Sample records for dry processed oxide

  1. Powder treatment process

    DOEpatents

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  2. Powder treatment process

    DOEpatents

    Weyand, John D.

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  3. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    NASA Astrophysics Data System (ADS)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  4. Remote fabrication and irradiation test of recycled nuclear fuel prepared by the oxidation and reduction of spent oxide fuel

    NASA Astrophysics Data System (ADS)

    Jin Ryu, Ho; Chan Song, Kee; Il Park, Geun; Won Lee, Jung; Seung Yang, Myung

    2005-02-01

    A direct dry recycling process was developed in order to reuse spent pressurized light water reactor (LWR) nuclear fuel in CANDU reactors without the separation of sensitive nuclear materials such as plutonium. The benefits of the dry recycling process are the saving of uranium resources and the reduction of spent fuel accumulation as well as a higher proliferation resistance. In the process of direct dry recycling, fuel pellets separated from spent LWR fuel rods are oxidized from UO2 to U3O8 at 500 °C in an air atmosphere and reduced into UO2 at 700 °C in a hydrogen atmosphere, which is called OREOX (oxidation and reduction of oxide fuel). The pellets are pulverized during the oxidation and reduction processes due to the phase transformation between cubic UO2 and orthorhombic U3O8. Using the oxide powder prepared from the OREOX process, the compaction and sintering processes are performed in a remote manner in a shielded hot cell due to the high radioactivity of the spent fuel. Most of the fission gas and volatile fission products are removed during the OREOX and sintering processes. The mini-elements fabricated by the direct dry recycling process are irradiated in the HANARO research reactor for the performance evaluation of the recycled fuel pellets. Post-irradiation examination of the irradiated fuel showed that microstructural evolution and fission gas release behavior of the dry-recycled fuel were similar to high burnup UO2 fuel.

  5. Oxidation kinetics of Si and SiGe by dry rapid thermal oxidation, in-situ steam generation oxidation and dry furnace oxidation

    NASA Astrophysics Data System (ADS)

    Rozé, Fabien; Gourhant, Olivier; Blanquet, Elisabeth; Bertin, François; Juhel, Marc; Abbate, Francesco; Pribat, Clément; Duru, Romain

    2017-06-01

    The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 Å to 150 Å range grown with oxidation temperatures between 850 and 1100 °C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface.

  6. Process for preparing active oxide powders

    DOEpatents

    Berard, Michael F.; Hunter, Jr., Orville; Shiers, Loren E.; Dole, Stephen L.; Scheidecker, Ralph W.

    1979-02-20

    An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

  7. Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest.

    Treesearch

    Heather Erickson; Eric A. Davidson; Michael Keller

    2002-01-01

    Species composition in successional dry forests in the tropics varies widely, but the effect of this variation on biogeochemical processes is not well known. We examined fluxes of N oxides (nitrous and nitric oxide), soil N cycling, and litter chemistry (C/N ratio) in four successional dry forests on similar soils in western Puerto Rico with differing species...

  8. Antioxidant enzyme activities are affected by salt content and temperature and influence muscle lipid oxidation during dry-salted bacon processing.

    PubMed

    Jin, Guofeng; He, Lichao; Yu, Xiang; Zhang, Jianhao; Ma, Meihu

    2013-12-01

    Fresh pork bacon belly was used as material and manufactured into dry-salted bacon through salting and drying-ripening. During processing both oxidative stability and antioxidant enzyme stability were evaluated by assessing peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and activities of catalase, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and their correlations were also analysed. The results showed that all antioxidant enzyme activities decreased (p<0.05) until the end of process; GSH-Px was the most unstable one followed by catalase. Antioxidant enzyme activities were negatively correlated with TBARS (p<0.05), but the correlations were decreased with increasing process temperature. Salt showed inhibitory effect on all antioxidant enzyme activities and was concentration dependent. These results indicated that when process temperature and salt content were low at the same time during dry-salted bacon processing, antioxidant enzymes could effectively control lipid oxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Characterization of strain relaxation behavior in Si1- x Ge x epitaxial layers by dry oxidation

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul; Kim, Byongju; Koo, Sangmo; Park, Seran; Ko, Dae-Hong

    2017-11-01

    We fabricated fully strained Si0.77Ge0.23 epitaxial layers on Si substrates and investigated their strain relaxation behaviors under dry oxidation and the effect of oxidation temperatures and times. After the oxidation process, a Ge-rich layer was formed between the oxide and the remaining Si0.77Ge0.23 layer. Using reciprocal space mapping measurements, we confirmed that the strain of the Si0.77Ge0.23 layers was efficiently relaxed after oxidation, with a maximum relaxation value of 70% after oxidation at 850 °C for 120 min. The surface of Si0.77Ge0.23 layer after strain relaxation by dry oxidation was smoother than a thick Si0.77Ge0.23 layer, which achieved a similar strain relaxation value by increasing the film thickness. Additionally, N2 annealing was performed in order to compare its effect on the relaxation compared to dry oxidation and to identify relaxation mechanisms, other than the thermally driven ones, occurring during dry oxidation.

  10. Change of the structure and the digestibility of myofibrillar proteins in Nanjing dry-cured duck during processing.

    PubMed

    Du, Xiaojing; Sun, Yangying; Pan, Daodong; Wang, Ying; Ou, Changrong; Cao, Jinxuan

    2018-06-01

    To investigate the change of bioavailability and structure of myofibrillar proteins during Nanjing dry-cured duck processing, carbonyl content, sulfhydryl (SH) group, disulfide (SS) group, sodium dodecyl sulfate polyacrylamide gel electrophoresis, surface hydrophobicity, secondary structures and in vitro digestibility were determined. During processing, carbonyl content and surface hydrophobicity increased; SH turned into SS group; α-helix turned into β-sheet and random coil fractions. Protein degradation occurred during dry-curing and drying-ripening stages. The in vitro digestibility of pepsin and pancreatic proteases increased during the salt curing stage and decreased during the drying-ripening stage. The increase of digestibility could be attributed to the mild oxidation, degradation and unfolding of proteins while the decrease of digestibility was related to the intensive oxidation and aggregation of proteins. Protein degradation was not a main factor of digestibility during the drying-ripening stage. Results demonstrated that the bioavailability loss of myofibrillar proteins in Nanjing dry-cured duck occurred during the stage of drying-ripening instead of curing. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Charge Trapping in Low Temperature MOS (Metal-Oxide-Silicon) Oxides.

    DTIC Science & Technology

    1984-08-24

    high pressure thermal oxidation (HIPOX). The LPCVD process involved reaction of dichlorosilane with nitrous oxide. The HIPOX process involved dry...oxygen. The LPCVD and HIPOX films were subjected to a variety of annealing treatments. We have systematically investigated the effects of these treatments...systematically altered by annealing treatments. In general, the electron traps in LPCVD oxide films produced by the nitrous oxide- dichlorosilane

  12. 40 CFR 180.491 - Propylene oxide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... commodities: Commodity Parts per million Basil, dried leaves 6000 Cacao bean, dried bean 20.0 Cacao bean... basil 1500 Nutmeat, processed, except peanuts 10.0 Onion, dried 6000 Plum, prune, dried 2.0 (b) Section...

  13. Effect of Dietary Processed Sulfur Supplementation on Texture Quality, Color and Mineral Status of Dry-cured Ham.

    PubMed

    Kim, Ji-Han; Ju, Min-Gu; Yeon, Su-Jung; Hong, Go-Eun; Park, WooJoon; Lee, Chi-Ho

    2015-01-01

    This study was performed to investigate the chemical composition, mineral status, oxidative stability, and texture attributes of dry-cured ham from pigs fed processed sulfur (S, 1 g/kg feed), and from those fed a basal diet (CON), during the period from weaning to slaughter (174 d). Total collagen content and soluble collagen of the S group was significantly higher than that of the control group (p<0.05). The pH of the S group was significantly higher than that of the control group, whereas the S group had a lower expressible drip compared to the control group. The S group also showed the lower lightness compared to the control group (p<0.05). In regard to the mineral status, the S group had significantly lower Fe(2+) and Ca(2+) content than the control group (p<0.05), whereas the proteolysis index of the S group was significantly increased compared to the control group (p<0.05). The feeding of processed sulfur to pigs led to increased oxidative stability, related to lipids and pigments, in the dry-cured ham (p<0.05). Compared to the dry-cured ham from the control group, that from the S group exhibited lower springiness and gumminess; these results suggest that feeding processed sulfur to pigs can improve the quality of the texture and enhance the oxidative stability of dry-cured ham.

  14. EFFECTS OF CHEMICAL PROCESSING AND OXIDE ETHYLENE STERILIZATION ON CORTICAL AND CANCELLOUS RAT BONE: A LIGHT AND ELECTRON SCANNING MICROSCOPY STUDY

    PubMed Central

    Castiglia, Marcello Teixeira; da Silva, Juliano Voltarelli F.; Frezarim Thomazini, José Armendir; Volpon, José Batista

    2015-01-01

    To evaluate, under microscopic examination, the structural changes displayed by the trabecular and cortical bones after being processed chemically and sterilized by ethylene oxide. Methods: Samples of cancellous and cortical bones obtained from young female albinus rats (Wistar) were assigned to four groups according to the type of treatment: Group I- drying; Group II- drying and ethylene oxide sterilization; III- chemical treatment; IV- chemical treatment and ethylene oxide sterilization. Half of this material was analyzed under ordinary light microscope and the other half using scanning electron microscopy. Results: In all the samples, regardless the group, there was good preservation of the general morphology. For samples submitted to the chemical processing there was better preservation of the cellular content, whereas there was amalgamation of the fibres when ethylene oxide was used. Conclusion: Treatment with ethylene oxide caused amalgamation of the fibers, possibly because of heating and the chemical treatment contributed to a better cellular preservation of the osseous structure. PMID:26998450

  15. Process for the manufacture of an attrition resistant sorbent used for gas desulfurization

    DOEpatents

    Venkataramani, Venkat S.; Ayala, Raul E.

    2003-09-16

    This process produces a sorbent for use in desulfurization of coal gas. A zinc titanate compound and a metal oxide are mixed by milling the compounds in an aqueous medium, the resulting mixture is dried and then calcined, crushed, sleved and formed into pellets for use in a moving-bed reactor. Metal oxides suitable for use as an additive in this process include: magnesium oxide, magnesium oxide plus molybdenum oxide, calcium oxide, yttrium oxide, hafnium oxide, zirconium oxide, cupric oxide, and tin oxide. The resulting sorbent has a percentage of the original zinc or titanium ions substituted for the oxide metal of the chosen additive.

  16. Application of cashew tree gum on the production and stability of spray-dried fish oil.

    PubMed

    Botrel, Diego Alvarenga; Borges, Soraia Vilela; Fernandes, Regiane Victória de Barros; Antoniassi, Rosemar; de Faria-Machado, Adelia Ferreira; Feitosa, Judith Pessoa de Andrade; de Paula, Regina Celia Monteiro

    2017-04-15

    Evaluation of cashew gum compared to conventional materials was conducted regarding properties and oxidative stability of spray-dried fish oil. Emulsions produced with cashew gum showed lower viscosity when compared to Arabic gum. The particle size was larger (29.9μm) when cashew gum was used, and the encapsulation efficiency reached 76%, similar to that of modified starch but higher than that for Arabic gum (60%). The oxidation process for the surface oil was conducted and a relative lower formation of oxidation compounds was observed for the cashew gum treatment. GAB model was chosen to describe the moisture adsorption isotherm behaviours. Microparticles produced using Arabic and cashew gums showed greater water adsorption when exposed to higher relative humidities. Microparticles produced using cashew gum were more hygroscopic however encapsulation efficiency were higher and surface oil oxidation were less pronounced. Cashew gum can be further explored as an encapuslant material for spray drying processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: Impact on nutritional quality and colour.

    PubMed

    Lenaerts, S; Van Der Borght, M; Callens, A; Van Campenhout, L

    2018-07-15

    Freeze drying represents the current practice to stabilize mealworms, even though it is an energy demanding technique. Therefore, it was examined in the present study whether microwave drying could be a proper alternative. To this end, the impact of both drying techniques on the proximate composition, vitamin B 12 content, fatty acid profile, oxidation status and colour parameters of mealworms was investigated. Furthermore, the influence of the application of vacuum during microwave drying was studied. The different drying technologies resulted in small differences in the proximate composition, while the vitamin B 12 content was only reduced by microwave drying. The fat fraction of freeze dried mealworms showed a higher oxidation status than the fat of microwave dried mealworms. Application of a vacuum during the microwave drying process did not appear to offer advantages. This research shows that for mealworms microwave drying can be a proper alternative to freeze drying. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Synthesis of complex oxides with garnet structure by spray drying of an aqueous salt solution

    NASA Astrophysics Data System (ADS)

    Makeenko, A. V.; Larionova, T. V.; Klimova-Korsmik, O. G.; Starykh, R. V.; Galkin, V. V.; Tolochko, O. V.

    2017-04-01

    The use of spray drying to obtain powders of complex oxides with a garnet structure has demonstrated. The processes occurring during heating of the synthesized oxide-salt product, leading to the formation of a material with a garnet structure, have been investigated using DTA, TGA, XPS, and XRD. It has been shown that a single-phase garnet structure of system (Y x Gd(3- x))3Al5O12 can be synthesized over the entire range of compositions.

  19. Factors affecting oxidative stain in soft maple (Acer rubrum L.)

    Treesearch

    Michael C. Wiemann; Mark Knaebe

    2008-01-01

    A preliminary study to determine possible treatments that might be used to eliminate or limit value reducing stain in soft maple suggests that rapid processing and treatment with sulfur dioxide gas decreases discoloration, high-temperature drying increases discoloration, and freezing in dry ice prior to processing has no effect.

  20. Effect of Thermal Processing towards Lipid Oxidation and Non-enzymatic Browning Reactions of Antartic Krill (Euphausia superba) Meal.

    PubMed

    Liu, Yanzi; Cong, Peixu; Li, Beijia; Song, Yu; Liu, Yanjun; Xu, Jie; Xue, Changhu

    2018-04-13

    Antarctic krill is a huge source of biomass and prospective high-quality lipid source. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), nutritionally important lipid components with poor oxidative stability, were used as markers of oxidation during thermal processing of Antarctic krill (Euphausia superba) meal by evaluating the lipolysis, lipid oxidation, and non-enzymatic browning reactions. Liquid chromatography-mass spectrometry of the phospholipids (PLs) and the main oxidation products of free fatty acids (FFAs) and phosphatidylcholine (PC) was effective for evaluating the oxidation of EPA and DHA. During boiling, oxidation of EPA and DHA in the FFA and PC fractions and hydrolysis of the fatty acids at the sn-2 position of the PLs were predominant. The changes in PC during drying were mainly attributed to the oxidation of EPA and DHA. Heat treatment increased the oxidation products and concentration of hydrophobic pyrrole owing to pyrrolization between phosphatidylethanolamine (PE) and the lipid oxidation products. The lipid oxidation level of Antarctic krill increased after drying, owing to prolonged heating under the severe conditions. This article is protected by copyright. All rights reserved.

  1. Comparative surface studies on wet and dry sacrificial thermal oxidation on silicon carbide

    NASA Astrophysics Data System (ADS)

    Koh, A.; Kestle, A.; Wright, C.; Wilks, S. P.; Mawby, P. A.; Bowen, W. R.

    2001-04-01

    A comparative study on the effect of wet and dry thermal oxidation on 4H-silicon carbide (SiC) and on sacrificial silicon (Si) thermal oxidation on 4H-SiC surface has been conducted using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The AFM images show the formation of 'nano-islands' of varying density on the SiC surface after the removal of thermal oxide using hydrofluoric (HF) acid etch. These nano-islands are resistant to HF acid and have been previously linked to residual carbon [1-3] resulting from the oxidation process. This paper presents the use of a sacrificial silicon oxidation (SSO) step as a form of surface preparation that gives a reproducible clean SiC surface. XPS results show a slight electrical shift in binding energy between the wet and dry thermal oxidation on the standard SiC surface, while the surface produced by the SSO technique shows a minimal shift.

  2. Effect of Dietary Processed Sulfur Supplementation on Texture Quality, Color and Mineral Status of Dry-cured Ham

    PubMed Central

    2015-01-01

    This study was performed to investigate the chemical composition, mineral status, oxidative stability, and texture attributes of dry-cured ham from pigs fed processed sulfur (S, 1 g/kg feed), and from those fed a basal diet (CON), during the period from weaning to slaughter (174 d). Total collagen content and soluble collagen of the S group was significantly higher than that of the control group (p<0.05). The pH of the S group was significantly higher than that of the control group, whereas the S group had a lower expressible drip compared to the control group. The S group also showed the lower lightness compared to the control group (p<0.05). In regard to the mineral status, the S group had significantly lower Fe2+ and Ca2+ content than the control group (p<0.05), whereas the proteolysis index of the S group was significantly increased compared to the control group (p<0.05). The feeding of processed sulfur to pigs led to increased oxidative stability, related to lipids and pigments, in the dry-cured ham (p<0.05). Compared to the dry-cured ham from the control group, that from the S group exhibited lower springiness and gumminess; these results suggest that feeding processed sulfur to pigs can improve the quality of the texture and enhance the oxidative stability of dry-cured ham. PMID:26761895

  3. Lipid oxidation and fatty acid composition in salt-dried yellow croaker ( Pseudosciaena polyactis) during processing

    NASA Astrophysics Data System (ADS)

    Cai, Qiuxing; Wu, Yanyan; Li, Laihao; Wang, Yueqi; Yang, Xianqing; Zhao, Yongqiang

    2017-10-01

    Lipid oxidation in salt-dried yellow croaker ( Pseudosciaena polyactis) was evaluated during processing with commonly used analytical indices, such as the peroxide value (POV), the thiobarbituric acid reactive substances (TBARS) value, and oxidative-relative lipoxygenase (LOX) activity. Additionally, fatty acids were analyzed using gas chromatography-mass spectrometry. Both POV and TBARS increased significantly ( P < 0.05) at the rinsing stage. POV reached its peak value of 3.63 meq O2 per kg sample at the drying stage, whereas TBARS constantly increased from 0.05 to 0.20 mg MDA per kg sample. Processing of salt-dried yellow croaker had an extremely significant ( P < 0.01) effect on LOX activity. Twenty-six fatty acids were identified. Combined eicosapentaenoic acid (EPA; C20:5n3) and docosahexaenoic acid (DHA; C22:6n3) content varied between (19.20 ± 0.37) mg g-1 and (23.45 ± 1.05) mg g-1. The polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) ratio in yellow croaker was 0.73-1.10, and the n-6/n-3 PUFA ratio was approximately 0.13-0.20. The contents of most fatty acids varied significantly ( P < 0.05) during the different processing stages, and these differences were caused by lipid oxidation. C18:0, C16:1n7, C19:0, and C22:6n3 showed clear changes in principle component one of a principle components analysis. These fatty acids are potential markers for evaluating lipid oxidation in fish muscle because there was a significant correlation between these markers and TBARS and LOX activity ( P < 0.05) with Pearson's coefficients > 0.931.

  4. Dry soldering with hot filament produced atomic hydrogen

    DOEpatents

    Panitz, Janda K. G.; Jellison, James L.; Staley, David J.

    1995-01-01

    A system for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs.

  5. Ash Analysis

    NASA Astrophysics Data System (ADS)

    Marshall, Maurice R.

    Ash refers to the inorganic residue remaining after either ignition or complete oxidation of organic matter in a foodstuff. A basic knowledge of the characteristics of various ashing procedures and types of equipment is essential to ensure reliable results. Two major types of ashing are used: dry ashing, primarily for proximate composition and for some types of specific mineral analyses; wet ashing (oxidation), as a preparation for the analysis of certain minerals. Microwave systems now are available for both dry and wet ashing, to speed the processes. Most dry samples (i.e., whole grain, cereals, dried vegetables) need no preparation, while fresh vegetables need to be dried prior to ashing. High-fat products such as meats may need to be dried and fat extracted before ashing. The ash content of foods can be expressed on either a wet weight (as is) or on a dry weight basis. For general and food-specific information on measuring ash content, see references (1-11).

  6. Oxidative stability of high-oleic sunflower oil in a porous starch carrier.

    PubMed

    Belingheri, Claudia; Giussani, Barbara; Rodriguez-Estrada, Maria Teresa; Ferrillo, Antonio; Vittadini, Elena

    2015-01-01

    This study evaluates the oxidation level of high-oleic sunflower oil (HOSO) plated onto porous starch as an alternative to spray drying. Encapsulated oils were subjected to accelerated oxidation by heat and light exposure, and peroxide value (PV) and conjugated dienes (CD) were measured. Bulk oil was the control. PV increased in all samples with increased light exposure, with similar values being reached by oil carried on porous starch and spray dried oil. The encapsulation processes determined a reduced effect of light on the increase of CD in the oil, as compared to bulk oil. Spray dried oil presented the highest CD in the experimental domain considered. Since similar levels of PV and lower levels of CD were shown in the HOSO carried on porous starch compared to the spray dried HOSO, plating flavour oils on porous starch could be a suitable technological alternative to spray drying, for flavour encapsulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Warner, Kathryn A.

    1999-01-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.

  8. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Warner, K.A.

    1999-06-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation. 4 figs.

  9. Dry soldering with hot filament produced atomic hydrogen

    DOEpatents

    Panitz, J.K.G.; Jellison, J.L.; Staley, D.J.

    1995-04-25

    A system is disclosed for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs. 1 fig.

  10. Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, C.K.; Lee, J.B.; Ahn, D.H.

    2002-09-19

    Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermicmore » nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.« less

  11. A comprehensive review of thin-layer drying models used in agricultural products.

    PubMed

    Ertekin, Can; Firat, M Ziya

    2017-03-04

    Drying is one of the widely used methods of grain, fruit, and vegetable preservation. The important aim of drying is to reduce the moisture content and thereby increase the lifetime of products by limiting enzymatic and oxidative degradation. In addition, by reducing the amount of water, drying reduces the crop losses, improves the quality of dried products, and facilitates its transportation, handling, and storage requirements. Drying is a process comprising simultaneous heat and mass transfer within the material, and between the surface of the material and the surrounding media. Many models have been used to describe the drying process for different agricultural products. These models are used to estimate drying time of several products under different drying conditions, and how to increase the drying process efficiency and also to generalize drying curves, for the design and operation of dryers. Several investigators have proposed numerous mathematical models for thin-layer drying of many agricultural products. This study gives a comprehensive review of more than 100 different semitheoretical and empirical thin-layer drying models used in agricultural products and evaluates the statistical criteria for the determination of appropriate model.

  12. Paired Straight Hearth Furnace - Transformational Ironmaking Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei-Kao; Debski, Paul

    2014-11-19

    The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitablemore » as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.« less

  13. Plasma-chemical processes accompanying discharge in air excited by a microwave beam

    NASA Astrophysics Data System (ADS)

    Askar'ian, G. A.; Batanov, G. M.; Gritsinin, S. I.; Kossyi, I. A.; Kostinskii, A. Iu.

    1990-11-01

    Experimental results are presented on plasma-chemical processes of nitrogen oxidation and ozone production accompanying microwave discharge in dry air and in nitrogen-oxygen mixtures. The degree of nitrogen oxidation and the energy expenditure toward the formation of oxides as a function of discharge conditions are established. The experimental results can be explained by assuming oxidation reactions of electron-excited metastable nitrogen molecules by oxygen atoms. Low ozone concentrations in the discharge indicate a significant energy input into the gas.

  14. Zinc titanate sorbents

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  15. Zinc titanate sorbents

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  16. Thermally grown oxide and diffusions for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1979-01-01

    A totally automated facility for semiconductor oxidation and diffusion was developed using a state-of-the-art diffusion furnace and high temperature grown oxides. Major innovations include: (1) a process controller specifically for semiconductor processing; (2) an automatic loading system to accept wafers from an air track, insert them into a quartz carrier and then place the carrier on a paddle for insertion into the furnace; (3) automatic unloading of the wafers back onto the air track, and (4) boron diffusion using diborane with plus or minus 5 percent uniformity. Processes demonstrated include Wet and dry oxidation for general use and for gate oxide, boron diffusion, phosphorous diffusion, and sintering.

  17. Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy

    PubMed Central

    Shearing, Paul R.; Brightman, Edward; Brett, Dan J. L.; Brandon, Nigel P.; Cohen, Lesley F.

    2016-01-01

    The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single‐step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance. PMID:27595058

  18. Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy.

    PubMed

    Maher, Robert C; Shearing, Paul R; Brightman, Edward; Brett, Dan J L; Brandon, Nigel P; Cohen, Lesley F

    2016-01-01

    The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single-step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance.

  19. Solution-processed copper-nickel nanowire anodes for organic solar cells

    NASA Astrophysics Data System (ADS)

    Stewart, Ian E.; Rathmell, Aaron R.; Yan, Liang; Ye, Shengrong; Flowers, Patrick F.; You, Wei; Wiley, Benjamin J.

    2014-05-01

    This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%.This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01024h

  20. Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality.

    PubMed

    Rodríguez, Óscar; Eim, Valeria; Rosselló, Carmen; Femenia, Antoni; Cárcel, Juan A; Simal, Susana

    2018-03-01

    Drying gives rise to products with a long shelf life by reducing the water activity to a level that is sufficiently low to inhibit the growth of microorganisms, enzymatic reactions and other deteriorative reactions. Despite the benefits of this operation, the quality of heat sensitive products is diminished when high temperatures are used. The use of low drying temperatures reduces the heat damage but, because of a longer drying time, oxidation reactions occur and a reduction of the quality is also observed. Thus, drying is a method that lends itself to being intensified. For this reason, alternative techniques are being studied. Power ultrasound is considered as an emerging and promising technology in the food industry. The potential of this technology relies on its ability to accelerate the mass transfer processes in solid-liquid and solid-gas systems. Intensification of the drying process with power ultrasound can be achieved by modifying the product behavior during drying, using pre-treatments such as soaking in a liquid medium assisted acoustically or, during the drying process itself, by applying power ultrasound in the gaseous medium. This review summarises the effects of the application of the power ultrasound on the quality of different dried products, such as fruits and vegetables, when the acoustic energy is intended to intensify the drying process, either when the application is performed before pretreatment or during the drying process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Effects of processing methods on composition and functionality of volatile components isolated from immature fruits of atemoya.

    PubMed

    Liu, Tai-Ti; Chao, Louis Kuo-Ping; Peng, Chi-Wei; Yang, Tsung-Shi

    2016-07-01

    Atemoya is one of the most important commercial fruits of the family Annonaceae. The immature fruits of atemoya amply produced from a fruit-thinning process is normally regarded as waste and discarded. This research aimed at studying antimicrobial, antioxidant, and anti-inflammatory activities of the essential oil (EO) isolated from the immature fruits to explore its potential application. The fruits were subjected to different drying methods: solar drying (SD), oven drying at 30°C (OD-30), and at 50°C (OD-50). The oven drying method gave a higher EO yield than the solar drying method. Spathulenol was the largest compound in the EO after the drying process. Antimicrobial effect was not affected by the different drying methods. Antioxidant activity of the EO was measured by DPPH, nitric oxide, and reducing power methods. The EOOD-50 exhibited a stronger antioxidant activity than EOSD and EOOD-30. The EO also showed an anti-inflammatory activity in a cell model. Copyright © 2016. Published by Elsevier Ltd.

  2. High Power Electrochemical Capacitors

    DTIC Science & Technology

    2012-03-23

    electrochemical properties of vanadium oxide aerogels prepared by a freeze-drying process. Journal of the Electrochemical Society, 2004. 151(5): p...Electrochemical Society, 2002. 149(1): p. A26-A30. 12. Rolison, D.R. and B. Dunn, Electrically conductive oxide aerogels : new materials in...surface area vanadium oxide aerogels . Electrochemical and Solid-State Letters, 2000. 3(10): p. 457-459. 14. Shembel, E., et al., Synthesis, investigation

  3. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System

    PubMed Central

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-01-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g−1, respectively, at a current density of 2 A g−1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones. PMID:27033088

  4. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System

    NASA Astrophysics Data System (ADS)

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-04-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g-1, respectively, at a current density of 2 A g-1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones.

  5. Sources of nitric oxide and nitrous oxide following wetting of dry soil

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.

    1992-01-01

    A study is presented which is aimed at distinguishing among autotrophic nitrification, denitrification, and abiological processes as sources of NO and N2O production following wetting of dry soil. To distinguish among these processes, combinations of treatments in laboratory incubations of soil were used which included varying soil water content, autoclaving, C2H2 inhibition, and NO2(-) addition. Biological sources of NO and N2O commenced within minutes of wetting dry soil. Acetylene inhibition revealed that emissions of NO were dependent on nitrification, although a combination of NO2(-) production by nitrifiers and abiological reduction of NO2(-) to NO is also possible. NO emissions exceeded N2O emissions, and nitrification was the dominant source of both gases when soil water was below field capacity. It is concluded that NO emissions appear to be more important when good soil aeration favors nitrification, whereas N2O emissions appear more important when elevated soil water favors denitrification.

  6. Effect of sodium ascorbate and sodium nitrite on protein and lipid oxidation in dry fermented sausages.

    PubMed

    Berardo, A; De Maere, H; Stavropoulou, D A; Rysman, T; Leroy, F; De Smet, S

    2016-11-01

    The effects of sodium nitrite and ascorbate on lipid and protein oxidation were studied during the ripening process of dry fermented sausages. Samples were taken at day 0, 2, 8, 14, 21 and 28 of ripening to assess lipid (malondialdehyde) and protein (carbonyls and sulfhydryl groups) oxidation. Sodium ascorbate and nitrite were separately able to reduce the formation of malondialdehyde. Their combined addition resulted in higher amounts of carbonyl compounds compared to their separate addition or the treatment without any of both compounds. Moreover, sodium nitrite limited the formation of γ-glutamic semialdehyde whereas sodium ascorbate showed a pro-oxidant effect. A loss of thiol groups was observed during ripening, which was not affected by the use of sodium ascorbate nor sodium nitrite. In conclusion, sodium nitrite and ascorbate affected protein and lipid oxidation in different manners. The possible pro-oxidant effect of their combined addition on carbonyl formation might influence the technological and sensory properties of these products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Measurement of n-type Dry Thermally Oxidized 6H-SiC Metal-oxide Semiconductor Diodes by Quasistatic and High-Frequency Capacitance Versus Voltage and Capacitance Transient Techniques

    NASA Technical Reports Server (NTRS)

    Neudeck, P.; Kang, S.; Petit, J.; Tabib-Azar, M.

    1994-01-01

    Dry-oxidized n-type 6H-SiC metal-oxide-semiconductor capacitors are investigated using quasistatic capacitance versus voltage (C-V), high-frequency C-V, and pulsed high-frequency capacitance transient (C-t) analysis over the temperature range from 297 to 573 K. The quasistatic C - V characteristics presented are the first reported for 6H-SiC MOS capacitors, and exhibit startling nonidealities due to nonequilibrium conditions that arise from the fact that the recombination/generation process in 6H-SiC is extraordinarily slow even at the highest measurement temperature employed. The high-frequency dark C-V characteristics all showed deep depletion with no observable hysteresis. The recovery of the high-frequency capacitance from deep depletion to inversion was used to characterize the minority-carrier generation process as a function of temperature. Zerbst analysis conducted on the resulting C-t transients, which were longer than 1000 s at 573 K, showed a generation lifetime thermal activation energy of 0.49 eV.

  8. Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure.

    PubMed

    Fuentes, Verónica; Ventanas, Jesús; Morcuende, David; Estévez, Mario; Ventanas, Sonia

    2010-07-01

    The effect of HHP treatment (600 MPa) on the oxidative stability of lipids and proteins of vacuum-packaged Iberian dry-cured ham and the impact on the sensory characteristics of the product was investigated. In order to assess how different commercial presentations are affected by HHP treatment, three different presentations of vacuum-packaged Iberian dry-cured ham were considered, namely, (i) intact format (IF) corresponding to non-sliced vacuum-packaged dry-cured ham, (ii) conventional-sliced format (CSF) corresponding to dry-cured ham slices placed stretched out in the package and (iii) alternative-sliced format (ASF) corresponding to dry-cured ham slices piled up horizontally. The oxidation of dry-cured ham lipids and proteins was enhanced by HHP-treatment with the presentation being highly influential on these oxidative reactions. Pre-slicing dry-cured ham results in a more susceptible product to oxidative reactions during pressurisation and subsequent refrigerated storage. Possible mechanisms, by which HHP-induced oxidative reactions would affect particular sensory traits in vacuum-packaged Iberian dry-cured ham such as colour, texture and flavour attributes, are discussed. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Effects of high pressure application (400 and 900 MPa) and refrigerated storage time on the oxidative stability of sliced skin vacuum packed dry-cured ham.

    PubMed

    Clariana, Maria; Guerrero, Luis; Sárraga, Carmen; Garcia-Regueiro, José A

    2012-02-01

    The effect of high pressure processing at 400 MPa and 900 MPa on the oxidative stability of sliced and vacuum packaged commercial dry-cured ham was determined by analyzing the antioxidant enzyme activities, TBARS levels (thiobarbituric acid reactive substances), vitamin E content and physicochemical characteristics during refrigerated storage for 50 days in different light conditions. In dry-cured ham pressurized at 400 MPa color changes and sensory analyses were also assessed. The high pressure process at 900 MPa produced a decrease in superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) activities and increased vitamin E content. In contrast, pressurization at 400 MPa, increased SOD activity, and showed no effect on vitamin E content and GSHPx activity. In general the physicochemical parameters determined (fat, moisture and collagen) were unaffected by pressurization. Treatment at 400 MPa increased the instrumental color measurement of lightness (L* values, CIELAB). This level of pressure also modified the hardness, chewiness, saltiness and color intensity. These changes of the sensory attributes in dry-cured ham were significant, but small. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Drum bubbler tritium processing system

    DOEpatents

    Rule, Keith; Gettelfinger, Geoff; Kivler, Paul

    1999-01-01

    A method of separating tritium oxide from a gas stream containing tritium oxide. The gas stream containing tritium oxide is fed into a container of water having a head space above the water. Bubbling the gas stream containing tritium oxide through the container of water and removing gas from the container head space above the water. Thereafter, the gas from the head space is dried to remove water vapor from the gas, and the water vapor is recycled to the container of water.

  11. REFRACTORY ARTICLE AND PROCESS OF MANUFACTURING SAME

    DOEpatents

    Hamilton, N.E.

    1957-12-10

    A method is described for fabricating improved uranium oxide crucibles. In the past, such crucibles have lacked mechanical strength due to the poor cohesion of the uranium oxide particles. This difficulty has now been overcome by admixing with the uranium oxide a quantity of a refractory oxide binder, and dry pressing and sintering the resulting mixture into the desired shape. Suitable as binders are BeO, CaO, Al/sub 2/C/sub 3/, and ThO/sub 2/ among others.

  12. Drum bubbler tritium processing system

    DOEpatents

    Rule, K.; Gettelfinger, G.; Kivler, P.

    1999-08-17

    A method is described for separating tritium oxide from a gas stream containing tritium oxide. The gas stream containing tritium oxide is fed into a container of water having a head space above the water. The tritium oxide is separated by bubbling the gas stream containing tritium oxide through the container of water and removing gas from the container head space above the water. Thereafter, the gas from the head space is dried to remove water vapor from the gas, and the water vapor is recycled to the container of water. 2 figs.

  13. EnviroAtlas - Atmospheric Nitrogen Deposition by 12-digit HUC for the Conterminous United States (2002)

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2002. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) v5.0.2 run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadab

  14. EnviroAtlas - Atmospheric Nitrogen and Sulfur Deposition by 12-digit HUC for the Conterminous United States (2011)

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2011. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data

  15. EnviroAtlas - Atmospheric Nitrogen Deposition by 12-digit HUC for the Conterminous United States (2006)

    EPA Pesticide Factsheets

    This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2006. Values are provided for total oxidized nitrogen (HNO3, NO, NO2, N2O5, NH3, HONO, PAN, organic nitrogen, and particulate NO3), oxidized nitrogen wet deposition, oxidized nitrogen dry deposition, total reduced nitrogen (NH3 and particulate NH4), reduced nitrogen dry deposition, reduced nitrogen wet deposition, total dry nitrogen deposition, total wet nitrogen deposition, total nitrogen deposition (wet+dry), total sulfur (SO2 + particulate SO4) dry deposition, total sulfur wet deposition, and total sulfur deposition. The dataset is based on output from the Community Multiscale Air Quality modeling system (CMAQ) run using the bidirectional flux option for the 12-km grid size for the US, Canada, and Mexico. The CMAQ output has been post-processed to adjust the wet deposition for errors in the location and amount of precipitation and for regional biases in the TNO3 (HNO3 + NO3), NHx (NH4 + NH3), and sulfate wet deposition. Model predicted values of dry deposition were not adjusted. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable dat

  16. Volatiles in the Earth: All shallow and all recycled

    NASA Technical Reports Server (NTRS)

    Anderson, Don L.

    1994-01-01

    A case can be made that accretion of the Earth was a high-temperature process and that the primordial Earth was dry. A radial zone-refining process during accretion may have excluded low-melting point and volatile material, including large-ion lithophile elements toward the surface, leaving a refractory and zoned interior. Water, sediments and altered hydrous oceanic crust are introduced back into the interior by subduction, a process that may be more efficient today than in the past. Seismic tomography strongly suggests that a large part of the uppermantle is above the solidus, and this implies wet melting. The mantle beneath Archean cratons has very fast seismic velocities and appears to be strong to 150 km or greater. This is consistent with very dry mantle. It is argued that recycling of substantial quantities of water occurs in the shallow mantle but only minor amounts recycle to depths greater than 200 km. Recycling also oxidizes that mantle; ocean island ('hotspot') basalts are intermediate in oxidation state to island-arc and midocean ridge basalts (MORB). This suggests a deep uncontaminated reservoir for MORB. Plate tectonics on a dry Earth is discussed in order to focus attention on inconsistencies in current geochemical models of terrestrial evolution and recycling.

  17. Image analysis of epicuticular damage to foliage caused by dry deposition of the air pollutant nitric acid

    Treesearch

    Pamela E. Padgett; Sally D. Parry; Andrzej Bytnerowicz; Robert L. Heath

    2009-01-01

    Nitric acid vapor is produced by the same photochemical processes that produce ozone. In the laboratory, concentrated nitric acid is a strong acid and a powerful oxidant. In the environment, where the concentrations are much lower, it is an innocuous source of plant nitrogen. As an air pollutant, which mode of action does dry deposition of nitric...

  18. Self-heating of dried industrial tannery wastewater sludge induced by pyrophoric iron sulfides formation.

    PubMed

    Bertani, R; Biasin, A; Canu, P; Della Zassa, M; Refosco, D; Simionato, F; Zerlottin, M

    2016-03-15

    Similarly to many powders of solids, dried sludge originated from tannery wastewater may result in a self-heating process, under given circumstances. In most cases, it causes a moderate heating (reaching 70-90°C), but larger, off-design residence times in the drier, in a suboxic atmosphere, extremely reactive solids can be produced. Tannery waste contains several chemicals that mostly end up in the wastewater treatment sludge. Unexpected and uncontrolled self heating could lead to a combustion and even to environmental problems. Elaborating on previous studies, with the addition of several analytical determinations, before and after the self-heating, we attempted to formulate a mechanism for the onset of heating. We demonstrated that the system Fe/S/O has been involved in the process. We proved that the formation of small quantities of pyrophoric iron sulfides is the key. They are converted to sulfated by reaction with water and oxygen with exothermic processes. The pyrite/pyrrhotite production depends on the sludge drying process. The oxidation of sulfides to oxides and sulfates through exothermic steps, reasonably catalyzed by metals in the sludge, occurs preferentially in a moist environment. The mechanism has been proved by reproducing in the laboratory prolonged heating under anoxic/suboxic atmosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.

    PubMed

    Shima, Jun; Ando, Akira; Takagi, Hiroshi

    2008-03-01

    Yeasts used in bread making are exposed to air-drying stress during dried yeast production processes. To clarify the genes required for air-drying tolerance, we performed genome-wide screening using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 278 gene deletions responsible for air-drying sensitivity. These genes were classified based on their cellular function and on the localization of their gene products. The results showed that the genes required for air-drying tolerance were frequently involved in mitochondrial functions and in connection with vacuolar H(+)-ATPase, which plays a role in vacuolar acidification. To determine the role of vacuolar acidification in air-drying stress tolerance, we monitored intracellular pH. The results showed that intracellular acidification was induced during air-drying and that this acidification was amplified in a deletion mutant of the VMA2 gene encoding a component of vacuolar H(+)-ATPase, suggesting that vacuolar H(+)-ATPase helps maintain intracellular pH homeostasis, which is affected by air-drying stress. To determine the effects of air-drying stress on mitochondria, we analysed the mitochondrial membrane potential under air-drying stress conditions using MitoTracker. The results showed that mitochondria were extremely sensitive to air-drying stress, suggesting that a mitochondrial function is required for tolerance to air-drying stress. We also analysed the correlation between oxidative-stress sensitivity and air-drying-stress sensitivity. The results suggested that oxidative stress is a critical determinant of sensitivity to air-drying stress, although ROS-scavenging systems are not necessary for air-drying stress tolerance. (c) 2008 John Wiley & Sons, Ltd.

  20. Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying.

    PubMed

    Liu, Huan; Liu, Peng; Hu, Hongyun; Zhang, Qiang; Wu, Zhenyu; Yang, Jiakuan; Yao, Hong

    2014-12-01

    Joint application of Fenton's reagent and CaO can dramatically enhance sludge dewaterability, thus are also likely to affect subsequent thermal drying process. This study investigated the synergistic effects of the two conditioners on the thermal drying behavior of sewage sludge and the emission characteristics of main sulfur-/nitrogen-containing gases. According to the results, Fenton peroxidation combined with CaO conditioning efficiently promoted sludge heat transfer, reduced the amounts of both free and bound water, and created porous structure in solids to provide evaporation channels, thus producing significant positive effects on sludge drying performance. In this case, the required time for drying was shortened to one-third. Additionally, joint usage of Fenton's reagent and CaO did not increase the losses of organic matter during sludge drying process. Meanwhile, they facilitated the formation of sulfate and sulfonic acid/sulfone, leading to sulfur retention in dried sludge. Both of Fenton peroxidation and CaO conditioning promoted the oxidation, decomposition, and/or dissolution of protein and inorganic nitrogen in sludge pre-treatment. As a consequence, the emissions of sulfurous and nitrogenous gases from dewatered sludge drying were greatly suppressed. These indicate that combining Fenton peroxidation with CaO conditioning is a promising strategy to improve drying efficiency of sewage sludge and to control sulfur and nitrogen contaminants during sludge thermal drying process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Radiolytic and Thermal Processes Relevant to Dry Storage of Spent Nuclear Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, Steven C.; Madey,Theodore E.; Haustein, Peter E.

    2000-06-01

    The purpose of this project is to deliver pertinent information that can be used to make rational decisions about the safety and treatment issues associated with dry storage of spent nuclear fuel materials. In particular, we will establish an understanding of: (1) water interactions with failed-fuel rods and metal-oxide materials; (2) the role of thermal processes and radiolysis (solid-state and interfacial) in the generation of potentially explosive mixtures of gaseous H2 and O2; and (3) the potential role of radiation-assisted corrosion during fuel rod storage.

  2. Process for making ultra-fine ceramic particles

    DOEpatents

    Stangle, Gregory C.; Venkatachari, Koththavasal R.; Ostrander, Steven P.; Schulze, Walter A.

    1995-01-01

    A process for producing ultra-fine ceramic particles in which droplets are formed from a ceramic precursor mixture containing a metal cation, a nitrogen-containing fuel, a solvent, and an anion capable of participating in an anionic oxidation-reduction reaction with the nitrogen containing fuel. The nitrogen-containing fuel contains at least three nitrogen atoms, at least one oxygen atom, and at least one carbon atom. The ceramic precursor mixture is dried to remove at least 85 weight percent of the solvent, and the dried mixture is then ignited to form a combusted powder.

  3. Mitochondria inheritance is a key factor for tolerance to dehydration in wine yeast production.

    PubMed

    Picazo, C; Gamero-Sandemetrio, E; Orozco, H; Albertin, W; Marullo, P; Matallana, E; Aranda, A

    2015-03-01

    Mitochondria are the cell's powerhouse when organisms are grown in the presence of oxygen. They are also the source of reactive oxygen species that cause damage to the biochemical components of the cell and lead to cellular ageing and death. Under winemaking conditions, Saccharomyces yeasts exclusively have a fermentative metabolism due to the high sugar content of grape must. However, their production as an active dry yeast (ADY) form required aerobic propagation and a dehydration process. In these industrial steps, oxidative stress is particularly harmful for the cell. In this work, we analysed the impact of the mitochondrial genome on oxidative stress response, longevity and dehydration tolerance using the synthetic interspecific hybrids obtained between two S. cerevisiae and S. uvarum strains. The isogenic nature of nuclear DNA of such hybrids allowed us to analyse the impact of mitochondrial DNA for fermentative and oxidative stress conditions. Under grape must conditions, the inheritance of mitochondrial DNA poorly impacted the fermentative performance of interspecific hybrids, unlike the hybrids with S. cerevisiae mitochondrial inheritance, which displayed increased tolerance to oxidative stress and dehydration, and showed an extended chronological longevity when cells were grown with aeration. In modern oenology, yeast starters are employed to inoculate grape juice, usually in the form of active dry yeast (ADY). The dehydration process implies stressful conditions that lead to oxidative damage. Other yeast species and interspecific hybrids other than Saccharomyces cerevisiae may be used to confer novel properties to the final product. However, these yeasts are usually more sensitive to drying. Understanding the causes of oxidative stress tolerance is therefore necessary for developing the use of these organisms in industry. This study indicates the impact of mitochondrial DNA inheritance for oxidative stress resistance in an interspecific context using isogenic Saccharomyces cerevisiae × Saccharomyces uvarum hybrids. © 2014 The Society for Applied Microbiology.

  4. Method of producing adherent metal oxide coatings on metallic surfaces

    DOEpatents

    Lane, Michael H.; Varrin, Jr., Robert D.

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  5. Oxidation of anthracene using waste Mn oxide minerals: the importance of wetting and drying sequences.

    PubMed

    Clarke, Catherine; Tourney, Janette; Johnson, Karen

    2012-02-29

    PAHs are a common problem in contaminated urban soils due to their recalcitrance. This study presents results on the oxidation of anthracene on synthetic and natural Mn oxide surfaces. Evaporation of anthracene spiked Mn oxide slurries in air results in the oxidation of 30% of the anthracene to anthraquinone. Control minerals, quartz and calcite, also oxidised a small but significant proportion of the anthracene (4.5% and 14% conversion, respectively) when spiked mineral slurries were evaporated in air. However, only Mn oxide minerals showed significant anthracene oxidation (5-10%) when evaporation took place in the absence of oxygen (N2 atmosphere). In the fully hydrated systems where no drying took place, natural Mn oxides showed an increase in anthracene oxidation with decreasing pH, with a conversion of 75% anthracene at pH 4. These results show both acidification and drying favor the oxidation of anthracene on Mn oxide mineral surfaces. It has also been demonstrated that non-redox active mineral surfaces, such as calcite, may play a role in contaminant breakdown during wetting and drying sequences. Given that climate changes suggest that wetting and drying sequences are likely to become more significant these results have important implications for contaminated land remediation technologies. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Process and apparatus for indirect-fired heating and drying

    DOEpatents

    Abbasi, Hamid Ali; Chudnovsky, Yaroslav

    2005-04-12

    A method for heating flat or curved surfaces comprising injecting fuel and oxidant along the length, width or longitudinal side of a combustion space formed between two flat or curved plates, transferring heat from the combustion products via convection and radiation to the surface being heated on to the material being dried/heated, and recirculating at least 20% of the combustion products to the root of the flame.

  7. The influence of land use on the abundance and diversity of ammonia oxidizers.

    PubMed

    Zhao, Dayong; Luo, Juan; Wang, Jianqun; Huang, Rui; Guo, Kun; Li, Yi; Wu, Qinglong L

    2015-02-01

    Nitrification plays a significant role in soil nitrogen cycling, a process in which the first step can be catalyzed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). In this study, six soil samples with distinct land-use regimes (forestland soil, paddy soil, wheat-planted soil, fruit-planted soil, grassland soil, and rape-planted soil) were collected from Chuzhou city in the Anhui province to elucidate the effects of land use on the abundance and diversity of AOA and AOB. The abundance of the archaeal amoA gene ranged from 2.12 × 10(4) copies per gram of dry soil to 2.57 × 10(5) copies per gram of dry soil, while the abundance of the bacterial amoA gene ranged from 5.58 × 10(4) copies per gram of dry soil to 1.59 × 10(8) copies per gram of dry soil. The grassland and the rape-planted soil samples maintained the highest abundance of the bacterial and archaeal amoA genes, respectively. The abundance of the archaeal amoA gene was positively correlated with the pH (P < 0.05). The ammonia concentrations exhibited a significantly positive relation with the abundance of the bacterial amoA gene (P < 0.01) and the number of OTUs of AOB (P < 0.05). The community composition of AOB was more sensitive to the land-use regimes than that of AOA. The data obtained in this study may be useful to better understand the nitrification process in soils with different land-use regimes.

  8. Optimizing chemical conditioning for odour removal of undigested sewage sludge in drying processes.

    PubMed

    Vega, Esther; Monclús, Hèctor; Gonzalez-Olmos, Rafael; Martin, Maria J

    2015-03-01

    Emission of odours during the thermal drying in sludge handling processes is one of the main sources of odour problems in wastewater treatment plants. The objective of this work was to assess the use of the response surface methodology as a technique to optimize the chemical conditioning process of undigested sewage sludges, in order to improve the dewaterability, and to reduce the odour emissions during the thermal drying of the sludge. Synergistic effects between inorganic conditioners (iron chloride and calcium oxide) were observed in terms of sulphur emissions and odour reduction. The developed quadratic models indicated that optimizing the conditioners dosage is possible to increase a 70% the dewaterability, reducing a 50% and 54% the emission of odour and volatile sulphur compounds respectively. The optimization of the conditioning process was validated experimentally. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Evaluation and comparison of alternative designs for water/solid-waste processing systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Spurlock, J. M.

    1975-01-01

    Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.

  10. Development of a radiation-hard CMOS process

    NASA Technical Reports Server (NTRS)

    Power, W. L.

    1983-01-01

    It is recommended that various techniques be investigated which appear to have the potential for improving the radiation hardness of CMOS devices for prolonged space flight mission. The three key recommended processing techniques are: (1) making the gate oxide thin. It has been shown that radiation degradation is proportional to the cube of oxide thickness so that a relatively small reduction in thickness can greatly improve radiation resistance; (2) cleanliness and contamination control; and (3) to investigate different oxide growth (low temperature dry, TCE and HCL). All three produce high quality clean oxides, which are more radiation tolerant. Technique 2 addresses the reduction of metallic contamination. Technique 3 will produce a higher quality oxide by using slow growth rate conditions, and will minimize the effects of any residual sodium contamination through the introduction of hydrogen and chlorine into the oxide during growth.

  11. Zeolite Formation and Weathering Processes in Dry Valleys of Antartica: Martian Analogs

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Wentworth, S. J.; McKay, D. S.; Socki, R. A.

    2004-01-01

    Terrestrial weathering processes in cold-desert climates such as the Dry Valleys of Antarctica may provide an excellent analog to chemical weathering and diagenesis of soils on Mars. Detailed studies of soil development and the chemical and mineralogical alterations occurring within soil columns in Wright Valley, Antarctica show incredible complexity in the upper meter of soil. Previous workers noted the ice-free Dry Valleys are the best terrestrial approximations to contemporary Mars. Images returned from the Pathfinder and Spirit landers show similarities to surfaces observed within the Dry Valleys. Similarities to Mars that exist in these valleys are: mean temperatures always below freezing (-20 C), no rainfall, sparse snowfall-rapidly removed by sublimation, desiccating winds, diurnal freeze-thaw cycles (even during daylight hours), low humidity, oxidative environment, relatively high solar radiation and low magnetic fields . The Dry Valley soils contain irregular distributions and low abundances of soil microorganisms that are somewhat unusual on Earth. Physical processes-such as sand abrasion-are dominant mechanisms of rock weathering in Antarctica. However, chemical weathering is also an important process even in such extreme climates. For example, ionic migration occurs even in frozen soils along liquid films on individual soil particles. It has also been shown that water with liquid-like properties is present in soils at temperatures on the order of approx.-80 C and it has been observed that the percentage of oxidized iron increases with increasing soil age and enrichments in oxidized iron occurs toward the surface. The presence of evaporates is evident and appear similar to "evaporite sites" within the Pathfinder and Spirit sites. Evaporites indicate ionic migration and chemical activity even in the permanently frozen zone. The presence of evaporates indicates that chemical weathering of rocks and possibly soils has been active. Authogenic zeolites have been identified within the soil columns because they are fragile; i.e. they are euhedral, unabraded, and unfractured, strongly suggesting in situ formation. Their presence in Antarctic samples is another indication that diagenic processes are active in cold-desert environments. The presence of zeolites, and other clays along with halites, sulfates, carbonates, and hydrates are to be expected within the soil columns on Mars at the Gusev and Isidis Planitia regions. The presence of such water-bearing minerals beneath the surface supplies one of the requirements to support biological activity on Mars.

  12. Aridity and plant uptake interact to make dryland soils hotspots for nitric oxide (NO) emissions

    PubMed Central

    Blankinship, Joseph C.; Marchus, Kenneth; Lucero, Delores M.; Sickman, James O.; Schimel, Joshua P.

    2016-01-01

    Nitric oxide (NO) is an important trace gas and regulator of atmospheric photochemistry. Theory suggests moist soils optimize NO emissions, whereas wet or dry soils constrain them. In drylands, however, NO emissions can be greatest in dry soils and when dry soils are rewet. To understand how aridity and vegetation interact to generate this pattern, we measured NO fluxes in a California grassland, where we manipulated vegetation cover and the length of the dry season and measured [δ15-N]NO and [δ18-O]NO following rewetting with 15N-labeled substrates. Plant N uptake reduced NO emissions by limiting N availability. In the absence of plants, soil N pools increased and NO emissions more than doubled. In dry soils, NO-producing substrates concentrated in hydrologically disconnected microsites. Upon rewetting, these concentrated N pools underwent rapid abiotic reaction, producing large NO pulses. Biological processes did not substantially contribute to the initial NO pulse but governed NO emissions within 24 h postwetting. Plants acted as an N sink, limiting NO emissions under optimal soil moisture. When soils were dry, however, the shutdown in plant N uptake, along with the activation of chemical mechanisms and the resuscitation of soil microbial processes upon rewetting, governed N loss. Aridity and vegetation interact to maintain a leaky N cycle during periods when plant N uptake is low, and hydrologically disconnected soils favor both microbial and abiotic NO-producing mechanisms. Under increasing rates of atmospheric N deposition and intensifying droughts, NO gas evasion may become an increasingly important pathway for ecosystem N loss in drylands. PMID:27114523

  13. [Impact of periodical flooding-drying on nitrification and ammonia oxidizers in hydro-fluctuation belt of the Three Gorges Reservoir].

