase separation, the reverse reaction to re-form Na2ZrO3 could be achieved by heating each powder to 900 °C in N2 (no dwell time). This resulted in a very stable multicycle performance in 40 cycle tests using TGA for both powders. Kinetic analysis of TGA data showed the carbonation process fits an Avrami-Erofeyev 2-D nucleation and nuclei growth model, consistent with microstructural evidence of a surface driven transformation. Thus, we demonstrate that spray-drying is a viable processing route to enhance the carbon capture performance of Na2ZrO3 powder.

  11. [Obtainment of pineapple juice powder by foam-mat drying].

    PubMed

    Beristain, C I; Cortés, R; Casillas, M A; Díaz, R

    1991-06-01

    The foam-mat production and stability using pineapple juice concentrate (25, 30 and 40 degrees Brix), adding a surfactants mixture and maltodextrin (DE 10) as co-adjuvant, stirred in a commercial mixer, was studied. Adequate foam formation conditions were as follows: concentrate of 25 degrees Brix using surface active agents (Sorbac 60-Polisorbac 80) 0.285% surface active agent/total solids, HLB = 6, and stirring time, 7 min. The foam was dehydrated in an oven dried with a horizontal air flow circulation set at 60, 70 and 80 degrees C using 3, 5 and 10 mm bed depths. The best conditions were obtained at 60 degrees C and 5 mm bed depth. The product had a particle size of sieve 40-80, and a moisture content of 3%. It was then packaged in multilayer plastic film and stored at environmental conditions. No brown color formation or mold growth was detected during storage. Pineapple juice and a refreshing drink were prepared. The general acceptability in a community indicated that 95% of the population involved accepted the product.

  12. Effects of spray-drying conditions on the chemical, physical, and sensory properties of cheese powder.

    PubMed

    Koca, Nurcan; Erbay, Zafer; Kaymak-Ertekin, Figen

    2015-05-01

    Dairy powders are produced to increase the shelf life of fresh dairy products and for use as flavoring agents. In this study, 24 cheese powders produced under 7 different conditions were used to investigate the effects of spray-drying parameters (e.g., inlet air temperature, atomization pressure, and outlet air temperature) on the quality of white cheese powder. Composition, color, physical properties, reconstitution, and sensory characteristics of white cheese powders were determined. The results revealed that the white cheese powders produced in this study had low moisture content ratios and water activity values. High outlet air temperatures caused browning and enhanced Maillard reactions. Additionally, high outlet air temperatures increased wettability and dispersibility and decreased the solubility of white cheese powders. Free fat content was positively correlated with inlet air temperature and negatively correlated with outlet air temperature and atomization pressure. Sensory analyses revealed that white cheese powder samples had acceptable sensory characteristics with the exception of the sample produced at an outlet air temperature of 100°C, which had high scores for scorched flavor and color and low scores for cheese flavor.

  13. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Yinon; Adler, Gabriela; Koop, Thomas; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven; Haspel, Carynelisa

    2014-05-01

    In cold high altitude cirrus clouds and anvils of high convective clouds in the tropics and mid-latitudes, ice partciles that are exposed to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. In this talk we will describe experiements that simulate the atmospheric freeze-drying cycle of aerosols. We find that aerosols with high organic content can form highly porous particles (HPA) with a larger diameter and a lower density than the initial homogenous aerosol following ice subliation. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure follwoing ice sublimation. We find that the highly porous aerosol scatter solar light less efficiently than non-porous aerosol particles. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  14. Kilogram-scale production of SnO(2) yolk-shell powders by a spray-drying process using dextrin as carbon source and drying additive.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2014-05-05

    A simple and general method for the large-scale production of yolk-shell powders with various compositions by a spray-drying process is reported. Metal salt/dextrin composite powders with a spherical and dense structure were obtained by spray drying and transformed into yolk-shell powders by simple combustion in air. Dextrin plays a key role in the preparation of precursor powders for fabricating yolk-shell powders by spray drying. Droplets containing metal salts and dextrin show good drying characteristics even in a severe environment of high humidity. Sucrose, glucose, and polyvinylpyrrolidone are widely used as carbon sources in the preparation of metal oxide/carbon composite powders; however, they are not appropriate for large-scale spray-drying processes because of their caramelization properties and adherence to the surface of the spray dryer. SnO2 yolk-shell powders were studied as the first target material in the spray-drying process. Combustion of tin oxalate/dextrin composite powders at 600 °C in air produced single-shelled SnO2 yolk-shell powders with the configuration SnO2 @void@SnO2 . The SnO2 yolk-shell powders prepared by the simple spray-drying process showed superior electrochemical properties, even at high current densities. The discharge capacities of the SnO2 yolk-shell powders at a current density of 2000 mA g(-1) were 645 and 570 mA h g(-1) for the second and 100th cycles, respectively; the corresponding capacity retention measured for the second cycle was 88 %.

  15. Subchronic Oral Dose Toxicity of Freeze-dried Powder of Allomyrina dichotoma Larvae

    PubMed Central

    Noh, Jung-Ho; Yun, Eun-Young; Park, Heejin; Jung, Kyung-Jin; Hwang, Jae Sam; Jeong, Eun Ju; Moon, Kyoung-Sik

    2015-01-01

    The objective of this study was to investigate the toxicological information of freeze-dried powder from Allomyrina dichotoma (A. dichotoma) larvae as a food ingredient. The powder, suspended in distilled water, was administered once daily by oral gavage to four groups of Sprague-Dawley (SD) rats at dose levels of 0 (vehicle control), 250, 850, and 2500 mg/kg/day. After 13 wks of repeated administration, the standard toxicological parameters such as mortality, clinical signs, body weight, food consumption, ophthalmologic examination, clinical pathology, organ weights and macro/microscopic examination were applied for assessment of general toxicity. In addition, serum IgE and histamine levels were determined to evaluate allergenicity. The freeze-dried powder from A. dichotoma larvae did not produce treatmentrelated changes or findings in any toxicological parameters in either sex of any dosed groups except for slight increases in serum histamine levels at 2500 mg/kg/day. The changes were considered not to be adverse since the magnitude was minimal. In conclusion, the NOAEL (No Observed Adverse Effect Level) of the freeze-dried powder from A. dichotoma larvae was determined to be 2500 mg/kg/day or more in both sexes of SD rats and it is considered a candidate to be edible material. PMID:25874035

  16. Subchronic Oral Dose Toxicity of Freeze-dried Powder of Allomyrina dichotoma Larvae.

    PubMed

    Noh, Jung-Ho; Yun, Eun-Young; Park, Heejin; Jung, Kyung-Jin; Hwang, Jae Sam; Jeong, Eun Ju; Moon, Kyoung-Sik

    2015-03-01

    The objective of this study was to investigate the toxicological information of freeze-dried powder from Allomyrina dichotoma (A. dichotoma) larvae as a food ingredient. The powder, suspended in distilled water, was administered once daily by oral gavage to four groups of Sprague-Dawley (SD) rats at dose levels of 0 (vehicle control), 250, 850, and 2500 mg/kg/day. After 13 wks of repeated administration, the standard toxicological parameters such as mortality, clinical signs, body weight, food consumption, ophthalmologic examination, clinical pathology, organ weights and macro/microscopic examination were applied for assessment of general toxicity. In addition, serum IgE and histamine levels were determined to evaluate allergenicity. The freeze-dried powder from A. dichotoma larvae did not produce treatmentrelated changes or findings in any toxicological parameters in either sex of any dosed groups except for slight increases in serum histamine levels at 2500 mg/kg/day. The changes were considered not to be adverse since the magnitude was minimal. In conclusion, the NOAEL (No Observed Adverse Effect Level) of the freeze-dried powder from A. dichotoma larvae was determined to be 2500 mg/kg/day or more in both sexes of SD rats and it is considered a candidate to be edible material.

  17. Material accountancy measurement techniques in dry-powdered processing of nuclear spent fuels.

    SciTech Connect

    Wolf, S. F.

    1999-03-24

    The paper addresses the development of inductively coupled plasma-mass spectrometry (ICPMS), thermal ionization-mass spectrometry (TIMS), alpha-spectrometry, and gamma spectrometry techniques for in-line analysis of highly irradiated (18 to 64 GWD/T) PWR spent fuels in a dry-powdered processing cycle. The dry-powdered technique for direct elemental and isotopic accountancy assay measurements was implemented without the need for separation of the plutonium, uranium and fission product elements in the bulk powdered process. The analyses allow the determination of fuel burn-up based on the isotopic composition of neodymium and/or cesium. An objective of the program is to develop the ICPMS method for direct fissile nuclear materials accountancy in the dry-powdered processing of spent fuel. The ICPMS measurement system may be applied to the KAERI DUPIC (direct use of spent PWR fuel in CANDU reactors) experiment, and in a near-real-time mode for international safeguards verification and non-proliferation policy concerns.

  18. The physical state of nafcillin sodium in frozen aqueous solutions and freeze-dried powders.

    PubMed

    Milton, N; Nail, S L

    1996-10-01

    The purpose of this study was to develop a better understanding of the physical chemistry of freeze drying of lyotropic liquid crystals using nafcillin sodium as a model solute. Solutions and freeze-dried powders of nafcillin sodium were studied by polarized light microscopy, differential scanning calorimetry, x-ray powder diffraction, and water vapor adsorption. Differential scanning calorimetry thermograms of nafcillin sodium solutions contain a melting endotherm at approximately -5.5 degrees C and, depending on the concentration and heating rate, a crystallization exotherm immediately after this endotherm followed by the melting endotherm of ice. When the sample is annealed at -4 degrees C, both the endotherm and exotherm are eliminated, and a new endotherm appears at approximately -1 degree C on the shoulder of the ice-melting endotherm. The data are interpreted as melting of a liquid crystalline phase, followed by crystallization. X-ray powder diffractograms of unannealed freeze-dried nafcillin sodium are consistent with a lamellar liquid crystal. Diffractograms of annealed freeze-dried nafcillin sodium indicate crystalline material which is a different crystal form than the monohydrate starting material. Moisture adsorption isotherms of the freeze-dried annealed (crystalline) and unannealed (liquid crystalline) nafcillin sodium show different affinities for moisture compared to the crystalline starting material. Solid-state stability data demonstrate that the freeze-dried liquid crystalline form of nafcillin sodium is much less stable than the freeze-dried crystal-line material. The literature recognizes two types of solute behavior on freezing, where the solute either crystallizes from the freeze concentrate or remains amorphous. Lyotropic liquid crystal formation during freezing represents a separate category of freezing behavior, the physical chemistry of which is worthy of further investigation.

  19. Culture and spray-drying of Tsukamurella paurometabola C-924: stability of formulated powders.

    PubMed

    Hernández, Armando; Weekers, Fréderic; Mena, Jesús; Pimentel, Eulogio; Zamora, Jesús; Borroto, Carlos; Thonart, Philippe

    2007-11-01

    The nematocidal agent, Tsukamurella paurometabola C-924, was cultured in a 300 l bioreactor. Spray-dried formulations of this microorganism were prepared using sucrose. At an outlet temperature 62 degrees C, survival rates between 12 and 85% were reached with sucrose up to 10% (w/w). The stability study of the powders showed that the best storage condition was at 4 degrees C under vacuum. A new method for the calculation of cell death order for bacteria stored at low temperatures was developed. Powders stored under vacuum showed an Arrhenius behavior in relation to cell death kinetics.

  20. Chargeability measurements of selected pharmaceutical dry powders to assess their electrostatic charge control capabilities.

    PubMed

    Ramirez-Dorronsoro, Juan-Carlos; Jacko, Robert B; Kildsig, Dane O

    2006-01-01

    The purpose of this study was to develop an instrument (the Purdue instrument) and the corresponding methodologies to measure the electrostatic charge development (chargeability) of dry powders when they are in dynamic contact with stainless steel surfaces. The system used an inductive noncontact sensor located inside an aluminum Faraday cage and was optimized to measure the charging capabilities of a fixed volume of powder (0.5 cc). The chargeability of 5,5-diphenyl-hydantoin, calcium sulfate dihydrate, cimetidine, 3 grades of colloidal silicon dioxide, magnesium stearate, 4 grades of microcrystalline cellulose, salicylic acid, sodium carbonate, sodium salicylate, spray-dried lactose, and sulfinpyrazone were tested at 4 linear velocities, and the particle size distribution effect was assessed for 3 different grades of colloidal silicon dioxide and 4 different grades of microcrystalline cellulose. The chargeability values exhibited a linear relationship for the range of velocities studied, with colloidal silicon dioxide exhibiting the maximum negative chargeability and with spray-dried lactose being the only compound to exhibit positive chargeability. The instrument sensitivity was improved by a factor of 2 over the first generation version, and the electrostatic charge measurements were reproducible with relative standard deviations ranging from nondetectable to 33.7% (minimum of 3 replicates). These results demonstrate the feasibility of using the Purdue instrument to measure the electrostatic charge control capabilities of pharmaceutical dry powders with a reasonable level of precision.

  1. Combustion characteristics of dry coal-powder-fueled adiabatic diesel engine: Final report

    SciTech Connect

    Kakwani, R.M.; Kamo, R.

    1989-01-01

    This report describes the progress and findings of a research program aimed at investigating the combustion characteristics of dry coal powder fueled diesel engine. During this program, significant achievements were made in overcoming many problems facing the coal-powder-fueled engine. The Thermal Ignition Combustion System (TICS) concept was used to enhance the combustion of coal powder fuel. The major coal-fueled engine test results and accomplishments are as follows: design, fabrication and engine testing of improved coal feed system for fumigation of coal powder to the intake air; design, fabrication and engine testing of the TICS chamber made from a superalloy material (Hastelloy X); design, fabrication and engine testing of wear resistant chrome oxide ceramic coated piston rings and cylinder liner; lubrication system was improved to separate coal particles from the contaminated lubricating oil; control of the ignition timing of fumigated coal powder by utilizing exhaust gas recirculation (EGR) and variable TICS chamber temperature; coal-fueled engine testing was conducted in two configurations: dual fuel (with diesel pilot) and 100% coal-fueled engine without diesel pilot or heated intake air; cold starting of the 100% coal-powder-fueled engine with a glow plug; and coal-fueled-engine was operated from 800 to 1800 rpm speed and idle to full load engine conditions.

  2. Fourier transform infared spectroscopy investigation of protein conformation in spray-dried protein/trehalose powders.

    PubMed

    French, Donna L; Arakawa, Tsutomu; Li, Tiansheng

    2004-03-01

    Spray drying is a way to generate protein solids (powders), which is also true for lyophilization. Sugars are used to protect proteins from conformational changes and chemical degradations arising from drying processes and storage conditions such as the humidity. The influence of trehalose and humidity on the conformation and hydration of spray-dried recombinant human granolucyte colony stimulating factor (rhG-CSF) and recombinant consensus interferon-alpha (rConIFN) was investigated using Fourier transform IR spectroscopy. The spectral analysis of spray-dried powders in the amide I region demonstrated that trehalose stabilized the alpha-helical conformation of both rhG-CSF and rConIFN proteins. Exposure of the pure protein powders to 33% relative humidity (RH) resulted in the formation of beta sheets and loss of turns but no change in alpha-helical structure. Trehalose reduced the magnitude of the changes in beta sheets and turns. Exposure of the pure protein powders to 75% RH resulted in the loss of alpha-helical conformation with a corresponding increase in beta structures (beta sheets and turns). Trehalose did not protect proteins from the loss of alpha-helical structures, but it reduced the formation of antiparallel beta sheets. Hydrogen-deuterium exchange (H-D exchange) was used to further characterize these hydration-induced conformational changes. At 33% RH the percent exchange of the protein decreased with increasing trehalose content, indicating a greater protection of the protein from H-D exchange by a higher concentration of trehalose. Such protection correlates with decreased conformational changes of the protein by trehalose at this humidity. At 75% RH the degree of H-D exchange of the protein was insensitive to the powder composition in all powders. Surprisingly, the H-D exchange of trehalose was low at about 20-25%, which was nearly independent of the protein/trehalose ratio and humidity, indicating that the exchangeable protons on trehalose

  3. Influence of granule characteristics on microstructure quality of compacts made from spray-dried powders

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Sreeram

    Powder compaction is a widely used technique for the manufacture of high volume of ceramic components that have simple shapes and sizes. However, this technique is inherently prone to strength-limiting defects like large intergranular pores and remnants of the initial granule structure. These defects are a major obstacle that hinder the use of powder compaction to fabricate parts for applications where strength is an important criterion. The objective of this work is to understand the important factors that control the elimination of strength-limiting defects in compacts made from spray dried powders. The influence of granule density, internal lubricants, particle shape and external application of a plasticizer to already spray dried powders on compaction behavior was investigated. Emphasis was placed on role of these factors in the elimination of large intergranular pores and persistent granule interfaces. The powders were spray dried under varying conditions to tailor the granule characteristics, including granule density, granule size distribution, binder content and lubricant content. These powders were compacted at different pressures, and the microstructures of green and sintered compacts were then evaluated, and strength-limiting features were quantified. Comparisons were made on the basis of compaction curves, green strength, green density and microstructure quality at different pressures. Lowering the granule density reduced the number of granule relics and large intergranular pores. The presence of an internal lubricant improved particle packing and yielded compacts with higher green density and fewer large intergranular pores at comparable pressures. Spray dried powders with the externally applied plasticizer deformed at lower compaction pressures. This allowed easier knitting of particles across granule interfaces and elimination of large intergranular pores and persistent granule interfaces. Spherical (equiaxed) particles rearranged better at granule

  4. Impact of atmospheric aerosol from biomass burning on Amazon dry-season drought

    NASA Astrophysics Data System (ADS)

    Bevan, Suzanne L.; North, Peter R. J.; Grey, William M. F.; Los, Sietse O.; Plummer, Stephen E.

    2009-05-01

    It is becoming increasingly apparent that the future of the Amazon rainforest is under threat from both climate change and agricultural practices such as deforestation and biomass burning. Atmospheric aerosols are likely to play an important role in the interaction between deforestation, fire and drought, but until now, observations of aerosol optical depth (AOD) in this region have been limited to time series of less than 7 years for satellite retrievals, or to single-site measurements. Here we use a 13-year time series of Along Track Scanning Radiometer derived AOD measurements to examine the role of aerosols in biosphere-climate interactions over the Amazon. The seasonal cycle of AOD shows peaks in March and September. The September peak is caused by local dry-season biomass burning. The March peak has not been identified previously but is coincident with more remote fires located in northern South America. A decreasing trend in dry-season AOD between 1995 and 2000 and a subsequent increase from 2000 to 2004 can be explained by deforestation practices driven by economic forces, whereas even higher AOD levels in 2005 were probably caused more by the exceptional drought of that year. Throughout the time series, dry-season AODs are inversely correlated with dry-season precipitation, suggesting a positive feedback between aerosols and drought that may contribute to enhanced drought under climate change.

  5. Burstable nanostructured micro-raspberries: Towards redispersible nanoparticles from dry powders.

    PubMed

    Stauch, Claudia; Ballweg, Thomas; Stracke, Werner; Luxenhofer, Robert; Mandel, Karl

    2017-03-15

    Despite immense progress in nanoscience and technology, one of the yet unsolved challenges is the redispersion of nanoparticles from dry powders back to the individual, primary particles. Herein, an easy to handle powder consisting of nanostructured micron sized raspberry-like particles is presented. These nanostructured micro-raspberries are composed of individual nanoparticles which are equipped with molecules that introduce a separating effect or "spring" functionality. Thereby, a powder system is obtained that allows for an easy and complete redispersibility of the agglomerates down to the level of individual nanoparticles in solvents and polymers. The mechanism of redispersibility involves mechanic stimuli/force as well as solvent like disintegration aspects ("like dissolves like" effect). Furthermore, by tailoring the degree of spacer-equipped particles, the bursting behavior can also be tuned, yielding different redispersion degrees. The redispersibility of the nanostructured micro-raspberries is demonstrated in solvents and silicone-based nanocomposites.

  6. Infrared Extinction Coefficients of Aerosolized Conductive Flake Powders and Flake Suspensions having a Zero-Truncated Poisson Size Distribution

    DTIC Science & Technology

    2012-11-01

    A twin-fluid atomizing nozzle was used to disseminate all materials into a stirred 190 m 3 cylindrical aerosol chamber. After dispersion by the... nozzle and thorough chamber mixing with a low speed fan, spectral aerosol transmittance and concentration were simultaneously measured to obtain spectral...varying concentrations were prepared by stirring and sonicating the powders in ethanol. A twin-fluid atomizing nozzle , consisting of a jet of the

  7. Development of an Inhaled Sustained Release Dry Powder Formulation of Salbutamol Sulphate, an Antiasthmatic Drug.

    PubMed

    Kumaresan, C; Sathishkumar, K

    2016-01-01

    The present research was aimed to develop and characterize a sustained release dry powder inhalable formulation of salbutamol sulphate. The salbutamol sulphate microparticles were prepared by solvent evaporation method using biodegradable polymer poly (D,L-lactic-co-glycolic acid) to produce salbutamol sulphate microparticle mixed with carrier respirable grade lactose for oral inhalation of dry powder. The drug content were estimated to produce 1 mg sustained release salbutamol sulphate per dose. Total four formulations K1, K2, K3 and K4 were prepared with 1:1, 1:2, 1:3, 1:4 ratio of salbutamol sulphate:poly (D,L-lactic-co-glycolic acid). The developed formulations were studied for physicochemical properties, in vitro drug relase and Anderson cascade impaction studies. The prepared formulations effectively releases drug for 12 h in diffusion bag studies. Based on dissolution performance the 1:1 ratio of salbutamol sulphate:poly (D,L-lactic-co-glycolic acid) produces in vitro release 92.57% at 12 h and having particle size of microparticles (D0.5μm) 5.02±0.6 and the pulmonary deposition of dry powder 34.5±3.21 (respiratory fraction in percentage).

  8. Development of an Inhaled Sustained Release Dry Powder Formulation of Salbutamol Sulphate, an Antiasthmatic Drug

    PubMed Central

    Kumaresan, C.; Sathishkumar, K.

    2016-01-01

    The present research was aimed to develop and characterize a sustained release dry powder inhalable formulation of salbutamol sulphate. The salbutamol sulphate microparticles were prepared by solvent evaporation method using biodegradable polymer poly (D,L-lactic-co-glycolic acid) to produce salbutamol sulphate microparticle mixed with carrier respirable grade lactose for oral inhalation of dry powder. The drug content were estimated to produce 1 mg sustained release salbutamol sulphate per dose. Total four formulations K1, K2, K3 and K4 were prepared with 1:1, 1:2, 1:3, 1:4 ratio of salbutamol sulphate:poly (D,L-lactic-co-glycolic acid). The developed formulations were studied for physicochemical properties, in vitro drug relase and Anderson cascade impaction studies. The prepared formulations effectively releases drug for 12 h in diffusion bag studies. Based on dissolution performance the 1:1 ratio of salbutamol sulphate:poly (D,L-lactic-co-glycolic acid) produces in vitro release 92.57% at 12 h and having particle size of microparticles (D0.5μm) 5.02±0.6 and the pulmonary deposition of dry powder 34.5±3.21 (respiratory fraction in percentage). PMID:27168692

  9. Production of spray-dried honey jackfruit (Artocarpus heterophyllus) powder from enzymatic liquefied puree.

    PubMed

    Wong, Chen Wai; Tan, Hong Hock

    2017-02-01

    This paper presents the enzymatic liquefaction process for honey jackfruit optimized with Pectinex(®) Ultra SP-L and Celluclast(®) 1.5 L individually or in combinations at different concentrations (0-2.5% v/w) and incubation time (0-2.5 h). Treatment with combinations of enzymes showed a greater effect in the reduction of viscosity (83.9-98.8%) as compared to single enzyme treatment (64.8-87.3%). The best parameter for enzymatic liquefaction was obtained with 1.0% (v/w) Pectinex(®) Ultra SP-L and 0.5% (v/w) Celluclast(®) 1.5 L for 1.5 h. Spray drying process was carried out using different inlet temperatures (140-180 °C) and maltodextrin concentrations (10-30% w/w). Results indicated that the spray-dried honey jackfruit powder produced at 160 °C with 30% w/w maltodextrin gave the highest product yield (66.90%) with good powder qualities in terms of water activity, solubility, moisture content, hygroscopicity, color and bulk density. The spray-dried honey jackfruit powder could potentially be incorporated into various food products.

  10. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor.

    PubMed

    Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin

    2014-01-01

    In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin.

  11. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor

    PubMed Central

    Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin

    2014-01-01

    In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin. PMID:24729702

  12. Formulation development and rheological studies of palatable cefetamet pivoxil hydrochloride dry powder suspension

    PubMed Central

    Sateesha, SB.; Rajamma, AJ.; Shekar, HS.; Divakar, G.

    2011-01-01

    Background and the purpose of the study Because of its intense bitter taste and susceptibility to moisture Cefetamet Pivoxil (CPH) is presently available only in the form of tablet. The aim of this study was to develop taste masked CPH dry powder suspension. Methods Methods employed for formulations were: a) Film coating of CPH using Eudragit E100 and subsequent adsorption on different carriers such as spray-dried lactose, sodium starch glycolate and spray-dried mannitol and b) Complexation of CPH with three different ion exchange resins indion 234 amberlite IRP64 and amberlite IRP69. Results Taste viz evaluation as recognized by volunteers revealed that coating with Eudragit E100 and subsequent adsorption on different carriers do not mask the bitter taste of the drug. Suspensions prepared using amberlite IRP64 and amberlite IRP69 were extremely palatable with no bitter after taste. They showed pseudoplastic flow behavior and were too viscous even after shearing for sufficient duration of time and exhibited poor pourability. The suspension made with indion 234 was palatable with slight or no bitter after taste. It demonstrated plastic flow with negligible thixotropy. It had moderate viscosity at rest and could be poured after a reasonable amount of shaking. CPH dry powder suspensions were very unstable under different conditions except under refrigeration. A 5% degradation of drug was occurred in reconstituted suspension in 4 days period when stored at room temperature. Conclusion Dry powder suspension prepared with indion 234 having 5% overages was stable even after 4th day of reconstitution and palatable with slight or no bitter after taste. PMID:22615648

  13. Air classifier technology (ACT) in dry powder inhalation Part 3. Design and development of an air classifier family for the Novolizer multi-dose dry powder inhaler.

    PubMed

    de Boer, A H; Hagedoorn, P; Gjaltema, D; Goede, J; Frijlink, H W

    2006-03-09

    In this study, the design of a multifarious classifier family for different applications is described. The main design and development steps are presented as well as some special techniques that have been applied to achieve preset objectives. It is shown by increasing the number of air supply channels to the classifier chamber (from 2 to 8), that the fine particle losses from adhesion onto the classifier walls can be reduced from 75% to less than 5% of the real dose for soft (spherical) agglomerates. By applying a bypass flow that is arranged as a co-axial sheath of clean air around the aerosol cloud from the classifier, the airflow resistance of the classifier can be controlled over a relatively wide range of values (0.023-0.041 kPa(0.5) min l(-1)). This, without affecting the fine particle dose or increasing the fine particle losses in the inhaler. Moreover, the sheath flow can be modelled to reduce the depositions in the induction port to the cascade impactor or in the patient's mouth, which are the result of back flows in these regions. The principle of powder induced pressure drop reduction across a classifier enables assessment of the amount of powder in the classifier at any moment during inhalation, from which classifier loading (from the dose system) and discharge rates can be derived. This principle has been applied to study the residence time of a dose in the classifier as function of the carrier size fraction and the flow rate. It has been found that this residence time can be controlled in order to obtain an optimal balance between the generated fine particle fraction and the inhalation manoeuvre of the patient. A residence time between 0.5 and 2 s at 60 l/min is considered favourable, as this yields a high fine particle dose (depending on the type of formulation used) and leaves sufficient inhaled volume for particle transport into the deep lung.

  14. Jet-vortex spray freeze drying for the production of inhalable lyophilisate powders.

    PubMed

    Wanning, Stefan; Süverkrüp, Richard; Lamprecht, Alf

    2017-01-01

    Spray-freeze-dried powders were suggested for nasal, epidermal (needle-free injection) or pulmonary application of proteins, peptides or nucleic acids. In spray-freeze-drying processes an aqueous solution is atomized into a refrigerant medium and subsequently dried by sublimation. Droplet-stream generators produce a fast stream of monodisperse droplets, where droplets are subject to collisions and therefore the initial monodispersity is lost and droplets increase in diameter, which reduces their suitability for pulmonary application. In jet-vortex-freezing, a droplet-stream is injected into a vortex of cold process gas to prevent droplet collisions. Both the injection position of the droplet-stream and the velocity of the cold gas vortex have an impact on the size distributions of the resulting powders. A model solution containing mannitol (1.5%m/V) and maltodextrin (1.5%m/V) was sprayed at 5 droplet-stream positions at distances between 1mm and 30mm from the gas jet nozzle and 5 gas velocities (0.8-6.8m/s) at a process temperature of -100°C. Mean geometric diameters of the highly porous particles (bulk density: 0.012±0.007g/cm3) ranged between 55±4 and 98±4μm. Evaluation of the aerodynamic properties by Next-Generation-Impactor (NGI) analysis showed that all powders had high emitted doses (98±1%) and fine-particle fractions ranged between 4±1% and 21±2%. It was shown that jet-vortex freezing is a suitable method for the reproducible production of lyophilized powders with excellent dispersibility in air, which has a high potential for nasal and pulmonary drug delivery.

  15. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.

    PubMed

    Kolanjiyil, Arun V; Kleinstreuer, Clement; Sadikot, Ruxana T

    2016-11-03

    Pulmonary drug delivery is becoming a favored route for administering drugs to treat both lung and systemic diseases. Examples of lung diseases include asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD) as well as respiratory distress syndrome (ARDS) and pulmonary fibrosis. Special respiratory drugs are administered to the lungs, using an appropriate inhaler device. Next to the pressurized metered-dose inhaler (pMDI), the dry powder inhaler (DPI) is a frequently used device because of the good drug stability and a minimal need for patient coordination. Specific DPI-designs and operations greatly affect drug-aerosol formation and hence local lung deposition. Simulating the fluid-particle dynamics after use of a DPI allows for the assessment of drug-aerosol deposition and can also assist in improving the device configuration and operation. In Part I of this study a first-generation whole lung-airway model (WLAM) was introduced and discussed to analyze particle transport and deposition in a human respiratory tract model. In the present Part II the drug-aerosols are assumed to be injected into the lung airways from a DPI mouth-piece, forming the mouth-inlet. The total as well as regional particle depositions in the WLAM, as inhaled from a DPI, were successfully compared with experimental data sets reported in the open literature. The validated modeling methodology was then employed to study the delivery of curcumin aerosols into lung airways using a commercial DPI. Curcumin has been implicated to possess high therapeutic potential as an antioxidant, anti-inflammatory and anti-cancer agent. However, efficacy of curcumin treatment is limited because of the low bioavailability of curcumin when ingested. Hence, alternative drug administration techniques, e.g., using inhalable curcumin-aerosols, are under investigation. Based on the present results, it can be concluded that use of a DPI leads to low lung deposition efficiencies because large amounts of

  16. Sodium cromoglycate: spincaps or metered dose aerosol.

    PubMed Central

    Robson, R A; Taylor, B J; Taylor, B

    1981-01-01

    1 Sodium cromoglycate administered as a dry powder inhalation (20 mg/dose) via the Spinhaler was compared with a metered dose aerosol (2 mg/dose) in an eight week double dummy double blind crossover trial in 29 asthmatic children. 2 The powder formulation was associated with significantly less symptoms (night wheeze, night cough, day wheeze, day cough, activity) and bronchodilator intake; and significantly greater weight gain than aerosol therapy. There were no significant differences in morning or evening peak flow measurements on the two treatments. 3 The powder may be more effectively inhaled than the aerosol or the dose of the aerosol may not be large enough. PMID:6789851

  17. Hazardous Waste Water Remediation by Ecoresin-Dry Cow Dung Powder

    NASA Astrophysics Data System (ADS)

    Bagla, Hemlata; Barot, Nisha

    2013-04-01

    Water, the matter, matrix, medium and the mother of our life, is indeed one of the drivers of Nature. Through water cycle only the intra and inter equilibrium is maintained constantly between entire 'green' and 'blue'. Unfortunately, with each successive epoch of industrialization and urbanization, human societies have produced non-biodegradable waste hulk with far beyond handling capacities of mankind. At this juncture the very need is to appreciate and move towards the cost as well as time effective scientific alternatives for the removal of aqueous heavy metal pollutants. Green chemistry advocates the utilization of naturally available bio-resins which are environmentally benign alternative to current synthetic materials and technologies employed for waste water treatment. This explicit investigation aims to explore Dry Cow dung powder, DCP, a natural biosorbent as a green and clean alternative for the aqueous waste water treatment. It is naturally available bio-organic, complex, polymorphic humified fecal matter of cow and is enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic - aromatic species such as 'Humic acid'(HA). The HA has been successfully extracted by authors from DCP and this piece of work has been published in the International Journal [1]. We have developed simple, efficient and eco-friendly method for the removal of aqueous heavy metal pollutant such as Cr(VI) [2], Cd(II), Cr(III) [3] and Hg(II) as well radiotoxic 90Sr(II) [4], employing DCP. DCP is employed without any pre or post treatment. Being freely and easily available DCP has an edge over processed natural adsorbent considering their cost, time and energy efficiency. In nutshell we have to remember that prevention is better than the cure. If we fail to meet this, the situation will surely augment which will drain our water, our life, to slaughters knife..! Reference: 1. H.K.Bagla, N.S.Barot, Soil Amendement by Green Supplement: Dry Cowdung powder, EGUGA - 11

  18. Evaluation of a dry powder delivery system for laninamivir in a ferret model of influenza infection.

    PubMed

    Panozzo, Jacqueline; Oh, Ding Yuan; Margo, Kenneth; Morton, David A; Piedrafita, David; Mosse, Jennifer; Hurt, Aeron C

    2015-08-01

    Laninamivir is a long-acting antiviral requiring only a single dose for the treatment of influenza infection, making it an attractive alternative to existing neuraminidase inhibitors that require multiple doses over many days. Like zanamivir, laninamivir is administered to patients by inhalation of dry powder. To date, studies investigating the effectiveness of laninamivir or zanamivir in a ferret model of influenza infection have administered the drug in a solubilised form. To better mimic the delivery action of laninamivir in humans, we assessed the applicability of a Dry Powder Insufflator™ (DPI) as a delivery method for laninamivir octanoate (LO) in ferrets to determine the effectiveness of this drug in reducing influenza A and B virus infections. In vitro characterisation of the DPI showed that both the small particle sized LO (0.7-6.0μm diameter) and the large particle sized lactose carrier (20-100μm diameter) were effectively discharged. However, LO delivered to ferrets via the DPI prior to infection with either A(H1N1)pdm09 or B viruses had a limited effect on nasal inflammation, clinical symptoms and viral shedding compared to placebo. Our preliminary findings indicate the feasibility of administering powder drugs into ferrets, but a better understanding of the pharmacokinetics and pharmacodynamics of LO in ferrets following delivery by the DPI is warranted prior to further studies.

  19. The effect of device resistance and inhalation flow rate on the lung deposition of orally inhaled mannitol dry powder.

    PubMed

    Yang, Michael Y; Verschuer, Jordan; Shi, Yuyu; Song, Yang; Katsifis, Andrew; Eberl, Stefan; Wong, Keith; Brannan, John D; Cai, Weidong; Finlay, Warren H; Chan, Hak-Kim

    2016-11-20

    The present study investigates the effect of DPI resistance and inhalation flow rates on the lung deposition of orally inhaled mannitol dry powder. Mannitol powder radiolabeled with (99m)Tc-DTPA was inhaled from an Osmohaler™ by healthy human volunteers at 50-70L/min peak inhalation flow rate (PIFR) using both a low and high resistance Osmohaler™, and 110-130L/min PIFR using the low resistance Osmohaler™ (n=9). At 50-70L/min PIFR, the resistance of the Osmohaler™ did not significantly affect the total and peripheral lung deposition of inhaled mannitol [for low resistance Osmohaler™, 20% total lung deposition (TLD), 0.3 penetration index (PI); for high resistance Osmohaler™, 17% TLD, 0.23 PI]. Increasing the PIFR 50-70L/min to 110-130L/min (low resistance Osmohaler™) significantly reduced the total lung deposition (10% TLD) and the peripheral lung deposition (PI 0.21). The total lung deposition showed dependency on the in vitro FPF (R(2)=1.0). On the other hand, the PI had a stronger association with the MMAD (R(2)=1.0) than the FPF (R(2)=0.7). In conclusion the resistance of Osmohaler™ did not significantly affect the total and regional lung deposition at 50-70L/min PIFR. Instead, the total and regional lung depositions are dependent on the particle size of the aerosol and inhalation flow rate, the latter itself affecting the particle size distribution.

  20. Quality assurance test of delivered dose uniformity of multiple-dose inhaler and dry powder inhaler drug products.

    PubMed

    Tsong, Yi; Dong, Xiaoyu; Shen, Meiyu; Lostritto, Richard T

    2015-01-01

    The delivered dose uniformity is one of the most critical requirements for dry powder inhaler (DPI) and metered dose inhaler products. In 1999, the Food and Drug Administration (FDA) issued a Draft Guidance entitled Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products-Chemistry, Manufacturing and Controls Documentation and recommended a two-tier acceptance sampling plan that is a modification of the United States Pharmacopeia (USP) sampling plan of dose content uniformity (USP34<601>). This sampling acceptance plan is also applied to metered dose inhaler (MDI) and DPI drug products in general. The FDA Draft Guidance method is shown to have a near-zero probability of acceptance at the second tier. In 2000, under the request of The International Pharmaceutical Aerosol Consortium, the FDA developed a two-tier sampling acceptance plan based on two one-sided tolerance intervals (TOSTIs) for a small sample. The procedure was presented in the 2005 Advisory Committee Meeting of Pharmaceutical Science and later published in the Journal of Biopharmaceutical Statistics (Tsong et al., 2008). This proposed procedure controls the probability of the product delivering below a pre-specified effective dose and the probability of the product delivering over a pre-specified safety dose. In this article, we further propose an extension of the TOSTI procedure to single-tier procedure with any number of canisters.

  1. Effects of Whey Powder Supplementation on Dry-Aged Meat Quality

    PubMed Central

    2016-01-01

    The objective of this study was to determine the effect of dietary supplementation with whey powder (WP, 1g/kg feed) from weaning to slaughter (150 d) on dry-aged loin quality of pigs. Fifty-eight pigs were randomly divided into two dietary treatment groups (seven replications of four pigs per treatments). Basal diet with 0.1% whey powder was supplied to the WP group. Basal diet was used for the control group (CON). Diet whey protein did not appear to influence the moisture or protein contents. However, ash and fat contents were significantly (p<0.05) decreased in the WP group compared to the control group. Drip loss was significantly (p<0.05) lower in the WP group than that of the control group. Increasing redness with decreasing lightness was found in the inner loin of the WP group. Calcium and iron contents in the WP group were significantly higher than those in the control group. Protein degradation was higher in the WP group than that in the control group (p<0.05), whereas shear force was lower in the WP group than that in the control group (p<0.05). In conclusion, the basal diet supplemented with 0.1% whey powder influence negatively the lipid oxidation of meat whereas the texture property and mineral composition of meat from whey powder fed pigs are developed. PMID:27433111

  2. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production

    PubMed Central

    Kanojia, Gaurav; Have, Rimko ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W.; Kersten, Gideon F. A.; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn’s disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab. PMID:27706175

  3. Optimisation of spray-drying process variables for dry powder inhalation (DPI) formulations of corticosteroid/cyclodextrin inclusion complexes.

    PubMed

    Cabral-Marques, Helena; Almeida, Rita

    2009-09-01

    This study aims to develop and characterise a beclomethasone diproprionate:gamma-cyclodextrin (BDP:gamma-CYD) complex and to optimise the variables on the spray-drying process, in order to obtain a powder with the most suitable characteristics for lung delivery. The spray-dried powder--in a mass ratio of 2:5 (BDP:gamma-CYD)--was physically mixed with three carriers of different particle sizes and in different ratios. Particle-size distribution, shape and morphology, moisture content, and uniformity in BDP content of formulations were studied. In vitro aerolisation behaviour of the formulations was evaluated using the Rotahaler, and the performance was characterised based on the uniformity of emitted dose and aerodynamic particle-size distribution (respirable fraction (RF), as a percentage of nominal dose (RFN) and emitted dose (RFE)). The most suitable conditions for the preparation of BDP:gamma-CYD complexes were obtained with the solution flow of 5 ml/min, T(in) of 70 degrees C and T(out) of 50 degrees C. Statistically significant differences in the aerodynamic performances were obtained for formulations containing BDP:gamma-CYD complexes prepared using different solution flows and different T(in) (p<0.05). RFN and RFE vary in direct proportion with T(in), while an inverse relationship was observed for the solution flow. A direct correlation between the RFE and the T(out) was identified. Performance of the formulations was compared with an established commercial product (Beclotaide Rotacaps 100 microg) with improved performance of RF: formulations with respitose carrier attained RFN and RFE twofold greater, and formulations based on 63-90 microm fraction lactose and trehalose achieved a threefold improvement; also, all formulations showed that the percentage of dose of BDP deposited in the "oropharynx" compartment was reduced to half.

  4. Development of controlled-release cisplatin dry powders for inhalation against lung cancers.

    PubMed

    Levet, Vincent; Rosière, Rémi; Merlos, Romain; Fusaro, Luca; Berger, Gilles; Amighi, Karim; Wauthoz, Nathalie

    2016-12-30

    The present study focuses on the development of dry powders for inhalation as adjuvant chemotherapy in lung cancer treatment. Cisplatin was chosen as a potential candidate for a local treatment as it remains the main platinum component used in conventional chemotherapies, despite its high and cumulative systemic toxicities. Bulk cisplatin was reduced to submicron sizes using high-pressure homogenization, mixed with a solubilized lipid and/or PEGylated component and then spray-dried to produce controlled-release dry powder formulations. The obtained formulations were characterized for their physicochemical properties (particle size and morphology), aerodynamic performance and release profiles. Cisplatin content and integrity were assessed by electrothermal atomic absorption spectrometry and (195)Pt nuclear magnetic resonance spectroscopy. DPI formulations with cisplatin contents ranging from 48.5 to 101.0% w/w exhibited high fine particle fractions ranging from 37.3% to 51.5% of the nominal dose. Formulations containing cisplatin microcrystals dispersed in solid lipid microparticles based on acceptable triglycerides for inhalation and PEGylated excipients showed a controlled-release for more than 24h and a limited burst effect. These new formulations could provide an interesting approach to increasing and prolonging drug exposure in the lung while minimizing systemic toxicities.

  5. Evaluation of the Aromatase Inhibition Potential of Freeze-Dried Grape Powder

    PubMed Central

    Allen, Summer V.; Pruthi, Sandhya; Suman, Vera J.; Hoskin, Tanya L.; Vachon, Celine M.; Ingle, James N.; Olson, Janet E.

    2016-01-01

    Objective To determine the role of freeze-dried grapes as a potential aromatase inhibitor by testing of plasma hormone levels. Methods A six-week study was conducted involving postmenopausal women during which 94 g of freeze-dried grape powder was consumed in addition to their usual diet. Plasma hormones were measured before and after the treatment. Results Of the 18 women involved in the study, average age and body mass index were 61.4 years and 24.4 respectively. For the hormone levels studied, the following median (interquartile range) percentage changes from baseline to six-week values were found: estradiol +11.8% (−34.4%, +44.2%), p = .42; estrone +3.4% (−15.7%, +12.9%), p = .64; estrone sulfate +5.3% (−19.9%, +56.3%), p = .35; testosterone −1.5% (−14.7%, +10.7%), p = .97; and androstenedione +12.6% (−17.1%, +49.1%), p = .15. The hormone levels did not significantly change between baseline and six weeks. Further, the changes that were observed did not tend to go in the hypothesized direction (estrogens and conjugates increased slightly, and testosterone decreased slightly). Only androstenedione showed a trend toward change in the hypothesized direction. Conclusions In this study, there was no evidence that plasma hormone levels are altered by six weeks of daily consumption of 94 g of freeze-dried grape powder. PMID:25167077

  6. Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions

    NASA Astrophysics Data System (ADS)

    Al-Kindi, Suad S.; Pope, Francis D.; Beddows, David C.; Bloss, William J.; Harrison, Roy M.