    PubMed

    Guo, Jia; Jiang, Xianjun; Zhou, Xue; Meng, Yao; Jia, Zhongjun

    2016-06-04

    This study was aimed to elucidate the effect of periodic flooding-drying to ecological processes of ammonia oxidizers in the hydro-fluctuation belt of the Three Gorges Reservoir. Soil samples were collected at thee altitudes in regions of Wanzhou, Fengdu and Changshou, representing 8, 5 and 0 times floodingdrying management, respectively. Soil physiochemical properties were analyzed and microcosms were constructed to monitor nitrification activity by fertilizing soils with ammonium substrate. Real-time PCR was used to quantify the population size of ammonia-oxidizing archaea (AOA) and bacteria (AOB). DGGE fingerprints and clone libraries were conducted to study the shift of AOA and AOB compositions in nitrifying soils. Among the physiochemical characteristics of the soils, soil organic matter and total phosphates increased along with cycle increasing. After incubation for 13 days, the net nitrification rates of the samples with 8 cycles exceeded those with 5 cycles. The quantities of both AOA and AOB have increased during the incubation. Phylogenetic analysis showed that AOA were placed within the soil group 1.1b and soil group 1.1a, while bacterial ammonia oxidizers were closely related to Nitrosospira and Cluster 0. Periodical flooding-drying increased soil organic matter, enhanced soil nitrification activity and likely played important roles in shaping community structures of soil ammonia oxidizers.

  14. Effect of fat content on aroma generation during processing of dry fermented sausages.

    PubMed

    Olivares, Alicia; Navarro, José Luis; Flores, Mónica

    2011-03-01

    Dry fermented sausages with different fat contents were produced (10%, 20% and 30%). The effect of fat content and ripening time on sensory characteristics, lipolysis, lipid oxidation and volatile compounds generation was studied. Also, the key aroma components were identified using gas chromatography (GC) and olfactometry. High fat sausages showed the highest lipolysis and lipid oxidation, determined by free fatty acid content and thiobarbituric acid reactive substances (TBARS), respectively. A total of 95 volatile compounds were identified using SPME, GC and mass spectrometry (MS). Fat reduction decreased the generation of lipid derived volatile compounds during processing while those generated from bacterial metabolism increased, although only at the first stages of processing. The consumers preference in aroma and overall quality of high and medium fat sausages was related to the aroma compounds hexanal, 2-nonenal, 2,4-nonadienal, ethyl butanoate and 1-octen-3-ol which contributed green, medicinal, tallowy, fruity and mushroom notes. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  15. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, Deborah A.; Farthing, George A.

    1998-08-18

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  16. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, Deborah A.; Farthing, George A.

    1998-09-29

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  17. An Elegant Low-cost Materials Solution for Achieving Low Insertion Loss, Affordable Tunable Filters for Next Generation Mobile Communications Platforms

    DTIC Science & Technology

    2009-04-01

    material design, complex oxide , UV photon irradiation 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON Melanie W. Cole a. REPORT...1 1. Objective The objective of this effort was to develop a novel materials technology solution to achieve high-Q perovskite oxide thin...year 2008 (FY08) Director’s Research Initiative (DRI), we developed a post- growth ultraviolet (UV)- oxidation process science protocol to improve the

  18. Relation between film character and wafer alignment: critical alignment issues on HV device for VLSI manufacturing

    NASA Astrophysics Data System (ADS)

    Lo, Yi-Chuan; Lee, Chih-Hsiung; Lin, Hsun-Peng; Peng, Chiou-Shian

    1998-06-01

    Several continuous splits for wafer alignment target topography conditions to improve epitaxy film alignment were applied. The alignment evaluation among former layer pad oxide thickness (250 angstrom - 500 angstrom), drive oxide thickness (6000 angstrom - 10000 angstrom), nitride film thickness (600 angstrom - 1500 angstrom), initial oxide etch (fully wet etch, fully dry etch and dry plus wet etch) will be split to this experiment. Also various epitaxy deposition recipe such as: epitaxy source (SiHCl2 or SiCHCl3) and growth rate (1.3 micrometer/min approximately 2.0 micrometer/min) will be used to optimize the process window for alignment issue. All the reflectance signal and cross section photography of alignment target during NIKON stepper alignment process will be examined. Experimental results show epitaxy recipe plays an important role to wafer alignment. Low growth rate with good performance conformity epitaxy lead to alignment target avoid washout, pattern shift and distortion. All the results (signal monitor and film character) combined with NIKON's stepper standard laser scanning alignment system will be discussed in this paper.

  19. Rocket Research at Georgia Tech.

    DTIC Science & Technology

    1981-11-01

    samples were prepared by dry pressing 30% Valley Met H- 30 aluminum, 7% carnauba wax , and 63% 100 P AP. One sample was prepared using as received H-30, a...Al, and Carnauba wax powders. Sandwiches with aluminum in the binder lamina. Both pre-oxidation and pre-stretching treatments of aluminum particles...two different processes. 1. Dry-pressing powder mixtures in which polymeric binder is replaced by carnauba wax powder. 2. Hand mixing small samples of

  20. Impact of extra virgin olive oil and ethylenediaminetetraacetic acid (EDTA) on the oxidative stability of fish oil emulsions and spray-dried microcapsules stabilized by sugar beet pectin.

    PubMed

    Polavarapu, Sudheera; Oliver, Christine M; Ajlouni, Said; Augustin, Mary Ann

    2012-01-11

    The influence of EDTA on lipid oxidation in sugar beet pectin-stabilized oil-in-water emulsions (pH 6, 15% oil, wet basis), prepared from fish oil (FO) and fish oil-extra virgin olive oil (FO-EVOO) (1:1 w/w), as well as the spray-dried microcapsules (50% oil, dry basis) prepared from these emulsions, was investigated. Under accelerated conditions (80 °C, 5 bar oxygen pressure) the oxidative stability was significantly (P < 0.05) higher for FO and FO-EVOO formulated with EDTA, in comparison to corresponding emulsions and spray-dried microcapsules formulated without EDTA. The EDTA effect was greater in emulsions than in spray-dried microcapsules, with the greatest protective effect obtained in FO-EVOO emulsions. EDTA enhanced the oxidative stability of the spray-dried microcapsules during ambient storage (~25 °C, a(w) = 0.5), as demonstrated by their lower concentration of headspace volatile oxidation products, propanal and hexanal. These results show that the addition of EDTA is an effective strategy to maximize the oxidative stability of both FO emulsions and spray-dried microcapsules in which sugar beet pectin is used as the encapsulant material.

  1. Chemistry of the Konica Dry Color System

    NASA Astrophysics Data System (ADS)

    Suda, Yoshihiko; Ohbayashi, Keiji; Onodera, Kaoru

    1991-08-01

    While silver halide photosensitive materials offer superiority in image quality -- both in color and black-and-white -- they require chemical solutions for processing, and this can be a drawback. To overcome this, researchers turned to the thermal development of silver halide photographic materials, and met their first success with black-and-white images. Later, with the development of the Konica Dry Color System, color images were finally obtained from a completely dry thermal development system, without the use of water or chemical solutions. The dry color system is characterized by a novel chromogenic color image-forming technology and comprises four processes. (1) With the application of heat, a color developer precursor (CDP) decomposes to generate a p-phenylenediamine color developer (CD). (2) The CD then develops silver salts. (3) Oxidized CD then reacts with couplers to generate color image dyes. (4) Finally, the dyes diffuse from the system's photosensitive sheet to its image-receiving sheet. The authors have analyzed the kinetics of each of the system's four processes. In this paper, they report the kinetics of the system's first process, color developer (CD) generation.

  2. Impact of Debaryomyces hansenii strains inoculation on the quality of slow dry-cured fermented sausages.

    PubMed

    Cano-García, Liliana; Belloch, Carmela; Flores, Mónica

    2014-04-01

    Debaryomyces hansenii strains, M4 and P2, isolated from natural fermented sausages were inoculated in slow fermented sausages to study their effect on processing parameters, microbial population, volatile compound and sensory characteristics. The inoculation of D. hansenii strains, M4 and P2, did not affect the ripening process as no differences in pH and Aw were detected. The dominance of the inoculated yeast strains along the process was followed by RAPDs of M13 minisatellite. The inoculated yeasts, P2 and M4, were recovered at the end of the ripening process although P2 appeared in higher counts than M4. The sausages inoculated with P2 resulted in a decrease in lipid oxidation values (TBARS) and a reduction of lipid-oxidation derived aldehydes in addition to a highest acid compound abundance. M4 inoculated sausages resulted in highest sulphur containing compound abundance. However, no differences in consumer acceptance were detected. Moreover, both yeast strains were responsible for the generation of ethyl methyl-branched ester compounds in the dry-cured sausages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators

    PubMed Central

    Kao, Pin-Hsu; Shih, Po-Jen; Dai, Ching-Liang; Liu, Mao-Chen

    2010-01-01

    This work presents a thermoelectric micro generator fabricated by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and the post-CMOS process. The micro generator is composed of 24 thermocouples in series. Each thermocouple is constructed by p-type and n-type polysilicon strips. The output power of the generator depends on the temperature difference between the hot and cold parts in the thermocouples. In order to prevent heat-receiving in the cold part in the thermocouples, the cold part is covered with a silicon dioxide layer with low thermal conductivity to insulate the heat source. The hot part of the thermocouples is suspended and connected to an aluminum plate, to increases the heat-receiving area in the hot part. The generator requires a post-CMOS process to release the suspended structures. The post-CMOS process uses an anisotropic dry etching to remove the oxide sacrificial layer and an isotropic dry etching to etch the silicon substrate. Experimental results show that the micro generator has an output voltage of 67 μV at the temperature difference of 1 K. PMID:22205869

  4. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, D.A.; Farthing, G.A.

    1998-08-18

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  5. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, D.A.; Farthing, G.A.

    1998-09-29

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  6. Looking Southwest to Dry and Wet Exterior Scrubbers at Rear ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Southwest to Dry and Wet Exterior Scrubbers at Rear of Oxide Building - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO

  7. Economical and eco-friendly recycling of used dry batteries for synthesis of graphene oxide by sheer exfoliation in presence of SDS

    NASA Astrophysics Data System (ADS)

    Kochrekar, Sachin; Agharkar, Mahesh; Salgaonkar, Manjunath; Gharge, Mrunal; Hidouri, Slah; Azeez, Musibau A.

    2015-06-01

    Graphene is a two-dimensional form of graphite that has attracted great curiosity for its novel physical properties. A key challenge that has emerged is how to create large amounts of graphene at low cost. The purpose of this Paper is to explore a new method to exfoliate graphite extracted from used dry battery in a small scale blender; in presence of SDS surfactant to synthesize graphene oxide, which can be then reduced to graphene. Quantity of SDS required is extremely less (1/10th) of graphite, and it replaces several steps and chemicals such as KMnO4, H2O2, H2SO4 and NaNO3. In this paper, we present the new process and preliminary characterization of synthesized graphene oxide by Raman and UV-Vis absorbance spectroscopy and ATR-IR spectroscopy.

  8. Understanding Surface Processes on Mars Through Study of Iron Oxides/Oxyhydroxides: Clues to Surface Alteration and Aqueous Processes

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Mancinelli, R. L.; Dyar, M. D.; Parente, M.; Drief, A.; Lane, M. D.; Murad, E.

    2006-01-01

    We are performing oxidation and reduction reactions on hydrated ferric oxide minerals in order to investigate how these might alter under a variety of conditions on the surface of Mars. Preliminary experiments on ferrihydrite and goethite showed that heating these minerals in a dry oxidizing environment produces fine-grained hematite, while heating these minerals in a reducing environment produces fine-grained magnetite. Under Mars-like oxidation levels this magnetite then oxidizes to maghemite. These reactions are dependent on the presence of water and organic material that can act as a reductant. We are using reflectance and Mossbauer spectroscopy to characterize the reaction products and TEM to analyze the sample texture. Our preliminary results indicate that magnetite and maghemite could be formed in the soil on Mars from ferrihydrite and goethite if organics were present on early Mars.

  9. Modified dry limestone process for control of sulfur dioxide emissions

    DOEpatents

    Shale, Correll C.; Cross, William G.

    1976-08-24

    A method and apparatus for removing sulfur oxides from flue gas comprise cooling and conditioning the hot flue gas to increase the degree of water vapor saturation prior to passage through a bed of substantially dry carbonate chips or lumps, e.g., crushed limestone. The reaction products form as a thick layer of sulfites and sulfates on the surface of the chips which is easily removed by agitation to restore the reactive surface of the chips.

  10. Low temperature ozone oxidation of solid waste surrogates

    NASA Astrophysics Data System (ADS)

    Nabity, James A.; Lee, Jeffrey M.

    2015-09-01

    Solid waste management presents a significant challenge to human spaceflight and especially, long-term missions beyond Earth orbit. A six-month mission will generate over 300 kg of solid wastes per crewmember that must be dealt with to eliminate the need for storage and prevent it from becoming a biological hazard to the crew. There are several methods for the treatment of wastes that include oxidation via ozone, incineration, microbial oxidation or pyrolysis and physical methods such as microwave drying and compaction. In recent years, a low temperature oxidation process using ozonated water has been developed for the chemical conversion of organic wastes to CO2 and H2O. Experiments were conducted to evaluate the rate and effectiveness with which ozone oxidized several different waste materials. Increasing the surface area by chopping or shredding the solids into small pieces more than doubled the rate of oxidation. A greater flow of ozone and agitation of the ozonated water system also increased processing rates. Of the materials investigated, plastics have proven the most difficult to oxidize. The processing of plastics above the glass transition temperatures caused the plastics to clump together which reduced the exposed surface area, while processing at lower temperatures reduced surface reaction kinetics.

  11. Low NO(x) heavy fuel combustor program

    NASA Technical Reports Server (NTRS)

    Lister, E.; Niedzwiecki, R. W.; Nichols, L.

    1979-01-01

    The 'low nitrogen oxides heavy fuel combustor' program is described. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen, improved combustor durability, and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.

  12. Effects of sterilization processes on NiTi alloy: surface characterization.

    PubMed

    Thierry, B; Tabrizian, M; Savadogo, O; Yahia, L

    2000-01-01

    Sterilization is required for using any device in contact with the human body. Numerous authors have studied device properties after sterilization and reported on bulk and surface modifications of many materials after processing. These surface modifications may in turn influence device biocompatibility. Still, data are missing on the effect of sterilization procedures on new biomaterials such as nickel-titanium (NiTi). Herein we report on the effect of dry heat, steam autoclaving, ethylene oxide, peracetic acid, and plasma-based sterilization techniques on the surface properties of NiTi. After processing electropolished NiTi disks with these techniques, surface analyses were performed by Auger electron spectroscopy (AES), atomic force microscopy (AFM), and contact angle measurements. AES analyses revealed a higher Ni concentration (6-7 vs. 1%) and a slightly thicker oxide layer on the surface for heat and ethylene oxide processed materials. Studies of surface topography by AFM showed up to a threefold increase of the surface roughness when disks were dry heat sterilized. An increase of the surface energy of up to 100% was calculated for plasma treated surfaces. Our results point out that some surface modifications are induced by sterilization procedures. Further work is required to assess the effect of these modifications on biocompatibility, and to determine the most appropriate methods to sterilize NiTi. Copyright 2000 John Wiley & Sons, Inc.

  13. An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity.

    PubMed

    He, Yongqiang; Liu, Yue; Wu, Tao; Ma, Junkui; Wang, Xingrui; Gong, Qiaojuan; Kong, Weina; Xing, Fubao; Liu, Yu; Gao, Jianping

    2013-09-15

    Three kinds of graphene oxide (GO) foams were fabricated using different freezing methods (unidirectional freezing drying (UDF), non-directional freezing drying, and air freezing drying), and the corresponding reduced graphene oxide (RGO) foams were prepared by their thermal reduction of those GO foams. These RGO foams were characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The absorption process and the factors that influence the absorption capacity were investigated. The RGO foams are hydrophobic and showed extremely high absorbing abilities for organic liquids. The absorption capacity of the RGO foams made by UDF was higher than 100 g g(-1) for all the oils tested (gasoline, diesel oil, pump oil, lubricating oil and olive oil) and had the highest value of about 122 g g(-1) for olive oil. The oil absorption capacity of the GO foams was lower than that of the RGO foams, but for olive oil, the absorption capacity was still high than 70 g g(-1), which is higher than that of most oil absorbents. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Attrition resistant bulk iron catalysts and processes for preparing and using same

    DOEpatents

    Jothimurugesan, Kandaswamy [Ponca City, OK; Goodwin, Jr., James G.; Gangwal, Santosh K [Cary, NC

    2007-08-21

    An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.

  15. Beneficial effect of daidzin in dry eye rat model through the suppression of inflammation and oxidative stress in the cornea.

    PubMed

    Xiao, Fan; Cui, Hua; Zhong, Xiao

    2018-05-01

    Present investigation evaluates the effect of daidzin in dry eye rat model through the suppression of inflammation and oxidative stress in the cornea. Briefly, electron spine resonance was used for the estimation of radical scavenging activity of daidzin and COX Fluorescent Activity Assay Kit was used for the estimation of PGS activity. Dry eye rat model was developed by removing the lacrimal gland and effect of daidzin was evaluated in dry eye rat model by estimating the fluorescein score, tear volume and expressions of heme oxigenase (HO-1), TNF α, Interlukin 6 (IL-6), matrix metallopeptidase 9 (MMP-9) and PGS-2. Result of the present study suggested that daidzin possess tyrosyl radical scavenging activity and thereby decreases the oxidative stress. Activity of PGS significantly increases in dry eye which was inhibited by daidzin treatment due to competitive inhibition of PGS. It also recovers the tear volume in dry eye rat model in which lacrimal gland was removed. Thus corneal erosion was improved by daidzin in dry eye rat model. Thus present study concludes that treatment with daidzin protects the cornea in dry eye rat model by suppression inflammation and oxidative stress.

  16. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.

    PubMed

    Sasano, Yu; Takahashi, Shunsuke; Shima, Jun; Takagi, Hiroshi

    2010-03-31

    During bread-making processes, yeast cells are exposed to multiple stresses. Air-drying stress is one of the most harmful stresses by generation of reactive oxygen species (ROS). Previously, we discovered that the novel N-acetyltransferase Mpr1/2 confers oxidative stress tolerance by reducing intracellular ROS level in Saccharomyces cerevisiae Sigma1278b strain. In this study, we revealed that Japanese industrial baker's yeast possesses one MPR gene. The nucleotide sequence of the MPR gene in industrial baker's yeast was identical to the MPR2 gene in Sigma1278b strain. Gene disruption analysis showed that the MPR2 gene in industrial baker's yeast is involved in air-drying stress tolerance by reducing the intracellular oxidation levels. We also found that expression of the Lys63Arg and Phe65Leu variants with enhanced enzymatic activity and stability, respectively, increased the fermentation ability of bread dough after exposure to air-drying stress compared with the wild-type Mpr1. In addition, our recent study showed that industrial baker's yeast cells accumulating proline exhibited enhanced freeze tolerance in bread dough. Proline accumulation also enhanced the fermentation ability after air-drying stress treatment in industrial baker's yeast. Hence, the antioxidant enzyme Mpr1/2 could be promising for breeding novel yeast strains that are tolerant to air-drying stress. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Sterilization of space hardware.

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1971-01-01

    Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.

  18. GaN MOSFET with Boron Trichloride-Based Dry Recess Process

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Wang, Q. P.; Tamai, K.; Miyashita, T.; Motoyama, S.; Wang, D. J.; Ao, J. P.; Ohno, Y.

    2013-06-01

    The dry recessed-gate GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) on AlGaN/GaN heterostructure using boron trichloride (BCl3) as etching gas were fabricated and characterized. Etching with different etching power was conducted. Devices with silicon tetrachloride (SiCl4) etching gas were also prepared for comparison. Field-effect mobility and interface state density were extracted from current-voltage (I-V) characteristics. GaN MOSFETs on AlGaN/GaN heterostructure with BCl3 based dry recess achieved a high maximum electron mobility of 141.5 cm2V-1s-1 and a low interface state density.

  19. Effect of Drying on Heavy Metal Fraction Distribution in Rice Paddy Soil

    PubMed Central

    Qi, Yanbing; Huang, Biao; Darilek, Jeremy Landon

    2014-01-01

    An understanding of how redox conditions affect soil heavy metal fractions in rice paddies is important due to its implications for heavy metal mobility and plant uptake. Rice paddy soil samples routinely undergo oxidation prior to heavy metal analysis. Fraction distribution of Cu, Pb, Ni, and Cd from paddy soil with a wide pH range was investigated. Samples were both dried according to standard protocols and also preserved under anaerobic conditions through the sampling and analysis process and heavy metals were then sequentially extracted for the exchangeable and carbonate bound fraction (acid soluble fraction), iron and manganese oxide bound fraction (reducible fraction), organic bound fraction (oxidizable fraction), and residual fraction. Fractions were affected by redox conditions across all pH ranges. Drying decreased reducible fraction of all heavy metals. Curesidual fraction, Pboxidizable fraction, Cdresidual fraction, and Niresidual fraction increased by 25%, 33%, 35%, and >60%, respectively. Pbresidual fraction, Niacid soluble fraction, and Cdoxidizable fraction decreased 33%, 25%, and 15%, respectively. Drying paddy soil prior to heavy metal analysis overestimated Pb and underestimated Cu, Ni, and Cd. In future studies, samples should be stored after injecting N2 gas to maintain the redox potential of soil prior to heavy metal analysis, and investigate the correlation between heavy metal fraction distribution under field conditions and air-dried samples. PMID:24823670

  20. Release of MEMS devices with hard-baked polyimide sacrificial layer

    NASA Astrophysics Data System (ADS)

    Boroumand Azad, Javaneh; Rezadad, Imen; Nath, Janardan; Smith, Evan; Peale, Robert E.

    2013-03-01

    Removal of polyimides used as sacrificial layer in fabricating MEMS devices can be challenging after hardbaking, which may easily result by the end of multiple-step processing. We consider the specific commercial co-developable polyimide ProLift 100 (Brewer Science). Excessive heat hardens this material, so that during wet release in TMAH based solvents, intact sheets break free from the substrate, move around in the solution, and break delicate structures. On the other hand, dry reactive-ion etching of hard-baked ProLift is so slow, that MEMS structures are damaged from undesirably-prolonged physical bombardment by plasma ions. We found that blanket exposure to ultraviolet light allows rapid dry etch of the ProLift surrounding the desired structures without damaging them. Subsequent removal of ProLift from under the devices can then be safely performed using wet or dry etch. We demonstrate the approach on PECVD-grown silicon-oxide cantilevers of 100 micron × 100 micron area supported 2 microns above the substrate by ~100-micron-long 8-micron-wide oxide arms.

  1. Synthesis of ITO Powder by Dry Process and Lifetime Characteristics of the ITO Target Fabricated with its Powder

    NASA Astrophysics Data System (ADS)

    Takahashi, Seiichiro; Itoh, Hironori; Komatsu, Ryuichi

    Lifetime of an indium tin oxide (ITO) target is an important characteristic in the production of liquid crystal displays (LCDs). Increasing the sintering density of the ITO target is assumed to lead to an increased lifetime. So far, it has been clarified that the carbon concentration in In2O3 powder, the raw material of ITO targets, influences remarkably the target lifetime. In this study, with the aim of reducing the concentration of carbon in In2O3 powder, the synthesis of In2O3 powder containing dissolved Sn by a dry process was performed.

  2. A retrospective study on the use of a dental dressing to reduce dry socket incidence in smokers.

    PubMed

    Murph, James T; Jaques, Susan H; Knoell, Alexander N; Archibald, Geoffrey D; Yang, Stan

    2015-01-01

    This study assessed the effectiveness of using an oxidized cellulose dental dressing in order to reduce the rate of alveolar osteitis after posterior tooth extraction in smokers. Dry socket incidences of heavy smokers from 4 independent dental clinics, which routinely used oxidized cellulose dental dressings to mitigate dry socket formation between March 2011 and December 2012, were compiled and evaluated. All extraction sites healed uneventfully except for those cases that developed dry sockets. Overall, 1.7% of male patients and 2.2% of female patients developed dry sockets. No conclusive relationship was found between the number of cigarettes smoked and dry socket formation among patients in this study. The results of this study were consistent with the view that gender, age, postextraction regimen, and multiple extractions affect dry socket formation. The results indicate that an oxidized cellulose dental dressing postextraction is a safe and effective method for mitigating dry socket formation among smokers.

  3. The Oxidation of AlN in Dry and Wet Oxygen

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth; Humphrey, Donald; Jacobson, Nathan; Yoshio, Tetsuo; Oda, Kohei

    1998-01-01

    The oxidation kinetics of AlN containing 3.5 wt% Y2O3 were studied by thermogravimetric analysis in dry oxygen and 10% H2O/balance oxygen at temperatures between 1000 and 1200 C for times between 48 and 100 h. The oxidation kinetics for AlN in dry oxygen were parabolic and of approximately the same magnitude and temperature dependence as other alumina forming materials. In this case, diffusion of oxygen and/or aluminum through the alumina scale is the rate limiting mechanism. The oxidation kinetics for AlN in wet oxygen were nearly linear and much more rapid than rates observed in dry oxygen. Numerous micropores were observed in the alumina formed on AIN in wet oxygen. These pores provide a fast path for oxygen transport. The linear kinetics observed in this case suggest that the interface reaction rate of AlN with wet oxygen is the oxidation rate limiting step.

  4. Human life support during interplanetary travel and domicile. V - Mars expedition technology trade study for solid waste management

    NASA Technical Reports Server (NTRS)

    Ferrall, Joe; Rohatgi, Naresh K.; Seshan, P. K.

    1992-01-01

    A model has been developed for NASA to quantitatively compare and select life support systems and technology options. The model consists of a modular, top-down hierarchical breakdown of the life support system into subsystems, and further breakdown of subsystems into functional elements representing individual processing technologies. This paper includes the technology trades for a Mars mission, using solid waste treatment technologies to recover water from selected liquid and solid waste streams. Technologies include freeze drying, thermal drying, wet oxidation, combustion, and supercritical-water oxidation. The use of these technologies does not have any significant advantages with respect to weight; however, significant power penalties are incurred. A benefit is the ability to convert hazardous waste into a useful resource, namely water.

  5. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions.

    PubMed

    Ding, Jiafeng; Su, Mian; Wu, Cuiwei; Lin, Kunde

    2015-08-01

    Triclosan (TCS) is a broad-spectrum antibacterial agent widely used in household and personal care products and is frequently detected in the environment. Previous studies have shown that TCS could be converted to the more toxic compound 2,8-dichlorodibenzo-p-dioxins (2,8-DCDD) in photochemical reactions and incineration processes. In this study, we demonstrated the formation of 2,8-DCDD from the oxidation of TCS by α-FeOOH and a natural manganese oxides (MnOx) sand. Experiments at room temperature and under near dry conditions showed that Fe and Mn oxides readily catalyzed the conversion of TCS to 2,8-DCDD and other products. Approximately 5.5% of TCS was transformed to 2,8-DCDD by α-FeOOH in 45 d and a higher conversion percentage (6.7%) was observed for MnOx sand in 16d. However, the presence of water in the samples significantly inhibited the formation of 2,8-DCDD. Besides 2,8-DCDD, 2,4-dichlorphenol (2,4-DCP), 4-chlorobenzene-1,2-diol, 2-chloro-5-(2,4-dichlorophenoxy)benzene-1,4-diol, and 2-chloro-5-(2,4-dichlorophenoxy)-1,4-benzoquinone were identified in the reactions. The possible pathways for the formation of reaction products were proposed. This study suggests that Fe and Mn oxides-mediated transformation of TCS under near dry conditions might be another potential pathway for the formation of 2,8-DCDD in the natural environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The effects of water vapor on the oxidation behavior of alumina forming austenitic stainless steels

    DOE PAGES

    Yanar, N. M.; Lutz, B. S.; Garcia-Fresnillo, L.; ...

    2015-08-19

    The isothermal oxidation behavior of three alumina forming austenitic (AFA) stainless steels with varying composition was studied at 650 and 800 °C in dry air and gases which contained water vapor. The AFA alloys exhibited better oxidation resistance than a “good chromia former” at 650 °C, particularly in H 2O-containing atmospheres by virtue of alumina-scale formation. Although the AFA alloys were more resistant than chromia formers, their oxidation resistance was degraded at 650 °C in the presence of water vapor. In dry air the AFA alloys formed, thin continuous alumina scales, whereas in Ar–4%H 2–3%H 2O the areas of continuousmore » alumina were reduced and Fe oxide-rich nodules and regions of Cr, Mn-rich oxides formed. In some regions internal oxidation of the aluminum occurred in the H 2O-containing gas. The alloy OC8 had slightly better resistance than OC4 or OC5 in this atmosphere. The alumina-forming capability of the AFA alloys decreases with increasing temperature and, at 800 °C, they are borderline alumina formers, even in dry air. The oxidation resistance of all three alloys was degraded at 800 °C in atmospheres, which contained water vapor (Air–10%H 2O, Ar–3%H 2O and Ar–4%H 2–3%H 2O). The areas, which formed continuous alumina, were reduced in these atmospheres and areas of internal oxidation occurred. However, as a result of the borderline alumina-forming capability of the AFA alloys it was not possible to determine which of the H2O-containing atmospheres was more severe or to rank the alloys in terms of their performance. The experimental results indicate that the initial microstructure of the AFA alloys also plays a role in their oxidation performance. Less protective oxides formed at 800 °C when alloy OC8 was equilibrated before exposure rather than being exposed in the as-processed condition. As a result, the reason for this is the presence of different phases in the bulk of the two specimens.« less

  8. The effects of water vapor on the oxidation behavior of alumina forming austenitic stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanar, N. M.; Lutz, B. S.; Garcia-Fresnillo, L.

    The isothermal oxidation behavior of three alumina forming austenitic (AFA) stainless steels with varying composition was studied at 650 and 800 °C in dry air and gases which contained water vapor. The AFA alloys exhibited better oxidation resistance than a “good chromia former” at 650 °C, particularly in H 2O-containing atmospheres by virtue of alumina-scale formation. Although the AFA alloys were more resistant than chromia formers, their oxidation resistance was degraded at 650 °C in the presence of water vapor. In dry air the AFA alloys formed, thin continuous alumina scales, whereas in Ar–4%H 2–3%H 2O the areas of continuousmore » alumina were reduced and Fe oxide-rich nodules and regions of Cr, Mn-rich oxides formed. In some regions internal oxidation of the aluminum occurred in the H 2O-containing gas. The alloy OC8 had slightly better resistance than OC4 or OC5 in this atmosphere. The alumina-forming capability of the AFA alloys decreases with increasing temperature and, at 800 °C, they are borderline alumina formers, even in dry air. The oxidation resistance of all three alloys was degraded at 800 °C in atmospheres, which contained water vapor (Air–10%H 2O, Ar–3%H 2O and Ar–4%H 2–3%H 2O). The areas, which formed continuous alumina, were reduced in these atmospheres and areas of internal oxidation occurred. However, as a result of the borderline alumina-forming capability of the AFA alloys it was not possible to determine which of the H2O-containing atmospheres was more severe or to rank the alloys in terms of their performance. The experimental results indicate that the initial microstructure of the AFA alloys also plays a role in their oxidation performance. Less protective oxides formed at 800 °C when alloy OC8 was equilibrated before exposure rather than being exposed in the as-processed condition. As a result, the reason for this is the presence of different phases in the bulk of the two specimens.« less

  9. Vitamin E supplementation during the dry period in dairy cattle. Part II: oxidative stress following vitamin E supplementation may increase clinical mastitis incidence postpartum.

    PubMed

    Bouwstra, R J; Nielen, M; Newbold, J R; Jansen, E H J M; Jelinek, H F; van Werven, T

    2010-12-01

    The aim of this study was to evaluate, retrospectively, which physiological states influenced the effect of vitamin E supplements during the dry period on the level of oxidative stress at 2 wk antepartum. Furthermore the effect of oxidative stress at 2 wk antepartum on the risk of clinical mastitis in early lactation was investigated. Cows experience oxidative stress around calving. Vitamin E is able to decrease oxidative stress by scavenging free radicals. Normally, vitamin E radicals formed when vitamin E reacts with free radicals are regenerated by a network of other antioxidants, termed the "vitamin E regeneration system" (VERS). In case of vitamin E supplementation, VERS should be sufficient to regenerate formed vitamin E radicals; if not, oxidative stress might increase instead of decrease. Additionally, the level of oxidative stress and vitamin E might be important physiological states to evaluate before supplementation. In a clinical trial, 296 cows on 5 farms were randomly divided into 2 groups, supplemented with a mineral mix between dry off and calving that supplied 3,000 or 135 IU/d, respectively. Blood samples collected at dry off and 2 wk antepartum were analyzed for vitamin E, reactive oxygen metabolites, ferric-reducing ability of plasma, glutathione peroxidase, and malondialdehyde. Cows were allocated retrospectively into 8 subgroups based on the level of oxidative stress, vitamin E, and VERS status at dry off. To evaluate whether differences in physiological states at dry off influenced the effect of vitamin E supplementation on the level of oxidative stress, group effects (supplemented vs. control) were studied with Student's t-test for all 8 subgroup at 2 wk antepartum. Differences in physiological states at dry off influenced the effect of vitamin E supplements. In 2 insufficient VERS subgroups, the supplemented group had higher levels of free radicals at 2 wk antepartum compared with the control group. Relative risk calculation was used to study the effect of oxidative stress at 2 wk antepartum on the incidence of mastitis in the first 100 d of lactation. Higher levels of oxidative stress at 2 wk antepartum were related to higher risk of clinical mastitis. In conclusion, not every dry cow responded well to high vitamin E supplementation. This subgroup analysis provides a possible explanation for the unexpected adverse effects observed in the clinical trial. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Optimum drying temperature to prevent oxidative stain in soft maple

    Treesearch

    Michael C. Wiemann; Mark Knaebe; Scott A. Bowe

    2011-01-01

    The objective of this paper is to determine the kiln conditions necessary to avoid interior enzymatic oxidative discoloration in soft maple. Three drying chambers were designed and constructed to control temperature and relative humidity of maple test samples. The tests showed that drying as soon as possible after harvest at temperatures below 42°C will...

  11. Evidences for dry deintercalation in layered compounds upon controlled surface charging in x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Feldman, Y.; Zak, A.; Tenne, R.; Cohen, H.

    2003-09-01

    Pronounced surface diffusion is observed during x-ray photoelectron spectroscopy measurements of 2H platelets and inorganic fullerene-like (IF) MS2 (M=W,Mo) powders, intercalated with alkaline (A=K,Na) elements. Using controlled surface charging the intercalants migrate towards the surface, where they oxidize. This dry deintercalation is controllable via external charging parameters, yet showing that internal chemical and structural parameters play an important role in the process. Diffusion rates out of 2H matrixes are generally higher than in corresponding IF samples. Clear differences are also found between Mo and W-based systems. Application of this approach into surface modification and processing is proposed.

  12. Dissolved carbon and nitrogen dynamics in paddy fields under different water management practices and implications on green-house gas emissions

    NASA Astrophysics Data System (ADS)

    Miniotti, Eleonora; Said-Pullicino, Daniel; Bertora, Chiara; Pelissetti, Simone; Sacco, Dario; Grignani, Carlo; Lerda, Cristina; Romani, Marco; Celi, Luisella

    2013-04-01

    The alternation of oxidizing and reducing conditions in paddy soils results in considerable complexity in the biogeochemical cycling of elements and their interactions, influencing important soil processes. Water management practices may play an important role in controlling the loss of nutrients from rice paddies to surface and subsurface waters, as well as soil organic matter (SOM) stabilization and the emission of green-house gases (GHG) such as methane and nitrous oxide. The aim of this study was therefore to evaluate the interaction between changes in soil redox conditions and element cycling in temperate paddy soils as a function of different water management practices. The research was carried out within an experimental platform (1.2 ha) located at the Rice Research Center of Ente Nazionale Risi (Castello d'Agogna, PV, NW Italy) where three water management practices are being compared with two plots for each treatment. These included (i) rice cultivation under traditional submerged conditions (FLD); (ii) seeding under dry soil conditions and flooding delayed by about 40 days (DRY); (iii) seeding under dry soil conditions and rotational irrigation (IRR). Surface and subsurface (25, 50 and 75 cm) water samples were collected at regular intervals over the cropping season from V-notch weirs and porous ceramic suction cups installed in each plot, and subsequently analyzed for DOC, SUVA, Fe(II), ammonium and nitrate-N. Moreover, methane and nitrous oxide fluxes were measured in situ by the closed-chamber technique. DOC concentrations in soil solutions were generally higher in FLD and DRY treatments with respect to IRR throughout the cropping season. Higher DOC contents after field flooding in FLD and DRY treatments also corresponded with greater concentrations of reduced Fe, higher SUVA values, lower Eh values and higher pH values, suggesting that desorption of more aromatic, mineral-associated SOM could be responsible for the observed increase in DOC. These trends were not observed in the IRR treatment. The differences in DOC contents and in Eh trend between treatments could possibly explain the increasing trend in cumulative methane emissions in the order IRR<

  13. Pretreatment of lubricated surfaces with sputtered cadmium oxide

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L. (Inventor)

    1991-01-01

    Cadmium oxide is used with a dry solid lubricant on a surface to improve wear resistance. The surface topography is first altered by photochemical etching to a predetermined pattern. The cadmium oxide is then sputtered onto the altered surface to form an intermediate layer to more tightly hold the dry lubricant, such as graphite.

  14. Preparation and characterization of hydroxyapatite-coated iron oxide particles by spray-drying technique.

    PubMed

    Donadel, Karina; Felisberto, Marcos D V; Laranjeira, Mauro C M

    2009-06-01

    Magnetic particles of iron oxide have been increasingly used in medical diagnosis by magnetic resonance imaging and in cancer therapies involving targeted drug delivery and magnetic hyperthermia. In this study we report the preparation and characterization of iron oxide particles coated with bioceramic hydroxyapatite by spray-drying. The iron oxide magnetic particles (IOMP) were coated with hydroxyapatite (HAp) by spray-drying using two IOMP/HAp ratios (0.7 and 3.2). The magnetic particles were characterized by way of scanning electronic microscopy, energy dispersive X-ray, X-ray diffraction, Fourier transformed infrared spectroscopy, flame atomic absorption spectrometry,vibrating sample magnetometry and particle size distribution (laser diffraction). The surface morphology of the coated samples is different from that of the iron oxide due to formation of hydroxyapatite coating. From an EDX analysis, it was verified that the surface of the coated magnetic particles is composed only of HAp, while the interior containsiron oxide and a few layers of HAp as expected. The results showed that spray-drying technique is an efficient and relatively inexpensive method for forming spherical particles with a core/shell structure.

  15. Relationship between sensory attributes and volatile compounds of polish dry-cured loin

    PubMed Central

    Górska, Ewa; Nowicka, Katarzyna; Jaworska, Danuta; Przybylski, Wiesław; Tambor, Krzysztof

    2017-01-01

    Objective The aim of this work was to determine the relationship between objective sensory descriptors and volatile flavour compound composition of Polish traditional dry-cured loin. Methods The volatile compounds were investigated by using solid phase microextraction (SPME) and gas chromatography–mass spectrometry (GC–MS). For sensory assessment, the quantitative descriptive analysis (QDA) method was used. Results A total of 50 volatile compounds were found and assigned to 17 chemical families. Most of the detected volatile compounds derived from smoking, lipid oxidative reactions and seasoning (46.8%, 21.7%, and 18.9%, respectively). The dominant compounds were: aromatic hydrocarbon (toluene); alkanes (hexane, heptane, and 2,2,4-trimethylpentane); aldehyde (hexanal); alcohol (2-furanmethanol); ketone (3-hydroxy-2-butanone); phenol (guaiacol); and terpenes (eucalyptol, cymene, γ-terpinen, and limonene). Correlation analysis showed that some compounds derived from smoking were positively correlated with the intensity of cured meat odour and flavour and negatively with the intensity of dried meat odour and flavour, while terpenes were strongly correlated with odour and flavour of added spices. Conclusion The analysed dry-cured loins were characterized by specific and unique sensory profile. Odour and flavour of studied loins was mainly determined by volatile compounds originating from smoking, seasoning and lipid oxidation. Obtained results suggest that smoking process is a crucial stage during Polish traditional dry-cured loins production. PMID:27456422

  16. Advanced Antireflection Coatings for High-Performance Solar Energy Applications

    NASA Technical Reports Server (NTRS)

    Pan, Noren

    2015-01-01

    Phase II objectives: Develop and refine antireflection coatings incorporating lanthanum titanate as an intermediate refractive index material; Investigate wet/dry thermal oxidation of aluminum containing semiconductor compounds as a means of forming a more transparent window layer with equal or better optical properties than its unoxidized form; Develop a fabrication process that allows integration of the oxidized window layer and maintains the necessary electrical properties for contacting the solar cell; Conduct an experimental demonstration of the best candidates for improved antireflection coatings.

  17. Konjac gel as pork backfat replacer in dry fermented sausages: processing and quality characteristics.

    PubMed

    Ruiz-Capillas, C; Triki, M; Herrero, A M; Rodriguez-Salas, L; Jiménez-Colmenero, F

    2012-10-01

    The effect of replacing animal fat (0%, 50% and 80% of pork backfat) by an equal proportion of konjac gel, on processing and quality characteristics of reduced and low-fat dry fermented sausage was studied. Weight loss, pH, and water activity of the sausage were affected (P<0.05) by fat reduction and processing time. Low lipid oxidation levels were observed during processing time irrespective of the dry sausage formulation. The fat content for normal-fat (NF), reduced-fat (RF) and low-fat (LF) sausages was 29.96%, 19.69% and 13.79%, respectively. This means an energy reduction of about 14.8% for RF and 24.5% for LF. As the fat content decreases there is an increase (P<0.05) in hardness and chewiness and a decrease (P<0.05) in cohesiveness. No differences were appreciated (P>0.05) in the presence of microorganisms as a result of the reformulation. The sensory panel considered that NF and RF products had acceptable sensory characteristics. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  18. Oxidation of mercury by bromine in the subtropical Pacific free troposphere

    NASA Astrophysics Data System (ADS)

    Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Shah, V.; Jaeglé, L.; Stutz, J.; Festa, J.; Spolaor, M.; Tsai, C.; Selin, N. E.; Song, S.; Zhou, X.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Campos, T. L.; Apel, E.; Hornbrook, R.; Blake, N. J.; Hall, S.; Tyndall, G. S.; Reeves, M.; Stechman, D.; Stell, M.

    2015-12-01

    Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.

  19. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    PubMed

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  20. Recent Developments in Superheated Steam Processing of Foods-A Review.

    PubMed

    Alfy, Anto; Kiran, B V; Jeevitha, G C; Hebbar, H Umesh

    2016-10-02

    Although the use of superheated steam has been known for quite a long time, only in the recent past has it emerged as a viable technology for food processing. Superheated steam, having higher enthalpy, can quickly transfer heat to the material being processed, resulting in its rapid heating. The major advantages of using superheated steam for food processing are better product quality (color, shrinkage, and rehydration characteristics), reduced oxidation losses, and higher energy efficiency. This review provides a comprehensive overview of recent studies on the application of superheated steam for food-processing operations such as drying, decontamination and microbial load reduction, parboiling, and enzyme inactivation. The review encompasses aspects such as the effect of superheated steam processing on product quality, mathematical models reported for superheated steam drying, and the future scope of application in food processing. Recent studies on process improvisation, wherein superheated steam is used at low pressure, in fluidized bed mode, sequential processing with hot air/infrared, and in combination with micro droplets of water have also been discussed.

  1. [Restoration of microbial ammonia oxidizers in air-dried forest soils upon wetting].

    PubMed

    Zhou, Xue; Huang, Rong; Song, Ge; Pan, Xianzhang; Jia, Zhongjun

    2014-11-04

    This study was aimed to investigate the abundance and community shift of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in air-dried forest soils in response to water addition, to explore the applicability of air-dried soil for microbial ecology study, and to elucidate whether AOA within the marine group 1. 1a dominate ammonia oxidizers communities in the acidic forest soils in China. Soil samples were collected from 10 forest sites of the China Ecosystem Research Network (CERN) and kept under air-drying conditions in 2010. In 2013 the air-dried soil samples were adjusted to 60% of soil maximum water holding capacity for a 28-day incubation at 28 degrees C in darkness. DGGE fingerprinting, clone library construction, pyrosequencing and quantitative PCR of amoA genes were performed to assess community change of ammonia oxidizers in air-dried and re-wetted soils. After incubation for 28 days, the abundance of bacteria and archaea increased significantly, up to 3,230 and 568 times, respectively. AOA increased significantly in 8 samples, and AOB increased significantly in 5 of 10 samples. However, pyrosequencing of amoA genes reveals insignificant changes in composition of AOA and AOB communities. Phylogenetic analysis of amoA genes indicates that archaeal ammonia oxidizers were predominated by AOA within the soil group 1. 1b lineage, while the Nitrosospira-like AOB dominate bacteria ammonia oxidizer communities. There was a significantly positive correlation between AOA/AOB ratio and total nitrogen (r2 = 0.54, P < 0.05), implying that soil ammonia oxidation might be dominated by AOA in association with ammonium released from soil mineralization. Phylogenetic analysis suggest that AOA members within the soil group 1. 1b lineage were not restricted to non-acidic soils as previously thought. The abundance rather than composition of AOA and AOB changed in response to water addition. This indicates that air-dried soil could be of help for microbial biogeography study.

  2. Comparing the VOC emissions between air-dried and heat-treated Scots pine wood

    NASA Astrophysics Data System (ADS)

    Manninen, Anne-Marja; Pasanen, Pertti; Holopainen, Jarmo K.

    The emissions of volatile organic compounds (VOCs) from air-dried Scots pine wood and from heat-treated Scots pine wood were compared with GC-MS analysis. Air-dried wood blocks released about 8 times more total VOCs than heat-treated (24 h at 230°C) ones. Terpenes were clearly the main compound group in the air-dried wood samples, whereas aldehydes and carboxylic acids and their esters dominated in the heat-treated wood samples. Only 14 compounds out of 41 identified individual compounds were found in both wood samples indicating considerable changes in VOC emission profile during heat-treatment process. Of individual compounds α-pinene, 3-carene and hexanal were the most abundant ones in the air-dried wood. By contrast, in the heat-treated wood 2-furancarboxaldehyde, acetic acid and 2-propanone were the major compounds of VOC emission. Current emission results reveal that significant chemical changes have occurred, and volatile monoterpenes and other low-molecular-weight compounds have evaporated from the wood during the heat-treatment process when compared to air-dried wood. Major chemical changes detected in VOC emissions are explained by the thermal degradation and oxidation of main constituents in wood. The results suggest that if heat-treated wood is used in interior carpentry, emissions of monoterpenes are reduced compared to air-dried wood, but some irritating compounds might be released into indoor air.

  3. Changes in the carotenoid metabolism of capsicum fruits during application of modelized slow drying process for paprika production.

    PubMed

    Pérez-Gálvez, Antonio; Hornero-Méndez, Dámaso; Mínguez-Mosquera, María Isabel

    2004-02-11

    A temperature profile simulating the traditional slow drying process of red pepper fruits, which is conducted in La Vera region (Spain) for paprika production, was developed. Carotenoid and ascorbic acid content, as well as moisture of fruits, were monitored during the slow drying process designed. Data obtained suggested that the evolution of carotenoid concentration, the main quality trait for paprika, directly depend on the physical conditions imposed. During the drying process, three different stages could be observed in relation to the carotenoids. The first stage corresponds to a physiological adaptation to the new imposed conditions that implied a decrease (ca. 20%) in the carotenoid content during the first 24 h. After that short period and during 5 days, a second stage was noticed, recovering the biosynthetic (carotenogenic) capability of the fruits, which denotes an accommodation of the fruits to the new environmental conditions. During the following 48 h (third stage) a sharp increase in the carotenoid content was observed. This last phenomenon seems to be related with an oxidative-thermal stress, which took place during the first stage, inducing a carotenogenesis similar to that occurring in over-ripening fruits. Results demonstrate that a fine control of the temperature and moisture content would help to positively modulate carotenogenesis and minimize catabolism, making it possible to adjust the drying process to the ripeness stage of fruits with the aim of improving carotenoid retention and therefore quality of the resulting product. In the case of ascorbic acid, data demonstrated that this compound is very sensitive to the drying process, with a decrease of about 76% during the first 24 h and remaining only at trace levels during the rest of the process. Therefore, no antioxidant role should be expected from ascorbic acid during the whole process and in the corresponding final product (paprika), despite that red pepper fruit is well-known to be rich on this compound.

  4. Analysis of Zinc Oxide Thin Films Synthesized by Sol-Gel via Spin Coating

    NASA Astrophysics Data System (ADS)

    Wolgamott, Jon Carl

    Transparent conductive oxides are gaining an increasingly important role in optoelectronic devices such as solar cells. Doped zinc oxide is a candidate as a low cost and nontoxic alternative to tin doped indium oxide. Lab results have shown that both n-type and p-type zinc oxide can be created on a small scale. This can allow zinc oxide to be used as either an electrode as well as a buffer layer to increase efficiency and protect the active layer in solar cells. Sol-gel synthesis is emerging as a low temperature, low cost, and resource efficient alternative to producing transparent conducting oxides such as zinc oxide. For sol-gel derived zinc oxide thin films to reach their potential, research in this topic must continue to optimize the known processing parameters and expand to new parameters to tighten control and create novel processing techniques that improve performance. The processing parameters of drying and annealing temperatures as well as cooling rate were analyzed to see their effect on the structure of the prepared zinc oxide thin films. There were also preliminary tests done to modify the sol-gel process to include silver as a dopant to produce a p-type thin film. The results from this work show that the pre- and post- heating temperatures as well as the cooling rate all play their own unique role in the crystallization of the film. Results from silver doping show that more work needs to be done to create a sol-gel derived p-type zinc oxide thin film.

  5. Slow Light Semiconductor Laser

    DTIC Science & Technology

    2015-02-02

    semi- conductor lasers, demonstrated here with a spectral linewidth of 18 kHz. Our approach circumvents historical limitations of laser design and it...Oxford 380). To turn the passive resonator into a high-Q hybrid laser, we smooth the waveguide sidewalls to improve Qsc by growing 15 nm of dry thermal ...oxide (oxidation times calculated using the Massoud model). We strip the oxide with HF (Transene Buffer HF- Improved), and regrow 20 nm of dry oxide

  6. A thermal microprobe fabricated with wafer-stage processing

    NASA Astrophysics Data System (ADS)

    Zhang, Yongxia; Zhang, Yanwei; Blaser, Juliana; Sriram, T. S.; Enver, Ahsan; Marcus, R. B.

    1998-05-01

    A thermal microprobe has been designed and built for high resolution temperature sensing. The thermal sensor is a thin-film thermocouple junction at the tip of an atomic force microprobe (AFM) silicon probe needle. Only wafer-stage processing steps are used for the fabrication. For high resolution temperature sensing it is essential that the junction be confined to a short distance at the AFM tip. This confinement is achieved by a controlled photoresist coating process. Experiment prototypes have been made with an Au/Pd junction confined to within 0.5 μm of the tip, with the two metals separated elsewhere by a thin insulating oxide layer. Processing begins with double-polished, n-type, 4 in. diameter, 300-μm-thick silicon wafers. Atomically sharp probe tips are formed by a combination of dry and wet chemical etching, and oxidation sharpening. The metal layers are sputtering deposited and the cantilevers are released by a combination of KOH and dry etching. A resistively heated calibration device was made for temperature calibration of the thermal microprobe over the temperature range 25-110 °C. Over this range the thermal outputs of two microprobes are 4.5 and 5.6 μV/K and is linear. Thermal and topographical images are also obtained from a heated tungsten thin film fuse.

  7. Comprehensive process maps for synthesizing high density aluminum oxide-carbon nanotube coatings by plasma spraying for improved mechanical and wear properties

    NASA Astrophysics Data System (ADS)

    Keshri, Anup Kumar

    Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ˜27% and ˜24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.

  8. Role of iron modifier on boron atomization process using graphite furnace-atomic absorption spectrometry based on speciation of iron using X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuhei; Tagami, Azusa; Shiarasaki, Toshihiro; Yonetani, Akira; Yamamoto, Takashi; Imai, Shoji

    2018-04-01

    The role of an Fe modifier on boron atomization process using graphite furnace-atomic absorbance spectrometry was investigated using a spectroscopic approach. The initial state of the Fe modifier in a pyrolytic graphite (PG) furnace was trivalent. With an increase in pyrolysis temperature, the Fe modifier was reduced in a stepwise manner. Fe2O3 and Fe3O4 were dominant at pyrolysis temperatures below 1300 K. From 1300 to 1500 K, FeO was dominant. At temperatures higher than 1700 K, Fe metal was dominant. After a drying step, 17.7% of the initial B remained in the PG furnace. After the pyrolysis step at 773 K, the residual fraction of B was similar to that after the drying step. After the pyrolysis step at a temperature of 1073 K, the residual fraction was 11.7%. At pyrolysis temperatures > 1738 K, the residual fraction was <3.3% (

  9. Investigation of solid organic waste processing by oxidative pyrolysis

    NASA Astrophysics Data System (ADS)

    Kolibaba, O. B.; Sokolsky, A. I.; Gabitov, R. N.

    2017-11-01

    A thermal analysis of a mixture of municipal solid waste (MSW) of the average morphological composition and its individual components was carried out in order to develop ways to improve the efficiency of its utilization for energy production in thermal reactors. Experimental studies were performed on a synchronous thermal analyzer NETZSCH STA 449 F3 Jupiter combined with a quadrupole mass spectrometer QMC 403. Based on the results of the experiments, the temperature ranges of the pyrolysis process were determined as well as the rate of decrease of the mass of the sample of solid waste during the drying and oxidative pyrolysis processes, the thermal effects accompanying these processes, as well as the composition and volumes of gases produced during oxidative pyrolysis of solid waste and its components in an atmosphere with oxygen content of 1%, 5%, and 10%. On the basis of experimental data the dependences of the yield of gas on the moisture content of MSW were obtained under different pyrolysis conditions under which a gas of various calorific values was produced.

  10. 10. VIEW OF CALCINER IN ROOM 146148. THE CALCINER HEATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF CALCINER IN ROOM 146-148. THE CALCINER HEATED PLUTONIUM PEROXIDE TO CONVERT IT TO PLUTONIUM OXIDE. THE PROCESS REMOVED RESIDUAL WATER AND NITRIC ACID LEAVING A DRY, POWDERED PRODUCT. (4/29/65) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  11. Influence of operating conditions on the air gasification of dry refinery sludge in updraft gasifier

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Sinnathambi, C. M.

    2013-06-01

    In the present work, details of the equilibrium modeling of dry refinery sludge (DRS) are presented using ASPEN PLUS Simulator in updraft gasifier. Due to lack of available information in the open journal on refinery sludge gasification using updraft gasifier, an evaluate for its optimum conditions on gasification is presented in this paper. For this purpose a Taguchi Orthogonal array design, statistical software is applied to find optimum conditions for DRS gasification. The goal is to identify the most significant process variable in DRS gasification conditions. The process variables include; oxidation zone temperature, equivalent ratio, operating pressure will be simulated and examined. Attention was focused on the effect of optimum operating conditions on the gas composition of H2 and CO (desirable) and CO2 (undesirable) in terms of mass fraction. From our results and finding it can be concluded that the syngas (H2 & CO) yield in term of mass fraction favors high oxidation zone temperature and at atmospheric pressure while CO2 acid gas favor at a high level of equivalent ratio as well as air flow rate favoring towards complete combustion.

  12. Formation of a Ge-rich Si1-x Ge x (x > 0.9) fin epitaxial layer condensed by dry oxidation

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul; Kim, Byongju; Koo, Sangmo; Ko, Dae-Hong

    2017-11-01

    We have selectively grown an epitaxial Si0.35Ge0.65 fin layer in a 65 nm oxide trench pattern array and formed a Ge-rich Si1-x Ge x (x > 0.9) fin layer with condensed Ge using dry oxidation. During oxidation of the SiGe fin structure, we found that the compressive strain of the condensed SiGe layer was increased by about 1.3% while Ge was efficiently condensed due to a two-dimensional oxidation reaction. In this paper, we discussed in detail the diffusion during the two-dimensional condensation reaction as well as the asymmetric biaxial strain of the SiGe fin before and after oxidation using a reciprocal space mapping measurement. The application of dry oxidation on selectively grown SiGe fin layer can be an effective method for increasing hole mobility of SiGe fin with increased Ge content and self-induced compressive strain.

  13. Control of Wettability of Carbon Nanotube Array by Reversible Dry Oxidation for Superhydrophobic Coating and Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Aria, Adrianus Indrat

    In this thesis, dry chemical modification methods involving UV/ozone, oxygen plasma, and vacuum annealing treatments are explored to precisely control the wettability of CNT arrays. The effect of oxidation using UV/ozone and oxygen plasma treatments is highly reversible as long as the O/C ratio of the CNT arrays is kept below 18%. At O/C ratios higher than 18%, the effect of oxidation is no longer reversible. This irreversible oxidation is caused by irreversible changes to the CNT atomic structure during the oxidation process. During the oxidation process, CNT arrays undergo three different processes. For CNT arrays with O/C ratios lower than 40%, the oxidation process results in the functionalization of CNT outer walls by oxygenated groups. Although this functionalization process introduces defects, vacancies and micropores opening, the graphitic structure of the CNT is still largely intact. For CNT arrays with O/C ratios between 40% and 45%, the oxidation process results in the etching of CNT outer walls. This etching process introduces large scale defects and holes that can be obviously seen under TEM at high magnification. Most of these holes are found to be several layers deep and, in some cases, a large portion of the CNT side walls are cut open. For CNT arrays with O/C ratios higher than 45%, the oxidation process results in the exfoliation of the CNT walls and amorphization of the remaining CNT structure. This amorphization process can be implied from the disappearance of C-C sp2 peak in the XPS spectra associated with the pi-bond network. The impact behavior of water droplet impinging on superhydrophobic CNT arrays in a low viscosity regime is investigated for the first time. Here, the experimental data are presented in the form of several important impact behavior characteristics including critical Weber number, volume ratio, restitution coefficient, and maximum spreading diameter. As observed experimentally, three different impact regimes are identified while another impact regime is proposed. These regimes are partitioned by three critical Weber numbers, two of which are experimentally observed. The volume ratio between the primary and the secondary droplets is found to decrease with the increase of Weber number in all impact regimes other than the first one. In the first impact regime, this is found to be independent of Weber number since the droplet remains intact during and subsequent to the impingement. Experimental data show that the coefficient of restitution decreases with the increase of Weber number in all impact regimes. The rate of decrease of the coefficient of restitution in the high Weber number regime is found to be higher than that in the low and moderate Weber number. Experimental data also show that the maximum spreading factor increases with the increase of Weber number in all impact regimes. The rate of increase of the maximum spreading factor in the high Weber number regime is found to be higher than that in the low and moderate Weber number. Phenomenological approximations and interpretations of the experimental data, as well as brief comparisons to the previously proposed scaling laws, are shown here. Dry oxidation methods are used for the first time to characterize the influence of oxidation on the capacitive behavior of CNT array EDLCs. The capacitive behavior of CNT array EDLCs can be tailored by varying their oxygen content, represented by their O/C ratio. The specific capacitance of these CNT arrays increases with the increase of their oxygen content in both KOH and Et4NBF4/PC electrolytes. As a result, their gravimetric energy density increases with the increase of their oxygen content. However, their gravimetric power density decreases with the increase of their oxygen content. The optimally oxidized CNT arrays are able to withstand more than 35,000 charge/discharge cycles in Et4NBF4/PC at a current density of 5 A/g while only losing 10% of their original capacitance. (Abstract shortened by UMI.)

  14. The chemical and oxidation characteristics of semi-dry flue gas desulfurization ash from a steel factory.

    PubMed

    Liu, Ren-ping; Guo, Bin; Ren, Ailing; Bian, Jing-feng

    2010-10-01

    Some samples of semi-dry flue gas desulfurization (FGD) ash were taken from sinter gas of a steel factory. Scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were employed to identify the samples in order to investigate their physical and chemical characteristics. The results show that semi-dry FGD ash from a steel factory is stable under atmospheric conditions. It has irregular shape, a smooth surface and loose construction. The size of FGD ash particles is around 0.5-25 µm, the average size is about 5 µm and the median diameter is 4.18 µm. Semi-dry FGD ash from a steel factory consists of CaSO₃, CaSO₄, CaCO₃, some amorphous vitreous material and unburned carbon. An experimental method was found to study the oxidation characteristics of ash. A prediction model of the oxidation efficiency was obtained based on response surface methodology. The results show that not only the temperature, but also gas:solid ratio, play an important role in influencing the oxidation efficiency. The interactions of the gas:solid ratio with temperature play an essential role. An improved response surface model was obtained which can be helpful to describe the degree of oxidation efficiency of semi-dry FGD ash.

  15. Preparation and Characterization of Ato Nanoparticles by Coprecipitation with Modified Drying Method

    NASA Astrophysics Data System (ADS)

    Liu, Shimin; Liang, Dongdong; Liu, Jindong; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan

    Antimony-doped tin oxide (ATO) nanoparticles were prepared by coprecipitation by packing drying and traditional direct drying (for comparison) methods. The as-prepared ATO nanoparticles were characterized by TG, XRD, EDS, TEM, HRTEM, BET, bulk density and electrical resistivity measurements. Results indicated that the ATO nanoparticles obtained by coprecipitation with direct drying method featured hard-agglomerated morphology, high bulk density, low surface area and low electrical resistivity, probably due to the direct liquid evaporation during drying, the fast shrinkage of the precipitate, the poor removal efficiency of liquid molecules and the hard agglomerate formation after calcination. Very differently, the ATO product obtained by the packing and drying method featured free-agglomerated morphology, low bulk density, high surface area and high electrical resistivity ascribed probably to the formed vapor cyclone environment and liquid evaporation-resistance, avoiding fast liquid removal and improving the removal efficiency of liquid molecules. The intrinsic formation mechanism of ATO nanoparticles from different drying methods was illustrated based on the dehydration process of ATO precipitates. Additionally, the packing and drying time played key roles in determining the bulk density, morphology and electrical conductivity of ATO nanoparticles.

  16. Natural desulfurization in coal-fired units using Greek lignite.

    PubMed

    Konidaris, Dimitrios N

    2010-10-01

    This paper analyzes the natural desulfurization process taking place in coal-fired units using Greek lignite. The dry scrubbing capability of Greek lignite appears to be extremely high under special conditions, which can make it possible for the units to operate within the legislative limits of sulfur dioxide (SO2) emissions. According to this study on several lignite-fired power stations in northern Greece, it was found that sulfur oxide emissions depend on coal rank, sulfur content, and calorific value. On the other hand, SO2 emission is inversely proportional to the parameter gammaCO2(max), which is equal to the maximum carbon dioxide (CO2) content by volume of dry flue gas under stoichiometric combustion. The desulfurization efficiency is positively correlated to the molar ratio of decomposed calcium carbonate to sulfur and negatively correlated to the free calcium oxide content of fly ash.

  17. Overview Of Dry-Etch Techniques

    NASA Astrophysics Data System (ADS)

    Salzer, John M.

    1986-08-01

    With pattern dimensions shrinking, dry methods of etching providing controllable degrees of anisotropy become a necessity. A number of different configurations of equipment - inline, hex, planar, barrel - have been offered, and within each type, there are numerous significant variations. Further, each specific type of machine must be perfected over a complex, interactive parameter space to achieve suitable removal of various materials. Among the most critical system parameters are the choice of cathode or anode to hold the wafers, the chamber pressure, the plasma excitation frequency, and the electrode and magnetron structures. Recent trends include the use of vacuum load locks, multiple chambers, multiple electrodes, downstream etching or stripping, and multistep processes. A major percentage of etches in production handle the three materials: polysilicon, oxide and aluminum. Recent process developments have targeted refractory metals, their silicides, and with increasing emphasis, silicon trenching. Indeed, with new VLSI structures, silicon trenching has become the process of greatest interest. For stripping, dry processes provide advantages other than anisotropy. Here, too, new configurations and methods have been introduced recently. While wet processes are less than desirable from a number of viewpoints (handling, safety, disposal, venting, classes of clean room, automatability), dry methods are still being perfected as a direct, universal replacement. The paper will give an overview of these machine structures and process solutions, together with examples of interest. These findings and the trends discussed are based on semiannual survey of manufacturers and users of the various types of equipment.

  18. Identifying Different Types of Catalysts for CO2 Reduction by Ethane through Dry Reforming and Oxidative Dehydrogenation.

    PubMed

    Porosoff, Marc D; Myint, Myat Noe Zin; Kattel, Shyam; Xie, Zhenhua; Gomez, Elaine; Liu, Ping; Chen, Jingguang G

    2015-12-14

    The recent shale gas boom combined with the requirement to reduce atmospheric CO2 have created an opportunity for using both raw materials (shale gas and CO2 ) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H2 ). The second route is oxidative dehydrogenation which produces ethylene using CO2 as a soft oxidant. The results of this study indicate that the Pt/CeO2 catalyst shows promise for the production of synthesis gas, while Mo2 C-based materials preserve the CC bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Identifying different types of catalysts for CO 2 reduction by ethane through dry reforming and oxidative dehydrogenation

    DOE PAGES

    Marc D. Porosoff; Chen, Jingguang G.; Myint, Myat Noe Zin; ...

    2015-11-10

    In this study, the recent shale gas boom combined with the requirement to reduce atmospheric CO 2 have created an opportunity for using both raw materials (shale gas and CO 2) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO 2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H 2). The second route is oxidative dehydrogenation which produces ethylene using CO 2 as a softmore » oxidant. The results of this study indicate that the Pt/CeO 2 catalyst shows promise for the production of synthesis gas, while Mo 2C-based materials preserve the C—C bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions.« less

  20. Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries

    NASA Astrophysics Data System (ADS)

    Candia-Muñoz, N.; Ramirez-Bunster, M.; Vargas-Hernández, Y.; Gaete-Garretón, L.

    Interest in high quality foods: good taste and a high content of nutrients with healthy beneficial effects are increasing. Fruits have good properties but, they are lost because the oxidation process, additionally, for different reasons a 40% of harvested fruit are lost. To conserve the fruit properties an ultrasonic assisted spray dryer was developed and tested, comparing its results with microwave-vacuum drying technology. Results did shown taste, color, smell, particle shape and size distribution better than the conventional one. The antioxidants conservation were quite good except in the anthocyanins, in which the microwave and vacuum technology shown best results.

  1. Low NO/x/ heavy fuel combustor program

    NASA Technical Reports Server (NTRS)

    Lister, E.; Niedzwiecki, R. W.; Nichols, L.

    1980-01-01

    The paper deals with the 'Low NO/x/ Heavy Fuel Combustor Program'. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen (NO/x/), improved combustor durability and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.

  2. Processing of dry-cured ham in a reduced-oxygen atmosphere: effects on physicochemical and microbiological parameters and mite growth.

    PubMed

    Sánchez-Molinero, F; García-Regueiro, J A; Arnau, J

    2010-03-01

    The effects of a reduced-oxygen atmosphere (ROA) ([O(2)]<4.5%) during part or the whole of dry-cured ham processing on microbiological and physico-chemical parameters and mite growth were investigated in two independent experiments. In Experiment 1, six hams were processed in ROA and six in air for 275 days; in Experiment 2, where lower RH was used, six hams were processed in ROA for 289 days, six for 214 days in air+75 days in ROA, and six in air for 289 days. Microbiological analyses during the process and physicochemical analyses in final products were carried out. The use of ROA during the whole process increased the L* colour parameter in the subcutaneous fat and proteolysis index and decreased b* in the external part of the subcutaneous fat and cholesterol oxide concentration. The use of ROA combined with low RH retarded microbial growth and prevented mite growth. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Development of Impregnated Agglomerate Pelletization (IAP) process for fabrication of (Th,U)O 2 mixed oxide pellets

    NASA Astrophysics Data System (ADS)

    Khot, P. M.; Nehete, Y. G.; Fulzele, A. K.; Baghra, Chetan; Mishra, A. K.; Afzal, Mohd.; Panakkal, J. P.; Kamath, H. S.

    2012-01-01

    Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th, 233U)O 2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO 2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O 2 pellets. In this study, fabrication of (Th,U)O 2 mixed oxide pellets containing 3-5 wt.% UO 2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.

  4. Two Reactive Zones within Riverbank Aquifers Impact the Accumulation of Arsenic within Permeable Natural Reactive Barrier

    NASA Astrophysics Data System (ADS)

    Knappett, P.; Myers, K.; Jewell, K.; Berube, M.; Datta, S.; Hossain, A.; Hosain, A.; Lipsi, M.; Ahmed, K. M.

    2017-12-01

    River stage fluctuations drives river water, rich oxidants, into riverbanks aquifers. When these aquifers are rich in dissolved iron (Fe), iron oxides (FeOOH) precipitate, creating a reactive surface upon which toxic elements such as arsenic (As) may sorb. These Permeable Natural Reactive Barriers (PNRBs) have been studied on the Meghna River. The lack of understanding of what controls their formation and fate could result in dangerous consequences. Pumping of riverbank aquifers for irrigation could re-mobilize toxic concentrations of As into drinking water aquifers. It is important to understand the hydrological, geochemical and biological processes controlling the properties of PNRBs. To this end, monitoring wells and drive-point piezometers were installed orthogonal to the Meghna River in Bangladesh. The dimensions of the shallow aquifer was mapped with Electrical Resistivity Tomography (ERT). The monitoring wells and a river gage were instrumented with pressure transducers to record water level fluctuations. Groundwater flows towards the river for most of the year but reverses under the influence of local irrigation pumping in the late dry season and rapidly rising river stage in the early monsoon. Semi-diurnal tides in the dry season have an amplitude of 80 cm. Declining concentrations of conservative dissolved ions towards the river indicated a zone of dilution from river water extending up to 50 m from the river's dry season edge. Dissolved As was produced as groundwater passed through this dilution zone until the final 20 m where As was abruptly removed from solution. This location coincided with a PNRB with enriched solid-phase Fe and Mn within the upper 3 m of sediment. 16S bacterial community DNA was sequenced from the wells and drive-point piezometers to map the distribution of Fe and As reducers and oxidizers. The richest overall biodiversity was found within the PNRB zone. It contained the most oxidizing and reducing species. This evidence suggests that transient river levels drive mixing between oxidizing and reducing agents in Hyporheic Zones (HZs). When the shallow aquifers are rich in dissolved concentrations of Fe and As, this mixing results in the accumulation of solid-phase Fe and As. This is likely a general process affecting other oxide-forming metals and toxic elements they bind.

  5. Research on silicon microchannel array oxidation insulation technology and stress issues

    NASA Astrophysics Data System (ADS)

    Chai, Jin; Li, Mo; Liang, Yong-zhao; Yang, Ji-kai; Wang, Guo-zheng; Duanmu, Qing-duo

    2013-08-01

    Microchannel plate is widely used in the field of low light level night vision, photomultiplier, tubes, X-ray enhancer and so on. In order to meet the requirement of microchannel plate electron multiplier, we used the method of thermal oxidation to produce a thin film of silicon dioxide which could play a role in electric insulation. Silicon dioxide film has a high breakdown voltage, it can satisfy the high breakdown voltage requirements of electron multiplier. We should find the reasonable parameter values and preparation process in the oxidation so that the thickness and uniformity of the silicon dioxide layer would meet requirement. This article has been focused on researching and analyzing of the problem of oxide insulation and thermal stress in the process of production of silicon dioxide film. In this experiment, dry oxygen and wet oxygen were carried out respectively for 8 hours. The thickness of dry oxygen silicon dioxide films was 458 nm and wet oxygen silicon dioxide films was 1.4 μm. Under these conditions, the silicon microchannel is uniformity and neat, meanwhile the insulating layer's breakdown voltage was measured at 450 V after the wet oxygen oxidation. By using ANSYS finite element software, we analyze the thermal stress, which came from the microchannel oxygen processes, under the conditions of which ambient temperature was 27 ℃ and porosity was 64%, we simulated the thermal stress in the temperature of 1200 ℃ and 1000 ℃, finally we got the maximum equivalent thermal stress of 472 MPa and 403 MPa respectively. The higher thermal stress area was spread over Si-SiO2 interface, by simulate conditions 50% porosity silicon microchannel sample was selected for simulation analysis at 1100 ℃, we got the maximum equivalent thermal stress of 472 MPa, Thermal stress is the minimum value of 410 MPa.

  6. Dietary citrus pulp reduces lipid oxidation in lamb meat.

    PubMed

    Inserra, L; Priolo, A; Biondi, L; Lanza, M; Bognanno, M; Gravador, R; Luciano, G

    2014-04-01

    This study investigated the effect of replacing cereal concentrates with high levels of dried citrus pulp in the diet on lamb meat oxidative stability. Over 56 days, lambs were fed a barley-based concentrate (Control) or concentrates in which 24% and 35% dried citrus pulp were included to partially replace barley (Citrus 24% and Citrus 35%, respectively). Meat was aged under vacuum for 4 days and subsequently stored aerobically at 4 °C. The Control diet increased the redness, yellowness and saturation of meat after blooming (P<0.01). Regardless of the level of supplementation, dietary dried citrus pulp strongly reduced meat lipid oxidation over 6 days of aerobic storage (P<0.001), while colour parameters did not change noticeably over storage and their variation rate was not affected by the diet. In conclusion, replacing cereals with dried citrus pulp in concentrate-based diets might represent a feasible strategy to naturally improve meat oxidative stability and to promote the exploitation of this by-product. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Oxidative processes in soybean and pea seeds: effect of light, temperature, and water content

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Leopold, A. C.

    1987-01-01

    Oxidative processes are probable determinants of longevity of seeds in storage. Measurements of actual oxygen uptake rates were made for soybean and pea seeds as a comparison of short and long lived seeds when light, temperature, and moisture contents were varied. In both peas and soybeans, the oxygen uptake was depressed at low temperatures (<16 degrees C) and low water contents (< 0.25 gram H2O per gram dry weight). Apparent activation energies under these conditions are very high, while apparent activation energies of seeds at higher water contents and at temperatures greater than 22 degrees C are much less. Light enhances the level of oxygen uptake in pea, but reduces the level of oxygen uptake in soybean. The complexities of the interactions of oxygen uptake with environmental conditions in soybean compared to pea suggest that oxidative processes occur in soybean at low water contents, but are essentially absent in pea. It is suggested that the additional oxidative processes in soybean with moisture contents between 0.10 and 0.24 gram per gram may contribute to the poorer longevity of soybean seed compared to pea seed.

  8. Process for making a noble metal on tin oxide catalyst

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Davis, Patricia (Inventor); Miller, Irvin M. (Inventor)

    1989-01-01

    A quantity of reagent grade tin metal or compound, chloride-free, and high-surface-area silica spheres are placed in deionized water, followed by deaerating the mixture by boiling and adding an oxidizing agent, such as nitric acid. The nitric acid oxidizes the tin to metastannic acid which coats the spheres because the acid is absorbed on the substrate. The metastannic acid becomes tin oxide upon drying and calcining. The tin-oxide coated silica spheres are then placed in water and boiled. A chloride-free precious metal compound in aqueous solution is then added to the mixture containing the spheres, and the precious metal compound is reduced to a precious metal by use of a suitable reducing agent such as formic acid. Very beneficial results were obtained using the precious metal compound tetraammine platinum(II) hydroxide.

  9. The influence of Cr and Al pack cementation on low carbon steel to improve oxidation resistance

    NASA Astrophysics Data System (ADS)

    Prasetya, Didik; Sugiarti, Eni; Destyorini, Fredina; Thosin, Kemas Ahmad Zaini

    2012-06-01

    Pack chromizing and aluminizing has been widely used for many years to improve hot temperature oxidation and corrosion resistance of metals. The coating process involves packing the steel in a powder mixture which contain aluminum and chromium source, and inert filler (usually alumina), and halide activator NH4Cl. Al and Cr were deposited onto carbon steel by pack cementation process using elemental Al and Cr powder as Al and Cr source, whereas NiCo alloys codeposited by electrodeposition. The position of Al and Cr could be under or over Ni-Co alloys deposited. Pack cementation was heated on dry inert gas at temperature 800 °C about 5 hours and 20 minute for Cr and Al respectively. Al and Cr was successfully deposited. Laying down effect of Al and Cr onto carbon steel whether up and down toward NiCo alloys coating have affected to oxidation resistance. The pack aluminizing as top layer given best resitance to restrain excessive oxide scale, in contrast pack chromizing reveal bad oxidation resistance, moreover occured spallation on layer.

  10. Image analysis of epicuticular damage to foliage caused by dry deposition of the air pollutant nitric acid.

    PubMed

    Padgett, Pamela E; Parry, Sally D; Bytnerowicz, Andrzej; Heath, Robert L

    2009-01-01

    Nitric acid vapor is produced by the same photochemical processes that produce ozone. In the laboratory, concentrated nitric acid is a strong acid and a powerful oxidant. In the environment, where the concentrations are much lower, it is an innocuous source of plant nitrogen. As an air pollutant, which mode of action does dry deposition of nitric acid follow? We investigated the effects of dry deposition of nitric acid on the foliage of four tree species native to the western United States. A novel controlled environment, fumigation system enabled a four-week exposure at concentrations consistent with ambient diurnal patterns. Scanning electron microscopy and automated image analysis revealed changes in the epicuticular wax layer during fumigation. Exposure to nitric acid resulted in a reproducible suite of damage symptoms that increased with increasing dose. Each tree species tested exhibited a unique set of damage features, including cracks, lesions, and conformation changes to epicuticular crystallite structures. Dry deposition of atmospheric nitric acid caused substantial perturbation to the epicuticular surface of all four tree species investigated, consistent with the chemical oxidation of epicuticular waxes. Automated image analysis eliminated many biases that can trouble microscopy studies. Trade names and commercial enterprises or products are mentioned solely for information. No endorsements by the U.S. Department of Agriculture are implied.

  11. Origin of temperature dependent conduction of current from n-4H-SiC into silicon dioxide films at high electric fields

    NASA Astrophysics Data System (ADS)

    Xiang, An; Xu, Xingliang; Zhang, Lin; Li, Zhiqiang; Li, Juntao; Dai, Gang

    2018-02-01

    The conduction of current from n-4H-SiC into pyrogenic and dry oxidized films is studied. Anomalous current conduction was observed at a high electric field above 8 MV/cm for dry oxidized metal-oxide-semiconductor (MOS) capacitors, which cannot be interpreted in the framework of pure Fowler-Nordheim tunneling. The temperature-dependent current measurement and density of interface trap estimated from the hi-lo method for the SiO2/4H-SiC interface revealed that the combined current conduction of Fowler-Nordheim and Poole-Frenkel emission is responsible for the current conduction in both pyrogenic and dry oxidized MOS capacitors. Furthermore, the origin of temperature dependent current conduction is the Poole-Frenkel emission via the carbon pair defect trap level at 1.3 eV below the conduction band edge of SiO2. In addition, with the dry oxidized capacitors, the enhanced temperature dependent current above 8 MV/cm is attributed to the PF emission via a trap level at 1.47 eV below the conduction band edge of SiO2, which corresponds to another configuration of a carbon pair defect in SiO2 films.

  12. Postmortem Aging of Beef with a Special Reference to the Dry Aging

    PubMed Central

    Khan, Muhammad I.; Jung, Samooel; Nam, Ki Chang; Jo, Cheorun

    2016-01-01

    Animal muscles are stored for specific period (aging) at refrigerated temperatures, during and after which the living muscles start to convert into meat and thus, attain certain superior properties in the final product. Proteolysis, lipolysis, and oxidation are the major biochemical processes involved during the postmortem aging of meat that affect the tenderness, juiciness, and flavor, as well as sometimes may introduce certain undesirable traits. This review analyzes the role of pre- and post-mortem factors that are important for aging and their effect on the chemical and physical changes in the “dry- and wet-aged meat.” Thus, if the meat processing manufacturers optimize the effects of aging for specific muscles, the palatability, color, and the shelf life of the aged meat products could be significantly enhanced. PMID:27194923

  13. Gaseous Oxidized Mercury Dry Deposition Measurements in Southwestern USA: Comparison between texas, Eastern Oklahoma, and the Four Corners Area

    EPA Science Inventory

    Gaseous oxidized mercury (GOM) dry deposition measurements using aerodynamic surrogate surface passive samplers were collected in central and eastern Texas and eastern Oklahoma, from September 2011 to September 2012.The purpose of this study was to provide an initial characteriza...

  14. Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts.

    PubMed

    Debecker, Damien P; Le Bras, Solène; Boissière, Cédric; Chaumonnot, Alexandra; Sanchez, Clément

    2018-06-05

    Aerosol processing is long known and implemented industrially to obtain various types of divided materials and nanomaterials. The atomisation of a liquid solution or suspension produces a mist of aerosol droplets which can then be transformed via a diversity of processes including spray-drying, spray pyrolysis, flame spray pyrolysis, thermal decomposition, micronisation, gas atomisation, etc. The attractive technical features of these aerosol processes make them highly interesting for the continuous, large scale, and tailored production of heterogeneous catalysts. Indeed, during aerosol processing, each liquid droplet undergoes well-controlled physical and chemical transformations, allowing for example to dry and aggregate pre-existing solid particles or to synthesise new micro- or nanoparticles from mixtures of molecular or colloidal precursors. In the last two decades, more advanced reactive aerosol processes have emerged as innovative means to synthesise tailored-made nanomaterials with tunable surface properties, textures, compositions, etc. In particular, the "aerosol-assisted sol-gel" process (AASG) has demonstrated tremendous potential for the preparation of high-performance heterogeneous catalysts. The method is mainly based on the low-cost, scalable, and environmentally benign sol-gel chemistry process, often coupled with the evaporation-induced self-assembly (EISA) concept. It allows producing micronic or submicronic, inorganic or hybrid organic-inorganic particles bearing tuneable and calibrated porous structures at different scales. In addition, pre-formed nanoparticles can be easily incorporated or formed in a "one-pot" bottom-up approach within the porous inorganic or hybrid spheres produced by such spray drying method. Thus, multifunctional catalysts with tailored catalytic activities can be prepared in a relatively simple way. This account is an overview of aerosol processed heterogeneous catalysts which demonstrated interesting performance in various relevant chemical reactions like isomerisation, hydrogenation, olefin metathesis, pollutant total oxidation, selective oxidation, CO2 methanation, etc. A short survey of patents and industrial applications is also presented. Our objective is to demonstrate the tremendous possibilities offered by the coupling between bottom up synthesis routes and these aerosol processing technologies which will most probably represent a major route of innovation in the mushrooming field of catalyst preparation research.

  15. Process for producing silicon

    DOEpatents

    Olson, J.M.; Carleton, K.L.

    1982-06-10

    A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  16. Process for producing silicon

    DOEpatents

    Olson, Jerry M.; Carleton, Karen L.

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  17. Correlation of the oxidation state of cerium in sol-gel glasses as a function of thermal treatment via optical spectroscopy and XANES studies.

    PubMed

    Assefa, Zerihun; Haire, R G; Caulder, D L; Shuh, D K

    2004-07-01

    Sol-gel glass matrices containing lanthanides have numerous technological applications and their formation involves several chemical facets. In the case of cerium, its ability to exist in two different oxidation states or in mixed valence state provides additional complexities for the sol-gel process. The oxidation state of cerium present during different facets of preparation of sol-gel glasses, and also as a function of the starting oxidation state of cerium added, were studied both by optical spectroscopy and X-ray absorption near-edge structures (XANES). The findings acquired by each approach were compared. The primary focus was on the redox chemistries associated with sample preparation, gelation, and thermal treatment. When Ce3+ is introduced into the starting sols, the trivalent state normally prevails in the wet and room temperature-dried gels. Heating in air at >100 degrees C can generate a light yellow coloration with partial oxidation to the tetravalent state. Above 200 degrees C and up to approximately 1000 degrees C, cerium is oxidized to its tetravalent state. In contrast, when tetravalent cerium is introduced into the sol, both the wet and room temperature-dried gels lose the yellow-brown color of the initial ceric ammonium nitrate solution. When the sol-gel is heated to 110 degrees C it turns yellowish as the cerium tends to be re-oxidized. The yellow color is believed to represent the effect of oxidation and oligomerization of the cerium-silanol units in the matrix. The luminescence properties are also affected by these changes, the details of which are reported herein.

  18. 20% Efficient Zn0.9Mg0.1O:Al/Zn0.8Mg0.2O/Cu(In,Ga)(S,Se)2 Solar Cell Prepared by All-Dry Process through a Combination of Heat-Light-Soaking and Light-Soaking Processes.

    PubMed

    Chantana, Jakapan; Kato, Takuya; Sugimoto, Hiroki; Minemoto, Takashi

    2018-04-04

    Development of Cd-free Cu(In,Ga)(S,Se) 2 (CIGSSe)-based thin-film solar cells fabricated by an all-dry process is intriguing to minimize optical loss at a wavelength shorter than 520 nm owing to absorption of the CdS buffer layer and to be easily integrated into an in-line process for cost reduction. Cd-free CIGSSe solar cells are therefore prepared by the all-dry process with a structure of Zn 0.9 Mg 0.1 O:Al/Zn 0.8 Mg 0.2 O/CIGSSe/Mo/glass. It is demonstrated that Zn 0.8 Mg 0.2 O and Zn 0.9 Mg 0.1 O:Al are appropriate as buffer and transparent conductive oxide layers with large optical band gap energy values of 3.75 and 3.80 eV, respectively. The conversion efficiency (η) of the Cd-free CIGSSe solar cell without K-treatment is consequently increased to 18.1%. To further increase the η, the Cd-free CIGSSe solar cell with K-treatment is next fabricated and followed by posttreatment called the heat-light-soaking (HLS) + light-soaking (LS) process, including HLS at 110 °C followed by LS under AM 1.5G illumination. It is disclosed that the HLS + LS process gives rise to not only the enhancement of carrier density but also the decrease in the carrier recombination rate at the buffer/absorber interface. Ultimately, the η of the Cd-free CIGSSe solar cell with K-treatment prepared by the all-dry process is enhanced to the level of 20.0%.

  19. Selective dry etching of silicon containing anti-reflective coating

    NASA Astrophysics Data System (ADS)

    Sridhar, Shyam; Nolan, Andrew; Wang, Li; Karakas, Erdinc; Voronin, Sergey; Biolsi, Peter; Ranjan, Alok

    2018-03-01

    Multi-layer patterning schemes involve the use of Silicon containing Anti-Reflective Coating (SiARC) films for their anti-reflective properties. Patterning transfer completion requires complete and selective removal of SiARC which is very difficult due to its high silicon content (>40%). Typically, SiARC removal is accomplished through a non-selective etch during the pattern transfer process using fluorine containing plasmas, or an ex-situ wet etch process using hydrofluoric acid is employed to remove the residual SiARC, post pattern transfer. Using a non-selective etch may result in profile distortion or wiggling, due to distortion of the underlying organic layer. The drawbacks of using wet etch process for SiARC removal are increased overall processing time and the need for additional equipment. Many applications may involve patterning of active structures in a poly-Si layer with an underlying oxide stopping layer. In such applications, SiARC removal selective to oxide using a wet process may prove futile. Removing SiARC selectively to SiO2 using a dry etch process is also challenging, due to similarity in the nature of chemical bonds (Si - O) in the two materials. In this work, we present highly selective etching of SiARC, in a plasma driven by a surface wave radial line slot antenna. The first step in the process involves an in-situ modification of the SiARC layer in O2 plasma followed by selective etching in a NF3/H2 plasma. Surface treatment in O2 plasma resulted in enhanced etching of the SiARC layer. For the right processing conditions, in-situ NF3/H2 dry etch process demonstrated selectivity values greater than 15:1 with respect to SiO2. The etching chemistry, however, was sensitive to NF3:H2 gas ratio. For dilute NF3 in H2, no SiARC etching was observed. Presumably, this is due to the deposition of ammonium fluorosilicate layer that occurs for dilute NF3/H2 plasmas. Additionally, challenges involved in selective SiARC removal (selective to SiO2, organic and Si layers) post pattern transfer, in a multi-layer structure will be discussed.

  20. The influence of additives and drying methods on quality attributes of fish protein powder made from saithe (Pollachius virens).

    PubMed

    Shaviklo, Gholam Reza; Thorkelsson, Gudjon; Arason, Sigurjon; Kristinsson, Hordur G; Sveinsdottir, Kolbrun

    2010-09-01

    Fish protein powder (FPP) is used in the food industry for developing formulated food products. This study investigates the feasibility of increasing the value of saithe (Pollachius virens) by producing a functional FPP. Quality attributes of spray and freeze-dried saithe surimi containing lyoprotectants were studied. A freeze-dried saithe surimi without lyoprotectants was also prepared as a control sample. The amount of protein, moisture, fat and carbohydrate in the FPPs were 745-928, 39-58, 21-32 and 10-151 g kg(-1). Quality attributes of FPPs were influenced by the two drying methods and lyoprotectants. The highest level of lipid oxidation was found in the control and the second highest in the spray-dried FPP. The spray-dried fish protein had the lowest viscosity among all FPPs. Gel-forming ability of samples with lyoprotectants was higher than that of the control. Water-binding capacity, emulsion properties and solubility of the freeze-dried fish protein containing lyoprotectants were significantly higher than spray-dried and control samples. However, functional properties of spray-dried FPP were higher than the control sample. It is feasible to develop value-added FPP from saithe surimi using spray- and freeze-drying processes, but freeze-dried FPP containing lyoprotectant had superior functional properties and stability compared with spray-dried sample. Both products might be used as functional protein ingredients in various food systems. Copyright 2010 Society of Chemical Industry.

  1. Inhibition of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) by Gelidium elegans Using Alternative Drying and Extraction Conditions in 3T3-L1 and RAW 264.7 Cells.

    PubMed

    Jeon, Hui-Jeon; Choi, Hyeon-Son; Lee, Ok-Hwan; Jeon, You-Jin; Lee, Boo-Yong

    2012-06-01

    Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans.

  2. Inhibition of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) by Gelidium elegans Using Alternative Drying and Extraction Conditions in 3T3-L1 and RAW 264.7 Cells

    PubMed Central

    Jeon, Hui-Jeon; Choi, Hyeon-Son; Lee, OK-Hwan; Jeon, You-Jin; Lee, Boo-Yong

    2012-01-01

    Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans. PMID:24471073

  3. Stabilized super-thermite colloids: A new generation of advanced highly energetic materials

    NASA Astrophysics Data System (ADS)

    Elbasuney, Sherif; Gaber Zaky, M.; Radwan, Mostafa; Mostafa, Sherif F.

    2017-10-01

    One of the great impetus of nanotechnology on energetic materials is the achievement of nanothermites (metal-oxide/metal) which are characterized by massive heat output. Yet, full exploitation of super-thermites in highly energetic systems has not been achieved. This manuscript reports on the sustainable fabrication of colloidal Fe2O3 and CuO nanoparticles for thermite applications. TEM micrographs demonstrated mono-dispersed Fe2O3 and CuO with an average particle size of 3 and 15 nm respectively. XRD diffractograms demonstrated highly crystalline materials. SEM micrographs demonstrated a great tendency of the developed oxides to aggregate over drying process. The effective integration and dispersion of mono-dispersed colloidal thermite particles into energetic systems are vital for enhanced performance. Aluminum is of interest as highly energetic metal fuel. In this paper, synthesized Fe2O3 and CuO nanoparticles were re-dispersed in isopropyl alcohol (IPA) with aluminum nanoparticles using ultrasonic prope homogenizer. The colloidal thermite peraticles can be intgegrated into highly energetic system for subsequent nanocomposite development. Thanks to stabilization of colloidal CuO nanoparticles in IPA which could offer intimate mixing between oxidizer and metal fuel. The stabilization mechanism of CuO in IPA was correlated to steric stabilization with solvent molecules. This approach eliminated nanoparticle drying and the re-dispersion of dry aggregates into energetic materials. This manuscript shaded the light on the real development of colloidal thermite mixtures and their integration into highly energetic systems.

  4. High rate dry etching of InGaZnO by BCl3/O2 plasma

    NASA Astrophysics Data System (ADS)

    Park, Wanjae; Whang, Ki-Woong; Gwang Yoon, Young; Hwan Kim, Jeong; Rha, Sang-Ho; Seong Hwang, Cheol

    2011-08-01

    This paper reports the results of the high-rate dry etching of indium gallium zinc oxide (IGZO) at room temperature using BCl3/O2 plasma. We achieved an etch rate of 250 nm/min. We inferred from the x-ray photoelectron spectroscopy analysis that BOx or BOClx radicals generated from BCl3/O2 plasma cause the etching of the IGZO material. O2 initiates the etching of IGZO, and Ar removes nonvolatile byproducts from the surface during the etching process. Consequently, a smooth etched surface results when these gases are added to the etch gas.

  5. Facile synthesis of multi-shell structured binary metal oxide powders with a Ni/Co mole ratio of 1:2 for Li-Ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Park, Sun Kyu; Lee, Jung-Kul; Kang, Yun Chan

    2015-06-01

    Multi-shell structured binary transition metal oxide powders with a Ni/Co mole ratio of 1:2 are prepared by a simple spray drying process. Precursor powder particles prepared by spray drying from a spray solution of citric acid and ethylene glycol have completely spherical shape, fine size, and a narrow size distribution. The precursor powders turn into multi-shell powders after a post heat-treatment at temperatures between 250 and 800 °C. The multi-shell structured powders are formed by repeated combustion and contraction processes. The multi-shell powders have mixed crystal structures of Ni1-xCo2O4-x and NiO phases regardless of the post-treatment temperature. The reversible capacities of the powders post-treated at 250, 400, 600, and 800 °C after 100 cycles are 584, 913, 808, and 481 mA h g-1, respectively. The low charge transfer resistance and high lithium ion diffusion rate of the multi-shell powders post-treated at 400 °C with optimum grain size result in superior electrochemical properties even at high current densities.

  6. Evaluation of treatment for dry eye with 2-hydroxyestradiol using a dry eye rat model.

    PubMed

    Higuchi, Akihiro; Oonishi, Erina; Kawakita, Tetsuya; Tsubota, Kazuo

    2016-01-01

    2-hydroxy estradiol (2-OHE2) is a catechol derivative of 17β -Estradiol (E2) and it is synthesized from E2 catalyzed by cytochrome P4501A1. Previous studies reported that 2-OHE2 is a physiologic antioxidant in lipoproteins, liver microsomes, and the brain. Catechol derivatives show an anti-inflammatory effect through the inhibition of prostaglandin endoperoxide synthase (PGS) activity. Corneal erosion caused by dry eye is related to an increase in oxidative stress and inflammation in ocular surface cells. We investigated the therapeutic effects of 2-OHE2 on corneal damage caused by dry eye. Steroidal radical scavenging activity was confirmed through the electron spin resonance (ESR) method. PGS activity was measured using the COX Fluorescent Activity Assay Kit. To evaluate the effect of 2-OHE2 on the treatment for dry eye, 2-OHE2 was applied as an eye drop experiment using dry eye model rats. 2-OHE2 scavenged tyrosyl radical and possibly suppressed oxidative stress in corneal epithelial cells. In addition, 2-OHE2 inhibited PGS activity, and 2-OHE2 is probably a competitive inhibitor of PGS. Corneal PGS activity was upregulated in the dry eye group. Therefore, 2-OHE2 eye drops improved corneal erosion in dry eye model rats. 2-OHE2 is a candidate for the treatment of dry eye through the suppression of inflammation and oxidative stress in the cornea.

  7. Effects of water vapor on the oxidation behavior of alumina and chromia forming superalloys at temperatures between 700°C and 1000°C

    NASA Astrophysics Data System (ADS)

    Hance, Kivilcim Onal

    Several superalloys and Ni-Cr alloys were tested at temperatures between 700°C and 1000°C in dry air and in air/H2O mixtures, whereby the effects of water vapor on the formation of alumina and chromia scales were investigated. The experimental parameters included temperature of testing, composition of the reactive gases, thermal cycling and the composition of the underlying alloy. Water vapor affected the oxidation characteristics of alumina and chromia in different ways. Selective oxidation of Al was not favored in air/H 2O mixtures and at low reaction temperatures. The alloy composition was critical in developing and maintaining continuous protective scales. For alumina-forming systems, higher Al and Cr contents were found to be beneficial for improved resistance against attack. Significant additions of Hf to the alloys resulted in accelerated internal oxidation at 1000°C. Transient oxidation was more profound in air/H2O mixtures in comparison to dry air. The adherence of scales was adversely affected by water vapor at 1000°C. Water vapor did not affect the selective oxidation of Cr. The major impact of H2O on chromia scales was the accelerated formation of volatile Cr-species which makes the underlying alloy more vulnerable to attack by reactive gases. These reactions were not significant in dry air at 900°C and below. The transient oxidation was not adversely affected by water vapor on Ni-Cr systems. The scale spallation was more profound in dry air. The study showed that the main degradation mechanism for chromia in wet air was the formation of vapor Cr-species. On the contrary, scale spallation was more detrimental in dry air. Additions of Ce improved the adherence of chromia in each environment. Ce furthermore decreased the chromia formation rate in dry air. It was not clear if the element had the same effect in air/H2O. The presence of water vapor affected the morphology of chromia. The thin external TiO2 that developed over chromia on IN 738 reduced the vaporization of chromia. This indicated that the oxidation resistance of chromia formers can be improved by alloying with elements that would diffuse to the oxide/gas interface and develop an external scale.

  8. Gaseous Oxidized Mercury Dry Deposition Measurements in the FourCorners Area and Eastern Oklahoma, U.S.A.

    EPA Science Inventory

    Gaseous oxidized mercury (GOM) dry deposition measurements using surrogate surface passive samplers were collected in the Four Corners area and eastern Oklahoma from August, 2009–August, 2011. Using data from a six site area network, a characterization of the magnitude and spatia...

  9. Domestic applications for aerospace waste and water management technologies

    NASA Technical Reports Server (NTRS)

    Disanto, F.; Murray, R. W.

    1972-01-01

    Some of the aerospace developments in solid waste disposal and water purification, which are applicable to specific domestic problems are explored. Also provided is an overview of the management techniques used in defining the need, in utilizing the available tools, and in synthesizing a solution. Specifically, several water recovery processes will be compared for domestic applicability. Examples are filtration, distillation, catalytic oxidation, reverse osmosis, and electrodialysis. Solid disposal methods will be discussed, including chemical treatment, drying, incineration, and wet oxidation. The latest developments in reducing household water requirements and some concepts for reusing water will be outlined.

  10. Regenerable sorbents for CO.sub.2 capture from moderate and high temperature gas streams

    DOEpatents

    Siriwardane, Ranjani V [Morgantown, WV

    2008-01-01

    A process for making a granular sorbent to capture carbon dioxide from gas streams comprising homogeneously mixing an alkali metal oxide, alkali metal hydroxide, alkaline earth metal oxide, alkaline earth metal hydroxide, alkali titanate, alkali zirconate, alkali silicate and combinations thereof with a binder selected from the group consisting of sodium ortho silicate, calcium sulfate dihydrate (CaSO.sub.4.2H.sub.2O), alkali silicates, calcium aluminate, bentonite, inorganic clays and organic clays and combinations thereof and water; drying the mixture and placing the sorbent in a container permeable to a gas stream.

  11. The stability of amitriptyline N-oxide and clozapine N-oxide on treated and untreated dry blood spot cards.

    PubMed

    Temesi, David; Swales, John; Keene, Warren; Dick, Samuel

    2013-03-25

    Procedures for drug monitoring based on Dried Blood Spot (DBS) sampling are gaining acceptance for an increasing number of clinical and preclinical applications, where ease of use, small sample requirement, and improved sample stability have been shown to offer advantages over blood tube sampling. However, to-date, the vast majority of this work has described the analysis of well characterized drugs. Using amitriptyline, clozapine, and their potentially labile N-oxide metabolites as model compounds, we consider the merits of using DBS for discovery pharmacokinetic (PK) studies where the metabolic fate of test compounds are often unknown. Both N-oxide metabolites reverted to parent compound under standard drying (2hr) and extraction conditions. Card type significantly affected the outcome, with 14% and 22% degradation occurring for clozapine-N-oxide and amitriptyline-N-oxide on a brand of untreated DBS cards, compared to 59 and 88% on a brand of treated DBS cards. Enrichment of the parent compound ex vivo leads to overestimation of circulating blood concentration and inaccurate determination of the PK profile. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. 40 CFR 180.151 - Ethylene oxide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances..., except basil 7 Licorice, roots 7 Peppermint, tops, dried 7 Sesame, seed 7 Spearmint, tops, dried 7... 19, dried, except basil 940 Licorice, roots 940 Peppermint, tops, dried 940 Sesame, seed 940...

  13. 40 CFR 180.151 - Ethylene oxide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances..., except basil 7 Licorice, roots 7 Peppermint, tops, dried 7 Sesame, seed 7 Spearmint, tops, dried 7... 19, dried, except basil 940 Licorice, roots 940 Peppermint, tops, dried 940 Sesame, seed 940...

  14. 40 CFR 180.151 - Ethylene oxide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances..., except basil 7 Licorice, roots 7 Peppermint, tops, dried 7 Sesame, seed 7 Spearmint, tops, dried 7... 19, dried, except basil 940 Licorice, roots 940 Peppermint, tops, dried 940 Sesame, seed 940...

  15. 40 CFR 180.151 - Ethylene oxide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances..., except basil 7 Licorice, roots 7 Peppermint, tops, dried 7 Sesame, seed 7 Spearmint, tops, dried 7... 19, dried, except basil 940 Licorice, roots 940 Peppermint, tops, dried 940 Sesame, seed 940...

  16. 40 CFR 180.151 - Ethylene oxide; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances..., except basil 7 Licorice, roots 7 Peppermint, tops, dried 7 Sesame, seed 7 Spearmint, tops, dried 7... 19, dried, except basil 940 Licorice, roots 940 Peppermint, tops, dried 940 Sesame, seed 940...

  17. Flammability and oxidation kinetics of hydrophobic silica aerogels.

    PubMed

    Li, Zhi; Cheng, Xudong; Shi, Long; He, Song; Gong, Lunlun; Li, Congcong; Zhang, Heping

    2016-12-15

    Silica aerogels (SAs) present great application prospects especially on thermal insulation, but their flammability is usually ignored. A combined study on the combustion behaviors and oxidation kinetics of hydrophobic silica aerogels prepared by ambient pressure drying (SA-apd) and supercritical drying (SA-sd) was performed by employing cone calorimeter and thermal analysis. The whole combustion process for SAs could be divided into three stages in which a fire propagation phenomenon was observed with the radial propagation velocity of 6.6-8.3cms -1 . Current investigations forcefully demonstrated that hydrophobic SAs were combustible and easy to flashover when exposed to a heat flux higher than 25kWm -2 . Compared between the two SAs, the SA-sd owned a less fire risk with presenting a less fire hazard and a lower smoke toxicity than those of SA-apd. The oxidation kinetics by Ozawa-Flynn-Wall method revealed that SA-sd had larger apparent activation energies than those of SA-apd which conformed to the thermal stability analysis by TG-DSC. Furthermore, a two-step combustion mechanism was proposed to explain the combustion behaviors of SAs. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Delta-Doping at Wafer Level for High Throughput, High Yield Fabrication of Silicon Imaging Arrays

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor); Nikzad, Shoulch (Inventor); Jones, Todd J. (Inventor); Greer, Frank (Inventor); Carver, Alexander G. (Inventor)

    2014-01-01

    Systems and methods for producing high quantum efficiency silicon devices. A silicon MBE has a preparation chamber that provides for cleaning silicon surfaces using an oxygen plasma to remove impurities and a gaseous (dry) NH3 + NF3 room temperature oxide removal process that leaves the silicon surface hydrogen terminated. Silicon wafers up to 8 inches in diameter have devices that can be fabricated using the cleaning procedures and MBE processing, including delta doping.

  19. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review

    PubMed Central

    Arafat, M. M.; Dinan, B.; Akbar, Sheikh A.; Haseeb, A. S. M. A.

    2012-01-01

    Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO2, TiO2, In2O3, WOx, AgVO3, CdO, MoO3, CuO, TeO2 and Fe2O3. Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research. PMID:22969344

  20. Improved Wear Resistance of Low Carbon Steel with Plasma Melt Injection of WC Particles

    NASA Astrophysics Data System (ADS)

    Liu, Aiguo; Guo, Mianhuan; Hu, Hailong

    2010-08-01

    Surface of a low carbon steel Q235 substrate was melted by a plasma torch, and tungsten carbide (WC) particles were injected into the melt pool. WC reinforced surface metal matrix composite (MMC) was synthesized. Dry sliding wear behavior of the surface MMC was studied and compared with the substrate. The results show that dry sliding wear resistance of low carbon steel can be greatly improved by plasma melt injection of WC particles. Hardness of the surface MMC is much higher than that of the substrate. The high hardness lowers the adhesion and abrasion of the surface MMC, and also the friction coefficient of it. The oxides formed in the sliding process also help to lower the friction coefficient. In this way, the dry sliding wear resistance of the surface MMC is greatly improved.

  1. Development of the aerosol generation system for simulating the dry deposition behavior of radioaerosol emitted by the accident of FDNPP

    NASA Astrophysics Data System (ADS)

    Zhang, Z.

    2015-12-01

    A large amount of radioactivity was discharged by the accident of FDNPP. The long half-life radionuclide, 137Cs was transported through the atmosphere mainly as the aerosol form and deposited to the forests in Fukushima prefecture. After the dry deposition of the 137Cs, the foliar uptake process would occur. To evaluate environmental transfer of radionuclides, the dry deposition and following foliar uptake is very important. There are some pioneering studies for radionuclide foliar uptake with attaching the solution containing stable target element on the leaf, however, cesium oxide aerosols were used for these deposition study [1]. In the FDNPP case, 137Cs was transported in sulfate aerosol form [2], so the oxide aerosol behaviors could not represent the actual deposition behavior in this accident. For evaluation of whole behavior of 137Cs in vegetation system, fundamental data for deposition and uptake process of sulfate aerosol was desired. In this study, we developed aerosol generation system for simulating the dry deposition and the foliar uptake behaviors of aerosol in the different chemical constitutions. In this system, the method of aerosol generation based on the spray drying. Solution contained 137Cs was send to a nozzle by a syringe pump and spraying with a high speed air flow. The sprayed mist was generated in a chamber in the relatively high temperature. The solution in the mist was dried quickly, and micro size solid aerosols consisting 137Cs were generated. The aerosols were suctioned by an ejector and transported inside a tube by the dry air flow, then were directly blown onto the leaves. The experimental condition, such as the size of chamber, chamber temperature, solution flow rate, air flow rate and so on, were optimized. In the deposition experiment, the aerosols on leaves were observed by a SEM/EDX system and the deposition amount was evaluated by measuring the stable Cs remaining on leaf. In the presentation, we will discuss the detail results of aerosol deposition behavior using the developed system. [1]C.Madoz-Escande, et al., Journal of Environmental Radioactivity, 73 pp49-71, (2004) [2] N. Kaneyasu, et al.,Environmental Science & Technology, 2012, 46 (11), pp 5720-5726

  2. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding.

    PubMed

    Zhuang, Qiaoqiao; Zhang, Peilei; Li, Mingchuan; Yan, Hua; Yu, Zhishui; Lu, Qinghua

    2017-10-30

    The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti₂Ni and Ti₅Si₃ phases exist in all coatings, and some samples have TiSi₂ phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness)) and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti₂Ni and reinforcement phases of Ti₅Si₃ and TiSi₂, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO₂, Al₂O₃ and SiO₂. Phases Ti₂Ni, Ti₅Si₃, TiSi₂ and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding.