    2016-12-01

    A chemical reaction chamber system has been developed for the processing of oleic acid aerosol particles with ozone under two relative humidity conditions: dry and humidified to 65 %. The apparatus consists of an aerosol flow tube, in which the ozonolysis occurs, coupled to a scanning mobility particle sizer (SMPS) and an aerosol time-of-flight mass spectrometer (ATOFMS) which measure the evolving particle size and composition. Under both relative humidity conditions, ozonolysis results in a significant decrease in particle size and mass which is consistent with the formation of volatile products that partition from the particle to the gas phase. Mass spectra derived from the ATOFMS reveal the presence of the typically observed reaction products: azelaic acid, nonanal, oxononanoic acid and nonanoic acid, as well as a range of higher molecular weight products deriving from the reactions of reaction intermediates with oleic acid and its oxidation products. These include octanoic acid and 9- and 10-oxooctadecanoic acid, as well as products of considerably higher molecular weight. Quantitative evaluation of product yields with the ATOFMS shows a marked dependence upon both particle size association (from 0.3 to 2.1 µm diameter) and relative humidity. Under both relative humidity conditions, the percentage residual of oleic acid increases with increasing particle size and the main lower molecular weight products are nonanal and oxononanoic acid. Under dry conditions, the percentage of higher molecular weight products increases with increasing particle size due to the poorer internal mixing of the larger particles. Under humidified conditions, the percentage of unreacted oleic acid is greater, except in the smallest particle fraction, with little formation of high molecular weight products relative to the dry particles. It is postulated that water reacts with reactive intermediates, competing with the processes which produce high molecular weight products. Whilst the

  7. Physicochemical characterization and water vapor sorption of organic solution advanced spray-dried inhalable trehalose microparticles and nanoparticles for targeted dry powder pulmonary inhalation delivery.

    PubMed

    Li, Xiaojian; Mansour, Heidi M

    2011-12-01

    Novel advanced spray-dried inhalable trehalose microparticulate/nanoparticulate powders with low water content were successfully produced by organic solution advanced spray drying from dilute solution under various spray-drying conditions. Laser diffraction was used to determine the volumetric particle size and size distribution. Particle morphology and surface morphology was imaged and examined by scanning electron microscopy. Hot-stage microscopy was used to visualize the presence/absence of birefringency before and following particle engineering design pharmaceutical processing, as well as phase transition behavior upon heating. Water content in the solid state was quantified by Karl Fisher (KF) coulometric titration. Solid-state phase transitions and degree of molecular order were examined by differential scanning calorimetry (DSC) and powder X-ray diffraction, respectively. Scanning electron microscopy showed a correlation between particle morphology, surface morphology, and spray drying pump rate. All advanced spray-dried microparticulate/nanoparticulate trehalose powders were in the respirable size range and exhibited a unimodal distribution. All spray-dried powders had very low water content, as quantified by KF. The absence of crystallinity in spray-dried particles was reflected in the powder X-ray diffractograms and confirmed by thermal analysis. DSC thermal analysis indicated that the novel advanced spray-dried inhalable trehalose microparticles and nanoparticles exhibited a clear glass transition (T(g)). This is consistent with the formation of the amorphous glassy state. Spray-dried amorphous glassy trehalose inhalable microparticles and nanoparticles exhibited vapor-induced (lyotropic) phase transitions with varying levels of relative humidity as measured by gravimetric vapor sorption at 25°C and 37°C.

  8. Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica Granatum L.).

    PubMed

    Yousefi, Shima; Emam-Djomeh, Zahra; Mousavi, S M

    2011-12-01

    Pomegranate juice was diluted to 12° Brix and carriers (maltodextrin, gum Arabic, waxy starch) were added with varying concentrations of cellulose before being reduced to powder by spray drying. All carrier concentrations improved dryer yield, with gum Arabic being the most effective. The bulk density of the powder decreased when higher carrier concentrations were used. As cellulose concentration increased in solution, the solubility of the final product decreased. The optical properties of the powder were affected by the type and concentration of the carrier; powders produced with gum Arabic showed the greatest color change. Adding a carrier increased the Tg of the powder and its storage stability. Variation in the anthocyanin may be related to the type of carrier agent and its behavior during spray drying.

  9. [Effect of air humidity on traditional Chinese medicine extract of spray drying process and prediction of its powder stability].

    PubMed

    He, Yan; Xie, Yin; Zheng, Long-jin; Liu, Wei; Rao, Xiao-yong; Luo, Xiao-jian

    2015-02-01

    In order to solve the adhesion and the softening problems of traditional Chinese medicine extract during spray drying, a new method of adding dehumidified air into spray drying process was proposed, and the storage stability conditions of extract powder could be predicted. Kouyanqing extract was taken as model drug to investigate on the wet air (RH = 70%) and dry air conditions of spray drying. Under the dry air condition, the influence of the spray drying result with different air compression ratio and the spray-dried powder properties (extract powder recovery rate, adhesion percentage, water content, angle of repose, compression ratio, particle size and distribution) with 100, 110, 120, 130, 140 °C inlet temperature were studied. The hygroscopic investigation and Tg value with different moisture content of ideal powder were determined. The water activity-equilibrium moisture content (aw-EMC) and the equilibrium moisture content-Tg (EMC-Tg) relationships were fitted by GAB equation and Gordon-Taylor model respectively, and the state diagram of kouyanqing powder was obtained to guide the rational storage conditions. The study found that in the condition of dry air, the extract powder water content decreased with the increase of air compression ratio and the spray drying effect with air compression ratio of 100% was the best performance; in the condition of wet air, the extract powder with high water content and low yield, and the value were 4.26% and 16.73 °C, while, in the dry air condition the values were 2.43% and 24.86 °C with the same other instru- ment parameters. From the analysis of kouyanqing powder state diagram, in order to keep the stability, the critical water content of 3.42% and the critical water content of 0.188. As the water decreased Tg value of extract powder is the major problem of causing adhesion and softening during spray drying, it is meaningful to aid dehumidified air during the process.

  10. Spray dried amikacin powder for inhalation in cystic fibrosis patients: a quality by design approach for product construction.

    PubMed

    Belotti, Silvia; Rossi, Alessandra; Colombo, Paolo; Bettini, Ruggero; Rekkas, Dimitrios; Politis, Stavros; Colombo, Gaia; Balducci, Anna Giulia; Buttini, Francesca

    2014-08-25

    An amikacin product for convenient and compliant inhalation in cystic fibrosis patients was constructed by spray-drying in order to produce powders of pure drug having high respirability and flowability. An experimental design was applied as a statistical tool for the characterization of amikacin spray drying process, through the establishment of mathematical relationships between six Critical Quality Attributes (CQAs) of the finished product and five Critical Process Parameters (CPPs). The surface-active excipient, PEG-32 stearate, studied for particle engineering, in general did not benefit the CQAs of the spray dried powders for inhalation. The spray drying feed solution required the inclusion of 10% (v/v) ethanol in order to reach the desired aerodynamic performance of powders. All desirable function solutions indicated that the favourable concentration of amikacin in the feed solution had to be kept at 1% w/v level. It was found that when the feed rate of the sprayed solution was raised, an increase in the drying temperature to the maximum value (160 °C) was required to maintain good powder respirability. Finally, the increase in drying temperature always led to an evident increase in emitted dose (ED) without affecting the desirable fine particle dose (FPD) values. The application of the experimental design enabled us to obtain amikacin powders with both ED and FPD, well above the regulatory and scientific references. The finished product contained only the active ingredient, which keeps low the mass to inhale for dose requirement.

  11. A Preference Study of Two Placebo Dry Powder Inhalers in Adults with COPD: ELLIPTA® Dry Powder Inhaler (DPI) versus DISKUS® DPI.

    PubMed

    Yun Kirby, Suyong; Zhu, Chang-Qing; Kerwin, Edward M; Stanford, Richard H; Georges, George

    2016-01-01

    Patients' preference is an important factor in selecting an inhaler treatment for COPD. The DISKUS® dry powder inhaler (DPI), which has been available to deliver several COPD medications for a decade, and the ELLIPTA® DPI, developed for the delivery of newer once-daily medications for patients with COPD, were studied in terms of patient preference and inhaler-specific attributes. We conducted a randomized, open-label, crossover study in patients with COPD. Patients used placebo ELLIPTA DPI once daily and placebo DISKUS DPI twice daily, for ∼1 week each, while continuing their COPD medications. Endpoints were: inhaler preference based on size of the numbers on the dose-counter (primary); the number of steps needed and inhaler size (secondary); and based on comfort of the mouthpiece, ease of opening, overall preference, and dosing regimen preference ('other'). Safety assessments included adverse events (AEs). A total of 287 patients were randomized. A significantly (p < 0.001) larger proportion of patients preferred the ELLIPTA DPI over DISKUS DPI for each of the tested attributes and overall, and preferred once-daily over twice-daily dosing. AEs were reported for 36 patients (13%); one (dry mouth) was considered to be related to the placebo-containing DISKUS DPI. Three patients had five non-fatal serious AEs, none were deemed inhaler-related. This study demonstrated that more patients with COPD preferred five specific inhaler attributes of the ELLIPTA DPI over DISKUS DPI and overall, and preferred once-daily versus twice-daily dosing. Safety profiles were consistent with those expected for COPD.

  12. Aerosol dry deposition on vegetative canopies. Part II: A new modelling approach and applications

    NASA Astrophysics Data System (ADS)

    Petroff, Alexandre; Mailliat, Alain; Amielh, Muriel; Anselmet, Fabien

    2008-05-01

    This paper presents a new approach for the modelling of aerosol dry deposition on vegetation. It follows a companion article, in which a review of the current knowledge highlights the need for a better description of the aerosol behaviour within the canopy [Petroff, A., Mailliat, A., Amielh, M., Anselmet, F., 2008. Aerosol dry deposition on vegetative canopies. Part I: Review of present knowledge. Atmospheric Environment, in press, doi:10.1016/j.atmosenv.2007.09.043]. Concepts from multi-phase flow studies are used for describing the canopy medium and deriving a time and space-averaged aerosol balance equation and the associated deposition terms. The closure of the deposition terms follows an up-scaling procedure based on the statistical distribution of the collecting elements. This aerosol transport model is then applied in a stationary and mono-dimensional configuration and takes into account the properties of the vegetation, the aerosol and the turbulent flow. Deposition mechanisms are Brownian diffusion, interception, inertial and turbulent impactions, and gravitational settling. For each of them, a parameterisation of the particle collection is derived and the quality of their predictions is assessed by comparison with wind-tunnel deposition measurements on coniferous twigs [Belot, Y., Gauthier, D., 1975. Transport of micronic particles from atmosphere to foliar surfaces. In: De Vries, D.A., Afgan, N.H. (Eds.), Heat and Mass Transfer in the Biosphere. Scripta Book, Washington, DC, pp. 583-591; Belot, Y., 1977. Etude de la captation des polluants atmosphériques par les végétaux. CEA, R-4786, Fontenay-aux-Roses; Belot, Y., Camus, H., Gauthier, D., Caput, C., 1994. Uptake of small particles by canopies. The Science of the Total Environment 157, 1-6]. Under a real canopy configuration, the predictions of the aerosol transport model compare reasonably well with detailed on-site deposition measurements of Aitken mode particles [Buzorius, G., Rannik, Ü., M

  13. Chemical composition and antioxidant activity of dried powder formulations of Agaricus blazei and Lentinus edodes.

    PubMed

    Carneiro, Andreia A J; Ferreira, Isabel C F R; Dueñas, Montserrat; Barros, Lillian; da Silva, Roberto; Gomes, Eleni; Santos-Buelga, Celestino

    2013-06-15

    Several mushroom species have been pointed out as sources of antioxidant compounds, in addition to their important nutritional value. Agaricus blazei and Lentinus edodes are among the most studied species all over the world, but those studies focused on their fruiting bodies instead of other presentations, such as powdered preparations, used as supplements. In the present work the chemical composition (nutrients and bioactive compounds) and antioxidant activity (free radical scavenging activity, reducing power and lipid peroxidation inhibition) of dried powder formulations of the mentioned mushroom species (APF and LPF, respectively) were evaluated. Powder formulations of both species revealed the presence of essential nutrients, such as proteins, carbohydrates and unsaturated fatty acids. Furthermore, they present a low fat content (<2g/100g) and can be used in low-calorie diets, just like the mushrooms fruiting bodies. APF showed higher antioxidant activity and higher content of tocopherols and phenolic compounds (124 and 770 μg/100g, respectively) than LPF (32 and 690 μg/100g). Both formulations could be used as antioxidant sources to prevent diseases related to oxidative stress.

  14. Development of a Freeze-Dried Fungal Wettable Powder Preparation Able to Biodegrade Chlorpyrifos on Vegetables

    PubMed Central

    Chen, Shaohua; Xiao, Ying; Hu, Meiying; Zhong, Guohua

    2014-01-01

    Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711), a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM). The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues. PMID:25061758

  15. Development of a freeze-dried fungal wettable powder preparation able to biodegrade chlorpyrifos on vegetables.

    PubMed

    Liu, Jie; He, Yue; Chen, Shaohua; Xiao, Ying; Hu, Meiying; Zhong, Guohua

    2014-01-01

    Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711), a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM). The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues.

  16. Relationship between surface concentration of L-leucine and bulk powder properties in spray dried formulations.

    PubMed

    Mangal, Sharad; Meiser, Felix; Tan, Geoffrey; Gengenbach, Thomas; Denman, John; Rowles, Matthew R; Larson, Ian; Morton, David A V

    2015-08-01

    The amino acid L-leucine has been demonstrated to act as a lubricant and improve the dispersibility of otherwise cohesive fine particles. It was hypothesized that optimum surface L-leucine concentration is necessary to achieve optimal surface and bulk powder properties. Polyvinylpyrrolidone was spray dried with different concentration of L-leucine and the change in surface composition of the formulations was determined using X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectrometry (ToF-SIMS). The formulations were also subjected to powder X-ray diffraction analysis in order to understand the relationship between surface concentration and solid-state properties of L-leucine. In addition, the morphology, surface energy and bulk cohesion of spray dried formulations were also assessed to understand the relation between surface L-leucine concentration and surface and bulk properties. The surface concentration of L-leucine increased with higher feed concentrations and plateaued at about 10% L-leucine. Higher surface L-leucine concentration also resulted in the formation of larger L-leucine crystals and not much change in crystal size was noted above 10% L-leucine. A change in surface morphology of particles from spherical to increasingly corrugated was also observed with increasing surface l-leucine concentration. Specific collapsed/folded over particles were only seen in formulations with 10% or higher l-leucine feed concentration suggesting a change in particle surface formation process. In addition, bulk cohesion also reduced and approached a minimum with 10% L-leucine concentration. Thus, the surface concentration of L-leucine governs particle formation and optimum surface L-leucine concentration results in optimum surface and bulk powder properties.

  17. Formulation of pH responsive peptides as inhalable dry powders for pulmonary delivery of nucleic acids

    PubMed Central

    Liang, Wanling; Kwok, Philip C.L.; Chow, Michael Y.T.; Tang, Patricia; Mason, A. James; Chan, Hak-Kim; Lam, Jenny. K.W.

    2013-01-01

    Nucleic acids have the potential to be used as therapies or vaccines for many different types of disease but delivery remains the most significant challenge to their clinical adoption. pH responsive peptides containing either histidine or derivatives of 2,3-diaminopropionic acid (Dap) can mediate effective DNA transfection in lung epithelial cells with the latter remaining effective even in the presence of lung surfactant containing bronchoalveolar fluid (BALF), making this class of peptides attractive candidates for delivering nucleic acids to lung tissues. To further assess the suitability of pH responsive peptides for pulmonary delivery by inhalation, dry powder formulations of pH responsive peptides and plasmid DNA, with mannitol as carrier, were produced by either spray drying (SD) or spray freeze drying (SFD). The properties of the two types of powders were characterised and compared using scanning electron microscopy (SEM), next generation impaction (NGI), gel retardation and in vitro transfection via a twin-stage impinger (TSI) following aerosolisation by a dry powder inhaler (Osmohaler™). Although the aerodynamic performance and transfection efficacy of both powders were good, the overall performance revealed SD powders to have a number of advantages over SFD powders and are the more effective formulation with potential for efficient nucleic acid delivery through inhalation. PMID:23702276

  18. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure

    PubMed Central

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5–15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery. PMID:26347257

  19. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure.

    PubMed

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5-15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery.

  20. New dry powders for inhalation containing temozolomide-based nanomicelles for improved lung cancer therapy.

    PubMed

    Rosière, Rémi; Gelbcke, Michel; Mathieu, Véronique; Van Antwerpen, Pierre; Amighi, Karim; Wauthoz, Nathalie

    2015-09-01

    Besides the numerous advantages of a chemotherapy administered by the inhalation route for lung cancer therapy, dry powder for inhalation (DPI) offers many advantages compared to other techniques and seems to be a technique that is well-adapted to an anticancer treatment. DPI formulations were developed using the cytotoxic drug temozolomide and a new folate-grafted self-assembling copolymer, a conjugate of three components, folate-polyethylene glycol-hydrophobically-modified dextran (F-PEG-HMD). F-PEG-HMD was synthesized using carbodiimide-mediated coupling chemistry in three main steps. F-PEG-HMD was characterized by 1H-NMR, mass spectrometry and thermal analysis. F-PEG-HMD presented a critical micellar concentration in water of 4x10-7 M. F-PEG-HMD nanomicelles were characterized by a trimodal particle size distribution with Z-average diameter of 83±1 nm in water. Temozolomide-loaded nanomicelles were prepared by solubilization of F-PEG-HMD in the presence of temozolomide. Temozolomide solubility in water was increased in the presence of F-PEG-HMD (2-fold increase in molar solubility) which could potentially lead to increased local concentrations in the tumor site. The temozolomide-loaded F-PEG-HMD nanomicelles were characterized by a Z-average diameter of ~50 to ~60 nm, depending on the F-PEG-HMD concentration used. The nanomicelles were then spray-dried to produce dry powders. Temozolomide remained stable during all the formulation steps, confirmed by similar in vitro anticancer properties for the DPI formulations and a raw temozolomide solution. Two of the developed DPI formulations were characterized by good aerodynamic properties (with a fine particle fraction of up to 50%) and were able to release the F-PEG-HMD nanomicelles quickly in aqueous media. Moreover, in vitro, the two DPI formulations showed wide pulmonary deposition in the lower respiratory tract where adenocarcinomas are more often found. The present study, therefore, shows that F

  1. Intranasal delivery of Norwalk virus-like particles formulated in an in-situ gelling, dry powder vaccine

    PubMed Central

    Velasquez, Lissette S.; Shira, Samantha; Berta, Alice N.; Kilbourne, Jacquelyn; Medi, Babu M.; Tizard, Ian; Ni, Yawei; Arntzen, Charles J.; Herbst-Kralovetz, Melissa M.

    2011-01-01

    The development of a vaccine to prevent norovirus infections has been focused on immunization at a mucosal surface, but has been limited by the low immunogenicity of self-assembling Norwalk virus-like particles (NV VLPs) delivered enterically or at nasal surfaces. Nasal immunization, which offers the advantage of ease of immunization, faces obstacles imposed by the normal process of mucociliary clearance, which limits residence time of applied antigens. Herein, we describe the use of a dry powder formulation (GelVac) of an inert in-situ gelling polysaccharide (GelSite) extracted from Aloe vera for nasal delivery of NV VLP antigen. Powder formulations, with or without NV VLP antigen, were similar in structure in dry form or when rehydrated in simulated nasal fluids. Immunogenicity of the dry powder VLP formulation was compared to equivalent antigen/adjuvant liquid formulations in animals. For the GelVac powder, we observed superior NV-specific serum and mucosal (aerodigestive and reproductive tracts) antibody responses relative to liquid formulations. Incorporation of TLR7 agonist gardiquimod in dry powder formulations did not enhance antibody responses, although its inclusion in liquid formulations did enhance VLP immunogenicity irrespective of the presence or absence of GelSite. We interpret these data as showing that GelSite-based dry powder formulations 1.) stabilize the immunogenic structural properties of VLPs and 2.) induce systemic and mucosal antibody titers which are equal or greater than those achieved by VLPs plus adjuvant in a liquid formulation. We conclude that in-situ gelation of the GelVac dry powder formulation at nasal mucosal surfaces delays mucociliary clearance and thereby prolongs VLP antigen exposure to immune effector sites. PMID:21640778

  2. Investigation of the potential for direct compaction of a fine ibuprofen powder dry-coated with magnesium stearate.

    PubMed

    Qu, Li; Zhou, Qi Tony; Gengenbach, Thomas; Denman, John A; Stewart, Peter J; Hapgood, Karen P; Gamlen, Michael; Morton, David A V

    2015-05-01

    Intensive dry powder coating (mechanofusion) with tablet lubricants has previously been shown to give substantial powder flow improvement. This study explores whether the mechanofusion of magnesium stearate (MgSt), on a fine drug powder can substantially improve flow, without preventing the powder from being directly compacted into tablets. A fine ibuprofen powder, which is both cohesive and possesses a low-melting point, was dry coated via mechanofusion with between 0.1% and 5% (w/w) MgSt. Traditional low-shear blending was also employed as a comparison. No significant difference in particle size or shape was measured following mechanofusion. For the low-shear blended powders, only marginal improvement in flowability was obtained. However, after mechanofusion, substantial improvements in the flow properties were demonstrated. Both XPS and ToF-SIMS demonstrated high degrees of a nano-scale coating coverage of MgSt on the particle surfaces from optimized mechanofusion. The study showed that robust tablets were produced from the selected mechanofused powders, at high-dose concentration and tablet tensile strength was further optimized via addition of a Polyvinylpyrrolidone (PVP) binder (10% w/w). The tablets with the mechanofused powder (with or without PVP) also exhibited significantly lower ejection stress than those made of the raw powder, demonstrating good lubrication. Surprisingly, the release rate of drug from the tablets made with the mechanofused powder was not retarded. This is the first study to demonstrate such a single-step dry coating of model drug with MgSt, with promising flow improvement, flow-aid and lubrication effects, tabletability and also non-inhibited dissolution rate.

  3. Effects of Drying Temperature on Antioxidant Activities of Tomato Powder and Storage Stability of Pork Patties

    PubMed Central

    2016-01-01

    This study was performed to evaluate the antioxidant activity of oven-dried tomato powder (OTP) as affected by drying temperature and the effect of OTP on the product quality of pork patties. Three OTP products were obtained by drying of fresh tomato at 60, 80 and 100℃ oven until constant weight was obtained. Total phenolic content of three kinds of OTPs ranged from 1.95 to 5.94 g/100 g. The highest amount of total phenolic compound was observed in OTP dried at 100℃. Antioxidant activity of three kinds of OTPs was measured by 1,1-diphenyl-2-pycrylhydrazyl (DPPH)-radical scavenging activity, iron chelating ability, reducing power and measurement of lipid peroxide in linoleic acid emulsion system. In all parameters, OTP at 100℃ showed the higher antioxidant activity than other temperatures (p<0.05). Based on the model study, the physicochemical properties, and antioxidant and antimicrobial activities of pork patties containing 1% OTP were measured. Redness of pork patties were increased with the addition of OTPs (p<0.05). Thiobarbituric acid reactive substances (TBARS) values of raw pork patties containing OTPs were lower than those of control (CTL) until 7 d of storage, regardless of drying temperatures (p<0.05). Peroxide values of pork patties made with OTP (1%) were lower than those of CTL until the end of storage time (p<0.05). However, no antimicrobial activities were observed among the treatments (p>0.05). Therefore, OTPs could be used as a natural antioxidant in meat products. PMID:27499664

  4. Effects of drying methods on the physicochemical and compressional characteristics of Okra powder and the release properties of its metronidazole tablet formulation.

    PubMed

    Bakre, L G; Jaiyeoba, K T

    2009-02-01

    A study has been made of the effects of sun and oven drying methods on the physicochemical characteristics and compressibility of Okra powder and the release properties of its metronidazole tablet formulation. Corn starch was used as the reference standard. The mechanical properties of the tablets were evaluated using crushing strength and friability, while the release properties were determined using the disintegration times and dissolution rates. The results obtained showed that sun-dried Okra powder had smaller particle size, exhibited good flow and possessed higher hydration and swelling capacities compared to the oven dried samples. The compressibility of Okra powders assessed by the indices of plasticity from Heckel (Py) and Kawakita plots (Pk) showed that sun dried Okra powders had higher Py but lower Pk values than the oven-dried Okra powder. Metronidazole tablets formulated with oven dried Okra powder formed stronger tablets than tablets containing sun dried Okra powder. Generally, tablets containing sun dried Okra powders had faster disintegration and dissolution than tablets formulated with oven-dried powder. The results suggest that the choice of drying method during the processing of pharmaceutical raw materials is critical to its physicochemical properties and the release properties of its tablet formulations.

  5. Soluble Nutrient and Trace Metal Fluxes from Aerosol Dry Deposition to Elkhorn Slough, CA

    NASA Astrophysics Data System (ADS)

    Gray, E. T.; Paytan, A.; Haskins, J.

    2009-12-01

    Atmospheric deposition has been widely recognized as a source of pollutants and nutrients to coastal ecosystems. Specifically, deposition includes nitrogen compounds, sulfur compounds, mercury, pesticides, phosphate, trace metals and other toxic compounds that can travel great distances in aerosols. These components can come from both natural (volcanoes, mineral dust, forest fires) and anthropogenic (fossil fuels, chemical byproducts, incineration of waste) sources. These pollutants may affect ecosystem health and water quality with environmental impacts such as eutrophication, contaminated fish and harmful algal blooms. In this study we focus on dry deposition to Elkhorn Slough, California. Size fractionated aerosol samples (PM 2.5 and PM 10) collected continuously over a seven day period using a cascade impactor are used along with a deposition model to determine the soluble nutrient and trace metal fluxes on the Elkhorn Slough ecosystem. Atmospheric deposition inputs will be compared to other sources and their potential impact evaluated.

  6. The ELLIPTA® Dry Powder Inhaler: Design, Functionality, In Vitro Dosing Performance and Critical Task Compliance by Patients and Caregivers

    PubMed Central

    Grant, Andrew C.; Hamilton, Melanie; Garrill, Karl

    2015-01-01

    Abstract Dry powder inhalers (DPIs) are commonly used for the delivery of inhaled medications, and should provide consistent, efficient dosing, be easy to use correctly, and be liked by patients; these attributes can all affect patient compliance and therefore treatment efficacy. The ELLIPTA® DPI was developed for the delivery of once-daily therapies for the treatment of asthma and chronic obstructive pulmonary disease. It has moderate resistance to airflow and can hold one or two blister strips, with each blister containing a sealed single dose of medication. Monotherapies can be delivered by the single-strip configuration and, in the two-strip configuration, one dose from each strip can be aerosolized simultaneously to allow combination therapies to be delivered, which enables the formulations for each product to be developed individually, since they are stored separately until the point of administration. There are three principal operating steps to administer a dose: open, inhale, close. This article summarizes the design, functionality, and in vitro dose-delivery characteristics of the ELLIPTA inhaler, and describes the results of human factors validation tests, designed to assess the performance of critical tasks required to use the inhaler. Results from the in vitro studies indicate that the ELLIPTA inhaler performs consistently with respect to in vitro dose delivery characteristics at a range of flow rates that can be achieved by the target population (≥30 L/min) and over its 30-day in-use life. Data from the human factors validation tests demonstrated that almost all participants (≥97%) were able to complete each of the steps required to prepare a dose for inhalation without error. Overall, the ELLIPTA inhaler has a versatile single- or two-strip design that allows it to be used for the delivery of a range of treatment options. It also improves patient ease-of-use when compared with the DISKUS® DPI. PMID:26372466

  7. The ELLIPTA® Dry Powder Inhaler: Design, Functionality, In Vitro Dosing Performance and Critical Task Compliance by Patients and Caregivers.

    PubMed

    Grant, Andrew C; Walker, Richard; Hamilton, Melanie; Garrill, Karl

    2015-12-01

    Dry powder inhalers (DPIs) are commonly used for the delivery of inhaled medications, and should provide consistent, efficient dosing, be easy to use correctly, and be liked by patients; these attributes can all affect patient compliance and therefore treatment efficacy. The ELLIPTA(®) DPI was developed for the delivery of once-daily therapies for the treatment of asthma and chronic obstructive pulmonary disease. It has moderate resistance to airflow and can hold one or two blister strips, with each blister containing a sealed single dose of medication. Monotherapies can be delivered by the single-strip configuration and, in the two-strip configuration, one dose from each strip can be aerosolized simultaneously to allow combination therapies to be delivered, which enables the formulations for each product to be developed individually, since they are stored separately until the point of administration. There are three principal operating steps to administer a dose: open, inhale, close. This article summarizes the design, functionality, and in vitro dose-delivery characteristics of the ELLIPTA inhaler, and describes the results of human factors validation tests, designed to assess the performance of critical tasks required to use the inhaler. Results from the in vitro studies indicate that the ELLIPTA inhaler performs consistently with respect to in vitro dose delivery characteristics at a range of flow rates that can be achieved by the target population (≥30 L/min) and over its 30-day in-use life. Data from the human factors validation tests demonstrated that almost all participants (≥97%) were able to complete each of the steps required to prepare a dose for inhalation without error. Overall, the ELLIPTA inhaler has a versatile single- or two-strip design that allows it to be used for the delivery of a range of treatment options. It also improves patient ease-of-use when compared with the DISKUS(®) DPI.

  8. Physicochemical and thermal properties of taro (Colocasia esculenta sp) powders as affected by state of maturity and drying method.

    PubMed

    Himeda, M; Njintang, Y N; Gaiani, C; Nguimbou, R M; Scher, J; Facho, B; Mbofung, C M F

    2014-09-01

    The study was aimed at determining the effect of harvesting time and drying method on the thermal and physicochemical properties of taro powder, Sosso ecotype. A 5 × 2 factorial experiment with 5 harvesting times (6, 7, 8, 9 and 10 months after planting) and 2 drying methods (sun and electric oven drying) was used for this purpose. The variance component analysis revealed harvesting time as the most important factor affecting all the variables measured. In particular the proteins and available sugar contents of the powders increased significantly with increase in harvesting time. The same was true of the gelling property and water absorption capacity of the powders. It was equally observed that the temperatures (start, peak and end) and enthalpy of gelatinization of the powders increased with harvesting time. It is concluded that harvesting sosso-taro at full maturity (10 months after planting) and sun-drying produces food powders with excellent gelling properties among others.

  9. Development of the aerosol generation system for simulating the dry deposition behavior of radioaerosol emitted by the accident of FDNPP

    NASA Astrophysics Data System (ADS)

    Zhang, Z.

    2015-12-01

    A large amount of radioactivity was discharged by the accident of FDNPP. The long half-life radionuclide, 137Cs was transported through the atmosphere mainly as the aerosol form and deposited to the forests in Fukushima prefecture. After the dry deposition of the 137Cs, the foliar uptake process would occur. To evaluate environmental transfer of radionuclides, the dry deposition and following foliar uptake is very important. There are some pioneering studies for radionuclide foliar uptake with attaching the solution containing stable target element on the leaf, however, cesium oxide aerosols were used for these deposition study [1]. In the FDNPP case, 137Cs was transported in sulfate aerosol form [2], so the oxide aerosol behaviors could not represent the actual deposition behavior in this accident. For evaluation of whole behavior of 137Cs in vegetation system, fundamental data for deposition and uptake process of sulfate aerosol was desired. In this study, we developed aerosol generation system for simulating the dry deposition and the foliar uptake behaviors of aerosol in the different chemical constitutions. In this system, the method of aerosol generation based on the spray drying. Solution contained 137Cs was send to a nozzle by a syringe pump and spraying with a high speed air flow. The sprayed mist was generated in a chamber in the relatively high temperature. The solution in the mist was dried quickly, and micro size solid aerosols consisting 137Cs were generated. The aerosols were suctioned by an ejector and transported inside a tube by the dry air flow, then were directly blown onto the leaves. The experimental condition, such as the size of chamber, chamber temperature, solution flow rate, air flow rate and so on, were optimized. In the deposition experiment, the aerosols on leaves were observed by a SEM/EDX system and the deposition amount was evaluated by measuring the stable Cs remaining on leaf. In the presentation, we will discuss the detail

  10. Limited influence of dry deposition of semivolatile organic vapors on secondary organic aerosol formation in the urban plume

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Madronich, S.; Aumont, B.; Lee-Taylor, J.; Karl, T.; Camredon, M.; Mouchel-Vallon, C.

    2013-06-01

    The dry deposition of volatile organic compounds (VOCs) and its impact on secondary organic aerosols (SOA) are investigated in the Mexico City plume. Gas-phase chemistry and gas-particle partitioning of oxygenated VOCs are modeled with the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) from C3 to C25 alkanes, alkenes, and light aromatics. Results show that dry deposition of oxidized gases is not an efficient sink for SOA, as it removes <5% of SOA within the city's boundary layer and ~15% downwind. Dry deposition competes with the gas-particle uptake, and only gases with fewer than ~12 carbons dry deposit while longer species partition to SOA. Because dry deposition of submicron aerosols is slow, condensation onto particles protects organic gases from deposition, thus increasing their atmospheric burden and lifetime. In the absence of this condensation, ~50% of the regionally produced mass would have been dry deposited.

  11. Insights into the roles of carrier microstructure in adhesive/carrier-based dry powder inhalation mixtures: Carrier porosity and fine particle content.

    PubMed

    Shalash, Ahmed O; Molokhia, Abdulla M; Elsayed, Mustafa M A

    2015-10-01

    To gain insights into complex interactions in carrier-based dry powder inhalation mixtures, we studied the relationships between the carrier microstructural characteristics and performance. We used mercury intrusion porosimetry to measure the microstructural characteristics and to also derive the air permeability of eight carriers. We evaluated the performances of inhalation mixtures of each of these carriers and fluticasone propionate after aerosolization from an Aerolizer®. We did not observe a simple relationship between the carrier total porosity and the performance. Classification of the porosity according to pore size, however, provided interesting insights. The carrier nanoporosity, which refers to pores smaller than micronized drug particles, has a positive influence on the performance. Nanopores reduce the carrier effective contact area and the magnitude of interparticulate adhesion forces in inhalation mixtures. The carrier microporosity, which refers to pores similar in size to drug particles, also has a positive influence on the performance. During mixing, micropores increase the effectiveness of frictional and press-on forces, which are responsible for breaking up of cohesive drug agglomerates and for distribution of drug particles over the carrier surface. On the other hand, the carrier macroporosity, which refers to pores larger than drug particles, apparently has a negative influence on the performance. This influence is likely mediated via the effects of macropores on the powder bed tensile strength and fluidization behavior. The air permeability better represents these effects. The inhalation mixture performance improved as the carrier air permeability decreased. Interestingly, as the carrier fine particle content increased, the carrier microporosity increased and the carrier air permeability decreased. This proposes a new mechanism for the positive effect of fine excipient materials on the performance of carrier-based inhalation mixtures. Fine

  12. A uHPLC-MS mathematical modeling approach to dry powder inhaler single agglomerate analysis.

    PubMed

    Pennington, Justin; Lena, John; Medendorp, Joseph; Ewing, Gary

    2011-10-01

    Demonstration of content uniformity (CU) is critical toward the successful development of dry powder inhalers (DPIs). Methods for unit dose CU determination for DPI products are well-established within the field of respiratory science. Recent advances in the area include a uHPLC-MS method for high-throughput uniformity analysis, which allows for a greater understanding of blending operations as the industry transitions to a quality-by-design approach to development. Further enhancements to this uHPLC-MS method now enable it to determine CU and sample weight at the single agglomerate level, which is roughly 50× smaller than a unit dose. When coupled with optical microscopy-based agglomerate sizing, the enhanced uHPLC-MS method can also predict the density and porosity of individual agglomerates. Expanding analytical capabilities to the single agglomerate level provides greater insights and confidence in the DPI manufacturing process.

  13. Aerosol flow reactor production of fine Y1Ba2Cu3O7 powder: Fabrication of superconducting ceramics

    NASA Astrophysics Data System (ADS)

    Kodas, T. T.; Engler, E. M.; Lee, V. Y.; Jacowitz, R.; Baum, T. H.; Roche, K.; Parkin, S. S. P.; Young, W. S.; Hughes, S.; Kleder, J.; Auser, W.

    1988-05-01

    An aerosol flow reactor operating at 900-1000 °C is used to prepare high-purity Y1Ba2Cu3O7 powders with a uniform chemical composition and a submicron to micron average particle size by thermally decomposing aerosol droplets of a solution consisting of the nitrate salts of Y, Ba, and Cu in a 1:2:3 ratio. The powders were at least 99% reacted based on thermogravimetric analysis, and the x-ray diffraction pattern is essentially that of Y1Ba2Cu3O7. Magnetic susceptibility measurements showed the powders to be superconducting with a transition at 90 K even for average reactor residence times as short as 20 s. Sintering cold-pressed pellets between 900 and 1000 °C provides dense, fine grained (average size on the order of 1 μm) superconducting ceramics with sharp 90 K transitions. The grain size and shape of a final sintered part could be varied depending on powder production, processing, and sintering conditions.

  14. Aerosol profiling with lidar in the Amazon Basin during the wet and dry season

    NASA Astrophysics Data System (ADS)

    Baars, H.; Ansmann, A.; Althausen, D.; Engelmann, R.; Heese, B.; Müller, D.; Artaxo, P.; Paixao, M.; Pauliquevis, T.; Souza, R.

    2012-11-01

    For the first time, multiwavelength polarization Raman lidar observations of optical and microphysical particle properties over the Amazon Basin are presented. The fully automated advanced Raman lidar was deployed 60 km north of Manaus, Brazil (2.5°S, 60°W) in the Amazon rain forest from January to November 2008. The measurements thus cover both the wet season (Dec-June) and the dry or burning season (July-Nov). Two cases studies of young and aged smoke plumes are discussed in terms of spectrally resolved optical properties (355, 532, and 1064 nm) and further lidar products such as particle effective radius and single-scattering albedo. These measurement examples confirm that biomass burning aerosols show a broad spectrum of optical, microphysical, and chemical properties. The statistical analysis of the entire measurement period revealed strong differences between the pristine wet and the polluted dry season. African smoke and dust advection frequently interrupt the pristine phases during the wet season. Compared to pristine wet season conditions, the particle scattering coefficients in the lowermost 2 km of the atmosphere were found to be enhanced, on average, by a factor of 4 during periods of African aerosol intrusion and by a factor of 6 during the dry (burning) season. Under pristine conditions, the particle extinction coefficients and optical depth for 532 nm wavelength were frequently as low as 10-30 Mm-1 and <0.05, respectively. During the dry season, biomass burning smoke plumes reached to 3-5 km height and caused a mean optical depth at 532 nm of 0.26. On average during that season, particle extinction coefficients (532 nm) were of the order of 100 Mm-1 in the main pollution layer (up to 2 km height). Ångström exponents were mainly between 1.0 and 1.5, and the majority of the observed lidar ratios were between 50-80 sr.

  15. Dispersibility of lactose fines as compared to API in dry powders for inhalation.

    PubMed

    Thalberg, Kyrre; Åslund, Simon; Skogevall, Marcus; Andersson, Patrik

    2016-05-17

    This work investigates the dispersion performance of fine lactose particles as function of processing time, and compares it to the API, using Beclomethasone Dipropionate (BDP) as model API. The total load of fine particles is kept constant in the formulations while the proportions of API and lactose fines are varied. Fine particle assessment demonstrates that the lactose fines have higher dispersibility than the API. For standard formulations, processing time has a limited effect on the Fine Particle Fraction (FPF). For formulations containing magnesium stearate (MgSt), FPF of BDP is heavily influenced by processing time, with an initial increase, followed by a decrease at longer mixing times. An equation modeling the observed behavior is presented. Surprisingly, the dispersibility of the lactose fines present in the same formulation remains unaffected by mixing time. Magnesium analysis demonstrates that MgSt is transferred to the fine particles during the mixing process, thus lubrication both BDP and lactose fines, which leads to an increased FPF. Dry particle sizing of the formulations reveals a loss of fine particles at longer mixing times. Incorporation of fine particles into the carrier surfaces is believed to be behind this, and is hence a mechanism of importance as regards the dispersion performance of dry powders for inhalation.

  16. Aerosolizable gold nano-in-micro dry powder formulations for theragnosis and lung delivery.

    PubMed

    Silva, A Sofia; Sousa, Ana M; Cabral, Renato P; Silva, Marta C; Costa, Clarinda; Miguel, Sónia P; Bonifácio, Vasco D B; Casimiro, Teresa; Correia, Ilídio J; Aguiar-Ricardo, Ana

    2017-03-15

    Functionalized gold nanoparticles (AuNPs) have been widely investigated as promising multifunctional nanosystems for the theragnosis of lung cancer, the most common and prominent cause of cancer death worldwide. Nevertheless, nanoparticles are not in appropriate sizes for an accurate deep lung delivery and the lack of locally and effective delivery of therapeutic biomolecules to the deep lungs is, in fact, the major cause of low therapeutic outcome. Herein we incorporate, for the first time, AuNPs into respirable microparticles. AuNPs were functionalized with biocompatible oligo(2-oxazoline)-based optically stable fluorescent coatings, and conjugated with a laminin peptide (YIGSR) for targeted lung cancer delivery. These POxylated AuNPs were then incorporated into a chitosan matrix by a clean process, supercritical CO2-assisted spray drying (SASD), yielding nano-in-micro clean ultrafine dry powder formulations. The engineered formulations present the adequate morphology and flowability to reach the deep lung, with aerodynamic sizes ranging 3.2-3.8μm, and excellent fine particle fraction (FPF) (FPF of 47% for CHT-bearing targeted AuNPs). The optimal biodegradation and release profiles enabled a sustained and controlled release of the embedded nanoparticles, with enhanced cellular uptake, opening new prospects for future lung theragnosis.

  17. New aspects of developing a dry powder inhalation formulation applying the quality-by-design approach.

    PubMed

    Pallagi, Edina; Karimi, Keyhaneh; Ambrus, Rita; Szabó-Révész, Piroska; Csóka, Ildikó

    2016-09-10

    The current work outlines the application of an up-to-date and regulatory-based pharmaceutical quality management method, applied as a new development concept in the process of formulating dry powder inhalation systems (DPIs). According to the Quality by Design (QbD) methodology and Risk Assessment (RA) thinking, a mannitol based co-spray dried formula was produced as a model dosage form with meloxicam as the model active agent. The concept and the elements of the QbD approach (regarding its systemic, scientific, risk-based, holistic, and proactive nature with defined steps for pharmaceutical development), as well as the experimental drug formulation (including the technological parameters assessed and the methods and processes applied) are described in the current paper. Findings of the QbD based theoretical prediction and the results of the experimental development are compared and presented. Characteristics of the developed end-product were in correlation with the predictions, and all data were confirmed by the relevant results of the in vitro investigations. These results support the importance of using the QbD approach in new drug formulation, and prove its good usability in the early development process of DPIs. This innovative formulation technology and product appear to have a great potential in pulmonary drug delivery.