  3. Graphene oxide/alginate beads as adsorbents: Influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance.

    PubMed

    Platero, Emiliano; Fernandez, Maria Emilia; Bonelli, Pablo Ricardo; Cukierman, Ana Lea

    2017-04-01

    Graphene oxide/alginate beads were prepared from lab-synthesized graphene oxide, varying its content within the beads (0.05, 0.125, and 0.25wt.%). Ethanol-drying and lyophilization were compared as drying methods to obtain suitable adsorbents which were later tested to the removal of a model organic molecule (methylene blue). The morphological and textural properties of all the beads were characterized by scanning electron microscopy and N 2 adsorption/desorption isotherms at -196°C, respectively. Limited porosity was obtained for all cases (S BET <60m 2 /g). Uniaxial compression tests were performed to assess the mechanical properties of the beads. Ethanol-dried ones exhibited higher Young's elasticity modulus (E=192kPa) than the lyophilized samples (twice at 0.25wt.% graphene oxide loading), which disclosed breakage points at lower deformation percentages. Adsorption experiments were conducted and dye adsorption isotherms were obtained for the beads with the best removal performance. The experimental data were better fitted by the Langmuir model. The highest maximum adsorption capacity (4.25mmol/g) was obtained for the lyophilized beads with the highest graphene oxide content. Mechanical properties were found to be affected also by the dye adsorption. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Operando NMR and XRD study of chemically synthesized LiCx oxidation in a dry room environment

    DOE PAGES

    Sacci, Robert L.; Gill, Lance W.; Hagaman, Edward W.; ...

    2015-04-07

    We test the stability of pre-lithiated graphite anodes for Li-ion batteries in a dry room battery processing room. The reaction between LiCx and laboratory air was followed using operando NMR and x-ray diffraction as these methods are sensitive to change in Li stoichiometry in graphite. There is minimal reactivity between LiC 6 and N 2, CO 2 or O 2; however, LiC 6 reacts with moisture to form lithium (hydr)oxide. The reaction rate follows zero-order kinetics with respects to intercalated lithium suggesting that lithium transport through the graphite is fast. The reaction mechanism occurs by sequential formation of higher stagesmore » LiC 12, then LiC 18, and then LiC 24 as the hydrolysis proceeds to the formation of Li xOH y and graphite end products. Slowing down the formation rate of the Li xOH y passivation layer stabilizes of the higher stages.« less

  5. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    PubMed

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity.

  6. Highly effective removal of basic fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels.

    PubMed

    Yang, Xiaoxia; Li, Yanhui; Du, Qiuju; Sun, Jiankun; Chen, Long; Hu, Song; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2015-09-01

    Novel anionic polyacrylamide/graphene oxide aerogels were prepared by a freeze drying method and used to remove basic fuchsin from aqueous solutions. These aerogels were sponge-like solid with lightweight, fluffy and porous structure. The batch adsorption experiments were carried out to study the effect of various parameters, such as the solution pH, adsorbent dose, contact time and temperature on adsorption properties of basic fuchsin onto anionic polyacrylamide/graphene oxide aerogels. The kinetics of adsorption corresponded to the pseudo-second-order kinetic model. The Langmuir adsorption isotherm was suitable to describe the equilibrium adsorption process. The maximum adsorption capacity was up to 1034.3 mg/g, which indicated that anionic polyacrylamide/graphene oxide aerogels were promising adsorbents for removing dyes pollutants from aqueous solution. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. New Aptes Cross-linked Polymers from Poly(ethylene oxide)s and Cyanuric Chloride for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    A new series of polymer electrolytes for use as membranes for lithium batteries are described. Electrolytes were made by polymerization between cyanuric chloride and diamino-terminated poly(ethylene oxide)s, followed by cross-linking via a sol-gel process. Thermal analysis and lithium conductivity of freestanding polymer films were studied. The effects of several variables on conductivity were investigated, such as length of backbone PEO chain, length of branching PEO chain, extent of branching, extent of cross-linking, salt content, and salt counterion. Polymer films with the highest percentage of PEO were found to be the most conductive, with a maximum lithium conductivity of 3.9 x 10(exp -5) S/cm at 25 C. Addition of plasticizer to the dry polymers increased conductivity by an order of magnitude.

  8. Heterogeneous photo-oxidation of pesticides and its implication to their environmental fate

    NASA Astrophysics Data System (ADS)

    Dubowski, Y.

    2014-12-01

    The environmental fate and impact of pesticides strongly depend on their post application degradation processes. While most existing knowledge on pesticides degradation refers to processes within bulk soil and water, applied pesticides may remain on treated surfaces (and on airborn particles) for long duration, exposed to atmospheric oxidants and solar radiation. The resulting photo-oxidation processes may have significant effect on their fate, especially in semiarid regions where pesticide applications take place during the long dry season and targeted irrigation is common. Here we present our studies on heterogeneous photo-oxidation of few commonly used pesticides (e.g., cypermethrin, methyl parathion, and chlorpyrifos), using novel laboratory setups enabling simultaneous monitoring of both phases. Experiments focused on kinetics, quantum yields, and identification of gaseous and condensed products. In addition, the reactivity of the selected pesticides was investigated as a function of their matrix (analytical vs. commercial formula), their phase (thin film vs. airborne aerosols), and the substrate they are sorbed on (leaf, soil, and glass). Complimentarily to these laboratory studies, field measurements of selected pesticides concentrations in few streams in northern Israel during the first rain events were also conducted and showed the important role of surface processes on these pesticides fate and transport in semi-arid climate.

  9. Cryochemical method for forming spherical metal oxide particles from metal salt solutions

    DOEpatents

    Tinkle, M.C.

    1973-12-01

    A method is described of preparing small metal oxide spheres cryochemically utilizing metal salts (e.g., nitrates) that cannot readily be dried and calcined without loss of sphericity of the particles. Such metal salts are cryochemically formed into small spheres, partially or completely converted to an insoluble salt, and dried and calcined. (Official Gazette)

  10. Effects of plant polyphenols and a-tocopherol on lipid oxidation, residual nitrites, biogenic amines, and N-nitrosamines formation during ripening and storage of dry-cured bacon

    USDA-ARS?s Scientific Manuscript database

    Effects of plant polyphenols (green tea polyphenols (GTP) and grape seed extract (GSE) and a-tocopherol on physicochemical parameters, lipid oxidation, residual nitrite, microbiological counts, biogenic amines, and N-nitrosamines were determined in bacons during dry-curing and storage. Results show ...

  11. Dry Storage of Research Reactor Spent Nuclear Fuel - 13321

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.

    2013-07-01

    Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. Themore » initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)« less

  12. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.

    PubMed

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2014-08-01

    The production of active dried yeast (ADY) is a common practice in industry for the maintenance of yeast starters and as a means of long term storage. The process, however, causes multiple cell injuries, with oxidative damage being one of the most important stresses. Consequentially, dehydration tolerance is a highly appreciated property in yeast for ADY production. In this study we analyzed the cellular redox environment in three Saccharomyces cerevisiae wine strains, which show markedly different fermentative capacities after dehydration. To measure/quantify the effect of dehydration on the S. cerevisiae strains, we used: (i) fluorescent probes; (ii) antioxidant enzyme activities; (ii) intracellular damage; (iii) antioxidant metabolites; and (iv) gene expression, to select a minimal set of biochemical parameters capable of predicting desiccation tolerance in wine yeasts. Our results show that naturally enhanced antioxidant defenses prevent oxidative damage after wine yeast biomass dehydration and improve fermentative capacity. Based on these results we chose four easily assayable parameters/biomarkers for the selection of industrial yeast strains of interest for ADY production: trehalose and glutathione levels, and glutathione reductase and catalase enzymatic activities. Yeast strains selected in accordance with this process display high levels of trehalose, low levels of oxidized glutathione, a high induction of glutathione reductase activity, as well as a high basal level and sufficient induction of catalase activity, which are properties inherent in superior ADY strains. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation.

    PubMed

    Goularte, Marcelo Augusto Pinto Cardoso; Barbosa, Gustavo Frainer; da Cruz, Nilson Cristino; Hirakata, Luciana Mayumi

    2016-12-01

    Search for materials that may either replace titanium dental implants or constitute an alternative as a new dental implant material has been widely studied. As well, the search for optimum biocompatible metal surfaces remains crucial. So, the aim of this work is to develop an oxidized surface layer on tantalum using plasma electrolytic oxidation (PEO) similar to those existing on oral implants been marketed today. Cleaned tantalum samples were divided into group 1 (control) and groups 2, 3, and 4 (treated by PEO for 1, 3, and 5 min, respectively). An electrolytic solution diluted in 1-L deionized water was used for the anodizing process. Then, samples were washed with anhydrous ethyl alcohol and dried in the open air. For complete anodic treatment disposal, the samples were immersed in acetone altogether, taken to the ultrasonic tank for 10 min, washed again in distilled water, and finally air-dried. For the scanning electron microscopy (SEM) analysis, all samples were previously coated with gold; the salt deposition analysis was conducted with an energy-dispersive X-ray spectroscopy (EDS) system integrated with the SEM unit. SEM images confirmed the changes on tantalum strips surface according to different exposure times while EDS analysis confirmed increased salt deposition as exposure time to the anodizing process also increased. PEO was able to produce both surface alteration and salt deposition on tantalum strips similar to those existing on oral implants been marketed today.

  14. Estimation of Sintering Kinetics of Oxidized Magnetite Pellet Using Optical Dilatometer

    NASA Astrophysics Data System (ADS)

    Sandeep Kumar, T. K.; Viswanathan, Neelakantan Nurni; Ahmed, Hesham M.; Andersson, Charlotte; Björkman, Bo

    2015-04-01

    The quality of magnetite pellet is primarily determined by the physico-chemical changes the pellet undergoes as it makes excursion through the gaseous and thermal environment in the induration furnace. Among these physico-chemical processes, the oxidation of magnetite phase and the sintering of oxidized magnetite (hematite) and magnetite (non-oxidized) phases are vital. Rates of these processes not only depend on the thermal and gaseous environment the pellet gets exposed in the induration reactor but also interdependent on each other. Therefore, a systematic study should involve understanding these processes in isolation to the extent possible and quantify them seeking the physics. With this motivation, the present paper focusses on investigating the sintering kinetics of oxidized magnetite pellet. For the current investigation, sintering experiments were carried out on pellets containing more than 95 pct magnetite concentrate from LKAB's mine, dried and oxidized to completion at sufficiently low temperature to avoid sintering. The sintering behavior of this oxidized pellet is quantified through shrinkage captured by Optical Dilatometer. The extent of sintering characterized by sintering ratio found to follow a power law with time i.e., Kt n . The rate constant K for sintering was determined for different temperatures from isothermal experiments. The rate constant, K, varies with temperature as and the activation energy ( Q) and reaction rate constant ( K') are estimated. Further, the sintering kinetic equation was also extended to a non-isothermal environment and validated using laboratory experiments.

  15. Improvement in the properties of plasma-sprayed metallic, alloy and ceramic coatings using dry-ice blasting

    NASA Astrophysics Data System (ADS)

    Dong, Shujuan; Song, Bo; Hansz, Bernard; Liao, Hanlin; Coddet, Christian

    2011-10-01

    Dry-ice blasting, as an environmental-friendly method, was introduced into atmospheric plasma spraying for improving properties of metallic, alloy and ceramic coatings. The deposited coatings were then compared with coatings plasma-sprayed using conventional air cooling in terms of microstructure, temperature, oxidation, porosity, residual stress and adhesion. It was found that a denser steel or CoNiCrAlY alloy coating with a lower content of oxide can be achieved with the application of dry-ice blasting during the plasma spraying. In addition, the adhesive strength of Al 2O 3 coating deposited with dry-ice blasting exceeded 60 MPa, which was nearly increased by 30% compared with that of the coating deposited with conventional air cooling. The improvement in properties of plasma-sprayed metallic, alloy and ceramic coatings caused by dry-ice blasting was attributed to the decrease of annulus-ringed disk like splats, the better cooling efficiency of dry-ice pellets and even the mechanical effect of dry-ice impact.

  16. Nitride Fuel Development Using Cryo-process Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Brandi M; Windes, William E

    A new cryo-process technique has been developed for the fabrication of advanced fuel for nuclear systems. The process uses a new cryo-processing technique whereby small, porous microspheres (<2000 µm) are formed from sub-micron oxide powder. A simple aqueous particle slurry of oxide powder is pumped through a microsphere generator consisting of a vibrating needle with controlled amplitude and frequency. As the water-based droplets are formed and pass through the microsphere generator they are frozen in a bath of liquid nitrogen and promptly vacuum freeze-dried to remove the water. The resulting porous microspheres consist of half micron sized oxide particles heldmore » together by electrostatic forces and mechanical interlocking of the particles. Oxide powder microspheres ranging from 750 µm to 2000 µm are then converted into a nitride form using a high temperature fluidized particle bed. Carbon black can be added to the oxide powder before microsphere formation to augment the carbothermic reaction during conversion to a nitride. Also, the addition of ethyl alcohol to the aqueous slurry reduces the surface tension energy of the droplets resulting in even smaller droplets forming in the microsphere generator. Initial results from this new process indicate a lower impurity contamination in the final nitrides due to the single feed stream of particles, material handling and conversion are greatly simplified, a minimum of waste and personnel exposure are anticipated, and finally the conversion kinetics may be greatly increased because of the small oxide powder size (sub-micron) forming the porous microsphere. Thus far the fabrication process has been successful in demonstrating all of these improvements with surrogate ZrO2 powder. Further tests will be conducted in the future using the technique on UO2 powders.« less

  17. Spray Characteristics and Tribo-Mechanical Properties of High-Velocity Arc-Sprayed WC-W2C Iron-Based Coatings

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Hagen, L.; Kokalj, D.

    2017-10-01

    In terms of arc-sprayed coatings, the lamellar coating microstructure is mainly affected by the atomization behavior of the molten electrode tips. When using compressed air, oxide formations occur during atomization, across the particle-laden spray plume and when the molten droplets splash onto the substrate. Within the scope of this study, the potential of a high-velocity arc-spraying process due to elevated atomization gas pressures and its effect on the spray and coating characteristics was analyzed using a cast tungsten carbide (CTC)-reinforced FeCMnSi cored wire. Since the atomization behavior corresponds with the electrode phenomena, the power spectrum and the droplet formation were observed during spraying. The tribo-mechanical properties of CTC-FeCMnSi coatings were examined in dry sliding experiments and indentation tests. In addition, adhesion tests and metallographic investigations were carried out to analyze the bonding strength, cohesive behavior, and lamellar microstructure. The occurrence of oxide phases was evaluated by x-ray diffraction and electron microscopy. Moreover, the oxygen content was determined by using glow discharge optical emission spectroscopy as well as energy-dispersive x-ray spectroscopy. With respect to elevated atomization gas pressures, a dense microstructure with improved adhesion to the substrate and reduced surface roughness was observed. Dry sliding experiments revealed an advanced wear behavior of specimens, when using above average increased atomization gas pressures. Analytic methods verified the existence of oxide phases, which were generated during spraying. A significant change of the extent and type of oxides, when applying an increased flow rate of the atomization gas, cannot be observed. Besides an enhanced coating quality, the use of increased atomization gas pressure exhibited good process stability.

  18. Oxidation study of coated Crofer 22 APU steel in dry oxygen

    NASA Astrophysics Data System (ADS)

    Molin, Sebastian; Chen, Ming; Hendriksen, Peter Vang

    2014-04-01

    The effect of a dual layer coating composed of a layer of a Co3O4 and a layer of a La0.85Sr0.15MnO3/Co3O4 mixture on the high temperature corrosion of the Crofer 22 APU alloy is reported. Oxidation experiments were performed in dry oxygen at three temperatures: 800 °C, 850 °C and 900 °C for periods up to 1000 h. Additionally at 850 °C a 5000 h long oxidation test was performed to evaluate longer term suitability of the proposed coating. Corrosion kinetics were evaluated by measuring mass gain during oxidation. The corrosion kinetics for the coated samples are analyzed in terms of a parabolic rate law. Microstructural features were investigated by scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffractometry. The coating is effective in reducing the corrosion rate and in ensuring long lifetime of coated alloys. The calculated activation energy for the corrosion process is around 1.8 eV. A complex Co-Mn-Cr spinel is formed caused by diffusion of Cr and Mn from the alloy into the Co3O4 coating and by additional diffusion of Mn from the LSM layer. Adding a layer of LSM/Co3O4, acting as an additional Mn source, on top of the cobalt spinel is beneficial for the improved corrosion resistance.

  19. Quality and Antioxidant Activity of Buckwheat-Based Cookies Designed for a Raw Food Vegan Diet as Affected by Moderate Drying Temperature.

    PubMed

    Brožková, Iveta; Dvořáková, Veronika; Michálková, Kateřina; Červenka, Libor; Velichová, Helena

    2016-12-01

    Buckwheat cookies with various ingredients for raw food vegan diet are usually prepared by soaking them in water at ambient temperature followed by drying at moderate temperature. The aim of this study was to examine the temperature effect on the microbiological quality, antioxidant properties and oxidative stability of lipids of final dried samples. The mixture of ingredients was soaked for 20 h in distilled water, and then cookies were formed and dried in air-forced oven at constant temperature in the range from 40 to 60 °C. Total viable counts, fungi, yeasts, coliform and aerobic spore-forming bacteria counts were evaluated in dried samples and were found to decrease during drying at 50 and 60 °C. Antioxidant activity was determined by DPPH and ABTS assays, and the former showed the highest value at 40 °C. Superoxide dismutase activity was also higher at 40 °C in comparison with that at 60 °C. The percentage of lipid peroxidation inhibition increased with the increase in drying temperature until 4th day of incubation. While peroxide value was significantly higher in samples dried at 40 °C, TBARS values did not show significant changes during the drying process. The results of this study suggest that drying buckwheat-based cookies at 40 °C retained their good antioxidant properties but represent a potentially serious microbial hazard.

  20. Construction of Novel Saccharomyces cerevisiae Strains for Bioethanol Active Dry Yeast (ADY) Production

    PubMed Central

    Gao, Kehui; Liu, Zewei; Zhang, Xing; Li, Ou; Sun, Jianguo; Zhang, Xiaoyang; Du, Fengguang; Sun, Peiyong; Qu, Aimin; Wu, Xuechang

    2013-01-01

    The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS) process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes. PMID:24376860

  1. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY) production.

    PubMed

    Zheng, Daoqiong; Zhang, Ke; Gao, Kehui; Liu, Zewei; Zhang, Xing; Li, Ou; Sun, Jianguo; Zhang, Xiaoyang; Du, Fengguang; Sun, Peiyong; Qu, Aimin; Wu, Xuechang

    2013-01-01

    The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS) process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  2. Processing of converter sludges on the basis of thermal-oxidative coking with coals

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. N.; Shkoller, M. B.; Protopopov, E. V.; Kazimirov, S. A.; Temlyantsev, M. V.

    2017-09-01

    The paper deals with the solution of an important problem related to the recycling of converter sludge. High moisture and fine fractional composition of waste causes the application of their deep dehydration and lumping. To reduce environmental emissions the non-thermal method of dehydration is considered - adsorption-contact drying. As a sorbent, the pyrolysis product of coals from the Kansko-Achinsky basin - brown coal semi-coke (BSC) obtained by the technology “Thermokoks”. Experimental data on the dehydration of high-moisture wastes with the help of BSC showed high efficiency of the selected material. The lumping of the dried converter dust was carried out by thermo-chemical coking with coals of grades GZh (gas fat coal) and Zh (fat coal). As a result, an iron-containing product was obtained - ferrocoke, which is characterized by almost complete reduction of iron oxides, as well as zinc transition into a vapor state, and is removed with gaseous process products. Based on the results of the experimental data a process basic diagram of the utilization of converter sludge to produce ferrocoke was, which can be effectively used in various metallurgical aggregates, for example, blast furnaces, converters and electric arc furnaces. In the basic technological scheme heat generated by ferrocoke cooling and the energy of the combustion products after the separation of zinc in the gas turbine plant will be used.

  3. Rapid Fabrication of Silver Nanowires through Photoreduction of Silver Nitrate from an Anodic-Aluminum-Oxide Template

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Hsuan; Chen, Kun-Tso; Ho, Jeng-Rong

    2011-06-01

    A method for rapidly fabricating dense and high-aspect-ratio silver nanowires, with wire diameter of 200 nm and wire length more than 30 µm, is reported. The fabrication process simply involves filling the silver nitrate solution into the pores of an anodic-aluminum-oxide (AAO) membrane through capillary attraction and irradiating the dried template AAO membrane using a pulsed ArF excimer laser. Through varying the thickness and pore diameter of the employed AAO membrane, the primary dimensions of the targeted silver nanowires can be plainly specified; and, by amending the initial concentration of the silver nitrate solution and adjusting the laser operation parameters, laser fluence and number of laser pulses, the surface morphology and size of the resulting nanowires can be finely regulated. The wire formation mechanism is considered through two stages: the period of precipitation of silver particles from the dried silver nitrate film through the laser-induced photoreduction; and, the phase of clustering, merging and fusing of the reduced particles to form nanowires in the template pores by the thermal energy owing to photothermal effect. This approach is straightforward and takes the advantage that all the fabrication processes can be executed in an ambient environment and at room temperature. In addition, by the excellence in local processing that the laser possesses, this method is suitable for precisely growing nanowires.

  4. Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells

    DOEpatents

    Ramanathan, Kannan V.; Contreras, Miguel A.; Bhattacharya, Raghu N.; Keane, James; Noufi, Rommel

    1999-01-01

    The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.

  5. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  6. Making Activated Carbon by Wet Pressurized Pyrolysis

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb oxides of nitrogen.

  7. Spray-dried mucoadhesives for intravesical drug delivery using N-acetylcysteine- and glutathione-glycol chitosan conjugates.

    PubMed

    Denora, Nunzio; Lopedota, Angela; Perrone, Mara; Laquintana, Valentino; Iacobazzi, Rosa M; Milella, Antonella; Fanizza, Elisabetta; Depalo, Nicoletta; Cutrignelli, Annalisa; Lopalco, Antonio; Franco, Massimo

    2016-10-01

    This work describes N-acetylcysteine (NAC)- and glutathione (GSH)-glycol chitosan (GC) polymer conjugates engineered as potential platform useful to formulate micro-(MP) and nano-(NP) particles via spray-drying techniques. These conjugates are mucoadhesive over the range of urine pH, 5.0-7.0, which makes them advantageous for intravesical drug delivery and treatment of local bladder diseases. NAC- and GSH-GC conjugates were generated with a synthetic approach optimizing reaction times and purification in order to minimize the oxidation of thiol groups. In this way, the resulting amount of free thiol groups immobilized per gram of NAC- and GSH-GC conjugates was 6.3 and 3.6mmol, respectively. These polymers were completely characterized by molecular weight, surface sulfur content, solubility at different pH values, substitution and swelling degree. Mucoadhesion properties were evaluated in artificial urine by turbidimetric and zeta (ζ)-potential measurements demonstrating good mucoadhesion properties, in particular for NAC-GC at pH 5.0. Starting from the thiolated polymers, MP and NP were prepared using both the Büchi B-191 and Nano Büchi B-90 spray dryers, respectively. The resulting two formulations were evaluated for yield, size, oxidation of thiol groups and ex-vivo mucoadhesion. The new spray drying technique provided NP of suitable size (<1μm) for catheter administration, low degree of oxidation, and sufficient mucoadhesion property with 9% and 18% of GSH- and NAC-GC based NP retained on pig mucosa bladder after 3h of exposure, respectively. The aim of the present study was first to optimize the synthesis of NAC-GC and GSH-GC, and preserve the oxidation state of the thiol moieties by introducing several optimizations of the already reported synthetic procedures that increase the mucoadhesive properties and avoid pH-dependent aggregation. Second, starting from these optimized thiomers, we studied the feasibility of manufacturing MP and NP by spray-drying techniques. The aim of this second step was to produce mucoadhesive drug delivery systems of adequate size for vesical administration by catheter, and comparable mucoadhesive properties with respect to the processed polymers, avoiding thiolic oxidation during the formulation. MP with acceptable size produced by spray-dryer Büchi B-191 were compared with NP made with the apparatus Nano Büchi B-90. Copyright © 2016 Acta Materialia Inc. All rights reserved.

  8. Oxidation of High-temperature Alloy Wires in Dry Oxygen and Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Lorincz, Jonathan A.; DeMange, Jeffrey J.

    2004-01-01

    Small diameter wires (150 to 250 microns) of the high temperature alloys Haynes 188, Haynes 230, Haynes 230, Haynes 214, Kanthal Al and PM2000 were oxidized at 1204 C in dry oxygen or 50% H2O /50% O2 for 70 Hours. The oxidation kinetics were monitored using a thermogravimetric technique. Oxide phase composition and morphology of the oxidized wires were determined by X-ray diffraction,field emission scanning electron microscopy, and energy dispersive spectroscopy. The alumina-forming alloys, Kanthal Al and PM2000, out-performed the chromia-forming alloys under this conditions. PM2000 was recommended as the most promising candidate for advanced hybrid seal applications for space reentry control surface seals or hypersonic propulsion system seals. This study also demonstrated that thermogravimetric analysis of small diameter wires is a powerful technique for the study of oxide volatility, oxide adherence, and breakaway oxidation.

  9. Short communication: Oxidative status and incidence of mastitis relative to blood α-tocopherol concentrations in the postpartum period in dairy cows.

    PubMed

    Politis, I; Theodorou, G; Lampidonis, A D; Kominakis, A; Baldi, A

    2012-12-01

    Vitamin E supplementation, when combined with high blood α-tocopherol (>6.25 μg/mL) at dry off, has been reported to unexpectedly increased the risk for clinical mastitis in dairy cows. Furthermore, higher levels of oxidative stress in the postpartum period were related to higher risk of mastitis. The objective of the present study was to determine the relationship between various serum biomarkers of oxidative status, incidence of mastitis, and blood α-tocopherol concentrations at dry off and at calving. A total of 146 dairy cows from a commercial farm were used in an observational field study. All cows were supplemented with 3,000 and 50 IU/cow per day of all-rac-α-tocopherol during the dry period and lactation, respectively. Blood samples were collected at dry off and at calving. Serum was analyzed for α-tocopherol, levels of reactive oxygen metabolites (ROM), thiol groups (SH), and ferric-reducing ability. Three α-tocopherol groups at calving were created: high (>3 μg/mL), medium (2-3 μg/mL), and low (<2 μg/mL). Three α-tocopherol groups at dry off were created: high (>6.25 μg/mL), medium (4.25-6.25 μg/mL), and low (<4.25 μg/mL). All cases of clinical mastitis that occurred during the dry period and the entire subsequent lactation were verified by a veterinarian. No differences were observed in the incidence of mastitis between the 3 α-tocopherol groups based on the serum levels at dry off. Incidence of mastitis was 4 times lower in the high and medium groups when compared with the corresponding value for the low-α-tocopherol group based on the serum levels at calving. Lower levels of ROM and SH at dry off and at calving were found in the group of cows with the highest α-tocopherol values at dry off when compared with the corresponding values in the low-α-tocopherol group. The ROM values at dry off but not at calving were lower in the group of cows with the highest α-tocopherol values at calving when compared with the corresponding values in the low-α-tocopherol group. No differences were observed in ferric-reducing ability values between the 3 α-tocopherol groups at dry off or calving. No differences were observed in all biomarkers of oxidative status between healthy cows and those with mastitis. Thus, blood α-tocopherol is inversely related to certain biomarkers of oxidative stress in the postpartum period and incidence of mastitis. However, reduction in the incidence of mastitis is not mediated through a reduction in the levels of various biomarkers of oxidative stress. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. 40 CFR 180.491 - Propylene oxide; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... Basil, dried leaves 6000 Cacao bean, cocoa powder 20.0 Cacao bean, dried bean 20.0 Fig 3.0 Garlic, dried 6000 Grape, raisin 4.0 Herbs and spices, group 19, dried, except basil 1500 Nut, pine 10.0 Nut, tree...

  11. 40 CFR 180.491 - Propylene oxide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...: Commodity Parts per million Basil, dried leaves 6000 Cacao bean, dried bean 20.0 Cacao bean, cocoa powder 20.0 Fig 3.0 Garlic, dried 6000 Grape, raisin 4.0 Herbs and spices, group 19, dried, except basil 1500...

  12. 40 CFR 180.491 - Propylene oxide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... Basil, dried leaves 6000 Cacao bean, cocoa powder 20.0 Cacao bean, dried bean 20.0 Fig 3.0 Garlic, dried 6000 Grape, raisin 4.0 Herbs and spices, group 19, dried, except basil 1500 Nut, pine 10.0 Nut, tree...

  13. 40 CFR 180.491 - Propylene oxide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... Basil, dried leaves 6000 Cacao bean, cocoa powder 20.0 Cacao bean, dried bean 20.0 Fig 3.0 Garlic, dried 6000 Grape, raisin 4.0 Herbs and spices, group 19, dried, except basil 1500 Nut, pine 10.0 Nut, tree...

  14. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    PubMed

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance.

  15. Oxidative production of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth by Gluconobacter oxydans.

    PubMed

    Zhang, Hongsen; Han, Xushen; Wei, Chengxiang; Bao, Jie

    2017-01-01

    An oxidative production process of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth was designed, experimentally investigated, and evaluated. Dry dilute acid pretreated and biodetoxified corn stover was simultaneously saccharified and fermented into 59.80g/L of ethanol (no xylose utilization). 65.39g/L of xylose was obtained in the distillation stillage without any concentrating step after ethanol was distillated. Then the xylose was completely converted into 66.42g/L of xylonic acid by Gluconobacter oxydans. The rigorous Aspen Plus modeling shows that the wastewater generation and energy consumption was significantly reduced comparing to the previous xylonic acid production process using xylose in pretreatment liquid. This study provided a practical process option for xylonic acid production from lignocellulose feedstock with significant reduction of wastewater and energy consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Study of aroma formation and transformation during the manufacturing process of Biluochun green tea in Yunnan Province by HS-SPME and GC-MS.

    PubMed

    Wang, Chen; Lv, Shidong; Wu, Yuanshuang; Lian, Ming; Gao, Xuemei; Meng, Qingxiong

    2016-10-01

    Biluochun is a typical non-fermented tea and is also famous for its unique aroma in China. Few studies have been performed to evaluate the effect of the manufacturing process on the formation and content of its aroma. The volatile components were extracted at different manufacturing process steps of Biluochun green tea using fully automated headspace solid-phase microextraction (HS-SPME) and further characterised by gas chromatography-mass spectrometry (GC-MS). Among 67 volatile components collected, the fractions of linalool oxides, β-ionone, phenylacetaldehyde, aldehydes, ketones, and nitrogen compounds were increased while alcohols and hydrocarbons declined during the manufacturing process. The aroma compounds decreased the most during the drying steps. We identified a number of significantly changed components that can be used as markers and quality control during the producing process of Biluochun. The drying step played a major role in the aroma formation of green tea products and should be the most important step for quality control. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Electronic nose for the identification of pig feeding and ripening time in Iberian hams.

    PubMed

    Santos, J P; García, M; Aleixandre, M; Horrillo, M C; Gutiérrez, J; Sayago, I; Fernández, M J; Arés, L

    2004-03-01

    An electronic nose system to control the processing of dry-cured Iberian ham is presented. The sensors involved are tin oxide semiconductors thin films. They were prepared by RF sputtering. Some of the sensors were doped with metal catalysts as Pt and Pd, in order to improve the selectivity of the sensors. The multisensor with 16 semiconductor sensors, gave different responses from two types of dry-cured Iberian hams which differ in the feeding and curing time. The data has been analysed using the PCA (principal component analysis) and backpropagation and probabilistic neural networks. The analysis shows that different types of Iberian ham can be discriminated and identified successfully.

  18. PROCESS OF PREPARING URANIUM-IMPREGNATED GRAPHITE BODY

    DOEpatents

    Kanter, M.A.

    1958-05-20

    A method for the fabrication of graphite bodies containing uniformly distributed uranium is described. It consists of impregnating a body of graphite having uniform porosity and low density with an aqueous solution of uranyl nitrate hexahydrate preferably by a vacuum technique, thereafter removing excess aqueous solution from the surface of the graphite, then removing the solvent water from the body under substantially normal atmospheric conditions of temperature and pressure in the presence of a stream of dry inert gas, and finally heating the dry impregnated graphite body in the presence of inert gas at a temperature between 800 and 1400 d C to convert the uranyl nitrate hexahydrate to an oxide of uranium.

  19. Evaluate dry deposition velocity of the nitrogen oxides using Noah-MP physics ensemble simulations for the Dinghushan Forest, Southern China

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Chang, Ming; Zhou, Shengzhen; Chen, Weihua; Wang, Xuemei; Liao, Wenhui; Dai, Jianing; Wu, ZhiYong

    2017-11-01

    There has been a rapid growth of reactive nitrogen (Nr) deposition over the world in the past decades. The Pearl River Delta region is one of the areas with high loading of nitrogen deposition. But there are still large uncertainties in the study of dry deposition because of its complex processes of physical chemistry and vegetation physiology. At present, the forest canopy parameterization scheme used in WRF-Chem model is a single-layer "big leaf" model, and the simulation of radiation transmission and energy balance in forest canopy is not detailed and accurate. Noah-MP land surface model (Noah-MP) is based on the Noah land surface model (Noah LSM) and has multiple parametric options to simulate the energy, momentum, and material interactions of the vegetation-soil-atmosphere system. Therefore, to investigate the improvement of the simulation results of WRF-Chem on the nitrogen deposition in forest area after coupled with Noah-MP model and to reduce the influence of meteorological simulation biases on the dry deposition velocity simulation, a dry deposition single-point model coupled by Noah- MP and the WRF-Chem dry deposition module (WDDM) was used to simulate the deposition velocity (Vd). The model was driven by the micro-meteorological observation of the Dinghushan Forest Ecosystem Location Station. And a series of numerical experiments were carried out to identify the key processes influencing the calculation of dry deposition velocity, and the effects of various surface physical and plant physiological processes on dry deposition were discussed. The model captured the observed Vd well, but still underestimated the Vd. The self-defect of Wesely scheme applied by WDDM, and the inaccuracy of built-in parameters in WDDM and input data for Noah-MP (e.g. LAI) were the key factors that cause the underestimation of Vd. Therefore, future work is needed to improve model mechanisms and parameterization.

  20. Indigenous Starter Cultures to Improve Quality of Artisanal Dry Fermented Sausages from Chaco (Argentina).

    PubMed

    Palavecino Prpich, Noelia Z; Castro, Marcela P; Cayré, María E; Garro, Oscar A; Vignolo, Graciela M

    2015-01-01

    Lactic acid bacteria (LAB) and coagulase negative cocci (CNC) were isolated from artisanal dry sausages sampled from the northeastern region of Chaco, Argentina. In order to evaluate their performance in situ and considering technological features of the isolated strains, two mixed selected autochthonous starter cultures (SAS) were designed: (i) SAS-1 (Lactobacillus sakei 487 + Staphylococcus vitulinus C2) and (ii) SAS-2 (L. sakei 442 + S. xylosus C8). Cultures were introduced into dry sausage manufacturing process at a local small-scale facility. Microbiological and physicochemical parameters were monitored throughout fermentation and ripening periods, while sensory attributes of the final products were evaluated by a trained panel. Lactic acid bacteria revealed their ability to colonize and adapt properly to the meat matrix, inhibiting the growth of spontaneous microflora and enhancing safety and hygienic profile of the products. Both SAS showed a beneficial effect on lipid oxidation and texture of the final products. Staphylococcus vitulinus C2, from SAS-1, promoted a better redness of the final product. Sensory profile revealed that SAS addition preserved typical sensory attributes. Introduction of these cultures could provide an additional tool to standardize manufacturing processes aiming to enhance safety and quality while keeping typical sensory attributes of regional dry fermented sausages.

  1. Comparative evaluation of zinc oxide eugenol versus gelatin sponge soaked in plasma rich in growth factor in the treatment of dry socket: An initial study

    PubMed Central

    Pal, U. S.; Singh, Balendra Pratap; Verma, Vikas

    2013-01-01

    Purpose: The aim of this study was to report a comparison between the zinc oxide eugenol dressing and plasma rich in growth factor (PRGF) with gelatin sponge in the treatment of dry socket. Materials and Methods: This study comprised of 45 patients of dry socket in the span of one year. The patients were randomly divided into three groups on the basis of treatments: Group A (PRGF with gelatin sponge), group B (zinc oxide eugenol group), and group C (irrigation with sterile saline only). The clinical progress was noted at 1st, 2nd, 3rd, 7th, and 15th day after the treatment. Results: Patient's healing was better in group A than in group B but symptomatic pain relief was faster in group B. Group C fared worst in both aspects. Conclusion: We conclude that PRGF with gelatin sponge might be a treatment of choice in the management of dry socket. PMID:23853450

  2. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate.

    PubMed

    Alemán, Mercedes; Bou, Ricard; Tres, Alba; Polo, Javier; Codony, Rafael; Guardiola, Francesc

    2016-04-01

    Fortification of food products with iron is a common strategy to prevent or overcome iron deficiency. However, any form of iron is a pro-oxidant and its addition will cause off-flavours and reduce a product's shelf life. A highly bioavailable heme iron ingredient was selected to fortify a chocolate cream used to fill sandwich-type cookies. Two different strategies were assessed for avoiding the heme iron catalytic effect on lipid oxidation: ascorbyl palmitate addition and co-spray-drying of heme iron with calcium caseinate. Oxidation development and sensory acceptability were monitored in the cookies over one-year of storage at room temperature in the dark. The addition of ascorbyl palmitate provided protection against oxidation and loss of tocopherols and tocotrienols during the preparation of cookies. In general, ascorbyl palmitate, either alone or in combination with the co-spray-dried heme iron, prevented primary oxidation and hexanal formation during storage. The combination of both strategies resulted in cookies that were acceptable from a sensory point of view after 1year of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Dry-spray deposition of TiO2 for a flexible dye-sensitized solar cell (DSSC) using a nanoparticle deposition system (NPDS).

    PubMed

    Kim, Min-Saeng; Chun, Doo-Man; Choi, Jung-Oh; Lee, Jong-Cheon; Kim, Yang Hee; Kim, Kwang-Su; Lee, Caroline Sunyong; Ahn, Sung-Hoon

    2012-04-01

    TiO2 powders were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates for application to the photoelectrode of a dye-sensitized solar cell (DSSC). In the conventional DSSC manufacturing process, a semiconductor oxide such as TiO2 powder requires a sintering process at higher temperature than the glass transition temperature (T(g)) of polymers, and thus utilization of flexible polymer substrates in DSSC research has been constrained. To overcome this restriction related to sintering, we used a nanoparticle deposition system (NPDS) that could produce a thin coating layer through a dry-spray method under atmospheric pressure at room temperature. The powder was sprayed through a slit-type nozzle having a 0.4 x 10 mm2 rectangular outlet. In order to determine the deposited TiO2 thickness, five kinds of TiO2 layered specimens were prepared, where the specimens have single and double layer structures. Deposited powders on the ITO coated PET substrates were observed using FE-SEM and a scan profiler The thicker TiO2 photoelectrode with a DSSC having a double layer structure showed higher energy efficiency than the single layer case. The highest fabricated flexible DSSC displayed a short circuit current density J(sc) = 1.99 mA cm(-2), open circuit voltage V(oc) = 0.71 V, and energy efficiency eta = 0.94%. These results demonstrate the possibility of utilizing the dry-spray method to fabricate a TiO2 layer on flexible polymer substrates at room temperature under atmospheric pressure.

  4. PROCESS OF FORMING PLUOTONIUM SALTS FROM PLUTONIUM EXALATES

    DOEpatents

    Garner, C.S.

    1959-02-24

    A process is presented for converting plutonium oxalate to other plutonium compounds by a dry conversion method. According to the process, lower valence plutonium oxalate is heated in the presence of a vapor of a volatile non- oxygenated monobasic acid, such as HCl or HF. For example, in order to produce plutonium chloride, the pure plutonium oxalate is heated to about 700 deg C in a slow stream of hydrogen plus HCl. By the proper selection of an oxidizing or reducing atmosphere, the plutonium halide product can be obtained in either the plus 3 or plus 4 valence state.

  5. The effects of isoprene and NOx on secondary organic aerosols formed through reversible and irreversible uptake to aerosol water

    NASA Astrophysics Data System (ADS)

    El-Sayed, Marwa M. H.; Ortiz-Montalvo, Diana L.; Hennigan, Christopher J.

    2018-01-01

    Isoprene oxidation produces water-soluble organic gases capable of partitioning to aerosol liquid water. The formation of secondary organic aerosols through such aqueous pathways (aqSOA) can take place either reversibly or irreversibly; however, the split between these fractions in the atmosphere is highly uncertain. The aim of this study was to characterize the reversibility of aqSOA formed from isoprene at a location in the eastern United States under substantial influence from both anthropogenic and biogenic emissions. The reversible and irreversible uptake of water-soluble organic gases to aerosol water was characterized in Baltimore, Maryland, USA, using measurements of particulate water-soluble organic carbon (WSOCp) in alternating dry and ambient configurations. WSOCp evaporation with drying was observed systematically throughout the late spring and summer, indicating reversible aqSOA formation during these times. We show through time lag analyses that WSOCp concentrations, including the WSOCp that evaporates with drying, peak 6 to 11 h after isoprene concentrations, with maxima at a time lag of 9 h. The absolute reversible aqSOA concentrations, as well as the relative amount of reversible aqSOA, increased with decreasing NOx / isoprene ratios, suggesting that isoprene epoxydiol (IEPOX) or other low-NOx oxidation products may be responsible for these effects. The observed relationships with NOx and isoprene suggest that this process occurs widely in the atmosphere, and is likely more important in other locations characterized by higher isoprene and/or lower NOx levels. This work underscores the importance of accounting for both reversible and irreversible uptake of isoprene oxidation products to aqueous particles.

  6. Protein Oxidation: Key to Bacterial Desiccation Resistance?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, Jim K.; Li, Shu-Mei W.; Gaidamakova, E.

    For extremely ionizing radiation resistant bacteria, survival has been attributed to protection of proteins from oxidative damage during irradiation, with the result that repair systems survive and function with far greater efficiency during recovery than in sensitive bacteria. Here we examined the relationship between survival of dry-climate soil bacteria and the level of cellular protein oxidation induced by desiccation. Bacteria were isolated from surface soils of the shrub-steppe of the U.S. Department of Energy’s Hanford Site in Washington state. A total of 63 isolates were used for phylogenetic analysis. The majority of isolates were closely related to members of themore » genus Deinococcus, with Chelatococcus, Methylobacterium and Bosea also among the genera identified. Desiccation-resistant isolates accumulated high intracellular manganese and low iron concentrations compared to sensitive bacteria. In vivo, proteins of desiccation-resistant bacteria were protected from oxidative modifications that introduce carbonyl groups in sensitive bacteria during drying. We present the case that survival of bacteria that inhabit dry-climate soils are highly dependent on mechanisms which limit protein oxidation during dehydration.« less

  7. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  8. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  9. Development and characterization of reduced graphene oxide films for transient electronics

    NASA Astrophysics Data System (ADS)

    Sheikh, Rasel; Bhatkar, Omkar; Smith, David; Rizvi, Reza

    2018-03-01

    Emerging interests in hardware security as well as environmental concerns have given rise to the field of transient or temporary electronics, which can be decommissioned by an external stimulus with minimal impact to the surrounding environment. In this study, an all graphene based film is produced by a one-step deposition process. The conversion of graphene oxide (GO) to reduced graphene oxide (rGO) depends on an interfacial reduction reaction. Control of processing conditions such as the underlying substrate, pH of GO and the film drying environment results in an ability to tailor the internal architecture of the films and their electronic properties. Furthermore, the ability to create masks for selective reduction of GO during deposition was also demonstrated, which was used to create intricate yet well-defined patterns and connections required in electronic circuits and devices. All graphene based freestanding films with selectively reduced GO were used in transient electronics application as circuitry and RFID tag patterns.

  10. Fabrication and Characterization of CMOS-MEMS Magnetic Microsensors

    PubMed Central

    Hsieh, Chen-Hsuan; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    This study investigates the design and fabrication of magnetic microsensors using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process. The magnetic sensor is composed of springs and interdigitated electrodes, and it is actuated by the Lorentz force. The finite element method (FEM) software CoventorWare is adopted to simulate the displacement and capacitance of the magnetic sensor. A post-CMOS process is utilized to release the suspended structure. The post-process uses an anisotropic dry etching to etch the silicon dioxide layer and an isotropic dry etching to remove the silicon substrate. When a magnetic field is applied to the magnetic sensor, it generates a change in capacitance. A sensing circuit is employed to convert the capacitance variation of the sensor into the output voltage. The experimental results show that the output voltage of the magnetic microsensor varies from 0.05 to 1.94 V in the magnetic field range of 5–200 mT. PMID:24172287

  11. Storage method, drying processes and extraction procedures strongly affect the phenolic fraction of rosemary leaves: an HPLC/DAD/MS study.

    PubMed

    Mulinacci, N; Innocenti, M; Bellumori, M; Giaccherini, C; Martini, V; Michelozzi, M

    2011-07-15

    The Rosmarinus officinalis L. is widely known for its numerous applications in the food field but also for the increasing interest in its pharmaceutical properties. Two groups of compounds are mainly responsible for the biological activities of the plant: the volatile fraction and the phenolic constituents. The latter group is mainly constituted by rosmarinic acid, by a flavonoidic fraction and by some diterpenoid compounds structurally derived from the carnosic acid. The aim of our work was to optimize the extractive and analytical procedure for the determination of all the phenolic constituents. Moreover the chemical stability of the main phenols, depending on the storage condition, the different drying procedures and the extraction solvent, have been evaluated. This method allowed to detect up to 29 different constituents at the same time in a relatively short time. The described procedure has the advantage to being able to detect and quantify several classes of compounds, among them numerous minor flavonoids, thus contributing to improving knowledge of the plant. The findings from this study have demonstrated that storing the raw fresh material in the freezer is not appropriate for rosemary, mainly due to the rapid disappearing of the rosmarinic acid during the freezing/thawing process. Regarding the flavonoidic fraction, consistent decrements, were highlighted in the dried samples at room temperature if compared with the fresh leaf. Rosmarinic acid, appeared very sensitive also to mild drying processes. The total diterpenoidic content undergoes to little changes when the leaves are freeze dried or frozen and limited losses are observed working on dried leaves at room temperature. Nevertheless it can be taken in account that this fraction is very sensitive to the water presence during the extraction that favors the conversion of carnosic acid toward it oxidized form carnosol. From our findings, it appear evident that when evaluating the phenolic content in rosemary leaves, several factors, mainly the type of storage, the drying process and the extraction methods, should be carefully taken into account because they can induce partial losses of the antioxidant components. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Liquefaction process

    DOEpatents

    Poddar, Syamal K.

    1981-01-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by pretreatment with a combination of pretreating agents comprising SO.sub.2 and an oxidizing agent. It is essential to effective operation that the moisture content of the solid carbonaceous material be within the range from about 10 to about 25 wt %, based on dry solid carbonaceous material, during the pretreatment. The pretreatment is believed to convert at least a portion of the scale-forming components and particularly calcium, to the corresponding sulfate prior to liquefaction. The pretreatment may be accomplished with the combination of pretreating agents either simultaneously by using a mixture comprising SO.sub.2 and a gaseous oxidizing agent or sequentially by first treating with SO.sub.2 and then with an oxidizing agent.

  13. Effect of Time Lenght Fermentation to Katsuobushi Oxidation Rate As Fish Flavor Based

    NASA Astrophysics Data System (ADS)

    Amalia, U.; Rianingsih, L.; Wijayanti, I.

    2018-02-01

    Katsuobushi or dried smoked skipjack had a distinctive flavor and widely used in traditional Japanese cuisine. This study aimed to evaluate the oxidation rate of Katsuobushi with different lenght fermentation. The processing treatment of the product were the differences of fish boiling time (30 min and 60 min) and the lenght of fermentation: 1 week, 2 weeks and 3 weeks. The glutamic acid content, the oxidation rate (thiobarbituric acid and peroxide value) and Total Plate Count of katsuobushi were analyzed statistically using analysis of varians. Significant differences were found among 3 weeks of fermentation compare to 1 weeks fermentation (P < 0.05). The conclusion of this study was katsuobushi with 60 min boiling and 3 weeks fermentation was potential to be developed become basic ingredients for the fish flavor.

  14. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, A. J.; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; Chagarov, E.

    2014-09-14

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al{sub 2}O{sub 3} gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge.more » These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001)« less

  15. Enhancement of green electroluminescence from nanocrystalline silicon by wet and dry processes.

    PubMed

    Sato, Keisuke; Hirakuri, Kenji

    2006-01-01

    Correlation between defects and luminescence property from electroluminescent (EL) device composed of nanocrystalline silicon (nc-Si) prepared by wet and dry processes such as hydrofluoric (HF) acid solution treatment and annealing have investigated using electron spin resonance and EL measurements. The EL device using HF-treated nc-Si emitted strong red light, because of existence of only P'ce-centers (radiative recombination centers) on the surface vicinity. On the other hand, the EL device using annealed nc-Si above 400 degrees C exhibited green luminescence by the reduction of particle size due to surface oxidation. When the annealing temperature was risen from 400 degrees C up to 600 degrees C, the green luminescence strengthened with increasing the P'ce-centers. These results indicate that the formation of many radiative recombination centers onto the nc-Si surface vicinity lead to the enhancement of green luminescence from the nc-Si based EL device.

  16. Synthesis of fine-grained .alpha.-silicon nitride by a combustion process

    DOEpatents

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1990-01-01

    A combustion synthesis process for the preparation of .alpha.-silicon nitride and composites thereof is disclosed. Preparation of the .alpha.-silicon nitride comprises the steps of dry mixing silicon powder with an alkali metal azide, such as sodium azide, cold-pressing the mixture into any desired shape, or loading the mixture into a fused, quartz crucible, loading the crucible into a combustion chamber, pressurizing the chamber with nitrogen and igniting the mixture using an igniter pellet. The method for the preparation of the composites comprises dry mixing silicon powder (Si) or SiO.sub.2, with a metal or metal oxide, adding a small amount of an alkali metal azide such as sodium azide, introducing the mixture into a suitable combustion chamber, pressurizing the combustion chamber with nitrogen, igniting the mixture within the combustion chamber, and isolating the .alpha.-silicon nitride formed as a reaction product.

  17. Influence of grass pellet production on pyrrolizidine alkaloids occurring in Senecio aquaticus-infested grassland.

    PubMed

    Gottschalk, Christoph; Ostertag, Johannes; Meyer, Karsten; Gehring, Klaus; Thyssen, Stefan; Gareis, Manfred

    2018-04-01

    1,2-Dehydro-pyrrolizidine alkaloids (PA) and their N-oxides (PANO) exhibit acute and chronic toxic effects on the liver and other organs and therefore are a hazard for animal and human health. In certain regions of Germany, an increasing spread of Senecio spp. (ragwort) on grassland and farmland areas has been observed during the last years leading to a PA/PANO-contamination of feed and food of animal and plant origin. This project was carried out to elucidate whether the process of grass pellet production applying hot air drying influences the content of PA and PANO. Samples of hay (n = 22) and grass pellets (n = 28) originated from naturally infested grassland (around 10% and 30% dominance of Senecio aquaticus) and from a trial plot with around 50% dominance. Grass pellets were prepared from grass originating from exactly the same plots as the hay samples. The samples were analysed by liquid chromatography-tandem mass spectrometry for PA/PANO typically produced by this weed. The results of the study revealed that PA/PANO levels (predominantly sum of senecionine, seneciphylline, erucifoline and their N-oxides) in hay ranged between 2.1 and 12.6 mg kg -1 dry matter in samples with 10% and 30% dominance of S. aquaticus, respectively. Samples from the trial plot (50% dominance) had levels of up to 52.9 mg kg -1 . Notably, the hot air drying process during the production of grass pellets did not lead to a reduction of PA/PANO levels. Instead, the levels in grass pellets with 10% and 30% S. aquaticus ranged from 3.1 to 55.1 mg kg -1 . Grass pellets from the trial plot contained up to 96.8 mg kg -1 . In conclusion, hot air drying and grass pellet production did not affect PA/PANO contents in plant material and therefore, heat-dried products cannot be regarded as safe in view of the toxic potential of 1,2-dehydro-pyrrolizidine alkaloids.

  18. Expression of SIRT1 and oxidative stress in diabetic dry eye.

    PubMed

    Liu, Hao; Sheng, Minjie; Liu, Yu; Wang, Peng; Chen, Yihui; Chen, Li; Wang, Weifang; Li, Bing

    2015-01-01

    To explore the expression of SIRT1 with oxidative stress and observe physiological and pathological changes in the corneas as well as the association between SIRT1 and oxidative stress of diabetic dry eyes in mice. Forty-eight C57BL/6Jdb/db mice at eight weeks of age were divided randomly into two groups: the diabetic dry eye group and the diabetic group. An additional forty-eight C57BL/6J mice at eight weeks of age were divided randomly into two groups: the dry eye group and the control group. Every mouse in the dry eye groups (diabetic and normal) was injected with scopolamine hydrobromide three times daily, combined with low humidity to establish a dry eye model. After the intervention, phenol red cotton string tests and corneal fluorescein staining were performed. In addition, HE staining and immunofluorescence were done. Expression of SIRT1 in the cornea was examined by real-time PCR and Western Blot and expression of FOXO3 and MnSOD proteins was detected by Western Blot. At one, four, and eight weeks post intervention, all of the groups except the controls showed significant decreases in tear production and increases in the corneal fluorescein stain (P<0.05 vs control). Between the experimental groups, the diabetic dry eye group had the least tear production and the highest corneal fluorescein stain score (P<0.05). As the disease progressed, all of the experimental groups showed obviously pathological changes in HE staining, particularly the diabetic dry eye group. In the 1(st) and 4(th) week, the expression of SIRT1, FOXO3, and MnSOD were significantly higher in the diabetic DE and DM groups but lower in the DE group compared to the controls (P<0.05). In the 8(th) week, the expression of SIRT1, FOXO3, and MnSOD was significantly down-regulated in the diabetic DE group and the DM group (P<0.05). Immunofluorescence showed similar results. In the condition of diabetic dry eye, tear production declined markedly coupled with seriously wounded corneal epithelium. Oxidative stress in the cornea was enhanced significantly and the expression of SIRT1 was decreased.

  19. Simazine application inhibits nitrification and changes the ammonia-oxidizing bacterial communities in a fertilized agricultural soil.

    PubMed

    Hernández, Marcela; Jia, Zhongjun; Conrad, Ralf; Seeger, Michael

    2011-12-01

    s-Triazine herbicides are widely used for weed control, and are persistent in soils. Nitrification is an essential process in the global nitrogen cycle in soil, and involves ammonia-oxidizing Bacteria (AOB) and ammonia-oxidizing Archaea (AOA). In this study, we evaluated the effect of the s-triazine herbicide simazine on the nitrification and on the structure of ammonia-oxidizing microbial communities in a fertilized agricultural soil. The effect of simazine on AOB and AOA were studied by PCR-amplification of amoA genes of nitrifying Bacteria and Archaea in soil microcosms and denaturing gradient gel electrophoresis (DGGE) analyses. Simazine [50 μg g(-1) dry weight soil (d.w.s)] completely inhibited the nitrification processes in the fertilized agricultural soil. The inhibition by simazine of ammonia oxidation observed was similar to the reduction of ammonia oxidation by the nitrification inhibitor acetylene. The application of simazine-affected AOB community DGGE patterns in the agricultural soil amended with ammonium, whereas no significant changes in the AOA community were observed. The DGGE analyses strongly suggest that simazine inhibited Nitrosobacteria and specifically Nitrosospira species. In conclusion, our results suggest that the s-triazine herbicide not only inhibits the target susceptible plants but also inhibits the ammonia oxidation and the AOB in fertilized soils. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, L.; Castaldi, A.; Jones, C.

    The ultimate goal of the project is to develop procedures, techniques, data and other information that will aid in the design of cost effective and energy efficient drying processes that produce high quality foods. This objective has been sought by performing studies to determine the pertinent properties of food products, by developing models to describe the fundamental phenomena of food drying and by testing the models at laboratory scale. Finally, this information is used to develop recommendations and strategies for improved dryer design and control. This volume emphasizes a detailed literature review and several extensive experimental studies. Since the basicmore » principle of food dehydration is the removal of water from food, the process of removing water causes quality changes which can be categorized as physical, chemical, and nutritional. These changes often have adverse effects on the quality of the resulting dehydrated food. In this work, the types of physical and chemical changes common in food drying and the important factors for them were reviewed. Pertinent kinetic models and kinetic data reported in literature were also collected and compiled as the results of review study. The overall objectives of this study were to identify major quality change in foods caused by drying process and to get the knowledge of the relationship between the quality change and factors known to affect them. The quality parameters reviewed included: browning, lipid oxidation, color loss, shrinkage, solubility, texture, aroma and flavor, vitamin and protein loss and microbiological concerns. 54 refs., 74 figs., 49 tabs.« less

  1. Perform Tests and Document Results and Analysis of Oxide Layer Effects and Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, E. D.; DelCul, G. D.; Spencer, B. B.

    2014-08-30

    During the initial feasibility test using actual used nuclear fuel (UNF) cladding in FY 2012, an incubation period of 30–45 minutes was observed in the initial dry chlorination. The cladding hull used in the test had been previously oxidized in a dry air oxidation pretreatment prior to removal of the fuel. The cause of this incubation period was attributed to the resistance to chlorination of an oxide layer imparted by the dry oxidation pretreatment on the cladding. Subsequently in 2013, researchers at the Korea Atomic Energy Institute (KAERI) reported on their chlorination study [R1] on ~9-gram samples of unirradiated ZirloTMmore » cladding tubes that had been previously oxidized in air at 500oC for various time periods to impart oxide layers of varying thickness. In early 2014, discussions with Indefinite Delivery, Indefinite Quantity (IDIQ) contracted technical consultants from Westinghouse described their previous development (and patents) [R2] on methods of chemical washing to remove some or all of the hydrous oxide layer imparted on UNF cladding during irradiation in light water reactors (LWRs) . Thus, the Oak Ridge National Laboratory (ORNL) study, described herein, was planned to extend the KAERI study on the effects of anhydrous oxide layers, but on larger ~100-gram samples of unirradiated zirconium alloy cladding tubes, and to investigate the effects of various methods of chemical pretreatment prior to chlorination with 100% chlorine on the average reaction rates and Cl2 usage efficiencies.« less

  2. Innovative method for recovery and valorization of hydroxytyrosol from olive mill wastewaters.

    PubMed

    Bonetti, A; Venturini, S; Ena, A; Faraloni, C

    2016-01-01

    The nutritional properties of olive oil can be attributed to its oleic acid and phenolic compounds content, acting as natural oxidants to prevent human diseases. In particular, hydroxytyrosol has an anti-inflammatory action similar to omega 3 fatty acids from fish oil. The olive oil production was conducted by two extraction procedures: first, a two-phase extraction giving extra-virgin olive oil and humid pomace, second, a three-phase working process of humid pomace, obtaining another minimum quantity of extra-virgin olive oil, 'dry' pomace devoid of polyphenols, and mill wastewaters rich in anti-oxidant compounds. The aim of this processing was to employ water to extract the highest concentration of polyphenols from humid pomace and convey them in oil mill wastewaters for extraction. Processed olives were 37,200 kg, pomace deprived of polyphenols was equal to 20,400 kg and processing was performed with 500 kg of olives per hour. This method offers advantages of using cheap equipment and technical simplicity.

  3. Significant Improvement of Thermal Stability for CeZrPrNd Oxides Simply by Supercritical CO2 Drying

    PubMed Central

    Fan, Yunzhao; Wang, Zizi; Xin, Ying; Li, Qian; Zhang, Zhaoliang; Wang, Yingxia

    2014-01-01

    Pr and Nd co-doped Ce-Zr oxide solid solutions (CZPN) were prepared using co-precipitation and microemulsion methods. It is found that only using supercritical CO2 drying can result in a significant improvement of specific surface area and oxygen storage capacity at lower temperatures for CZPN after aging at 1000°C for 12 h in comparison with those using conventional air drying and even supercritical ethanol drying. Furthermore, the cubic structure was obtained in spite of the fact that the atomic ratio of Ce/(Ce+Zr+Pr+Nd) is as low as 29%. The high thermal stability can be attributed to the loosely aggregated morphology and the resultant Ce enrichment on the nanoparticle surface, which are caused by supercritical CO2 drying due to the elimination of surface tension effects on the gas-liquid interface. PMID:24516618

  4. Evaluation of different drying temperatures on physico-chemical and antioxidant properties of water-soluble tomato powders and on their use in pork patties.

    PubMed

    Kim, Hyeong Sang; Chin, Koo Bok

    2016-02-01

    Tomato and tomato products provide various antioxidant activities, which could be changed by the processing method. This study was performed to evaluate the antioxidant activity of water-soluble tomato powder (WSTP) as affected by different oven temperatures (60, 80 and 100°C), and to evaluate the physico-chemical properties and antioxidative activities of pork patties containing these powders. The contents of total phenolic compounds of WSTP ranged from 22.2 to 69.6 g kg(-1) dry matter. The antioxidant activities increased significantly with increasing drying temperatures (P < 0.05). The physico-chemical properties of pork patties containing tomato powders were also evaluated. WSTP at 100°C showed the highest redness value compared to those dried at 60 and 80°C. Lipid oxidation of pork patties was retarded by 7 days with the addition of WSTP. In particular, pork patties containing WSTP showed antimicrobial activity at 14 days of refrigerated storage, regardless of drying temperatures. WSTP, especially prepared at 100°C, could be used as a natural antioxidant and antimicrobial agent in meat products. © 2015 Society of Chemical Industry.

  5. Metal-oxide-based energetic materials and synthesis thereof

    DOEpatents

    Tillotson, Thomas M. , Simpson; Randall, L [Livermore, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2006-01-17

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  6. Synthesis of Reduced Graphene Oxide-Modified LiMn0.75Fe0.25PO4 Microspheres by Salt-Assisted Spray Drying for High-Performance Lithium-Ion Batteries

    PubMed Central

    Kim, Myeong-Seong; Kim, Hyun-Kyung; Lee, Suk-Woo; Kim, Dong-Hyun; Ruan, Dianbo; Chung, Kyung Yoon; Lee, Sang Hyun; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-01-01

    Microsized, spherical, three-dimensional (3D) graphene-based composites as electrode materials exhibit improved tap density and electrochemical properties. In this study, we report 3D LiMn0.75Fe0.25PO4/reduced graphene oxide microspheres synthesized by one-step salt-assisted spray drying using a mixed solution containing a precursor salt and graphene oxide and a subsequent heat treatment. During this process, it was found that the type of metal salt used has significant effects on the morphology, phase purity, and electrochemical properties of the synthesized samples. Furthermore, the amount of the chelating agent used also affects the phase purity and electrochemical properties of the samples. The composite exhibited a high tap density (1.1 g cm−3) as well as a gravimetric capacity of 161 mA h g−1 and volumetric capacity of 281 mA h cm−3 at 0.05 C-rate. It also exhibited excellent rate capability, delivering a discharge capacity of 90 mA h g−1 at 60 C-rate. Furthermore, the microspheres exhibited high energy efficiency and good cyclability, showing a capacity retention rate of 93% after 1000 cycles at 10 C-rate. PMID:27220812

  7. Inhibition of microglial activation by elderberry extracts and its phenolic components

    PubMed Central

    Simonyi, Agnes; Chen, Zihong; Jiang, Jinghua; Zong, Yijia; Chuang, Dennis Y.; Gu, Zezong; Lu, Chi-Hua; Fritsche, Kevin L.; Greenlief, C. Michael; Rottinghaus, George E.; Thomas, Andrew L.; Lubahn, Dennis B.; Sun, Grace Y.

    2015-01-01

    Aims Elderberry (Sambucus spp.) is one of the oldest medicinal plants noted for its cardiovascular, anti-inflammatory, and immune-stimulatory properties. In this study, we investigated the anti-inflammatory and anti-oxidant effects of the American elderberry (Sambucus nigra subsp. canadensis) pomace as well as some of the anthocyanins (cyanidin chloride and cyanidin 3-O-glucoside) and flavonols (quercetin and rutin) in bv-2 mouse microglial cells. Main methods The bv-2 cells were pretreated with elderberry pomace (extracted with ethanol or ethyl acetate) or its anthocyanins and flavonols and stimulated by either lipopolysaccharide (LPS) or interferon-γ (IFNγ). Reactive oxygen species (ROS) and nitric oxide (NO) production (indicating oxidative stress and inflammatory response) were measured using the ROS detection reagent DCF-DA and the Griess reaction, respectively. Key findings Analysis of total monomeric anthocyanin (as cyanidin 3-O-glucoside equivalents) indicated five-fold higher amount in the freeze-dried ethanol extract as compared to that of the oven-dried extract; anthocyanin was not detected in the ethyl acetate extracts. Elderberry ethanol extracts (freeze-dried or oven-dried) showed higher anti-oxidant activities and better ability to inhibit LPS or IFNγ-induced NO production as compared with the ethyl acetate extracts. The phenolic compounds strongly inhibited LPS or IFNγ-induced ROS production, but except for quercetin, they were relatively poor in inhibiting NO production. Significance These results demonstrated difference in anti-oxidative and anti-inflammatory effects of elderberry extracts depending on solvents used. Results further identified quercetin as the most active component in suppressing oxidative stress and inflammatory responses on microglial cells. PMID:25744406

  8. DB Riley-low emission boiler system (LEBS): Superior power for the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beittel, R.; Ruth, L.A.

    1997-12-31

    In conjunction with the US Department of Energy, DB Riley, Inc., is developing a highly advanced coal-fired power-generation plant called the Low Emission Boiler Systems (LEBS). By the year 2000, LEBS will provide the US electric power industry with a reliable, efficient, cost-effective, environmentally superior alternative to current technologies. LEBS incorporates significant advances in coal combustion, supercritical steam boiler design, environmental control, and materials development. The system will include a state-of-the-art steam cycle operating at supercritical steam conditions; a slagging combustor that produces vitrified ash by-products; low nitrogen oxide (NOx) burners; a new, dry, regenerable flue gas cleanup system (coppermore » oxide process) for simultaneously capturing sulfur dioxide (SO{sub 2}) and nitrogen oxides (NOx); a pulse-jet fabric filter for particulate capture; and a low-temperature heat-recovery system. The copper oxide flue gas cleanup system, which has been under development at DOE`s Pittsburgh field center, removes over 98% of SO{sub 2} and 95% of NOx from flue gas. A new moving-bed design provides efficient sorbent utilization that lowers the cleanup process cost. The captured SO{sub 2} can be converted to valuable by-products such as sulfuric acid and/or element sulfur, and the process generates no waste.« less

  9. Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules

    DOE PAGES

    Jang, Gyoung Gug; Jacobs, Christopher B.; Gresback, Ryan G.; ...

    2014-11-10

    Bimodal sized elemental copper (Cu) nanoparticles (NPs) were synthesized from inexpensive oxidized copper salts by an extracellular metal-reduction process using anaerobic Thermoanaerobacter sp. X513 bacteria in aqueous solution. The bacteria nucleate NPs outside of the cell, and they control the Cu2+ reduction rate to form uniform crystallites with an average diameter of 1.75 0.46 m after 3-day incubation. To control the size and enhance air stability of Cu NPs, the reaction mixtures were supplemented with nitrilotriacetic acid as a chelator, and the surfactant capping agents oleic acid, oleylamine, ascorbic acid, or L-cysteine. Time-dependent UV-visible absorption measurements and XPS studies indicatedmore » well-suspended, bimodal colloidal Cu NPs (70 150 and 5 10 nm) with extended air-stability up to 300 min and stable Cu NP films surfaces with 14% oxidation after 20 days. FTIR spectroscopy suggested that these capping agents were effectively adsorbed on the NP surface providing oxidation resistance in aqueous and dry conditions. Compared to previously reported Cu NP syntheses, this biological process substantially reduced the requirement for hazardous organic solvents and chemical reducing agents, while reducing the levels of Cu oxide impurities in the product. This process was highly reproducible and scalable from 0.01 to 1-L batches.« less

  10. Effect of the use of a commercial phosphate mixture on selected quality characteristics of 2 Spanish-style dry-ripened sausages.

    PubMed

    Fonseca, Beatriz; Kuri, Victor; Zumalacárregui, José M; Fernández-Diez, Ana; Salvá, Bettit K; Caro, Irma; Osorio, M Teresa; Mateo, Javier

    2011-01-01

    The aim of this study was to evaluate the usefulness of the addition of a commercial phosphate mixture in 2 dry-ripened Spanish-style sausages: "salchichón" and "chorizo." Three batches of each of those sausages were prepared with low and high levels of phosphates, and selected quality variables (moisture, pH, a(w) , lactic and acetic acid, α-amino nitrogen, total free fatty acids, thiobarbituric acid reactive substances, microbial counts, color, and texture analysis) were compared against controls. Furthermore, phosphate-added and control sausages were ranked by consumers in order of preference. In "salchichón," phosphate addition resulted in a significant (P < 0.05) increase in drying rate, and tendencies (not significant) toward a decrease in lipid oxidation and an increase in hardness and chewiness. In "chorizo," the addition of phosphates resulted in higher hardness, elasticity and chewiness, and lower yellowness (P < 0.05). In the manufacture process of dry-ripened sausages, phosphates can be considered as additives with potential enhancement effect in drying and eating quality. The main outcome from the present study is to find evidence on which points of reference could be drawn for the technological application of phosphates in dry-ripened sausages. It has been observed that the drying rate and several eating quality characteristics can be enhanced with the use of phosphates. © 2011 Institute of Food Technologists®

  11. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Welt, M.A.; Smutz, M.

    1958-08-26

    A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.

  12. Evidence for Microbial Fe(III) Reduction in Anoxic, Mining-Impacted Lake Sediments (Lake Coeur d'Alene, Idaho)

    PubMed Central

    Cummings, David E.; March, Anthony W.; Bostick, Benjamin; Spring, Stefan; Caccavo, Frank; Fendorf, Scott; Rosenzweig, R. Frank

    2000-01-01

    Mining-impacted sediments of Lake Coeur d'Alene, Idaho, contain more than 10% metals on a dry weight basis, approximately 80% of which is iron. Since iron (hydr)oxides adsorb toxic, ore-associated elements, such as arsenic, iron (hydr)oxide reduction may in part control the mobility and bioavailability of these elements. Geochemical and microbiological data were collected to examine the ecological role of dissimilatory Fe(III)-reducing bacteria in this habitat. The concentration of mild-acid-extractable Fe(II) increased with sediment depth up to 50 g kg−1, suggesting that iron reduction has occurred recently. The maximum concentrations of dissolved Fe(II) in interstitial water (41 mg liter−1) occurred 10 to 15 cm beneath the sediment-water interface, suggesting that sulfidogenesis may not be the predominant terminal electron-accepting process in this environment and that dissolved Fe(II) arises from biological reductive dissolution of iron (hydr)oxides. The concentration of sedimentary magnetite (Fe3O4), a common product of bacterial Fe(III) hydroxide reduction, was as much as 15.5 g kg−1. Most-probable-number enrichment cultures revealed that the mean density of Fe(III)-reducing bacteria was 8.3 × 105 cells g (dry weight) of sediment−1. Two new strains of dissimilatory Fe(III)-reducing bacteria were isolated from surface sediments. Collectively, the results of this study support the hypothesis that dissimilatory reduction of iron has been and continues to be an important biogeochemical process in the environment examined. PMID:10618217

  13. Using solvent-free sample preparation to promote protonation of poly(ethylene oxide)s with labile end-groups in matrix-assisted laser desorption/ionisation.

    PubMed

    Mazarin, Michael; Phan, Trang N T; Charles, Laurence

    2008-12-01

    Protonation is usually required to observe intact ions during matrix-assisted laser desorption/ionization (MALDI) of polymers containing fragile end-groups while cation adduction induces chain-end degradation. These polymers, generally obtained via living free radical polymerization techniques, are terminated with a functionality in which a bond is prone to homolytic cleavage, as required by the polymerization process. A solvent-free sample preparation method was used here to avoid salt contaminant from the solvent traditionally used in the dried-droplet MALDI procedure. Solvent-based and solvent-free sample preparations were compared for a series of three poly(ethylene oxide) polymers functionalized with a labile end-group in a nitroxide-mediated polymerization reaction, using 2,4,6-trihydroxyacetophenone (THAP) as the matrix without any added salt. Intact oligomer ions could only be produced as protonated molecules in solvent-free MALDI while sodium adducts of degraded polymers were formed from the dried-droplet samples. Although MALDI analysis was performed at the laser threshold, fragmentation of protonated macromolecules was still observed to occur. However, in contrast to sodiated molecules, dissociation of protonated oligomers does not involve the labile C--ON bond of the end-group. As the macromolecule size increased, protonation appeared to be less efficient and sodium adduction became the dominant ionization process, although no sodium salt was added in the preparation. Formation of sodiated degraded macromolecules would be dictated by increasing cation affinity as the size of the oligomers increases and would reveal the presence of salts at trace levels in the MALDI samples.

  14. Gaseous oxidized mercury dry deposition measurements in the southwestern USA: a comparison between Texas, eastern Oklahoma, and the Four Corners area.

    PubMed

    Sather, Mark E; Mukerjee, Shaibal; Allen, Kara L; Smith, Luther; Mathew, Johnson; Jackson, Clarence; Callison, Ryan; Scrapper, Larry; Hathcoat, April; Adam, Jacque; Keese, Danielle; Ketcher, Philip; Brunette, Robert; Karlstrom, Jason; Van der Jagt, Gerard

    2014-01-01

    Gaseous oxidized mercury (GOM) dry deposition measurements using aerodynamic surrogate surface passive samplers were collected in central and eastern Texas and eastern Oklahoma, from September 2011 to September 2012. The purpose of this study was to provide an initial characterization of the magnitude and spatial extent of ambient GOM dry deposition in central and eastern Texas for a 12-month period which contained statistically average annual results for precipitation totals, temperature, and wind speed. The research objective was to investigate GOM dry deposition in areas of Texas impacted by emissions from coal-fired utility boilers and compare it with GOM dry deposition measurements previously observed in eastern Oklahoma and the Four Corners area. Annual GOM dry deposition rate estimates were relatively low in Texas, ranging from 0.1 to 0.3 ng/m(2)h at the four Texas monitoring sites, similar to the 0.2 ng/m(2)h annual GOM dry deposition rate estimate recorded at the eastern Oklahoma monitoring site. The Texas and eastern Oklahoma annual GOM dry deposition rate estimates were at least four times lower than the highest annual GOM dry deposition rate estimate previously measured in the more arid bordering western states of New Mexico and Colorado in the Four Corners area.

  15. Rapid Deposition of Oxidized Biogenic Compounds to a Temperate Forest

    NASA Technical Reports Server (NTRS)

    Nguyen, Tran B.; Crounse, John D.; Teng, Alex P.; St. Clair, Jason M.; Paulot, Fabien; Wolfe, Glenn M.; Wennberg, Paul O.

    2015-01-01

    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (approx. 1 nmol m(exp.-2)·s(exp.-1)). GEOS-Chem, awidely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS-Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.

  16. Rapid deposition of oxidized biogenic compounds to a temperate forest

    PubMed Central

    Nguyen, Tran B.; Crounse, John D.; Teng, Alex P.; St. Clair, Jason M.; Paulot, Fabien; Wolfe, Glenn M.; Wennberg, Paul O.

    2015-01-01

    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m−2⋅s−1). GEOS−Chem, a widely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS−Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases. PMID:25605913

  17. Some History of Nitrates

    NASA Astrophysics Data System (ADS)

    Barnum, Dennis W.

    2003-12-01

    The history of saltpeter is an interesting combination of chemistry, world trade, technology, politics, and warfare. Originally it was obtained from the dirt floors of stables, sheep pens, pigeon houses, caverns, and even peasants' cottages; any place manure and refuse accumulated in soil under dry conditions. When these sources became inadequate to meet demand it was manufactured on saltpeter plantations, located in dry climates, where piles of dirt, limestone, and manure were allowed to stand for three to five years while soil microbes oxidized the nitrogen to nitrate—an example of early bioengineering. Extensive deposits of sodium nitrate were mined in the Atacama Desert in northern Chile from 1830 until the mid 1920s when the mines were displaced by the Haber Ostwald process.

  18. The effects of climate changes on soil methane oxidation in a dry Arctic tundra

    NASA Astrophysics Data System (ADS)

    D'Imperio, Ludovica

    2014-05-01

    The effects of climate changes on soil methane oxidation in a dry Arctic tundra. Ludovica D'Imperio1, Anders Michelsen1, Christian J. Jørgensen1, Bo Elberling1 1Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark At Northern latitudes climatic changes are predicted to be most pronounced resulting in increasing active layer depth and changes in growing season length, vegetation cover and nutrient cycling. As a consequence of increased temperature, large stocks of carbon stored in the permafrost-affected soils could become available for microbial transformations and under anoxic conditions result in increasing methane production affecting net methane (CH4) budget. Arctic tundra soils also serves as an important sink of atmospheric CH4 by microbial oxidation under aerobic conditions. While several process studies have documented the mechanisms behind both production and emissions of CH4 in arctic ecosystems, an important knowledge gap exists with respect to the in situ dynamics of microbial-driven uptake of CH4 in arctic dry lands which may be enhanced as a consequence of global warming and thereby counterbalancing CH4 emissions from Arctic wetlands. In-situ methane measurements were made in a dry Arctic tundra in Disko Island, Western Greenland, during the summer 2013 to assess the role of seasonal and inter-annual variations in temperatures and snow cover. The experimental set-up included snow fences installed in 2012, allowed investigations of the emissions of GHGs from soil under increased winter snow deposition and ambient field conditions. The soil fluxes of CH4 and CO2 were measured using closed chambers in manipulated plots with increased summer temperatures and shrub removal with or without increased winter precipitation. At the control plots, the averaged seasonal CH4 oxidation rates ranged between -0.05 mg CH4 m-2 hr-1 (end of August) and -0.32 mg CH4 m-2 hr-1 (end of June). In the plots with increased summer temperatures the rates ranged between -0.08 mg CH4 m-2 hr-1 (end of August) and -0.40 mg CH4 m-2 hr-1 (beginning of July). Preliminary results show a significant effect of increased winter precipitation (p<0.01) over the season as well as a significant warming effect (p<0.05) during July and August. These results suggest that in a warmer climate increasing CH4 uptake rates in dry Arctic soils could become an important factor for net CH4 budget.

  19. Residence time as a key for comprehensive assessment of the relationship between changing land use and nitrates in regional groundwater systems.

    PubMed

    Cao, Yingjie; Tang, Changyuan; Song, Xianfang; Liu, Changming; Zhang, Yinghua

    2013-04-01

    In this study, an approach is put forward to study the relationship between changing land use and groundwater nitrate contamination in the Sanjiang Plain. This approach emphasizes the importance of groundwater residence time when relating the nitrates to the changing land use. The principles underlying the approach involve the assessment of groundwater residence time by CFCs and the Vogel age model and the reconstruction of the land use at the groundwater recharge time by interpolation. Nitrate trend analysis shows that nitrates have begun to leach into the aquifers since agricultural activities boomed after the 1950s. Hydrochemical analysis implies that the possible process relating to the nitrate reduction in the groundwater is the oxidation of Fe(ii)-silicates. However, the chemical kinetics of the oxidation of Fe(ii)-silicates is slow, so this denitrification process contributes little to the nitrate variations. Stepwise regression shows that the nitrate concentrations of samples had no direct relationship with the land use at the groundwater sampling time, but had a relatively strong relationship with the land use at the groundwater recharge time. Dry land is recognized as the dominant factor contributing to the elevated concentration of nitrates. The nitrogen isotope for nitrate (δ(15)N-NO3) gives a more direct result of the identification of nitrate sources: the use of manure in agricultural activities. Principle component (PC) regression shows that the process of the dry land exploitation is the major process that controls the nitrate contamination in the Sanjiang Plain.

  20. Treatment of municipal sewage sludge in supercritical water: A review.

    PubMed

    Qian, Lili; Wang, Shuzhong; Xu, Donghai; Guo, Yang; Tang, Xingying; Wang, Laisheng

    2016-02-01

    With increasing construction of wastewater treatment plants and stricter policies, municipal sewage sludge (MSS) disposal has become a serious problem. Treatment of MSS in supercritical water (SCW) can avoid the pre-drying procedure and secondary pollution of conventional methods. SCW treatment methods can be divided into supercritical water gasification (SCWG), supercritical water partial oxidation (SCWPO) and supercritical water oxidation (SCWO) technologies with increasing amounts of oxidants. Hydrogen-rich gases can be generated from MSS by SCWG or SCWPO technology using oxidants less than stoichiometric ratio while organic compounds can be completely degraded by SCWO technology with using an oxidant excess. For SCWG and SCWPO technologies, this paper reviews the influences of different process variables (MSS properties, moisture content, temperature, oxidant amount and catalysts) on the production of gases. For SCWO technology, this paper reviews research regarding the removal of organics with or without hydrothermal flames and the changes in heavy metal speciation and risk. Finally, typical systems for handling MSS are summarized and research needs and challenges are proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Thermal oxidation of Si/SiGe heterostructures for use in quantum dot qubits

    NASA Astrophysics Data System (ADS)

    Neyens, Samuel F.; Foote, Ryan H.; Knapp, T. J.; McJunkin, Thomas; Savage, D. E.; Lagally, M. G.; Coppersmith, S. N.; Eriksson, M. A.

    Here we demonstrate dry thermal oxidation of a Si/SiGe heterostructure at 700°C and use a Hall bar device to measure the mobility after oxidation to be 43,000 cm2V-1s-1 at a carrier density of 4.1 ×1011 cm-2. Surprisingly, we find no significant reduction in mobility compared with an Al2O3 device made with atomic layer deposition on the same heterostructure, indicating thermal oxidation can be used to process Si/SiGe quantum dot devices. This result provides a path for investigating improvements to the gate oxide in Si/SiGe qubit devices, whose performance is believed to be limited by charge noise in the oxide layer. This work was supported in part by ARO (W911NF-12-0607) and NSF (DMR-1206915 and PHY-1104660). Development and maintenance of the growth facilities used for fabricating samples is supported by DOE (DE-FG02-03ER46028). This research utilized NSF-supported shared facilities at the University of Wisconsin-Madison.

  2. Secondary battery material and synthesis method

    DOEpatents

    Liu, Hongjian; Kepler, Keith Douglas; Wang, Yu

    2013-10-22

    A composite Li.sub.1+xMn.sub.2-x-yM.sub.yO.sub.4 cathode material stabilized by treatment with a second transition metal oxide phase that is highly suitable for use in high power and energy density Li-ion cells and batteries. A method for treating a Li.sub.1+xMn.sub.2-x-yM.sub.yO.sub.4 cathode material utilizing a dry mixing and firing process.

  3. Effects of organic nitrification inhibitors on methane and nitrous oxide emission from tropical rice paddy

    NASA Astrophysics Data System (ADS)

    Datta, A.; Adhya, T. K.

    2014-08-01

    We have studied the effects of application of different nitrification inhibitors on methane (CH4) and nitrous oxide (N2O) emissions from rice paddy and associated soil chemical and biological dynamics during wet and dry seasons of rice crop in a tropical climate of eastern India. The experiment consisted of four treatments viz. (i) Prilled urea amended control (ii) urea + Dicyandiamide (DCD), (iii) urea + Nimin and (iv) urea + Karanjin. CH4 emission was significantly higher from the DCD (372.36 kg ha-1) and Karanjin (153.07 kg ha-1) applied plots during the wet and dry season, respectively. N2O emission was significantly inhibited in the Nimin applied plots during both seasons (69% and 85% over control during wet season and dry season respectively). CH4 and N2O emissions per Mg of rice grain yield were lowest from the Nimin applied plots during both seasons. Global warming potential (GWP) of the plot treated with DCD (13.93) was significantly higher during the experimental period. CH4 production potential was significantly higher from the nitrification inhibitor applied plots compared to control. While, CH4 oxidation potential followed the order; urea + Nimin > urea + Karanjin > urea + DCD > control. Application of Nimin significantly increased the methanotrophic bacterial population in the soil during the maximum tillering to flowering stage and may be attributed to low CH4 emission from the plots. Denitrification enzyme activity (DEA) of the soil was significantly low from the Nimin and Karanjin applied plots. Results suggest that apart from being potent nitrification inhibitors, Nimin and Karanjin also have the potential to reduce the denitrification activity in the soil. This in turn, would reduce N2O emission from flooded paddy where both nitrification and denitrification processes causes N2O emission.

  4. Method and product for phosphosilicate slurry for use in dentistry and related bone cements

    DOEpatents

    Wagh, Arun S.; Primus, Carolyn

    2006-08-01

    The present invention is directed to magnesium phosphate ceramics and their methods of manufacture. The composition of the invention is produced by combining a mixture of a substantially dry powder component with a liquid component. The substantially dry powder component comprises a sparsely soluble oxide powder, an alkali metal phosphate powder, a sparsely soluble silicate powder, with the balance of the substantially dry powder component comprising at least one powder selected from the group consisting of bioactive powders, biocompatible powders, fluorescent powders, fluoride releasing powders, and radiopaque powders. The liquid component comprises a pH modifying agent, a monovalent alkali metal phosphate in aqueous solution, the balance of the liquid component being water. The use of calcined magnesium oxide as the oxide powder and hydroxylapatite as the bioactive powder produces a self-setting ceramic that is particularly suited for use in dental and orthopedic applications.

  5. Antioxidant effects of aqueous extracts from dried calyx of Hibiscus sabdariffa Linn. (Roselle) in vitro using rat low-density lipoprotein (LDL).

    PubMed

    Hirunpanich, Vilasinee; Utaipat, Anocha; Morales, Noppawan Phumala; Bunyapraphatsara, Nuntavan; Sato, Hitoshi; Herunsalee, Angkana; Suthisisang, Chuthamanee

    2005-03-01

    The present study quantitatively investigated the antioxidant effects of the aqueous extracts from dried calyx of Hibiscus sabdariffa LINN. (roselle) in vitro using rat low-density lipoprotein (LDL). Formations of the conjugated dienes and thiobarbituric acid reactive substances (TBARs) were monitored as markers of the early and later stages of the oxidation of LDL, respectively. Thus, we demonstrated that the dried calyx extracts of roselle exhibits strong antioxidant activity in Cu(2+)-mediated oxidation of LDL (p<0.05) in vitro. The inhibitory effect of the extracts on LDL oxidation was dose-dependent at concentrations ranging from 0.1 to 5 mg/ml. Moreover, 5 mg/ml of roselle inhibited TBARs-formation with greater potency than 100 microM of vitamin E. In conclusion, this study provides a quantitative insight into the potent antioxidant effect of roselle in vitro.

  6. Design and Fabrication of Electrostatically Actuated Silicon Microshutters Arrays

    NASA Technical Reports Server (NTRS)

    Oh, L.; Li, M.; Kim, K.; Kelly, D.; Kutyrev, A.; Moseley, S.

    2017-01-01

    We have developed a new fabrication process to actuate microshutter arrays (MSA) electrostatically at NASA Goddard Space Flight Center. The microshutters are fabricated on silicon with thin silicon nitride membranes. A pixel size of each microshutter is 100 x 200 micrometers 2. The microshutters rotate 90 degrees on torsion bars. The selected microshutters are actuated, held, and addressed electrostatically by applying voltages on the electrodes the front and back sides of the microshutters. The atomic layer deposition (ALD) of aluminum oxide was used to insulate electrodes on the back side of walls; the insulation can withstand over 100 V. The ALD aluminum oxide is dry etched, and then the microshutters are released in vapor HF.

  7. EFFECT OF PRE-ANNEALING TEMPERATURE ON THE GROWTH OF ALIGNED α-Fe2O3 NANOWIRES VIA A TWO-STEP THERMAL OXIDATION

    NASA Astrophysics Data System (ADS)

    Rashid, Norhana Mohamed; Kishi, Naoki; Soga, Tetsuo

    2016-03-01

    Pre-annealing as part of a two-step thermal oxidation process has a significant effect on the growth of hematite (α-Fe2O3) nanowires on Fe foil. High-density aligned nanowires were obtained on iron foils pre-annealed at 300∘C under a dry air flow for 30min. The X-ray diffraction (XRD) patterns indicate that the nanowires are transformed from the small α-Fe2O3 grains and uniquely grow in the (110) direction. The formation of a high-density of small grains by pre-annealing improved the alignment and density of the α-Fe2O3 nanowires.

  8. 77 FR 28493 - Propylene Oxide; Tolerance Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... pine nuts for both the fumigant propylene oxide and the reaction product from the use of propylene... oxide and the reaction product from the use of propylene oxide, known as propylene chlorohydrin. Also... Pistachio 300 Plum, prune, dried 2.0 (2) Tolerances are established for residues of the reaction product...

  9. ASRM process development in aqueous cleaning

    NASA Technical Reports Server (NTRS)

    Swisher, Bill

    1992-01-01

    Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.

  10. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding

    PubMed Central

    Zhuang, Qiaoqiao; Zhang, Peilei; Li, Mingchuan; Yan, Hua; Yu, Zhishui; Lu, Qinghua

    2017-01-01

    The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti2Ni and Ti5Si3 phases exist in all coatings, and some samples have TiSi2 phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness)) and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti2Ni and reinforcement phases of Ti5Si3 and TiSi2, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO2, Al2O3 and SiO2. Phases Ti2Ni, Ti5Si3, TiSi2 and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding. PMID:29084174

  11. Oxidative stress in dry age-related macular degeneration and exfoliation syndrome.

    PubMed

    Chiras, Dimitrios; Kitsos, George; Petersen, Michael B; Skalidakis, Iosif; Kroupis, Christos

    2015-02-01

    Oxidative stress refers to cellular or molecular damage caused by reactive oxygen species, which especially occurs in age-related conditions as a result of an imbalance between the production of reactive oxygen species and the antioxidant defense response. Dry age-related macular degeneration (AMD) and exfoliation syndrome (XFS) are two common and complex age-related conditions that can cause irreversible vision loss. Two subtypes of AMD, which is the leading cause of blindness in the Western world, exist: the most prevalent dry type and the most severe wet type. Early dry AMD is characterized by formation of drusen, which are sub-retinal deposits, in the macular area and may progress to geographic atrophy with more dramatic manifestation. XFS is a systemic disorder of the extracellular matrix characterized by the accumulation of elastic fibrils that leads, in most cases, to glaucoma development with progressive and irreversible vision loss. Due to the aging population, the prevalence of these already-widespread conditions is increasing and is resulting in significant economic and psychological costs for individuals and for society. The exact composition of the abnormal drusen and XFS material as well as the mechanisms responsible for their production and accumulation still remain elusive, and consequently treatment for both diseases is lacking. However, recent epidemiologic, genetic and molecular studies support a major role for oxidative stress in both dry AMD and XFS development. Understanding the early molecular events in their pathogenesis and the exact role of oxidative stress may provide novel opportunities for therapeutic intervention for the prevention of progression to advanced disease.

  12. Composition and application of novel sprayable phosphate cement (grancrete) that bonds to styrofoam

    DOEpatents

    Wagh, Arun S.; Paul, Jr., James W.

    2007-01-09

    A dry mix particulate composition of a calcined oxide of Mg and/or Ca, an acid phosphate, and fly ash or equivalent, wherein the calcined oxide is present in the range of from about 17% to about 40% by weight and the acid phosphate is present in the range of from about 29% to about 52% by weight and the fly ash or equivalent is present in the range of from about 24% to about 39% by weight when sand is added to the dry mix, it is present in the range of from about 39% to about 61% by weight of the combined dry mix and sand. A method of forming a structural member is also disclosed wherein an aqueous slurry of about 8 12 pounds of water is added to dry mix and sand.

  13. In vivo and in vitro addition of dried olive extract in poultry.

    PubMed

    King, Annie J; Griffin, Johanna K; Roslan, Fahkirah

    2014-08-06

    A freeze-dried powder from organic olive (Olea europaea) juice extract, contains 8.82% polyphenols and a minimum of 2.5% hydroxytyrosol (3,4-dihydroxyphenylethanol), an effective free radical scavenger and the major antioxidant in the byproduct (dried olive extract, DOE). Myricetin, a bioflavonoid extract from the bark powder of the bayberry tree (Myrica cerifera), also has many beneficial biological properties and antioxidative capacity. While well-known as antioxidants, the capacity of these compounds to retard lipid oxidation in foods containing unsaturated fatty acids has not been widely evaluated. Thus, a study was conducted to assess the capacity of DOE to (1) enhance the growth of poultry, (2) determine the effectiveness of DOE (administered in vivo) as an antioxidant in post-mortem tissue and further processed meat, and (3) compare the in vitro antioxidative capacity of hydroxytyrosol and myricetin. DOE was administered ad libitum in water at 6 and 12 mg per bird per day for 6 weeks in a factorial design: 3 diets (control plus two treatment levels) × 2 blocks × 2 replications. There was no enhancement of feed consumption, body weight (BW), or feed conversion by DOE; overall means for these measurements were 5.49 kg per bird, 3.32 kg per bird, and 1.65 g feed per g live BW, respectively. Diagnostic examinations of two birds per pen at the end of the study revealed no adverse effects due to consumption of DOE, a generally recognized as safe substance. The byproduct, administered in vivo, did not retard lipid oxidation in fresh, heated, or NaCl (1.0% w/w)/heated/stored meat as assessed by absorbance values for thiobarbituric acid reactive substances at 532 nm and 2,2-diphenylpicrylhydrazyl at 517 nm. Both the byproduct and hydroxytyrosol are highly water-soluble and may have been unavailable as an antioxidant in the tissue of broilers that did not consume water for 4-6 h prior to processing. As an additive in processed thigh meat, 6 and 12 mg of DOE (2.5% hydroxytyrosol) per 3 mg of meat, although not as effective as myricetin (95% purity), reduced oxidation. Further assessment revealed that hydroxytyrosol from the DOE, added at (1)/38 the concentration of myricetin, was almost 50% as effective.

  14. Hyperosmolarity potentiates toxic effects of benzalkonium chloride on conjunctival epithelial cells in vitro

    PubMed Central

    Godefroy, David; Riancho, Luisa; Rostène, William; Baudouin, Christophe; Brignole-Baudouin, Françoise

    2012-01-01

    Purpose Benzalkonium chloride (BAK), the most commonly used preservative in eye drops, is known to induce ocular irritation symptoms and dry eye in long-term treated patients and animal models. As tear film hyperosmolarity is diagnostic of some types of dry eye disease, we determined in vitro on conjunctival epithelial cells the cytoxicity of BAK in hyperosmolar conditions through cell viability, apoptosis, and oxidative stress assays. Methods The Wong Kilbourne derivative of Chang conjunctival epithelial cells were cultured for 24 h or 48 h either in NaCl-induced hyperosmolar conditions (400–425–500 mOsM), in low concentrations of BAK (10−4%, 3.10−4%, and 5.10−4%), or in combination of both. We investigated cell viability through lysosomal integrity evaluation, cell death (cell membrane permeability and chromatin condensation), and oxidative stress (reactive oxygen species, superoxide anion) using spectrofluorimetry. Immunohistochemistry was performed for cytoskeleton shrinkage (phalloidin staining), mitochondrial permeability transition pore (cytochrome c release), the apoptosis effector active caspase-3, and the caspase-independent apoptosis factor AIF. We also observed early effects induced by the experimental conditions on the conjunctival cell layers using phase contrast imaging of live cells. Results As compared to standard culture solutions, hyperosmolar stress potentiated BAK cytotoxicity on conjunctival cells through the induction of oxidative stress; reduction of cell viability; cell membrane permeability increase; cell shrinkage with cell blebbing, as shown in phase contrast imaging of live cells; and chromatin condensation. Like BAK, but to a much lesser extent, hyperosmolarity increased cell death in a concentration-dependent manner through a caspase-dependent apoptosis characterized by a release of cytochrome c in the cytoplasm from mitochondria and the activation of caspase-3. Moreover, the caspase-independent apoptosis factor AIF was found translocated from mitochondria to the nucleus in both conditions. Conclusions This study showed increased cytotoxic effects of BAK in hyperosmotic conditions, with characteristic cell death processes, namely caspase-dependent and independent apoptosis and oxidative stress. As BAK is known to disrupt tear film, which could promote evaporative dry eye and tear hyperosmolarity, BAK could promote the conditions enhancing its own cytotoxicity. This in vitro hyperosmolarity model thus highlights the risk of inducing a vicious cycle and the importance of avoiding BAK in patients with dry eye conditions. PMID:22529703

  15. Hyperosmolarity potentiates toxic effects of benzalkonium chloride on conjunctival epithelial cells in vitro.

    PubMed

    Clouzeau, Chloé; Godefroy, David; Riancho, Luisa; Rostène, William; Baudouin, Christophe; Brignole-Baudouin, Françoise

    2012-01-01

    Benzalkonium chloride (BAK), the most commonly used preservative in eye drops, is known to induce ocular irritation symptoms and dry eye in long-term treated patients and animal models. As tear film hyperosmolarity is diagnostic of some types of dry eye disease, we determined in vitro on conjunctival epithelial cells the cytoxicity of BAK in hyperosmolar conditions through cell viability, apoptosis, and oxidative stress assays. The Wong Kilbourne derivative of Chang conjunctival epithelial cells were cultured for 24 h or 48 h either in NaCl-induced hyperosmolar conditions (400-425-500 mOsM), in low concentrations of BAK (10(-4)%, 3.10(-4)%, and 5.10(-4)%), or in combination of both. We investigated cell viability through lysosomal integrity evaluation, cell death (cell membrane permeability and chromatin condensation), and oxidative stress (reactive oxygen species, superoxide anion) using spectrofluorimetry. Immunohistochemistry was performed for cytoskeleton shrinkage (phalloidin staining), mitochondrial permeability transition pore (cytochrome c release), the apoptosis effector active caspase-3, and the caspase-independent apoptosis factor AIF. We also observed early effects induced by the experimental conditions on the conjunctival cell layers using phase contrast imaging of live cells. As compared to standard culture solutions, hyperosmolar stress potentiated BAK cytotoxicity on conjunctival cells through the induction of oxidative stress; reduction of cell viability; cell membrane permeability increase; cell shrinkage with cell blebbing, as shown in phase contrast imaging of live cells; and chromatin condensation. Like BAK, but to a much lesser extent, hyperosmolarity increased cell death in a concentration-dependent manner through a caspase-dependent apoptosis characterized by a release of cytochrome c in the cytoplasm from mitochondria and the activation of caspase-3. Moreover, the caspase-independent apoptosis factor AIF was found translocated from mitochondria to the nucleus in both conditions. This study showed increased cytotoxic effects of BAK in hyperosmotic conditions, with characteristic cell death processes, namely caspase-dependent and independent apoptosis and oxidative stress. As BAK is known to disrupt tear film, which could promote evaporative dry eye and tear hyperosmolarity, BAK could promote the conditions enhancing its own cytotoxicity. This in vitro hyperosmolarity model thus highlights the risk of inducing a vicious cycle and the importance of avoiding BAK in patients with dry eye conditions.

  16. Method and system for controlling a gasification or partial oxidation process

    DOEpatents

    Rozelle, Peter L; Der, Victor K

    2015-02-10

    A method and system for controlling a fuel gasification system includes optimizing a conversion of solid components in the fuel to gaseous fuel components, controlling the flux of solids entrained in the product gas through equipment downstream of the gasifier, and maximizing the overall efficiencies of processes utilizing gasification. A combination of models, when utilized together, can be integrated with existing plant control systems and operating procedures and employed to develop new control systems and operating procedures. Such an approach is further applicable to gasification systems that utilize both dry feed and slurry feed.

  17. Device performance of in situ steam generated gate dielectric nitrided by remote plasma nitridation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Shareef, H. N.; Karamcheti, A.; Luo, T. Y.

    2001-06-11

    In situ steam generated (ISSG) oxides have recently attracted interest for use as gate dielectrics because of their demonstrated reliability improvement over oxides formed by dry oxidation. [G. Minor, G. Xing, H. S. Joo, E. Sanchez, Y. Yokota, C. Chen, D. Lopes, and A. Balakrishna, Electrochem. Soc. Symp. Proc. 99-10, 3 (1999); T. Y. Luo, H. N. Al-Shareef, G. A. Brown, M. Laughery, V. Watt, A. Karamcheti, M. D. Jackson, and H. R. Huff, Proc. SPIE 4181, 220 (2000).] We show in this letter that nitridation of ISSG oxide using a remote plasma decreases the gate leakage current of ISSGmore » oxide by an order of magnitude without significantly degrading transistor performance. In particular, it is shown that the peak normalized transconductance of n-channel devices with an ISSG oxide gate dielectric decreases by only 4% and the normalized drive current by only 3% after remote plasma nitridation (RPN). In addition, it is shown that the reliability of the ISSG oxide exhibits only a small degradation after RPN. These observations suggest that the ISSG/RPN process holds promise for gate dielectric applications. {copyright} 2001 American Institute of Physics.« less

  18. Structural characterization of oxidized titanium surfaces

    NASA Astrophysics Data System (ADS)

    Jobin, M.; Taborelli, M.; Descouts, P.

    1995-05-01

    Oxidized titanium surfaces resulting from various processes have been structurally characterized by means of scanning force microscopy, x-ray photoemission spectroscopy (XPS), x-ray diffraction, and electron energy-loss spectroscopy (EELS) with losses in the 0-100 eV range. It has been found that the surface morphology has a granular structure for electropolished titanium and for titanium evaporated on mica at low substrate temperature (570 K), but changes to flat terraces for the films evaporated at higher temperature (770 K). Angular-dependent XPS has revealed the presence of a Ti2O3 suboxide at the Ti/TiO2 interface for electropolished titanium. Dry oxidation has been performed at 770 and 970 K on both weakly and highly crystallized evaporated titanium films oriented along (0001). In the case of underlying crystallized metallic titanium, the resulting TiO2 films are crystallized with the anatase (004) orientation for oxidation at 770 K and with rutile (200) orientation for oxidation at 970 K. EELS spectra interpreted in terms of the molecular orbitals of a (TiO6)8- cluster show that the local octahedral environment of titanium atoms is preserved on native oxides, even if these oxides are not crystallized.

  19. Oxidative stability of soybean oil in oleosomes as affected by pH and iron.

    PubMed

    Kapchie, Virginie N; Yao, Linxing; Hauck, Catherine C; Wang, Tong; Murphy, Patricia A

    2013-12-01

    The oxidative stability of oil in soybean oleosomes, isolated using the Enzyme-Assisted Aqueous Extraction Process (EAEP), was evaluated. The effects of ferric chloride, at two concentration levels (100 and 500 μM), on lipid oxidation, was examined under pH 2 and 7. The peroxide value (PV) and thiobarbituric acid-reactive substance (TBARS) value of oil, in oleosome suspensions stored at 60 °C, were measured over a 12 day period. The presence of ferric chloride significantly (P<0.05) affected the oxidative stability of oil in the isolated oleosome, as measured by the PV and TBARS. Greater lipid oxidation occurred under an acidic pH. In the pH 7 samples, the positively charged transition metals were strongly attracted to the negatively charged droplets. However, the low ζ-potential and the high creaming rate at this pH, may have limited the oxidation. Freezing, freeze-drying or heating of oleosomes have an insignificant impact on the oxidative stability of oil in isolated soybean oleosomes. Manufacturers should be cautious when adding oleosomes as ingredients in food systems containing transition metal ions. Published by Elsevier Ltd.

  20. The removal of sulfur dioxide from flue gases

    PubMed Central

    Kettner, Helmut

    1965-01-01

    The growth of industrialization makes it imperative to reduce the amounts of sulfur dioxide emitted into the atmosphere. This article describes various processes for cleaning flue gases, and gives details of new methods being investigated. Wet scrubbing with water, though widely practised, has many disadvantages. Scrubbing with zinc oxide, feasible in zinc works, is more satisfactory. Dry methods use a solid absorbent; they have the advantage of a high emission temperature. Other methods are based on the addition to the fuel or the flue gases of substances such as activated metal oxides, which react with the sulfur to form compounds less harmful than sulfur dioxide. Also being investigated are a two-stage combustion system, in which the sulfur dioxide is removed in the first stage, and the injection of activated powdered dolomite into burning fuel; the resulting sulfates being removed by electrostatic precipitation. A wet catalysis process has recently been developed. Most of the cleaning processes are not yet technically mature, but first results show good efficiency and relatively low cost. PMID:14315714

  1. Defence response of tomato seedlings to oxidative stress induced by phenolic compounds from dry olive mill residue.

    PubMed

    García-Sánchez, Mercedes; Garrido, Inmaculada; Casimiro, Ilda de Jesús; Casero, Pedro Joaquín; Espinosa, Francisco; García-Romera, Inmaculada; Aranda, Elisabet

    2012-10-01

    ADOR is an aqueous extract obtained from the dry olive mill residue (DOR) which contains the majority of its soluble phenolic compounds, which are responsible for its phytotoxic properties. Some studies have shown that ADOR negatively affects seed germination. However, to date, few studies have been carried out on the effect of ADOR on the oxidative stress of the plant. It is well known that saprobe fungi can detoxify these phenolic compounds and reduce the potential negative effects of ADOR on plants. To gain a better understanding of the phytotoxic effects and oxidative stress caused by this residue, tomato seeds were germinated in the presence of ADOR, treated and untreated with Coriolopsis rigida, Trametes versicolor, Pycnoporus cinnabarinus and Penicillium chrysogenum-10 saprobe fungi. ADOR sharply reduced tomato seed germination and also generated high levels of malondialdehyde (MDA), O(2)(-) and H(2)O(2). However, bioremediated ADOR did not negatively affect germination and reduced MDA, O(2)(-) and H(2)O(2) content in different ways depending on the fungus used. In addition, the induced defense response was studied by analyzing the activity of both antioxidant enzymes (superoxide dismutase (SOD), catalase, ascorbate peroxidasa, glutathione reductase (GR), peroxidases and coniferil alcohol peroxidasa) and detoxification enzymes (glutathione-S-transferase (GST)). Our findings suggest that, because ADOR is capable of inducing oxidative stress, tomato seedlings trigger a defense response through SOD, GR, and GST activity and through antioxidant and lignification processes. On the other hand, the bioremediation of ADOR plays an important role in counteracting the oxidative stress induced by the untreated residue. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Quantification of oxysterols in Dutch foods: egg products and mixed diets.

    PubMed

    van de Bovenkamp, P; Kosmeijer-Schuil, T G; Katan, M B

    1988-11-01

    A sensitive and specific method is described for quantifying various cholesterol oxidation products in foodstuffs, including 7 beta-hydroxycholesterol, cholesterol-alpha-epoxide, cholestane-triol, 7-ketocholesterol and 25-hydroxycholesterol. A chloroform-methanol extract of the food was fractionated over two successive silica columns. Two fractions containing different classes of oxysterols were then analyzed as trimethylsilyl derivatives by capillary gas liquid chromatography, using on-column injection and a temperature gradient from 70 to 200 degrees C. The detection limit was about 0.5 microgram/g dry weight for egg yolk powder. Fresh egg yolk contained only 1.2 micrograms/g of total oxides per g dry weight, showing that artifactual oxidation during the procedure was minimal. Recovery of 5 pure oxysterols added to egg yolk at levels of 6.5 and 10 micrograms/g was between 93 and 102%. In commercial egg yolk and whole egg powder stored for one year, total amounts of oxysterols ranging from 21 to 137 micrograms/g dry weight were found. In duplicates of mixed Dutch diets, total amounts ranged from 3.6 to 6.2 micrograms/g dry weight. Duplicates containing mostly fried and baked foods did not have higher levels than duplicates in which foods had been prepared by boiling or left raw. We conclude that a normal mixed diet provides only minor amounts of cholesterol oxidation products.

  3. Investigation of high temperature corrosion behavior on 304L austenite stainless steel in corrosive environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahri, M. I.; Othman, N. K.; Samsu, Z.