  18. Spray dried inhalable ciprofloxacin powder with improved aerosolisation and antimicrobial activity.

    PubMed

    Osman, Rihab; Kan, Pei Lee; Awad, Gehanne; Mortada, Nahed; El-Shamy, Abd-Elhameed; Alpar, Oya

    2013-06-05

    In this study, the spray drying technique was used to prepare ciprofloxacin microparticles (CFX-MPs) for pulmonary administration. By virtue of its amphoteric properties, CFX was dissolved in either a slightly alkaline or acidic solution depending on the used polymer. Dextran and chitosan were used to prepare the MPs and modify the release characteristics of the drug. Particle surface modification was done with either DPPC or PEG. The effects of the manufacturing and formulation parameters on the drug-polymer interactions were investigated by thermal analysis and infrared spectroscopy. CFX-MPs showed improved aerosolisation properties and the encapsulated drug possessed high antimicrobial activity against two of the common and resistant respiratory pathogens: Pseudomonas aeruginosa and Staphylococus aureus. MPs were safe on the lung epithelial cells. Modulation of particle characteristics and drug release was possible by altering not only the polymer but also the type of the acid from which the powders were spray dried. MPs prepared with glutamic and aspartic acids showed better characteristics than those prepared with acetic and hydrochloric acids. Dextran modified particles showed improved aerosolisation properties and safety on lung epithelial cells.

  19. Electrochemical properties of MnS-C and MnO-C composite powders prepared via spray drying process

    NASA Astrophysics Data System (ADS)

    Jeon, Kyung Min; Cho, Jung Sang; Kang, Yun Chan

    2015-11-01

    Spherical micron-sized MnS-C and MnO-C composite powders are successfully prepared by post-treating the spray-dried precursor powders. Dextrin, which is used as the carbon source material, plays a key role in the preparation of the composite powders with regular morphologies; the bare MnS and MnO powders prepared from the spray solution without dextrin have irregular morphologies. The MnS-C composite powders prepared from the spray solution containing 17 g L-1 of dextrin have mixed crystal structures of α- and γ-MnS phases. These powders exhibit superior electrochemical properties compared with those of their MnS and MnO-C counterparts. For example, at a current density of 0.5 A g-1, the MnO-C powders have a 100th-cycle discharge capacity of 321 mA h g-1; the corresponding discharge capacities of the MnS powders prepared from spray solutions containing 0, 17, and 50 g L-1 of dextrin are 501, 786, and 636 mA h g-1, respectively.

  20. Airborne Measurements of Carbonaceous Aerosols in Southern Africa during the Dry Biomass Burning Season

    NASA Technical Reports Server (NTRS)

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2003-01-01

    Particulate matter collected aboard the University of Washington's (UW) Convair-580 research aircrafi over southem Afiica during the dry biomass burning season was analyzed for total carbon (TC), organic carbon (OC), and black carbon (BC) contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the TC collected. Consequently, conclusions derived from the data are greatly dependent on whether or not OC concentrations are corrected for this artifact. For example, the estimated aerosol coalbedo (1 - single scattering albedo (SSA)), which is a measure of aerosol absorption, of the biomass smoke samples is 60% larger using corrected OC concentrations. Thus, the corrected data imply that the biomass smoke is 60% more absorbing than do the uncorrected data. The BC to (corrected) OC mass ratio (BC/OC) of smoke plume samples (0.18 plus or minus 0.06) is lower than that of samples collected in the regional haze (0.25 plus or minus 0.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three quarters of the aerosol burden in the regional haze, while other souxes (e.g., fossil fuel burning) contribute the remainder.

  1. Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season

    SciTech Connect

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2002-06-17

    Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60 percent larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60 percent more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18/2610.06) is lower than that of samples collected in the regional haze (0.25/2610.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

  2. Application of spray granulation for conversion of a nanosuspension into a dry powder form.

    PubMed

    Bose, Sonali; Schenck, Daniel; Ghosh, Indrajit; Hollywood, Al; Maulit, Ester; Ruegger, Colleen

    2012-08-30

    The in vivo effect of particle agglomeration after drying of nanoparticles has not been extensively studied till date based on current literature review. The purpose of this research was to evaluate the feasibility of spray granulation as a processing method to convert a nanosuspension of a poorly water soluble drug into a solid dosage form and to evaluate the effect of the transformation into a solid powder on the in vivo exposure in beagle dogs. Formulation variables like the level of stabilizer in the nanosuspension formulation, granulation substrate and drug loading in the granulation were evaluated. The granules were characterized for moisture content, drug content, particle size, crystallinity and in vitro dissolution rate. Granulations with 10% drug loading showed dissolution profiles comparable to the nanosuspension, slightly slower dissolution profiles were observed at 20% drug loading. This can be attributed to an increase in the surface hydrophobicity at a higher drug loading and the formation of agglomerates that were harder to disintegrate, thereby compromising the dissolution rate. An in vivo PK study in beagle dogs showed an 8-fold increase and a 6-fold increase in the AUC(0-48) from the nanosuspension and dried nanosuspension formulations respectively compared to the coarse suspension. Also, the nanosuspension and dried nanosuspension formulations showed a 12-fold and 8-fold increase in the C(max) respectively compared to the coarse suspension. This shows the feasibility of using spray granulation as a processing method to convert a nanosuspension into a solid dosage form with improved in vivo exposure compared to the coarse suspension formulation.

  3. A GCM investigation of impact of aerosols on the precipitation in Amazon during the dry to wet transition

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Liou, K. N.; Jiang, J. H.; Fu, R.; Lu, Sarah; Xue, Y.

    2016-06-01

    The climatic effects of aerosols on the precipitation over the Amazon during the dry to wet transition period have been investigated using an atmospheric general circulation model, NCEP/AGCM, and the aerosol climatology data. We found increased instability during the dry season and delayed wet season onset with aerosols included in the model simulation, leading to the delay of the maximum precipitation over the Amazon by about half a month. In particular, our GCM simulations show that surface solar flux is reduced in the Amazon due to the absorption and scattering of the solar radiation by aerosols, leading to decreased surface temperature. Reduced surface solar flux is balanced by decreases in both surface sensible heat and latent heat fluxes. During the wet season, the subtropical system over the Amazon has a shallower convection. With the inclusion of aerosols in the simulation, precipitation in the rainy season over the Amazon decreases in the major rainfall band, which partially corrects the overestimate of the simulated precipitation in that region. The reduced surface temperature by aerosols is also coupled with a warming in the middle troposphere, leading to increased atmosphere stability and moisture divergence over the Amazon. However, during the dry season when the convective system is stronger over the Amazon, rainfall increases in that region due to the warming of the air over the upper troposphere produced by biomass burning aerosols, which produces an anomalous upward motion and a convergence of moisture flux over the Amazon and draws the moisture and precipitation further inland. Therefore, aerosol effects on precipitation depend on the large-scale atmospheric stability, resulting in their different roles over the Amazon during the dry and wet seasons.

  4. Dry Lung as a Physical Model in Studies of Aerosol Deposition.

    PubMed

    Morozov, Victor N; Kanev, Igor L

    2015-10-01

    A new physical model was developed to evaluate the deposition of micro- and nanoaerosol particles (NAPs) into the lungs as a function of size and charges. The model was manufactured of a dry, inflated swine lung produced by Nasco company (Fort Atkinson, WI). The dry lung was cut into two lobes and a conductive tube was glued into the bronchial tube. The upper 1-2-mm-thick layer of the lung lobe was removed with a razor blade to expose the alveoli. The lobe was further enclosed into a plastic bag and placed within a metalized plastic box. The probability of aerosol deposition was calculated by comparing the size distribution of NAPs passed through the lung with that of control, where aerosol passed through a box bypassing the lung. Using this new lung model, it was demonstrated that charged NAPs are deposited inside the lung substantially more efficiently than neutral ones. It was also demonstrated that deposition of neutral NAPs well fits prediction of the Multiple-Path Particle Dosimetry (MPPD) model developed by the Applied Research Associates, Inc. (ARA).

  5. Coordinated Airborne, Spaceborne, and Ground-Based Measurements of Massive, Thick Aerosol Layers During the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).

  6. Coordinated Airborne, Spaceborne and Ground-based Measurements of Massive Thick Aerosol Layers during the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J. R.; Torres, O.

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (lambda = 0.354- 1.557 microns), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths fiom the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).

  7. Effect of pre-treatments and drying methods on quality attributes of sweet bell-pepper (Capsicum annum) powder.

    PubMed

    Sharma, Rakesh; Joshi, V K; Kaushal, M

    2015-06-01

    Pre-treatments and methods of drying for producing good quality dried bell pepper powder for use in the ready-to-eat (RTE) food products were optimized. Out of various pre-treatments used (blanching in boiling water, KMS, CA and combination of KMS + CA at different concentrations), soaking of bell pepper shreds in KMS@ 0.20 % + CA@ 0.50 % after blanching fasten the drying process (19.75 h) compared to control (22.60 h), when dried in mechanical dehydrator at 58 ± 2 °C. Blanching prior to drying improved the rate of drying and produced product with lower acidity (1.25 %). The samples (T7) treated with KMS@ 0.20 % + CA@ 0.50 % significantly (p < 0.05) retained the ascorbic acid content (47.75 mg/100 g) and also attained highest score for colour (8.0), texture (7.5) and overall acceptability (7.5) compared to rest of the treatments. Among different methods of drying, pre-treated bell peppers dried in solar poly tunnel drier produced bright red coloured powder with relatively higher amounts of sugars and ascorbic acid content, hence was optimized. Visual lump formation was observed at 19.75 % and 18.50 % critical moisture contents, which equilibrated at 42 % and 45 % RH for bell pepper powders dried in a mechanical dehydrator and solar poly tunnel drier, respectively.

  8. SECONDARY ORGANIC AEROSOL FORMATION FROM THE OXIDATION OF AROMATIC HYDROCARBONS IN THE PRESENCE OF DRY SUBMICRON AMMONIUM SULFATE AEROSOL

    EPA Science Inventory

    A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas-aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds ...

  9. Formation of anisotropic Tl-1212, Tl-2212, Tl-1223 and Tl-2223 particles using aerosol flow reacted powders

    SciTech Connect

    Paranthaman, M.; Goyal, A.; Heatherly, D.E.; Kroeger, D.M.

    1994-12-31

    Highly anisotropic particles of Tl-1212, Tl-2212, Tl-1223 and Tl-2223 superconductors were grown. The Tl-free precursor powders with the compositions Ba{sub 1}Ca{sub 2}Cu{sub 3}Ag{sub 0.37}O{sub 6} and Ba{sub 2}Ca{sub 2}Cu{sub 3}Ag{sub 0.37}O{sub 7} were prepared using an aerosol flow reactor. These precursor powders were then post-annealed in 0.1 atm oxygen at 700 C for 4h to reduce the carbon present and mixed with Tl{sub 2}O{sub 3} (typical composition of Tl{sub x}; x = 0.6--1.0). The Tl-containing powders were heated in sealed gold tubes between 650--890 C for various times. X-ray diffraction showed that the Tl-2212 and Tl-2223 phases were stable over a wide range of temperatures. Scanning electron microscopy showed evidence for the presence of high aspect-ratio particles. These highly anisotropic particles may be of interest for the preparation of powder-in-tube and other powder deposited conductors, for current leads, and for grain alignment studies.

  10. Preclinical Dose Ranging Studies of a Novel Dry Powder Norovirus Vaccine Formulation

    PubMed Central

    Springer, Michael J.; Ni, Yawei; Finger-Baker, Isaac; Ball, Jordan P.; Hahn, Jessica; DiMarco, Ashley V.; Kobs, Dean; Horne, Bobbi; Talton, James D.; Cobb, Ronald R.

    2016-01-01

    Norovirus is the primary cause of viral gastroenteritis in humans with multiple genotypes currently circulating worldwide. The development of a successful norovirus vaccine is contingent on its ability to induce both systemic and mucosal antibody responses against a wide range of norovirus genotypes. Norovirus virus like particles (VLPs) are known to elicit systemic and mucosal immune responses when delivered intranasally. Incorporation of these VLPs into an intranasal powder vaccine offers the advantage of simplicity and induction of neutralizing systemic and mucosal antibodies. Nasal immunization, which provides the advantage of ease of administration and a mucosal delivery mechanism, faces the real issue of limited nasal residence time due to mucociliary clearance. Herein, we describe a novel dry powder (GelVac™) formulation of GI or GII.4 norovirus VLPs, two dominant circulating genotypes, to identify the optimal antigen dosages based on systemic and mucosal immune responses in guinea pigs. Systemic and mucosal immunogenicity of each of the VLPs was observed in a dose dependant manner. In addition, a boosting effect was observed after the second dosing of each VLP antigen. With the GelVac™ formulation, a total antigen dose of ≥15 µg was determined to be the maximally immunogenic dose for both GI and GII.4 norovirus VLP based on evaluation for 56 days. Taken together, these results indicate that norovirus VLPs could be used as potential vaccine candidates without using an immunostimilatory adjuvant and provides a basis for the development of a GelVac™ bivalent GI/GII.4 norovirus VLP vaccine. PMID:26873053

  11. Green ambrosia for Soil- Dry Cow Dung Powder: Rhexistasy to Biostasy

    NASA Astrophysics Data System (ADS)

    Bagla, Hemlata; Barot, Nisha

    2013-04-01

    "Greener ambrosia for Soil - Dry cow dung powder: Rhexistasy to Biostasy" Pedosphere, the soil with its biotic and abiotic component, is produced by lithosphere`s interactions with atmosphere, hydrosphere and biosphere. The theory of Biorhexistasy proposed by pedologist H. Erhart [1], describes two crucial climatic phases of soil i.e. Biostasy, period of soil formation and Rhexistasy, periods of soil erosion. Humus, the organic matter in soil, permits better aeration, enhances the absorption and releases nutrients, and makes the soil less susceptible to leaching and erosion [2], thus the agent of soil`s vitality. Mismanagement of soil, leads to the degradation of millions of acres of land through erosion, compaction, salinization and acidification. Among these threats salinity is a major abiotic stress reducing the yield of wide variety of crops all over the world [3]. It is been proved that Humic Acid (HA) treatment can ameliorate the deleterious effects of salt stress by increasing root growth, altering mineral uptake, and decreasing membrane damage, thus inducing salt tolerance in plants [4]. HA can be inexpensively incorporated into soils via different biowastes. Dry cow dung powder (DCP), is naturally available bio-organic, complex, polymorphic humified fecal matter, enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic - aromatic species such as HA, Fulvic Acid (FA) etc [5]. The microbial consortium enables DCP with considerable potentials for biodegradation and biotransformation of even saline soil and further contributes to many biogeochemical processes, boosting humus content of soil. Due to unambiguous biological, microbiological as well as chemical inert properties of DCP, it has been successfully utilized as a fertilizer and soil conditioner since ages in India, one of the leading agrarian countries of the world. Thus we summarize that DCP is one of the best contenders for the biostasy and desaliner of soil, aptly, soil

  12. Dry powder inhalation of macromolecules using novel PEG-co-polyester microparticle carriers.

    PubMed

    Tawfeek, Hesham M; Evans, Andrew R; Iftikhar, Abid; Mohammed, Afzal R; Shabir, Anjum; Somavarapu, Satyanarayana; Hutcheon, Gillian A; Saleem, Imran Y

    2013-01-30

    This study investigated optimizing the formulation parameters for encapsulation of a model mucinolytic enzyme, α-chymotrypsin (α-CH), within a novel polymer; poly(ethylene glycol)-co-poly(glycerol adipate-co-ω-pentadecalactone), PEG-co-(PGA-co-PDL) which were then applied to the formulation of DNase I. α-CH or DNase I loaded microparticles were prepared via spray drying from double emulsion (w(1)/o/w(2)) utilizing chloroform (CHF) as the organic solvent, L-leucine as a dispersibility enhancer and an internal aqueous phase (w(1)) containing PEG4500 or Pluronic(®) F-68 (PLF68). α-CH released from microparticles was investigated for bioactivity using the azocasein assay and the mucinolytic activity was assessed utilizing the degradation of mucin suspension assay. The chemical structure of PEG-co-(PGA-co-PDL) was characterized by (1)H NMR and FT-IR with both analyses confirming PEG incorporated into the polymer backbone, and any unreacted units removed. Optimum formulation α-CH-CHF/PLF68, 1% produced the highest bioactivity, enzyme encapsulation (20.08±3.91%), loading (22.31±4.34 μg/mg), FPF (fine particle fraction) (37.63±0.97%); FPD (fine particle dose) (179.88±9.43 μg), MMAD (mass median aerodynamic diameter) (2.95±1.61 μm), and the mucinolytic activity was equal to the native non-encapsulated enzyme up to 5h. DNase I-CHF/PLF68, 1% resulted in enzyme encapsulation (17.44±3.11%), loading (19.31±3.27 μg/mg) and activity (81.9±2.7%). The results indicate PEG-co-(PGA-co-PDL) can be considered as a potential biodegradable polymer carrier for dry powder inhalation of macromolecules for treatment of local pulmonary diseases.

  13. Physicochemical and in vitro deposition properties of salbutamol sulphate/ipratropium bromide and salbutamol sulphate/excipient spray dried mixtures for use in dry powder inhalers.

    PubMed

    Corrigan, Deirdre O; Corrigan, Owen I; Healy, Anne Marie

    2006-09-28

    The physicochemical and aerodynamic properties of spray dried powders of the drug/drug mixture salbutamol sulphate/ipratropium bromide were investigated. The in vitro deposition properties of spray dried salbutamol sulphate and the spray dried drug/excipient mixtures salbutamol sulphate/lactose and salbutamol sulphate/PEG were also determined. Spray drying ipratropium bromide monohydrate resulted in a crystalline material from both aqueous and ethanolic solution. The product spray dried from aqueous solution consisted mainly of ipratropium bromide anhydrous. There was evidence of the presence of another polymorphic form of ipratropium bromide. When spray dried from ethanolic solution the physicochemical characterisation suggested the presence of an ipratropium bromide solvate with some anhydrous ipratropium bromide. Co-spray drying salbutamol sulphate with ipratropium bromide resulted in amorphous composites, regardless of solvent used. Particles were spherical and of a size suitable for inhalation. Twin impinger studies showed an increase in the fine particle fraction (FPF) of spray dried salbutamol sulphate compared to micronised salbutamol sulphate. Co-spray dried salbutamol sulphate:ipratropium bromide 10:1 and 5:1 systems also showed an increase in FPF compared to micronised salbutamol sulphate. Most co-spray dried salbutamol sulphate/excipient systems investigated demonstrated FPFs greater than that of micronised drug alone. The exceptions to this were systems containing PEG 4000 20% or PEG 20,000 40% both of which had FPFs not significantly different from micronised salbutamol sulphate. These two systems were crystalline unlike most of the other spray dried composites examined which were amorphous in nature.

  14. Spinning-disk generation and drying of monodisperse solid aerosols with output concentrations sufficient for single-breath inhalation studies.

    PubMed

    Byron, P R; Hickey, A J

    1987-01-01

    The air-driven spinning-disk aerosol generator was modified to allow the production of monodisperse dry spherical aerosols of disodium fluorescein (as model solute) in high output concentrations. Output concentrations were determined by filtration. Optical and aerodynamic size distributions were determined microscopically (after electrostatic precipitation) and by cascade impaction. The generator housing allowed the entrainment of 25-microns primary aqueous solution droplets in a 10-L X min-1 downward flow of dry, filtered air. Internal equipment surfaces were machined flush and polished to minimize aerosol losses. Primary droplets were dried within a stainless steel pipe encased in a tube furnace. Water vapor was removed by diffusion drying. Disk-driven air, satellite droplets, and additional dilution air were vented to waste without using a vacuum. Generator yields were increased by reducing the size of the satellite droplet extraction gap. Aerosols were generated reproducibly by delivering aqueous solutions at a rate of 0.2 mL X min-1 to the center of the disk and spinning at 1000 rps. Dry aerosols, with mass median aerodynamic diameters of 2, 4.9, and 9 microns, were produced in concentrations of 0.89, 5.48, and 54.6 micrograms X L-1 from aqueous solutions containing 0.0374, 0.584, and 3.4% solute by weight. Geometric standard deviations were less than 1.2 in all cases. Concentrations are several times higher than others in the literature and are suitable for single-breath inhalation studies of therapeutic aerosol deposition and effect.

  15. Structural, functional and in vitro digestion characteristics of spray dried fish roe powder stabilised with gum arabic.

    PubMed

    Binsi, P K; Natasha, Nayak; Sarkar, P C; Muhamed Ashraf, P; George, Ninan; Ravishankar, C N

    2017-04-15

    Fish roes are considered as nutritionally valuable for their high content of essential fatty acids and amino acids. However, roe lipids undergo considerable extent of oxidation during processing and storage, imparting objectionable bitter taste and rancid flavour to roe products. Hence, the objective of the study was to reconstitute the roe mass and microencapsulate lipid fraction, so that small oil droplets are entrapped within a dry matrix of roe proteins during spray drying. Prior to spray drying, the emulsion was stabilised with gum arabic as it also act as a co-wall polymer. The microscopic images indicated presence of larger aggregates in unstabilised powder (RC) compared to well-separated particles in stabilised powder (RG). Incorporation of gum arabic retarded rancidity development during storage. In vitro digestive pattern of roe powder indicated higher amount of oil release in RG. These observations highlight the potential of converting the soft textured carp roe mass into stable fish roe powder with superior storage stability and functionality.

  16. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.

    PubMed

    Milenkovic, J; Alexopoulos, A H; Kiparissides, C

    2014-01-30

    In this work the dynamic flow as well as the particle motion and deposition in a commercial dry powder inhaler, DPI (i.e., Turbuhaler) is described using computational fluid dynamics, CFD. The dynamic flow model presented here is an extension of a steady flow model previously described in Milenkovic et al. (2013). The model integrates CFD simulations for dynamic flow, an Eulerian-fluid/Lagrangian-particle description of particle motion as well as a particle/wall interaction model providing the sticking efficiency of particles colliding with the DPI walls. The dynamic flow is imposed by a time varying outlet pressure and the particle injections into the DPI are assumed to occur instantaneously and follow a prescribed particle size distribution, PSD. The total particle deposition and the production of fine particles in the DPI are determined for different peak inspiratory flow rates, PIFR, flow increase rates, FIR, and particle injection times. The simulation results for particle deposition are found to agree well with available experimental data for different values of PIFR and FIR. The predicted values of fine particle fraction are in agreement with available experimental results when the mean size of the injected PSD is taken to depend on the PIFR.

  17. Lung deposition of salbutamol in healthy human subjects from the MAGhaler dry powder inhaler.

    PubMed

    Newman, S; Malik, S; Hirst, R; Pitcairn, G; Heide, A; Pabst, J; Dinkelaker, A; Fleischer, W

    2002-12-01

    The MAGhaler (Mundipharma GmbH) is a multidose dry powder inhaler (DPI) containing a novel formulation of drug and lactose compacted by an isostatic pressing technique (GGU GmbH). On actuation, a precise dose is metered from a compacted ring-shaped drug tablet. In this study, the lung deposition of salbutamol from this device has been assessed. Ten healthy non-smoking subjects completed a two-way cross-over study assessing the pulmonary deposition of salbutamol (200 microg) from the MAGhaler at high (60 l/min) and low (30 l/min) peak inhaled flow rates (PIFRs), representing maximal and sub-maximal inspiratory efforts. The formulation was radiolabelled with 99mTc, and lung and oropharyngeal depositions were quantified by gamma scintigraphyThe mean (SD)% ofthe delivered dose deposited in the lungs was 26.4 (4.3)% at 60 l/min and 21.1 (5.1)% at 30 l/min (P < 0.05), corresponding to mean lung depositions of 52.8 and 42.2 microg salbutamol, respectively. The distribution of drug within different lung regions did not vary significantly with inhaled flow rate. The data provided proof of concept for the novel inhaler device and the innovative drug formulation. In comparison with previous deposition data obtained with other DPIs, the lung deposition was relatively high, relatively reproducible (coefficient of variation 16% at 60 l/min) and relatively insensitive to the change in peak inhaled flow rate.

  18. Dermal exposure to dry powder spray paints using PXRF and the method of Dirichlet tesselations.

    PubMed

    Roff, Martin; Bagon, David A; Chambers, Helen; Dilworth, E Martin; Warren, Nicholas

    2004-04-01

    This paper describes workplace dermal exposure measurements that were carried out by the Health and Safety Laboratory as part of the EU RISKOFDERM project to measure dust contamination. Exposure to dry powder spray paints was measured at five sites on 12 subjects. Twenty-two samples were obtained, of which eight contained triglycidyl isocyanurate (TGIC) and 14 did not. All subjects wore Tyvek whole body oversuits and some wore sampling gloves. These were either analysed in their entirety to extract the TGIC or surface scanned over representative areas using a portable X-ray fluorescence spectrometer (PXRF) to detect barium or titanium in the fillers of the paints. The method of Dirichlet tessellation was used to map the scans and the technique was developed further for these studies to extend measurements to gloves and to take limits of detection into consideration. The PXRF allowed dusts to be measured in situ that would otherwise be difficult to extract from the material and analyse by other means. The geometric mean surface loading rate of the 22 oversuits was 43 micro g/cm/(2)/h (GSD = 6.0) and of the 23 pairs of sampling gloves was 970 micro g/cm(2)/h (GSD = 8.6). Exposure patterns could be attributed to the arrangements of the subjects, spray booths and the workpieces. Similar exposures were found for TGIC and titanium fillers in factories with similar methods of ventilation.

  19. Edetate calcium disodium nanoparticle dry powder inhalation: a novel approach against heavy metal decorporation.

    PubMed

    Kumar, Neeraj; Soni, Sandeep; Jaimini, Abhinav; Ahmad, Farhan Jalees; Bhatnagar, Aseem; Mittal, Gaurav

    2011-09-15

    Objective was to develop and characterize nano-edetate calcium disodium (Ca-Na(2)EDTA) dry powder inhaler (DPI), and assess its in vitro and in vivo deposition using pharmacoscintigraphy techniques. Factors influencing nanoparticle formation including concentration of drug, polymer solution and stirring rate were determined. Optimized formulation was characterized with the help of SEM, TEM and Malvern Zetasizer studies. Any change in physical characteristics after nanosizing was determined by FT-IR, XRD and DSC studies. Anderson cascade impaction showed that nano Ca-Na(2)EDTA exhibited significantly higher respirable fraction of 67.35±2.27% and 66.40±2.87% by scintigraphic and spectroscopic analysis respectively, as compared to 10.08±1.17% and 9.36±1.02% respectively for micronized form. Ventilation lung scintigraphy done in 12 volunteers showed significant increase in drug delivery till alveolar region with nano Ca-Na(2)EDTA. The developed formulation may have a role in neutralizing heavy metal toxicity through inhalation route, including radio-metal contamination.

  20. Moisture Sorption and Thermodynamic Properties of Vacuum-Dried Capsosiphon fulvescens Powder

    PubMed Central

    Zuo, Li; Rhim, Jong-Whan; Lee, Jun Ho

    2015-01-01

    The moisture sorption isotherms of vacuum-dried edible green alga (Capsosiphon fulvescens) powders were determined at 25, 35, and 45°C and water activity (aw) in the range of 0.11~0.94. An inversion effect of temperature was found at high water activity (>0.75). Various mathematical models were fitted to the experimental data, and Brunauer, Emmett, and Teller model was found to be the most suitable model describing the relationship between equilibrium moisture content and water activity (<0.45). Henderson model could also provide excellent agreement between the experimental and predicted values despite of the intersection point. Net isosteric heat of adsorption decreased from 15.77 to 9.08 kJ/mol with an increase in equilibrium moisture content from 0.055 to 0.090 kg H2O/kg solids. The isokinetic temperature (Tβ) was 434.79 K, at which all the adsorption reactions took place at the same rate. The enthalpy-entropy compensation suggested that the mechanism of the adsorption process was shown to be enthalpy-driven. PMID:26451360

  1. Preparation and characterization of physically modified glass beads used as model carriers in dry powder inhalers.

    PubMed

    Zellnitz, Sarah; Redlinger-Pohn, Jakob Dominik; Kappl, Michael; Schroettner, Hartmuth; Urbanetz, Nora Anne

    2013-04-15

    The aim of this work is the physical modification and characterization of the surface topography of glass beads used as model carriers in dry powder inhalers (DPIs). By surface modification the contact area between drug and carrier and thereby interparticle forces may be modified. Thus the performance of DPIs that relies on interparticle interactions may be improved. Glass beads were chosen as model carriers because various prospects of physical surface modification may be applied without affecting other factors also impacting interparticle interactions like particle size and shape. To generate rough surfaces glass beads were processed mechanically by friction and impaction in a ball mill with different grinding materials that were smaller and harder with respect to the glass beads. By varying the grinding time (4 h, 8 h) and by using different grinding media (tungsten carbide, quartz) surfaces with different shades of roughness were generated. Depending on the hardness of the grinding material and the grinding time the surface roughness was more or less pronounced. Surface roughness parameters and specific surface area were determined via several complementary techniques in order to get an enhanced understanding of the impact of the modifying procedure on the surface properties of the glass beads.

  2. Pulmonary selectivity and local pharmacokinetics of ambroxol hydrochloride dry powder inhalation in rat.

    PubMed

    Ren, Y C; Wang, L; He, H B; Tang, X

    2009-05-01

    The aim of this study was to investigate the local pharmacokinetics and site-specific target efficiency of ambroxol hydrochloride (AH) dry powder inhalation (DPI) by comparing lung epithelial lining fluid (ELF) and plasma AH levels after tracheal administration (TA) with those after intravenous administration. Twelve rats were divided into two groups, one of which was given AH DPI (20 mg/kg) via the trachea and the other was given the same dose AH by intravenous injection (i.v.). Afterwards, each group was subdivided into two groups. The concentration of AH in the ELF was determined by microdialysis in one group while the concentration of AH in plasma was determined in the other group. After AH DPI (20 mg/kg) was given via the trachea, AH achieved a high local concentration in ELF and reached a C(max) at 1.5 h in plasma. After the same dose AH was given by i.v., AH reached a C(max) in ELF at 1.25 h. The (AUC(0-t))(ELF)/(AUC(0-t))(plasma) ratio (1.05-2.25) after TA differed significantly from the ratio (0.029-0.039) observed after intravenous administration (p < 0.05). All these results indicate that AH DPI can be delivered to a specific targeted site and achieve high target efficiency in ELF. DPI could be a useful drug delivery system for AH therapy of pulmonary diseases.

  3. The suppression of enhanced bitterness intensity of macrolide dry syrup mixed with an acidic powder.

    PubMed

    Ishizaka, Toshihiko; Okada, Sachie; Takemoto, Eri; Tokuyama, Emi; Tsuji, Eriko; Mukai, Junji; Uchida, Takahiro

    2007-10-01

    The aim of the present study was to identify a medicine which strongly enhanced the bitterness of clarithromycin dry syrup (CAMD) when administered concomitantly and to develop a method to suppress this enhanced bitterness. The bitterness enhancement was evaluated not only by gustatory sensation tests but also using pH and taste sensor measurements of the mixed sample. A remarkable bitterness enhancement was found when CAMD was mixed with the acidic powder L-carbocysteine. The acidic pH (pH 3.40) of the suspension made from these two preparations, seemed to be due to enhanced release of clarithromycin caused by the dissolution of the alkaline polymer film-coating. Several methods for preventing this bitterness enhancement were investigated. Neither increasing the volume of water taken with the mixture, nor changing the ratio of CAMD:L-carbocysteine in the mixture, were effective in reducing the bitterness intensity of the CAMD/L-carbocysteine mixture. The best way to achieve taste masking was to first administer CAMD mixed with chocolate jelly, which has a neutral pH, followed by the L-carbocysteine suspension. Similar results were obtained for the bitterness suppression of azithromycin fine granules with L-carbocysteine. The chocolate jelly will be useful for taste masking of bitter macrolide drug formulations, when they need to be administered together with acidic drug formulations.

  4. Using acoustics to estimate inspiratory flow rate and drug removed from a dry powder inhaler.

    PubMed

    Holmes, Martin S; Seheult, Jansen; Geraghty, Colm; D'Arcy, Shona; Costello, Richard W; Reilly, Richard B

    2013-01-01

    Morbidity and mortality rates of chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD) are rising. There is a strong requirement for more effective management of these chronic diseases. Dry powder inhalers (DPIs) are one kind of devices currently employed to deliver medication aimed at controlling asthma and COPD symptoms. Despite their proven effectiveness when used correctly, some patients are unable to reach the inspiratory flow rate required to remove medication from the breath actuated devices and as a result, the medication does not reach the airways. This study employs an acoustic recording device, attached to a common DPI to record the audio signals of simulated inhalations. A rotameter was used to measure the flow rate through the inhaler while a milligram weighing scale was used to measure the amount of drug removed from each simulated inhalation. It was found that a strong correlation existed (R(2)>0.96) when average power, median amplitude, root mean square and mean absolute deviation were used to predict peak inspiratory flow rate. At a flow of 30 L/Min (mean absolute deviation=0.0049), it was found that 77% of the total emitted dose was removed from the inhaler. Results indicate that acoustic measurements may be used in the prediction of inspiratory flow rate and quantity of medication removed from an inhaler.

  5. Computer-aided design of dry powder inhalers using computational fluid dynamics to assess performance.

    PubMed

    Suwandecha, Tan; Wongpoowarak, Wibul; Srichana, Teerapol

    2016-01-01

    Dry powder inhalers (DPIs) are gaining popularity for the delivery of drugs. A cost effective and efficient delivery device is necessary. Developing new DPIs by modifying an existing device may be the simplest way to improve the performance of the devices. The aim of this research was to produce a new DPIs using computational fluid dynamics (CFD). The new DPIs took advantages of the Cyclohaler® and the Rotahaler®. We chose a combination of the capsule chamber of the Cyclohaler® and the mouthpiece and grid of the Rotahaler®. Computer-aided design models of the devices were created and evaluated using CFD. Prototype models were created and tested with the DPI dispersion experiments. The proposed model 3 device had a high turbulence with a good degree of deagglomeration in the CFD and the experiment data. The %fine particle fraction (FPF) was around 50% at 60 L/min. The mass median aerodynamic diameter was around 2.8-4 μm. The FPF were strongly correlated to the CFD-predicted turbulence and the mechanical impaction parameters. The drug retention in the capsule was only 5-7%. In summary, a simple modification of the Cyclohaler® and Rotahaler® could produce a better performing inhaler using the CFD-assisted design.

  6. Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Arpan A.; Pawar, Amol A.; Venkataraman, Chandra; Mehra, Anurag

    2015-01-01

    Drying of submicron solution aerosols, under controlled conditions, has been explored to prepare nanoparticles for drug delivery applications. A computational model of solution drop evaporation is developed to study the evolution of solute gradients inside the drop and predict the size and shell thickness of precipitating nanoparticles. The model considers evaporation as a two-stage process involving droplet shrinkage and shell growth. It was corroborated that droplet evaporation rate controls the solute distribution within a droplet and the resulting particle structure (solid or shell type). At higher gas temperatures, rapid build-up of solute near drop surface from high evaporation rates results in early attainment of critical supersaturation solubility and a steeper solute gradient, which favours formation of larger, shell-type particles. At lower gas temperatures, formation of smaller, solid nanoparticles is indicated. The computed size and shell thickness are in good agreement with experimentally prepared lipid nanoparticles. This study indicates that solid or shell structure of precipitated nanoparticles is strongly affected by evaporation rate, while initial solute concentration in the precursor solution and atomized droplet size affect shell thickness. For the gas temperatures considered, evaporative cooling leads to droplet temperature below the melting point of the lipid solute. Thus, we conclude that control over nanoparticle size and structure, of thermolabile precursor materials suitable for drug delivery, can be achieved by controlling evaporation rates, through selection of aerosol processing conditions.

  7. Superiority of wet-milled over dry-milled superfine powdered activated carbon for adsorptive 2-methylisoborneol removal.

    PubMed

    Pan, Long; Matsui, Yoshihiko; Matsushita, Taku; Shirasaki, Nobutaka

    2016-10-01

    Superfine powdered activated carbon (SPAC), which is produced from conventionally sized powdered activated carbon (PAC) by wet milling in a bead mill, has attracted attention for its high adsorptive removal ability in both research and practice. In this study, the performance of dry-milled SPAC was investigated. 2-Methylisoborneol (MIB), an earthy-musty compound commonly targeted by water treatment systems, was used as the target adsorbate. Dry-milled SPAC exhibited lower adsorptive removal of MIB than wet-milled SPAC, even when both SPACs were produced from the same PAC and were composed of particles of the same size. One reason for the lower removal of MIB by the dry-milled SPAC was a higher degree of aggregation in the dry-milled SPAC after production; as a result the apparent particle size of dry-milled SPAC was larger than that of wet-milled SPAC. The dry-milled SPAC was also more negatively charged than the wet-milled SPAC, and, owing to its higher repulsion, it was more amenable to dispersion by ultrasonication. However, even after the dry-milled SPAC was ultrasonicated so that its apparent particle size was similar to or less than that of the wet-milled SPAC, the dry-milled SPAC was still inferior in adsorptive removal to the wet-milled SPAC. Therefore, another reason for the lower adsorptive removal of dry-milled SPAC was its lower equilibrium adsorption capacity due to the oxidation during the milling. The adsorption kinetics by SPACs with different degrees of particle aggregation were successfully simulated by a pore diffusion model and a fractal aggregation model.

  8. A study comparing the clinical pharmacokinetics, pharmacodynamics, and tolerability of triamcinolone acetonide HFA-134a metered-dose inhaler and budesonide dry-powder inhaler following inhalation administration.

    PubMed

    Argenti, D; Shah, B; Heald, D

    2000-05-01

    The impending phaseout of chlorofluorocarbons as propellants in pressurized metered-dose inhalers used in the treatment of asthma has resulted in the development of alternative devices to deliver drug to the pulmonary airways. These alternative devices include metered-dose inhalers using environmentally friendly hydroflurocarbon propellants and breath-actuated dry-powder inhalers. The purpose of this study was to compare the single- and multiple-dose pharmacokinetics, pharmacodynamics, and tolerability of a newly developed hydroflurocarbon formulation of triamcinolone acetonide (Azmacort HFA 225 mcg Inhalation Aerosol) to that of the dry-powder formulation of budesonide (Pulmicort Turbuhaler 200 mcg). This three-way crossover study used 18 normal healthy subjects each receiving a 675 mcg dose of triamcinolone acetonide, 600 mcg dose of budesonide, or placebo twice a day for 5 days. Serial plasma samples were collected after the first and last dose of test medication for pharmacokinetic analysis. Pharmacodynamics were assessed by changes in hypothalamic-pituitary-adrenal axis function as measured by 8 a.m. serum cortisol, 24-hour overnight serum cortisol AUC(0-24), and 24-hour urinary-free cortisol after the last evening dose of test drug. Tolerability was assessed through physical examinations, vital signs, 12-lead ECG, routine clinical labs, and adverse events recording. Both compounds were systemically absorbed. However, no significant drug accumulation was noted with chronic dosing. Chronic dosing did result in a statistically significant 20% reduction in basal 24-hour serum cortisol AUC(0-24) for both compounds. There were no clinically significant abnormalities in physical examination, vital signs, 12-lead ECG, or routine clinical labs noted during the study. Overall, the study drugs were well tolerated, with adverse events characterized as mild to moderate in severity.

  9. Application of Freeze-Dried Powders of Genetically Engineered Microbial Strains as Adsorbents for Rare Earth Metal Ions.

    PubMed

    Moriwaki, Hiroshi; Masuda, Reiko; Yamazaki, Yuki; Horiuchi, Kaoru; Miyashita, Mari; Kasahara, Jun; Tanaka, Tatsuhito; Yamamoto, Hiroki

    2016-10-12

    The adsorption behaviors of the rare earth metal ions onto freeze-dried powders of genetically engineered microbial strains were compared. Cell powders obtained from four kinds of strains, Bacillus subtilis 168 wild type (WT), lipoteichoic acid-defective (ΔLTA), wall teichoic acid-defective (ΔWTA), and cell wall hydrolases-defective (EFKYOJLp) strains, were used as an adsorbent of the rare earth metal ions at pH 3. The adsorption ability of the rare earth metal ions was in the order of EFKYOJLp > WT > ΔLTA > ΔWTA. The order was the same as the order of the phosphorus quantity of the strains. This result indicates that the main adsorption sites for the ions are the phosphate groups and the teichoic acids, LTA and WTA, that contribute to the adsorption of the rare earth metal ions onto the cell walls. The contribution of WTA was clearly greater than that of LTA. Each microbial powder was added to a solution containing 16 kinds of rare earth metal ions, and the removals (%) of each rare earth metal ion were obtained. The scandium ion showed the highest removal (%), while that of the lanthanum ion was the lowest for all the microbial powders. Differences in the distribution coefficients between the kinds of lanthanide ions by the EFKYOJLp and ΔWTA powders were greater than those of the other strains. Therefore, the EFKYOJLp and ΔWTA powders could be applicable for the selective extraction of the lanthanide ions. The ΔLTA powder coagulated by mixing with a rare earth metal ion, although no sedimentation of the WT or ΔWTA powder with a rare earth metal ion was observed under the same conditions. The EFKYOJLp powder was also coagulated, but its flocculating activity was lower than that of ΔLTA. The ΔLTA and EFKYOJLp powders have a long shape compared to those of the WT or ΔWTA strain. The shapes of the cells will play an important role in the sedimentation of the microbial powders with rare earth metal ions. As the results, three kinds of the genetically

  10. Assessment of dry and wet atmospheric deposits of radioactive aerosols: application to Fukushima radiocaesium fallout.

    PubMed

    Gonze, Marc-André; Renaud, Philippe; Korsakissok, Irène; Kato, Hiroaki; Hinton, Thomas G; Mourlon, Christophe; Simon-Cornu, Marie

    2014-10-07

    The Fukushima Dai-ichi nuclear accident led to massive atmospheric deposition of radioactive substances onto the land surfaces. The spatial distribution of deposits has been estimated by Japanese authorities for gamma-emitting radionuclides through either airborne monitoring surveys (since April 2011) or in situ gamma-ray spectrometry of bare soil areas (since summer 2011). We demonstrate that significant differences exist between the two surveys for radiocaesium isotopes and that these differences can be related to dry deposits through the use of physically based relationships involving aerosol deposition velocities. The methodology, which has been applied to cesium-134 and cesium-137 deposits within 80-km of the nuclear site, provides reasonable spatial estimations of dry and wet deposits that are discussed and compared to atmospheric numerical simulations from the Japanese Atomic Energy Agency and the French Institute of Radioprotection and Nuclear Safety. As a complementary approach to numerical simulations, this field-based analysis has the possibility to contribute information that can be applied to the understanding and assessment of dose impacts to human populations and the environment around Fukushima.

  11. Sustained release coating of tablets with Eudragit(®) RS/RL using a novel electrostatic dry powder coating process.

    PubMed

    Qiao, Mingxi; Luo, Yanfeng; Zhang, Liqiang; Ma, Yingliang; Stephenson, Tyler Shawn; Zhu, Jesse

    2010-10-31

    The objectives of this study were to develop an electrostatic dry powder coating process for sustained coating tablets with Eudragit(®) RS/RL and to investigate the effects of various factors and operating conditions on the coating process and drug release profile. A liquid plasticizer (triethyl citrate) was sprayed onto the surface of the tablets followed by spraying coating powder by an electrostatic spray gun. The powder coated tablets were cured at elevated temperature for a film formation. Liquid plasticizer played important roles in lowering down the glass transition temperature (T(g)) of the coating polymer and increasing the surface electrical conduction of tablet cores. Electrostatic assisted coating deposition was confirmed by the fact that higher coating level was obtained with electrical charging than the ones without it. The micrographs of scanning electron microscopy (SEM) of coated tablets showed that the film formation mainly occurred during the curing step. Higher curing temperature and longer curing time help enhance the film formation. The in vitro drug release profiles indicated that curing time, temperature, coating level and ratio of Eudragit(®) RS/RL were the main factors affecting the sustained release profile. The electrostatic dry powder coating process has been demonstrated to be an alternative for tablet sustained release coating with Eudragit(®) RS and RL.

  12. Evaluation of Genotoxicity and 28-day Oral Dose Toxicity on Freeze-dried Powder of Tenebrio molitor Larvae (Yellow Mealworm).