    2014-09-03

    In this work, 304L stainless steel samples were exposed at 700 °C for 10hrs in different corrosive environments; dry oxygen, molten salt, and molten salt + dry oxygen. The corrosion behavior of samples was analyzed using weight change measurement technique, optical microscope (OM) and Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray (EDX). The existence phases of corroded sample were determined using X-ray Diffraction (XRD). The lowest corrosion rate was recorded in dry oxygen while the highest was in molten salt + dry oxygen environments with the value of 0.0062 mg/cm{sup 2} and −13.5225 mg/cm{sup 2} respectively. The surfacemore » morphology of sample in presence of salt mixture showed scale spallation. Oxide scales of Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3} were the main phases developed and detected by XRD technique. Cr{sub 2}O{sub 3} was not developed in every sample as protective layers but chromate-rich oxide was developed. The cross-section analysis found the oxide scales were in porous, thick and non-adherent that would not an effective barrier to prevent from further degradation of alloy. EDX analysis also showed the Cr-element was low compared to Fe-element at the oxide scale region.« less

  4. Gaseous Oxidized Mercury Dry Deposition Measurements in the Southwestern USA: A Comparison between Texas, Eastern Oklahoma, and the Four Corners Area

    PubMed Central

    Sather, Mark E.; Allen, Kara L.; Smith, Luther; Mathew, Johnson; Jackson, Clarence; Callison, Ryan; Scrapper, Larry; Hathcoat, April; Adam, Jacque; Keese, Danielle; Brunette, Robert; Karlstrom, Jason; Van der Jagt, Gerard

    2014-01-01

    Gaseous oxidized mercury (GOM) dry deposition measurements using aerodynamic surrogate surface passive samplers were collected in central and eastern Texas and eastern Oklahoma, from September 2011 to September 2012. The purpose of this study was to provide an initial characterization of the magnitude and spatial extent of ambient GOM dry deposition in central and eastern Texas for a 12-month period which contained statistically average annual results for precipitation totals, temperature, and wind speed. The research objective was to investigate GOM dry deposition in areas of Texas impacted by emissions from coal-fired utility boilers and compare it with GOM dry deposition measurements previously observed in eastern Oklahoma and the Four Corners area. Annual GOM dry deposition rate estimates were relatively low in Texas, ranging from 0.1 to 0.3 ng/m2h at the four Texas monitoring sites, similar to the 0.2 ng/m2h annual GOM dry deposition rate estimate recorded at the eastern Oklahoma monitoring site. The Texas and eastern Oklahoma annual GOM dry deposition rate estimates were at least four times lower than the highest annual GOM dry deposition rate estimate previously measured in the more arid bordering western states of New Mexico and Colorado in the Four Corners area. PMID:24955412

  5. Effects of the Application of Digestates from Wet and Dry Anaerobic Fermentation to Japanese Paddy and Upland Soils on Short-Term Nitrification

    PubMed Central

    Sawada, Kozue; Toyota, Koki

    2015-01-01

    Wet and dry anaerobic fermentation processes are operated for biogas production from organic matter, resulting in wet and dry digestates as by-products, respectively. The application of these digestates to soil as fertilizer has increased in recent years. Therefore, we herein compared the effects of applying wet digestates (pH 8.2, C/N ratio 4.5), dry digestates (pH 8.8, C/N ratio 23.4), and a chemical fertilizer to Japanese paddy and upland soils on short-term nitrification under laboratory aerobic conditions. Chloroform-labile C, an indicator of microbial biomass, was only minimally affected by these applications, indicating that a small amount of labile N was immobilized by microbes. All applications led to rapid increases in NO3 -N contents in both soils, and ammonia-oxidizing bacteria, but not archaea may play a critical role in net nitrification in the amended soils. The net nitrification rates for both soils were the highest after the application of dry digestates, followed by wet digestates and then the chemical fertilizer in order of decreasing soil pH. These results suggest that the immediate effects of applying digestates, especially dry digestates with the highest pH, on nitrate leaching need to be considered when digestates are used as alternative fertilizers. PMID:25740173

  6. Effects of the application of digestates from wet and dry anaerobic fermentation to Japanese paddy and upland soils on short-term nitrification.

    PubMed

    Sawada, Kozue; Toyota, Koki

    2015-01-01

    Wet and dry anaerobic fermentation processes are operated for biogas production from organic matter, resulting in wet and dry digestates as by-products, respectively. The application of these digestates to soil as fertilizer has increased in recent years. Therefore, we herein compared the effects of applying wet digestates (pH 8.2, C/N ratio 4.5), dry digestates (pH 8.8, C/N ratio 23.4), and a chemical fertilizer to Japanese paddy and upland soils on short-term nitrification under laboratory aerobic conditions. Chloroform-labile C, an indicator of microbial biomass, was only minimally affected by these applications, indicating that a small amount of labile N was immobilized by microbes. All applications led to rapid increases in NO3 -N contents in both soils, and ammonia-oxidizing bacteria, but not archaea may play a critical role in net nitrification in the amended soils. The net nitrification rates for both soils were the highest after the application of dry digestates, followed by wet digestates and then the chemical fertilizer in order of decreasing soil pH. These results suggest that the immediate effects of applying digestates, especially dry digestates with the highest pH, on nitrate leaching need to be considered when digestates are used as alternative fertilizers.

  7. Prevalence of Visible and Occult Blood on Airway Management Equipment Used Outside the Operating Room

    DTIC Science & Technology

    1999-10-01

    under pressure, dry heat, ethylene oxide gas, and liquid chemicals such as peracetic acid. Disinfection. A process that eliminates many or all...Laryngoscope Blade. Portion of the laryngoscope that is inserted into the patient s mouth . Blades vary in size and can be curved (Macintosh) or straight...established SOP s by units such as the Medical/Surgical ICU staff most likely explains the reduced overall prevalence of occult blood. Recommendations

  8. Transcriptional Response of Nitrifying Communities to Wetting of Dry Soil

    PubMed Central

    Firestone, Mary K.

    2013-01-01

    The first rainfall following a severe dry period provides an abrupt water potential change that is both an acute physiological stress and a defined stimulus for the reawakening of soil microbial communities. We followed the responses of indigenous communities of ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and nitrite-oxidizing bacteria to the addition of water to laboratory incubations of soils taken from two California annual grasslands following a typically dry Mediterranean summer. By quantifying transcripts for a subunit of bacterial and archaeal ammonia monooxygenases (amoA) and a bacterial nitrite oxidoreductase (nxrA) in soil from 15 min to 72 h after water addition, we identified transcriptional response patterns for each of these three groups of nitrifiers. An increase in quantity of bacterial amoA transcripts was detectable within 1 h of wet-up and continued until the size of the ammonium pool began to decrease, reflecting a possible role of transcription in upregulation of nitrification after drought-induced stasis. In one soil, the pulse of amoA transcription lasted for less than 24 h, demonstrating the transience of transcriptional pools and the tight coupling of transcription to the local soil environment. Analysis of 16S rRNA using a high-density microarray suggested that nitrite-oxidizing Nitrobacter spp. respond in tandem with ammonia-oxidizing bacteria while nitrite-oxidizing Nitrospina spp. and Nitrospira bacteria may not. Archaeal ammonia oxidizers may respond slightly later than bacterial ammonia oxidizers but may maintain elevated transcription longer. Despite months of desiccation-induced inactivation, we found rapid transcriptional response by all three groups of soil nitrifiers. PMID:23524666

  9. WETTING STIMULATES ATMOSPHERIC CH4 OXIDATION BY ALPINE SOIL (R823442)

    EPA Science Inventory

    Studies were done to assess the effects of soil moisture manipulations on CH4 oxidation in soils from a dry alpine tundra site. When water was added to these soils there was a stimulation of CH4 oxidation. This stimulation of CH4 oxidation took ti...

  10. Oxidation-Resistant Coating For Bipolar Lead/Acid Battery

    NASA Technical Reports Server (NTRS)

    Bolstad, James J.

    1993-01-01

    Cathode side of bipolar substrate coated with nonoxidizable conductive layer. Coating prepared as water slurry of aqueous dispersion of polyethylene copolymer plus such conductive fillers as tin oxide, titanium, tantalum, or tungsten oxide. Applied easily to substrate of polyethylene carbon plastic. As slurry dries, conductive, oxidation-resistant coating forms on positive side of substrate.

  11. Effect of ball milling materials and methods on powder processing of Bi2223 superconductors

    NASA Astrophysics Data System (ADS)

    Yavuz, M.; Maeda, H.; Vance, L.; Liu, H. K.; Dou, S. X.

    1998-10-01

    Various milling systems consisting of agate and polypropylene grinding containers, agate and YSZ balls, and dry and wet milling were used in planetary ball-milling and YSZ balls and YSZ container were used in wet and dry attrition milling. The differently milled powders were then evaluated by measurements of particle size, surface area, porosity, size distribution and chemical analysis of the Si, Zr and C contents. The results show that dry milling is much more efficient for particle size reduction in planetary milling than wet milling, whereas wet milling and dry milling gave quite similar results in attrition milling. Meanwhile 0953-2048/11/10/056/img6 contamination was found in powder milled with an agate container with agate balls. Some C contamination from the polypropylene container was detected after milling, but negligible Zr from YSZ balls and C from the grinding carrier (hexane). It was found that after 1 h milling in the planetary mill fracture mechanisms transform from the elastic to the plastic region. Therefore, further milling is not very effective. It was also shown that the Bi2212 phase decomposes into several non-superconducting oxides such as 0953-2048/11/10/056/img7, CuO and a main amorphous phase after extensive dry milling.

  12. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents.

    PubMed

    Zhao, Jie; Lu, Zhenda; Liu, Nian; Lee, Hyun-Wook; McDowell, Matthew T; Cui, Yi

    2014-10-03

    Rapid progress has been made in realizing battery electrode materials with high capacity and long-term cyclability in the past decade. However, low first-cycle Coulombic efficiency as a result of the formation of a solid electrolyte interphase and Li trapping at the anodes, remains unresolved. Here we report LixSi-Li2O core-shell nanoparticles as an excellent prelithiation reagent with high specific capacity to compensate the first-cycle capacity loss. These nanoparticles are produced via a one-step thermal alloying process. LixSi-Li2O core-shell nanoparticles are processible in a slurry and exhibit high capacity under dry-air conditions with the protection of a Li2O passivation shell, indicating that these nanoparticles are potentially compatible with industrial battery fabrication processes. Both Si and graphite anodes are successfully prelithiated with these nanoparticles to achieve high first-cycle Coulombic efficiencies of 94% to >100%. The LixSi-Li2O core-shell nanoparticles enable the practical implementation of high-performance electrode materials in lithium-ion batteries.

  13. Water vapor effect on high-temperature oxidation behavior of Fe3Al intermetallics

    PubMed Central

    Chevalier, Sebastian; Juzon, Pitor; Przybylski, Kazimierz; Larpin, Jean-Pierre

    2009-01-01

    Fe3Al intermetallics (Fe3Al, Fe3Al-Zr, Fe3Al-Zr,Mo and Fe3Al-Zr, Mo, Nb) were oxidized at 950 °C in dry and humid (11 vol% water) synthetic air. Thermogravimetric measurements showed that the oxidation rates of the tested intermetallics were lower in humid air than in dry air (especially for Fe3Al-Zr, Mo and Fe3Al-Zr, Mo, Nb). The addition of small amounts of Zr, Mo or Nb improved the kinetics compared with that of the undoped Fe3Al. Fe3Al showed massive spallation, whereas Fe3Al-Zr, Fe3Al-Zr, Mo and Fe3Al-Zr, Mo, Nb produced a flat, adherent oxide layer. The rapid transformation of transient alumina into alpha alumina may explain the decrease in the oxidation rate in humid air. PMID:27877306

  14. Correlation between border traps and exposed surface properties in gate recessed normally-off Al2O3/GaN MOSFET

    NASA Astrophysics Data System (ADS)

    Yin, Ruiyuan; Li, Yue; Sun, Yu; Wen, Cheng P.; Hao, Yilong; Wang, Maojun

    2018-06-01

    We report the effect of the gate recess process and the surface of as-etched GaN on the gate oxide quality and first reveal the correlation between border traps and exposed surface properties in normally-off Al2O3/GaN MOSFET. The inductively coupled plasma (ICP) dry etching gate recess with large damage presents a rough and active surface that is prone to form detrimental GaxO validated by atomic force microscopy and X-ray photoelectron spectroscopy. Lower drain current noise spectral density of the 1/f form and less dispersive ac transconductance are observed in GaN MOSFETs fabricated with oxygen assisted wet etching compared with devices based on ICP dry etching. One decade lower density of border traps is extracted in devices with wet etching according to the carrier number fluctuation model, which is consistent with the result from the ac transconductance method. Both methods show that the density of border traps is skewed towards the interface, indicating that GaxO is of higher trap density than the bulk gate oxide. GaxO located close to the interface is the major location of border traps. The damage-free oxidation assisted wet etching gate recess technique presents a relatively smooth and stable surface, resulting in lower border trap density, which would lead to better MOS channel quality and improved device reliability.

  15. Irradiation effect of low-energy ion on polyurethane nanocoating containing metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Jaya; Nigam, Subhasha; Sinha, Surbhi; Sikarwar, B. S.; Bhattacharya, Arpita

    2017-12-01

    Irradiation effect of low-energy ion beam has been investigated on nanocoating developed with silica, titania and silica-titania core-shell nanoparticles embedded in an organic binder for nanopaint application. In this work, we have taken polyurethane as a model organic binder. Silica nanoparticles have been prepared through sol-gel synthesis with a particle size of 85 nm. Titania and core-shell nanoparticles have been prepared through both sol-gel and peptization process. Particle sizes obtained were 107 nm for titania and 240 nm for core-shell nanoparticles prepared through sol-gel process and 75 nm for TiO2 and 144 nm for core-shell nanoparticles prepared through peptization process. The coating formulations were developed with the above nanoparticles individually and nanoparticle concentration was varied from 1 to 6 wt% and the best performance in terms of hydrophobicity was obtained with 4 wt % of the nanoparticles in polyurethane coating formulation. All the coating formulations prepared were applied on a glass substrate and dried at 100°C. The dry film thickness obtained was around 100 µm in each case. These films dried on glass substrate were irradiated by nitrogen and argon ion beam with energy of 26 keV at fluences of 1014 to 1016 ions/cm2. The anti-algal property of the irradiated samples was improved and hydrophobicity was reduced.

  16. Activation of apoptotic processes during transition from hypertrophy to heart failure in guinea pigs.

    PubMed

    Sharma, A K; Dhingra, S; Khaper, N; Singal, P K

    2007-09-01

    Changes in oxidative stress and apoptotic process were studied during the progression of a compensated hypertrophy to a decompensated heart failure in guinea pigs. Banding of the ascending aorta resulted in heart hypertrophy. At 10 wk, ventricle-to-body weight ratio and thickness of the interventricular septum as well as the left ventricular wall were increased significantly. Although fractional shortening and ejection fraction were decreased, there were no signs of heart failure. Furthermore, there was no increase in wet-to-dry weight ratios for the lungs and liver at this stage. However, at 20 wk, heart failure was characterized by a significant depression in heart function as indicated by a decrease in fractional shortening, and ejection fraction and a lesser increase in wall thickness from diastole to systole. Animals also showed clinical signs of heart failure, and the wet-to-dry weight ratios of the lungs and liver were significantly higher. Cardiomyocyte oxidative stress was significantly higher in the 20-wk aortic-banded group. The ratio of Bax to Bcl-xl showed an increase at 10 wk, and there was a further increase at 20 wk. Mitochondrial membrane potential in the aortic-banded animals was significantly decreased at 10 and 20 wk. Cytochrome c levels were higher in the cytosol compared with the mitochondria, leading to a considerable increase in the expression of p17 subunit of caspase-3. At 20 wk, both early and late stages of apoptosis were observed in isolated cardiomyocytes. It is suggested that an increase in oxidative stress initiates mitochondrial death pathway during the hypertrophic stage, leading to apoptosis and heart failure at a later stage.

  17. Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US

    DOE PAGES

    Pajunoja, Aki; Hu, Weiwei; Leong, Yu J.; ...

    2016-09-09

    During the summer 2013 Southern Aerosol and Oxidant Study (SOAS) field campaign in a rural site in the southeastern United States, the effect of hygroscopicity and composition on the phase state of atmospheric aerosol particles dominated by the organic fraction was studied. The analysis is based on hygroscopicity measurements by a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA), physical phase state investigations by an Aerosol Bounce Instrument (ABI) and composition measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). To study the effect of atmospheric aging on these properties, an OH-radical oxidation flow reactor (OFR) was used to simulate longer atmosphericmore » aging times of up to 3 weeks. Hygroscopicity and bounce behavior of the particles had a clear relationship showing higher bounce at elevated relative humidity (RH) values for less hygroscopic particles, which agrees well with earlier laboratory studies. Additional OH oxidation of the aerosol particles in the OFR increased the O:C and the hygroscopicity resulting in liquefying of the particles at lower RH values. At the highest OH exposures, the inorganic fraction starts to dominate the bounce process due to production of inorganics and concurrent loss of organics in the OFR. Our results indicate that at typical ambient RH and temperature, organic-dominated particles stay mostly liquid in the atmospheric conditions in the southeastern US, but they often turn semisolid when dried below ~50 % RH in the sampling inlets. Furthermore, while the liquid phase state suggests solution behavior and equilibrium partitioning for the SOA particles in ambient air, the possible phase change in the drying process highlights the importance of thoroughly considered sampling techniques of SOA particles.« less

  18. Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pajunoja, Aki; Hu, Weiwei; Leong, Yu J.

    During the summer 2013 Southern Aerosol and Oxidant Study (SOAS) field campaign in a rural site in the southeastern United States, the effect of hygroscopicity and composition on the phase state of atmospheric aerosol particles dominated by the organic fraction was studied. The analysis is based on hygroscopicity measurements by a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA), physical phase state investigations by an Aerosol Bounce Instrument (ABI) and composition measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). To study the effect of atmospheric aging on these properties, an OH-radical oxidation flow reactor (OFR) was used to simulate longer atmosphericmore » aging times of up to 3 weeks. Hygroscopicity and bounce behavior of the particles had a clear relationship showing higher bounce at elevated relative humidity (RH) values for less hygroscopic particles, which agrees well with earlier laboratory studies. Additional OH oxidation of the aerosol particles in the OFR increased the O:C and the hygroscopicity resulting in liquefying of the particles at lower RH values. At the highest OH exposures, the inorganic fraction starts to dominate the bounce process due to production of inorganics and concurrent loss of organics in the OFR. Our results indicate that at typical ambient RH and temperature, organic-dominated particles stay mostly liquid in the atmospheric conditions in the southeastern US, but they often turn semisolid when dried below ~50 % RH in the sampling inlets. Furthermore, while the liquid phase state suggests solution behavior and equilibrium partitioning for the SOA particles in ambient air, the possible phase change in the drying process highlights the importance of thoroughly considered sampling techniques of SOA particles.« less

  19. Implications of the lack of desiccation tolerance in recalcitrant seeds.

    PubMed

    Berjak, Patricia; Pammenter, Norman W

    2013-11-22

    A suite of interacting processes and mechanisms enables tolerance of desiccation and storage (conservation) of orthodox seeds in the dry state. While this is a long-term option under optimized conditions, dry orthodox seeds are not immortal, with life spans having been characterized as short, intermediate and long. Factors facilitating desiccation tolerance are metabolic "switch-off" and intracellular dedifferentiation. Recalcitrant seeds lack these mechanisms, contributing significantly to their desiccation sensitivity. Consequently, recalcitrant seeds, which are shed at high water contents, can be stored only in the short-term, under conditions not allowing dehydration. The periods of such hydrated storage are constrained by germination that occurs without the need for extraneous water, and the proliferation of seed-associated fungi. Cryopreservation is viewed as the only option for long-term conservation of the germplasm of recalcitrant-seeded species. This is not easily achieved, as each of the necessary procedures imposes oxidative damage. Intact recalcitrant seeds cannot be cryopreserved, the common practice being to use excised embryos or embryonic axes as explants. Dehydration is a necessary procedure prior to exposure to cryogenic temperatures, but this is associated with metabolism-linked injury mediated by uncontrolled reactive oxygen species generation and failing anti-oxidant systems. While the extent to which this occurs can be curtailed by maximizing drying rate (flash drying) it cannot be completely obviated. Explant cooling for, and rewarming after, cryostorage must necessarily be rapid, to avoid ice crystallization. The ramifications of desiccation sensitivity are discussed, as are problems involved in cryostorage, particularly those accompanying dehydration and damage consequent upon ice crystallization. While desiccation sensitivity is a "fact" of seed recalcitrance, resolutions of the difficulties involved germplasm conservation are possible as discussed.

  20. Identification of sulfur fumed Pinelliae Rhizoma using an electronic nose

    PubMed Central

    Zhou, Xia; Wan, Jun; Chu, Liang; Liu, Wengang; Jing, Yafeng; Wu, Chunjie

    2014-01-01

    Background: Pinelliae Rhizoma is a commonly used Chinese herb which will change brown during the natural drying process. However, sulfur fumed Pinelliae Rhizoma will get a better appearance than naturally dried one. Sulfur fumed Pinelliae Rhizoma is potentially toxical due to sulfur dioxide and sulfites formed during the fuming procedures. The odor components in sulfur fumed Pinelliae Rhizoma is complex. At present, there is no analytical method available to determine sulfur fumed Pinelliae Rhizoma simply and rapidly. To ensure medication safety, it is highly desirable to have an effective and simple method to identify sulfur fumed Pinelliae Rhizoma. Materials and Methods: This paper presents a novel approach using an electronic nose based on metal oxide sensors to identify whether Pinelliae Rhizoma was fumed with sulfur, and to predict the fuming degree of Pinelliae Rhizoma. Multivariate statistical methods such as principal components analysis (PCA), discriminant factorial analysis (DFA) and partial least squares (PLS) were used for data analyzing and identification. The use of the electronic nose to discriminate between different fuming degrees Pinelliae Rhizoma and naturally dried Pinelliae Rhizoma was demonstrated. Results: The electronic nose was also successfully applied to identify unknown samples including sulfur fumed samples and naturally dried samples, high recognition value was obtained. Quantitative analysis of fuming degree of Pinelliae Rhizoma was also demonstrated. The method developed is simple and fast, which provides a new quality control method of Chinese herbs from the aspect of odor. Conclusion: It has shown that this electronic nose based metal oxide sensor is sensitive to sulfur and sulfides. We suggest that it can serve as a supportive method to detect residual sulfur and sulfides. PMID:24914293

  1. High surface area aerogels for energy storage and efficiency

    NASA Astrophysics Data System (ADS)

    Maloney, Ryan Patrick

    The dissertation is divided into two main chapters, each focused on a different application for aerogel. The first chapter concerns the development of silica aerogel for thermal insulation. It begins with initial characterization of a silica aerogel insulation for a next-generation Advanced Radioisotope Stirling Generator for space vehicles. While the aerogel as made performs well, it is apparent that further improvements in mechanical strength and durability are necessary. The chapter then continues with the exploration of chlorotrimethysilane surface modification, which somewhat surprisingly provides a drastic increase in mechanical properties, allowing the inherently brittle silica network to deform plastically to >80% strain. It is hypothesized that the hydrophobic surface groups reduce capillary forces during drying, lowering the number of microcracks that may form and weaken the gel. This surface modification scheme is then implemented in a fiber-reinforced, opacified aerogel insulation for a prototypical thermoelectric generator for automotive waste heat recovery. This is the first known report of aerogel insulation for thermoelectrics. The aerogel insulation is able to increase the efficiency of the thermoelectric generator by 40% compared with commercial high-temperature insulating wool. Unfortunately, the supercritical drying process adds significant cost to the aerogel insulation, limiting its commercial viability. The chapter then culminates in the development and characterization of an Ambiently Dried Aerogel Insulation (ADAI) that eliminates the need for expensive supercritical drying. It is believed that this report represents the first aerogel insulation that can be dried without undergoing a large volume change before "springing back" to near its original volume, which allows it to be cast into place into complex geometries and around rigid inclusions. This reduces a large barrier to the commercial viability of aerogel insulation. The advantages of ADAI are demonstrated in a third-generation prototypical thermoelectric generator for automotive waste heat recovery. The second chapter then details two different aerogel-based materials for electrochemical energy storage. It begins with lithium titanate aerogel, which takes advantage of the high surface area of the aerogel morphology to display a batt-cap behavior. This should allow the lithium titanate aerogel to perform at higher rates than would normally be expected for the bulk oxide material. Additionally, the flexibility of the sol-gel process is demonstrated through the incorporation of electrically conductive high-surface area exfoliated graphite nanoplatelets in the oxide. The last section describes the characterization of a LiMn2O 4 spinel coated carbon nanofoam in a non-aqueous electrolyte. The short diffusion path, high surface area and intimately wired architecture of the nanofoam allows the oxide to retain its capacity at significantly higher rates when compared with literature values for the bulk oxide. Additionally, the nanometric length scale improves cycle life, and the high surface area dramatically increases the insertion capacity by providing a higher concentration of surface defects. Taken together, it is clear that aerogels are an extremely attractive class of material for applications pertaining to energy and efficiency, and further research in this area will provide valuable solutions for pressing societal needs. (Abstract shortened by UMI.).

  2. PCDD/F enviromental impact from municipal solid waste bio-drying plant.

    PubMed

    Rada, E C; Ragazzi, M; Zardi, D; Laiti, L; Ferrari, A

    2011-06-01

    The present work indentifies some environmental and health impacts of a municipal solid waste bio-drying plant taking into account the PCDD/F release into the atmosphere, its concentration at ground level and its deposition. Four scenarios are presented for the process air treatment and management: biofilter or regenerative thermal oxidation treatment, at two different heights. A Gaussian dispersion model, AERMOD, was used in order to model the dispersion and deposition of the PCDD/F emissions into the atmosphere. Considerations on health risk, from different exposure pathways are presented using an original approach. The case of biofilter at ground level resulted the most critical, depending on the low dispersion of the pollutants. Suggestions on technical solutions for the optimization of the impact are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Fabrication of visible light-triggered photocatalytic materials from the coupling of n-type zinc oxide and p-type copper oxide

    NASA Astrophysics Data System (ADS)

    Gorospe, A. B.; Herrera, M. U.

    2017-04-01

    Coupling of copper oxide (CuO) and zinc oxide (ZnO) was done by chemical precipitation method. In this method, copper sulfate pentahydrate and zinc sulfate heptahydrate salt precursors were separately dissolved in distilled water; then were mixed together. The copper sulfate-zinc sulfate solution was then combined with a sodium hydroxide solution. The precipitates were collected and washed in distilled water and ethanol several times, then filtered and dried. The dried sample was grounded, and then undergone heat treatment. After heating, the sample was grounded again. Zinc oxide powder and copper oxide powder were also fabricated using chemical precipitation method. X-Ray Diffraction measurements of the coupled CuO/ZnO powder showed the presence of CuO and ZnO in the fabricated sample. Furthermore, other peaks shown by XRD were also identified corresponding to copper, copper (II) oxide, copper sulfate and zinc sulfate. Results of the photocatalytic activity investigation show that the sample exhibited superior photocatalytic degradation of methyl orange under visible light illumination compared to copper oxide powder and zinc oxide powder. This may be attributed to the lower energy gap at the copper oxide-zinc oxide interface, compared to zinc oxide, allowing visible light to trigger its photocatalytic activity.

  4. Spacecraft sterilization.

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.

    1972-01-01

    Spacecraft sterilization is a vital factor in projects for the successful biological exploration of other planets. The microorganisms of major concern are the fungi and bacteria. Sterilization procedures are oriented toward the destruction of bacterial spores. Gaseous sterilants are examined, giving attention to formaldehyde, beta-propiolactone, ethylene oxide, and the chemistry of the bactericidal action of sterilants. Radiation has been seriously considered as another method for spacecraft sterilization. Dry heat sterilization is discussed together with the effects of ethylene oxide decontamination and dry heat sterilization on materials.

  5. Measuring biogeochemical responses to pulses of water

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    Hydrologic pulses, temporary increases in water inputs such as bouts of precipitation, can affect biogeochemical processes in ecosystems by providing water and nutrient resources. However, ecosystem responses to the water vary. Harms and Grimm conducted experiments to determine how hydrologic pulses and existing moisture conditions interact to affect the biogeochemistry of desert floodplains. During dry and monsoon seasons at their study site in the floodplains of the San Pedro River in Arizona, the researchers experimentally added pulses of water and then measured emissions of several trace gases that are indicators of biological processes. They found that the size of the added hydrologic pulse strongly interacted with existing soil moisture conditions in determining emissions of some trace gases. For instance, following dry conditions, pulses of water stimulated carbon dioxide, methane, and nitric oxide emissions, with larger water pulses stimulating more emissions. However, when soil was already wet, the addition of water pulses had less effect on the emission of these gases. (Journal of Geophysical Research-Biogeosciences, doi:10.1029/2011JG001775, 2012)

  6. Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication.

    PubMed

    Rawlings, Colin D; Zientek, Michal; Spieser, Martin; Urbonas, Darius; Stöferle, Thilo; Mahrt, Rainer F; Lisunova, Yuliya; Brugger, Juergen; Duerig, Urs; Knoll, Armin W

    2017-11-28

    Applications for high resolution 3D profiles, so-called grayscale lithography, exist in diverse fields such as optics, nanofluidics and tribology. All of them require the fabrication of patterns with reliable absolute patterning depth independent of the substrate location and target materials. Here we present a complete patterning and pattern-transfer solution based on thermal scanning probe lithography (t-SPL) and dry etching. We demonstrate the fabrication of 3D profiles in silicon and silicon oxide with nanometer scale accuracy of absolute depth levels. An accuracy of less than 1nm standard deviation in t-SPL is achieved by providing an accurate physical model of the writing process to a model-based implementation of a closed-loop lithography process. For transfering the pattern to a target substrate we optimized the etch process and demonstrate linear amplification of grayscale patterns into silicon and silicon oxide with amplification ratios of ∼6 and ∼1, respectively. The performance of the entire process is demonstrated by manufacturing photonic molecules of desired interaction strength. Excellent agreement of fabricated and simulated structures has been achieved.

  7. Application of N-Doped Three-Dimensional Reduced Graphene Oxide Aerogel to Thin Film Loudspeaker.

    PubMed

    Kim, Choong Sun; Lee, Kyung Eun; Lee, Jung-Min; Kim, Sang Ouk; Cho, Byung Jin; Choi, Jung-Woo

    2016-08-31

    We built a thermoacoustic loudspeaker employing N-doped three-dimensional reduced graphene oxide aerogel (N-rGOA) based on a simple template-free fabrication method. A two-step fabrication process, which includes freeze-drying and reduction/doping, was used to realize a three-dimensional, freestanding, and porous graphene-based loudspeaker, whose macroscopic structure can be easily modulated. The simplified fabrication process also allows the control of structural properties of the N-rGOAs, including density and area. Taking advantage of the facile fabrication process, we fabricated and analyzed thermoacoustic loudspeakers with different structural properties. The anlayses showed that a N-rGOA with lower density and larger area can produce a higher sound pressure level (SPL). Furthermore, the resistance of the proposed loudspeaker can be easily controlled through heteroatom doping, thereby helping to generate higher SPL per unit driving voltage. Our success in constructing an array of optimized N-rGOAs able to withstand input power as high as 40 W demonstrates that a practical thermoacoustic loudspeaker can be fabricated using the proposed mass-producible solution-based process.

  8. Treatment of CELSS and PCELSS waste to produce nutrients for plant growth. [Controlled Ecological Life Support Systems and Partially Controlled Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Modell, M.; Meissner, H.; Karel, M.; Carden, J.; Lewis, S.

    1981-01-01

    The research program entitled 'Development of a Prototype Experiment for Treating CELSS (Controlled Ecological Life Support Systems) and PCELSS (Partially Controlled Ecological Life Support Systems) Wastes to Produce Nutrients for Plant Growth' consists of two phases: (1) the development of the neccessary facilities, chemical methodologies and models for meaningful experimentation, and (2) the application of what methods and devices are developed to the interfacing of waste oxidation with plant growth. Homogeneous samples of freeze-dried human feces and urine have been prepared to ensure comparability of test results between CELSS waste treatment research groups. A model of PCELSS food processing wastes has been developed, and an automated gas chromatographic system to analyze oxidizer effluents was designed and brought to operational status. Attention is given the component configuration of the wet oxidation system used by the studies.

  9. Influence of in line monitored fluid bed granulation process parameters on the stability of Ethinylestradiol.

    PubMed

    Roßteuscher-Carl, Katrin; Fricke, Sabine; Hacker, Michael C; Schulz-Siegmund, Michaela

    2015-12-30

    Ethinylestradiol (EE) as a highly active and low dosed compound is prone to oxidative degradation. The stability of the drug substance is therefore a critical parameter that has to be considered during drug formulation. Beside the stability of the drug substance, granule particle size and moisture are critical quality attributes (CQA) of the fluid bed granulation process which influence the tableting ability of the resulting granules. Both CQA should therefore be monitored during the production process by process analytic technology (PAT) according to ICH Q8. This work focusses on the effects of drying conditions on the stability of EE in a fluid-bed granulation process. We quantified EE degradation products 6-alpha-hydroxy-EE, 6-beta-hydroxy-EE, 9(11)-dehydro-EE and 6-oxo-EE during long time storage and accelerated conditions. PAT-tools that monitor granule particle size (Spatial filtering technology) and granule moisture (Microwave resonance technology) were applied and compared with off-line methods. We found a relevant influence of residual granule moisture and thermic stress applied during granulation on the storage stability of EE, whereas no degradation was found immediately after processing. Hence we conclude that drying parameters have a relevant influence on long term EE stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. 46 CFR 154.1730 - Ethylene oxide: Loading and off loading.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ethylene oxide: Loading and off loading. 154.1730... Operating Requirements § 154.1730 Ethylene oxide: Loading and off loading. (a) The master shall ensure that before ethylene oxide is loaded into a cargo tank: (1) The tank is thoroughly clean, dry, and free of...

  11. Rapid prediction of ochratoxin A-producing strains of Penicillium on dry-cured meat by MOS-based electronic nose.

    PubMed

    Lippolis, Vincenzo; Ferrara, Massimo; Cervellieri, Salvatore; Damascelli, Anna; Epifani, Filomena; Pascale, Michelangelo; Perrone, Giancarlo

    2016-02-02

    The availability of rapid diagnostic methods for monitoring ochratoxigenic species during the seasoning processes for dry-cured meats is crucial and constitutes a key stage in order to prevent the risk of ochratoxin A (OTA) contamination. A rapid, easy-to-perform and non-invasive method using an electronic nose (e-nose) based on metal oxide semiconductors (MOS) was developed to discriminate dry-cured meat samples in two classes based on the fungal contamination: class P (samples contaminated by OTA-producing Penicillium strains) and class NP (samples contaminated by OTA non-producing Penicillium strains). Two OTA-producing strains of Penicillium nordicum and two OTA non-producing strains of Penicillium nalgiovense and Penicillium salamii, were tested. The feasibility of this approach was initially evaluated by e-nose analysis of 480 samples of both Yeast extract sucrose (YES) and meat-based agar media inoculated with the tested Penicillium strains and incubated up to 14 days. The high recognition percentages (higher than 82%) obtained by Discriminant Function Analysis (DFA), either in calibration and cross-validation (leave-more-out approach), for both YES and meat-based samples demonstrated the validity of the used approach. The e-nose method was subsequently developed and validated for the analysis of dry-cured meat samples. A total of 240 e-nose analyses were carried out using inoculated sausages, seasoned by a laboratory-scale process and sampled at 5, 7, 10 and 14 days. DFA provided calibration models that permitted discrimination of dry-cured meat samples after only 5 days of seasoning with mean recognition percentages in calibration and cross-validation of 98 and 88%, respectively. A further validation of the developed e-nose method was performed using 60 dry-cured meat samples produced by an industrial-scale seasoning process showing a total recognition percentage of 73%. The pattern of volatile compounds of dry-cured meat samples was identified and characterized by a developed HS-SPME/GC-MS method. Seven volatile compounds (2-methyl-1-butanol, octane, 1R-α-pinene, d-limonene, undecane, tetradecanal, 9-(Z)-octadecenoic acid methyl ester) allowed discrimination between dry-cured meat samples of classes P and NP. These results demonstrate that MOS-based electronic nose can be a useful tool for a rapid screening in preventing OTA contamination in the cured meat supply chain. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle.

    PubMed

    Buelens, Lukas C; Galvita, Vladimir V; Poelman, Hilde; Detavernier, Christophe; Marin, Guy B

    2016-10-28

    Efficient CO 2 transformation from a waste product to a carbon source for chemicals and fuels will require reaction conditions that effect its reduction. We developed a "super-dry" CH 4 reforming reaction for enhanced CO production from CH 4 and CO 2 We used Ni/MgAl 2 O 4 as a CH 4 -reforming catalyst, Fe 2 O 3 /MgAl 2 O 4 as a solid oxygen carrier, and CaO/Al 2 O 3 as a CO 2 sorbent. The isothermal coupling of these three different processes resulted in higher CO production as compared with that of conventional dry reforming, by avoiding back reactions with water. The reduction of iron oxide was intensified through CH 4 conversion to syngas over Ni and CO 2 extraction and storage as CaCO 3 CO 2 is then used for iron reoxidation and CO production, exploiting equilibrium shifts effected with inert gas sweeping (Le Chatelier's principle). Super-dry reforming uses up to three CO 2 molecules per CH 4 and offers a high CO space-time yield of 7.5 millimole CO per second per kilogram of iron at 1023 kelvin. Copyright © 2016, American Association for the Advancement of Science.

  13. Effects of plant polyphenols and α-tocopherol on lipid oxidation, microbiological characteristics, and biogenic amines formation in dry-cured bacons.

    PubMed

    Wang, Yongli; Li, Feng; Zhuang, Hong; Li, Lianghao; Chen, Xiao; Zhang, Jianhao

    2015-03-01

    Effects of plant polyphenols (tea polyphenol [TP], grape seed extract [GSE], and gingerol) and α-tocopherol on physicochemical parameters, microbiological counts, and biogenic amines were determined in dry-cured bacons at the end of ripening. Results showed that plant polyphenols and α-tocopherol significantly decreased pH, thiobarbituric acid reactive substances content, and total volatile basic nitrogen (TVBN) compared with the control (P < 0.05). Microbial counts and biogenic amine contents in dry-cured bacons were affected by plant polyphenols or α-tocopherol, with TP being the most effective (P < 0.05) in reducing aerobic plate counts, Enterobacteriaceae, Micrococcaceae, yeast, and molds, as well as in inhibiting formation of putrescine, cadaverine, tyramine, and spermine. Principal component analysis indicated that the first 2 principal components (PC) explained about 85.5% of the total variation. PC1 was related with physicochemical factors, parts of biogenic amines, and spoilage microorganisms, whereas PC2 grouped the TVBN, tyramine, 2-phenylethylamine, yeast, and molds. These findings suggest that plant polyphenols, especially TP, could be used to process dry-cured bacons to improve the quality and safety of finished products. © 2015 Institute of Food Technologists®

  14. Far from the equilibrium crystallization of oxide quantum dots in dried inorganic gels

    NASA Astrophysics Data System (ADS)

    Costille, B.; Dumoulin, M.; Ntsame Abagha, A. M.; Thune, E.; Guinebretière, R.

    2018-06-01

    We synthesized, through the sol-gel process, far from the equilibrium amorphous materials in which heterogeneous crystallization allowed the formation of oxide quantum dots. The isothermal evolutions of the mean size of the nanocrystals and the crystallinity of the materials were determined through x-ray diffraction experiments. The heterogeneous crystallization is characterized by a kinetic behavior that is far from that expected, according to the classical nucleation theory. We demonstrate that the evolution of the crystallinity is characterized by an Avrami exponent largely smaller than 1. Finally, nanocrystals exhibiting a size significantly below their Bohr radius are obtained and the number of these nanocrystals increases during isothermal treatment, whereas their mean size remains quasi-constant.

  15. Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM.

    PubMed

    Gao, Chao; Qiu, Jianhua; Li, Jingchen; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping

    2009-03-01

    D-lactic acid and pyruvic acid are two important building block intermediates. Production of D-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l(-1) of Pseudomonas stutzeri SDM could catalyze 45.00 g l(-1)DL-lactic acid into 25.23 g l(-1)D-lactic acid and 19.70 g l(-1) pyruvic acid in 10h. Using a simple ion exchange process, D-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.

  16. Deciphering potential chemical compounds of gaseous oxidized mercury in Florida, USA

    NASA Astrophysics Data System (ADS)

    Huang, Jiaoyan; Miller, Matthieu B.; Edgerton, Eric; Sexauer Gustin, Mae

    2017-02-01

    The highest mercury (Hg) wet deposition in the United States of America (USA) occurs along the Gulf of Mexico, and in the southern and central Mississippi River Valley. Gaseous oxidized Hg (GOM) is thought to be a major contributor due to high water solubility and reactivity. Therefore, it is critical to understand concentrations, potential for wet and dry deposition, and GOM compounds present in the air. Concentrations and dry-deposition fluxes of GOM were measured and calculated for Naval Air Station Pensacola Outlying Landing Field (OLF) in Florida using data collected by a Tekran® 2537/1130/1135, the University of Nevada Reno Reactive Mercury Active System (UNRRMAS) with cation exchange and nylon membranes, and the Aerohead samplers that use cation-exchange membranes to determine dry deposition. Relationships with Tekran®-derived data must be interpreted with caution, since the GOM concentrations measured are biased low depending on the chemical compounds in air and interferences with water vapor and ozone.Criteria air pollutants were concurrently measured. This allowed for comparison and better understanding of GOM.In addition to other methods previously applied at OLF, use of the UNRRMAS provided a platform for determination of the chemical compounds of GOM in the air. Results from nylon membranes with thermal desorption analyses indicated seven GOM compounds in this area, including HgBr2, HgCl2, HgO, Hg-nitrogen and sulfur compounds, and two unknown compounds. This indicates that the site is influenced by different gaseous phase reactions and sources. Using back-trajectory analysis during a high-GOM event related to high CO, but average SO2, indicated air parcels moved from the free troposphere and across Arkansas, Mississippi, and Alabama at low elevation (< 300 m). This event was initially characterized by HgBr2, followed by a mixture of GOM compounds. Overall, GOM chemistry indicates oxidation reactions with local mobile source pollutants and long-range transport.In order to develop methods to measure GOM concentrations and chemistry, and model dry-deposition processes, the actual GOM compounds need to be known, as well as their corresponding physicochemical properties, such as Henry's Law constants.

  17. Anaerobic ammonium oxidation in sediments of surface flow constructed wetlands treating swine wastewater.

    PubMed

    Chen, Liang; Liu, Feng; Jia, Fen; Hu, Ya-Jun; Lai, Cui; Li, Xi; Luo, Pei; Xiao, Run-Lin; Li, Yong; Wu, Jin-Shui

    2017-02-01

    Anaerobic ammonium oxidation (anammox) was suggested to be involved in the nitrogen (N) removal process in constructed wetlands (CWs). Nevertheless, its occurrence and role in CWs treating swine wastewater have not been well evaluated yet. In this study, we investigated the diversity, activity, and role of anammox bacteria in sediments of mesoscale surface flow CWs (SFCWs) subjected to different N loads of swine wastewater. We found that anammox bacteria were abundant in SFCW sediments, as indicated by 7.5 × 10 5 to 3.5 × 10 6 copies of the marker hzsB gene per gram of dry soil. Based on stable isotope tracing, potential anammox rates ranged from 1.03 to 12.5 nmol N g -1 dry soil h -1 , accounting for 8.63-57.1% of total N 2 production. We estimated that a total N removal rate of 0.83-2.68 kg N year -1 was linked to the anammox process, representing ca. 10% of the N load. Phylogenetic analyses of 16S ribosomal RNA (rRNA) revealed the presence of multiple co-occurring anammox genera, including "Candidatus Brocadia" as the most common one, "Ca. Kuenenia," "Ca. Scalindua," and four novel unidentified clusters. Correlation analyses suggested that the activity and abundance of anammox bacteria were strongly related to sediments pH, NH 4 + -N, and NO 2 - -N. In conclusion, our results confirmed the presence of diverse anammox bacteria and indicated that the anammox process could serve as a promising N removal pathway in the treatment of swine wastewater by SFCWs.

  18. Structural and oxidative stabilization of spray dried fish oil microencapsulates with gum arabic and sage polyphenols: Characterization and release kinetics.

    PubMed

    Binsi, P K; Nayak, Natasha; Sarkar, P C; Jeyakumari, A; Muhamed Ashraf, P; Ninan, George; Ravishankar, C N

    2017-03-15

    The synergistic efficacy of gum arabic and sage polyphenols in stabilising capsule wall and protecting fish oil encapsulates from heat induced disruption and oxidative deterioration during spray drying was assessed. The emulsions prepared with sodium caseinate as wall polymer, gum arabic as wall co-polymer and sage extract as wall stabiliser was spray dried using a single fluid nozzle. Fish oil encapsulates stabilised with gum arabic and sage extract (SOE) exhibited significantly higher encapsulation efficiency compared to encapsulates containing gum arabic alone (FOE). Scanning electron microscopic and atomic force microscopic images revealed uniform encapsulates with good sphericity and smooth surface for SOE, compared to FOE powder. In vitro oil release of microencapsulates indicated negligible oil release in buffered saline whereas more than 80% of the oil loaded in encapsulates were released in simulated GI fluids. The encapsulates containing sage extract showed a lower rate of lipid oxidation during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying.

    PubMed

    Morales-Medina, R; Tamm, F; Guadix, A M; Guadix, E M; Drusch, S

    2016-03-01

    The functionality of fish protein hydrolysates (FPH) for the microencapsulation of fish oil was investigated. Muscle protein from sardine (Sardina pilchardus) and horse mackerel (Trachurus mediterraneus) was hydrolysed using Alcalase or trypsin. Physically stable emulsions suitable for spray-drying were obtained when using FPH with a degree of hydrolysis of 5%. Microencapsulation efficiency amounted to 98±0.1% and oxidative stability of the encapsulated oil over a period of twelve weeks was in a similar range as it is reported for other matrix systems. Therefore, the suitability of FPH for use in spray-dried emulsions has been shown for the first time. Since no clear correlation between the antioxidative activity of the FPH and the course of lipid oxidation could be established future research is required to more specifically characterise the molecular structure of the peptides and its impact on protein alteration and role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wychen, Stefanie; Laurens, Lieve M. L.

    2016-01-13

    This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575 deg. C is covered for ash content.

  1. 40 CFR Table 2 to Subpart Dddd of... - Model Rule-Emission Limitations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this part) Carbon monoxide 157 parts per million by dry volume 3-run average (1 hour minimum sample... per million by dry volume 3-run average (1 hour minimum sample time per run) Performance test (Method... appendix A of this part) Oxides of nitrogen 388 parts per million by dry volume 3-run average (1 hour...

  2. Antioxidant ability of fractionated apple peel phenolics to inhibit fish oil oxidation.

    PubMed

    Sekhon-Loodu, Satvir; Warnakulasuriya, Sumudu N; Rupasinghe, H P Vasantha; Shahidi, Fereidoon

    2013-09-01

    Polyphenols isolated from frozen and dried apple peels were studied as potential natural antioxidants to stabilize omega-3 polyunsaturated fatty acid (ω3 PUFA) enriched fish oil. The ethanolic extracts of apple peels were fractionated by reversed phase chromatography using gradient elution of 20-100% aqueous ethanol. The collected fractions were analyzed by ultra pressure liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The total phenolic content and antioxidant capacity of each fraction were evaluated by Folin-Ciocalteu (FC), ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging assays. Inhibition of fish oil oxidation was studied using the thiobarbituric acid reactive substances (TBARS) assay. Polyphenols fractionated using frozen apple peel extract had significantly higher FC, FRAP and DPPH(·) scavenging values than those of dried apple peel (p<0.05). The flavonol-rich fractions inhibited fish oil oxidation by 40-62% at a total phenolic concentration of 200 μg/ml. The fractionated polyphenols from both dried and frozen apple peel showed higher inhibition of lipid oxidation compared to α-tocopherol, butylated hydroxytoluene and crude apple peel extracts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Photochemistry in Terrestrial Exoplanet Atmospheres. I. Photochemistry Model and Benchmark Cases

    NASA Astrophysics Data System (ADS)

    Hu, Renyu; Seager, Sara; Bains, William

    2012-12-01

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH4 and CO2) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO2-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the benchmark atmospheres for quickly assessing the lifetime of trace gases in reducing, weakly oxidizing, and highly oxidizing atmospheres on terrestrial exoplanets for the exploration of possible biosignature gases.

  4. Evaluating the oxidation of shale during hydraulic fracturing using SEM-EDS and spectrocolorimetry

    NASA Astrophysics Data System (ADS)

    Tan, X. Y.; Nakashima, S.

    2017-12-01

    During hydraulic fracturing (fracking) for shale gas/oil extraction, oxygen is introduced into deep oxygen-poor environments, and Fe2+-bearing minerals in rocks can be oxidized thus leading to the degradation of rock quality. Akita diatomaceous shale is considered to be one of the source rocks for oil and gas fields in northwestern Japan. Outcrops of Akita shale often show presence of jarosite (Fe sulfate: yellow) and/or goethite (Fe hydroxide: brown to orange) as oxidation products of pyrite (FeS2). Several series of oxidation experiments of Akita shale under dry, humid, and wet conditions were conducted at temperatures of around 30 oC and 50oC for 30-40 days. Portable color spectro-colorimeters were used to monitor color changes of the rock surfaces every hour. SEM-EDS, UV-Vis, and Raman spectroscopic analyses were performed on the rock sample surface to examine the chemical and mineralogical compositions of Akita shale before and after the dry, humid, and wet experiments. In SEM-EDS analyses before the humid experiment, Fe and S containing phases show their atomic ratio close to 1:2 indicating that this is pyrite (FeS2). After the experiment, the ratio changed to around 1:1 suggesting a conversion from pyrite (FeS2) to mackinawite-like mineral (FeS). In addition, the formation of Ca sulfate (possibly gypsum: CaSO4.2H2O) and goethite-like Fe hydroxide were identified which were not present initially. Therefore, oxidation pathways of iron sulfide (pyrite: FeS2) via FeS to sulfate is confirmed by our humid experiments around 30oC on Akita shale. These oxidation processes might occur during the fracking of shale within relatively short time periods associated with precipitation of sulfates and hydroxides. Therefore, further studies are needed for their effects on rock properties and gas/oil production.

  5. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    PubMed Central

    2012-01-01

    Background During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS), leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO) synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T) and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. Results We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS generation and that increased NO plays an important role in baking-associated stress tolerance. Conclusions In this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains. PMID:22462683

  6. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-04-01

    During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS), leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO) synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T) and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS generation and that increased NO plays an important role in baking-associated stress tolerance. In this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains.

  7. Use of criteria pollutants, active and passive mercury sampling, and receptor modeling to understand the chemical forms of gaseous oxidized mercury in Florida

    NASA Astrophysics Data System (ADS)

    Huang, J.; Miller, M. B.; Edgerton, E.; Gustin, M. S.

    2015-04-01

    The highest mercury (Hg) wet deposition in the United States (US) occurs along the Gulf of Mexico, and in the southern and central Mississippi River Valley. Gaseous oxidized Hg (GOM) is thought to be a major contributor due to its high water solubility and reactivity. Therefore, it is critical to understand the concentrations, potential for wet and dry deposition, and GOM compounds present in the air. Concentrations and dry deposition fluxes of GOM were measured at Outlying Landing Field (OLF), Florida, using a Tekran® 2537/1130/1135, and active and passive samplers using cation-exchange and nylon membranes. Relationships with Tekran® derived data must be interpreted with caution, since GOM concentrations can be biased low depending on the chemical compounds in air, and interferences with water vapor and ozone. Only gaseous elemental Hg and GOM are discussed here since the PBM measurement uncertainties are higher. Criteria air pollutants were concurrently measured and Tekran® data were assessed along with these using Principal Component Analysis to identify associations among air pollutants. Based on the diel pattern, high GOM concentrations at this site were associated with fossil fuel combustion and gas phase oxidation during the day, and gas phase oxidation and transport in the free troposphere. The ratio of GEM/CO at OLF (0.008 ng m-3 ppbv-1) was much higher than the numbers reported for the Western United States and central New York for domestic emissions or biomass burning (0.001 ng m-3 ppbv-1), which we suggest is indicative of a marine boundary layer source. Results from nylon membranes with thermal desorption analyses suggest five potential GOM compounds exist in this area, including HgBr2, HgO, Hg(NO3)2, HgSO4, and an unknown compound. This indicates that the site is influenced by different gaseous phase reactions and sources. A~high GOM event related to high CO but average SO2 suggests the air parcels moved from the free troposphere and across Arkansas, Mississippi, and Alabama at low elevation (< 300 m) using back trajectory analysis. We hypothesize this is due to subsidence of Hg containing air from the free troposphere. It is difficult to fully understand GOM dry deposition processes without knowing the actual GOM compounds, and their corresponding physicochemical properties, such as the Henry's Law constant. Overall, measured GOM dry deposition at this site ranged from 4-23% of total Hg wet deposition. The Aerohead sampling system for dry deposition captures primarily GOM since it would only collect fine particulate bound Hg by way of diffusion.

  8. Comparison of methods for the removal of organic carbon and extraction of chromium, iron and manganese from an estuarine sediment standard and sediment from the Calcasieu River estuary, Louisiana, U.S.A.

    USGS Publications Warehouse

    Simon, N.S.; Hatcher, S.A.; Demas, C.

    1992-01-01

    U.S. National Bureau of Standards (NBS) estuarine sediment 1646 from the Chesapeake Bay, Maryland, and surface sediment collected at two sites in the Calcasieu River estuary, Louisiana, were used to evaluate the dilute hydrochloric acid extraction of Cr, Fe and Mn from air-dried and freeze-dried samples that had been treated by one of three methods to remove organic carbon. The three methods for the oxidation and removal of organic carbon were: (1) 30% hydrogen peroxide; (2) 30% hydrogen peroxide plus 0.25 mM pyrophosphate; and (3) plasma oxidation (low-temperature ashing). There was no statistically significant difference at the 95% confidence level between air- and freeze-dried samples with respect to the percent of organic carbon removed by the three methods. Generally, there was no statistically significant difference at the 95% confidence level between air- and freeze-dried samples with respect to the concentration of Cr, Fe and Mn that was extracted, regardless of the extraction technique that was used. Hydrogen peroxide plus pyrophosphate removed the most organic carbon from sediment collected at the site in the Calcasieu River that was upstream from industrial outfalls. Plasma oxidation removed the most organic carbon from the sediment collected at a site in the Calcasieu River close to industrial outfalls and from the NBS estuarine sediment sample. Plasma oxidation merits further study as a treatment for removal of organic carbon. Operational parameters can be chosen to limit the plasma oxidation of pyrite which, unlike other Fe species, will not be dissolved by dilute hydrochloric acid. Preservation of pyrite allows the positive identification of Fe present as pyrite in sediments. ?? 1992.

  9. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues.

    PubMed

    Zhu, Feng; Li, Yubing; Xue, Shengguo; Hartley, William; Wu, Hao

    2016-05-01

    In order to successfully establish vegetation on bauxite residue, properties such as aggregate structure and stability require improvement. Spontaneous plant colonization on the deposits in Central China over the last 20 years has revealed that natural processes may improve the physical condition of bauxite residues. Samples from three different stacking ages were selected to determine aggregate formation and stability and its relationship with iron-aluminium oxides and organic carbon. The residue aggregate particles became coarser in both dry and wet sieving processes. The mean weight diameter (MWD) and geometry mean diameter (GMD) increased significantly, and the proportion of aggregate destruction (PAD) decreased. Natural stacking processes could increase aggregate stability and erosion resistant of bauxite residues. Free iron oxides and amorphous aluminium oxides were the major forms in bauxite residues, but there was no significant correlation between the iron-aluminium oxides and aggregate stability. Aromatic-C, alkanes-C, aliphatic-C and alkenes-C were the major functional groups present in the residues. With increasing stacking age, total organic carbon content and aggregate-associated organic carbon both increased. Alkanes-C, aliphatic-C and alkenes-C increased and were mainly distributed in macro-aggregates, whereas aromatic-C was mainly distributed in <0.05-mm aggregates. Organic carbon stability in micro-aggregates was higher than that in macro-aggregates and became more stable. Organic carbon contents in total residues, and within different aggregate sizes, were all negatively correlated with PAD. It indicated that organic materials had a more significant effect on macro-aggregate stability and the effects of iron-aluminium oxides maybe more important for stability of micro-aggregates.