    PubMed

    Han, So-Ri; Yun, Eun-Young; Kim, Ji-Young; Hwang, Jae Sam; Jeong, Eun Ju; Moon, Kyoung-Sik

    2014-06-01

    The larval form of Tenebrio molitor (T. molitor) has been eaten in many countries and provides benefits as a new food source of protein for humans. However, no information exists regarding its safety for humans. The objective of the present study was to evaluate the genotoxicity and repeated dose oral toxicity of the freeze-dried powder of T. molitor larvae. The genotoxic potential was evaluated by a standard battery testing: bacterial reverse mutation test, in vitro chromosome aberration test, and in vivo micronucleus test. To assess the repeated dose toxicity, the powder was administered once daily by oral gavage to Sprague-Dawley (SD) rats at dose levels of 0, 300, 1000 and 3000 mg/kg/day for 28 days. The parameters which were applied to the study were mortality, clinical signs, body and organ weights, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings and histopathologic examination. The freezedried powder of T. molitor larvae was not mutagenic or clastogenic based on results of in vitro and in vivo genotoxicity assays. Furthermore, no treatment-related changes or findings were observed in any parameters in rats after 28 days oral administration. In conclusion, the freeze-dried powder of T. molitor larvae was considered to be non-genotoxic and the NOAEL (No Observed Adverse Effect Level) was determined to be 3000 mg/kg/day in both sexes of SD rats under our experimental conditions.

  13. Evaluation of Genotoxicity and 28-day Oral Dose Toxicity on Freeze-dried Powder of Tenebrio molitor Larvae (Yellow Mealworm)

    PubMed Central

    Han, So-Ri; Yun, Eun-Young; Kim, Ji-Young; Hwang, Jae Sam; Jeong, Eun Ju

    2014-01-01

    The larval form of Tenebrio molitor (T. molitor) has been eaten in many countries and provides benefits as a new food source of protein for humans. However, no information exists regarding its safety for humans. The objective of the present study was to evaluate the genotoxicity and repeated dose oral toxicity of the freeze-dried powder of T. molitor larvae. The genotoxic potential was evaluated by a standard battery testing: bacterial reverse mutation test, in vitro chromosome aberration test, and in vivo micronucleus test. To assess the repeated dose toxicity, the powder was administered once daily by oral gavage to Sprague-Dawley (SD) rats at dose levels of 0, 300, 1000 and 3000 mg/kg/day for 28 days. The parameters which were applied to the study were mortality, clinical signs, body and organ weights, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings and histopathologic examination. The freezedried powder of T. molitor larvae was not mutagenic or clastogenic based on results of in vitro and in vivo genotoxicity assays. Furthermore, no treatment-related changes or findings were observed in any parameters in rats after 28 days oral administration. In conclusion, the freeze-dried powder of T. molitor larvae was considered to be non-genotoxic and the NOAEL (No Observed Adverse Effect Level) was determined to be 3000 mg/kg/day in both sexes of SD rats under our experimental conditions. PMID:25071922

  14. Investigation of Appropriate Inhalation Technique for Mometasone Furoate Dry Powder Inhaler.

    PubMed

    Yokoyama, Haruko; Ito, Kanako; Mihashi, Hirokazu; Shiraishi, Yasuyuki; Takayanagi, Risa; Yamada, Yasuhiko

    2016-01-01

    The aim of this study was to establish an appropriate inhalation method with a mometasone furoate dry powder inhaler (MF-DPI). Utilizing a tone-based inhalation training device, we investigated the maximum peak inspiratory flow rate time (Tmax PIFR) and peak inspiratory flow rate (PIFR) to determine whether either had an influence on lung deposition with use of an MF-DPI. A low tone indicated a PIFR of 28 L/min and a high tone that of 40 L/min, while 60 L/min was considered to be the standard. We established an inhalation profile in consideration of a human inhalation pattern, in which Tmax PIFR was set at 0.5 s (Tmax PIFR 0.5 s) and 2.5 s (Tmax PIFR 2.5 s). The reference cut-off value derived with a cascade impactor test was used for evaluation of the rate of delivered dose in the lung, which was the amount of drug from stage 3 to 7 at all PIFRs. We then investigated the relationship of the fine particle fraction (FPF) with the claimed dose at Tmax PIFR of 0.5 s and PIFR. There were no differences among the Tmax PIFR values for the doses emitted from the device or for the rate of delivered doses in stages 3-7. However, FPF for the claimed dose at 40 L/min was significantly lower than that at 60 L/min, which was dependent on PIFR. Our results showed that PIFR but not Tmax PIFR has an effect on lung deposition after inhalation with an MF-DPI.

  15. Twelve- and 52-week safety of albuterol multidose dry powder inhaler in patients with persistent asthma

    PubMed Central

    Raphael, Gordon; Taveras, Herminia; Iverson, Harald; O’Brien, Christopher; Miller, David

    2016-01-01

    Abstract Objective: Evaluate the safety of albuterol multidose dry powder inhaler (MDPI), a novel, inhalation-driven device that does not require coordination of actuation with inhalation, in patients with persistent asthma. Methods: We report pooled safety data from two 12-week, multicenter, randomized, double-blind, repeat-dose, parallel-group studies and the 12-week double-blind phase of a 52-week multicenter safety study as well as safety data from the 40-week open-label phase of the 52-week safety study. In each study, eligible patients aged ≥12 years with persistent asthma received placebo MDPI or albuterol MDPI 180 µg (2 inhalations × 90 µg/inhalation) 4 times/day for 12 weeks. In the 40-week open-label phase of the 52-week safety study, patients received albuterol MDPI 180 μg (2 inhalations × 90 μg/inhalation) as needed (PRN). Results: During both 12-week studies and the 12-week double-blind phase of the 52-week study, adverse events were more common with placebo MDPI (50%; n = 333) than albuterol MDPI (40%; n = 321); most frequent were upper respiratory tract infection (placebo MDPI 11%, albuterol MDPI 10%), nasopharyngitis (6%, 5%), and headache (6%, 4%). Incidences of β2-agonist-related events (excluding headache) during the pooled 12-week dosing periods were low (≤1%) in both groups. The safety profile with albuterol MDPI PRN during the 40-week open-label phase [most frequent adverse events: nasopharyngitis (12%), sinusitis (11%), upper respiratory tract infection (9%)] was similar to that observed during the 12-week pooled analysis. Conclusions: The safety profile of albuterol MDPI 180 μg in these studies was comparable with placebo MDPI and consistent with the well-characterized profile of albuterol in patients with asthma. PMID:26369589

  16. Consumption of Dried Apple Peel Powder Increases Joint Function and Range of Motion

    PubMed Central

    Attridge, Victoria L.; Benson, Kathleen F.; Beaman, Joni L.; Carter, Steve G.; Ager, David

    2014-01-01

    Abstract The goal for this study was to evaluate the effects of consumption of dried apple peel powder (DAPP) on joint function and range of motion (ROM). Additional in vitro and clinical testing was performed to suggest specific mechanisms of action. An open-label clinical pilot study involved 12 healthy people with moderate loss of joint ROM and associated chronic pain. The subjects consumed 4.25 g DAPP daily for 12 weeks, with evaluations at baseline, 2, 4, 8, and 12 weeks. ROM was evaluated at each visit using dual digital inclinometry. Pain scores were collected using Visual Analogue Scales. Blood draws enabled testing of serum antioxidant protective capacity using the cellular antioxidant protection (CAP-e) bioassay. Additional in vitro testing involved testing of cyclooxygenase-2 (COX-2) and lipoxygenase inhibition, cellular antioxidant protection by the CAP-e bioassay, and formation of reactive oxygen species (ROS) by polymorphonuclear (PMN) cells by flow cytometry. Twelve weeks of consumption of DAPP was associated with improved ROM. DAPP provided antioxidants that were available to enter into and protect cells from oxidative damage in vitro, and consumption of DAPP for 12 weeks was associated with a statistically significant improvement in serum antioxidant protective status. DAPP inhibited both COX-2 and lipoxygenase enzymes, and pretreatment of inflammatory PMN cells with DAPP before inflammatory stimulus resulted in reduced ROS formation. This suggests multifaceted anti-inflammatory properties of DAPP. Consumption of DAPP was associated with improved joint function and improved serum antioxidant protection status. The observed pain reduction may be associated with the improved antioxidant status and linked to the apple polyphenols' anti-inflammatory effects. PMID:25271471

  17. Effect of inhaler design variables on paediatric use of dry powder inhalers.

    PubMed

    Lexmond, Anne J; Kruizinga, Tonnis J; Hagedoorn, Paul; Rottier, Bart L; Frijlink, Henderik W; de Boer, Anne H

    2014-01-01

    Age appropriateness is a major concern of pulmonary delivery devices, in particular of dry powder inhalers (DPIs), since their performance strongly depends on the inspiratory flow manoeuvre of the patient. Previous research on the use of DPIs by children focused mostly on specific DPIs or single inspiratory parameters. In this study, we investigated the requirements for a paediatric DPI more broadly using an instrumented test inhaler. Our primary aim was to assess the impact of airflow resistance on children's inspiratory flow profiles. Additionally, we investigated children's preferences for airflow resistance and mouthpiece design and how these relate to what may be most suitable for them. We tested 98 children (aged 4.7-12.6 years), of whom 91 were able to perform one or more correct inhalations through the test inhaler. We recorded flow profiles at five airflow resistances ranging from 0.025 to 0.055 kPa0.5.min.L-1 and computed various inspiratory flow parameters from these recordings. A sinuscope was used to observe any obstructions in the oral cavity during inhalation. 256 flow profiles were included for analysis. We found that both airflow resistance and the children's characteristics affect the inspiratory parameters. Our data suggest that a medium-high resistance is both suitable for and well appreciated by children aged 5-12 years. High incidences (up to 90%) of obstructions were found, which may restrict the use of DPIs by children. However, an oblong mouthpiece that was preferred the most appeared to positively affect the passageway through the oral cavity. To accommodate children from the age of 5 years onwards, a DPI should deliver a sufficiently high fine particle dose within an inhaled volume of 0.5 L and at a peak inspiratory flow rate of 25-40 L.min-1. We recommend taking these requirements into account for future paediatric inhaler development.

  18. Spray-dried powders containing tretinoin-loaded engineered lipid-core nanocapsules: development and photostability study.

    PubMed

    Marchiori, M C L; Ourique, A F; da Silva, C de B; Raffin, R P; Pohlmann, A R; Guterres, S S; Beck, R C R

    2012-03-01

    The influence of the spray-drying process on the ability of engineered lipid-core nanocapsules to protect tretinoin against UV degradation was evaluated. This approach represents a technological alternative to improve the microbiological stability, storage and transport properties of such formulations. Tretinoin-loaded lipid-core nanocapsules or tretinoin-loaded nanoemulsion were dispersed in lactose (10% w/v) and fed in the spray-drier to obtain a solid product (spray-dried powder containing tretinoin-loaded nanocapsules or nanoemulsion--SD-TTN-NCL or SD-TTN-NE, respectively). SD-TTN-NE showed a lower (p < or = 0.05) percentage of encapsulation (89 +/- 1%) compared to SD-TTN-NCL (94 +/- 2%). Redispersed SD-TTN-NCL and SD-TTN-NE showed z-average sizes of 204 +/- 2 nm and 251 +/- 9 nm, which were close to those of the original suspensions (220 +/- 3 nm and 239 +/- 14 nm, respectively). Similar percentage of photodegradation were determined for tretinoin loaded in nanocapsules (26.15 +/- 4.34%) or in the respective redispersed spray-dried powder (28.73 +/- 6.19 min) after 60 min of UVA radiation exposure (p > 0.05). Our experimental design showed for the first time that spray-dried lipid-core nanocapsules are able to protect tretinoin against UVA radiation, suggesting that the drying process did not alter the supramolecular structure of the lipid-core nanocapsules. Such powders are potential intermediate products for the development of nanomedicines containing tretinoin.

  19. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  20. Lidar Observations of Tropospheric Aerosols Over Northeastern South Africa During the ARREX and SAFARI-2000 Dry Season Experiments

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Welton, Ellsworth J.; Spinhirne, James D.; Ji, Qiang; Tsay, Si-Chee; Piketh, Stuart J.; Barenbrug, Marguerite; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    During the ARREX-1999 and SAFARI-2000 Dry Season experiments a micropulse lidar (523 nm) instrument was operated at the Skukuza Airport in northeastern South Africa. The Mar was collocated with a diverse array of passive radiometric equipment. For SAFARI-2000 the processed Mar data yields a daytime time-series of layer mean/derived aerosol optical properties, including extinction-to-backscatter ratios and vertical extinction cross-section profile. Combined with 523 run aerosol optical depth and spectral Angstrom exponent calculations from available CIMEL sun-photometer data and normalized broadband flux measurements the temporal evolution of the near surface aerosol layer optical properties is analyzed for climatological trends. For the densest smoke/haze events the extinction-to-backscatter ratio is found to be between 60-80/sr, and corresponding Angstrom exponent calculations near and above 1.75. The optical characteristics of an evolving smoke event from SAFARI-2000 are extensively detailed. The advecting smoke was embedded within two distinct stratified thermodynamic layers, causing the particulate mass to advect over the instrument array in an incoherent manner on the afternoon of its occurrence. Surface broadband flux forcing due to the smoke is calculated, as is the evolution in the vertical aerosol extinction profile as measured by the Han Finally, observations of persistent elevated aerosol during ARREX-1999 are presented and discussed. The lack of corroborating observations the following year makes these observation; both unique and noteworthy in the scope of regional aerosol transport over southern Africa.

  1. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology.

    PubMed

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-09-10

    In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed.

  2. Secondary Organic Aerosol formation from isoprene photooxidation under dry conditions (CUMULUS project)

    NASA Astrophysics Data System (ADS)

    Brégonzio-Rozier, Lola; Siekmann, Frank; Giorio, Chiara; Temime-Roussel, Brice; Pangui, Edouard; Morales, Sébastien; Gratien, Aline; Ravier, Sylvain; Monod, Anne; Doussin, Jean-Francois

    2014-05-01

    Isoprene (2-methyl-1,3-butadiene, C5H8) is one of the most abundant non-methane hydrocarbons emitted into the troposphere. Its annual global emission has recently been estimated in the range of 440 to 660 TgC (Guenther et al., 2006). Because of its large concentrations and high reactivity with the hydroxyl radical (OH), isoprene can have a strong influence on tropospheric photochemistry. It has been determined recently that isoprene also plays a role in secondary organic aerosol (SOA) formation in the ambient atmosphere even if isoprene leads to low SOA yields. The aim of the present work was to study isoprene photo-oxidation with OH radical in order to investigate its oxidation products and resulting aerosol production. A special care was taken to the realism of the experiment: light source, NOx and OH levels and aging time (around 10 hours). Experiments were performed in the CESAM chamber (Wang et al., 2011) which was designed to investigate multiphase processes under realistic actinic flux, and accurate control of temperature. In each experiment, around 800 ppb of isoprene was injected in the chamber together with the OH source under dry conditions (<5 %RH) before irradiation. Gas-phase composition was analyzed in-situ by a Fourier Transform Infrared Spectrometer (FTIR), a Proton Transfer Reaction Mass Spectrometer (PTR-TOF-MS) and NOx and ozone analyzers. A Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-Of-Flight Aerosol Mass Spectrometer (HR-TOF-AMS) were also used to investigate SOA formation and composition. In all experiments, we noted a SOA production at the end of isoprene oxidation i.e. exhibiting a clear secondary products type growth. Several results (including SOA densities and yields, and O/C ratios) were obtained using SMPS and AMS data allowing us to characterize SOA formation and composition during the experiments. The characterization of the gaseous and particulate phases will be presented. While the SOA yields in

  3. A novel approach to the pulmonary delivery of liposomes in dry powder form to eliminate the deleterious effects of milling.

    PubMed

    Desai, Tejas R; Wong, Jonathan P; Hancock, Robert E W; Finlay, Warren H

    2002-02-01

    The effect of lyophilization and jet-milling on liposome integrity was investigated as a function of their ability to retain the encapsulated model drug on reconstitution of the dry products. The encapsulation efficiencies of the lyophilized and jet-milled formulations were determined at various concentrations of lactose. Lyophilization resulted in considerable leakage of the model drug at lower concentrations of lactose, and jet-milling further augmented the leakage for all the lyophilized formulations, with optimum retention obtained for formulations containing at least 10:1 molar ratio of lactose/lipid. In an attempt to overcome the deleterious effects of lyophilization and jet-milling, the feasibility of formulating phospholipid-based powders that result in spontaneous formation of liposomes in an aqueous environment has been investigated. Partitioning of three model drugs (viz., ciprofloxacin, CM3 peptide, and salbutamol sulfate) between the aqueous phase and spontaneously formed liposomes was determined in terms of encapsulation efficiency. The effects of several parameters, including lactose concentration, lipid composition, and lipid concentration on the encapsulation efficiency of these model drugs were investigated. The spontaneous formation of liposomes on dispersion of phospholipid-based powder formulations was further evidenced by freeze-fracture scanning electron microscopy. This novel approach for the delivery of liposomes in dry powder form appears promising because lyophilization is not involved and jet-milling of these powder formulations did not impact encapsulation efficiency. Jet-milled phospholipid-based powder formulations showed high encapsulation efficiencies of 96.2 +/- 1.4% for ciprofloxacin, 100% for CM3 peptide, and 45.3 +/- 3.1% for salbutamol sulfate compared with a high amount of leakage (> 50%) observed due to jet-milling of lyophilized liposome formulations encapsulating ciprofloxacin.

  4. Pulmonary delivery of an ultra-fine oxytocin dry powder formulation: potential for treatment of postpartum haemorrhage in developing countries.

    PubMed

    Prankerd, Richard J; Nguyen, Tri-Hung; Ibrahim, Jibriil P; Bischof, Robert J; Nassta, Gemma C; Olerile, Livesey D; Russell, Adrian S; Meiser, Felix; Parkington, Helena C; Coleman, Harold A; Morton, David A V; McIntosh, Michelle P

    2013-01-01

    Oxytocin is recommended by the World Health Organisation as the most effective uterotonic for the prevention and treatment of postpartum haemorrhage. The requirement for parenteral administration by trained healthcare providers and the need for the drug solution to be maintained under cold-chain storage limit the use of oxytocin in the developing world. In this study, a spray-dried ultrafine formulation of oxytocin was developed with an optimal particle size diameter (1-5 µm) to facilitate aerosolised delivery via the lungs. A powder formulation of oxytocin, using mannitol, glycine and leucine as carriers, was prepared with a volume-based median particle diameter of 1.9 µm. Oxytocin content in the formulation was assayed using high-performance liquid chromatography-mass spectroscopy and was found to be unchanged after spray-drying. Ex vivo contractility studies utilising human and ovine uterine tissue indicated no difference in the bioactivity of oxytocin before and after spray-drying. Uterine electromyographic (EMG) activity in postpartum ewes following pulmonary (in vivo) administration of oxytocin closely mimicked that observed immediately postpartum (0-12 h following normal vaginal delivery of the lamb). In comparison to the intramuscular injection, pulmonary administration of an oxytocin dry powder formulation to postpartum ewes resulted in generally similar EMG responses, however a more rapid onset of uterine EMG activity was observed following pulmonary administration (129 ± 18 s) than intramuscular injection (275 ± 22 s). This is the first study to demonstrate the potential for oxytocin to elicit uterine activity after systemic absorption as an aerosolised powder from the lungs. Aerosolised oxytocin has the potential to provide a stable and easy to administer delivery system for effective prevention and treatment of postpartum haemorrhage in resource-poor settings in the developing world.

  5. Preferential decorporation of americium by pulmonary administration of DTPA dry powder after inhalation of aged PuO(2) containing americium in rats.

    PubMed

    Grémy, Olivier; Tsapis, Nicolas; Chau, Quang; Renault, Daniel; Abram, Marie-Claire; Van der Meeren, Anne

    2010-11-01

    After inhalation of plutonium oxides containing various percentages of americium in rats, we identified an acellular transient pulmonary compartment, the epithelial lining fluid (ELF), in which a fraction of actinide oxides dissolve prior to absorption and subsequent extrapulmonary deposit. Chelation therapy is usually considered to be poorly efficient after inhalation of actinide oxides. However, in the present study, prompt pulmonary administration of diethylenetraminepentaacetic acid (DTPA) as a dry powder led to a decrease in actinide content in ELF together with a limitation of bone and liver deposits. Because americium is more soluble than plutonium, higher amounts of americium were found in ELF, extrapulmonary tissues and urine. Our results also demonstrated that the higher efficacy of DTPA on americium compared to plutonium in ELF induced a preferential inhibition of extrapulmonary deposit and a greater urinary excretion of americium compared to plutonium. All together, our data justify the use of an early and local DTPA treatment after inhalation of plutonium oxide aerosols in which americium can be in high proportion such as in aged compounds.

  6. Characterisation of Sol-Gel Synthesis of Phase Pure CaTiO3 Nano Powders after Drying

    NASA Astrophysics Data System (ADS)

    Mallik, P. K.; Biswal, G.; Patnaik, S. C.; Senapati, S. K.

    2015-02-01

    According to a few recent studies, calcium titanate (CT) is a material that is similar to hydroxyapatite in biological properties. However, calcium titanate is not currently being used in the biomedical applications as to hydroxyapatite. The objective is to prepare nano calcium titanate powders from the equimolar solution of calcium oxide, ethanol and Titanium (IV) isopropoxide via sol-gel synthesis. The phase analysis and morphology of powder particles were studied by X-ray diffraction (XRD), while the composition and size of powder particles were determined by Transmission electron microscope (TEM) attached with energy dispersive x-ray spectrometer (EDS). As results, XRD confirm the presence of phase pure crystalline CaTiO3 after drying at 100°C for 24 hours, while TEM analysis confirms about 13 nm sizes of CaTiO3 particles and some agglomerated particle of 20-30 nm. Moreover, EDS analysis indicates that the approximately stoichiometric Ca/Ti ratio 1:1 was obtained in the CaTiO3 powders. Finally, it can be concluded that described sol-gel synthesis could be novel method for the production of nano CaTiO3 particles at lower temperature compared to any other methods of production.

  7. Comparative Evaluation of Commercially Available Freeze Dried Powdered Probiotics on Mutans Streptococci Count: A Randomized, Double Blind, Clinical Study

    PubMed Central

    Nagaraj, Anup; Ganta, Shravani; Sidiq, Mohsin; Pareek, Sonia; Vishnani, Preeti; Acharya, Siddharth; Singh, Kushpal

    2015-01-01

    Objectives: Probiotic approaches are being considered to eliminate pathogenic microorganisms and are an alternative and promising way to combat infections by using harmless bacteria to displace pathogenic microorganisms. The aim of this study was to evaluate the effectiveness of commercially available freeze dried powdered probiotics on mutans streptococci count among 12–15 year-old Indian schoolchildren. Materials and Methods: The study was conducted in two phases of in-vitro (phase I) and in-vivo (phase II) study, which was a double blind, randomized and placebo controlled clinical trial. A total of 33 schoolchildren between 12–15 years were included in the study. They were randomly allocated to three groups. Group A included 11 children using freeze dried Lactobacillus acidophilus, Bifidobacterium longum, Bifidobacterium bifidum and Bifidobacterium lactis. Group B included 11 children using freeze dried lactic acid bacillus only. Group C included 11 children using placebo powder. The study was conducted over a period of three weeks and examination and sampling of the subjects were done on days 0 (baseline), seven, 14 and 21. Results: For both the intervention groups A and B, statistically significant reduction (P<0.05) in salivary mutans streptococci counts was recorded up to the second week. Conclusion: Oral administration of probiotics showed a short-term effect on reduction of mutans streptococci count and showed a preventive role in caries development. PMID:27252756

  8. Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery.

    PubMed

    Ni, Rui; Zhao, Jing; Liu, Qiaoyu; Liang, Zhenglin; Muenster, Uwe; Mao, Shirui

    2017-03-01

    In this study, nanocrystals embedded in microparticles were designed to achieve sustained pulmonary drug delivery of hydrophobic drugs. Chitosan based microparticles were engineered to allow sustained drug release via swelling and mucoadhesive properties of the polymer. Taking cinaciguat as a hydrophobic model drug, drug nanocrystals were prepared by high pressure homogenization and then encapsulated in chitosan microparticles via spray drying. Through various in vitro characterizations, it was shown that drug loaded microparticles had a high drug loading with promising aerosolization characteristics (mean volume diameter (Dv50) 3-4μm, experimental mass mean aerodynamic diameter (MMADe) 4-4.5μm, fine particle fraction (FPF%) 40-45%, emitted dose (ED%) 94-95%). The microparticles showed high swelling capacity within 5min, with various sustained drug release rates depending on chitosan concentration and molecular weight. Furthermore, aerosolization performances under various inhalation conditions were investigated. It was found that both inspiratory flow rate and volume had an influence on the aerosolization of developed microparticles, indicating actual inhalation efficiency might be compromised under disease conditions. Taken together, in vitro data indicate that chitosan based swellable microparticles could potentially be useful as nanocrystal carrier to achieve sustained pulmonary delivery. To complete the feasibility assessment of this formulation principle, future in vivo safety and efficacy studies are needed.

  9. In vitro evaluation of novel inhalable dry powders consisting of thioridazine and rifapentine for rapid tuberculosis treatment.

    PubMed

    Parumasivam, T; Chan, J G Y; Pang, A; Quan, D H; Triccas, J A; Britton, W J; Chan, H K

    2016-10-01

    Thioridazine is an orally administered antipsychotic drug with potential for treatment of drug-resistant tuberculosis (TB). However, drug-induced adverse cardiac effects have been reported when thioridazine was used at an efficacious oral dose of 200mg/day to treat TB. Pulmonary delivery of thioridazine could be a rational approach to reduce dose-related side effects while enabling high drug concentrations at the primary site of infection. The present study compares in vitro aerosol performance, storage stability, and in vitro antimicrobial activity and cytotoxicity of two inhalable powders composed of thioridazine and a first-line anti-TB drug, rifapentine. Formulation 1 is a combination of amorphous thioridazine and crystalline rifapentine, while Formulation 2 consisted of both drugs as amorphous forms. Both thioridazine-rifapentine formulations were found suitable for inhalation with a total fine particle fraction (<5μm) of 68-76%. The two powders had similar MIC90 to rifapentine alone, being 0.000625μg/mL and 0.005μg/ml against Mycobacterium tuberculosis H37Ra and M. tuberculosis H37Rv, respectively. In contrast, thioridazine alone had a MIC90 of 12.5μg/mL and 500μg/mL, against M. tuberculosis H37Ra and M. tuberculosis H37Rv, respectively, demonstrating no synergistic anti-TB activity. However, thioridazine and rifapentine in a ratio of 1:3 enhanced the killing of M. tuberculosis H37Ra within the human monocyte-derived macrophages (THP-1) compared to the single drug treatments. Both powders showed an acceptable half maximal inhibitory concentration (IC50) of 31.25μg/mL on both THP-1 and human lung epithelial (A549) cells. However, Formulation 1 showed greater chemical stability than Formulation 2 after three months of storage under low humidity (vacuum) at 20±3°C. In conclusion, we have demonstrated a novel inhalable powder consisted of amorphous thioridazine and crystalline rifapentine (Formulation 1) with a good aerosol performance, potent anti

  10. [Study on Xinyueshu spray drying assisted with copovidone and its effect on powder property].

    PubMed

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Ding, Dong-Mei; Yan, Hong-Mei; Hu, Shao-Ying; Jia, Xiao-Bin

    2013-12-01

    To study the application characteristics of copovidone (PVP-S630) in Xinyueshu extracts during the spray drying process, and its effect on such pharmaceutical properties as micromeritics and drug release behavior. PVP-S630 was added into Xinyueshu extracts to study on the spray drying, the effect of different dosages of PVP-S630 against the wall sticking effect of the spray drying, as well as the power property of Xinyueshu spray drying power and the dissolution in vitro behavior of the effective component of hyperoside. The results showed that PVP-S630 revealed a significant anti-wall sticking effect, with no notable change in the grain size of the spray drying power, increase in the fluidity, improvement in the moisture absorption and remarkable rise in the dissolution in vitro behavior of hyperoside. It was worth further studying the application of PVP-S630 in spray drying power of traditional Chinese medicine.

  11. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers.

    PubMed

    Ungaro, Francesca; d'Angelo, Ivana; Coletta, Ciro; d'Emmanuele di Villa Bianca, Roberta; Sorrentino, Raffaella; Perfetto, Brunella; Tufano, Maria Antonietta; Miro, Agnese; La Rotonda, Maria Immacolata; Quaglia, Fabiana

    2012-01-10

    Although few experimental studies have been handled so far to exploit the potential of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) in the production of dry powders for antibiotic inhalation, there has been no comprehensive study on the role played by NP composition. In this work, we try to shed light on this aspect by designing and developing a pulmonary delivery system for antibiotics, such as tobramycin (Tb), based on PLGA NPs embedded in an inert microcarrier made of lactose, referred to as nano-embedded micro-particles (NEM). At nanosize level, helper hydrophilic polymers were used to impart the desired surface, bulk and release properties to PLGA NPs prepared by a modified emulsion-solvent diffusion technique. Results showed that poly(vinyl alcohol) (PVA) and chitosan (CS) are essential to optimise the size and modulate the surface properties of Tb-loaded PLGA NPs, whereas the use of alginate (Alg) allows efficient Tb entrapment within NPs and its release up to one month. Optimized formulations display good in vitro antimicrobial activity against P. aeruginosa planktonic cells. Furthermore, spray-drying of the NPs with lactose yielded NEM with peculiar but promising flow and aerosolization properties, while preserving the peculiar NP features. Nonetheless, in vivo biodistribution studies showed that PVA-modified Alg/PLGA NPs reached the deep lung, while CS-modified NPs were found in great amounts in the upper airways, lining lung epithelial surfaces. In conclusion, PLGA NP composition appears to play a crucial role in determining not only the technological features of NPs but, once processed in the form of NEM, also their in vitro/in vivo deposition pattern.

  12. Laser-ablated nanofunctional polymers for the formulation of slow-release powders for dry powder inhalers: physicochemical characterization and slow-release characteristics.

    PubMed

    Coowanitwong, Intira; Arya, Vikram; Patel, Gina; Kim, Won-Seok; Craciun, Valentin; Rocca, James R; Singh, Rajiv; Hochhaus, Günther

    2007-11-01

    Recently, dry powder inhalation (DPI) powders coated with nanometre-thin layers of biodegradable polymers, prepared using pulse laser deposition (PLD), have been evaluated as a slow-release formulation for DPI use, with the goal of improving pulmonary selectivity. This paper describes evaluation of the chemical stability of one potential polymer, poly lactic acid (PLA), during the ablation process, the resulting respirable properties and potential cytotoxicity of coated glucocorticoid powders, and the resulting sustained-release characteristics of PLA-coated glucocorticoids creating using PLD. Triamcinolone acetonide (TA) and budesonide (BUD) were used as two model glucocorticoids to determine pulmonary targeting (PT) in-vivo. The chemical stability of PLA was determined at various laser energy densities. The respirable fraction and the cytotoxicity of the micronized particles of TA and BUD, coated using optimum laser energy density, were determined. In-vitro dissolution profiles were generated for the coated/uncoated formulations and an ex-vivo receptor binding assay was used to determine PT in rats. Increasing laser energy density led to decreases in molecular weight and film density, and increases in degradation products, roughness and thickness of the film. The mean dissolution time of coated formulations of BUD was longer (4 h) than with the less lipophilic TA (2 h). This correlated well with a more pronounced pulmonary selectivity observed for coated BUD ex-vivo. Stability and the physical properties of the film correlated with the laser energy density. We observed a direct relationship between the dissolution rate of the uncoated and coated formulation and the degree of PT; however, physiochemical properties of the drug (e.g. lipophilicity) may also contribute to the improved PT.

  13. Compaction of spray-dried ceramic powders: An experimental study of the factors that control green density

    SciTech Connect

    Readey, M.J.; Mahoney, F.M.

    1995-11-01

    The pressure-compaction response of a spray-dried, 94% alumina powder containing several percent of a polymeric binder was investigated as a function of die diameter and compact aspect ratio. The results show that the die fill density decreases markedly with decreasing die diameter and aspect ratio, while the final green density (at 120 MPa) decreases only slightly under the same conditions. These results suggest that the ratio of the initial compact dimensions to the size of the granules may be much more important than previously considered.

  14. Fundamentals and applications of dry CO2 cryogenic aerosol for photomask cleaning

    NASA Astrophysics Data System (ADS)

    Varghese, Ivin; Balooch, Mehdi; Bowers, Charles W.

    2010-09-01

    There is a dire need for the removal of all printable defects on lithography masks. As the technology node advances, smaller particles need to be efficiently removed from smaller features without any damage or adders. CO2 cryogenic aerosol cleaning is a dry, residue-free and chemically inert technique that doesn't suffer from disadvantages of conventional wet cleaning methods such as transmission/reflectivity loss, phase change, CD change, haze/progressive defects, and/or limitation on number of cleaning cycles. Ultra-pure liquid CO2 when dispensed through an optimally designed nozzle results in CO2 clusters that impart the required momentum for defect removal. Historically nanomachining debris removal has been established with this technique. Several improvements have been incorporated for cleaning of advanced node masks, which has enabled Full Mask Final Clean, a new capability that has been successfully demonstrated. The properties of the CO2 clusters can be captured utilizing the Phase Doppler Anemometry (PDA) and effect of varying process and design parameters can be verified. New nozzles have been designed to widen the cleaning process window for advanced node optical masks, without any damage to the weak primary features and/or sub-resolution assist features (SRAFs). This capability has been experimentally proven for high aspect ratio SRAFs e.g. 2.79 (52nm wide by 145 nm tall) as well as SRAFs 45nm wide by 73 nm tall. In this paper, 100% removal of soft defects that would have printed on advanced node masks is demonstrated. No printed defects larger than 50nm is observed after the CO2 cleaning. Stability of the cleaning and handling mechanisms has been demonstrated over the last 4.5 months in a production environment. The CO2 cleaning technique is expected to be effective for more advanced masks and Extreme Ultra-Violet (EUV) lithography.

  15. Spray Dried Aerosol Particles of Pyrazinoic Acid Salts for Tuberculosis Therapy. [Corrected].

    PubMed

    Durham, P G; Zhang, Y; German, N; Mortensen, N; Dhillon, J; Mitchison, D A; Fourie, P B; Hickey, A J

    2015-08-03

    Tuberculosis is the most serious infectious disease caused by a single organism, Mycobacterium tuberculosis (Mtb). The standard of care is a protracted and complex drug treatment regimen made more complicated and of longer duration by the incidence of multiple and extensively drug resistant disease. Pulmonary delivery of aerosols as a supplement to the existing regimen offers the advantage of delivering high local drug doses to the initial site of infection and most prominent organ system involved in disease. Pyrazinamide is used in combination with other drugs to treat tuberculosis. It is postulated that the action of pyrazinoic acid (POA), the active moiety of pyrazinamide, may be enhanced by local pH adjustment, when presented as a salt form. POA was prepared as leucine (POA-leu) and ammonium salts (POA-NH4), spray dried, and characterized in terms of physicochemical properties (melting point, crystallinity, moisture content), aerodynamic performance (aerodynamic particle size distribution, emitted dose), and in vitro inhibitory effect on two mycobacteria (Mtb and Mycobacterium bovis). Particles were prepared in sizes suitable for inhalation (3.3 and 5.4 μm mass median aerodynamic diameter and 61 and 40% of the aerodynamic particle size distribution less than 4.46 μm, as measured by inertial impaction, for POA-leu and POA-NH4, respectively) and with properties (stoichiometric 1:1 ratio of salt to drug, melting points at ∼180 °C, with water content of <1%) that would support further development as an inhaled dosage form. In addition, POA salts demonstrated greater potency in inhibiting mycobacterial growth compared with POA alone, which is promising for therapy.

  16. Is dry deposition of semi-volatile organic gases a significant loss of secondary organic aerosols (SOA)?

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Aumont, B.; Knote, C. J.; Lee-Taylor, J. M.; Madronich, S.

    2013-12-01

    Dry deposition removal of semi-volatile organic compounds from the atmosphere and its impact on organic aerosol mass is currently under-explored and not well represented in chemistry-climate models, especially for the many complex partly oxidized organics involved in particle formation. The main reason for this omission is that current models use simplified SOA mechanisms that lump precursors and their products into volatility bins, therefore losing information on important properties of individual molecules (or groups) that are needed to calculate dry deposition. In this study, we apply the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to simulate SOA formation and estimate the influence of dry deposition of gas-phase organics on SOA concentrations downwind of an urban area (Mexico City), as well as over a pine forest. SOA precursors considered here include short- and long-chain alkanes (C3-25), alkenes, light aromatics, isoprene and monoterpenes. We show that dry deposition of oxidized gases is not an efficient sink for anthropogenic SOA, as it removes <5% of SOA within the city's boundary layer and ~15% downwind. The effect on biogenic SOA is however significantly larger. We discuss reasons for these differences, and investigate separately the impacts on short and long-chain species. We show that the dry deposition is competing with the uptake of gases to the aerosol phase. In the absence of this condensation, ~50% of the regionally produced mass downwind of Mexico City would have been dry-deposited. However, because dry deposition of submicron aerosols is slow, condensation onto particles protects organic gases from deposition and therefore increases their atmospheric burden and lifetime. We use the explicit GECKO-A model to build an empirical parameterization for use in 3D models. Removal (dry and wet) of organic vapors depends on their solubility, and required Henry's law solubility coefficients were estimated for

  17. Pharmacokinetics and pharmacodynamics of controlled release insulin loaded PLGA microcapsules using dry powder inhaler in diabetic rats.

    PubMed

    Hamishehkar, Hamed; Emami, Jaber; Najafabadi, Abdolhossien Rouholamini; Gilani, Kambiz; Minaiyan, Mohsen; Hassanzadeh, Kambiz; Mahdavi, Hamid; Koohsoltani, Maryam; Nokhodchi, Ali

    2010-03-01

    The pulmonary route is an alternative route of administration for the systemic delivery of peptide and proteins with short-half lives. A long-acting formulation of insulin was prepared by encapsulation of protein into respirable, biodegradable microcapsules prepared by an oil in oil emulsification/solvent evaporation method. Insulin-loaded PLGA microcapsules prepared as a dry powder inhaler formulation were administered via the pulmonary route to diabetic rats and serum insulin and glucose concentrations were monitored. Control treatments consisted of respirable spray-dried insulin (RSDI) powder administered by intratracheal insufflation, insulin-loaded PLGA microcapsules and NPH (long-acting) insulin administered by subcutaneous (SC) administration. Pharmacokinetic analysis demonstrated that insulin administered in PLGA microcapsules illustrated a sustained release profile which resulted in a longer mean residence time, 4 and 5 fold longer than those after pulmonary administration of RSDI and SC injection of NPH insulin, respectively. Accordingly, the hypoglycemic profile followed a stable and sustained pattern which remained constant between 10 and 48 h. Results of the in vitro experiments were in good agreement with those of in vivo studies. Bronchoalveolar lavage fluid analysis indicated that microcapsules administration did not increase the activities of lactate dehydrogenase and total protein. However, histological examination of the lung tissue indicated a minor but detectable effect on the normal physiology of the rat lung. These findings suggest that the encapsulation of peptides and proteins into PLGA microcapsules technique could be a promising controlled delivery system for pulmonary administration.

  18. Evaluation of folic acid release from spray dried powder particles of pectin-whey protein nano-capsules.

    PubMed

    Assadpour, Elham; Jafari, Seid-Mahdi; Maghsoudlou, Yahya

    2017-02-01

    Our main goal was to evaluate release kinetics of nano-encapsulated folic acid within a double W1/O/W2 emulsion. First, W1/O nano-emulsions loaded with folic acid were prepared and re-emulsified into an aqueous phase (W2) containing single whey protein concentrate (WPC) layer or double layer complex of WPC-pectin to form W1/O/W2 emulsions. Final double emulsions were spray dried and their microstructure was analyzed in terms of scanning electron microscopy (SEM), and Fourier Transform Infrared spectroscopy (FTIR). Also the release trends of folic acid were determined and fitted with experimental models of zero and first order, Higuchi, and Hixson-Crowell. It was revealed that folic acid nano-capsules made with Span as the surfactant had the lowest release rate in acidic conditions (pH=4) and highest release in the alkaline conditions (pH=11). The best model fitting for folic acid release data was observed for single layer WPC encapsulated powders with the highest R(2). Our FTIR data showed there was no chemical interaction between WPC and pectin in double layered capsules and based on SEM results, single WPC layered capsules resulted in smooth and uniform particles which by incorporating pectin, some wrinkles and shrinkage were found in the surface of spray dried powder particles.

  19. Profile of fluticasone furoate/vilanterol dry powder inhaler combination therapy as a potential treatment for COPD

    PubMed Central

    Caramori, Gaetano; Chung, Kian Fan; Adcock, Ian M

    2014-01-01

    Currently, there is no cure for chronic obstructive pulmonary disease (COPD). The limited efficacy of current therapies for COPD indicates a pressing need to develop new treatments to prevent the progression of the disease, which consumes a significant amount of health care resources and is an important cause of mortality worldwide. Current national and international guidelines for the management of stable COPD patients recommend the use of inhaled long-acting bronchodilators, inhaled corticosteroids, and their combination for maintenance treatment of moderate to severe stable COPD. Once-daily fluticasone furoate/vilanterol dry powder inhaler combination therapy has recently been approved by the US Food and Drug Administration and the European Medicines Agency as a new regular treatment for patients with stable COPD. Fluticasone furoate/vilanterol dry powder inhaler combination therapy has been shown to be effective in many controlled clinical trials involving thousands of patients in the regular treatment of stable COPD. This is the first once-daily combination of ultra-long-acting inhaled β2-agonists and inhaled glucocorticoids that is available for the treatment of stable COPD and has great potential to improve compliance to long-term regular inhaled therapy and hence to improve the natural history and prognosis of COPD patients. PMID:24596460

  20. The Quality Characteristics and Antioxidant Properties of Sun-dried Venison Jerky with Green Tea Powder during Storage

    PubMed Central

    Nam, Ki Chang; Kim, Hyun Cheul; Cha, Jusu

    2016-01-01

    This study was conducted to compare the physicochemical, microbiological and antioxidant activities of sun-dried venison amended with green tea powder (T1-3: 0, 0.5, and 1%) and Hanwoo beef jerky. Sliced beef and venison shank were marinated and sun-dried at 28-30℃ and 30-35% RH for 3.5 h. The venison jerky had a higher ash and protein content, and lower moisture and fat content than the control (p<0.05). T3 (venison+green tea powder 1%) showed a lower aw than all other samples during storage for 10 and 20 d (p<0.05). Hunter’s color a* and b* values of T2 and T3 were lower than those of T1 and the control at day 0 (p<0.05). Saturated fatty acid was significantly higher in T1, while PUFA was higher in T2 and T3 (p<0.05). Overall sensory scores of venison jerky were lower than those of the control, except for T2, which had a similar color, flavor, saltiness and acceptability as the control. T2 and T3 showed a significant decrease in TPCs after storage for 20 d (p<0.05). The TBARS values of T3 jerky were lower than those of other jerky samples (p<0.05). PMID:27857538

  1. Comparison of laser ablation and dried solution aerosol as sampling systems in inductively coupled plasma mass spectrometry.

    PubMed

    Coedo, A G; Padilla, I; Dorado, M T

    2004-12-01

    This paper describes a study designed to determine the possibility of using a dried aerosol solution for calibration in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The relative sensitivities of tested materials mobilized by laser ablation and by aqueous nebulization were established, and the experimentally determined relative sensitivity factors (RSFs) were used in conjunction with aqueous calibration for the analysis of solid steel samples. To such a purpose a set of CRM carbon steel samples (SS-451/1 to SS-460/1) were sampled into an ICP-MS instrument by solution nebulization using a microconcentric nebulizer with membrane desolvating (D-MCN) and by laser ablation (LA). Both systems were applied with the same ICP-MS operating parameters and the analyte signals were compared. The RSF (desolvated aerosol response/ablated solid response) values were close to 1 for the analytes Cr, Ni, Co, V, and W, about 1.3 for Mo, and 1.7 for As, P, and Mn. Complementary tests were carried out using CRM SS-455/1 as a solid standard for one-point calibration, applying LAMTRACE software for data reduction and quantification. The analytical results are in good agreement with the certified values in all cases, showing that the applicability of dried aerosol solutions is a good alternative calibration system for laser ablation sampling.