  10. 76 FR 79146 - Propylene Oxide; Proposed Tolerance Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... and pine nuts for both the fumigant propylene oxide and the reaction product from the use of propylene..., prune, dried 2.0 (2) Tolerances are established for residues of the reaction product, propylene...

  11. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    PubMed

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  12. The functionality of plum ingredients in meat products: a review.

    PubMed

    Jarvis, Nathan; O'Bryan, Corliss A; Ricke, Steven C; Crandall, Philip G

    2015-04-01

    Dried plums (prunes) have been marketed to consumers for consumption directly from the package as a convenient snack and have been reported to have broad health benefits. Only recently have fractionated, dried plum ingredients been investigated for their functionality in food and feed products. Dried plum puree, dried plum fiber, dried plum powder, dried plum concentrate, and fresh plum concentrate have been investigated to date. They have been evaluated as fat replacers in baked goods, antioxidants in meat formulations, phosphate replacers in chicken marinades, and antimicrobials in food systems. Overall, dried plum products have been shown to be effective at reducing lipid oxidation and show promise as antimicrobials. Copyright © 2014. Published by Elsevier Ltd.

  13. Microencapsulation of menhaden fish oil containing soluble rice bran fiber using spray drying technology.

    PubMed

    Wan, Yuting; Bankston, Joseph David; Bechtel, Peter J; Sathivel, Subramaniam

    2011-05-01

    Emulsion (EFMO) containing purified menhaden oil (PMO) and soluble rice bran fiber (SRBF) was dried in a pilot scale spray dryer and produced microencapsulated PMO with SRBF (MFMO). EFMO had well isolated spherical droplets with the size of 1 to 10 μm and showed pseudoplastic fluid and viscoelastic characteristics. EFMO had lower lipid oxidation than the emulsion containing PMO without SRBF when both emulsions were stored at 20 and 40 °C for 88 h, which indicated that the SRBF reduced the lipid oxidation in the EFMO. The estimated MFMO production rate (3.45 × 10(-5) kg dry solids/s) was higher than the actual production rate (2.31 × 10(-5) kg dry solids/s). The energy required to spray dry the EFMO was 12232 kJ/kg of emulsion. EPA and DHA contents of MFMO were 11.52% and 4.51%, respectively. The particle size of 90% MFMO ranged from 8 to 62 μm, and the volume-length diameter of MFMO was 28.5 μm. © 2011 Institute of Food Technologists®

  14. NASA interdisciplinary collaboration in tribology. A review of oxidational wear

    NASA Technical Reports Server (NTRS)

    Quinn, T. F. J.

    1983-01-01

    An in-depth review of oxidational wear of metals is presented. Special emphasis is given to a description of the concept of oxidational wear and the formulation of an Oxidational Wear Theory. The parallelism between the formation of an oxide film for dry contact conditions and the formation of other surface films for a lubricated contact is discussed. The description of oxidational wear is prefaced with a unification of wear modes into two major classes of mild and severe wear including both lubricated and dry contacts. Oxidational wear of metals is a class of mild wear where protective oxide films are formed at real areas of contact and during the time of contact at temperataure T sub c. When the oxide reaches a critical thickness, frequently in the range of 1 to 3 microns, the oxide breaks up and eventually appears as a wear particle. These oxides are preferentially formed on plateaux which alternately carry the load as they reach their critical thickness and are removed. If the system is operated at elevated temperatures, thick oxides can form both out of contact and between the plateaux. Temperature is important in determining the structure of the oxide film present. Spinel oxide (Fe3O4) which forms above 300 C is more protective than the lower temperature rhomobohedral (alpha-Fe2O3) oxide which is abrasive. An Oxidational Wear Theory is derived using a modified Archard wear law expressed in terms of activation energy (Qp) and Arrhenius constant (Ap).

  15. The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): implications for the mercury cycle.

    PubMed

    Windmöller, Cláudia C; Durão Júnior, Walter A; de Oliveira, Aline; do Valle, Cláudia M

    2015-02-01

    Investigations of the redox process and chemical speciation of Hg(II) lead to a better understanding of biogeochemical processes controlling the transformation of Hg(II) into toxic and bioaccumulative monomethyl mercury, mainly in areas contaminated with Hg(0). This study investigates the speciation and redox processes of Hg in soil samples from a small area contaminated with Hg(0) as a result of gold mining activities in the rural municipality of Descoberto (Minas Gerais, Brazil). Soil samples were prepared by adding Hg(0) and HgCl2 separately to dry soil, and the Hg redox process was monitored using thermodesorption coupled to atomic absorption spectrometry. A portion of the Hg(0) added was volatilized (up to 37.4±2.0%) or oxidized (from 36±7% to 88±16%). A correlation with Mn suggests that this oxidation is favored, but many other factors must be evaluated, such as the presence of microorganisms and the types of organic matter present. The interaction of Hg with the matrix is suggested to involve Hg(II)-complexes formed with inorganic and organic sulfur ligands and/or nonspecific adsorption onto oxides of Fe, Al and/or Mn. The kinetics of the oxidation reaction was approximated for two first-order reactions; the faster reaction was attributed to the oxidation of Hg(0)/Hg(I), and the slower reaction corresponded to Hg(I)/Hg(II). The second stage was 43-139 times slower than the first. The samples spiked with Hg(II) showed low volatilization and a shifting of the signal of Hg(II) to lower temperatures. These results show that the extent, rate and type of redox process can be adverse in soils. Descoberto can serve as an example for areas contaminated with Hg(0). Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Aerosol Chemical and Physical Characterization in Central Amazonia during the 2013 Dry Season

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Stern, R.; Brito, J.; Carbone, S.

    2015-12-01

    During the dry season, the central Amazon forest is highly influenced by forest fires transported through large distances, changing drastically the atmospheric composition even in remote places. This work focuses on a physical-chemical characterization of the aerosol population over a pristine site in Central Amazonia during the dry season. The submicrometer organic aerosols were measured with the Aerodyne ACSM (Aerosol Chemical Speciation Monitor, Aerodyne Inc). Optical properties, size distribution and other micro-physical characteristics were also analyzed. Other instruments were simultaneously used. The measurements were taken during the dry season of 2013 in the Cuieiras ecological reserve (ZF2), northwest of Manaus. The statistical analysis of the data was done with the PMF (Positive Matrix Factorization) technique, in which the organic aerosol was separated into different factors, and then its sources and forming processes were attributed. Results show that the mean aerosol loading was 5,91 μg m-3, from which 78% are of organic composition, 8.5% are sulfate, 6.5% are equivalent black carbon, 4% are ammonium and 3% are nitrate. The mass spectra variability can be explained by 3 factors only, determined with the PMF technique. They were identified as BBOA (Biomass Burning Organic Aerosol), representing 12% of the total organic mass, OOA (Oxygenated Organic Aerosol), representing 66% of the total organic mass and IEPOX-SOA (Isoprene derived Epoxydiol-Secondary Organic Aerosol), representing 21% of the total organic mass. Even in remote and pristine regions, Central Amazonia is highly impacted by biomass burning. Biogenic secondary organic aerosols are also present during the dry season, and the suppression of its wet deposition processes increases their concentration. The oxidation level and other physical-chemical characteristics indicate that the long range transport is responsible for the regional range of this impact.

  17. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SWENSON JA; CROWE RD; APTHORPE R

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin.more » KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of the drying cycle, more realistic treatment of uranium metal consumption during oxidation, larger water inventory, longer time scales, and graphing of results of hydrogen gas concentration.« less

  18. Credit PSR. This view shows southeast and southwest facades as ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This view shows southeast and southwest facades as seen when looking east northeast (70°). This steel frame building is clad in "Transite" board (fire- resistant, pressed asbestos composition board). This structure was built as a back-up to Building 4237/E-38, but no equipment was ever installed. It was equipped instead to conduct tensile tests on propellant samples. In 1984, it was converted into a back-up structure supporting Building 4283/E-84, Propellant Processing Building. Small amounts of HMX propellants were processed and dried here - Jet Propulsion Laboratory Edwards Facility, Oxidizer Dryer Blender Building, Edwards Air Force Base, Boron, Kern County, CA

  19. Weathering processes and dating of soil profiles from São Paulo State, Brazil, by U-isotopes disequilibria.

    PubMed

    Bonotto, Daniel Marcos; Jiménez-Rueda, Jairo Roberto; Fagundes, Isabella Cruz; Filho, Carlos Roberto Alves Fonseca

    2017-01-01

    This study reports the use of the U-series radionuclides 238 U and 234 U for dating two soil profiles. The soil horizons developed over sandstones from Tatuí and Pirambóia formations at the Paraná sedimentary basin, São Paulo State, Brazil. Chemical data in conjunction with the 234 U/ 238 U activity ratios (AR's) of the soil horizons allowed investigating the U-isotopes mobility in the shallow oxidizing environment. Kaolinization and laterization processes are taking place in the profiles sampled, as they are especially common in regions characterized by a wet and dry tropical climate and a water table that is close to the surface. These processes are implied by inverse significant correlations between silica and iron in both soil profiles. Iron oxides were also very important to retain uranium in the two sites investigated, helping on the understanding of the weathering processes acting there. 238 U and its progeny 234 U permitted evaluating the processes of physical and chemical alteration, allowing the suggestion of a possible timescale corresponding to the Middle Pleistocene for the development of the more superficial soil horizons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Triple oxygen isotopes indicate urbanization affects sources of nitrate in wet and dry atmospheric deposition

    NASA Astrophysics Data System (ADS)

    Nelson, David M.; Tsunogai, Urumu; Ding, Dong; Ohyama, Takuya; Komatsu, Daisuke D.; Nakagawa, Fumiko; Noguchi, Izumi; Yamaguchi, Takashi

    2018-05-01

    Atmospheric nitrate deposition resulting from anthropogenic activities negatively affects human and environmental health. Identifying deposited nitrate that is produced locally vs. that originating from long-distance transport would help inform efforts to mitigate such impacts. However, distinguishing the relative transport distances of atmospheric nitrate in urban areas remains a major challenge since it may be produced locally and/or be transported from upwind regions. To address this uncertainty we assessed spatiotemporal variation in monthly weighted-average Δ17O and δ15N values of wet and dry nitrate deposition during one year at urban and rural sites along the western coast of the northern Japanese island of Hokkaido, downwind of the East Asian continent. Δ17O values of nitrate in wet deposition at the urban site mirrored those of wet and dry deposition at the rural site, ranging between ˜ +23 and +31 ‰ with higher values during winter and lower values in summer, which suggests the greater relative importance of oxidation of NO2 by O3 during winter and OH during summer. In contrast, Δ17O values of nitrate in dry deposition at the urban site were lower (+19 - +25 ‰) and displayed less distinct seasonal variation. Furthermore, the difference between δ15N values of nitrate in wet and dry nitrate deposition was, on average, 3 ‰ greater at the urban than rural site, and Δ17O and δ15N values were correlated for both forms of deposition at both sites with the exception of dry deposition at the urban site. These results suggest that, relative to nitrate in wet and dry deposition in rural environments and wet deposition in urban environments, nitrate in dry deposition in urban environments forms from relatively greater oxidation of NO by peroxy radicals and/or oxidation of NO2 by OH. Given greater concentrations of peroxy radicals and OH in cities, these results imply that dry nitrate deposition results from local NOx emissions more so than wet deposition, which is transported longer distances. These results illustrate the value of stable isotope data for distinguishing the transport distances and reaction pathways of atmospheric nitrate pollution.

  1. Responses of soil ammonia oxidizers to a short-term severe mercury stress.

    PubMed

    Zhou, Zhi-Feng; Liu, Yu-Rong; Sun, Guo-Xin; Zheng, Yuan-Ming

    2015-12-01

    The responses of soil ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to mercury (Hg) stress were investigated through a short-term incubation experiment. Treated with four different concentrations of Hg (CK, Hg25, Hg50, and Hg100, denoting 0, 25, 50, and 100mgHg/kg dry soil, respectively), samples were harvested after 3, 7, and 28day incubation. Results showed that the soil potential nitrification rate (PNR) was significantly inhibited by Hg stress during the incubation. However, lower abundances of AOA (the highest in CK: 9.20×10(7)copies/g dry soil; the lowest in Hg50: 2.68×10(7)copies/g dry soil) and AOB (the highest in CK: 2.68×10(7)copies/g dry soil; the lowest in Hg50: 7.49×10(6)copies/g dry soil) were observed only at day 28 of incubation (P<0.05). Moreover, only the community structure of soil AOB obviously shifted under Hg stress as seen through DGGE profiles, which revealed that 2-3 distinct AOB bands emerged in the Hg treatments at day 28. In summary, soil PNR might be a very useful parameter to assess acute Hg stress on soil ecosystems, and the community structure of soil AOB might be a realistic biological indicator for the assessment of heavy metal stress on soil ecosystems in the future. Copyright © 2015. Published by Elsevier B.V.

  2. Mercury emissions and species during combustion of coal and waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Yao; Guangqian Luo; Minghou Xu

    2006-10-15

    The behaviors of mercury evolution for three types of coal and three types of dried sewage sludge are studied using a thermogravimetric (TG) analyzer. The mercury speciations in the flue gas from coal and sludge combustion are also analyzed by implementing a horizontal electrically heated tube furnace. Furthermore, the kinetic calculations of mercury oxidizing processes are carried out using the software package CHEMKIN in order to interpret the homogeneous mechanism of mercury oxidization. The results obtained show that the sulfur content in the sludge inhibits the evolution of mercury at low temperature if the Cl concentration is high enough. Chlorinemore » enhances mercury evolution in the coal combustion, whereas there is no relationship when the Cl concentration is high. Fixed carbon content plays a role in depression of the mercury evolution. Formation of oxidized mercury (HgCl{sub 2}) does not relate to the chlorine concentration in the raw coal and sludge. Whereas the ash and sulfur content in the sludge affects the Hg oxidization, kinetic calculations show that HgCl, Cl{sub 2}, and HOCl formation is important in producing the oxidized mercury during combustion of coal and sludge at 873 K. A suitable temperature for Hg oxidization when Cl{sub 2} is the oxidization resource is 700-1200 K. 32 refs., 10 figs., 5 tabs.« less

  3. Impact of potassium bromate and potassium iodate in a pound cake system.

    PubMed

    Wilderjans, Edith; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A

    2010-05-26

    This study investigates the impact of the oxidants potassium bromate and potassium iodate (8, 16, 32, 64, and 128 micromol/g dry matter of egg white protein) on pound cake making. The impact of the oxidants on egg white characteristics was studied in a model system. Differential scanning calorimetry showed that the oxidants caused egg white to denature later. During heating in a rapid visco analyzer, the oxidants caused the free sulfhydryl (SH) group levels to decrease more intensively and over a smaller temperature range. The oxidants made the proteins more resistant to decreases in protein extractability in sodium dodecyl sulfate containing buffer during cake recipe mixing and less resistant to such decreases during cake baking. We assume that, during baking, the degree to which SH/disulfide exchange and SH oxidation can occur depends on the properties of the protein at the onset of the process. In our view, the prevention of extractability loss during mixing increased the availability of SH groups and caused more such loss during baking. During cooling, all cakes baked with added oxidants showed less collapse. On the basis of the presented data, we put forward that only those protein reactions that occur during baking contribute to the formation of a network that supports final cake structure and prevents collapse.

  4. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  5. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  6. Astringency, bitterness and color changes in dry red wines before and during oak barrel aging: An updated phenolic perspective review.

    PubMed

    Li, Si-Yu; Duan, Chang-Qing

    2018-01-30

    To understand effects of using oak barrels on the astringency, bitterness and color of dry red wines, phenolic reactions in wines before and after barrel aging are reviewed in this paper, which has been divided into three sections. The first section includes an introduction to chemical reactivities of grape-derived phenolic compounds, a summary of the phenolic reactions that occur in dry red wines before barrel aging, and a discussion of the effects of these reactions on wine astringency, bitterness and color. The second section introduces barrel types that determine the oak barrel constituents in wines (primarily oak aldehydes and ellagitannins) and presents reactions between the oak constituents and grape-derived phenolic compounds that may modulate wine astringency, bitterness and color. The final section illustrates the chemical differences between basic oxidation and over-oxidation in wines, discusses oxygen consumption kinetics in wines during barrel aging by comparing different oxygen consumption kinetics observed previously by others, and speculates on the possible preliminary phenolic reactions that occur in dry red wines during oak barrel aging that soften tannins and stabilize pigments via basic oxidation. Additionally, sulfur dioxide (SO 2 ) addition during barrel aging and suitability of adopting oak barrels for aging wines are briefly discussed.

  7. Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat.

    PubMed

    Domínguez, Rubén; Gómez, María; Fonseca, Sonia; Lorenzo, José M

    2014-06-01

    The influence of four different cooking methods (roasting, grilling, microwaving and frying) on cooking loss, lipid oxidation and volatile profile of foal meat was studied. Cooking loss were significantly (P<0.001) affected by thermal treatment, being higher (32.5%) after microwaving and lower after grilling (22.5%) and frying (23.8%). As expected, all the cooking methods increased TBARs content, since high temperature during cooking causes increased oxidation in foal steaks, this increase was significantly (P<0.001) higher when foal steaks were microwaved or roasted. The four different cooking methods led to increased total volatile compounds (between 366.7 and 633.1AU×10(6)/g dry matter) compared to raw steaks (216.4AU×10(6)/g dry matter). The roasted steaks showed the highest volatile content, indicating that increased cooking temperature increases the formation of volatile compounds. Aldehydes were the most abundant compounds in cooked samples, with amounts of 217.2, 364.5, 283.5 and 409.1AU×10(6)/g dry matter in grilled, microwaved, fried and roasted samples, respectively, whereas esters were the most abundant compounds in raw samples, with mean amounts of 98.8AU×10(6)/g dry matter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Characterization of traditional Istrian dry-cured ham by means of physical and chemical analyses and volatile compounds.

    PubMed

    Marušić, Nives; Petrović, Marinko; Vidaček, Sanja; Petrak, Tomislav; Medić, Helga

    2011-08-01

    The aroma-active compounds of Istrian dry-cured ham were investigated by using headspace-solid phase microextraction and gas chromatography-mass spectrometry (GC-MS). Samples of biceps femoris were also evaluated by measuring physical and chemical characteristics: moisture, protein, fat, ash and NaCl content, a(w) value; colour: L*, a*, b* and oxidation of fat: TBARS test. About 50 volatile compounds were identified and quantified which belonged to several classes of chemical: 5 alcohols, 8 aldehydes, 7 alkanes, 1 ketone, 2 esters, 9 monoterpenes and 15 sesquiterpenes. Except volatile compounds derived from lipolysis and proteolysis the most abundant constituents were terpenes (62.97; 41.43%) that originate from spices added in the salting phase of the production process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks.

    PubMed

    Khanali, Majid; Mobli, Hossein; Hosseinzadeh-Bandbafha, Homa

    2017-12-01

    In this study, an artificial neural network (ANN) model was developed for predicting the yield and life cycle environmental impacts based on energy inputs required in processing of black tea, green tea, and oolong tea in Guilan province of Iran. A life cycle assessment (LCA) approach was used to investigate the environmental impact categories of processed tea based on the cradle to gate approach, i.e., from production of input materials using raw materials to the gate of tea processing units, i.e., packaged tea. Thus, all the tea processing operations such as withering, rolling, fermentation, drying, and packaging were considered in the analysis. The initial data were obtained from tea processing units while the required data about the background system was extracted from the EcoInvent 2.2 database. LCA results indicated that diesel fuel and corrugated paper box used in drying and packaging operations, respectively, were the main hotspots. Black tea processing unit caused the highest pollution among the three processing units. Three feed-forward back-propagation ANN models based on Levenberg-Marquardt training algorithm with two hidden layers accompanied by sigmoid activation functions and a linear transfer function in output layer, were applied for three types of processed tea. The neural networks were developed based on energy equivalents of eight different input parameters (energy equivalents of fresh tea leaves, human labor, diesel fuel, electricity, adhesive, carton, corrugated paper box, and transportation) and 11 output parameters (yield, global warming, abiotic depletion, acidification, eutrophication, ozone layer depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, and photochemical oxidation). The results showed that the developed ANN models with R 2 values in the range of 0.878 to 0.990 had excellent performance in predicting all the output variables based on inputs. Energy consumption for processing of green tea, oolong tea, and black tea were calculated as 58,182, 60,947, and 66,301 MJ per ton of dry tea, respectively.

  10. Increasing the rate of drying reduces metabolic imbalance, lipid peroxidation and critical water content in radicles of garden pea (Pisum sativum L.).

    PubMed

    Ntuli, Tobias M; Pammenter, Norman W; Berjak, Patricia

    2013-01-01

    Orthodox seeds become desiccation-sensitive as they undergo germination. As a result, germinating seeds serve as a model to study desiccation sensitivity in plant tissues. The effects of the rate of drying on the viability, respiratory metabolism and free radical processes were thus studied during dehydration and wet storage of radicles of Pisum sativum. For both drying regimes desiccation could be described by exponential and inverse modified functions. Viability, as assessed by germination capacity and tetrazolium staining, remained at 100% during rapid (< 24 h) desiccation. However, it declined sharply at c. 0.26 g g¹ dm following slow (c. 5 days) drying. Increasing the rate of dehydration thus lowered the critical water content for survival. Rapid desiccation was also associated with higher activities and levels of malate dehydrogenase and the oxidized form of nicotinamide adenine dinucleotide. It was also accompanied by lower hydroperoxide levels and membrane damage. In addition, the activitiy of glutathione reductase was greater during rapid drying. Ageing may have contributed to increased damage during slow dehydration, since viability declined even in wet storage after two weeks. The results presented are consistent with rapid desiccation reducing the accumulation of damage resulting from desiccation-induced aqueous-based deleterious reactions. In addition, they show that radicles are a useful model to study desiccation sensitivity in plant tissues.

  11. Contrast enhancement of biological nanoporous materials with zinc oxide infiltration for electron and X-ray nanoscale microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocola, L. E.; Sampathkumar, V.; Kasthuri, N.

    Here, we show that using infiltration of ZnO metal oxide can be useful for high resolution imaging of biological samples in electron and X-ray microscopy. This method is compatible with standard fixation techniques that leave the sample dry, such as finishing with super critical CO 2 drying, or simple vacuum drying at 95°C. We demonstrate this technique can be applied on tooth and brain tissue samples. We also show that high resolution X-ray tomography can be performed on biological systems using Zn K edge (1s) absorption to enhance internal structures, and obtained the first nanoscale 10 KeV X-ray absorption imagesmore » of the interior regions of a tooth.« less

  12. Contrast enhancement of biological nanoporous materials with zinc oxide infiltration for electron and X-ray nanoscale microscopy

    DOE PAGES

    Ocola, L. E.; Sampathkumar, V.; Kasthuri, N.; ...

    2017-07-19

    Here, we show that using infiltration of ZnO metal oxide can be useful for high resolution imaging of biological samples in electron and X-ray microscopy. This method is compatible with standard fixation techniques that leave the sample dry, such as finishing with super critical CO 2 drying, or simple vacuum drying at 95°C. We demonstrate this technique can be applied on tooth and brain tissue samples. We also show that high resolution X-ray tomography can be performed on biological systems using Zn K edge (1s) absorption to enhance internal structures, and obtained the first nanoscale 10 KeV X-ray absorption imagesmore » of the interior regions of a tooth.« less

  13. ZnO-based regenerable sulfur sorbents for fluid-bed/transport reactor applications

    DOEpatents

    Slimane, Rachid B.; Abbasian, Javad; Williams, Brett E.

    2004-09-21

    A method for producing regenerable sulfur sorbents in which a support material precursor is mixed with isopropanol and a first portion of deionized water at an elevated temperature to form a sol mixture. A metal oxide precursor comprising a metal suitable for use as a sulfur sorbent is dissolved in a second portion of deionized water, forming a metal salt solution. The metal salt solution and the sol mixture are mixed with a sol peptizing agent while heating and stirring, resulting in formation of a peptized sol mixture. The metal oxide precursor is dispersed substantially throughout the peptized sol mixture, which is then dried, forming a dry peptized sol mixture. The dry peptized sol mixture is then calcined and the resulting calcined material is then converted to particles.

  14. Aerobic composting of digested residue eluted from dry methane fermentation to develop a zero-emission process.

    PubMed

    Huang, Yu-Lian; Sun, Zhao-Yong; Zhong, Xiao-Zhong; Wang, Ting-Ting; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2017-03-01

    Digested residue remained at the end of a process for the production of fuel ethanol and methane from kitchen garbage. To develop a zero-emission process, the compostability of the digested residue was assessed to obtain an added-value fertilizer. Composting of the digested residue by adding matured compost and a bulking agent was performed using a lab-scale composting reactor. The composting process showed that volatile total solid (VTS) degradation mainly occurred during the first 13days, and the highest VTS degradation efficiency was about 27% at the end. The raw material was not suitable as a fertilizer due to its high NH 4 + and volatile fatty acids (VFAs) concentration. However, the composting process produced remarkable results; the physicochemical properties indicated that highly matured compost was obtained within 62days of the composting process, and the final N concentration, NO 3 - concentration, and the germination index (GI) at the end of the composting process was 16.4gkg -1 -TS, 9.7gkg -1 -TS, and 151%, respectively. Real-time quantitative PCR (qPCR) analysis of ammonia oxidizers indicated that the occurrence of nitrification during the composting of digested residue was attributed to the activity of ammonia-oxidizing bacteria (AOB). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Impact of high pressure treatment and intramuscular fat content on colour changes and protein and lipid oxidation in sliced and vacuum-packaged Iberian dry-cured ham.

    PubMed

    Fuentes, Verónica; Utrera, Mariana; Estévez, Mario; Ventanas, Jesús; Ventanas, Sonia

    2014-08-01

    The effect of high hydrostatic pressure (HHP) (600MPa) and intramuscular fat content (IMF) on colour parameters and oxidative stability of lipids and proteins in sliced vacuum-packaged Iberian dry-cured ham during refrigerated storage (120 days at 2°C) was investigated. Several studies have investigated the influence of HHP on lipid oxidation of meat products. However, its effects on protein carbonylation, as also the influence of IMF content on this carbonylation are poorly understood. HHP treatment had a significant effect on lean lightness after 0 and 120 days of storage while IMF content increased lightness and yellowness over time. Regarding oxidative stability, the effect of HHP treatment depended on IMF content samples with a high IMF having greater lipid instability while samples with a low IMF underwent more protein carbonylation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Oven rack having integral lubricious, dry porcelain surface

    DOEpatents

    Ambrose, Jeffrey A; Mackiewicz-Ludtka, Gail; Sikka, Vinod K; Qu, Jun

    2014-06-03

    A lubricious glass-coated metal cooking article capable of withstanding repeated heating and cooling between room temperature and at least 500.degree. F. without chipping or cracking the glass coating, wherein the glass coating includes about 0.1 to about 20% by weight of a homogeneously distributed dry refractory lubricant material having a particle size less than about 200 .mu.m. The lubricant material is selected from the group consisting of carbon; graphite; boron nitride; cubic boron nitride; molybdenum (FV) sulfide; molybdenum sulfide; molybdenum (IV) selenide; molybdenum selenide, tungsten (IV) sulfide; tungsten disulfide; tungsten sulfide; silicon nitride (Si.sub.3N.sub.4); TiN; TiC; TiCN; TiO.sub.2; TiAlN; CrN; SiC; diamond-like carbon; tungsten carbide (WC); zirconium oxide (ZrO.sub.2); zirconium oxide and 0.1 to 40 weight % aluminum oxide; alumina-zirconia; antimony; antimony oxide; antimony trioxide; and mixtures thereof.

  17. Dry deposition of gaseous oxidized mercury in Western Maryland.

    PubMed

    Castro, Mark S; Moore, Chris; Sherwell, John; Brooks, Steve B

    2012-02-15

    The purpose of this study was to directly measure the dry deposition of gaseous oxidized mercury (GOM) in western Maryland. Annual estimates were made using passive ion-exchange surrogate surfaces and a resistance model. Surrogate surfaces were deployed for seventeen weekly sampling periods between September 2009 and October 2010. Dry deposition rates from surrogate surfaces ranged from 80 to 1512 pgm(-2)h(-1). GOM dry deposition rates were strongly correlated (r(2)=0.75) with the weekly average atmospheric GOM concentrations, which ranged from 2.3 to 34.1 pgm(-3). Dry deposition of GOM could be predicted from the ambient air concentrations of GOM using this equation: GOM dry deposition (pgm(-2)h(-1))=43.2 × GOM concentration-80.3. Dry deposition velocities computed using GOM concentrations and surrogate surface GOM dry deposition rates, ranged from 0.2 to 1.7 cms(-1). Modeled dry deposition rates were highly correlated (r(2)=0.80) with surrogate surface dry deposition rates. Using the overall weekly average surrogate surface dry deposition rate (369 ± 340 pg m(-2)h(-1)), we estimated an annual GOM dry deposition rate of 3.2 μg m(-2)year(-1). Using the resistance model, we estimated an annual GOM dry deposition rate of 3.5 μg m(-2)year(-1). Our annual GOM dry deposition rates were similar to the dry deposition (3.3 μg m(-2)h(-1)) of gaseous elemental mercury (GEM) at our site. In addition, annual GOM dry deposition was approximately 1/2 of the average annual wet deposition of total mercury (7.7 ± 1.9 μg m(-2)year(-1)) at our site. Total annual mercury deposition from dry deposition of GOM and GEM and wet deposition was approximately 14.4 μg m(-2)year(-1), which was similar to the average annual litterfall deposition (15 ± 2.1 μg m(-2)year(-1)) of mercury, which was also measured at our site. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates (“Iron Snow”)

    PubMed Central

    Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B.; Neu, Thomas R.; Hettich, Robert L.

    2013-01-01

    Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates (“iron snow”) at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 108 copies g (dry weight)−1 in the acidic central lake basin (pH 3.3) to 4.0 × 1010 copies g (dry weight)−1 in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies. PMID:23645202

  19. Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates ("iron snow").

    PubMed

    Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B; Neu, Thomas R; Hettich, Robert L; Küsel, Kirsten

    2013-07-01

    Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates ("iron snow") at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 10(8) copies g (dry weight)(-1) in the acidic central lake basin (pH 3.3) to 4.0 × 10(10) copies g (dry weight)(-1) in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies.

  20. NbN tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villegier, J.C.; Goniche, M.; Renard, P.

    1985-03-01

    All-niobium nitride Josephson junctions have been prepared successfully using a new processing called SNOP: Selective Niobium (Nitride) Overlap Process. Such a process involves the ''trilayer'' deposition on the whole wafer before selective patterning of the electrodes by optically controlled Dry Reactive Ion Etching. Only two photomask levels are need to define an ''overlap'' or a ''cross-type'' junction with a good accuracy. The properties of the niobium nitride films deposited by DC-Magnetron sputtering and the surface oxide growth are analysed. The most critical point to obtain high quality and high gap value junctions resides in the early stage of the NbNmore » counterelectrode growth. Some possibilities to overcome such a handicap exist even if the fabrication needs substrate temperatures below 250/sup 0/C.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anameric, B.; Kawatra, S.K.

    Pig iron nuggets were produced in a laboratory-scale furnace at Michigan Technological University. The process was intended to replicate Kobe Steel's ITmk3 direct ironmaking process. These nuggets were produced from pellets that were made from a mixture of iron oxide, coal, flux and a binder and heated in a furnace with a chamber temperature of 1450{sup o}C. The pellets then self-reduced to produce a solid, high-density, highly metallized (96.5% Fe) pig iron. During the nugget production process, a separate liquid slag phase formed that cleanly separated from the molten metal. The physical and chemical properties of the pig iron nuggetsmore » were similar to pig iron produced by blast furnaces, which is distinct from direct reduced iron (DRI).« less

  2. Graphene aerogels

    DOEpatents

    Pauzauskie, Peter J; Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H; Biener, Juergen

    2015-03-31

    Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.

  3. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.

    PubMed

    Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun

    2016-12-01

    Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.

  4. Release of copper from embedded solid copper bullets into muscle and fat tissues of fallow deer (Dama dama), roe deer (Capreolus capreolus), and wild boar (Sus scrofa) and effect of copper content on oxidative stability of heat-processed meat.

    PubMed

    Schuhmann-Irschik, I; Sager, M; Paulsen, P; Tichy, A; Bauer, F

    2015-10-01

    When venison with embedded copper bullets was subjected to different culinary processing procedures, the amount of copper released from the embedded bullet was affected more by the retention period of the bullet in the meat during cool storage, than by the different heating protocols. The presence of copper fragments had no significant effect on levels of thiobarbituric acid reactive substances (TBARS). Conversely, TBARS in lean meat (fallow deer, wild boar, roe deer) were significantly affected by culinary treatment (higher TBARS in boiled and boiled-stored meat than in meat barbecued or boiled in brine). In pork-beef patties doped with up to 28mg/kg Cu, TBARS increased after dry-heating and subsequently storing the meat patties. The amount of copper doping had no effect on TBARS for 0 and 7days of storage, but a significant effect at day 14 (fat oxidation retarded at higher Cu doses). Evidence is presented that wild boar meat may be more sensitive to fat oxidation than pork-beef. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyoung Ryu, Yu; Garcia, Ricardo, E-mail: r.garcia@csic.es; Aitor Postigo, Pablo

    2014-06-02

    Silicon nanowires are key elements to fabricate very sensitive mechanical and electronic devices. We provide a method to fabricate sub-12 nm silicon nanowires in thickness by combining oxidation scanning probe lithography and anisotropic dry etching. Extremely thin oxide masks (0.3–1.1 nm) are transferred into nanowires of 2–12 nm in thickness. The width ratio between the mask and the silicon nanowire is close to one which implies that the nanowire width is controlled by the feature size of the nanolithography. This method enables the fabrication of very small single silicon nanowires with cross-sections below 100 nm{sup 2}. Those values are the smallest obtained withmore » a top-down lithography method.« less

  6. Report on UQ and PCMM Analysis of Vacuum Drying for UFD S&T Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Fluss

    2015-08-31

    This report discusses two phenomena that could affect the safety, licensing, transportation, storage, and disposition of the spent fuel storage casks and their contents (radial hydriding during drying and water retention after drying) associated with the drying of canisters for dry spent fuel storage. The report discusses modeling frameworks and evaluations that are, or have been, developed as a means to better understand these phenomena. Where applicable, the report also discusses data needs and procedures for monitoring or evaluating the condition of storage containers during and after drying. A recommendation for the manufacturing of a fully passivated fuel rod, resistantmore » to oxidation and hydriding is outlined.« less

  7. Greenhouse gas microbiology in wet and dry straw crust covering pig slurry.

    PubMed

    Hansen, Rikke R; Nielsen, Daniel Aa; Schramm, Andreas; Nielsen, Lars P; Revsbech, Niels P; Hansen, Martin N

    2009-01-01

    Liquid manure (slurry) storages are sources of gases such as ammonia (NH(3)) and methane (CH(4)). Danish slurry storages are required to be covered to reduce NH(3) emissions and often a floating crust of straw is applied. This study investigated whether physical properties of the crust or crust microbiology had an effect on the emission of the potent greenhouse gases CH(4) and nitrous oxide (N(2)O) when crust moisture was manipulated ("dry", "moderate", and "wet"). The dry crust had the deepest oxygen penetration (45 mm as compared to 20 mm in the wet treatment) as measured with microsensors, the highest amounts of nitrogen oxides (NO(2)(-) and NO(3)(-)) (up to 36 mumol g(-1) wet weight) and the highest emissions of N(2)O and CH(4). Fluorescent in situ hybridization and gene-specific polymerase chain reaction (PCR) were used to detect occurrence of bacterial groups. Ammonia-oxidizing bacteria (AOB) were abundant in all three crust types, whereas nitrite-oxidizing bacteria (NOB) were undetectable and methane-oxidizing bacteria (MOB) were only sparsely present in the wet treatment. A change to anoxia did not affect the CH(4) emission indicating the virtual absence of aerobic methane oxidation in the investigated 2-mo old crusts. However, an increase in N(2)O emission was observed in all crusted treatments exposed to anoxia, and this was probably a result of denitrification based on NO(x)(-) that had accumulated in the crust during oxic conditions. To reduce overall greenhouse gas emissions, floating crust should be managed to optimize conditions for methanotrophs.

  8. Catalytic conversion of hydrocarbons to hydrogen and high-value carbon

    DOEpatents

    Shah, Naresh; Panjala, Devadas; Huffman, Gerald P.

    2005-04-05

    The present invention provides novel catalysts for accomplishing catalytic decomposition of undiluted light hydrocarbons to a hydrogen product, and methods for preparing such catalysts. In one aspect, a method is provided for preparing a catalyst by admixing an aqueous solution of an iron salt, at least one additional catalyst metal salt, and a suitable oxide substrate support, and precipitating metal oxyhydroxides onto the substrate support. An incipient wetness method, comprising addition of aqueous solutions of metal salts to a dry oxide substrate support, extruding the resulting paste to pellet form, and calcining the pellets in air is also discloses. In yet another aspect, a process is provided for producing hydrogen from an undiluted light hydrocarbon reactant, comprising contacting the hydrocarbon reactant with a catalyst as described above in a reactor, and recovering a substantially carbon monoxide-free hydrogen product stream. In still yet another aspect, a process is provided for catalytic decomposition of an undiluted light hydrocarbon reactant to obtain hydrogen and a valuable multi-walled carbon nanotube coproduct.

  9. Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil-water separation.

    PubMed

    Xu, Zhaoyang; Zhou, Huan; Tan, Sicong; Jiang, Xiangdong; Wu, Weibing; Shi, Jiangtao; Chen, Peng

    2018-01-01

    With the worsening of the oil-product pollution problem, oil-water separation has attracted increased attention in recent years. In this study, a porous three-dimensional (3D) carbon aerogel based on cellulose nanofibers (CNFs), poly(vinyl alcohol) (PVA) and graphene oxide (GO) was synthesized by a facile and green approach. The resulting CNF/PVA/GO aerogels were synthesized through an environmentally friendly freeze-drying process and then carbonized to yield CNF/PVA/GO carbon aerogels with low density (18.41 mg cm -3 ), high porosity (98.98%), a water contact angle of 156° (super-hydrophobic) and high oil absorption capacity (97 times its own weight). The carbonization treatment of the CNF/PVA/GO aerogel not only improved the hydrophobic properties but also enhanced the adsorption capacity and specific surface area. Given the many good performance characteristics and the facile preparation process of carbon aerogels, these materials are viable candidates for use in oil-water separation and environmental protection.

  10. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  11. Fabrication and characterization of solid oxide cells for energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Yang, Chenghao

    2011-12-01

    There has been an increasing interest in clean and renewable energy generation for highlighted energy and environmental concerns. Solid oxide cells (SOCs) have been considered as one of the promising technologies, since they can be operated efficiently both in electrolysis mode by generating hydrogen through steam electrolysis and fuel cell mode by electrochemically combining fuel with oxidant. The present work is devoted to performing a fundamental study of SOC in both fuel cell mode for power generation and electrolysis mode for fuel production. The research work on SOCs that can be operated reversibly for power generation and fuel production has been conducted in the following six projects: (1) High performance solid oxide electrolysis cell (SOEC) Fabrication of novel structured SOEC oxygen electrode with the conventional and commercial solid oxide fuel cell materials by screen-printing and infiltration fabrication methods. The microstructure, electrochemical properties and durability of SOECs has been investigated. It was found that the LSM infiltrated cell has an area specific resistance (ASR) of 0.20 Ω cm2 at 900°C at open circuit voltage with 50% absolute humidity (AH), which is relatively lower than that of the cell with LSM-YSZ oxygen electrode made by a conventional mixing method. Electrolysis cell with LSM infiltrated oxygen electrode has demonstrated stable performance under electrolysis operation with 0.33 A/cm2 and 50 vol.% AH at 800°C. (2) Advanced performance high temperature micro-tubular solid oxide fuel cell (MT-SOFC) Phase-inversion, dip-coating, high temperature co-sintering process and impregnation method were used to fabricate micro-tubular solid oxide fuel cell. The micro-structure of the micro-tubular fuel cell will be investigated and the power output and thermal robustness has been evaluated. High performance and rapid start-up behavior have been achieved, indicates that the MT-SOFC developed in this work can be a promising technology for portable applications. (3) Promising intermediate temperature micro-tubular solid oxide fuel cells for portable power supply applications Maximum power densities of 0.5, 0.38 and 0.27 W/cm2 have been obtained using H2-15% H2O as fuel at 550, 600 and 650°C, respectively. Quick thermal cycles performed on the intermediate temperature MT-SOFC stability demonstrate that the cell has robust performance stability for portable applications. (4) Micro-tubular solid oxide cell (MT-SOC) for steam electrolysis The electrochemical properties of MT-SOC will be investigated in detail in electrolysis mode. The mechanism of the novel hydrogen electrode structure benefiting the cell performance will be demonstrated systematically. The high electrochemical performance of the MT-SOC in electrolysis mode indicates that MT-SOC can provide an efficient hydrogen generation process. (5) Micro-tubular solid oxide cell (MT-SOC) for steam and CO2 co-electrolysis The MT-SOC will be operated in co-electrolysis mode for steam and CO 2, which will provide an efficient approach to generate syngas (H2+CO) without consuming fossil fuels. This can potentially provide an alternative superior approach for carbon sequestration which has been a critical issue facing the sustainability of our society. (6) Steam and CO2 co-electrolysis using solid oxide cells fabricated by freeze-drying tape-casting Tri-layer scaffolds have been prepared by freeze-drying tape casting process and the electrode catalysts are obtained by infiltrating the porous electrode substrates. Button cells will be tested for co-electrolysis of steam and CO2. The mechanism and efficiency of steam and CO2 co-electrolysis will be systemically investigated. In conclusion, SOCs have been fabricated with conventional materials and evaluated, but their performance has been found to be limited in either SOFC or SOEC mode. The cell performance has been significantly improved by employing an infiltrated LSM-YSZ electrode, due to dramatically decreased polarization resistance. However, mass transport limitation has been observed, particularly in electrolysis mode. By utilizing micro-tubular SOCs with novel hydrogen electrode produced via a phase inversion method, mass transport limitation has been mitigated. Finally, mass transport has been further improved by using cells with electrodes fabricated through a freeze-drying tape-casting method. (Abstract shortened by UMI.)

  12. Unraveling the catalyzing behaviors of different iron species (Fe2+ vs. Fe0) in activating persulfate-based oxidation process with implications to waste activated sludge dewaterability.

    PubMed

    Zhen, Guangyin; Lu, Xueqin; Su, Lianghu; Kobayashi, Takuro; Kumar, Gopalakrishnan; Zhou, Tao; Xu, Kaiqin; Li, Yu-You; Zhu, Xuefeng; Zhao, Youcai

    2018-05-01

    Dewatering of waste activated sludge (WAS) is of major interest in its volume reduction, transportation and ultimate disposal. Persulfate-based oxidation process is a newly developed option for enhancing WAS dewaterability through the generation of powerful sulfate radicals (SO 4 - ·). However, the enhancement in WAS dewaterability by persulfate differs with the species of iron catalysts used. In this study, two types of iron catalysts (i.e. Fe 2+ vs. Fe 0 ) were employed to initiate the persulfate (S 2 O 8 2- ), and the catalyzing behaviors and the underlying principles in enhancing WAS dewaterability were investigated and compared. The Fe 2+ exhibited the high effectiveness in catalyzing the decomposition of persulfate to sulfate radicals (SO 4 - ·), inducing the greater improvement in WAS dewatering. The WAS dewaterability (indicated by dry solids content after filtration) increased with the added S 2 O 8 2- /Fe 2+ dosages, with the dry solids content reaching up to 5.1 ± 0.8 wt% at S 2 O 8 2- /Fe 2+ dosages of 1.2/1.5 mmol/g-VS after only 30 s' filtration, roughly 1.8-fold increase than raw WAS (1.8 ± 0.1 wt%). In contrast, the influence of the persulfate oxidation when activated with Fe 0 on WAS dewaterability was statistically insignificant. The WAS dewaterability remained nearly unchanged (i.e. dry solids content of 2.0 ± 0.0 wt%), irrespective of the employed S 2 O 8 2- /Fe 0 dosages. Further analysis demonstrated that the WAS dewaterability negatively corresponded to loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS). The abundant SO 4 - · from S 2 O 8 2- /Fe 2+ system could effectively disrupt the gel-like EPS matrix, break apart the cells and subsequently arouse the release of the water inside EPS and cells, facilitating water-solid separation. In the case of S 2 O 8 2- /Fe 0 , the dissolution of Fe 0 particles was the rate-limiting step, due to the formation of oxide iron layer near Fe 0 metallic surface, which resulted in the slow SO 4 - · production and thus hardly promoted WAS dewaterability. The pH adjustment could accelerate Fe 0 dissolution and enhance the dewatering performance of S 2 O 8 2- /Fe 0 process to a certain degree, but the effect was unsatisfactory. Additionally, the observations regarding the dissolved organic matters and ammonium collectively revealed that except for enhancing WAS dewatering, S 2 O 8 2- /Fe 2+ oxidation could concurrently degrade COD and ammonia from WAS filtrate, lighten the burden of the subsequent sewage treatment facilities and reduce operational expense. Hence, from an environmental and economic perspective, the S 2 O 8 2- /Fe 2+ system possesses much greater promise for WAS dewatering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Synthesis of the Galactosyl Derivative of Gluconic Acid With the Transglycosylation Activity of β-Galactosidase

    PubMed Central

    2017-01-01

    Summary Bionic acids are bioactive compounds demonstrating numerous interesting properties. They are widely produced by chemical or enzymatic oxidation of disaccharides. This paper focuses on the galactosyl derivative of gluconic acid as a result of a new method of bionic acid synthesis which utilises the transglycosylation properties of β-galactosidase and introduces lactose as a substrate. Products obtained in such a process are characterised by different structures (and, potentially, properties) than those resulting from traditional oxidation of disaccharides. The aim of this study is to determine the effect of selected parameters (concentration and ratio of substrates, dose of the enzyme, time, pH, presence of salts) on the course of the reaction carried out with the enzymatic preparation Lactozym, containing β-galactosidase from Kluyveromyces lactis. Research has shown that increased dry matter content in the baseline solution (up to 50%, by mass per volume) and an addition of NaCl contribute to higher yield. On the other hand, reduced content of the derivative is a result of increased pH from 7.0 to 9.0 and an addition of magnesium and manganese salts. Moreover, exceeding the β-galactosidase dose over approx. 35 000 U per 100 g of lactose also leads to reduced yield of the process. The most favourable molar ratio of sodium gluconate to lactose is 2.225:0.675. Depending on the conditions of the synthesis, the product concentration ranged between 17.3 and 118.3 g/L of the reaction mixture, which corresponded to the mass fraction of 6.64–23.7% of dry matter. The data obtained as a result of the present study may be useful for designing an industrial process. PMID:28867957

  14. Application of Abrasive-Waterjets for Machining Fatigue-Critical Aircraft Aluminum Parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H T; Hovanski, Yuri; Dahl, Michael E

    2010-08-19

    Current specifications require AWJ-cut aluminum parts for fatigue critical aerospace structures to go through subsequent processing due to concerns of degradation in fatigue performance. The requirement of secondary process for AWJ-machined parts greatly negates the cost effectiveness of waterjet technology. Some cost savings are envisioned if it can be shown that AWJ net cut parts have comparable durability properties as those conventionally machined. To revisit and upgrade the specifications for AWJ machining of aircraft aluminum, “Dog-bone” specimens, with and without secondary processes, were prepared for independent fatigue tests at Boeing and Pacific Northwest National Laboratory (PNNL). Test results show thatmore » the fatigue life is proportional to quality levels of machined edges or inversely proportional to the surface roughness Ra . Even at highest quality level, the average fatigue life of AWJ-machined parts is about 30% shorter than those of conventionally machined counterparts. Between two secondary processes, dry-grit blasting with aluminum oxide abrasives until the striation is removed visually yields excellent result. It actually prolongs the fatigue life of parts at least three times higher than that achievable with conventional machining. Dry-grit blasting is relatively simple and inexpensive to administrate and, equally important, alleviates the concerns of garnet embedment.« less

  15. Inorganic Substrates and Encapsulation Layers for Transient Electronics

    DTIC Science & Technology

    2014-07-01

    surface oxidation of the nitrides, the measurements were conducted shortly after oxide removal in buffered oxide etchant (BOE) 6:1 (Transene Company Inc...values for the time-dependent dissolution of thermally grown SiO2 (dry oxidation) in buffer solutions (black, pH 7.4; red, pH 8; blue, pH 10...22 5.1.3 Contractor will Identify and Measure Key Performance Characteristics of Candidate Metal Conductive Layers for

  16. Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Vitousek, Peter M.; Riley, Ralph; Matson, Pamela A.; Garcia-Mendez, Georgina; Maass, J. M.

    1991-01-01

    Soil emissions of NO were measured at the Chamela Biological Station, Mexico, using soil covers and a field apparatus of NO detection based on CrO3 conversion of NO to NO2 and detection of NO2 by chemiluminescence with Luminol. Mean NO fluxes from forest soils ranged from 0.14 to 0.52 ng NO-N/sq cm/hr during the dry season and from 0.73 to 1.27 ng NO-N/sq cm/hr during the wet season. A fertilized floodplain pasture exhibited higher fluxes, but an unfertilized upland pasture, which represents the fastest growing land use in the region, had flux rates similar to the forest sites. Wetting experiments at the end of the dry season caused large pulses of NO flux, equaling 10 percent to 20 percent of the estimated annual NO emissions of 0.5-1.0 kg N/ha from the forest sites. Absence of a forest canopy during the dry season and the first wet season rain probably results in substantial NO(x) export from the forest system that may be important to regional atmospheric chemical processes. Wetting experiments during the wet season and a natural rain event had little or no stimulatory effect on NO flux rates.

  17. Combined wet and dry cleaning of SiGe(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sang Wook; Kaufman-Osborn, Tobin; Kim, Hyonwoong

    Combined wet and dry cleaning via hydrofluoric acid (HF) and atomic hydrogen on Si{sub 0.6}Ge{sub 0.4}(001) surface was studied at the atomic level using ultrahigh vacuum scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and x-ray photoelectron spectroscopy to understand the chemical transformations of the surface. Aqueous HF removes native oxide, but residual carbon and oxygen are still observed on Si{sub 0.6}Ge{sub 0.4}(001) due to hydrocarbon contamination from post HF exposure to ambient. The oxygen contamination can be eliminated by shielding the sample from ambient via covering the sample in the HF cleaning solution until the sample is introduced tomore » the vacuum chamber or by transferring the sample in an inert environment; however, both processes still leave carbon contaminant. Dry in-situ atomic hydrogen cleaning above 330 °C removes the carbon contamination on the surface consistent with a thermally activated atomic hydrogen reaction with surface hydrocarbon. A postdeposition anneal at 550 °C induces formation of an atomically flat and ordered SiGe surface observed by STM. STS verifies that the wet and dry cleaned surface has an unpinned Fermi level with no states between the conduction and valence band edge comparable to sputter cleaned SiGe surfaces.« less

  18. The effect of variety and maturity on the quality of freeze-dried carrots. The effect of microwave blanching on the nutritional and textural quality of freeze-dried spinach

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Using carrots, the quality of freeze-dried products was studied to determine the optimum varieties and maturation stages for quality attributes such as appearance, flavor, texture, and nutritive value. The quality of freeze-dried carrots is discussed in terms of Gardner color, alcohol insoluble solids, viscosity, and core/cortex ratio. Also, microwave blanching of freeze-dried spinach was studied to determine vitamin interrelationships, anatomical changes, and oxidative deteriorations in terms of preprocessing microwave treatments. Statistical methods were employed in the gathering of data and interpretation of results in both studies.

  19. The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica

    USGS Publications Warehouse

    Voytek, M.A.; Priscu, J.C.; Ward, B.B.

    1999-01-01

    Marked differences in the concentrations of major ions and cations, macronutrient chemistry and general trophic status exist among the lakes of the McMurdo dry valleys in Antarctica. These differences have been attributed to both variations in stream inputs and in situ lake processes (Priscu, 1995; Lizotte et al., 1996, Spigel and Priscu, 1996). This study examines the role of nitrifying bacteria in nitrogen transformations in these lakes. Applying two polymerase chain reaction (PCR) assays targeting the 16S rRNA genes of ammonia-oxidizing bacteria and the active site of the ammonia monooxygenase gene (amoA), the distribution of ammonia-oxidizers was examined in six Antarctic lakes: Lake Bonney, Lake Hoare, Lake Fryxell and Lake Joyce in the Taylor Valley, Lake Miers in the the Miers Valley and Lake Vanda in the Wright Valley. Using a two stage amplification procedure, ammonia-oxidizers from both the beta and gamma- subclasses of the Proteobacteria were detected and their relative abundances were determined in samples collected from all sites. Ammonia-oxidizers were detected in all lakes sampled. Members of the gamma subclass were only present in the saline lakes. In general, nitrifiers were most abundant at depths above the pycnocline and were usually associated with lower concentrations of NH4 and elevated concentrations of NO3 or NO2. The distribution of nitrifiers suggests that the primary N2O peak observed in most of the lakes was produced via nitrification. Preliminary data on the rate of nitrification (Priscu et al., 1996) support the occurrence of nitrification and the presence of nitrifiers at the depth intervals where nitrifiers were detected. In all lakes, except Lake Miers, the data indicate that nitrifying bacteria have an important role in the vertical distribution of nitrogen compounds in these systems.

  20. [Oxidation behavior and kinetics of representative VOCs emitted from petrochemical industry over CuCeOx composite oxides].