  2. Powder treatment process

    DOEpatents

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  3. Powder treatment process

    DOEpatents

    Weyand, John D.

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  4. A dry powder formulation of liposome-encapsulated recombinant secretory leukocyte protease inhibitor (rSLPI) for inhalation: preparation and characterisation.

    PubMed

    Gibbons, Aileen; McElvaney, Noel G; Cryan, Sally-Ann

    2010-09-01

    Inhaled recombinant secretory leukocyte protease inhibitor (rSLPI) has shown potential for the treatment of inflammatory lung conditions. Rapid inactivation of rSLPI by cathepsin L (Cat L) and rapid clearance from the lungs has limited clinical efficacy to date. Previous studies by us have shown that encapsulation of rSLPI within1,2-dioleoyl-sn-glycero-3-[phospho-L-serine]/cholesterol (DOPS/Chol) liposomes protects rSLPI against Cat L inactivation in vitro. Liquid DOPS-rSLPI preparations were found to be unstable upon long-term storage and nebulisation. The aim of this study was therefore to develop a method of manufacture for preparing DOPS-rSLPI liposomes as a dry powder for inhalation. DOPS-rSLPI dry powders were lyophilised and subsequently micronised with a novel micronisation aid. The effects of formulation and processing on rSLPI stability, activity, and uniformity of content within the powders were characterised. Using D-mannitol as the micronisation aid, dry powder particles in the inhalable size range (<5 μm) were prepared. By optimising process parameters, up to 54% of rSLPI was recovered after micronisation, of which there was no significant loss in anti-neutrophil elastase activity and no detectable evidence of protein degradation. Aerosolisation was achieved using a dry powder inhaler, and mass median aerodynamic diameter (MMAD) was evaluated after collection in a cascade impactor. Aerosolisation of the DOPS-rSLPI dry powder yielded 38% emitted dose, with 2.44 μm MMAD. When challenged with Cat L post-aerosolisation, DOPS-rSLPI dry powder was significantly better at retaining a protective function against Cat L-induced rSLPI inactivation compared to the aqueous DOPS-rSLPI liposome dispersion and was also more stable under storage.

  5. New data for aerosols generated by releases of pressurized powders and solutions in static air

    SciTech Connect

    Ballinger, M.Y.; Sutter, S.L.; Hodgson, W.H.

    1987-05-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases. Aerosols generated by accidents are being investigated by Pacific Northwest Laboratory to develop radioactive source-term estimation methods. Experiments measuring the mass airborne and particle size distribution of aerosols produced by pressurized releases were run. Carbon dioxide was used to pressurize uranine solutions to 50, 250, and 500 psig before release. The mass airborne from these experiments was higher than for comparable air-pressurized systems, but not as great as expected based on the amount of gas dissolved in the liquid and the volume of liquid ejected from the release equipment. Flashing sprays of uranine at 60, 125, and 240 psig produced a much larger source term than all other pressurized releases performed under this program. Low-pressure releases of depleted uranium dioxide at 9, 17.5, and 24.5 psig provided data in the energy region between 3-m spills and 50-psig pressurized releases.

  6. Airborne in situ characterization of dry urban aerosol optical properties around complex topography

    NASA Astrophysics Data System (ADS)

    Targino, Admir Créso; Noone, Kevin J.

    2006-02-01

    In situ data from the 1997 Southern California Ozone Study—NARSTO were used to describe the aerosol optical properties in an urban area whose aerosol distribution is modified as the aerosols are advected over the surrounding topography. The data consist of measurements made with a nephelometer and absorption photometer onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Pelican aircraft. The cases investigated in this study include vertical profiles flown over coastal sites as well as sites located along some important mountain ranges in southern California. The vertical distribution of the aerosol in the Los Angeles Basin showed a complex configuration, directly related with the local meteorological circulations and the surrounding topography. High spatial and temporal variability in air pollutant concentrations within a relatively small area was found, as indicated by the aerosol scattering and absorption coefficient data. The results suggest that in areas with such complex terrain, a high spatial resolution is required in order to adequately describe the aerosol optical quantities. Principal components analysis (PCA) has been applied to aerosol chemical samples in order to identify the major aerosol types in the Los Angeles Basin. The technique yielded four components that accounted for 78% of the variance in the data set. These were indicative of marine aerosols, urban aerosols, trace elements and secondary aerosol components of traffic emissions and agricultural activities. A Monte Carlo radiation transfer model has been employed to simulate the effects that different aerosol vertical profiles have on the attenuation of solar energy. The cases examined were selected using the results of the PCA and in situ data were used to describe the atmospheric optical properties in the model. These investigations comprise a number of sensitivity tests to evaluate the effects on the results of the location of the aerosol layers as well as

  7. The effect of acidification of liquid whey protein concentrate on the flavor of spray-dried powder.

    PubMed

    Park, Curtis W; Bastian, Eric; Farkas, Brian; Drake, MaryAnne

    2014-07-01

    which the solutions were adjusted after spray drying. Preacidification to pH 3.5 increased recovery of D₁₂-hexanal in liquid WPC and decreased recovery of D₁₂-hexanal in the resulting powder when evaluated at pH 6.5 or 5.5. These results demonstrate that acidification of liquid WPC80 to pH 3.5 before spray drying decreases off-flavors in spray-dried WPC and suggest that the mechanism for off-flavor reduction is the decreased protein interactions with volatile compounds at low pH in liquid WPC or the increased interactions between protein and volatile compounds in the resulting powder.

  8. Low hygroscopic spray-dried powders with trans-glycosylated food additives enhance the solubility and oral bioavailability of ipriflavone.

    PubMed

    Fujimori, Miki; Kadota, Kazunori; Kato, Kouki; Seto, Yoshiki; Onoue, Satomi; Sato, Hideyuki; Ueda, Hiroshi; Tozuka, Yuichi

    2016-01-01

    The improvement in the solubility and dissolution rate may promote a superior absorption property towards the human body. The spray-dried powders (SDPs) of ipriflavone, which was used as a model hydrophobic flavone, with trans-glycosylated rutin (Rutin-G) showed the highest solubilizing effect of ipriflavone among three types of trans-glycosylated food additives. The SDPs of ipriflavone with Rutin-G have both a significant higher dissolution rate and solubility enhancement of ipriflavone. This spray-dried formulation of ipriflavone with Rutin-G exhibited a low hygroscopicity as a critical factor in product preservation. In addition, an improvement in the oral absorption of ipriflavone was achieved by means of preparing composite particles of ipriflavone/Rutin-G via spray drying, indicating a 4.3-fold increase in the area under the plasma concentration-time curve compared with that of untreated ipriflavone. These phenomena could be applicable to food ingredients involving hydrophobic flavones for producing healthy food with a high quality.

  9. Pulmonary immunization of guinea pigs with diphtheria CRM-197 antigen as nanoparticle aggregate dry powders enhance local and systemic immune responses.

    PubMed

    Muttil, Pavan; Pulliam, Brian; Garcia-Contreras, Lucila; Fallon, John Kevin; Wang, Chenchen; Hickey, Anthony James; Edwards, David A

    2010-12-01

    This study establishes the immune response elicited in guinea pigs after pulmonary and parenteral immunizations with diphtheria CRM-197 antigen (CrmAg). Several spray-dried powders of formalin-treated/untreated CrmAg nanoaggregates with L-leucine were delivered to the lungs of guinea pigs. A control group consisting of alum with adsorbed CrmAg in saline was administered by intramuscular injection. Animals received three doses of powder vaccines containing 20 or 40 μg of CrmAg. The serum IgG titers were measured for 16 weeks after the initial immunization; IgA titers were measured at the time of sacrifice in the broncho-alveolar lavage fluid. Further, toxin neutralization tests in naïve guinea pigs were performed for a few select serum samples. Histopathology of the lung tissues was conducted to evaluate inflammation or injury to the lung tissues. While the highest titer of serum IgG antibody was observed in guinea pigs immunized by the intramuscular route, those animals immunized with dry powder formulation by the pulmonary route, and without the adjuvant alum, exhibited high IgA titers. A pulmonary administered dry powder, compared to parenteral immunization, conferred complete protection in the toxin neutralization test. Mild inflammation was observed in lung tissues of animals receiving dry powder vaccines by the pulmonary route. Thus, administering novel CrmAg as dry powders to the lungs may be able to overcome some of the disadvantages observed with the existing diphtheria vaccine which is administered by the parenteral route. In addition, these powders will have the advantage of eliciting a high mucosal immune response in the lungs without using traditional adjuvants.

  10. Modifying drug release and tablet properties of starch acetate tablets by dry powder agglomeration.

    PubMed

    Mäki, Riikka; Suihko, Eero; Rost, Susanne; Heiskanen, Minna; Murtomaa, Matti; Lehto, Vesa-Pekka; Ketolainen, Jarkko

    2007-02-01

    In this study three model drugs (N-acetyl-D-glucosamine (NAG), anhydrous caffeine, and propranolol hydrochloride) were agglomerated with starch acetate (SA) by mixing the binary powders on a stainless steel (SS) plate. Agglomeration was induced by triboelectrification of the particles during mixing, and it was evaluated as a method to achieve controlled drug release rate. These agglomerates, mixed with different amounts of a disintegrant, were compressed into tablets whose dissolution characteristics were determined. Triboelectric measurements showed that when the drugs were in contact with SS, charges of the opposite polarity were generated to SA (+) and caffeine and NAG (-) promoting adhesion. Instead, propranolol HCl was charged with the same polarity as SA. SEM micrographs showed that smaller caffeine particles, in spite of their larger negative charge, agglomerated less efficiently with SA than larger NAG particles. This emphasizes the importance of particle size in the agglomeration process. Propranolol HCl did not form agglomerates with SA since their particle sizes and charges were identical. As a result, agglomeration of powders prior to tablet compression allows for modification and control of the release rate of the drugs from the SA matrix tablets as well as the tensile strength of the tablets.

  11. Bioequivalence Evaluations of Generic Dry Powder Inhaler Drug Products: Similarities and Differences Between Japan, USA, and the European Union.

    PubMed

    Kuribayashi, Ryosuke; Yamaguchi, Toru; Sako, Hanaka; Takishita, Tomoko; Takagi, Kazunori

    2017-03-01

    In Japan, the development of generic oral dry powder inhaler (DPI) drug products for marketing approval has recently increased. The Pharmaceuticals and Medical Devices Agency (PMDA) considers the required data for each drug product in the consultation meeting. However, guidelines for DPI drug products have been published by the US Food and Drug Administration and the European Medicines Agency. Recently, the basic principles of bioequivalence evaluations of generic DPI drug products were published in March 2016 by the Ministry of Health, Labour and Welfare. The document mainly outlines the current understanding regarding the bioequivalence evaluations of generic DPI drug products based on knowledge from PMDA consultation meetings. In this review, we compared the bioequivalence evaluations of DPI drug products among Japan, USA, and the European Union and discuss future development of generic DPI drug products in Japan.

  12. A dry powder formulation from silk fibroin microspheres as a topical auto-gelling device.

    PubMed

    Faragò, Silvio; Lucconi, Giulia; Perteghella, Sara; Vigani, Barbara; Tripodo, Giuseppe; Sorrenti, Milena; Catenacci, Laura; Boschi, Alessandra; Faustini, Massimo; Vigo, Daniele; Chlapanidas, Theodora; Marazzi, Mario; Torre, Maria Luisa

    2016-01-01

    With the aim of establishing the formulation of a new hydrophilic auto-gelling medical device for biomedical applications, fibroin-based microspheres were prepared. The proposed microspheres were produced by a cost-effective and industrially scalable technique, such as the spray-drying. Spray-dried silk fibroin microspheres were obtained and the effects of different hydrophilic polymer on the process yield, microsphere morphology and conformation transition of fibroin were evaluated. The final auto-gelling formulations were obtained by adding calcium gluconate (as a calcium source for alginate crosslinking) to the prepared microspheres and tested by an in vitro gelling test. This study showed that the combination of fibroin with sodium alginate and poloxamer produced the most promising auto-gelling formulation for specific biomedical applications, such as the treatment of pressure ulcers.

  13. Storage stability of a commercial hen egg yolk powder in dry and intermediate-moisture food matrices.

    PubMed

    Rao, Qinchun; Fisher, Mary Catherine; Guo, Mufan; Labuza, Theodore P

    2013-09-11

    Quality loss in intermediate-moisture foods (IMF) such as high-protein nutrition bars (HPNB) in the form of hardening, nonenzymatic browning, and free amino group loss is a general concern for the manufacturers. To measure the extent of quality loss over time in terms of these negative attributes, through changing the ratio by weight between two commercial spray-dried hen egg powders, egg white (DEW) and egg yolk (DEY), the storage stability of 10 IMF systems (water activity (aw) ∼ 0.6) containing 5% glycerol, 10% shortening, 35% protein, and 50% sweetener (either maltitol or 50% high-fructose corn syrup/50% corn syrup (HFCS/CS)) were studied. Additionally, the storage stability of the DEY powder itself was investigated. Overall, during storage at different temperatures (23, 35, and 45 °C), the storage stability of DEY in dry and IMF matrices was mainly controlled by the coaction of three chemical reactions (disulfide bond interaction, Maillard reaction, and lipid oxidation). The results showed that by replacing 25% of DEW in an IMF model system with DEY, the rate of bar hardening was significantly lower than that of the models with only DEW at all temperatures due to the softening effect of the fat in DEY. Furthermore, the use of maltitol instead of HFCS/CS in all bar systems not only resulted in decreased hardness but also drastically decreased the change in the total color difference (ΔE*). Interestingly, there was no significant loss of free amino groups in the maltitol systems at any DEW/DEY ratio.

  14. Separation of particles precipitated from (U,RE){sub 3}O{sub 8} powder oxidation by dry process

    SciTech Connect

    Lee Jae Won; Lee Jung Won; Yang Myung Seung; Song Kee Chan; Park Geun Il

    2007-07-01

    The phase separation characteristics of RE elements from SIMFUEL (simulated spent fuel) was investigated by a high temperature oxidation at 1174{approx}1673 K using a fuel powder of (U,RE){sub 3}O{sub 8} in a single RE element system. A typical oxidation and reduction treatment followed by a dry milling process was introduced and investigated for a separation of the precipitated RE-rich (U{sub 1-y}RE{sub y})O{sub 2+z} particles and RE-poor U{sub 3}O{sub 8} particles formed by a high temperature oxidation. The XRD and SEM results indicate that an increase of the oxidation temperature increases the amount of the (U{sub 1-y}RE{sub y})O{sub 2+z} phase, while decreasing that of the RE-poor U{sub 3}O{sub 8}-type phase. Since the solubility of RE in the U{sub 3}O{sub 8}-type phase was almost constant regardless of the oxidation temperature, the decrease of the RE concentration in the RE-rich (U{sub 1-y}RE{sub y})O{sub 2+z} phase with an increasing oxidation temperature seems to be due to a diffusion of the U ion from the RE-poor U{sub 3}O{sub 8}-type phase to the RE-rich (U{sub 1-y}RE{sub y})O{sub 2+z} phase. The RE-rich (U{sub 1-y}RE{sub y})O{sub 2+z} particle precipitated from the RE-poor U{sub 3}O{sub 8} particle is mostly separated by a reduction and oxidation treatment at a typical temperature of the powdering process of uranium dioxide and completely separated by a dry milling. (authors)

  15. Physicochemical characterization of nopal pads (Opuntia ficus indica) and dry vacuum nopal powders as a function of the maturation.

    PubMed

    Rodríguez-Garcia, M E; de Lira, C; Hernández-Becerra, E; Cornejo-Villegas, M A; Palacios-Fonseca, A J; Rojas-Molina, I; Reynoso, R; Quintero, L C; Del-Real, A; Zepeda, T A; Muñoz-Torres, C

    2007-09-01

    This paper presents the physicochemical and nutrimental characterization of fresh nopal (Opuntia ficus indica, Redonda variety) and nopal powder produced at different stages of development. Nopal powder was obtained by dry vacuum technique using 10(2) Torr and low temperature (40 degrees C). The results showed that the nutrimental and mineral composition of nopal changes as a function of the maturation as follow: The ash content increases from 18.41 for nopalitos (60 g of weight) to 23.24% (nopal pads 200 g); calcium content increases from 1.52 to 3.72%, while phosphorous exhibits an opposite trend: 0.43 to 0.27%, respectively. Calcium oxalate was determined by X-ray diffraction and SEM microscopy and quantified by using atomic absorption spectroscopy. Calcium oxalate decreases from 7.95 to 3.47 mg/g and the Ca/P ratio varies from 3.6 to 11. The soluble fibre decreases from 25.22 to 14.91%, while insoluble fibre increases from 29.87 to 41.65%. These results suggest that nopal could be an important source of minerals within the diets of people in Mexico and the rest of Latin America.

  16. Administration of dried Aloe vera gel powder reduced body fat mass in diet-induced obesity (DIO) rats.

    PubMed

    Misawa, Eriko; Tanaka, Miyuki; Nabeshima, Kazumi; Nomaguchi, Kouji; Yamada, Muneo; Toida, Tomohiro; Iwatsuki, Keiji

    2012-01-01

    The aim of the present study was to investigate the anti-obesity effects of Aloe vera gel administration in male Sprague-Dawley (SD) rats with diet-induced obesity (DIO). SD rats at 7 wk of age were fed either a standard diet (10 kcal% fat) (StdD) or high-fat (60 kcal% fat) diet (HFD) during the experimental period. Four weeks after of HFD-feeding, DIO rats (11 wk of age) were orally administered with two doses of Aloe vera gel powder (20 and 200 mg/kg/d) for 90 d. Body weights (g) and body fat (%) of HFD fed rats were significantly higher than those of StdD-fed rats. Although a modest decrease of body weight (g) was observed with the administration of dried Aloe vera gel powder, both subcutaneous and visceral fat weight (g) and body fat (%) were reduced significantly in Aloe vera gel-treated rats. Serum lipid parameters elevated by HFD were also improved by the Aloe vera gel treatment. The oxygen consumption (VO(2)), an index of energy expenditure, was decreased in HFD-fed rats compared with that in StdD-fed rats. Administration of Aloe vera gel reversed the change in VO(2) in the HFD-fed rats. These results suggest that intake of Aloe vera gel reduced body fat accumulation, in part, by stimulation of energy expenditure. Aloe vera gel might be beneficial for the prevention and improvement of diet-induced obesity.

  17. Application of spray granulation for conversion of mixed phospholipid-bile salt micelles to dry powder form: influence of drug hydrophobicity on nanoparticle reagglomeration

    PubMed Central

    Lv, Qingyuan; Li, Xianyi; Shen, Baode; Xu, He; Shen, Chengying; Dai, Ling; Bai, Jinxia; Yuan, Hailong; Han, Jin

    2014-01-01

    The aim of this study was to investigate the feasibility of using spray granulation as a drying method to convert phospholipid (PL)-sodium deoxycholate (SDC)-mixed micelles (MMs) containing a water-insoluble drug to a solid dosage form and to evaluate how drugs with significantly different physicochemical properties affect the spray granulation process and subsequent in vitro and in vivo processes. Cucurbitacin B (Cu B) and glycyrrhizin (GL) were used as the model drugs. After spray granulation, the dried Cu B-PL/SDC-MM powder was completely redispersible within 15 minutes in vitro. Meanwhile, the area under the curve during 24 hours (AUC0–24) and peak serum concentration from the dried powder were significantly (P<0.05) lower than the values from Cu B-PL/SDC-MMs in vivo. However, a better result was obtained for GL, ie, the drug was redispersed completely within 5 minutes in vitro. Further, absorption from the dried GL-PL/SDC-MM powder was increased to the same level as that for GL-PL/SDC-MMs in vivo compared with the control group. The difference in these results can be found in Cu B and GL. Cu B nanoparticles reagglomerated when released, resulting in slower redispersibility and less absorption compared with the original PL-SDC-MMs. However, no agglomeration or delay was observed for GL. A possible explanation is the difference in surface hydrophobicity between Cu B and GL. The results of this study not only show that spray granulation is an effective drying technique that can complement spray-drying and freeze-drying, but also confirm that the physicochemical properties of a drug have a significant influence on the in vitro and in vivo performance of the dried powder obtained after spray granulation. PMID:24531119

  18. Encapsulation of mixtures of tuna oil, tributyrin and resveratrol in a spray dried powder formulation.

    PubMed

    Sanguansri, Luz; Day, Li; Shen, Zhiping; Fagan, Peter; Weerakkody, Rangika; Cheng, Li Jiang; Rusli, Jenny; Augustin, Mary Ann

    2013-12-01

    Spray dried emulsions are effective for carrying and stabilising combinations of fish oil and tributyrin, fish oil and resveratrol, or fish oil, tributyrin and resveratrol in one formulation. The encapsulation efficiencies were >99% for all three bioactives when a heated mixture of sodium caseinate: glucose: dried glucose syrup matrix (Encapsulant matrix 1) was used. When a heated sodium caseinate: glucose: processed starch matrix (Encapsulant matrix 2) was used, the encapsulation efficiencies were 90-92% for tributyrin and approximately 98% for resveratrol for all formulations but 79-91% for tuna oil where the efficiency was more formulation dependent. There was 84-86% remaining EPA, 85-87% remaining DHA, 85% remaining tributyrin and 94-96% remaining resveratrol after 18 months at 25 °C storage of the spray dried emulsions using Encapsulant matrix 1 across all formulations. In comparison, there was 83-87% remaining EPA and 84-89% remaining DHA, 80-82% remaining tributyrin, and 81-100% remaining resveratrol across all formulations with Encapsulant matrix 2. In vitro studies showed that on sequential exposure to simulated gastric and intestinal fluids, <5% tuna oil was found as triglycerides, but all the tributyrin had been lipolysed. The presence of diglycerides, monoglycerides and free fatty acids in the in vitro digests suggested that lipolysis of tuna oil had occurred. The type of matrix used for encapsulating the bioactives had little effect on the lipolysis of the oils but affected the amount of solvent extractable resveratrol. The ability of delivering mixtures of bioactives within one formulation was demonstrated.

  19. Technological Characterization and Stability of Ilex paraguariensis St. Hil. Aquifoliaceae (Maté) Spray-Dried Powder

    PubMed Central

    Yatsu, Francini K.J.; Borghetti, Greice S.

    2011-01-01

    Abstract The present work was designed to produce an Ilex paraguariensis spray-dried powder (SDP), in semi-industrial scale, in order to characterize its technological and chemical properties as well as to evaluate the thermal stability and photostability of the main polyphenol constituents. The yield of the spray-drying process was satisfactory (67%). The resulting SDP showed to be a material presenting spherical particles with a mean size of 19.6 μm, smooth surface, and good flow properties. The four polyphenol compounds previously reported for the species—neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, and rutin—were identified. Regarding the photostability test, the polyphenols present in the SDP proved to be stable against ultraviolet C radiation for 48 hours, independently of the packaging material. In the thermal stability test, the polyphenols were demonstrated to be hygroscopic and responsive to temperature (40°C) under an atmosphere of high relative humidity (75%) for 4 months, especially when the SDP was conditioned in permeable flasks. These findings demonstrate that heat and residual moisture content play an important role in the stability of the polyphenols and reinforce the relevance of conditioning SDP in humid tight packages under low temperatures. PMID:21370969

  20. Heterogeneous particle deaggregation and its implication for therapeutic aerosol performance.

    PubMed

    Xu, Zhen; Mansour, Heidi M; Mulder, Tako; McLean, Richard; Langridge, John; Hickey, Anthony J

    2010-08-01

    Aerosolization performance of dry powder blends of drugs for the treatment of asthma or chronic obstructive pulmonary diseases have been reported in three previous articles. In vitro aerosolization was performed at defined shear stresses (0.624-13.143 N/m(2)). Formulations were characterized aerodynamically and powder aerosol deaggregation equations (PADE) and corresponding linear regression analyses for pharmaceutical aerosolization were applied. Particle deaggregation is the result of overcoming fundamental forces acting at the particle interface. A new method, PADE, describing dry powder formulation performance in a shear stress range has been developed which may allow a fundamental understanding of interparticulate and surface forces. The application of PADE predicts performance efficiency and reproducibility and supports rational design of dry powder formulations. The analogy of aerosol performance with surface molecular adsorption has important implications. Expressions describing surface adsorption were intended to allow elucidation of mechanisms involving surface heterogeneity, lateral interaction, and multilayer adsorption of a variety of materials. By using a similar expression for drug aerosolization performance, it is conceivable that an analogous mechanistic approach to the evaluation of particulate systems would be possible.

  1. Preservation of the immunogenicity of dry-powder influenza H5N1 whole inactivated virus vaccine at elevated storage temperatures.

    PubMed

    Geeraedts, Felix; Saluja, Vinay; ter Veer, Wouter; Amorij, Jean-Pierre; Frijlink, Henderik W; Wilschut, Jan; Hinrichs, Wouter L J; Huckriede, Anke

    2010-06-01

    Stockpiling of pre-pandemic influenza vaccines guarantees immediate vaccine availability to counteract an emerging pandemic. Generally, influenza vaccines need to be stored and handled refrigerated to prevent thermal degradation of the antigenic component. Requirement of a cold-chain, however, complicates stockpiling and the logistics of vaccine distribution. We, therefore, investigated the effect of elevated storage temperatures on the immunogenicity of a pre-pandemic influenza A H5N1 whole inactivated virus vaccine. Either suspended in liquid or kept as a freeze-dried powder, vaccines could be stored for 1 year at ambient temperature (20 degrees C) with minimal loss of immunogenicity in mice. Elevation of the storage temperature to 40 degrees C, however, resulted in a significant loss of immunogenic potency within 3 months if vaccines were stored in liquid suspension. In sharp contrast, freeze-dried powder formulations were stable at 40 degrees C for at least 3 months. The presence of inulin or trehalose sugar excipients during freeze-drying of the vaccine proved to be critical to maintain its immunogenic potency during storage, and to preserve the characteristic Th1-type response to whole inactivated virus vaccine. These results indicate that whole inactivated virus vaccines may be stored and handled at room temperature in moderate climate zones for over a year with minimal decline and, if converted to dry-powder, even in hot climate zones for at least 3 months. The increased stability of dry-powder vaccine at 40 degrees C may also point to an extended shelf-life when stored at 4 degrees C. Use of the more stable dry-powder formulation could simplify stockpiling and thereby facilitating successful pandemic intervention.

  2. Pharmaceutical aerosols for the treatment and prevention of Tuberculosis

    PubMed Central

    Hanif, Shumaila N. M.; Garcia-Contreras, Lucila

    2012-01-01

    Historically, pharmaceutical aerosols have been employed for the treatment of obstructive airway diseases, such as asthma and chronic obstructive pulmonary disease, but in the past decades their use has been expanded to treat lung infections associated with cystic fibrosis and other respiratory diseases. Tuberculosis (TB) is acquired after inhalation of aerosol droplets containing the bacilli from the cough of infected individuals. Even though TB affects other organs, the lungs are the primary site of infection, which makes the pulmonary route an ideal alternative route to administer vaccines or drug treatments. Optimization of formulations and delivery systems for anti-TB vaccines and drugs, as well as the proper selection of the animal model to evaluate those is of paramount importance if novel vaccines or drug treatments are to be successful. Pharmaceutical aerosols for patient use are generated from metered dose inhalers, nebulizers, and dry powder inhalers (DPIs). In addition to the advantages of providing more efficient delivery of the drug, low cost, and portability, pharmaceutical dry powder aerosols are more stable than inhalable liquid dosage forms and do not require refrigeration. Methods to manufacture dry powders in respirable sizes include micronization, spray drying, and other proprietary technologies. Inhalable dry powders are characterized in terms of their drug content, particle size, and dispersibility to ensure deposition in the appropriate lung region and effective aerosolization from the device. These methods will be illustrated as they were applied for the manufacture and characterization of powders containing anti-tubercular agents and vaccines for pulmonary administration. The influence of formulation, selection of animal model, method of aerosol generation, and administration on the efficacy demonstrated in a given study will be illustrated by the evaluation of pharmaceutical aerosols of anti-TB drugs and vaccines in guinea pigs by our

  3. Design of sustained release fine particles using two-step mechanical powder processing: particle shape modification of drug crystals and dry particle coating with polymer nanoparticle agglomerate.

    PubMed

    Kondo, Keita; Ito, Natsuki; Niwa, Toshiyuki; Danjo, Kazumi

    2013-09-10

    We attempted to prepare sustained release fine particles using a two-step mechanical powder processing method; particle-shape modification and dry particle coating. First, particle shape of bulk drug was modified by mechanical treatment to yield drug crystals suitable for the coating process. Drug crystals became more rounded with increasing rotation speed, which demonstrates that powerful mechanical stress yields spherical drug crystals with narrow size distribution. This process is the result of destruction, granulation and refinement of drug crystals. Second, the modified drug particles and polymer coating powder were mechanically treated to prepare composite particles. Polymer nanoparticle agglomerate obtained by drying poly(meth)acrylate aqueous dispersion was used as a coating powder. The porous nanoparticle agglomerate has superior coating performance, because it is completely deagglomerated under mechanical stress to form fine fragments that act as guest particles. As a result, spherical drug crystals treated with porous agglomerate were effectively coated by poly(meth)acrylate powder, showing sustained release after curing. From these findings, particle-shape modification of drug crystals and dry particle coating with nanoparticle agglomerate using a mechanical powder processor is expected as an innovative technique for preparing controlled-release coated particles having high drug content and size smaller than 100 μm.

  4. Dry-powder form of chitosan nanospheres containing influenza virus and adjuvants for nasal immunization.

    PubMed

    Dehghan, S; Tavassoti Kheiri, M; Tabatabaiean, M; Darzi, S; Tafaghodi, M

    2013-08-01

    The objective of this study was to develop and statistically optimize chitosan nanospheres. For this purpose chitosan powder was turned into nanospheres using tripolyphosphate as a crosslinker and through ionic gelation. D-optimal response surface design was applied to optimize the nanospheres. Their size and polydispersity index (PDI) were measured as the dependant variables. Then the inactivated influenza virus and/or CpG ODN or Quillaja saponin (QS) were incorporated into the chitosan nanospheres. The release profiles of the antigen and both adjuvants were obtained. The toxicity of the formulations was tested by XTT using Calu 6 cell lines. The size distribution and PDI of plain chitosan nanospheres was 581.1 ± 32.6 and 0.478 ± 0.04. After 4 h the release of antigen, QS and CpG from the chitosan matrix were 33, 36 and 62%, respectively. The inactivated virus remained intact during preparation, as revealed by the SDS-PAGE method. Differential scanning calorimetry and Fourier Transform Infrared Spectroscopy indicated no serious structural changes in the chitosan carrier in the presence of either the antigen or the immunoadjuvants. Although the antigen loaded into chitosan nanospheres showed slight cytotoxicity on lung-cancer cells, co-encapsulation of the adjuvant (especially CpG) lowered this effect. The results demonstrated that chitosan as a carrier and immunostimulator, along with CpG or QS adjuvants, creates a potential influenza vaccine delivery system which can be administered nasally.

  5. Clarithromycin and N-Acetylcysteine co-spray-dried powders for pulmonary drug delivery: A focus on drug solubility.

    PubMed

    Manniello, Michele Dario; Del Gaudio, Pasquale; Aquino, Rita P; Russo, Paola

    2017-04-01

    Cystic fibrosis (CF) lungs are usually susceptible to Pseudomonas aeruginosa colonization and this bacterium is resistant to immune system clearance and drug control. Particularly, the biofilm mode of growth protects several microorganisms from host defenses and antibacterial drugs, mainly due to a delayed penetration of the drug through the biofilm matrix. Biofilm, together with lung mucus viscosity and tenacity, reduces, therefore, the effectiveness of conventional antibiotic therapy in CF. The aim of this research was to design and develop a stable, portable, easy to use dry powder inhaler (DPI) for CF patients, able to release directly to the lung an association of macrolide antibiotics (clarithromycin) and a mucolytic agent (N-Acetyl-Cysteine). Its effectiveness is based on the counteracting of the characteristics of P. aeruginosa infections in CF (lung bacterial adhesion to lung epithelium, biofilm formation and mucus viscosity) and the ability to let the antimicrobial drug exert their pharmacological action. A solution of these two drugs, without any excipients, was spray-dried to obtain respirable microparticles, characterized by aerodynamic diameters suitable for inhalation (<5.0μm). The morphology evaluation evidenced a particles shape dependent on water content in the spray drying feeds, with wrinkle particles more evident with higher water content. Moreover, thanks to the presence of N-acetylcysteine which can interact with clarithromycin dimethyl-amino group, a consistent enhancement of drug solubility was obtained, compared to raw material and to the drug sprayed alone. The mucolytic agent added in the DPI may improve the macrolide diffusion into the mucus, enabling its action.

  6. Enhancing the Total Phenolic Content and Antioxidants of Lemon Pomace Aqueous Extracts by Applying UV-C Irradiation to the Dried Powder.

    PubMed

    Papoutsis, Konstantinos; Vuong, Quan V; Pristijono, Penta; Golding, John B; Bowyer, Michael C; Scarlett, Christopher J; Stathopoulos, Costas E

    2016-08-23

    Several studies have shown that UV-C (ultraviolet C) irradiation promotes the bioactive compounds and antioxidants of fresh fruits and vegetables. The aim of this study was to apply UV irradiation in dried lemon pomace powder for enhancing its phenolic content and antioxidant properties, thus more bioactive compounds should be available for extraction and utilization. Lemon pomace dried powder was placed under a UV lamp and treated with dosages of 4, 19, 80 and 185 kJ·m(-2), while untreated powder was used as a control. UV-C irradiation significantly affected the total phenolic content, total flavonoid content, proanthocyanidins, and antioxidant capacity measured by cupric reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP) of the lemon pomace dried powder, while it did not affect the vitamin C content. UV-C irradiation of 19 kJ·m(-2) resulted in 19% higher total phenolic content than the control, while UV-C irradiation of 180 kJ·m(-2) resulted in 28% higher total flavonoid content than the control. The antioxidant capacity was reduced when UV-C irradiation more than 4 kJ·m(-2) was applied. The results of this study indicate that UV-C treatment has the potential to increase the extraction of bioactive compounds of dried lemon pomace at relatively high dosages.

  7. Enhancing the Total Phenolic Content and Antioxidants of Lemon Pomace Aqueous Extracts by Applying UV-C Irradiation to the Dried Powder

    PubMed Central

    Papoutsis, Konstantinos; Vuong, Quan V.; Pristijono, Penta; Golding, John B.; Bowyer, Michael C.; Scarlett, Christopher J.; Stathopoulos, Costas E.

    2016-01-01

    Several studies have shown that UV-C (ultraviolet C) irradiation promotes the bioactive compounds and antioxidants of fresh fruits and vegetables. The aim of this study was to apply UV irradiation in dried lemon pomace powder for enhancing its phenolic content and antioxidant properties, thus more bioactive compounds should be available for extraction and utilization. Lemon pomace dried powder was placed under a UV lamp and treated with dosages of 4, 19, 80 and 185 kJ·m−2, while untreated powder was used as a control. UV-C irradiation significantly affected the total phenolic content, total flavonoid content, proanthocyanidins, and antioxidant capacity measured by cupric reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP) of the lemon pomace dried powder, while it did not affect the vitamin C content. UV-C irradiation of 19 kJ·m−2 resulted in 19% higher total phenolic content than the control, while UV-C irradiation of 180 kJ·m−2 resulted in 28% higher total flavonoid content than the control. The antioxidant capacity was reduced when UV-C irradiation more than 4 kJ·m−2 was applied. The results of this study indicate that UV-C treatment has the potential to increase the extraction of bioactive compounds of dried lemon pomace at relatively high dosages. PMID:28231150

  8. Effects of drying control chemical additive on properties of Li 4Ti 5O 12 negative powders prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Ju, Seo Hee; Kang, Yun Chan

    High-density Li 4Ti 5O 12 powders comprising spherical particles are prepared by spray pyrolysis from a solution containing dimethylacetamide (drying control chemical additive) and citric acid and ethylene glycol (organic additives). The prepared powders have high discharge capacities and good cycle properties. The optimum concentration of dimethylacetamide is 0.5 M. The addition of dimethylacetamide to the polymeric spray solutions containing citric acid and ethylene glycol helps in the effective control of the morphology of the Li 4Ti 5O 12 powders. At a constant current density of 0.17 mA g -1, the initial discharge capacities of the powders obtained from the spray solution with and without the organic additives are 171 and 167 mAh g -1, respectively.

  9. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect

    NASA Astrophysics Data System (ADS)

    Park, G. D.; Cho, J. S.; Kang, Y. C.

    2015-10-01

    Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the 150th cycle of the nickel sulfide/rGO composite powders prepared by sulfidation of the Ni/rGO composite and nickel acetate/GO composite powders at a current density of 0.3 A g-1 are 449 and 363 mA h g-1, respectively; their capacity retentions, calculated from the tenth cycle, are 100 and 87%. The nickel sulfide hollow nanospheres/rGO composite powders possess structural stability over repeated Na-ion insertion and extraction processes, and also show excellent rate performance for Na-ion storage.Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the

  10. The effect of pigment matrix, temperature and amount of carrier on the yield and final color properties of spray dried purple corn (Zea mays L.) cob anthocyanin powders.

    PubMed

    Lao, Fei; Giusti, M Monica

    2017-07-15

    Spray drying is an economic technique to produce anthocyanin-based colorants. High pigments yields with minimum color degradation are desirable to maximize quality and profits. This study evaluated the impacts of purple corncob (PCC) anthocyanin extraction matrices (hot water, 40% ethanol, C18 purified), drying inlet temperature (130, 150, 170°C) and amount of carrier (2%, 5%, 10% maltodextrin) on the yields and quality of PCC anthocyanin powders. Monomeric and polymeric anthocyanins, color properties (CIELch, haze), and pigments composition before and after spray drying were determined. The yield and final color quality of spray dried PCC anthocyanins were affected (p<0.05) by all parameters evaluated. The pigment matrix, inlet temperature, and carrier amount had biggest impacts on product water solubility, pigments degradation and yield, respectively. The optimal combination of hot water extracts spray dried with 5% maltodextrin at 150°C gave the highest pigment yield (∼90%) with good solubility with the least color loss.

  11. Weather and climate impacts of biomass burning aerosols during the dry season in Amazonia

    NASA Astrophysics Data System (ADS)

    Kolusu, Seshagirirao; Marsham, John; Spracklen, Dominic; Parker, Douglas; Dalvi, Mohit; Johnson, Ben; Mann, Graham

    2016-04-01

    Amazonia is a major global source of biomass burning aerosols (BBA) with impacts on weather and climate. BBA can be represented in weather models, with satellite-observed fires used to provide emissions fields, but such emissions normally require tuning to give realistic aerosol fields in models. Here, we investigate the two-way coupling between BBA and regional weather during the South American Biomass Burning Analysis (SAMBBA) field campaign, using both a set of short-range (2-day) forecasts and nested 20-day runs with the Met Office Unified Model (MetUM). Short-range forecasts with parametrised convection show that BBA exert an overall cooling influence on the Earth-atmosphere system, although some levels of the atmosphere are directly warmed by the absorption of solar radiation: BBA reduce the clear-sky net radiation at the surface by 15 ± 1 W m-2 and reduces net top-of-atmosphere radiation by 8 ± 1 W m-2, with a direct atmospheric warming of 7 ± 1 W m-2. BBA-induced reductions in all-sky radiation are smaller in magnitude, but of the same sign. The differences in heating induced by BBA lead to a more anticyclonic circulation at 700 hPa. BBA cools the boundary layer, but warms air above, reducing the BL depth by around 19 m. Locally, on a 150 km scale, changes in precipitation reach around 4 mm day-1 due to changes in the location of convection, with BBA leading to fewer rain events that are more intense, which may be linked to the BBA changing the vertical profile of stability in the lower atmosphere. The localised changes in rainfall tend to average out to give a 5 % (0.06 mm day-1) decrease in total precipitation, but the change in regional water budget is dominated by decreased evapotranspiration from the reduced net surface fluxes (0.2 to 0.3 mm day-1). The results show that although including BBA either prognostoically, or through a climatology, improves forecasts, but differences between the impacts of prognostic and climatological aerosol are small

  12. Oral intake of encapsulated dried ginger root powder hardly affects human thermoregulatory function, but appears to facilitate fat utilization

    NASA Astrophysics Data System (ADS)

    Miyamoto, Mayumi; Matsuzaki, Kentaro; Katakura, Masanori; Hara, Toshiko; Tanabe, Yoko; Shido, Osamu

    2015-10-01

    The present study investigated the impact of a single oral ingestion of ginger on thermoregulatory function and fat oxidation in humans. Morning and afternoon oral intake of 1.0 g dried ginger root powder did not alter rectal temperature, skin blood flow, O2 consumption, CO2 production, and thermal sensation and comfort, or induce sweating at an ambient temperature of 28 °C. Ginger ingestion had no effect on threshold temperatures for skin blood flow or thermal sweating. Serum levels of free fatty acids were significantly elevated at 120 min after ginger ingestion in both the morning and afternoon. Morning ginger intake significantly reduced respiratory exchange ratios and elevated fat oxidation by 13.5 % at 120 min after ingestion. This was not the case in the afternoon. These results suggest that the effect of a single oral ginger administration on the peripheral and central thermoregulatory function is miniscule, but does facilitate fat utilization although the timing of the administration may be relevant.

  13. Oral intake of encapsulated dried ginger root powder hardly affects human thermoregulatory function, but appears to facilitate fat utilization.

    PubMed

    Miyamoto, Mayumi; Matsuzaki, Kentaro; Katakura, Masanori; Hara, Toshiko; Tanabe, Yoko; Shido, Osamu

    2015-10-01

    The present study investigated the impact of a single oral ingestion of ginger on thermoregulatory function and fat oxidation in humans. Morning and afternoon oral intake of 1.0 g dried ginger root powder did not alter rectal temperature, skin blood flow, O2 consumption, CO2 production, and thermal sensation and comfort, or induce sweating at an ambient temperature of 28 °C. Ginger ingestion had no effect on threshold temperatures for skin blood flow or thermal sweating. Serum levels of free fatty acids were significantly elevated at 120 min after ginger ingestion in both the morning and afternoon. Morning ginger intake significantly reduced respiratory exchange ratios and elevated fat oxidation by 13.5 % at 120 min after ingestion. This was not the case in the afternoon. These results suggest that the effect of a single oral ginger administration on the peripheral and central thermoregulatory function is miniscule, but does facilitate fat utilization although the timing of the administration may be relevant.

  14. Effect of freeze-dried leek powder (FDLP) and nitrite level on processing and quality characteristics of fermented sausages.

    PubMed

    Tsoukalas, D S; Katsanidis, E; Marantidou, S; Bloukas, J G

    2011-02-01

    Fermented sausages were produced with 0.84% and 1.68% freeze-dried leek powder (FDLP), providing 75 and 150 mg/kg NaNO(3), respectively, and three levels of added nitrite (0, 75, and 150 mg/kg NaNO(2). A control treatment was also produced with 150 mg/kg NaNO(2). Sausages with FDLP were darker and yellower (p<0.05) than the control. Higher FDLP levels produced less red, yellower and darker sausages (p<0.05). Lower FDLP levels resulted in higher (p<0.05) sensory scores for external appearance, flavour and overall acceptability. No differences were found among the treatments with FDLP plus 75 or 150 ppm NaNO(2) in TBA value, lightness, redness (cross section), redness stability, yellowness, texture parameters and sensory firmness, flavour and overall acceptability. The use of 0.84% FDLP and 75 ppm NaNO₂ is considered more appropriate for the production of fermented sausages, as it results in a 50% reduction in added nitrite.

  15. Bioethanol production from the dry powder of Jerusalem artichoke tubers by recombinant Saccharomyces cerevisiae in simultaneous saccharification and fermentation.

    PubMed

    Wang, Yi-Zhou; Zou, Shan-Mei; He, Mei-Lin; Wang, Chang-Hai

    2015-04-01

    It has been found that recombinant Saccharomyces cerevisiae 6525 can produce high concentration of ethanol in one-step fermentation from the extract of Jerusalem artichoke tubers or inulin. However, the utilization rate of raw materials was low and the fermentation process was costly and complicated. Therefore, in this study, after the optimum processing conditions for ethanol production in fed-batch fermentation were determined in flask, the recombinant S. cerevisiae 6525 was first used to produce ethanol from the dry powder of Jerusalem artichoke tubers in 5-L agitating fermentor. After 72 h of fermentation, around 84.3 g/L ethanol was produced in the fermentation liquids, and the conversion efficiency of inulin-type sugars to ethanol was 0.453, or 88.6 % of the theoretical value of 0.511. This study showed high feasibility of bioethanol industrial production from the Jerusalem artichoke tubers and provided a basis for it in the future.

  16. Protective Effect of Boiled and Freeze-dried Mature Silkworm Larval Powder Against Diethylnitrosamine-induced Hepatotoxicity in Mice

    PubMed Central

    Cho, Jae-Min; Kim, Kee-Young; Ji, Sang-Deok; Kim, Eun-Hee

    2016-01-01

    Background Hepatocellular carcinoma (HCC) is a representative inflammation-associated cancer and known to be the most frequent tumors. HCC may also induce important pro- and anti-tumor immune reactions. However, the underlying mechanisms are unsatisfactorily identified. We investigated the protective effect of boiled and freeze-dried mature silkworm larval powder (BMSP) on diethylnitrosamine (DEN)-induced hepatotoxicity in mice. Methods Mice were fed with diet containing BMSP (0.1, 1, and 10 g/kg) for two weeks and DEN (100 mg/kg, intraperitoneally) was injected 18 hours before the end of this experiment. Liver toxicity was determined in serum and histopathological examination was assessed in the liver tissues. Infiltration of immune cells and expressions of inflammatory cytokines and chemokines were also examined. Results Pretreatment with BMSP reduced necrotic and histopathological changes induced by DEN in the liver. Measurement of serum biochemical indicators, the levels of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase, showed that pretreatment with BMSP also decreased DEN-induced hepatotoxicity. In addition, BMSP inhibited the macrophage and CD31 infiltration in a dose-dependent manner. The expressions of interleukin-1β, IFN-γ and chemokines for T cell activation were decreased in BMSP pretreatment groups. Conclusions BMSP may have a protective effect against acute liver injury by inhibiting necrosis and inflammatory response in DEN-treated mice. PMID:27722143

  17. Minimal inspiratory flow from dry powder inhalers according to a biphasic model of pressure vs. flow relationship.

    PubMed

    Kanabuchi, Kazuo; Kondo, Tetsuri; Tanigaki, Toshimori; Tajiri, Sakurako; Hayama, Naoki; Takahari, Yoko; Iwao, Kayoko

    2011-04-20

    Inhalation therapy using the dry powder inhaler (DPI) is now the first choice for obstructive pulmonary diseases. We previously measured relationships between inspiratory pressure (PI) and flow rate of almost all of the DPIs available in Japan, and described an importance of inspiratory efforts. In the present study, we further analyzed the data obtained in the previous study. Although there were linear relationships between PI and flow2, the slope became steeper when PI was less than a certain value (critical PI, existed between 15-20 cmH2O). When PI was less than critical PI, linear rather than parabolic regression between PI and flow yielded better fits (r > 0.90, p < 0.001). Inspiratory flows at the critical PI were 53.9 (Diskus), 65.8 (Diskhaler), 45.9 (Turbuhaler for Pulmincort), 48.6 (Turbuhaler for Symbicort) and 38.0 l/min (Twisthaler). These findings suggested that flow through the DPI becomes laminar rather than turbulent flow in the range below critical PIs. We suggest that patients should inhale from the DPIs with inspiratory pressure higher than critical PI.

  18. Removal of Co(II) from waste water using dry cow dung powder : a green ambrosia to soil

    NASA Astrophysics Data System (ADS)

    Bagla, Hemlata; Khilnani, Roshan

    2015-04-01

    Co(II) is one of the hazardous products found in the waste streams. The anthropogenic activities are major sources of Co(II) in our environment. Some of the well-established processes such as chemical precipitation, membrane process, liquid extraction and ion exchange have been applied as a tool for the removal of this metal ion [1]. All the above methods are not considered to be greener due to some of their shortcomings such as incomplete metal ion removal, high requirement of energy and reagents, generation of toxic sludge or other waste materials which in turn require further treatments for their cautious disposal. The present investigation entails the application of dry cow dung powder (DCP) as an indigenous, inexpensive and eco-friendly material for the removal of Co(II) from aqueous medium. DCP, is naturally available bio-organic, complex, polymorphic humified fecal matter of cow and is enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic-aromatic species such as 'Humic acid' (HA), Fulvic acid, Ulmic acid [2,3]. Batch biosorption experiments were conducted employing 60Co(II) as a tracer and effect of various process parameters such as pH (1-8), temperature (283-363K), amount of biosorbent (5-40 g/L), time of equilibration (0-30 min), agitation speed (0-4000 rpm), concentration of initial metal ions (0.5-20 mg/mL) and interfering effect of different organic as well as inorganic salts were studied. The Kinetic studies were carried out employing various models but the best fitting was given by Lagergren Pseudo-second order model [4] with high correlation coefficient R2 value of 0.999 and adsorption capacity of 2.31 mg/g. The thermodynamic parameters for biosorption were also evaluated which indicated spontaneous and exothermic process with high affinity of DCP for Co(II). Many naturally available materials are used for biosorption of hazardous metal pollutants, where most of them are physically or chemically modified. In this research

  19. [Inhalation therapy: inhaled corticosteroids in ENT, development and technical challenges of powder inhalers, nebulisers synchronized with breathing and aerosol size distribution. GAT aerosolstorming, Paris 2012].

    PubMed

    Le Guen, P; Peron, N; Durand, M; Pourchez, J; Cavaillon, P; Reychler, G; Vecellio, L; Dubus, J-C

    2013-10-01

    The working group on aerosol therapy (GAT) of the Société de Pneumologie de Langue Française (SPLF) has organized its third Aerosolstorming in 2012. During one single day, different aspects of inhaled therapies have been treated and are detailed in two articles, this one being the second. This text deals with the indications of inhaled corticosteroids in ENT, the development and technical challenges of powder inhalers, the advantages and disadvantages of each type of technologies to measure the particle sizes of inhaled treatments.

  20. Fabrication of LiCoO 2 cathode powder for thin film battery by aerosol flame deposition

    NASA Astrophysics Data System (ADS)

    Lee, Taewon; Cho, Kihyun; Oh, Jangwon; Shin, Dongwook

    Crystalline LiCoO 2 nano-particles for thin film battery were synthesized and deposited by aerosol flame deposition (AFD). The aqueous precursor solution of the lithium nitrate and cobalt acetate was atomized with an ultrasonic vibrator and subsequently carried into the central tube of the torch by flowing dry Ar gas. LiCoO 2 were formed by oxy-hydrogen flame and deposited on a substrate placed in a heating stage. The deposited soot film composed of nano-sized particles was subsequently consolidated into a dense film by high temperature heat treatment at 500-800 °C for 5 h and characterized by SEM, XRD, and Raman spectroscopy. The crystalline carbonates and oxide were first formed by the deposition and the subsequent heat treatment converted those to LiCoO 2. The FWHMs of the XRD peaks were reduced and their intensity increased as the heat treatment temperature increased, which is due to improved crystallinity. When judged from the low enough cation mixing and well-developed layered structure, it is believed that the LiCoO 2 film satisfied the quality standard for the real application. SEM measurements showed that LiCoO 2 were nano-crystalline structure with the average particle size <70 nm and the particle size increased with the increase of heat treatment temperature. The thickness of thin film LiCoO 2 before the consolidation process was about 15 μm and reduced to about 4 μm after sintering.

  1. Effect of Flow Rate on In Vitro Aerodynamic Performance of NEXThaler® in Comparison with Diskus® and Turbohaler® Dry Powder Inhalers

    PubMed Central

    Buttini, Francesca; Brambilla, Gaetano; Copelli, Diego; Sisti, Viviana; Balducci, Anna Giulia; Bettini, Ruggero; Pasquali, Irene

    2016-01-01

    Abstract Background: European and United States Pharmacopoeia compendial procedures for assessing the in vitro emitted dose and aerodynamic size distribution of a dry powder inhaler require that 4.0 L of air at a pressure drop of 4 kPa be drawn through the inhaler. However, the product performance should be investigated using conditions more representative of what is achievable by the patient population. This work compares the delivered dose and the drug deposition profile at different flow rates (30, 40, 60, and 90 L/min) of Foster NEXThaler® (beclomethasone dipropionate/formoterol fumarate), Seretide® Diskus® (fluticasone propionate/salmeterol xinafoate), and Symbicort® Turbohaler® (budesonide/formoterol fumarate). Methods: The delivered dose uniformity was tested using a dose unit sampling apparatus (DUSA) at inhalation volumes either 2.0 or 4.0 L and flow rates 30, 40, 60, or 90 L/min. The aerodynamic assessment was carried out using a Next Generation Impactor by discharging each inhaler at 30, 40, 60, or 90 L/min for a time sufficient to obtain an air volume of 4 L. Results: Foster® NEXThaler® and Seretide® Diskus® showed a consistent dose delivery for both the drugs included in the formulation, independently of the applied flow rate. Contrary, Symbicort® Turbohaler® showed a high decrease of the emitted dose for both budesonide and formoterol fumarate when the device was operated at airflow rate lower that 60 L/min. The aerosolizing performance of NEXThaler® and Diskus® was unaffected by the flow rate applied. Turbohaler® proved to be the inhaler most sensitive to changes in flow rate in terms of fine particle fraction (FPF) for both components. Among the combinations tested, Foster NEXThaler® was the only one capable to deliver around 50% of extra-fine particles relative to delivered dose. Conclusions: NEXThaler® and Diskus® were substantially unaffected by flow rate through the inhaler in terms of both delivered dose and

  2. Direct observations of shortwave aerosol radiative forcing at surface and its diurnal variation during the Asian dry season at southwest Indian peninsula

    NASA Astrophysics Data System (ADS)

    Mishra, Manoj Kumar; Rajeev, K.

    2016-08-01

    The Arabian Sea witnesses consistent occurrence of a large-scale aerosol plume transported by the northerlies from the Asian region during the dry season (December-April). This paper presents direct observations of the diurnal variation (and dependence on solar zenith angle, SZA) of instantaneous aerosol direct radiative forcing efficiency (IADRFE) and aerosol direct radiative forcing (ADRF) at surface during the period from December to March of 2010-2013 at Thiruvananthapuram (8.5°N, 77°E), an Indian peninsular station adjoining the Arabian Sea coast, which resides well within this aerosol plume. Magnitude of the IADRFE increases with SZA from -75 ± 20 W m-2 τ 500 -1 at SZA of ~80° to attain a peak value of -170 ± 30 W m-2 τ 500 -1 at SZA ~60° in March (~3 h before and after the local noon). Absolute magnitudes and SZA dependence of the observed seasonal mean IADRFE are in agreement (within 16 % of the absolute magnitudes) with those estimated using radiation transfer computations employing an aerosol model with visible band single-scattering albedo of ~0.90 ± 0.03. Observed values of the diurnal mean aerosol radiative forcing efficiency (ADRFE) averaged during the season (December-March) vary between -71 and -76.5 W m-2 τ 500 -1 , which is in agreement with the model estimate of -71 W m-2 τ 500 -1 . The present observations show that the seasonal mean ADRF at surface (-25 to -28 W m-2) is about 10 % of the diurnal mean downwelling shortwave flux reaching the surface (in the absence of aerosols) during dry season at this location, indicating the major role of aerosols in regulating surface energetics.

  3. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.

    2015-01-01

    The effect of dry and wet deposition of semi-volatile organic compounds (SVOCs) in the gas phase on the concentrations of secondary organic aerosol (SOA) is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the WRF-Chem regional chemistry transport model, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48 and 63% respectively over the continental US. Dry deposition of gas-phase SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (-40 vs. -8% for anthropogenics, and -52 vs. -11% for biogenics). Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas phase (61% for anthropogenics and 76% for biogenics). Results are sensitive to assumptions made in the dry deposition scheme, but gas-phase deposition of SVOCs remains crucial even under conservative estimates. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower bound for the effect of gas-phase SVOC removal on SOA concentrations. A saturation effect is observed for Henry's law constants above 108 M atm-1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water solubility of SVOCs made in

  4. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    DOE PAGES

    Knote, C.; Hodzic, A.; Jimenez, J. L.

    2015-01-06

    The effect of dry and wet deposition of semi-volatile organic compounds (SVOCs) in the gas phase on the concentrations of secondary organic aerosol (SOA) is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the WRF-Chem regional chemistry transport model, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48 and 63% respectively over the continental US. Dry deposition ofmore » gas-phase SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (−40 vs. −8% for anthropogenics, and −52 vs. −11% for biogenics). Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas phase (61% for anthropogenics and 76% for biogenics). Results are sensitive to assumptions made in the dry deposition scheme, but gas-phase deposition of SVOCs remains crucial even under conservative estimates. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower bound for the effect of gas-phase SVOC removal on SOA concentrations. A saturation effect is observed for Henry's law constants above 108 M atm−1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water solubility

  5. Determinants of the bronchial response to high molecular weight occupational agents in a dry aerosol form.

    PubMed

    Nguyen, B; Weytjens, K; Cloutier, Y; Ghezzo, H; Malo, J L

    1998-10-01

    In occupational challenge tests with isocyanate vapours, bronchial responsiveness is determined by the total dose rather than the concentration or duration of exposure. Whether the same applies for high molecular weight (HMW) agents in powder form is unknown. The aim of this study was to determine whether the total dose of HMW agents in powder form is responsible for the immediate reaction documented in specific challenge tests. Included in the study were nine subjects (seven males and two females) with a diagnosis of occupational asthma proved by specific challenge tests carried out on a preliminary visit. Two challenge tests (using a closed-circuit exposure chamber) were performed at an interval of 2 weeks; the concentrations administered in a random order on these two visits were half and double the one that had caused a 20% fall in forced expiratory volume in one second (FEV1) on a preliminary visit. The duration of exposure was adjusted until a significant fall in FEV1 (target of 20%) occurred. The two concentrations obtained were significantly different, by 2.07+/-0.36-fold (SD). The observed durations of exposure leading to a 20% fall in FEV1 on the two visits also differed significantly by 0.46+/-0.32-fold. Consequently, the cumulative efficient doses were not significantly different between the two visits: 12+/-5.4 and 9+/-5 mg x mL(-1) x min(-1), respectively. The corresponding cumulative dose ratio was 0.96+/-0.61. The expected duration of exposure (10.8+/-24 min) was not significantly different from the observed duration (5.4+/-9 min). The mean and 95% confidence interval for the difference in concentration between the two visits was 1.83-fold (1.48-2.21). In conclusion, the total dose rather than the concentration or duration of exposure per se determines bronchial responsiveness to high molecular weight agents in powder form.

  6. Influence of small amorphous amounts in hydrophilic and hydrophobic APIs on storage stability of dry powder inhalation products.

    PubMed

    Müller, Thorsten; Krehl, Regina; Schiewe, Jörg; Weiler, Claudius; Steckel, Hartwig

    2015-05-01

    The effects of different manufacturing methods to induce formation of amorphous content, changes of physico-chemical characteristics of powder blends and changes of aerodynamic properties over storage time (6months) analyzed with the Next Generation Impactor (NGI) are investigated. Earlier studies have shown that standard pharmaceutical operations lead to structural disorders which may influence drug delivery and product stability. In this investigation, fully amorphous drug samples produced by spray-drying (SD) and ball-milling (BM) as well as semi-crystalline samples (produced by blending and micronization) are studied and compared to fully crystalline starting material. The amorphous content of these hydrophilic and hydrophobic active pharmaceutical ingredients (APIs) was determined using a validated one-step DVS-method. For the conducted blending and micronization tests, amorphous amounts up to a maximum of 5.1% for salbutamol sulfate (SBS) and 17.0% for ciclesonide (CS) were measured. In order to investigate the impact of small amorphous amounts, inhalable homogenous powder mixtures with very high and low amorphous content and a defined particle size were prepared with a Turbula blender for each API. These blends were stored (6months, 45% RH, room temperature) to evaluate the influence of amorphous amounts on storage stability. The fine particle fraction (FPF: % of emitted dose<5μm) was determined with the NGI at defined time points. The amorphous amounts showed a major effect on dispersion behavior, the mixtures of the two APIs showed differences at the beginning of the study and significant differences in storage stability. The FPF values for SBS decreased during storage (FPF: from 35% to <27%) for the blend with high amorphous amounts, in contrast the initially re-crystallized sample achieved a comparable constant level of about 25%. For the hydrophobic CS a constantly increasing FPF (from 6% to >15%) over storage time for both types of blends was

  7. Decorporation of plutonium by pulmonary administration of Ca-DTPA dry powder: a study in rat after lung contamination with different plutonium forms.

    PubMed

    Sérandour, A L; Tsapis, N; Gervelas, C; Grillon, G; Fréchou, M; Deverre, J R; Bénech, H; Fattal, E; Fritsch, P; Poncy, J L

    2007-01-01

    This study evaluates the decorporation efficacy of a pulmonary administration of a new Ca-DTPA (diethylenetriaminepentaacetic acid) dry powder (18 micromol kg(-1) of body mass) after pulmonary contamination of rats with different Pu compounds. After inhalation of PuO2, a delayed intratracheal administration of DTPA cannot reduce significantly the retention of Pu in the lungs but limits its transfer in liver and skeleton. After pulmonary contamination by Pu nitrate, early insufflation of the DTPA powder appears twice as more efficient than an i.v injection of DTPA (30 micromol kg(-1)) to reduce Pu retention in the lungs and is as effective as i.v. injection to limit the extrapulmonary deposit. In contrast, a delayed administration of DTPA cannot reduce the lung or extrapulmonary retention. In conclusion, the improvement of aerodynamic properties of DTPA powder leads to an increase of DTPA amount deposited in the lungs and enhances the body decorporation.

  8. Dry sampling of gas-phase isocyanates and isocyanate aerosols from thermal degradation of polyurethane.

    PubMed

    Gylestam, Daniel; Riddar, Jakob B; Karlsson, Daniel; Dahlin, Jakob; Dalene, Marianne; Skarping, Gunnar

    2014-01-01

    The performance of a dry sampler, with an impregnated denuder in series with a glass fibre filter, using di-n-butylamine (DBA) for airborne isocyanates (200ml min(-1)) is investigated and compared with an impinger flask with a glass fibre filter in series (1 l min(-1)). An exposure chamber containing 1,6-hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and 2,4- and 2,6-toluene diisocyanate (TDI) in the concentration range of 5-205 μg m(-3) [0.7-33 p.p.b.; relative humidity (RH) 50%], generated by gas- and liquid-phase permeation, was used for the investigation. The precision for the dry sampling for five series with eight samplers were in the range of 2.0-6.1% with an average of 3.8%. During 120-min sampling (n = 4), no breakthrough was observed when analysing samplers in series. Sixty-four exposed samplers were analysed after storage for 0, 7, 14, and 21 days. No breakdown of isocyanate derivatives was observed. Twenty-eight samplers in groups of eight were collecting isocyanates during 0.5-32h. Virtually linear relationships were obtained with regard to sampling time and collected isocyanates with correlation coefficients in the range of 0.998-0.999 with the intercept close to the origin. Pre- or post-exposure to ambient air did not affect the result. Dry sampling (n = 48) with impinger-filter sampling (n = 48) of thermal decomposition product of polyurethane polymers, at RH 20, 40, 60, and 90%, was compared for 11 isocyanate compounds. The ratio between the different isocyanates collected with dry samplers and impinger-filter samplers was in the range of 0.80-1.14 for RH = 20%, 0.8-1.25 for RH = 40%, 0.76-1.4 for RH = 60%, and 0.72-3.7 for RH = 90%. Taking into account experimental errors, it seems clear that isocyanic acid DBA derivatives are found at higher levels in the dry samples compared with impinger-filter samplers at elevated humidity. The dry sampling using DBA as the reagent enables easy and robust sampling without the need of field

  9. Measurements of Refractory Black Carbon (rBC) Aerosols in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Khan, A. L.; McMeeking, G. R.; Lyons, W. B.; Schwarz, J. P.; Welch, K. A.; McKnight, D. M.

    2015-12-01

    Measurements of light absorbing particles in the boundary layer of the high southern latitudes are scarce. During the 2013-2014 austral summer field season refractory black carbon (rBC) aerosols were quantified by a single particle soot photometer (SP2) in the McMurdo Dry Valleys, Antarctica. The dark rBC particles absorb more radiation thereby increasing atmospheric heating, as well as reducing surface albedo and enhancing hydrologic melt when deposited on highly reflective surfaces such as snow and ice. Quantifying both local and long-range atmospheric transport of rBC to this region of a remote continent mostly covered by ice and snow would be useful in understanding meltwater generation as climate changes. Although the Dry Valleys are the largest ice-free region of Antarctica, they contain many alpine glaciers, some of which are fed from the East Antarctic Ice Sheet (EAIS). Continuous rBC measurements were collected at Lake Hoare Camp in the Taylor Valley for two months, along with shorter periods at more remote locations within the Dry Valleys. Conditions at the Lake Hoare Camp were dominated by up-valley winds from McMurdo Sound, however, winds also brought air down-valley from the EAIS polar plateau. Here we investigated periods dominated by both up and down-valley winds to explore differences in rBC concentrations, size distributions, and scattering properties. The average background rBC mass concentration was 1ng/m3, though concentrations as high as 50 ng/m3 were observed at times, likely due to local sources.

  10. Generation of aerosolized drugs.

    PubMed

    Wolff, R K; Niven, R W

    1994-01-01

    The expanding use of inhalation therapy has placed demands on current aerosol generation systems that are difficult to meet with current inhalers. The desire to deliver novel drug entities such as proteins and peptides, as well as complex formulations including liposomes and microspheres, requires delivery systems of improved efficiency that will target the lung in a reproducible manner. These efforts have also been spurred by the phase out of chlorofluorocarbons (CFCs) and this has included a directed search for alternative propellants. Consequently, a variety of new aerosol devices and methods of generating aerosols are being studied. This includes the use of freon replacement propellants, dry powder generation systems, aqueous unit spray systems and microprocessor controlled technologies. Each approach has advantages and disadvantages depending upon each principle of action and set of design variables. In addition, specific drugs may be better suited for one type of inhaler device vs. another. The extent to which aerosol generation systems achieve their goals is discussed together with a summary of selected papers presented at the recent International Congress of Aerosols in Medicine.

  11. Development of a dry powder inhaler, the Ultrahaler, containing triamcinolone acetonide using in vitro-in vivo relationships.

    PubMed

    Lim, Joe G P; Shah, Bharti; Rohatagi, Shashank; Bell, Alex

    2006-01-01

    Triamcinolone acetonide (TAA) is safe and effective corticosteroid that is marketed as an MDI (metered dose inhaler) (Azmacort) for the treatment of asthma. A novel dry powder inhaler (DPI), the Ultrahaler, has been developed to deliver Azmacort as another alternative to provide non-CFC formulation for the asthmatic patients. The Ultrahaler is breath actuated and, unlike MDI, does not require coordination of inhalation with the actuation of the device. However, with the Ultrahaler device, like any dry powder inhalation device, the challenge was the on-target and uniform delivery of the drug at the site of action (lungs) with different dose strengths. Due to the complexities of oral inhaled formulations and the topical nature of drug delivery to the lung for efficacy, the reformulation requires careful consideration and support throughout their development, using a combination of in vitro and in vivo studies. This paper describes in vitro studies and two clinical pharmacokinetic studies conducted in a sequence that helped to establish optimum doses for the Ultrahaler. In vitro data were used to guide the initial selection of doses that were then compared in vivo using a pharmacokinetic study with a charcoal block. The in vitro tests included quantifying the target-delivered dose, dose uniformity throughout the life of the device, and the particle size distribution. Particle size distribution was measured using multistage liquid impinger (MSLI) or the Andersen Cascade Impactor (ACI). For in vitro testing, TAA was measured by HPLC methods. Based on the preliminary in vitro data for the respirable fraction, dose strengths with an MDI and the Ultrahaler for the first study were determined. The in vivo assessment consisted of a four-way crossover study following oral inhalation using both MDI (75 and 225 microg/actuation, reference treatment) and comparable respirable doses in the DPI (130 and 360 microg/actuation) devices in healthy volunteers in the presence (lung

  12. Spray-freeze-drying of nanosuspensions: the manufacture of insulin particles for needle-free ballistic powder delivery

    PubMed Central

    Schiffter, Heiko; Condliffe, Jamie; Vonhoff, Sebastian

    2010-01-01

    The feasibility of preparing microparticles with high insulin loading suitable for needle-free ballistic drug delivery by spray-freeze-drying (SFD) was examined in this study. The aim was to manufacture dense, robust particles with a diameter of around 50 µm, a narrow size distribution and a high content of insulin. Atomization using ultrasound atomizers showed improved handling of small liquid quantities as well as narrower droplet size distributions over conventional two-fluid nozzle atomization. Insulin nanoparticles were produced by SFD from solutions with a low solid content (<10 mg ml−1) and subsequent ultra-turrax homogenization. To prepare particles for needle-free ballistic injection, the insulin nanoparticles were suspended in matrix formulations with a high excipient content (>300 mg ml−1) consisting of trehalose, mannitol, dextran (10 kDa) and dextran (150 kDa) (abbreviated to TMDD) in order to maximize particle robustness and density after SFD. With the increase in insulin content, the viscosity of the nanosuspensions increased. Liquid atomization was possible up to a maximum of 250 mg of nano-insulin suspended in a 1.0 g matrix. However, if a narrow size distribution with a good correlation between theoretical and measurable insulin content was desired, no more than 150 mg nano-insulin could be suspended per gram of matrix formulation. Particles were examined by laser light diffraction, scanning electron microscopy and tap density testing. Insulin stability was assessed using size exclusion chromatography (SEC), reverse phase chromatography and Fourier transform infrared (FTIR) spectroscopy. Densification of the particles could be achieved during primary drying if the product temperature (Tprod) exceeded the glass transition temperature of the freeze concentrate (Tg′) of −29.4°C for TMDD (3∶3∶3∶1) formulations. Particles showed a collapsed and wrinkled morphology owing to viscous flow of the freeze concentrate. With increasing insulin

  13. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.

    2014-05-01

    The effect of dry and wet deposition of semi-volatile organic compounds (SVOC) in the gas-phase on the concentrations of secondary organic aerosol (SOA) is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the regional chemistry transport model WRF-Chem, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48% and 63% respectively over the continental US Dry deposition of gas-phase SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (-40% vs. -8% for anthropogenics, -52% vs. -11% for biogenics). Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas-phase (61% for anthropogenics, 76% for biogenics). A number of sensitivity studies shows that this is a robust feature of the modeling system. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water solubility of SVOCs made in some current modeling systems (H* = 105 M atm-1; H* = H* (HNO3)) still lead to an overestimation of 25% / 10% compared to our best estimate. A saturation effect is observed for Henry's law constants above 108 M atm-1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower

  14. Defining the critical material attributes of lactose monohydrate in carrier based dry powder inhaler formulations using artificial neural networks.

    PubMed

    Kinnunen, Hanne; Hebbink, Gerald; Peters, Harry; Shur, Jagdeep; Price, Robert

    2014-08-01

    The study aimed to establish a function-based relationship between the physical and bulk properties of pre-blended mixtures of fine and coarse lactose grades with the in vitro performance of an adhesive active pharmaceutical ingredient (API). Different grades of micronised and milled lactose (Lactohale (LH) LH300, LH230, LH210 and Sorbolac 400) were pre-blended with coarse grades of lactose (LH100, LH206 and Respitose SV010) at concentrations of 2.5, 5, 10 and 20 wt.%. The bulk and rheological properties and particle size distributions were characterised. The pre-blends were formulated with micronised budesonide and in vitro performance in a Cyclohaler device tested using a next-generation impactor (NGI) at 90 l/min. Correlations between the lactose properties and in vitro performance were established using linear regression and artificial neural network (ANN) analyses. The addition of milled and micronised lactose fines with the coarse lactose had a significant influence on physical and rheological properties of the bulk lactose. Formulations of the different pre-blends with budesonide directly influenced in vitro performance attributes including fine particle fraction, mass median aerodynamic diameter and pre-separator deposition. While linear regression suggested a number of physical and bulk properties may influence in vitro performance, ANN analysis suggested the critical parameters in describing in vitro deposition patterns were the relative concentrations of lactose fines % < 4.5 μm and % < 15 μm. These data suggest that, for an adhesive API, the proportion of fine particles below % < 4.5 μm and % < 15 μm could be used in rational dry powder inhaler formulation design.

  15. Delivery characteristics and patients' handling of two single-dose dry-powder inhalers used in COPD.

    PubMed

    Chapman, Kenneth R; Fogarty, Charles M; Peckitt, Clare; Lassen, Cheryl; Jadayel, Dalal; Dederichs, Juergen; Dalvi, Mukul; Kramer, Benjamin

    2011-01-01

    For optimal efficacy, an inhaler should deliver doses consistently and be easy for patients to use with minimal instruction. The delivery characteristics, patients' correct use, and preference of two single-dose dry powder inhalers (Breezhaler and HandiHaler) were evaluated in two complementary studies. The first study examined aerodynamic particle size distribution, using inhalation profiles of seven patients with moderate to very severe chronic obstructive pulmonary disease (COPD). The second was an open-label, two-period, 7-day crossover study, evaluating use of the inhalers with placebo capsules by 82 patients with mild to severe COPD. Patients' correct use of the inhalers was assessed after reading written instructions on Day 1, and after training and 7 days of daily use. Patients' preference was assessed after completion of both study periods. Patient inhalation profiles showed average peak inspiratory flows of 72 L/minute through Breezhaler and 36 L/minute through HandiHaler. For Breezhaler and HandiHaler, fine particle fractions were 27% and 10%, respectively. In the second study, correct use of Breezhaler and HandiHaler was achieved by > 77% of patients for any step after 7 days; 61% of patients showed an overall preference for Breezhaler and 31% for HandiHaler (P = 0.01).Breezhaler is a low-resistance inhaler suitable for use by patients with a range of disease severities. Most patients used both inhalers correctly after 7 days, but more patients showed an overall preference for the Breezhaler compared with the HandiHaler. These are important factors for optimum dose delivery and successful COPD management.

  16. Physicochemical characteristics of rapidly dried onion powder and its anti-atherogenic effect on rats fed high-fat diet.

    PubMed

    Hamauzu, Yasunori; Nosaka, Toshiya; Ito, Fuyu; Suzuki, Takanori; Torisu, Shuichi; Hashida, Miyoko; Fukuzawa, Akira; Ohguchi, Masakatsu; Yamanaka, Shigeru

    2011-12-01

    Rapidly dried onion (Allium cepa L. cv. Momiji No. 3) powder (OP) prepared from the outer layers (from second to fourth scale leaves from the surface) of onion bulbs was analysed for its quercetin and polyuronide contents, the effects of enzymatic treatment and the anti-atherogenic effect on rats fed a high-fat diet. Quercetin 4'-glucoside (50%), free quercetin (30%) and quercetin 3,4'-diglucoside (20%) were identified as quercetin derivatives, and boiling-water extraction was effective in extracting these compounds. OP contained 12.9% of polyuronides, the basic skeleton of pectin. Enzymatic degradation (cellulase and pectinase, 50°C for 12h, pH 6.0) of OP was effective in obtaining a slurry of smaller particle sizes. The free quercetin increased and the glucosides decreased with enzyme treatment. In Wistar rats fed an OP-added high-fat diet, the total cholesterol, HDL-cholesterol and triglyceride concentrations were not significantly different from the rats fed a high-fat diet without OP. However, the atherogenic index (AI) of Wistar rats fed an OP-added high-fat diet was lower (AI=3.3) than rats fed the diet without OP (AI=4.1). The incremental elastic modulus (IEM) of the aorta from rats fed the OP-added diet was also significantly lower than that of the rats fed the diet without OP. The AI and IEM values of the rats fed the OP-added diet were quite similar to the values of rats fed the diet without OP but were allowed spontaneous exercise. These results suggest that OP intake is effective for decreasing the risk of arteriosclerosis.

  17. Antioxidant Enzyme Activity and Meat Quality of Meat Type Ducks Fed with Dried Oregano (Origanum vulgare L.) Powder

    PubMed Central

    Park, J. H.; Kang, S. N.; Shin, D.; Shim, K. S.

    2015-01-01

    One-day-old Cherry valley meat-strain ducks were used to investigate the effect of supplemental dried oregano powder (DOP) in feed on the productivity, antioxidant enzyme activity, and breast meat quality. One hundred sixty five ducks were assigned to 5 dietary treatments for 42 days. The dietary treatment groups were control group (CON; no antibiotic, no DOP), antibiotic group (ANT; CON+0.1% Patrol), 0.1% DOP (CON+0.1% DOP), 0.5% DOP (CON+0.5% DOP), and 1.0% DOP (CON+1.0% DOP). Upon feeding, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity of oregano extracts was higher than that of tocopherol, although it was less than that of ascorbic acid. As a result of in vivo study, DOP in the diet showed no effects on final body weight, feed intake, or feed conversion ratio. However, dietary 0.5% and 1% DOP supplementation caused a significant increase in the serum enzyme activity of superoxide dismutase (SOD) compared with CON and ANT, while glutathione peroxidase (GPx) in tissue was increased as compared to ANT (p<0.05). Cooking loss from ducks fed with DOP decreased compared with the control ducks. Thiobarbituric acid reactive substance (TBARS) values of duck breast meat at 5 d post slaughter was found to be significantly reduced in ducks whose diets were supplemented with 0.5% and 1% DOP (p<0.05). These results suggest that diets containing 0.5% and 1% DOP may beneficially affect antioxidant enzyme activity of GPx and SOD, improve meat cooking loss, and reduce TBARS values in breast meat at 5 d of storage in ducks. PMID:25557678

  18. Effect of Device Design and Formulation on the In Vitro Comparability for Multi-Unit Dose Dry Powder Inhalers.

    PubMed

    Shur, Jagdeep; Saluja, Bhawana; Lee, Sau; Tibbatts, James; Price, Robert

    2015-09-01

    The focus of this investigation was to understand the design space to achieve comparable in vitro performance of two multi-unit dose dry powder inhalers (DPIs)—Flixotide® Accuhaler® (reference product) and MultiHaler® (test product). Flow field, pressure drop and particle trajectories within the test and reference DPI devices were modelled via computational fluid dynamics (CFD). Micronized fluticasone propionate (FP) was characterized to determine particle size distribution (PSD), specific surface area (SSA) and surface interfacial properties using cohesive-adhesive balance (CAB). CFD simulations suggested that the pressure drop and airflow velocity in the MultiHaler® were greater than Accuhaler®. Two modified test devices (MOD MH 1 and MOD MH 2) were manufactured with the introduction of by-pass channels in the airflow path, which achieved comparable specific resistance and airflow path between the test and reference devices. Assessment of reference product formulation in modified test devices suggested that MOD MH 2 achieved comparable in vitro performance to the reference product. CAB analysis suggested that adhesion of all FP batches to lactose was different, with batch D showing greatest and batch A least adhesion to lactose. Test DPI formulations were manufactured using four different batches of FP with milled or sieved lactose, and showed that batch A FP formulated with sieved lactose in MOD MH 2 device demonstrated the highest degree of similarity to the Accuhaler® in vitro deposition. Application of CFD modelling and material characterization of formulation raw materials enabled the modification of device and formulation critical material attributes to create an in vitro comparable device/formulation system to the reference product.

  19. Antioxidant Enzyme Activity and Meat Quality of Meat Type Ducks Fed with Dried Oregano (Origanum vulgare L.) Powder.

    PubMed

    Park, J H; Kang, S N; Shin, D; Shim, K S

    2015-01-01

    One-day-old Cherry valley meat-strain ducks were used to investigate the effect of supplemental dried oregano powder (DOP) in feed on the productivity, antioxidant enzyme activity, and breast meat quality. One hundred sixty five ducks were assigned to 5 dietary treatments for 42 days. The dietary treatment groups were control group (CON; no antibiotic, no DOP), antibiotic group (ANT; CON+0.1% Patrol), 0.1% DOP (CON+0.1% DOP), 0.5% DOP (CON+0.5% DOP), and 1.0% DOP (CON+1.0% DOP). Upon feeding, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity of oregano extracts was higher than that of tocopherol, although it was less than that of ascorbic acid. As a result of in vivo study, DOP in the diet showed no effects on final body weight, feed intake, or feed conversion ratio. However, dietary 0.5% and 1% DOP supplementation caused a significant increase in the serum enzyme activity of superoxide dismutase (SOD) compared with CON and ANT, while glutathione peroxidase (GPx) in tissue was increased as compared to ANT (p<0.05). Cooking loss from ducks fed with DOP decreased compared with the control ducks. Thiobarbituric acid reactive substance (TBARS) values of duck breast meat at 5 d post slaughter was found to be significantly reduced in ducks whose diets were supplemented with 0.5% and 1% DOP (p<0.05). These results suggest that diets containing 0.5% and 1% DOP may beneficially affect antioxidant enzyme activity of GPx and SOD, improve meat cooking loss, and reduce TBARS values in breast meat at 5 d of storage in ducks.

  20. Influence of dry deposition of semi-volatile organic compounds (VOC) on secondary organic aerosol (SOA) formation in the Mexico City plume

    NASA Astrophysics Data System (ADS)

    Hodzic, Alma; Madronich, Sasha; Aumont, Bernard; Lee-Taylor, Julia; Karl, Thomas

    2013-04-01

    The dry deposition removal of organic compounds from the atmosphere and its impact on organic aerosol mass is currently unexplored and unaccounted for in chemistry-climate models. The main reason for this omission is that current models use simplified SOA mechanisms that lump precursors and their products into volatility bins, therefore losing information on other important properties of individual molecules (or groups) that are needed to calculate dry deposition. In this study, we apply the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to simulate SOA formation and estimate the influence of dry deposition of VOCs on SOA concentrations downwind of Mexico City. SOA precursors considered here include short- and long-chain alkanes (C3-25), alkenes, and light aromatics. The results suggest that 90% of SOA produced in Mexico City originates from the oxidation and partitioning of long-chain (C>12) alkanes, while the regionally exported SOA is almost equally produced from long-chain alkanes and from shorter alkanes and light aromatics. We show that dry deposition of oxidized gases is not an efficient sink for SOA, as it removes <5% of SOA within the city's boundary layer and ~15% downwind. We discuss reasons for this limited influence, and investigate separately the impacts on short and long-chain species. We show that the dry deposition is competing with the uptake of gases to the aerosol phase, and because dry deposition of submicron aerosols is slow, condensation onto particles protects organic gases from deposition and therefore increases their atmospheric burden and lifetime. In the absence of this condensation, ~50% of the regionally produced mass would have been dry-deposited.

  1. Ease-of-use preference for the ELLIPTA® dry powder inhaler over a commonly used single-dose capsule dry powder inhaler by inhalation device-naïve Japanese volunteers aged 40 years or older

    PubMed Central

    Komase, Yuko; Asako, Akimoto; Kobayashi, Akihiro; Sharma, Raj

    2014-01-01

    Background In patients receiving inhaled medication, dissatisfaction with and difficulty in using the inhaler can affect treatment adherence. The incidence of handling errors is typically higher in the elderly than in younger people. The aim of the study was to assess inhaler preference for and handling errors with the ELLIPTA® dry powder inhaler (DPI), (GSK), compared with the established BREEZHALER™, a single-dose capsule DPI (Novartis), in inhalation device-naïve Japanese volunteers aged ≥40 years. Methods In this open-label, nondrug interventional, crossover DPI preference study comparing the ELLIPTA DPI and BREEZHALER, 150 subjects were randomized to handle the ELLIPTA or BREEZHALER DPIs until the point of inhalation, without receiving verbal or demonstrative instruction (first attempt). Subjects then crossed over to the other inhaler. Preference was assessed using a self-completed questionnaire. Inhaler handling was assessed by a trained assessor using a checklist. Subjects did not inhale any medication in the study, so efficacy and safety were not measured. Results The ELLIPTA DPI was preferred to the BREEZHALER by 89% of subjects (odds ratio [OR] 70.14, 95% confidence interval [CI] 33.69–146.01; P-value not applicable for this inhaler) for ease of use, by 63% of subjects (OR 2.98, CI 1.87–4.77; P<0.0001) for ease of determining the number of doses remaining in the inhaler, by 91% for number of steps required, and by 93% for time needed for handling the inhaler. The BREEZHALER was preferred to the ELLIPTA DPI for comfort of the mouthpiece by 64% of subjects (OR 3.16, CI 1.97–5.06; P<0.0001). The incidence of handling errors (first attempt) was 11% with ELLIPTA and 68% with BREEZHALER; differences in incidence were generally similar when analyzed by age (< or ≥65 years) or sex. Conclusion These data, obtained in an inhalation device-naïve population, suggest that the ELLIPTA DPI is preferred to an established alternative based on its ease

  2. Characteristics of Bi-Pb-Sr-Ca-Cu-O powders produced by aerosol decomposition and their rapid conversion to the high-T c phase

    NASA Astrophysics Data System (ADS)

    Ward, Timothy L.; Lyons, Shirley W.; Kodas, Toivo T.; Brynestad, Jorulf; Kroeger, Donald M.; Hsu, Huey

    1992-09-01

    Bi-Pb-Sr-Ca-Cu-O powders were produced by aerosol decomposition of nitrate solutions. The effects of reactor temperature and residence time on particle morphology and evaporative Pb loss from particles were demonstrated, and conditions necessary to control Pb loss established. Pb loss was roughly proportional to residence time, and minimal loss occurred with short residence times (3s) and T≤800°C. Particles produced at 700°C typically contained significant porosity, while those produced at T≥800°C were solid. Mixtures of the Bi 2Sr 2CuO y (2201) and Bi 2Sr 2CaCu 2O y (2212) phases were produced at 700-900°C in nitrogen and air. However, after hearing in air for 16 h at 850°C, pellets of powder produced at 700°C with nominal composition Pb 0.44Bi 1.8Sr 2Ca 2.2Cu 3O y converted to approximately 79 vol.% of the Bi 2Sr 2Ca 2Cu 3O y (2223) phase and displayed a Tc (onset) of 110 K. Rapid conversion to 2223 was promoted by powder synthesis conditions, leading to controlled Pb loss and a homogeneous fine-grained dispersion of mixed-oxide precursor phases within particles.

  3. Microheterogeneity in phenyl group modified inorganic/organic hybrid gels after aerosol drying or slow solvent evaporation.

    PubMed

    Ulke, Simone; Koller, Hubert

    2011-01-01

    Sol-gel systems were prepared by co-hydrolysis and co-condensation of tetraethoxysilane (TEOS) and phenyltriethoxysilane (PhTES). The sols were transferred into silica gels by Evaporation Induced Self-Assembly (EISA) or Aerosol Assisted Self-Assembly (AASA) using a laboratory spray-dryer. The structural properties such as porosity and homogeneity/microheterogeneity of these different systems are compared by N(2) sorption measurements, thermal analysis (TG, DTG and DTA), (29)Si MAS NMR and (29)Si{(1)H} CP MAS NMR. The cross polarization of the AASA gels can be described with the conventional I-S dynamics of a homogeneous proton spin bath. The EISA gels are heterogeneous, and the I-I(*)-S model, or a bimodal I-S model, was employed for the simulation of CP dynamics. Microheterogeneities are observed by (1)H-(29)Si cross polarization on an EISA sample, whereas rapid drying (AASA) transfers the corresponding sol into homogeneous xerogels. The EISA gels are microporous after calcination at 923 K, and the AASA gels are dense.

  4. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    SciTech Connect

    Leach, James

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  5. Electrochemical properties of yolk-shell structured ZnFe2O4 powders prepared by a simple spray drying process as anode material for lithium-ion battery

    PubMed Central

    Won, Jong Min; Choi, Seung Ho; Hong, Young Jun; Ko, You Na; Kang, Yun Chan

    2014-01-01

    ZnFe2O4 yolk–shell powders were prepared by applying a simple spray-drying process. Dextrin was used as a drying additive and carbon source material, and thus played a key role in the preparation of the powders. The combustion of precursor powders consisting of zinc and iron salts and dextrin obtained by a spray-drying process produced the yolk–shell-structured ZnFe2O4 powders even at a low post-treatment temperature of 350°C. The ZnFe2O4 powders prepared from the spray solution without dextrin had a filled and pockmarked structure. The initial discharge capacities of the ZnFe2O4 yolk–shell and filled powders post-treated at 450°C at a current density of 500 mA g−1 were 1226 and 993 mA h g−1, respectively, and the corresponding initial Coulombic efficiencies were 74 and 58%. The discharge capacities of the ZnFe2O4 powders with yolk–shell and filled structures post-treated at 450°C after 200 cycles were 862 and 332 mA h g−1, respectively. The ZnFe2O4 yolk–shell powders with high structural stability during cycling had superior electrochemical properties to those of the powders with filled structure. PMID:25168407

  6. Spray-dried powders improve the controlled release of antifungal tioconazole-loaded polymeric nanocapsules compared to with lyophilized products.

    PubMed

    Ribeiro, Roseane Fagundes; Motta, Mariana Heldt; Härter, Andréia Pisching Garcia; Flores, Fernanda Cramer; Beck, Ruy Carlos Ruver; Schaffazick, Scheila Rezende; de Bona da Silva, Cristiane

    2016-02-01

    This work aimed to obtain solid formulations from polymeric nanocapsules and nanoemulsions containing tioconazole, a broad spectrum antifungal drug. Two dehydration methods were used: spray-drying and freeze drying, using lactose as adjuvant (10%, w/v). The liquid formulations had a mean particle size around 206 nm and 182 nm for nanocapsules and nanoemulsions, respectively, and an adequate polydispersity index. Tioconazole content was close to the theoretical amount (1.0 mg/mL). After drying, the content ranged between 98 and 102%with a mean nanometric size of the dried products after redispersion. Scanning electron microscopy showed that the particles are rounded, sphere-shaped for the dried products obtained by spray-drying, and shapeless and irregular shapes for those obtained by freeze-drying. In the microbiological evaluation, all dried products remained active against the yeast Candida albicans when compared to the original systems. The dried products obtained by spray-drying from nanocapsules presented better control of the tioconazole release when compared to the freeze-drying products.

  7. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  8. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  9. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  10. Distributions of Trace Gases and Aerosols during the Dry Biomass Burning Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.

    2003-01-01

    Vertical profiles in the lower troposphere of temperature, relative humidity, sulfur dioxide (SO2), ozone (O3), condensation nuclei (CN), and carbon monoxide (CO), and horizontal distributions of twenty gaseous and particulate species, are presented for five regions of southern Africa during the dry biomass burning season of 2000. The regions are the semiarid savannas of northeast South Africa and northern Botswana, the savanna-forest mosaic of coastal Mozambique, the humid savanna of southern Zambia, and the desert of western Namibia. The highest average concentrations of carbon dioxide (CO2), CO, methane (CH4), O3, black particulate carbon, and total particulate carbon were in the Botswana and Zambia sectors (388 and 392 ppmv, 369 and 453 ppbv, 1753 and 1758 ppbv, 79 and 88 ppbv, 2.6 and 5.5 micrograms /cubic meter and 13.2 and 14.3 micrograms/cubic meter). This was due to intense biomass burning in Zambia and surrounding regions. The South Africa sector had the highest average concentrations of SO2, sulfate particles, and CN (5.1 ppbv, 8.3 micrograms/cubic meter, and per 6400 cubic meter , respectively), which derived from biomass burning and electric generation plants and mining operations within this sector. Air quality in the Mozambique sector was similar to the neighboring South Africa sector. Over the arid Namibia sector there were polluted layers aloft, in which average SO2, O3, and CO mixing ratios (1.2 ppbv, 76 ppbv, and 3 10 ppbv, respectively) were similar to those measured over the other more polluted sectors. This was due to transport of biomass smoke from regions of widespread savanna burning in southern Angola. Average concentrations over all sectors of CO2 (386 +/- 8 ppmv), CO (261 +/- 81 ppbv), SO2 (2.5 +/- 1.6 ppbv), O3 (64 +/- 13 ppbv), black particulate carbon (2.3 +/- 1.9 microgram/cubic meter), organic particulate carbon (6.2 +/- 5.2 microgram/cubic meter), total particle mass (26.0 +/- 4.7 microgram/cubic meter), and potassium particles (0

  11. Role of HSAB concept in understanding biosorptive behaviour of various metal ions employing green biosorbent - Dry Cow Dung Powder

    NASA Astrophysics Data System (ADS)

    Bagla, Hemlata; Khilnani, Roshan

    2016-04-01

    Hard & Soft Acid Base concept, HSAB theory given by Pearson, elucidates the crucial role of HSAB characteristics of both pollutants as well as the aqueous milieu. This theory can also explain the biosorptive behaviour of Dry Cow dung Powder, which helps in governing the success of process. The various metal ionic species exhibit a preference for the ligand binding on the biomass based on its chemical coordination characteristics. A comparative batch equilibration biosorptive assay has been carried out employing radiotracer technique for uptake of Cr(III), Cr(VI), Cd(II), Hg(II), Sr(II), Cs(I) and Co(II) at optimum biosorption parameters. To study the effect of interference of different salts on the percentage biosorption of metal ions on DCP, different organic as well as inorganic salts with varying proportion of 10 mg, 25 mg, 50 mg and 100 mg have been studied. The dynamics of the biosorption in terms of the order of the rate constant was studied applying different kinetic models. The best fitting model was Lagergren pseudo second order model. DCP, an eco-friendly humiresin, enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic - aromatic species such as 'Humic acid', Fulvic acid and many naturally present functional group such as carboxyl, phenols, quinols, amide etc. of both hard and soft nature, making it 'combo' in nature sorbs both concerned metal ions as well as ligands present in the system. Thus the ligands which were masking the biosorption process of heavy metal ions in this study were treated by mere increase in the dose of DCP, which successfully solves the problem without affecting efficiency of the process. This is exemplified by three very basic interactions happening in multicomponent system i.e. Synergism: Mutual enhancement; Antagonism: Mutual decrement; Non-interaction: Neutral effect. Thus DCP has a great potential in the field of water decontamination, industrial water treatment and in abatement of water pollution. So

  12. Heterogeneous Chemical Transformation on Mineral Aerosol Surfaces during Long Range Transport and its Implications in Understanding Aeolian Dust Deposits in Antarctic Dry Valleys

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Bao, H.; Thiemens, M. H.

    2010-12-01

    Mineral dust aerosols comprise ~ 60% of aerosol dry mass and link the atmosphere, lithosphere and hydrosphere in complex ways. The µm sized mineral dust particles can be transported over long distances (> 1000 km) and have ample opportunity en-route to interact with trace gases such as O3, NOx, SOx, VOC’s , thus not only affecting gas phase chemistry by serving as chemical sink but also providing reactive surfaces for the formation of secondary compounds. Defining these pathways is important for understanding chemical budgets of trace gases and to assess the role of mineral aerosols on hydrological, biogeochemical cycle, and climate change through direct/ indirect radiative forcing. These processes are recognizably important but difficult to measure due to the lack of relevant analytical techniques to trace secondary transformation on aerosol surfaces. Here we show that stable isotopes of C and O in the carbonate fractions of secondary mineral dust aerosols can be used to fingerprint the heterogeneous chemical transformations and reaction mechanism at a molecular level. Soil samples were collected from McMurdo Dry Valleys, Antarctica. CO2 was obtained by phosphoric acid digestion from the carbonate fractions of mineral dust. Purified CO2 gas was analyzed for δ13C and subsequently fluorinated to produce O2 gas thus enabling the measurement of triple oxygen isotopic composition of the CO2. Data indicated significant variations in δ13C (+3 to -34 ‰) and δ18O (+2 to 26‰) of the carbonate fractions of the soil samples. Intriguingly, we found distinct 17O anomalies (Δ17O = δ17O - 0.524 δ18O) in some of the soils, ranging from +0.52 to +1.60‰. On the other hand, carbonate crusts formed underneath surface pebbles in Dry Valleys are significantly enriched in the δ13C(+11‰) but do not bear a 17O anomaly. To understand the origin and variation in the C and O isotopic composition of dust deposits in Antarctica, controlled laboratory experiments using various

  13. Evaluation of the TSI small-scale powder disperser

    SciTech Connect

    Chen, B.T.; Yeh, Hsu-Chi; Fan, Bijian

    1994-11-01

    Several dry powder generators, including the Wright-dust-feed, the fluidized-bed, the venturi tube, and the jet-o-mizer systems, have been used for inhalation toxicity studies involving relatively high concentrations of aerosols. For fundamental laboratory studies, however, a powder generator that can produce a limited quantity of test aerosol is more practical than a system that generates high concentrations. The TSI small-scale powder disperser (SSPD) is a low flow rate, low mass output generator that uses venturi aspiration through a capillary tube to remove particles from the surface of a turntable, like a vacuum cleaner. The particles are then deagglomerated in a venturi throat and an expansion cone. The purpose of this study was to evaluate the SSPD by investigating the effects of flow rate, particle size, and particle shape on the generation efficiency and internal losses.

  14. Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5 km during the SEAC4RS campaign

    NASA Astrophysics Data System (ADS)

    Shingler, Taylor; Crosbie, Ewan; Ortega, Amber; Shiraiwa, Manabu; Zuend, Andreas; Beyersdorf, Andreas; Ziemba, Luke; Anderson, Bruce; Thornhill, Lee; Perring, Anne E.; Schwarz, Joshua P.; Campazano-Jost, Pedro; Day, Douglas A.; Jimenez, Jose L.; Hair, Johnathan W.; Mikoviny, Tomas; Wisthaler, Armin; Sorooshian, Armin

    2016-04-01

    In situ aerosol particle measurements were conducted during 21 NASA DC-8 flights in the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys field campaign over the United States, Canada, Pacific Ocean, and Gulf of Mexico. For the first time, this study reports rapid, size-resolved hygroscopic growth and real refractive index (RI at 532 nm) data between the surface and upper troposphere in a variety of air masses including wildfires, agricultural fires, biogenic, marine, and urban outflow. The Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) quantified size-resolved diameter growth factors (GF = Dp,wet/Dp,dry) that are used to infer the hygroscopicity parameter κ. Thermokinetic simulations were conducted to estimate the impact of partial particle volatilization within the DASH-SP across a range of sampling conditions. Analyses of GF and RI data as a function of air mass origin, dry size, and altitude are reported, in addition to κ values for the inorganic and organic fractions of aerosol. Average RI values are found to be fairly constant (1.52-1.54) for all air mass categories. An algorithm is used to compare size-resolved DASH-SP GF with bulk scattering f(RH = 80%) data obtained from a pair of nephelometers, and the results show that the two can only be reconciled if GF is assumed to decrease with increasing dry size above 400 nm (i.e., beyond the upper bound of DASH-SP measurements). Individual case studies illustrate variations of hygroscopicity as a function of dry size, environmental conditions, altitude, and composition.

  15. One step synthesis of Bi(Pb)-2223 phase in Bi(Pb)-Sr(Ba)-Ca-Cu nitrate freeze dried powder

    NASA Astrophysics Data System (ADS)

    Badica, P.; Aldica, G.; Mandache, S.

    1999-03-01

    One step synthesis of the superconducting Bi(Pb)-2223 phase during heat treatment for non-equilibrium decomposition of the freeze dried Bi:Pb:Sr:Ba:Ca:0953-2048/12/3/010/img1:0.4:1.8:0.2:2.2:3.0 nitrate powder has been studied. The heating rate was 0953-2048/12/3/010/img2 and samples were maintained in air at 0953-2048/12/3/010/img3C for 0, 5, 10, 20, 30, 60, 90, 240 and 1080 min. Each batch was investigated by x-ray diffraction analysis and ac magnetic susceptibility 0953-2048/12/3/010/img4. Evolution of phases and kinetics of phase formation-decomposition processes were discussed. 0953-2048/12/3/010/img5% of Bi(Pb)-2223 has formed indicating the possibility of lowering the processing time of the freeze dried precursor powders by one order of magnitude comparative to the multistep synthesis route (from hundreds to tens of hours). A 30 min heat treatment step at 0953-2048/12/3/010/img6C performed on the way up to the synthesis temperature is a forthcoming operation in order to block the formation of secondary undesired phases (e.g. 0953-2048/12/3/010/img7.

  16. Solid-state stability of spray-dried insulin powder for inhalation: chemical kinetics and structural relaxation modeling of Exubera above and below the glass transition temperature.

    PubMed

    Sadrzadeh, Negar; Miller, Danforth P; Lechuga-Ballesteros, David; Harper, Nancy J; Stevenson, Cynthia L; Bennett, David B

    2010-09-01

    The effect of temperature on the chemical stability of an amorphous spray-dried insulin powder formulation (Exubera) was evaluated in the solid state at constant moisture content. The chemical stability of the powder was assessed using reversed-phase high-performance liquid chromatography (RP-HPLC) and high-performance-size exclusion chromatography (HP-SEC). The major degradants in spray-dried insulin produced during heat stressing were identified as A21-desamidoinsulin (A21) and high molecular weight protein (HMWP). As expected, the rates of formation of A21 and HMWP were observed to increase with temperature. A stretched-time kinetic model (degradation rate is proportional to the square root of time) was applied to the degradant profiles above and below the glass transition temperature (T(g)) and apparent reaction rate constants were determined. Below T(g), isothermal enthalpy of relaxation measurements were used to assess the effect of temperature on molecular mobility. The formation of A21 and HMWP was found to follow an Arrhenius temperature dependence above and below the T(g). Comparison of reaction rate constants to those estimated from structural relaxation experiments suggests that the reaction pathways to form A21 and HMWP below the T(g) may be coupled with the molecular motions involved in structural relaxation.

  17. Development and evaluation of well-tolerated and tumor-penetrating polymeric micelle-based dry powders for inhaled anti-cancer chemotherapy.

    PubMed

    Rosière, Rémi; Van Woensel, Matthias; Mathieu, Véronique; Langer, Ingrid; Mathivet, Thomas; Vermeersch, Marjorie; Amighi, Karim; Wauthoz, Nathalie

    2016-03-30

    Despite the direct access to the lung offered by the inhalation route, drug penetration into lung tumors could remain an important issue. In this study, folate-polyethylene glycol-hydrophobically-modified dextran (F-PEG-HMD) micelles were developed as an effective pulmonary drug delivery system to reach and penetrate lung tumors and cancer cells. The F-PEG-HMD micelles were able to enter HeLa and M109-HiFR, two folate receptor-expressing cancer cell lines, in vitro, and in vivo after administration by inhalation to orthotopic M109-HiFR lung tumor grafted mice. Paclitaxel-loaded F-PEG-HMD micelles characterized in PBS by a Z-average diameter of ∼50 nm and a zeta potential of ∼-4 mV were prepared with an encapsulation efficiency of ∼100%. The loaded micelles reduced HeLa and M109-HiFR cell growth, with half maximal inhibitory concentrations of 37 and 150 nM, respectively. Dry powders embedding the paclitaxel-loaded F-PEG-HMD micelles were developed by spray-drying. In vitro, good deposition profiles were obtained, with a fine particle fraction of up to 50% and good ability to re-disperse the micelles in physiological buffer. A polymeric micelle-based dry powder without paclitaxel was well-tolerated in vivo, as assessed in healthy mice by determination of total protein content, cell count, and cytokine IL-1β, IL-6, and TNF-α concentrations in bronchoalveolar lavage fluids.

  18. SCF-engineered powders for delivery of budesonide from passive DPI devices.

    PubMed

    Lobo, Jennifer M; Schiavone, Helena; Palakodaty, Srinivas; York, Peter; Clark, Andy; Tzannis, Stelios T

    2005-10-01

    The objective of this study was to develop SEDS-engineered budesonide particles suitable for dry powder inhalation delivery and to evaluate their aerosol performance across a range of passive dry powder inhalers (DPI). SEDS budesonide powders were manufactured in Nektar's SCF manufacturing plant and compared to the micronized drug and commercial powder (Pulmicort Turbuhaler, AstraZeneca). Aerosol performance was evaluated by determining emitted dose (ED) by a variation of the USP method and fine particle fraction (FPF) using Andersen cascade impaction. The SCF powder dispersed best in the Turbospin and Eclipse devices, exhibiting high EDs (70%-80%) and relatively low variability (RSD 8%-13%). Regardless of the device, the SEDS material outperformed both the micronized drug and the commercial powder, while exhibiting good batch-to-batch reproducibility (RSD <5%). All powders exhibited flow rate-dependent ED, albeit for the SEDS material it was minimized at reduced fill weights. This was attributed to inadequate and variable powder clearance from the capsules at low inspiratory flow rates, which was more pronounced in the Eclipse and Cyclohaler. The results demonstrate that SEDS is an attractive particle-engineering process that may enhance pulmonary performance of budesonide and possibly facilitate development of other small molecule pulmonary products in passive DPI.

  19. Spray washing, absorbent corn starch powder and dry time to reduce bacterial numbers on soiled boiler transport cage flooring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most broilers in the U.S. are transported live to slaughter facilities in cages with fiberglass floors. Cages are often used repeatedly without washing and fecal matter deposited on the floor surface can transfer Campylobacter from one flock to another. Drying feces out between uses is an effectiv...

  20. Spray washing, absorbent cornstarch powder, and dry time to reduce bacterial numbers on soiled transport cage flooring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broiler transport cages are often used repeatedly without washing and fecal matter deposited on the floor surface can transfer Campylobacter from one flock to another. Allowing feces to dry is an effective but slow and logistically impractical means to kill Campylobacter in soiled transport cages. ...

  1. Inhibition of murine skin carcinogenesis by freeze-dried grape powder and other grape-derived major antioxidants.

    PubMed

    Hanausek, Margaret; Spears, Erick; Walaszek, Zbigniew; Kowalczyk, Magdalena C; Kowalczyk, Piotr; Wendel, Courtney; Slaga, Thomas J

    2011-01-01

    Overexposure of the skin to carcinogenic insults causes a variety of adverse effects, among them the development of skin carcinomas. Since there is a need to develop efficient chemopreventive agents based on nutrition, our goal was to determine antioxidant and anti-carcinogenic properties of grapes by evaluating grape powder developed by the California Table Grape Commission. In order to elucidate the mechanism(s) of action of grape powder, three of the major antioxidant components found in grapes-resveratrol, catechin, quercetin, and grape seed extract, containing a proanthocyanidin B-2-gallate-were evaluated for their abilities to inhibit oxidative stress and to protect the immune system. Tested antioxidants given topically and/or systemically strongly inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced epidermal hyperplasia, proliferation, and inflammation. The hydroxylation of 2'-deoxyguanosine was markedly inhibited by topical and dietary administration of test variables, i.e., by approximately 40-70%. Simultaneous dietary and topical treatment with antioxidants reduced these biomarkers, showing strong additive and in some combinations synergistic effects. DMBA-mediated Ha-ras mutations in codon 61 were reduced by up to 50% with topical applications, but much higher inhibition was observed in mice treated with different combinations. The results of the present study clearly show impressive effects of combined topical and dietary treatments with above grape-derived antioxidants.

  2. Development of a Rational Design Space for Optimizing Mixing Conditions for Formation of Adhesive Mixtures for Dry-Powder Inhaler Formulations.

    PubMed

    Sarkar, Saurabh; Minatovicz, Bruna; Thalberg, Kyrre; Chaudhuri, Bodhisattwa

    2017-01-01

    The purpose of the present study was to develop guidance toward rational choice of blenders and processing conditions to make robust and high performing adhesive mixtures for dry-powder inhalers and to develop quantitative experimental approaches for optimizing the process. Mixing behavior of carrier (LH100) and AstraZeneca fine lactose in high-shear and low-shear double cone blenders was systematically investigated. Process variables impacting the mixing performance were evaluated for both blenders. The performance of the blenders with respect to the mixing time, press-on forces, static charging, and abrasion of carrier fines was monitored, and for some of the parameters, distinct differences could be detected. A comparison table is presented, which can be used as a guidance to enable rational choice of blender and process parameters based on the user requirements. Segregation of adhesive mixtures during hopper discharge was also investigated.

  3. Aerosol therapy in the equine species.

    PubMed

    Duvivier, D H; Votion, D; Vandenput, S; Lekeux, P

    1997-11-01

    Inhalation therapy plays an increasing role in the management of equine respiratory disorders. This alternative to systematic treatment permits a high concentration of medication to act locally while minimizing side effects and residues. In human medicine, literature in this field is prolific and continuously renewed, whereas in veterinary medicine, applications of aerosol therapy are less extensive. This review considers the principles of action of the different types of devices used for inhalation, i.e., nebulization, metered-dose inhalation and dry powder inhalation, describes the technical and practical requirements for their use in the equine species and considers the advantages and disadvantages of each inhalation device. The pharmacological agents currently administered to horses by inhalation are also discussed. Perspectives of aerosol therapy in the equine species, including aerosols already used in human medicine and their potential applications for horses are described.

  4. Spray Drying as a Processing Technique for Syndiotactic Polystyrene to Powder Form for Part Manufacturing Through Selective Laser Sintering

    NASA Astrophysics Data System (ADS)

    Mys, N.; Verberckmoes, A.; Cardon, L.

    2017-03-01

    Selective laser sintering (SLS) is a rapidly expanding field of the three-dimensional printing concept. One stumbling block in the evolution of the technique is the limited range of materials available for processing with SLS making the application window small. This article aims at identifying syndiotactic polystyrene (sPS) as a promising material. sPS pellets were processed into powder form with a lab-scale spray dryer with vibrating nozzle. This technique is the focus of this scope as it almost eliminates the agglomeration phenomenon often encountered with the use of solution-based processing techniques. Microspheres obtained were characterized in shape and size by scanning electron microscopy and evaluation of the particle size distribution. The effect the processing technique imparts on the intrinsic properties of the material was examined by differential scanning calorimetry analysis.

  5. Spray Drying as a Processing Technique for Syndiotactic Polystyrene to Powder Form for Part Manufacturing Through Selective Laser Sintering

    NASA Astrophysics Data System (ADS)

    Mys, N.; Verberckmoes, A.; Cardon, L.

    2016-11-01

    Selective laser sintering (SLS) is a rapidly expanding field of the three-dimensional printing concept. One stumbling block in the evolution of the technique is the limited range of materials available for processing with SLS making the application window small. This article aims at identifying syndiotactic polystyrene (sPS) as a promising material. sPS pellets were processed into powder form with a lab-scale spray dryer with vibrating nozzle. This technique is the focus of this scope as it almost eliminates the agglomeration phenomenon often encountered with the use of solution-based processing techniques. Microspheres obtained were characterized in shape and size by scanning electron microscopy and evaluation of the particle size distribution. The effect the processing technique imparts on the intrinsic properties of the material was examined by differential scanning calorimetry analysis.

  6. PBL Aerosols SE of Mexico City in the dry Season: Biomass Burning and Windblown Dust and its Impact on Photolysis Frequencies

    NASA Astrophysics Data System (ADS)

    Junkermann, W.; Grutter, M.; Baumgardner, D.; Steinbrecher, R.

    2007-05-01

    During the dry season in March 2006 airborne investigations on aerosol distributions, ultraviolet actinic radiation and ozone profiles were performed southeast of Mexico City using an ultralight aircraft as a mobile platform. The area investigated covered the rural area southeast of Mexico City, the Chalco Valley, Huexca and Atlixco south of the volcano Popocatepetl, east of Paso de Cortés to the airport of Puebla and the pass between Puebla and Mexico City north of the volcano Ixtachiuatl. The Chalco valley is the main venting valley of the Mexico City basin to the south. Intense biomass burning was observed on both slopes of the volcanoes leading to strong pyrocumulus cloud production in the northern part of the national reserve and above the motorway Puebla-Mexico. Fine particle (> 10 nm) numbers reached up to 80000/cm3 close to the burning plumes with significant reduction to ~ 30-40000/cm3 in the Chalco valley where coarse particles (> 300 nm) dominated the total mass. Dust devils transporting coarse soil particles up to elevations of more than 4000 m a.s.l. were frequently observed. Particles and air masses of pollution sources in the area can be characterized by aerosol size distributions and/or spectral absorption from multi-wavelength aethalometer measurements as well as from ozone mixing ratios and meteorological data measured onboard. The aerosol impact on photolysis rates and air chemistry is derived from vertical profiles of actinic radiation in the JO1D and JNO2 spectral regimes at 300 nm and 380 nm, respectively. Profiles were flown on both sides of the volcano ridge, south of Popocatepetl and above Tenango del Aire where aircraft measurements were supported by ceilometer aerosol vertical profiles.

  7. Determination of kavalactones in dried kava (Piper methysticum) powder using near-infrared reflectance spectroscopy and partial least-squares regression.

    PubMed

    Gautz, Loren D; Kaufusi, Pakieli; Jackson, Mel C; Bittenbender, Harry C; Tang, Chung-Shih

    2006-08-23

    Kava (Piper methysticum Forst F.), or àwa in the Hawaiian language, has been used for thousands of years by the people of the South Pacific Islands, in particular Fiji, Vanuatu, Tonga, and Samoa, for social and ceremonial occasions. Kava has the unique ability to promote a state of relaxation without the loss of mental alertness. Kava recently became part of the herbal pharmacopoeia throughout the United States and Europe because of its anxiolytic properties. The active compounds are collectively called kavalactones (or kava pyrones). The need for a less time-consuming and costly method to determine the concentration of kavalactones in dried kava is urgent. The combination of near-infrared reflectance spectroscopy (NIRS) and partial least-squares (PLS) methods has been found to be a convenient, versatile, and rapid analytical tool for determination of kavalactones in dried kava powder. Calibration equations were developed based on the analyses of 110 samples with variable physical and chemical properties collected over time from Hawaii kava growers and validated by analyses of a set of 12 samples with unknown kavalactones concentration. All six major kavalactones and the total kavalactones were measured using NIRS with accuracy acceptable for commercial use. The NIRS measurements are reproducible and have a repeatability on a par with HPLC methods.

  8. Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.

    PubMed

    Qu, Li; Morton, David A V; Zhou, Qi Tony

    2015-01-01

    Cohesive powders are problematic in the manufacturing of pharmaceutical solid dosage forms because they exhibit poor flowability, fluidization and aerosolization. These undesirable bulk properties of cohesive powders represent a fundamental challenge in the design of efficient pharmaceutical manufacturing processes. Recently, mechanical dry coating has attracted increasing attention as it can improve the bulk properties of cohesive powders in a cheaper, simpler, safer and more environment-friendly way than the existing solvent-based counterparts. In this review, mechanical dry coating techniques are outlined and their potential applications in formulation and manufacturing of pharmaceutical solid dosage forms are discussed. Reported data from the literature have shown that mechanical dry coating holds promise for the design of superior pharmaceutical solid formulations or manufacturing processes by engineering the interfaces of cohesive powders in an efficient and economical way.

  9. Characterization of near infrared spectral variance in the authentication of skim and nonfat dry milk powder collection using ANOVA-PCA, Pooled-ANOVA, and partial least squares regression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forty-one samples of skim milk powder (SMP) and non-fat dry milk (NFDM) from 8 suppliers, 13 production sites, and 3 processing temperatures were analyzed by NIR diffuse reflectance spectrometry over a period of three days. NIR reflectance spectra (1700-2500 nm) were converted to pseudo-absorbance ...

  10. Isoniazid proliposome powders for inhalation-preparation, characterization and cell culture studies.

    PubMed

    Rojanarat, Wipaporn; Changsan, Narumon; Tawithong, Ekawat; Pinsuwan, Sirirat; Chan, Hak-Kim; Srichana, Teerapol

    2011-01-01

    The aims of this study were to develop proliposome powders containing isoniazid (INH) in a dry powder aerosol form. INH-proliposome powders were prepared by a spray drying method. Proliposome physicochemical properties were determined using cascade impactor, X-ray diffraction and differential scanning calorimetry. The toxicity of proliposomes to respiratory-associated cell lines and its potential to provoke immunological responses from alveolar macrophages (AM) were determined. Free INH and INH-proliposome bioactivities were tested in vitro and in AM infected with Mycobacterium bovis (M. bovis). Aerosolization properties of INH-proliposome powders at 60 L/min, the powders showed mass median aerodynamic diameters of 2.99-4.92 μm, with fine particle fractions (aerosolized particles less than 4.4 μm) of 15-35%. Encapsulation of INH was 18-30%. Proliposome formulations containing INH to mannitol ratios of 4:6 and 6:4 exhibited the greatest overlapping peak between the drug and mannitol. INH-proliposomes were evidently nontoxic to respiratory-associated cells, and did not activate AM to produce inflammatory mediators-including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and nitric oxide-at a toxic level. The efficacy of INH-proliposome against AM infected with M. bovis was significantly higher than that of free INH (p < 0.05). INH-proliposomes are potential candidates for an alternative tuberculosis treatment.

  11. In Vitro, Pharmacokinetic, Pharmacodynamic, and Safety Comparisons of Single and Combined Administration of Tiotropium and Salmeterol in COPD Patients Using Different Dry Powder Inhalers.

    PubMed

    Horhota, Stephen T; van Noord, Jan A; Verkleij, Cynthia B; Bour, Loek J; Sharma, Ashish; Trunk, Michael; Cornelissen, Piet J G

    2015-07-01

    In vitro Andersen cascade impactor-sized mass (ISM) and aerodynamic fine particle mass (FPM) <5 μm for tiotropium and salmeterol combined in a novel inhalation powder formulation containing 7.5 μg tiotropium/25 μg salmeterol (TSHH) were similar (within ±15%) to reference products containing 18 μg of tiotropium (Spiriva® HandiHaler®) (TioHH) and 50 μg of salmeterol (Serevent® Diskus®) (SalD). The pharmacokinetics (PK), pharmacodynamics, safety, and tolerability of the novel fixed-dose TSHH formulation administered once daily was compared with the single-agent therapies TioHH (once daily [qd]) and SalD (twice daily [bid]) and with the jointly administered combination of TioHH (qd) plus SalD (bid) in a randomized, 22-week, open-label, four-way crossover study in 50 patients with chronic obstructive pulmonary disease (COPD). For tiotropium, TSHH and TioHH were bioequivalent based on mean steady-state plasma area under the plasma concentration-time curves (AUC), while the urinary excretion amount was higher for TSHH and not bioequivalent to TioHH. Tiotropium peak plasma concentrations at steady state (C max,ss) were 40% higher with TSHH. For salmeterol, substantial differences were observed in plasma AUCs and Cmax,ss. No significant differences in 8-h forced expiratory volume in 1 s or forced vital capacity were detected for the TSHH (qd) against the combination of TioHH (qd) with SalD (bid). Maintenance therapy with tiotropium plus salmeterol as TSHH or as the jointly administered reference products is superior to either agent alone, safe, and well tolerated in COPD patients. In vitro results were not predictive of clinical PK findings for both tiotropium and salmeterol for the TSHH dry powder inhaler product.

  12. The glass transition and sub-T(g)-relaxation in pharmaceutical powders and dried proteins by thermally stimulated current.

    PubMed

    Reddy, Renuka; Chang, Liuquan ' Lucy '; Luthra, Suman; Collins, George; Lopez, Ciro; Shamblin, Sheri L; Pikal, Michael J; Gatlin, Larry A; Shalaev, Evgenyi Y

    2009-01-01

    The main goal of the study was to evaluate the applicability of thermally stimulated current (TSC) as a measure of molecular mobility in dried globular proteins. Three proteins, porcine somatotropin, bovine serum albumin, and immunoglobulin, as well as materials with a strong calorimetric glass transition (T(g)), that is, indomethacin and poly(vinypyrrolidone) (PVP), were studied by both TSC and differential scanning calorimetry (DSC). Protein/sugar colyophilized mixtures were also studied by DSC, to estimate calorimetric T(g) for proteins using extrapolation procedure. In the majority of cases, TSC detected relaxation events that were not observed by DSC. For example, a sub-T(g) TSC event (beta-relaxation) was observed for PVP at approximately 120 degrees C, which was not detected by the DSC. Similarly, DSC did not detect events in any of the three proteins below the thermal denaturation temperature whereas a dipole relaxation was detected by TSC in the range of 90-140 degrees C depending on the protein studied. The TSC signal in proteins was tentatively assigned as localized mobility of protein segments, which is different from a large-scale cooperative motions usually associated with calorimetric T(g). TSC is a promising method to study the molecular mobility in proteins and other materials with weak calorimetric T(g).

  13. Alginate-whey protein dry powder optimized for target delivery of essential oils to the intestine of chickens.

    PubMed

    Zhang, Y; Gong, J; Yu, H; Guo, Q; Defelice, C; Hernandez, M; Yin, Y; Wang, Q

    2014-10-01

    In poultry production, there is a lack of effective and convenient approaches to deliver bioactive compounds such as some essential oils, which have been proposed as alternatives to antibiotic growth promoters. The objective of this research was to develop a method for target delivery of essential oils in feed to the lower intestines of chickens. Carvacrol was used as a model essential oil, and 2 food-grade biopolymers, alginate and whey protein, were selected to encapsulate carvacrol in microparticles. The effects of a medium molecular weight alginate, a low molecular weight alginate (LBA), and whey protein concentrations on the properties of carvacrol-loaded microparticles were investigated using response surface methodology. The encapsulation efficiencies for all the tested formulations were ≥ 98% and carvacrol content in the dry microparticles was 72 ± 2% (wt/wt). The microparticles showed good gastric resistance and rapid intestinal release under simulated gastrointestinal conditions. Alginate concentrations had the strongest influence on the gastric resistance of microparticles, whereas whey protein was the dominant parameter in controlling the intestinal release. The concentration of LBA was found to be the critical factor affecting the mechanical strength of the microparticles. A predicted optimum formulation from in vitro optimization was tested in chickens. It was found that a negligible amount of carvacrol was detected in the intestines of chickens fed with unencapsulated carvacrol. Microparticles of predicted optimum formulation delivered a remarkably higher concentration of carvacrol to the jejunum and ileum regions. The high concentration was sustained for more than 3 h after oral administration. The in vivo release of carvacrol from the microparticles appeared faster than release from in vitro simulation. Nonetheless, the in vitro simulation provided good indications of the in vivo performance, and thus may serve as a useful tool for formula

  14. Extrinsic lactose fines improve dry powder inhaler formulation performance of a cohesive batch of budesonide via agglomerate formation and consequential co-deposition.

    PubMed

    Kinnunen, Hanne; Hebbink, Gerald; Peters, Harry; Huck, Deborah; Makein, Lisa; Price, Robert

    2015-01-15

    The aim of the study was to investigate how the fine particle content of lactose carriers prepared with different types of lactose fines regulates dry powder inhaler (DPI) formulation performance of a cohesive batch of micronised budesonide. Budesonide formulations (0.8 wt%) were prepared with three different lactose carriers (Lactohale (LH) LH100, 20 wt% LH210 in LH100 and 20 wt% LH300 in LH100). Fine particle fraction of emitted dose (FPFED) and mean mass aerodynamic diameter (MMAD) of budesonide was assessed with a Next Generation Impactor (NGI) using a Cyclohaler at 90 l/min. Morphological and chemical characteristics of particles deposited on Stage 2 were determined using a Malvern Morphologi G3-ID. The results indicate that increasing concentration of lactose fines (<4.5 μm) not only increased the FPFED but also the MMAD of budesonide, suggesting drug deposition in agglomerates. Presence of agglomerates on Stage 2 was confirmed by morphological analysis of particles. Raman analysis of material collected on Stage 2 indicated that the more fine lactose particles were available the more agglomerates of budesonide and lactose were delivered to Stage 2. These results suggest drug-fines agglomerate formation is an important mechanism for how lactose fines improve and regulate DPI formulation performance.

  15. DEM analysis of the effect of particle-wall impact on the dispersion performance in carrier-based dry powder inhalers.

    PubMed

    Yang, Jiecheng; Wu, Chuan-Yu; Adams, Michael

    2015-06-20

    The impact between particles or agglomerates and a device wall is considered as an important mechanism controlling the dispersion of active pharmaceutical ingredient (API) particles in dry powder inhalers (DPIs). In order to characterise the influencing factors and better understand the impact induced dispersion process for carrier-based DPIs, the impact behaviour between an agglomerate and a wall is systematically investigated using the discrete element method. In this study, a carrier-based agglomerate is initially formed and then allowed to impact with a target wall. The effects of impact velocity, impact angle and work of adhesion on the dispersion performance are analysed. It is shown that API particles in the near-wall regions are more likely to be dispersed due to the deceleration of the carrier particle resulted from the impact with the wall. It is also revealed that the dispersion ratio increases with increasing impact velocity and impact angle, indicating that the normal component of the impact velocity plays a dominant role on the dispersion. Furthermore, the impact induced dispersion performance for carrier-based DPI formulations can be well approximated using a cumulative Weibull distribution function that is governed by the ratio of overall impact energy and adhesion energy.

  16. Safety assessment of freeze-dried powdered Tenebrio molitor larvae (yellow mealworm) as novel food source: Evaluation of 90-day toxicity in Sprague-Dawley rats.

    PubMed

    Han, So-Ri; Lee, Byoung-Seok; Jung, Kyung-Jin; Yu, Hee-Jin; Yun, Eun-Young; Hwang, Jae Sam; Moon, Kyoung-Sik

    2016-06-01

    Worldwide demand for novel food source has grown and edible insects are a promising food sources for humans. Tenebrio molitor, as known as yellow mealworm, has advantages of being rich in protein, and easy to raise as a novel food source. The objective of this study was to evaluate subchronic toxicity, including potential hypersensitivity, of freeze-dried powdered T. molitor larvae (fdTML) in male and female Sprague-Dawley rats. The fdTML was administered orally once daily at dose levels of 0, 300, 1000 and 3000 mg/kg/day for 90 days. A toxicological assessment was performed, which included mortality, clinical signs, body and organ weights, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings, histopathologic examination and allergic reaction. There were no fdTML- related findings in clinical signs, urinalysis, hematology and serum chemistry, gross examination, histopathologic examination or allergic reaction. In conclusion, the No Observed Adverse Effect Level (NOAEL) for fdTML was determined to be in excess of 3000 mg/kg/day in both sexes of rats under the experimental conditions of this study.

  17. Cascade impactor practice for a high dose dry powder inhaler at 90 L/min: NGI versus modified 6-stage and 8-stage ACI.

    PubMed

    Kamiya, Akihiko; Sakagami, Masahiro; Byron, Peter R

    2009-03-01

    The compendial methods of particle size distribution (PSD) profile determination for dry powder inhalers (DPIs) were compared between the Next Generation Pharmaceutical Impactor (NGI) and the Andersen Cascade Impactor (ACI). Relenza Rotadisk (zanamivir) and Diskhaler was used as a model DPI and sampled into each impactor via its preseparator (PS), at 90 L/min under various protocols. In the NGI, silicone coating was shown to be indispensable to prevent or minimize particle bounce and reentrainment, and to reduce wall losses to the levels acceptable to the compendia (5%). In contrast, the ACI exceeded this 5% limit, regardless of coating, implying different wall loss mechanisms from the NGI. Particle bounce occurred in both impactors, inaccurately undersizing the PSD profiles for Relenza, unless the collection surfaces were coated or an increased number of doses were employed. Hence, the PSD profile for Relenza following single dose collection in the stage-coated NGI was the most accurate. In contrast, the use of the ACI and its PS for Relenza at 90 L/min suffered from several problems, even though the poorly designed PS still resulted in consistent impactor dose and PSD profiles, compared to those obtained from the NGI and its PS.

  18. Evaluating the sensitivity, reproducibility and flexibility of a method to test hard shell capsules intended for use in dry powder inhalers.

    PubMed

    Chong, Rosalind H E; Jones, Brian E; Díez, Fernando; Birchall, James C; Coulman, Sion A

    2016-03-16

    Pharmaceutical tests for hard shell capsules are designed for orally administered capsules. The use of capsules in dry powder inhalers is widespread and increasing and therefore more appropriate tests are required to ensure quality and determine if these capsules are fit for purpose. This study aims to determine the flexibility, reproducibility and sensitivity of a quantitative method that is designed to evaluate the puncture characteristics of different capsule shell formulations under different climatic conditions. A puncture testing method was used to generate force displacement curves for five capsule formulations that were stored and tested at two different temperatures (5°C and 19°C). Force-displacement puncture profiles were reproducible for individual capsule shell formulations. The methodology was able to discriminate between capsules produced using different primary materials i.e. gelatin versus hypromellose, as well as more minor changes to capsule formulation i.e. different material grades and excipients. Reduced temperature increased the forces required for capsule puncture however further work is required to confirm its significance. Results indicate the method provides a reproducible and sensitive means of evaluating capsule puncture. Future studies should validate the methodology at different test sites, using different operators and with different capsule shell formulations.

  19. Evaluation of dry powder inhalers with a focus on ease of use and user preference in inhaler-naïve individuals.

    PubMed

    von Schantz, Sofia; Katajavuori, Nina; Antikainen, Osmo; Juppo, Anne

    2016-07-25

    Inhaler errors are common amongst inhaler users. Therefore, in the development work of new inhalation devices, it is important to characterize the ease of use of the inhalers. In this study four dry powder inhalers, Diskus, Easyhaler, Ellipta and Turbuhaler, were evaluated, focusing on ease of use and patient preference. The study used a triangular methodology. The sample consisted of 31 inhaler naïve individuals. Educational videos for all inhalers were watched, and afterwards, the use of all four inhalers was demonstrated in a random order. The demonstrations were videotaped. Thereafter they were checked against a predefined checklist and all mistakes were recorded. Only 33% of inhaler demonstrations were completed without the participants making any mistakes. The proportions of subjects who used the devices correctly were as follows: Diskus 48%, Easyhaler 19%, Ellipta 55% and Turbuhaler 16%. When comparing correct and incorrect inhaler technique for each inhaler pair the following differences were statistically significant: Diskus vs. Easyhaler (p<0.05), Ellipta vs. Easyhaler (p<0.01), Diskus vs. Turbuhaler (p<0.01), Ellipta vs. Turbuhaler (p<0.01). In the participants' ranking, the inhalers Ellipta, followed by Turbuhaler, were most often ranked as most preferred. Participants' preference of Ellipta over Easyhaler (p<0.01) and over Diskus (p<0.001) were statistically significant.

  20. Qualitative assessment of attributes and ease of use of the ELLIPTA™ dry powder inhaler for delivery of maintenance therapy for asthma and COPD

    PubMed Central

    2013-01-01

    Background Medications for respiratory disorders including asthma and chronic obstructive pulmonary disease (COPD) are typically delivered to the lung by means of a handheld inhaler. Patient preference for and ability to use the inhaler may influence their adherence to maintenance therapy, and adherence may affect treatment outcomes. In this study, patient experience of using a dry powder inhaler (DPI), the ELLIPTA™ DPI, in clinical trials of a new maintenance therapy for asthma and COPD was investigated. The ELLIPTA DPI has been designed to contain two separate blister strips from which inhalation powder can be delivered, and to be simple to use with a large, easy-to-read dose counter. Methods Semi-structured, in-depth, qualitative interviews were carried out 2–4 weeks after patients had completed one of six phase IIIa clinical trials using the ELLIPTA DPI. Interview participants were asked about their satisfaction with various attributes of the inhaler and their preference for the ELLIPTA DPI relative to currently-prescribed inhalers, and responses were explored using an inductive content analysis approach. Participants also rated the performance of the inhaler on several criteria, using a subjective 1–10 scale. Results Participants with asthma (n = 33) and COPD (n = 42) reported high levels of satisfaction with the ELLIPTA DPI. It was frequently described as straightforward to operate and easy to use by interview participants. Ergonomic design, mouthpiece fit, and dose counter visibility and ease of interpretation emerged as frequently cited drivers of preference for the ELLIPTA DPI compared with their current prescribed inhaler. Of participants with asthma, 71% preferred the ELLIPTA DPI to DISKUS™ and 60% to metered dose inhalers. Of participants with COPD, 86% preferred the ELLIPTA DPI to DISKUS, 95% to HandiHaler™, and 85% to metered dose inhalers. Overall average performance scores were >9 (out of 10) in participants with asthma and COPD

  1. Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble material

    NASA Astrophysics Data System (ADS)

    Garimella, S.; Huang, Y.-w.; Seewald, J. S.; Cziczo, D. J.

    2013-11-01

    This study examines the interaction of clay mineral particles and water vapor to determine the conditions required for cloud droplet formation. Droplet formation conditions are investigated for three clay minerals: illite, sodium-rich montmorillonite, and Arizona Test Dust. Using wet and dry particle generation coupled to a differential mobility analyzer (DMA) and cloud condensation nuclei counter, the critical activation of the clay mineral particles as cloud condensation nuclei is characterized. Electron microscopy (EM) is used to determine non-sphericity in particle shape. EM is also used to determine particle surface area and account for transmission of multiply charged particles by the DMA. Single particle mass spectrometry and ion chromatography are used to investigate soluble material in wet-generated samples and demonstrate that wet and dry generation yield compositionally different particles. Activation results are analyzed in the context of both κ-Köhler theory and Frenkel, Halsey, and Hill (FHH) adsorption activation theory. This study has two main results: (1) κ-Köhler is a suitable framework, less complex than FHH theory, to describe clay mineral nucleation activity despite apparent differences in κ with respect to size. For dry-generated particles the size dependence is likely an artifact of the shape of the size distribution: there is a sharp drop-off in particle concentration at ~300 nm, and a large fraction of particles classified with a mobility diameter less than ~300 nm are actually multiply charged, resulting in a much lower critical supersaturation for droplet activation than expected. For wet-generated particles, deviation from κ-Köhler theory is likely a result of the dissolution and redistribution of soluble material. (2) Wet-generation is found to be unsuitable for simulating the lofting of fresh dry dust because it changes the size-dependent critical supersaturations by fractionating and re-partitioning soluble material.

  2. Inhibitory Effect of Dried Pomegranate Concentration Powder on Melanogenesis in B16F10 Melanoma Cells; Involvement of p38 and PKA Signaling Pathways

    PubMed Central

    Kang, Su Jin; Choi, Beom Rak; Lee, Eun Kyoung; Kim, Seung Hee; Yi, Hae Yeon; Park, Hye Rim; Song, Chang Hyun; Lee, Young Joon; Ku, Sae Kwang

    2015-01-01

    Plants rich in antioxidant substances may be useful for preventing skin aging. Pomegranates, containing flavonoids and other polyphenolic compounds, are widely consumed due to their beneficial properties. We examined the underlying mechanisms of dried pomegranate concentrate powder (PCP) on melanin synthesis in B16F10 melanoma cells. The antioxidant effects of PCP were determined by measuring free radical scavenging capacity and transcript levels of antioxidant enzymes. To explore the inhibitory effects of PCP on melanin synthesis, we measured tyrosinase activity and melanin content in α-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 cells. In addition, the levels of tyrosinase-related protein-1 (TRP-1), TRP-2, tyrosinase, and microphthalmia-associated transcription factor (MITF) expression were determined by Western blotting. Changes in the phosphorylation status of protein kinase A (PKA), cAMP response element-binding protein (CREB), mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase Akt, and glycogen kinase 3β (GSK3β) were also examined. The free radical scavenging activity of PCP increased in a dose-dependent manner. In PCP-treated B16F10 cells, transcript levels of glutathione peroxidase-1 (GPx-1) were increased compared with α-MSH-stimulated cells. In addition, PCP led to the down-regulation of phospho-p38, phospho-PKA, phospho-CREB, phospho-GSK3β, MITF, and TRP-1 compared with α-MSH-stimulated B16F10 cells. We believe this effect may be associated with PCP activity, which leads to the inhibition of melanin production and tyrosinase activity. These results suggest that PCP decreases tyrosinase activity and melanin production via inactivation of the p38 and PKA signaling pathways, and subsequently decreases phosphorylation of CREB, MITF, and melanogenic enzymes. These observations provided new insights on the molecular mechanisms of the skin-whitening property of PCP. PMID:26473849

  3. Characteristics of patients making serious inhaler errors with a dry powder inhaler and association with asthma-related events in a primary care setting

    PubMed Central

    Westerik, Janine A. M.; Carter, Victoria; Chrystyn, Henry; Burden, Anne; Thompson, Samantha L.; Ryan, Dermot; Gruffydd-Jones, Kevin; Haughney, John; Roche, Nicolas; Lavorini, Federico; Papi, Alberto; Infantino, Antonio; Roman-Rodriguez, Miguel; Bosnic-Anticevich, Sinthia; Lisspers, Karin; Ställberg, Björn; Henrichsen, Svein Høegh; van der Molen, Thys; Hutton, Catherine; Price, David B.

    2016-01-01

    Abstract Objective: Correct inhaler technique is central to effective delivery of asthma therapy. The study aim was to identify factors associated with serious inhaler technique errors and their prevalence among primary care patients with asthma using the Diskus dry powder inhaler (DPI). Methods: This was a historical, multinational, cross-sectional study (2011–2013) using the iHARP database, an international initiative that includes patient- and healthcare provider-reported questionnaires from eight countries. Patients with asthma were observed for serious inhaler errors by trained healthcare providers as predefined by the iHARP steering committee. Multivariable logistic regression, stepwise reduced, was used to identify clinical characteristics and asthma-related outcomes associated with ≥1 serious errors. Results: Of 3681 patients with asthma, 623 (17%) were using a Diskus (mean [SD] age, 51 [14]; 61% women). A total of 341 (55%) patients made ≥1 serious errors. The most common errors were the failure to exhale before inhalation, insufficient breath-hold at the end of inhalation, and inhalation that was not forceful from the start. Factors significantly associated with ≥1 serious errors included asthma-related hospitalization the previous year (odds ratio [OR] 2.07; 95% confidence interval [CI], 1.26–3.40); obesity (OR 1.75; 1.17–2.63); poor asthma control the previous 4 weeks (OR 1.57; 1.04–2.36); female sex (OR 1.51; 1.08–2.10); and no inhaler technique review during the previous year (OR 1.45; 1.04–2.02). Conclusions: Patients with evidence of poor asthma control should be targeted for a review of their inhaler technique even when using a device thought to have a low error rate. PMID:26810934

  4. Correct usage, ease of use, and preference of two dry powder inhalers in patients with COPD: analysis of five phase III, randomized trials

    PubMed Central

    Riley, John H; Tabberer, Maggie; Richard, Nathalie; Donald, Alison; Church, Alison; Harris, Stephanie S

    2016-01-01

    Background Handheld inhalers are used to deliver treatment for COPD. Incorrect usage leads to suboptimal disease control. Complex treatment regimens and use of multiple inhalers may reduce patient compliance. The Anoro Ellipta™ dry powder inhaler (DPI) simultaneously delivers umeclidinium bromide (UMEC) and vilanterol (VI) without coformulation being required. Aim To assess the correct usage and ease of use of the Ellipta™ DPI administering UMEC/VI and to compare patient preference for Ellipta™ with the HandiHaler® through exploratory analyses of patient and observer questionnaires in five Phase III studies. Methods Two Phase III, 3-month double-blind, placebo-controlled studies assessed the correct usage of the Ellipta™ DPI at Day 1 and after 6 weeks, and ease of use of the Ellipta™ DPI using a nonvalidated patient questionnaire after 6 weeks or early withdrawal. In three 6-month, blinded double-dummy, active comparator studies (two Phase IIIa and one Phase IIIb), patients completed a COPD device preference questionnaire between the Ellipta™ DPI and the Handi-Haler® at Day 168 (Week 24) or early withdrawal. Results In the 3-month placebo-controlled studies, ≥98% of patients used the Ellipta™ DPI correctly and 99% of patients found the inhaler easy/very easy-to-use and the dose counter easy/very easy to read. Across the two Phase IIIa active comparator studies, patients consistently stated a preference for the Ellipta™ DPI over HandiHaler® regarding the number of steps to use (59% vs 17%), time taken to use (62% vs 14%), and ease of use (63% vs 15%) regardless of which inhaler contained active drug. Results were consistent in the Phase IIIb active comparator study. Conclusion Delivery of UMEC/VI via the Ellipta™ DPI was considered easy-to-use, and patients with COPD demonstrated clear preference for this inhaler compared with HandiHaler®. PMID:27578968

  5. DNA barcoding for species identification from dried and powdered plant parts: a case study with authentication of the raw drug market samples of Sida cordifolia.

    PubMed

    Vassou, Sophie Lorraine; Kusuma, G; Parani, Madasamy

    2015-03-15

    The majority of the plant materials used in herbal medicine is procured from the markets in the form of dried or powdered plant parts. It is essential to use authentic plant materials to derive the benefits of herbal medicine. However, establishing the identity of these plant materials by conventional taxonomy is extremely difficult. Here we report a case study in which the species identification of the market samples of Sida cordifolia was done by DNA barcoding. As a prelude to species identification by DNA barcoding, 13 species of Sida were collected, and a reference DNA barcode library was developed using rbcL, matK, psbA-trnH and ITS2 markers. Based on the intra-species and inter-species divergence observed, psbA-trnH and ITS2 were found to be the best two-marker combination for species identification of the market samples. The study showed that none of the market samples belonged to the authentic species, S. cordifolia. Seventy-six per cent of the market samples belonged to other species of Sida. The predominant one was Sida acuta (36%) followed by S. spinosa (20%), S. alnifolia (12%), S. scabrida (4%) and S. ravii (4%). Such substitutions may not only fail to give the expected therapeutic effect, but may also give undesirable effects as in case of S. acuta which contains a 6-fold higher amount of ephedrine compared to the roots of S. cordifolia. The remaining 24% of the samples were from other genera such as Abutilon sp. (8%), Ixonanthes sp., Terminalia sp., Fagonia sp., and Tephrosia sp. (4% each). This observation is in contrast to the belief that medicinal plants are generally substituted or adulterated with closely related species. The current study strongly suggests that the raw drug market samples of herbal medicines need to be properly authenticated before use, and DNA barcoding has been found to be suitable for this purpose.

  6. Effect of maltodextrin on characteristics and antioxidative activity of spray-dried powder of gelatin and gelatin hydrolysate from scales of spotted golden goatfish.

    PubMed

    Chuaychan, Sira; Benjakul, Soottawat

    2016-09-01

    Characteristics and antioxidative activity of gelatin and gelatin hydrolysate powders from scale of spotted golden goatfish using maltodextrin as a carrier agent at different ratios [1:0, 2:1, 1:1 and 1:2 (w/w)] were investigated. Gelatin hydrolysates with 40 % degree of hydrolysis exhibited the highest antioxidative activity. With increasing maltodextrin proportions, the resulting powders showed an increase in yields, total sugar content and whiteness with coincidental decrease in [Formula: see text], [Formula: see text]-values and browning intensity. Solubility of gelatin powder increased with increase in maltodextrin proportion. Gelatin powder was spherical with smooth surface of hydrolysate varied, regardless of maltodextrin levels. Gelatin hydrolysate powder form, uniform agglomerates when maltodextrin was incorporated. DPPH and ABTS radical scavenging activities and ferric-reducing antioxidant power of gelatin and gelatin hydrolysate decreased when maltodextrin was used as a carrier agent. Thus, maltodextrin levels directly affected characteristics and antioxidative activity of gelatin and gelatin hydrolysate powders.

  7. Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble material

    NASA Astrophysics Data System (ADS)

    Garimella, S.; Huang, Y.-W.; Seewald, J. S.; Cziczo, D. J.

    2014-06-01

    This study examines the interaction of clay mineral particles and water vapor for determining the conditions required for cloud droplet formation. Droplet formation conditions are investigated for two common clay minerals, illite and sodium-rich montmorillonite, and an industrially derived sample, Arizona Test Dust. Using wet and dry particle generation coupled to a differential mobility analyzer (DMA) and cloud condensation nuclei counter, the critical activation of the clay mineral particles as cloud condensation nuclei is characterized. Electron microscopy (EM) is used in order to determine non-sphericity in particle shape. It is also used in order to determine particle surface area and account for transmission of multiply charged particles by the DMA. Single particle mass spectrometry and ion chromatography are used to investigate soluble material in wet-generated samples and demonstrate that wet and dry generation yield compositionally different particles. Activation results are analyzed in the context of both κ-Köhler theory (κ-KT) and Frenkel-Halsey-Hill (FHH) adsorption activation theory. This study has two main results: (1) κ-KT is the suitable framework to describe clay mineral nucleation activity. Apparent differences in κ with respect to size arise from an artifact introduced by improper size-selection methodology. For dust particles with mobility sizes larger than ~300 nm, i.e., ones that are within an atmospherically relevant size range, both κ-KT and FHH theory yield similar critical supersaturations. However, the former requires a single hygroscopicity parameter instead of the two adjustable parameters required by the latter. For dry-generated particles, the size dependence of κ is likely an artifact of the shape of the size distribution: there is a sharp drop-off in particle concentration at ~300 nm, and a large fraction of particles classified with a mobility diameter less than ~300 nm are actually multiply charged, resulting in a much

  8. Modeled size-segregated wet and dry deposition budgets of soil dust aerosol during ACE-Asia 2001: Implications for trans-Pacific transport

    NASA Astrophysics Data System (ADS)

    Zhao, T. L.; Gong, S. L.; Zhang, X. Y.; McKendry, I. G.

    2003-12-01

    Size-segregated budgets of soil dust aerosols in Asia for spring 2001 during ACE-Asia were investigated using the NARCM model [, 2003b]. Simulated mass size distributions of dust deposition showed a similar size distribution to the dust emission fluxes over the source regions and a decreased peak corresponding to a 1-3 μm diameter range over downwind regions. The simulations suggest that dry deposition was a dominant dust removal process near the source areas and the removal of dust particles by precipitation was the major process over the trans-Pacific transport pathway, where wet deposition exceeded dry deposition by up to a factor of 10. The Asian dust deposition from the atmosphere to the North Pacific Ocean was correlated not only with precipitation over the North Pacific but also with the dust transport patterns. Variations of monthly Asian dust outflow were identified with the latitudinal center of transport at 38°N in March, 42°N in April, and 47°N in May. The monthly trans-Pacific transport patterns of Asian dust in spring were characterized. The transport axis extended around 30°N and 40°N from the east Asian subcontinent to the North Pacific in March. A zonal transport pathway around 40°N was well developed in April over the North Pacific and reached North America. However, the transport in May was separated into two pathways: an eastward zonal path over the North Pacific and a meridional path from the source regions to the northeast Asian continent. On the basis of the averaged dust budgets during spring 2001, it was found that the major sources of Asian dust were located in the desert regions in China and Mongolia with an estimated dust emission of 21.5 tons km-2, and the regions from the Loess Plateau to the North Pacific were sinks of soil dust aerosols with the Loess Plateau as the main sink for Asian dust.

  9. Three air quality studies: Great Lakes ozone formation and nitrogen dry deposition; and Tucson aerosol chemical characterization

    NASA Astrophysics Data System (ADS)

    Foley, Theresa

    (arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, and nickel) in the southern Tucson metropolitan area. A Tucson company that uses beryllium oxide to manufacture thermally conductive ceramics has prompted strong citizen concern. This study found that the study area has good air quality with respect to PM10 and metals, with ambient concentrations meeting US Environmental Protection Agency and World Health Organization standards. Beryllium was detected only once (during a dust storm) and was ascribed to naturally-occurring beryllium in the suspended soil. The third paper (to be submitted to the Journal of Great Lakes Research) studies nitrogen dry deposition over Lake Michigan and Lake Superior. Numerous studies have shown that wet and dry deposition of nitrogen has contributed to the eutrophication of coastal waters and declining productivity of marine fisheries. Nitrogen dry deposition over the Great Lakes themselves, as opposed to the shorelines, has not been documented in the peer-reviewed literature. This paper calculates nitrogen dry deposition over Lake Michigan and Lake Superior, using aircraft measurements from the LADCO Aircraft Study, and finds that over-water, nitrogen dry deposition is a significant source of nitrogen to Lake Michigan and Lake Superior.

  10. Diurnal Chemical Characterization of Aerosols at Downtown Mexico City During the Cold dry Seasons of 2003 and 2005. Part I. Data Validation

    NASA Astrophysics Data System (ADS)

    Grutter, M.; Moya, M.; Matias, E.; Baez, A.

    2006-12-01

    Data of size-differentiated (0.18-10 μm) and bulk (1, 2.5 μm) inorganic aerosols collected during February-March of 2003 and 2005 at a site near downtown Mexico City are analyzed and discussed in the present work. Physico-chemical consistency tests applied on the data base showed a reliability of 85%. Highest concentrations of PM occurred mainly in fine size ranges, i.e., accumulation mode (size-differentiated) and fine (PM1), specifically during the morning sampling periods. Sulfate, nitrate and ammonium were the dominant species though higher concentrations of NaCl were observed during the 2003 field campaign. Concentration of this species is explained in terms of the potential influence of the nearby dry salt-lake of Texcoco. Electroneutrality balances are achieved for all size ranges: PM10 (size-differentiated), PM2.5 and PM1 indicating the significant presence of gas-phase NH3 (> 40 ppb) observed consistently during the morning sampling periods in the Valley of Mexico was of importance in providing enough NH4+ to neutralize observed sulfate concentrations. Measured PM2.5 during the 2005 field campaign was exceeding several times the recent issued (November 2005) PM2.5 Mexican standard of 65 μg/m3.

  11. In Vitro Dosing Performance of the ELLIPTA® Dry Powder Inhaler Using Asthma and COPD Patient Inhalation Profiles Replicated with the Electronic Lung (eLung™)

    PubMed Central

    Leggett, Richard; Pang, Cheng; Charles, Stephen; Gillett, Ben; Prime, David

    2015-01-01

    Abstract Background: To evaluate the in vitro dose delivery characteristics of approved asthma and chronic obstructive pulmonary disease (COPD) therapies delivered via the ELLIPTA® dry powder inhaler across inhalation endpoints representative of the target patient population, using the Electronic Lung (eLung™) to replicate inhaler-specific patient inhalation profiles that were previously recorded in vivo. Methods: Selected profiles, representative of the range of inhalation endpoints achieved by patients with all severities of asthma and COPD, were replicated using the eLung breathing simulator in conjunction with an oropharyngeal cast. A Next Generation Impactor was coupled to the eLung to determine the aerodynamic particle size distribution of the ex-throat dose (ETD) of asthma and COPD therapies delivered via the ELLIPTA inhaler. Delivered dose (DD), ETD, and fine particle dose (FPD; defined as a mass of active substance less than 5 μm) were determined for fluticasone furoate (FF)/vilanterol (VI) 100/25 μg and 200/25 μg (asthma and COPD), umeclidinium (UMEC)/VI 62.5/25 μg (COPD only), FF 100 μg and 200μg monotherapy (asthma only), and UMEC 62.5 μg monotherapy (COPD only). Results: Inhalation profiles replicated by eLung covered a wide range of peak inspiratory flow rates (41.6–136.9 L/min), pressure drops (1.2–13.8 kPa), and inhaled volumes through the inhaler (0.7–4.2L). DD was consistent across the range of patient representative inhalation parameters for all components (FF, VI, and UMEC) of each therapy assessed; although ETD and FPD were also generally consistent, some small variation was observed. Dose delivery was consistent for each of the components, whether delivered as mono- or combination therapy. Conclusions: The in vitro performance of the ELLIPTA inhaler has been demonstrated for the delivery of FF/VI, UMEC/VI, FF monotherapy, and UMEC monotherapy. Across a range of inspiratory profiles, DD was consistent, while ETD

  12. Effect of Disease Severity in Asthma and Chronic Obstructive Pulmonary Disease on Inhaler-Specific Inhalation Profiles Through the ELLIPTA® Dry Powder Inhaler

    PubMed Central

    de Backer, Wilfried; Hamilton, Melanie; Cahn, Anthony; Preece, Andrew; Kelleher, Dennis; Baines, Amanda; Moore, Alison; Brealey, Noushin; Moynihan, Jackie

    2015-01-01

    Abstract Background: Two studies were undertaken to characterize the maximal effort inhalation profiles of healthy subjects and patients with asthma or chronic obstructive pulmonary disease (COPD) through a moderate-resistance dry powder inhaler (DPI). Correlations between inhaler-specific inhalation characteristics and inhaler-independent lung function parameters were investigated. Methods: Healthy subjects (n = 15), patients with mild, moderate, or severe asthma (n = 45), and patients with mild, moderate, severe, or very-severe COPD (n = 60) were included in the studies. Inhalation pressure drop versus time profiles were recorded using an instrumented ELLIPTA® DPI or bespoke resistor component with equivalent resistivity. Inhaler-independent lung function assessments included pharyngometry, spirometry, plethysmography, and diffusion. Results: For the inhaler-specific inhalation profiles, the mean maximal effort peak inspiratory flow rates (PIFRs) varied across the subgroups from 65.8–110.6 L/min (range: 41.6–142.9). Peak pressure drop, PIFR, inhaled volume, and average inhalation flow rate (primary endpoints) did not differ markedly between healthy subjects and patients with asthma or mild COPD. Moderate, severe, and very-severe COPD patients demonstrated lower mean peak pressure drops, PIFRs and inhaled volumes, which tended to decrease with increasing COPD severity. Severe and very-severe COPD patients demonstrated shorter mean inhalation times compared with all other participants. Inhaler-independent lung function parameters were consistent with disease severity, and statistically significant (p < 0.05) strong correlations (R > 0.7) with components of the inhaler-specific inhalation profiles were observed in the COPD cohort; correlations in the asthma cohort tended to be weaker. Conclusions: All participants achieved a maximal effort PIFR ≥ 41.6 L/min through the moderate resistance of the ELLIPTA inhaler. Patients with asthma

  13. The grinding behavior of ground copper powder for Cu/CNT nanocomposite fabrication by using the dry grinding process with a high-speed planetary ball mill

    NASA Astrophysics Data System (ADS)

    Choi, Heekyu; Bor, Amgalan; Sakuragi, Shiori; Lee, Jehyun; Lim, Hyung-Tae

    2016-01-01

    The behavior of ground copper powder for copper-carbon nanotube (copper-CNT) nanocomposite fabrication during high-speed planetary ball milling was investigated because the study of the behavior characteristics of copper powder has recently gained scientific interest. Also, studies of Cu/CNT composites have widely been done due to their useful applications to enhanced, advanced nano materials and components, which would significantly improve the properties of new mechatronics-integrated materials and components. This study varied experimental conditions such as the rotation speed and the grinding time with and without CNTs, and the particle size distribution, median diameter, crystal structure and size, and particle morphology were monitored for a given grinding time. We observed that pure copper powders agglomerated and that the morphology changed with changing rotation speed. The particle agglomerations were observed with maximum experiment conditions (700 rpm, 60 min) in this study of the grinding process for mechanical alloys in the case of pure copper powders because the grinding behavior of Cu/CNT agglomerations was affected by the addition of CNTs. Indeed, the powder morphology and the crystal size of the composite powder could be changed by increasing the grinding time and the rotation speed.

  14. Visualizing powder de-agglomeration upon impact with simultaneous flowing charge behaviour

    NASA Astrophysics Data System (ADS)

    Kwek, Jin Wang; Heng, Desmond; Lee, Sie Huey; Ng, Wai Kiong; Chan, Hak-Kim; Heng, Jerry; Tan, Reginald

    2013-06-01

    The effectiveness of the dry powder inhaler (DPI) in treating respiratory diseases lies in its ability to deliver consistent and reliable drug dosage with each actuation. From aerosolization upon actuation to throat impaction, the deagglomeration with subsequent detachment of the drug from the carrier particles depend on the interaction forces, including electrostatic contributions, between the particles themselves or with the inhaler wall and the extent of which could depend on the surface roughness of the carrier particles. In this study, we have simultaneously investigated the contributions of the electrostatic forces while visualizing the de-agglomeration and impaction behaviours of carrier powders in an impaction throat model using a non-contact vibrating capacitive probe and a high speed camera respectively. Rough and smooth carrier particles were obtained by spray drying and then aerosolized at 60 L/min in the model. Higher flowing charges were observed for the rough aerosolized carrier particles while experiencing rebound or limited agglomerate fracture upon impaction. On the other hand, smooth particles were broken up upon impaction resulting in a 'plume-like' re-entrainment. Further analyses revealed that the increased moisture sorption on the larger specific surface area of the rough particles would have facilitated the accumulation of surface charges that could in turn contribute to the cohesiveness of the rough particles. Combined high speed imaging with electrostatic monitoring has proved to be useful in investigating the mechanisms of powder de-agglomeration upon impaction.

  15. Vertical Profiles of Light Scattering, Light Absorption, and Single Scattering Albedo during the Dry, Biomass Burning Season in Southern Africa and Comparisons of In Situ and Remote Sensing Measurements of Aerosol Optical Depths

    NASA Technical Reports Server (NTRS)

    Magi, Brian I.; Hobbs, Peter V.; Schmid, Beat; Redermann, Jens

    2003-01-01

    Airborne in situ measurements of vertical profiles of aerosol light scattering, light absorption, and single scattering albedo (omega (sub 0)) are presented for a number of locations in southern Africa during the dry, biomass burning season. Features of the profiles include haze layers, clean air slots, and marked decreases in light scattering in passing from the boundary layer into the free troposphere. Frequency distributions of omega (sub 0) reflect the strong influence of smoke from biomass burning. For example, during a period when heavy smoke was advected into the region from the north, the mean value of omega (sub 0) in the boundary layer was 0.81 +/- 0.02 compared to 0.89 +/- 0.03 prior to this intrusion. Comparisons of layer aerosol optical depths derived from the in situ measurements with those measured by a Sun photometer aboard the aircraft show excellent agreement.

  16. The History of Therapeutic Aerosols: A Chronological Review

    PubMed Central

    Thiel, Charles G.

    2017-01-01

    Abstract In 1956, Riker Laboratories, Inc., (now 3 M Drug Delivery Systems) introduced the first pressurized metered dose inhaler (MDI). In many respects, the introduction of the MDI marked the beginning of the modern pharmaceutical aerosol industry. The MDI was the first truly portable and convenient inhaler that effectively delivered drug to the lung and quickly gained widespread acceptance. Since 1956, the pharmaceutical aerosol industry has experienced dramatic growth. The signing of the Montreal Protocol in 1987 led to a surge in innovation that resulted in the diversification of inhaler technologies with significantly enhanced delivery efficiency, including modern MDIs, dry powder inhalers, and nebulizer systems. The innovative inhalers and drugs discovered by the pharmaceutical aerosol industry, particularly since 1956, have improved the quality of life of literally hundreds of millions of people. Yet, the delivery of therapeutic aerosols has a surprisingly rich history dating back more than 3500 years to ancient Egypt. The delivery of atropine and related compounds has been a crucial inhalation therapy throughout this period and the delivery of associated structural analogs remains an important therapy today. Over the centuries, discoveries from many cultures have advanced the delivery of therapeutic aerosols. For thousands of years, therapeutic aerosols were prepared by the patient or a physician with direct oversight of the patient using custom-made delivery systems. However, starting with the Industrial Revolution, advancements in manufacturing resulted in the bulk production of therapeutic aerosol delivery systems produced by people completely disconnected from contact with the patient. This trend continued and accelerated in the 20th century with the mass commercialization of modern pharmaceutical inhaler products. In this article, we will provide a summary of therapeutic aerosol delivery from ancient times to the present along with a look to the

  17. Colorful drying.

    PubMed

    Lakio, Satu; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-03-01

    Drying is one of the standard unit operations in the pharmaceutical industry and it is important to become aware of the circumstances that dominate during the process. The purpose of this study was to test microcapsulated thermochromic pigments as heat indicators in a fluid bed drying process. The indicator powders were manually granulated with alpha-lactose monohydrate resulting in three particle-size groups. Also, pellets were coated with the indicator powders. The granules and pellets were fluidized in fluid bed dryer to observe the progress of the heat flow in the material and to study the heat indicator properties of the indicator materials. A tristimulus colorimeter was used to measure CIELAB color values. Color indicator for heat detection can be utilized to test if the heat-sensitive API would go through physical changes during the pharmaceutical drying process. Both the prepared granules and pellets can be used as heat indicator in fluid bed drying process. The colored heat indicators give an opportunity to learn new aspects of the process at real time and could be exploded, for example, for scaling-up studies.

  18. Redispersible liposomal-N-acetylcysteine powder for pulmonary administration: development, in vitro characterization and antioxidant activity.

    PubMed

    Ourique, Aline Ferreira; Chaves, Paula Dos Santos; Souto, Gabriele Dadalt; Pohlmann, Adriana Raffin; Guterres, Silvia Stanisçuaski; Beck, Ruy Carlos Ruver

    2014-12-18

    Liposomal dry powders of N-acetylcysteine (SD-NAC-Lip) were developed for pulmonary administration. Liposomes were prepared by reverse phase evaporation and spray dried using lactose (10%, w/w) as drying adjuvant. The powders were characterized according to process yield, drug content, residual water content, particle size distribution, morphology and redispersion behavior. In vitro aerosol performance was evaluated using an eight-stage Andersen Cascade Impactor. Moreover, in vitro antioxidant activity was determined by measuring thiobarbituric acid reactive species (TBARS) present in the lungs of healthy Wistar rats after induction of oxidation by iron/EDTA. The spray-drying process had a high yield (71%±2), drug content (mg/g) according to the expected value, moisture content below 9%, geometric mean diameter under 3μm with span value lower than 1. Spherical particles were observed by scanning electron microscopy. Liposomal dry-powders were able to recover the nanometric size of the original dispersion after their redispersion in aqueous medium, as shown by laser diffraction and transmission electron microscopy. Furthermore, the powders presented aerodynamic diameter of about 7μm and respirable fraction above 30%, indicating suitable properties for pulmonary use. The encapsulation of N-acetylcysteine in liposomes was essential to maintain its in vitro antioxidant activity after the drying process. In addition, the powder containing the encapsulated drug had better in vitro antioxidant activity than the liquid and solid formulations containing the non-encapsulated drug, which makes it a good candidate for the treatment of pulmonary diseases associated with oxidative stress.

  19. Predicting the dry deposition of atmospheric aerosol particles onto forests using a size-resolved multi-layer second-order closure model

    NASA Astrophysics Data System (ADS)

    Huang, C.; Launianen, S.; Gronholm, T.; Katul, G. G.

    2013-12-01

    Biological aerosol particles are now receiving significant attention given their role in air quality, climate change, and spreading of allergens and other communicable diseases. A major uncertainty in their quantification is associated with complex transport processes governing their generation and removal inside canopies. It has been known for some time now that the commonly used first-order closure to link mean concentration gradients with turbulent fluxes is problematic. The presence of a mean counter-gradient momentum transport in an open trunk space exemplifies such failure. Here, instead of employing K-theory, a size-resolved second-order multilayer model for dry particle deposition is proposed. The starting point of the proposed model is a particle flux budget in which the production, transport, and dissipation terms are modeled. Because these terms require higher-order velocity statistics, this flux budget is coupled with a conventional second-order closure scheme for the flow field within the canopy sub-layer. The failure of conventional K-theory for particle fluxes are explicitly linked to the onset of a mean counter or zero - gradient flow attributed to a significant particle flux transport term. The relative importance of these terms in the particle flux budget and their effects on the foliage particle collection terms for also discussed for each particle size. The proposed model is evaluated against published multi-level measurements of sized-resolved particle fluxes and mean concentration profiles collected within and above a tall Scots pine forest in Hyytiala, Southern Finland. The main findings are that (1) first-order closure schemes may be still plausible for modeling particle deposition velocity, especially in the particle size range smaller than 1 μm when the turbulent particle diffusivity is estimated from higher order flow statistics; (2) the mechanisms leading to the increased trend of particle deposition velocity with increasing friction

  20. Vacuum powder injector and method of impregnating fiber with powder

    NASA Technical Reports Server (NTRS)

    Working, Dennis C. (Inventor)

    1993-01-01

    A method and apparatus uniformly impregnate stranded material with dry powder such as low solubility, high melt flow polymer powder to produce, for example, composite prepregs. The stranded material is expanded in an impregnation chamber by an influx of air so that the powder, which may enter through the same inlet as the air, penetrates to the center of the stranded material. The stranded material then is contracted for holding the powder therein. The stranded material and powder may be pulled through the impregnation chamber in the same direction by vacuum. Larger particles of powder which do not fully penetrate the stranded material may be combed into the stranded material and powder which does not impregnate the stranded material may be collected and reused.

  1. The expanding role of aerosols in systemic drug delivery, gene therapy, and vaccination.

    PubMed

    Laube, Beth L

    2005-09-01

    Aerosolized medications have been used for centuries to treat respiratory diseases. Until recently, inhalation therapy focused primarily on the treatment of asthma and chronic obstructive pulmonary disease, and the pressurized metered-dose inhaler was the delivery device of choice. However, the role of aerosol therapy is clearly expanding beyond that initial focus. This expansion has been driven by the Montreal protocol and the need to eliminate chlorofluorocarbons (CFCs) from traditional metered-dose inhalers, by the need for delivery devices and formulations that can efficiently and reproducibly target the systemic circulation for the delivery of proteins and peptides, and by developments in medicine that have made it possible to consider curing lung diseases with aerosolized gene therapy and preventing epidemics of influenza and measles with aerosolized vaccines. Each of these drivers has contributed to a decade or more of unprecedented research and innovation that has altered how we think about aerosol delivery and has expanded the role of aerosol therapy into the fields of systemic drug delivery, gene therapy, and vaccination. During this decade of innovation, we have witnessed the coming of age of dry powder inhalers, the development of new soft mist inhalers, and improved pressurized metered-dose inhaler delivery as a result of the replacement of CFC propellants with hydrofluoroalkane. The continued expansion of the role of aerosol therapy will probably depend on demonstration of the safety of this route of administration for drugs that have their targets outside the lung and are administered long term (eg, insulin aerosol), on the development of new drugs and drug carriers that can efficiently target hard-to-reach cell populations within the lungs of patients with disease (eg, patients with cystic fibrosis or lung cancer), and on the development of devices that improve aerosol delivery to infants, so that early intervention in disease processes with aerosol

  2. Ultrafine calcium aerosol: Generation and use as a sorbent for sulfur in coal combustion. Volume 1, Experimental work: Final report, August 1, 1988--October 31, 1991

    SciTech Connect

    Alam, M.K.; Nahar, N.U.; Stewart, G.D.; Prudich, M.E.

    1991-11-01

    Studies conducted at Ohio University and elsewhere have demonstrated that ultrafine aerosols, which have the highest surface area per unit mass, have enhanced potential to efficiently remove sulfur dioxide form combustion gases. Therefore it is proposed to generate a very fine aerosol calcium-rich sorbent (or similar aerosols) for gas conditioning. The aerosol will be generated by vaporization of the sorbent compound and subsequent homogeneous nucleation. In experimental studies liquids as well as solids will be converted into ultrafine aerosols by using suitable aerosol generator. The aerosol generator could be a simple bubbler or a flame spray jet using powders of calcium ``Compounds. Studies will then be carried out, to determine the dynamics of sulfur dioxide capture by the ultrafine aerosol. The primary objective of this research was to generate fine aerosols and to use them for coal combustion SO{sub 2}/NO{sub x} gas removal purposes. From the background study on the dry scrubbing system, it can be concluded that the most important experimental parameters are addition ratio, reactor temperature, residence time, total inlet flow rate and inlet SO{sub 2} concentration. Addition ratio is the inlet molar ratio of calcium to sulfur. Before any experimentation, it was necessary to decide and investigate the values of each of the parameters. Each of these parameters were investigated individually and the effects on SO{sub 2} removal were determined.

  3. Improvement of Aerosol Prediction Capability

    DTIC Science & Technology

    2001-09-30

    by dust storms in the past.) The operational aerosol products will be used for initialization or specification of aerosols in COAMPS when new cloud...Figure 2. SeaWiFS visible imagery for May 18, 2001, showing a dust storm originating at dry lakes along the Iran-Afghanistan border and then...versions of the Navy Aerosol Analysis and Prediction System (NAAPS) for analysis of airborne dust loads (Westphal/NRL). B: Modify existing radiative

  4. System Applies Polymer Powder To Filament Tow

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.

    1993-01-01

    Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.

  5. Polymer powder prepregging: Scoping study

    NASA Technical Reports Server (NTRS)

    Throne, James L.

    1988-01-01

    Early on, it was found that NEAT LARC-TPI thermoplastic polyimide powder behaved elastoplastically at pressures to 20 ksi and temperatures to 260 degrees celcius (below MP). At high resin assay, resin powder could be continuously cold-flowed around individual carbon fibers in a metal rolling mill. At low resin assay (2:1, C:TPI), fiber breakage was prohibitive. Thus, although processing of TPI below MP would be quite unique, it appears that the polymer must be melted and flowed to produce low resin assay prepreg. Fiber tow was spread to 75 mm using a venturi slot tunnel. This allowed intimate powder/fiber interaction. Two techniques were examined for getting room temperature powder onto the room temperature fiber surface. Electrostatic powder coating allows the charged powder to cling tenaciously to the fiber, even while heated with a hot air gun to above its melt temperature. A variant of the wet slurry coating process was also explored. The carbon fibers are first wetted with water. Then dry powder is sprinkled onto the wet tow and doctor-rolled between the fibers. The wet structure is then taken onto a heated roll, with hot air guns drying and sinter-melting the powder onto the fiber surfaces. In both cases SEM shows individual fibers coated with powder particles that have melted in place and flowed along the fiber surface via surface tension.

  6. Powder towpreg process development

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Marchello, Joseph M.

    1991-01-01

    The process for dry powder impregnation of carbon fiber tows being developed at LaRC overcomes many of the difficulties associated with melt, solution, and slurry prepregging. In the process, fluidized powder is deposited on spread tow bundles and fused to the fibers by radiant heating. Impregnated tows have been produced for preform, weaving, and composite materials applications. Design and operating data correlations were developed for scale up of the process to commercial operation. Bench scale single tow experiments at tow speeds up to 50 cm/sec have demonstrated that the process can be controlled to produce weavable towpreg. Samples were woven and molded into preform material of good quality.

  7. Infrared spectroscopy of aerosols

    NASA Astrophysics Data System (ADS)

    Mentel, Th.; Sebald, H.

    2003-04-01

    In our large Aerosol Chamber at the FZ Jülich we apply HR FTIR absorption spectroscopy for the determination of trace gases. In the FTIR spectra we also observe broad absorptions of several 10 to a few 100 cm-1 widths that arise from species in the condensed aerosol phase: liquid H_2O, NO_3^-, SO_42-, HSO_4^-, or dicarboxylic acids. Moreover, the aerosol droplets caused extinctions over several 1000 cm-1 by IR scattering. This allows for in-situ observation of changes in the condensed aerosol phase e.g. on HNO_3 uptake, like the shift of the sulfate/bisulfate equilibrium or the growth by water condensation. The IR absorptions of the condensed aerosol phase provide useful extra information in process studies, if they can be quantified. Therefore the absorption cross section, respective, the absorption index which is the imaginary part of the complex refractive index is needed. We set up an aerosol flow tube in which IR spectroscopy on a 8 m light path and aerosol size distribution measurements in the range from 20 nm - 10 μm can be performed simultaneously. We measured sulfate aerosols at several relative humidities (dry, metastable, deliquescent). We will demonstrate an iterative procedure based on Mie calculations and Kramers Kronig transformation to retrieve the absorption index from the observed IR spectra and the corresponding size distribution (for dry ammonium sulfate). We will compare resulting absorption indices for aqueous sodium bisulfate aerosols at several relative humidties with thermodynamic model calculations for the Na^+/H^+/HSO_4^-/SO_42-/H_2O system.

  8. Future options for aerosol delivery to children.

    PubMed

    Bisgaard, H

    1999-01-01

    There is an increasing awareness of the importance of reliable aerosol delivery, with emphasis on the dose delivered to the lungs, optimal clinical control, cost-effectiveness, and safety in children. Dose prescription should relate to the expected lung dose rather than the factory-dispensed dose, as at present. The device determines the lung dose. Clearly, therefore, the device should be considered an integral part of the prescription. Drug approval processes should clearly specify the device, and discourage the use of other devices. This would rationalize the choice of devices. Important new insights into factors essential for drug delivery to the airways have been acquired in recent years. Nasal inhalation increases systemic bioavailability, reduces lung dose, and adds to its variability; hence, face masks to prevent nasal breathing have been developed. Similarly, dead space in the inspiratory line causes a proportional reduction in lung dose; hence, attention should be paid to reducing such dead space. Plastics in spacers cause a rapid loss of drug due to electrostatic attraction of the aerosol. The residence time of the aerosol, i.e., the time available for inhalation, is increased in nonelectrostatic spacers, allowing less compliant children enough time to obtain a full dose. Eliminating the electrostatic charge can change the lung dose by several times; hence, nonelectrostatic materials should be used in future spacer devices. Compliance is the biggest problem in drug delivery to children. The inhaler design process should be reversed, adapting technology to the child. Interactive microchip technology should provide intelligent devices that react to correct handling and breathing maneuvers. An intelligent nebulizer has been developed that adapts nebulization to the child's breathing pattern, nebulizing only during inhalation and avoiding loss of aerosol during exhalation. An automatic device (AirPac) has been developed that transforms a dry-powder inhaler

  9. [Impact of directly compressed auxiliary materials on powder property of fermented cordyceps powder].

    PubMed

    Chen, Li-Hua; Yue, Guo-Chao; Guan, Yong-Mei; Yang, Ming; Zhu, Wei-Feng

    2014-01-01

    To investigate such physical indexes as hygroscopicity, angle of repose, bulk density, fillibility of compression of mixed powder of directly compressed auxiliary materials and fermented cordyceps powder by using micromeritic study methods. The results showed that spray-dried lactose Flowlac100 and microcrystalline cellulose Avicel PH102 had better effect in liquidity and compressibility on fermented cordyceps powder than pregelatinized starch. The study on the impact of directly compressed auxiliary materials on the powder property of fermented cordyceps powder had guiding significant to the research of fermented cordyceps powder tablets, and could provide basis for the development of fermented cordyceps powder tablets.

  10. Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles.

    PubMed

    Peters, Thomas M; Ott, Darrin; O'Shaughnessy, Patrick T

    2006-11-01

    This study compared the response of two optical particle counters with that of an aerodynamic particle sizer. The optical particle counters rely on the amount of incident light scattered at 90 degrees by a particle to measure particle number concentration by optical particle size. Two models of optical particle counters from Grimm Technologies were used: the portable aerosol spectrometer (PAS) 1.108 (0.3-20 microm in 15 channels); and the PAS 1.109 (0.2-20 microm in 30 size channels). With a substantially different operating principle from that employed by the optical particle counters, the aerodynamic particle sizer (APS) model 3321 (TSI, Inc., St Paul, MN, USA) sizes particles according to their behavior in an accelerating flow to provide particle number concentration by aerodynamic size over a slightly narrower size range (0.5-20 microm) in 52 channels. The responses of these instruments were compared for three sizes of monodisperse solid aerosols composed of polystyrene latex spheres and a polydisperse aerosol composed of Arizona test dust. The PASs provided similar results to those from the APS. However, there were systematic differences among instruments in number and mass concentration measurement that depended upon particle size.

  11. Rapid formation of the Bi{sub 2{minus}x}Pb{sub x}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} high {Tc}-phase, using spray-dried nitrate precursor powders

    SciTech Connect

    Van Driessche, I.; Mouton, R.; Hoste, S.

    1996-08-01

    This study describes the use of spray-dried nitrate precursor powders in the synthesis of Bi-2223 high {Tc}-superconductors. The decomposition of the precursor powder is studied using TGA/DTA, XRD, IR, and nitrogen analyses. The particle size is determined using SEM. The low decomposition temperature of the nitrates ({approximately}600 C) and the small partic