    PubMed

    Chen, Chang-Wei; Yu, Yan-Ke; Chen, Jin-Sheng; He, Chi

    2013-12-01

    CuCeOx composite catalysts were synthesized via coprecipitation (COP-CuCeO,) and incipient impregnation (IMP-CuCeOx) methods, respectively. The physicochemical properties of the samples were characterized by XRD, low-temperature N2 sorption, H2-TPR and O2-TPD. The influences of reactant composition and concentration, reaction space velocity, O2 content, H2O concentration, and catalyst type on the oxidation behaviors of benzene, toluene, and n-hexane emitted from petrochemical industry were systematically investigated. In addition, the related kinetic parameters were model fitted. Compared with IMP-CuCeOx, COP-CuCeOx had well-dispersed active phase, better low-temperature reducibility, and more active surface oxygen species. The increase of reactant concentration was unfavorable for toluene oxidation, while the opposite phenomenon could be observed in n-hexane oxidation. The inlet concentration of benzene was irrelevant to its conversion under high oxidation rate. The introduction of benzene obviously inhibited the oxidation of toluene and n-hexane, while the presence of toluene had a positive effect on beuzene conversion. The presence of n-hexane could promote the oxidation of toluene, while toluene had a negative influence on e-hexane oxidation. Both low space velocity and high oxygen concentration were beneficial for the oxidation process, and the variation of oxygen content had negligible effect on n-hexane and henzene oxidation. The presence of H2O noticeably inhibited the oxidation of toluene, while significantly accelerated the oxidation procedure of henzene and n-hexane. COP-CuCeOx had superior catalytic performance for toluene and benzene oxidation, while IMP-CuCeOx showed higher n-hexane oxidation activity under dry condition. The oxidation behaviors under different conditions could be well fitted and predicted by the pseudo first-order kinetic model.

  1. Infrared pre-drying and dry-dehulling of walnuts for improved processing efficiency and product quality

    USDA-ARS?s Scientific Manuscript database

    The walnut industry is faced with an urgent need to improve post-harvest processing efficiency, particularly drying and dehulling operations. This research investigated the feasibility of dry-dehulling and infrared (IR) pre-drying of walnuts for improved processing efficiency and dried product quali...

  2. Pollution damage to the Powell Building, Reston, Virginia

    USGS Publications Warehouse

    Doe, B.R.; Reddy, M.M.; Eggleston, J.R.

    1999-01-01

    Concrete column segments of the Powell Building (Reston, VA) exposed to the elements and wetted by precipitation were `cleaned' and roughened, but sheltered portions of the columns retained their smoothness and pollution accumulates, similar to observations for limestone, marble, and sandstone. Weathering effects on the columns were dominated by precipitation run-off and not the acidity of the precipitation. The process may be dry deposition of sulfur dioxide (SO2) and nitric oxides (NOx) that formed soluble salts in the presence of humid air or dew, salts that were removed by precipitation run-off.

  3. Graphene oxide foams and their excellent adsorption ability for acetone gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yongqiang; School of Science, Tianjin University, Tianjin 300072; Zhang, Nana

    2013-09-01

    Graphical abstract: - Highlights: • GO and RGO foams were prepared using a simple and green method, unidirectional freeze-drying. • The porous structure of the foams can be adjusted by changing GO concentrations. • GO and RGO foams show good adsorption efficiency for acetone gas. - Abstract: Graphene oxide (GO) and reduced graphene oxide (RGO) foams were prepared using a unidirectional freeze-drying method. These porous carbon materials were characterized by thermal gravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy and scanning electron microscopy. The adsorption behavior of the two kinds of foams for acetone was studied. The result showed thatmore » the saturated adsorption efficiency of the GO foams was over 100%, and was higher than that of RGO foams and other carbon materials.« less

  4. Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA

    USGS Publications Warehouse

    Foster, Andrea L.; Ashley, Roger P.; Rytuba, James J.

    2011-01-01

    Sub- to anoxic conditions minimize dissolution of arsenopyrite at the LCMS site, but may accelerate the dissolution of As-bearing secondary iron phases such as Fe3+-oxyhydroxides and arseniosiderite, if sufficient organic matter is present to spur anaerobic microbial activity. Oxidizing, dry conditions favor the stabilization of secondary phases, while promoting oxidative breakdown of the primary sulfides. The stability of both primary and secondary As phases is likely to be at a minimum under cyclic wet-dry conditions. Biogenic iron (hydr)oxide flocs can sequester significant amounts of arsenic; this property may be useful for treatment of perpetual sources of As such as mine adit water, but the fate of As associated with natural accumulations of floc material needs to be assessed.

  5. 75 FR 43409 - Rhode Island: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ..., nickel-cadmium batteries or lithium batteries. Rhode Island has decided to regulate circuit boards, as... universal waste program, Rhode Island regulates certain dry cell batteries (i.e., waste-nickel cadmium, mercuric oxide, and lead acid dry cell batteries), used electronics, mercury containing equipment and...

  6. Mathematical model of a smoldering log.

    Treesearch

    Fernando de Souza Costa; David Sandberg

    2004-01-01

    A mathematical model is developed describing the natural smoldering of logs. It is considered the steady one dimensional propagation of infinitesimally thin fronts of drying, pyrolysis, and char oxidation in a horizontal semi-infinite log. Expressions for the burn rates, distribution profiles of temperature, and positions of the drying, pyrolysis, and smoldering fronts...

  7. Antioxidant and anti-inflammatory activities of freeze-dried grapefruit phenolics as affected by gum arabic and bamboo fibre addition and microwave pretreatment.

    PubMed

    García-Martínez, Eva; Andújar, Isabel; Yuste Del Carmen, Alberto; Prohens, Jaime; Martínez-Navarrete, Nuria

    2018-06-01

    Recent epidemiological studies have suggested that phenolic compounds present in grapefruit play an important role in the bioactive properties of this fruit. However, the consumption of fresh grapefruit is low. Freeze-dried powdered grapefruit can be an alternative to promote this fruit consumption. To improve the quality and stability of the powdered fruit, encapsulating and anticaking agents can be added. In the present study, different grapefruit powders obtained by freeze-drying with the addition of gum arabic (1.27 g per 100 g) and bamboo fibre (0.76 g per 100 g) with and without a pre-drying microwave treatment were compared with the fresh and freeze-dried fruit with no carriers added, aiming to evaluate the effect of these preservation processes on phenolics content and on its antioxidant [1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and ferric reducing ability of plasma (FRAP)] and anti-inflamatory (evaluated in RAW 264.7 macrophages) capacities. Freeze-drying and gum arabic and bamboo fibre addition significantly increased total phenolics, as well as the antioxidant and anti-inflammatory activities (by inhibiting nitric oxide production of lipopolysaccharide activated RAW 264.7 macrophages), of grapefruit. An additional increase in these parameters was obtained with microwave pretreatment before freeze-drying. The combined addition of gum arabic and bamboo fibre to grapefruit puree and the application of a microwave pretreatment improve the functional properties of the fruit without showing cytotoxicity in vitro. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Method for preparing dielectric composite materials

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

    2004-11-23

    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  9. Dielectric composite materials and method for preparing

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

    2003-07-29

    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  10. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    PubMed

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more efficient Hg-removal. Overall mercury removal efficiencies from flue gas can attain 80-95%, depending on sorbent type/impregnation, sorbent surplus and operating conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Characterization of biomasses, concentrates, and permeates of dried powder of Kombucha fermentation of spinach (Amaranthus sp.) and broccoli (Brassica oleracea) with membrane microfiltration and freeze drying techniques for natural sources of folic acid

    NASA Astrophysics Data System (ADS)

    Nugraha, Tutun; Susilowati, Agustine; Aspiyanto, Lotulung, Puspa Dewi; Maryati, Yati

    2017-11-01

    Fermentation of spinach (Amaranthus sp) and Broccoli (Brassica oleracea) using Kombucha Culture has been shown to produce biomass that has the potential to become natural sources of folic acid. To produce the materials, following the fermentation, the biomass was filtered using membrane microfiltration (0.15 µm) at a pressure of 40 psia, at room temperature, yielding the concentrate and the permeate fractions. Following this step, freeze drying process was done on the biomass feeds, as well as on the concentrate and permeate fractions. For the freeze drying stage, the samples were frozen, and the condenser was kept at -50°C for 40 hours, while the pressure in the chamber was set at 200 Pa. Freeze drying results showed that the final products, have differences in compositions, as well as differences in the dominat monomers of folates. After water content was driven out, freeze drying increased the concentrations of folic acid in the dried products, and was found to be the highest in the concentrate fractions. Freeze drying has been shown to be capable of protecting the folates from heat and oxidative damages that typicaly occur with other types of drying. The final freeze dried concentrates of fermentation of spinach and broccoli were found to contain folic acid at 2531.88 µg/mL and 1626.94 µg/mL, total solids at 87.23% and 88.65 %, total sugar at 22.66 µg/mL and 25.13 µg/mL, total reducing sugar at 34.46 mg/mL and 15.22 mg/mL, as well as disolved protein concentrations at 0.93 mg/mL and 1.45 mg/mL. Liquid Chromatography Mass Spectometry (LC-MS) identification of the folates in the freeze dried concentrates of fermented spinach and broccoli was done using folic acid and glutamic acid standard solutions as the reference materials. The results showed the presence of folic acid and showed that the dominant monomers of molecules of folates with molecular weights of 441.44 Da. and 441.54 Da. for spinach and broccoli respectively. Moreover, the monomers of glutamic acid were also found at molecular weights of 147.21 Da. and 147.35 Da. for spinach and broccoli respectively. Thus, it has been shown that kombucha fermentation of spinach and broccoli, followed by membrane microfiltration and freeze drying process, could produce dried materials with high concentrations of folates that have the potential to be used as naturally derived sources of folic acid.

  12. Mitochondrial metabolism and stress response of yeast: Applications in fermentation technologies.

    PubMed

    Kitagaki, Hiroshi; Takagi, Hiroshi

    2014-04-01

    Mitochondria are sites of oxidative respiration. During sake brewing, sake yeasts are exposed to long periods of hypoxia; the structure, role, and metabolism of mitochondria of sake yeasts have not been studied in detail. It was first elucidated that the mitochondrial structure of sake yeast transforms from filamentous to dotted structure during sake brewing, which affects malate metabolism. Based on the information of yeast mitochondria during sake brewing, practical technologies have been developed; (i) breeding pyruvate-underproducing sake yeast by the isolation of a mutant resistant to an inhibitor of mitochondrial pyruvate transport; and (ii) modifying malate and succinate production by manipulating mitochondrial activity. During the bread-making process, baker's yeast cells are exposed to a variety of baking-associated stresses, such as freeze-thaw, air-drying, and high sucrose concentrations. These treatments induce oxidative stress generating reactive oxygen species due to mitochondrial damage. A novel metabolism of proline and arginine catalyzed by N-acetyltransferase Mpr1 in the mitochondria eventually leads to synthesis of nitric oxide, which confers oxidative stress tolerance on yeast cells. The enhancement of proline and arginine metabolism could be promising for breeding novel baker's yeast strains that are tolerant to multiple baking-associated stresses. These new and practical methods provide approaches to improve the processes in the field of industrial fermentation technologies. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury.

    PubMed

    Farag, Mohamed; Najeeb, Ullah; Yang, Jinghua; Hu, Zhongyuan; Fang, Zhang Ming

    2017-02-01

    Nitric oxide (NO) mediates plant response to a variety of abiotic stresses; however, limited information is available on its effect on boron (B)-stressed watermelon plants. The present study investigates the mechanism through which NO protects watermelon seedlings from B deficiency and toxicity stresses. Five days old watermelon seedlings were exposed to B (0, 0.5 and 10 mg L -1 ) alone or with 75 μmole of NO donor sodium nitroprusside (SNP) for 30 days. Both low and high B concentrations in the media altered nutrient accumulation and impaired various physiological processes of watermelon seedlings, leading to a significant reduction in biomass production. The plants exposed to B deficient or toxic concentrations had 66 and 69% lower shoot dry weight, respectively compared with optimum B levels. B toxicity-induced growth inhibition of watermelon seedlings was associated with high B translocation to shoot tissues, which caused lipid membrane peroxidation (12% increase) and chlorophyll destruction (25% reduction). In contrast, B deficiency accelerated generation of reactive oxygen species (ROS), specifically OH -1 and induced cellular oxidative injury. Exogenously applied SNP promoted leaf chlorophyll, photosynthesis and consequently biomass production in B-stressed watermelon seedlings by reducing B accumulation, lipid membrane peroxidation and ROS generation. It also activated antioxidant enzymes such as SOD, POD and APX, and protected the seedlings from ROS-induced cellular burst. Copyright © 2016. Published by Elsevier Masson SAS.

  14. Coating of peanuts with edible whey protein film containing alpha-tocopherol and ascorbyl palmitate.

    PubMed

    Han, J H; Hwang, H-M; Min, S; Krochta, J M

    2008-10-01

    Physical properties of whey protein isolate (WPI) coating solution incorporating ascorbic palmitate (AP) and alpha-tocopherol (tocopherol) were characterized, and the antioxidant activity of dried WPI coatings against lipid oxidation in roasted peanuts were investigated. The AP and tocopherol were mixed into a 10% (w/w) WPI solution containing 6.7% glycerol. Process 1 (P1) blended an AP and tocopherol mixture directly into the WPI solution using a high-speed homogenizer. Process 2 (P2) used ethanol as a solvent for dissolving AP and tocopherol into the WPI solution. The viscosity and turbidity of the WPI coating solution showed the Newtonian fluid behavior, and 0.25% of critical concentration of AP in WPI solution rheology. After peanuts were coated with WPI solutions, color changes of peanuts were measured during 16 wk of storage at 25 degrees C, and the oxidation of peanuts was determined by hexanal analysis using solid-phase micro-extraction samplers and GC-MS. Regardless of the presence of antioxidants in the coating layer, the formation of hexanal from the oxidation of peanut lipids was reduced by WPI coatings, which indicates WPI coatings protected the peanuts from oxygen permeation and oxidation. However, the incorporation of antioxidants in the WPI coating layer did not show a significant difference in hexanal production from that of WPI coating treatment without incorporation of antioxidants.

  15. Characterization of Copper-Manganese-Aluminum-Magnesium Mixed Oxyhydroxide and Oxide Catalysts for Redox Reactions

    NASA Astrophysics Data System (ADS)

    Baksi, Arnab; Cocke, David L.; Gomes, Andrew; Gossage, John; Riggs, Mark; Beall, Gary; McWhinney, Hylton

    Complex multi-metal catalysts require several stages in their preparation. These are: co-mixing, co-precipitation, milling and sol-gel, drying, dehydroxylation, and calcination and sometimes regeneration of the hydroxide by rehydration. These processes require thermal analysis (DTA, TGA, DSC) and accompanying off gas analysis, plus one or more of these: XRD, XPS, SEMEDS, FTIR and UV-VIS. In this study, hydrotalcite, hopcalite and mixed systems were prepared and guided by the above characterization techniques. The systems were initiated by mixing the chlorides or nitrates followed by hydrothermal treatments to produce the hydroxides which were further treated by washing, drying, and calcination. The thermal analysis was critical to guide the preparation through these stages and when combined with structural determination methods considerable understanding of their chemical and physical changes was obtained. The correlations between preparation and characterization will be discussed.

  16. [Specialties of singlet oxygen and ozone inhalations action on lipoperozydation and antioxidant system of rats blood and tissues].

    PubMed

    Martusevich, A A; Martusevich, A K; Peretiagin, S P

    2013-09-01

    The aim of this work was the analysis of singlet oxygen and the ozone effect on lipid peroxidation and antioxidant activity of rat organs and blood. Wistar rats were randomly divided into five groups: control group (without any manipulations; n = 10) and four main groups (n = 10 in each group) with inhalations by dry, moisture and oil-processed ozone-oxygen mixture (ozone concentration 60 micro g/l) or singlet oxygen, respectively. Activity of pro- and antioxidant systems was estimated in blood and tissues (lungs, heart, liver and kidney) by inducing biochemiluminescence. Singlet oxygen was shown to exert the "mildest" effect with stimulation of blood antioxidant potential and saving tissue oxidative potential without hyperactivation of lipid peroxidation. Use of moistened ozone-oxygen mixture caused moderate stimulating action on antioxidant re serves of blood and tissues. Dry ozone-oxygen mixture clearly decreased lipid peroxidation intensity.

  17. The role of peroxisome proliferator-activated receptor-coactivator-1 gene in skin aging

    PubMed Central

    Aghaei, Shahrzad; Nilforoushzadeh, Mohammad Ali; Aghaei, Maryam

    2016-01-01

    Skin aging is a continuous process that exhibits fine and deep wrinkles, thin and transparent skin, loss of underlying fat, dry skin and itch, following decreased collagen and elastin synthesis. Both extrinsic and intrinsic agents are considered in the pathogenesis on skin aging. Extrinsic factors such as sun exposure, windy and dry weather, nutrition, and lifestyle may induce premature aging, toxic-free radicals, and reactive oxygen species due to decreasing normal function of mitochondria which play the major intrinsic factors in premature skin aging. One of the major genetic factors in mitochondrial function is peroxisome proliferator-activated receptor-coactivator-1 (PGC-1) gene. This factor could delay skin aging by increasing the mitochondrial biogenesis and replication and oxidative phosphorylation and so may induce free radical scavenging. This review is focused on intrinsic skin aging and the role of PGC-1 protein in decreasing effect of aging causes. PMID:27904582

  18. The influence of fuel type to combustion characteristic in diffusion flame drying by computational fluid dynamics simulation

    NASA Astrophysics Data System (ADS)

    Septiani, Eka Lutfi; Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng

    2017-05-01

    Diffusion flame spray drying has become promising method in nanoparticles synthesis giving several advantages and low operation cost. In order to scale up the process which needs high experimentation time and cost, Computational Fluid Dynamics (CFD) by Ansys Fluent 15.0 software has been used. Combustion characteristic in diffusion flame reactor may affects particle size distribution. This study aims to observe influence of fuel type to combustion characteristic in the reactor. Large Eddy Simulation (LES) and non-premixed combustion model are selected for the turbulence and combustion model respectively. Methane, propane, and LPG in 0.5 L/min were used as type of fuel. While the oxidizer is air with 200% excess of O2. Simulation result shown that the maximum temperature was obtained from propane-air combustion in 2268 K. However, the stable temperature contour was achieved by methane-air combustion.

  19. Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets.

    PubMed

    Vallejos, María Evangelina; Felissia, Fernando Esteban; Area, María Cristina; Ehman, Nanci Vanesa; Tarrés, Quim; Mutjé, Pere

    2016-03-30

    Nanofibrillated cellulose has been obtained from the cellulosic fraction of eucalyptus sawdust. The fractionation process involved the partial removal of hemicelluloses and lignin. CNF was obtained using TEMPO oxidation with NaOCl in basic medium followed by mechanical homogenization. The obtained CNF was subsequently used as a dry strength agent on unbleached unrefined eucalyptus pulp. The addition of 3, 6 and 9 wt.% of CNF increased lineally the tensile index of handsheets to about 55 N mg(-1) at 35°SR, compatible with papermachine runnability. The other mechanical properties also increased substantially, and porosity decreased moderately. The estimated specific surface and average diameter of these CNF were 60 m(2)g(-1), and of 41.0 nm, respectively. The addition of 9 wt.% of CNF produced an increase in mechanical strength, equivalent to that produced by PFI refining at 1600 revolutions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Lightweight Ceramic Insulation

    NASA Technical Reports Server (NTRS)

    Wheeler, W. H.; Creedon, J. F.

    1986-01-01

    Fiber burnout process yields low densities. Low density attained by process of sacrificial burnout. Graphite or carbon fibers mixed into slurry of silica, alumina, and boron-compound fibers in amounts ranging from 25 to 75 percent of total fiber content by weight. Mixture formed into blocks and dried. Blocks placed in kiln and heated to 1,600 degrees F(870 degrees C) for several hours. Graphite or carbon fibers slowly oxidize away, leaving voids and reducing block density. Finally, blocks heated to 2,350 degrees F (1,290 degrees C) for 90 minutes to bond remaining ceramic fibers together. Developed for use on Space Shuttle and other spacecraft, rigid insulation machined to requisite shape and bonded in place.

  1. Effect of calcium oxide (CaO) and sawdust on adhesion and cohesion characteristics of sewage sludge under agitated and non-agitated drying conditions.

    PubMed

    Deng, Wen-Yi; Yuan, Min-Hao; Mei, Jing; Liu, Ya-Jun; Su, Ya-Xin

    2017-03-01

    Stickiness phenomenon is widely observed in sewage sludge drying practices. This paper is aimed at demonstrating and comparing the sticky properties of sewage sludge through non-agitated and agitated drying tests specially designed for sewage sludge. Special attentions were paid to the effects of additives, i.e. CaO, fine sawdust (FSD) and coarse sawdust (CSD), on the adhesive and cohesive characteristics of sewage sludge. The results indicated that the sticky properties of the sludge were markedly different under the different testing methods, and was also greatly influenced by CaO or sawdust addition. For instance, in the non-agitated drying tests, CaO can significantly enhance the maximum adhesive and cohesive stresses of the sludge, whereas in the agitated drying tests, the torque of agitation, which strongly correlated with the cohesive stress of the sludge, was lowered by CaO addition. During agitated drying process, sludge lump with CaO addition started to break up at higher moisture content than that of original sludge. On the other hand, sawdust also affected the sticky properties of sludge in a way that was totally different with CaO. After sawdust addition (at 5-10%WS (wet sludge basis)), the cohesive stress of the sludge was markedly increased due to strengthening of mechanical interlocking inside the sludge, whereas the adhesiveness of the sludge was lowered by sawdust addition. The influencing mechanisms of CaO and sawdust under the different testing methods were detailedly discussed in the paper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of chlorine purification on oxidation resistance of some mechanical carbons

    NASA Technical Reports Server (NTRS)

    Wisander, D. W.; Allen, G. P.

    1974-01-01

    Oxidation experiments were conducted with some experimental and commercial mechanical carbons at 650 C in dry air flowing at 28 cc/sec (STP). In general, purification of these carbon-graphites with chlorine at 2800 C improved oxidation resistance. Additional improvements in oxidation resistance were obtained from purification followed by an antioxidant (zinc phosphate) treatment. For the commercial materials, purification alone gave greater oxidation resistance than the antioxidant treatment alone. The reverse, however, was the case for the experimental materials.

  3. Chitosan-graphene oxide films and CO2-dried porous aerogel microspheres: Interfacial interplay and stability.

    PubMed

    Frindy, Sana; Primo, Ana; Ennajih, Hamid; El Kacem Qaiss, Abou; Bouhfid, Rachid; Lahcini, Mohamed; Essassi, El Mokhtar; Garcia, Hermenegildo; El Kadib, Abdelkrim

    2017-07-01

    The intimate interplay of chitosan (CS) and graphene oxide (GO) in aqueous acidic solution has been explored to design upon casting, nanostructured "brick-and-mortar" films (CS-GO-f) and by acidic-to-basic pH inversion, porous CO 2 -dried aerogel microspheres (CS-GO-m). Owing to the presence of oxygenated functional groups in GO, good-quality crack-free hybrid films were obtained. Mechanical properties were improved independently of the GO content and it was found that a 20wt% loading affords hybrid film characterized with a Young modulus three times superior to that reached with the same loading of layered clay. The presence of graphene oxide was found to be detrimental for the thermal stability of the polysaccharide at T <350°C, a fact attributed to the well-established decomposition of the oxygenated functional groups of the graphene sheets. Irrespective to the graphene oxide loading, chitosan-graphene oxide mixture preserves the gelation memory of the polysaccharide. Supercritical drying of the resulting soft hydrogels provides macroporous network with surface areas ranging from 226m 2 g -1 to 554m 2 g -1 . XPS and RAMAN analyses evidenced the selective reduction of GO sheets inside of these microspheres, affording the hitherto unknown macroporous chitosan-entangled-reduced graphene oxide (CS-rGO-m) aerogels. Improvement in both hydrothermal stability (under water reflux) and chemical stability (under acidic conditions) have been noticed for chitosan-graphene oxide microspheres with respect to non-modified chitosan and chitosan-clay bio-hybrids, a result rooted in the substantial hydrophobic character imparted by the addition of graphenic material to the polysaccharide skeleton. In essence, this contribution demonstrates that graphene oxide loading do not disturb neither the filmogenicity of chitosan nor its gelation ability and constitutes a promising route for novel chitosan-based functional hybrid materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Oxidation resistance of selected mechanical carbons at 650 deg C in dry flowing air

    NASA Technical Reports Server (NTRS)

    Allen, G. P.; Wisander, D. W.

    1973-01-01

    Oxidation experiments were conducted with several experimental mechanical carbons at 650 C in air flowing at 28 cu cm/sec (STP). Experiments indicate that boron carbide addition and zinc phosphate treatment definitely improved oxidation resistance. Impregnation with coal tar pitch before final graphitization had some beneficial effect on oxidation resistance and it markedly improved flexure strength and hardness. Graphitization temperature alone did not affect oxidation resistance, but with enough added boron carbide the oxidation resistance was increased although the hardness greatly decreased.

  5. High surface area, electrically conductive nanocarbon-supported metal oxide

    DOEpatents

    Worsley, Marcus A.; Han, Thomas Yong-Jin; Kuntz, Joshua D.; Cervantes, Octavio; Gash, Alexander E.; Baumann, Theodore F.; Satcher, Jr., Joe H.

    2015-07-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  6. High surface area, electrically conductive nanocarbon-supported metal oxide

    DOEpatents

    Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H

    2014-03-04

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  7. Ammonia-oxidizing archaea are more resistant than denitrifiers to seasonal precipitation changes in an acidic subtropical forest soil

    NASA Astrophysics Data System (ADS)

    Chen, Jie

    2017-04-01

    More frequent droughts and storms will occur globally in the prediction of global climate change model, which will influence soil microorganisms and nutrient cycles. Understanding the resistance of soil functional microorganisms and the associated biogeochemical cycles to such climate changes is important in evaluating responses of ecosystem functioning. In order to clarify the responses of soil functional microorganisms involved in nitrogen (N) cycle to the predicted precipitation scenarios, two contrasting precipitation manipulation experiments were conducted in an acidic subtropical forest soil. One experiment manipulated drier dry-season and wetter wet-season (DD) by reducing dry-season rainfall and adding the equivalently reduced rainfall to wet-season. Another experiment manipulated extending dry-season and wetter wet-season (ED) by reducing spring-season rainfall and adding the equivalent rainfall in the late wet-season. The resistance index of ammonia-oxidizing archaea (AOA) amoA and denitrifying (nirK, nirS and nosZ) genes abundance, soil net N mineralization and nitrification rates were calculated during experiments to examine their responses to precipitation changes. As the results, the resistance index of functional microbial abundance (-0.03 ± 0.08) was much lower than that of net N transformation rates (0.55 ± 0.02), indicating more sensitive of functional microorganisms in response to precipitation changes than the related N processes. Extending dry-season showed greater effects on both AOA amoA and denitrifying genes abundance than drier dry-season, with significant increases of these microbial abundance after extending dry-season. This was mainly due to the interaction effects of soil water content (SWC), dissolve organic carbon (DOC) and NH4+ concentration during rainfall reduction in spring-season. Interestingly, the resistance index of AOA amoA abundance was significantly higher than that of denitrifying gene abundance, indicating more resistant of AOA to precipitation changes. This was mainly because AOA have higher resource utilization efficiency and can acclimate to environmental changes more rapidly than denitrifiers, as indicated by less effects of N, C substrates and SWC on the resistance index of AOA abundance. This study demonstrated substantial disturbance of drier spring-season to soil nitrifying and denitrifying microorganisms, and greater stability of AOA community abundance in resistant to such disturbance.

  8. Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity

    NASA Astrophysics Data System (ADS)

    Liu, Tengyu; Huang, Dan Dan; Li, Zijun; Liu, Qianyun; Chan, ManNin; Chan, Chak K.

    2018-04-01

    The formation of secondary organic aerosol (SOA) has been widely studied in the presence of dry seed particles at low relative humidity (RH). At higher RH, initially dry seed particles can exist as wet particles due to water uptake by the seeds as well as the SOA. Here, we investigated the formation of SOA from the photooxidation of toluene using an oxidation flow reactor in the absence of NOx under a range of OH exposures on initially wet or dry ammonium sulfate (AS) seed particles at an RH of 68 %. The ratio of the SOA yield on wet AS seeds to that on dry AS seeds, the relative SOA yield, decreased from 1.31 ± 0.02 at an OH exposure of 4.66 × 1010 molecules cm-3 s to 1.01 ± 0.01 at an OH exposure of 5.28 × 1011 molecules cm-3 s. This decrease may be due to the early deliquescence of initially dry AS seeds after being coated by highly oxidized toluene-derived SOA. SOA formation lowered the deliquescence RH of AS and resulted in the uptake of water by both AS and SOA. Hence the initially dry AS seeds contained aerosol liquid water (ALW) soon after SOA formed, and the SOA yield and ALW approached those of the initially wet AS seeds as OH exposure and ALW increased, especially at high OH exposure. However, a higher oxidation state of the SOA on initially wet AS seeds than that on dry AS seeds was observed at all levels of OH exposure. The difference in mass fractions of m / z 29, 43 and 44 of SOA mass spectra, obtained using an aerosol mass spectrometer (AMS), indicated that SOA formed on initially wet seeds may be enriched in earlier-generation products containing carbonyl functional groups at low OH exposures and later-generation products containing acidic functional groups at high exposures. Our results suggest that inorganic dry seeds become at least partially deliquesced particles during SOA formation and hence that ALW is inevitably involved in the SOA formation at moderate RH. More laboratory experiments conducted with a wide variety of SOA precursors and inorganic seeds under different NOx and RH conditions are warranted.

  9. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine δ13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 μgC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 μgC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 μgC, and a blank isotopic value of 0.54±0.05 fMC. The size of the blank agreed well with that determined directly by processing variable volumes of UV-irradiated deionized water (5.6±0.7 μgC, n=9). The size of the blank amounts to <~5% of the size of porewater DOC samples that are typically recovered from organic-rich sediment cores (~100-500 μgC). The fMC value of the blank suggests that there may be multiple sources of extraneous carbon that range in 14C abundance. In order to assess the fidelity of 14C abundances in natural porewater DOC oxidized by thermal sulfate reduction, we oxidized porewater DOC samples collected from the central floor of the Santa Monica Basin, California Borderland, using both this method and UV irradiation (the latter carried out at the Druffel laboratory, University of California Irvine). The fMC values obtained by the two methods agreed within error. Carbon yields from the two methods also agreed closely. These findings show that thermal sulfate reduction may be a promising method to oxidize small, concentrated marine DOC samples for 14C analysis.

  10. A fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC)-based aerogels

    Treesearch

    Teresa Cristina Fonseca Silva; Youssef Habibi; Jorge Luiz Colodette; Thomas Elder; Lucian A. Lucia

    2012-01-01

    Freeze-dried nanofibrillated cellulose based-aerogels were produced from cellulosic pulps extracted from Eucalyptus urograndis. Nanofibers were isolated under high pressure and modified with TEMPO-mediated oxidation and/or hydroxyapatite (HAp) to observe potential changes in mechanical properties. Two degrees of oxidation (DO), 0.1 and 0.2, were achieved as measured by...

  11. Avoidance of protein oxidation correlates with the desiccation and radiation resistance of hot and cold desert strains of the cyanobacterium Chroococcidiopsis.

    PubMed

    Fagliarone, Claudia; Mosca, Claudia; Ubaldi, Ilaria; Verseux, Cyprien; Baqué, Mickael; Wilmotte, Annick; Billi, Daniela

    2017-11-01

    To investigate the relationship between desiccation and the extent of protein oxidation in desert strains of Chroococcidiopsis a selection of 10 isolates from hot and cold deserts and the terrestrial cyanobacterium Chroococcidiopsis thermalis sp. PCC 7203 were exposed to desiccation (air-drying) and analyzed for survival. Strain CCMEE 029 from the Negev desert and the aquatic cyanobacterium Synechocystis sp. PCC 6803 were further investigated for protein oxidation after desiccation (drying over silica gel), treatment with H 2 O 2 up to 1 M and exposure to γ-rays up to 25 kGy. Then a selection of desert strains of Chroococcidiopsis with different survival rates after prolonged desiccation, as well as Synechocystis sp. PCC 6803 and Chroococcidiopsis thermalis sp. PCC 7203, were analyzed for protein oxidation after treatment with 10 and 100 mM of H 2 O 2 . Results suggest that in the investigated strains a tight correlation occurs between desiccation and radiation tolerance and avoidance of protein oxidation.

  12. Methane Decomposition and Carbon Growth on Y2O3, Yttria-Stabilized Zirconia, and ZrO2

    PubMed Central

    2014-01-01

    Carbon deposition following thermal methane decomposition under dry and steam reforming conditions has been studied on yttria-stabilized zirconia (YSZ), Y2O3, and ZrO2 by a range of different chemical, structural, and spectroscopic characterization techniques, including aberration-corrected electron microscopy, Raman spectroscopy, electric impedance spectroscopy, and volumetric adsorption techniques. Concordantly, all experimental techniques reveal the formation of a conducting layer of disordered nanocrystalline graphite covering the individual grains of the respective pure oxides after treatment in dry methane at temperatures T ≥ 1000 K. In addition, treatment under moist methane conditions causes additional formation of carbon-nanotube-like architectures by partial detachment of the graphite layers. All experiments show that during carbon growth, no substantial reduction of any of the oxides takes place. Our results, therefore, indicate that these pure oxides can act as efficient nonmetallic substrates for methane-induced growth of different carbon species with potentially important implications regarding their use in solid oxide fuel cells. Moreover, by comparing the three oxides, we could elucidate differences in the methane reactivities of the respective SOFC-relevant purely oxidic surfaces under typical SOFC operation conditions without the presence of metallic constituents. PMID:24587591

  13. Foam-mat drying technology: A review.

    PubMed

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  14. Technical note: Air compared to nitrogen as nebulizing and drying gases for electrospray ionization mass spectrometry.

    PubMed

    Mielczarek, P; Silberring, J; Smoluch, M

    In the present study we tested the application of compressed air instead of pure nitrogen as the nebulizing and drying gas, and its influence on the quality of electrospray ionization (ESI) mass spectra. The intensities of the signals corresponding to protonated molecules were significantly (twice) higher when air was used. Inspection of signal-to-noise (S/N) ratios revealed that, in both cases, sensitivity was comparable. A higher ion abundance after the application of compressed air was followed by a higher background. Another potential risk of using air in the ESI source is the possibility for sample oxidation due to the presence of oxygen. To test this, we selected five easily oxidizing compounds to verify their susceptibility to oxidation. In particular, the presence of methionine was of interest. For all the compounds studied, no oxidation was observed. Amodiaquine oxidizes spontaneously in water solutions and its oxidized form can be detected a few hours after preparation. Direct comparison of the spectra where nitrogen was used with the corresponding spectra obtained when air was applied did not show significant differences. The only distinction was slightly different patterns of adducts when air was used. The difference concerns acetonitrile, which forms higher signals when air is the nebulizing gas. It is also important that the replacement of nitrogen with air does not affect quantitative data. The prepared calibration curves also visualize an intensity twice as high (independent of concentration within tested range) of the signal where air was applied. We have used our system continuously for three months with air as the nebulizing and drying gas and have not noticed any unexpected signal deterioration caused by additional source contamination from the air. Moreover, compressed air is much cheaper and easily available using oil-free compressors or pumps.

  15. Recent developments in plasma spray processes for applications in energy technology

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.

    2017-03-01

    This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.

  16. Thermophilic Dry Methane Fermentation of Distillation Residue Eluted from Ethanol Fermentation of Kitchen Waste and Dynamics of Microbial Communities.

    PubMed

    Huang, Yu-Lian; Tan, Li; Wang, Ting-Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-01-01

    Thermophilic dry methane fermentation is advantageous for feedstock with high solid content. Distillation residue with 65.1 % moisture content was eluted from ethanol fermentation of kitchen waste and subjected to thermophilic dry methane fermentation, after adjusting the moisture content to 75 %. The effect of carbon to nitrogen (C/N) ratio on thermophilic dry methane fermentation was investigated. Results showed that thermophilic dry methane fermentation could not be stably performed for >10 weeks at a C/N ratio of 12.6 and a volatile total solid (VTS) loading rate of 1 g/kg sludge/d; however, it was stably performed at a C/N ratio of 19.8 and a VTS loading rate of 3 g/kg sludge/d with 83.4 % energy recovery efficiency. Quantitative PCR analysis revealed that the number of bacteria and archaea decreased by two orders of magnitude at a C/N ratio of 12.6, whereas they were not influenced at a C/N ratio of 19.8. Microbial community analysis revealed that the relative abundance of protein-degrading bacteria increased and that of organic acid-oxidizing bacteria and acetic acid-oxidizing bacteria decreased at a C/N ratio of 12.6. Therefore, there was accumulation of NH 4 + and acetic acid, which inhibited thermophilic dry methane fermentation.

  17. Effects of pressure and temperature on sintering of Cr-doped Al2O3 by pulsed electric current sintering process

    NASA Astrophysics Data System (ADS)

    Dang, K. Q.; Nanko, M.

    2011-03-01

    The aluminium oxide crystal, Al2O3, which contains a small amount of chromium, Cr, is called ruby. Pulsed electric current sintering (PECS) was applied to sinter ruby polycrystals. Cr2O3-Al2O3 powder mixture prepared by drying an aqueous slurry containing amounts of Al2O3 and Cr(NO3)3 was consolidated by PECS process. The PECS process was performed in vacuum at sintering temperature raging from 1100 to 1300°C with heating rate of 2 K/min under applied uniaxial pressure varied from 40 to 100 MPa. This study found that highly densified and transparent Cr-doped Al2O3 can be obtained by the PECS process with the high applied pressure at sintering temperature of 1200°C.

  18. Stepwise drying of medicinal plants as alternative to reduce time and energy processing

    NASA Astrophysics Data System (ADS)

    Cuervo-Andrade, S. P.; Hensel, O.

    2016-07-01

    The objective of drying medicinal plants is to extend the shelf life and conserving the fresh characteristics. This is achieved by reducing the water activity (aw) of the product to a value which will inhibit the growth and development of pathogenic and spoilage microorganisms, significantly reducing enzyme activity and the rate at which undesirable chemical reactions occur. The technical drying process requires an enormous amount of thermal and electrical energy. An improvement in the quality of the product to be dried and at the same time a decrease in the drying cost and time are achieved through the utilization of a controlled conventional drying method, which is based on a good utilization of the renewable energy or looking for other alternatives which achieve lower processing times without sacrificing the final product quality. In this work the method of stepwise drying of medicinal plants is presented as an alternative to the conventional drying that uses a constant temperature during the whole process. The objective of stepwise drying is the decrease of drying time and reduction in energy consumption. In this process, apart from observing the effects on decreases the effective drying process time and energy, the influence of the different combinations of drying phases on several characteristics of the product are considered. The tests were carried out with Melissa officinalis L. variety citronella, sowed in greenhouse. For the stepwise drying process different combinations of initial and final temperature, 40/50°C, are evaluated, with different transition points associated to different moisture contents (20, 30, 40% and 50%) of the product during the process. Final quality of dried foods is another important issue in food drying. Drying process has effect in quality attributes drying products. This study was determining the color changes and essential oil loses by reference the measurement of the color and essential oil content of the fresh product was used. Drying curves were obtained to observe the dynamics of the process for different combinations of temperature and points of change, corresponding to different conditions of moisture content of the product.

  19. Method for producing nanostructured metal-oxides

    DOEpatents

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  20. Space and Industrial Brine Drying Technologies

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  1. PREPARATION OF HALIDES OF PLUTONIUM

    DOEpatents

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  2. Effects of plant polyphenols and a-tocopherol on lipid oxidation, microbiological characteristics, and biogenic amines formation in dry-cured bacons

    USDA-ARS?s Scientific Manuscript database

    Effects of plant polyphenols (tea polyphenol, grape seed extract, and gingerol) and a-tocopherol on physicochemical parameters, microbiological counts, and biogenic amines were determined in dry-cured bacons at the end of ripening. Results showed that plant polyphenols and a-tocopherol significantly...

  3. Microfluidic reactor synthesis and photocatalytic behavior of Cu@Cu2O nanocomposite

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Srinivasakannan, C.; Peng, Jinhui; Yan, Mi; Zhang, Di; Zhang, Libo

    2015-03-01

    The Cu@Cu2O nanocomposites were synthesized by solution-phase synthesis of Cu nanoparticles in microfluidic reactor at room temperature, followed by controlling the oxidation process. The size, morphology, elemental compositions, and the chemical composition on the surface of Cu@Cu2O nanocomposite were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Experimental results demonstrated that the surface of the Cu nanoparticles was oxidized to Cu2O which serves as the shell of nanoparticle. The amount of Cu2O can be controlled by varying the drying temperature. Additionally the binary Cu@Cu2O nanocomposite along with H2O2 exhibited its potential as an excellent photocatalyst for degradation of methylene blue (MB) under UV irradiation.

  4. Drying process strongly affects probiotics viability and functionalities.

    PubMed

    Iaconelli, Cyril; Lemetais, Guillaume; Kechaou, Noura; Chain, Florian; Bermúdez-Humarán, Luis G; Langella, Philippe; Gervais, Patrick; Beney, Laurent

    2015-11-20

    Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Fish in Vitro Digestion: Influence of Fish Salting on the Extent of Lipolysis, Oxidation, and Other Reactions.

    PubMed

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D

    2017-02-01

    A study of the various chemical reactions which take place during fish in vitro digestion and the potential effect of fish salting on their extent is addressed for the first time. Farmed European sea bass fillets, raw, brine-salted or dry-salted, were digested using a gastrointestinal in vitro model. Fish lipid extracts before and after digestion were analyzed by 1 H NMR, and the headspace composition of the digestates was investigated by SPME-GC/MS. During digestion, not only lipolysis, but also fish lipid oxidation took place. This latter was evidenced by the generation of conjugated dienes supported on chains having also hydroperoxy- and hydroxy-groups (primary oxidation compounds), by the increase of volatile secondary oxidation products, and by the decrease of the antioxidant 2,6-di-tert-butyl-hydroxytoluene (BHT). Likewise, esterification and Maillard-type reactions also occurred. Salting, and especially dry-salting, enhanced all these reactions, except for lipolysis, during digestion.

  6. On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release.

    PubMed

    Dang, Xugang; Yang, Mao; Shan, Zhihua; Mansouri, Shahnaz; May, Bee K; Chen, Xiaodong; Chen, Hui; Woo, Meng Wai

    2017-05-01

    Spray-dried gelatin/oxidized corn starch (G/OCS) microcapsules were produced for drug release application. The prepared microcapsules were characterized through a scanning electron microscope (SEM) picture and thermogravimetric analysis (TGA). The swelling characteristics of the G/OCS microcapsules and release properties of vitamin C were then investigated. The results from structural analysis indicated that the presence of miscibility and compatibility between oxidized corn starch and gelatin, and exhibits high thermal stability up to 326°C. The swelling of G/OCS microcapsules increased with increasing pH and reduced with decreasing ionic strength, attributed to the cross-linking between gelatin and oxidized corn starch, ionization of functional groups. Vitamin C release characteristic revealed controlled release behavior in the first 3h of contact with an aqueous medium. This release behavior was independent of the swelling behavior indicating the potential of the encapsulating matrix to produce controlled release across a spectrum of pH environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Micro-Spherical Sulfur/Graphene Oxide Composite via Spray Drying for High Performance Lithium Sulfur Batteries.

    PubMed

    Tian, Yuan; Sun, Zhenghao; Zhang, Yongguang; Wang, Xin; Bakenov, Zhumabay; Yin, Fuxing

    2018-01-18

    An efficient, industry-accepted spray drying method was used to synthesize micro-spherical sulfur/graphene oxide (S/GO) composites as cathode materials within lithium sulfur batteries. The as-designed wrapping of the sulfur-nanoparticles, with wrinkled GO composites, was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The unique morphological design of this material enabled superior discharge capacity and cycling performance, demonstrating a high initial discharge capacity of 1400 mAh g -1 at 0.1 C. The discharge capacity remained at 828 mAh g -1 after 150 cycles. The superior electrochemical performance indicates that the S/GO composite improves electrical conductivity and alleviates the shuttle effect. This study represents the first time such a facile spray drying method has been adopted for lithium sulfur batteries and used in the fabrication of S/GO composites.

  8. Micro-Spherical Sulfur/Graphene Oxide Composite via Spray Drying for High Performance Lithium Sulfur Batteries

    PubMed Central

    Tian, Yuan; Sun, Zhenghao; Zhang, Yongguang; Yin, Fuxing

    2018-01-01

    An efficient, industry-accepted spray drying method was used to synthesize micro-spherical sulfur/graphene oxide (S/GO) composites as cathode materials within lithium sulfur batteries. The as-designed wrapping of the sulfur-nanoparticles, with wrinkled GO composites, was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The unique morphological design of this material enabled superior discharge capacity and cycling performance, demonstrating a high initial discharge capacity of 1400 mAh g−1 at 0.1 C. The discharge capacity remained at 828 mAh g−1 after 150 cycles. The superior electrochemical performance indicates that the S/GO composite improves electrical conductivity and alleviates the shuttle effect. This study represents the first time such a facile spray drying method has been adopted for lithium sulfur batteries and used in the fabrication of S/GO composites. PMID:29346303

  9. The Amazon Boundary Layer Experiment (ABLE 2A) - Dry season 1985

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Browell, E. V.; Hoell, J. M., Jr.; Bendura, R. J.; Beck, S. M.; Wofsy, S. C.; Mcneal, R. J.; Navarro, R. L.; Riley, J. T.; Snell, R. L.

    1988-01-01

    The Amazon Boundary Layer Experiment (ABLE 2A) used data from aircraft, ground-based, and satellite platforms to characterize the chemistry and dynamics of the lower atmosphere over the Amazon Basin during the early-to-middle dry season, July and August 1985. This paper reports the conceptual framework and experimental approach used in ABLE 2A and serves as an introduction to the detailed papers which follow in this issue. The results of ABLE 2A demonstrate that isoprene, methane, carbon dioxide, nitric oxide, dimethylsulfide, and organic aerosol emissions from soils and vegetation play a major role in determining the chemical composition of the atmospheric mixed layer over undisturbed forest and wetland environments. As the dry season progresses, emissions from both local and distant biomass burning become an important source of carbon monoxide, nitric oxide and ozone in the atmosphere over the central Amazon Basin.

  10. Gaseous Oxidized Mercury Flux from Substrates Associated with Industrial Scale Gold Mining in Nevada, USA

    NASA Astrophysics Data System (ADS)

    Miller, M. B.

    2015-12-01

    Gaseous elemental and oxidized mercury (Hg) fluxes were measured in a laboratory setting from substrate materials derived from industrial-scale open pit gold mining operations in Nevada, USA. Mercury is present in these substrates at a range of concentrations (10 - 40000 ng g-1), predominantly of local geogenic origin in association with the mineralized gold ores, but altered and redistributed to a varying degree by subsequent ore extraction and processing operations, including deposition of Hg recently emitted to the atmosphere from large point sources on the mines. Waste rock, heap leach, and tailings material usually comprise the most extensive and Hg emission relevant substrate surfaces. All three of these material types were collected from active Nevada mine sites in 2010 for previous research, and have since been stored undisturbed at the University of Nevada, Reno. Gaseous elemental Hg (GEM) flux was previously measured from these materials under a variety of conditions, and was re-measured in this study, using Teflon® flux chambers and Tekran® 2537A automated ambient air analyzers. GEM flux from dry undisturbed materials was comparable between the two measurement periods. Gaseous oxidized Hg (GOM) flux from these materials was quantified using an active filter sampling method that consisted of polysulfone cation-exchange membranes deployed in conjunction with the GEM flux apparatus. Initial measurements conducted within greenhouse laboratory space indicate that in dry conditions GOM is deposited to relatively low Hg cap and leach materials, but may be emitted from the much higher Hg concentration tailings material.

  11. Process dependency on threshold voltage of GaN MOSFET on AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, Qingpeng; Jiang, Ying; Miyashita, Takahiro; Motoyama, Shin-ichi; Li, Liuan; Wang, Dejun; Ohno, Yasuo; Ao, Jin-Ping

    2014-09-01

    GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) with recessed gate on AlGaN/GaN heterostructure are reported in which the drain and source ohmic contacts were fabricated on the AlGaN/GaN heterostructure and the electron channel was formed on the GaN buffer layer by removing the AlGaN barrier layer. Negative threshold voltages were commonly observed in all devices. To investigate the reasons of the negative threshold voltages, different oxide thickness, etching gas and bias power of inductively-coupled plasma (ICP) system were utilized in the fabrication process of the GaN MOSFETs. It is found that positive charges of around 1 × 1012 q/cm2 exist near the interface at the just threshold condition in both silane- and tetraethylorthosilicate (TEOS)-based devices. It is also found that the threshold voltages do not obviously change with the different etching gas (SiCl4, BCl3 and two-step etching of SiCl4/Cl2) at the same ICP bias power level (20-25 W) and will become deeper when higher bias power is used in the dry recess process which may be related to the much serious ion bombardment damage. Furthermore, X-ray photoelectron spectroscopy (XPS) experiments were done to investigate the surface conditions. It is found that N 1s peaks become lower with higher bias power of the dry etching process. Also, silicon contamination was found and could be removed by HNO3/HF solution. It indicates that the nitrogen vacancies are mainly responsible for the negative threshold voltages rather than the silicon contamination. It demonstrates that optimization of the ICP recess conditions and improvement of the surface condition are still necessary to realize enhancement-mode GaN MOSFETs on AlGaN/GaN heterostructure.

  12. Who contributes more to N2O emission during sludge bio-drying with two different aeration strategies, nitrifiers or denitrifiers?

    PubMed

    Zhang, Junya; Wang, Yuanyue; Yu, Dawei; Tong, Juan; Chen, Meixue; Sui, Qianwen; ChuLu, BuHe; Wei, Yuansong

    2017-04-01

    Global warming effects have drawn more and more attention to studying all sources and sinks of nitrous oxide (N 2 O). Sludge bio-drying, as an effective sludge treatment technology, is being adopted worldwide. In this study, two aeration strategies (piles I and II) were compared to investigate the primary contributors to N 2 O emission during sludge bio-drying through studying the evolution of functional genes involved in nitrification (amoA, hao, and nxrA) and denitrification (narG, nirS, nirK, norB, and nosZ) by quantitative PCR (qPCR). Results showed that the profile of N 2 O emission can be divided into three stages, traditional denitrification contributed largely to N 2 O emission at stage I (days 1-5), but N 2 O emission mainly happened at stage II (days 5-14) due to nitrifier denitrification and NH 2 OH accumulation by ammonia-oxidizing bacteria (AOB), accounting for 51.4% and 58.2% of total N 2 O emission for piles I and II, respectively. At stage III (days 14-21), nitrifier denitrification was inhibited because sludge bio-drying proceeded mainly by the physical aeration, thus N 2 O emission decreased and changed little. The improved aeration strategy availed pile I to reduce N 2 O emission much especially at stages II and III, respectively. These results indicated that nitrifier denitrification by AOB and biological NH 2 OH oxidation due to AOB made more contribution to N 2 O emission, and aeration strategy was crucial to mitigate N 2 O emission during sludge bio-drying.

  13. Development of dried serum spot sampling techniques for the assessment of trace elements in serum samples by LA-ICP-MS.

    PubMed

    Chantada-Vázquez, María Pilar; Moreda-Piñeiro, Jorge; Cantarero-Roldán, Alicia; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2018-08-15

    A novel approach for serum analysis by dried matrix spot (DMS) technique is proposed. The methodology consists of sampling filter paper discs (2.7 mm in diameter) containing the large amount of serum retained after a single spotting. Several oxidizers (sodium chlorate, sodium azide, acetic acid, formic acid, 1-butyl-3-methylimidazoliumm chloride/bromide) were tested (oxidizers premixed with the sample before spotting, and papers previously soaked in concentrated additive/oxidizer solutions). Direct multi-element determination (Al, Be, Ca, Cu, Fe, K, Li, Mg, Mn, Mo, Na, P, Rb, Se, V, and Zn) in dried serum spots at very low levels was therefore assessed by laser ablation (LA) coupled with inductively coupled plasma - mass spectrometry (ICP-MS). Laser ablation was performed using a focused Nd: YAG laser beam in lineal scan mode (wavelength 213 nm, laser fluency 2.2 J cm -2 , repetition rate 20 Hz, laser spot diameter 90 µm, depth 0 µm, scanning speed 12 µm s -1 ). Matrix-matched calibration mode and 13 C as internal standard (for signal intensities normalization) was used throughout the work. Limits of quantification were found to be from 21 µg L -1 to 221 mg L -1 . Repeatability (seven ablations of the same dried serum spot) and reproducibility (two ablations of seven dried serum spot from the same material) offered RSDs below 12% for all analytes, which seems satisfactory for clinical purposes. The method was validated by analyzing several certified reference materials (Seronorm™ level I and II trace elements in serum), and it was applied to several DMS from serum samples from healthy adults. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Short communication: The effect of liquid storage on the flavor of whey protein concentrate.

    PubMed

    Park, Curtis W; Parker, Megan; Drake, MaryAnne

    2016-06-01

    Unit operations in dried dairy ingredient manufacture significantly influence sensory properties and, consequently, their use and consumer acceptance in a variety of ingredient applications. In whey protein concentrate (WPC) manufacture, liquid can be stored as whey or WPC before spray drying. The objective of this study was to determine the effect of storage, composition, and bleaching on the flavor of spray-dried WPC80. Liquid whey was manufactured and subjected to the following treatments: bleached or unbleached and liquid whey or liquid WPC storage. The experiment was replicated 3 times and included a no-storage control. All liquid storage was performed at 4°C for 24h. Flavor of the final spray-dried WPC80 was evaluated by a trained panel and volatile compound analyses. Storage of liquids increased cardboard flavor, decreased sweet aromatic flavor, and resulted in increased volatile lipid oxidation products. Bleaching altered the effect of liquid storage. Storage of unbleached liquid whey decreased sweet aromatic flavor and increased cardboard flavor and volatile lipid oxidation products compared with liquid WPC80 and no storage. In contrast, storage of bleached liquid WPC decreased sweet aromatic flavor and increased cardboard flavor and associated volatile lipid oxidation products compared with bleached liquid whey or no storage. These results confirm that liquid storage increases off-flavors in spray-dried protein but to a variable degree, depending on whether bleaching has been applied. If liquid storage is necessary, bleached WPC80 should be stored as liquid whey and unbleached WPC80 should be stored as liquid WPC to mitigate off-flavors. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    PubMed

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and effective for the determination of high levels of sulfites in dried fruits.

  16. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    PubMed

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  17. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons

    NASA Astrophysics Data System (ADS)

    Zhang, Sizhao; Feng, Jian; Feng, Junzong; Jiang, Yonggang

    2017-02-01

    Naturally occurring polymer-based aerogels have myriad practical utilizations due to environmentally benign and fruitful resources. However, engineering morphology-controllable biomass aerogels still represents a great challenge. Here we present a facile solution to synthesize chitosan aerogels having distinguished textures by reacting oxidized chitosan with formaldehyde and chitosan sol. In more detail, chitosan was chemically oxidized using two types of oxidation agents such as ammonium persulphate (SPD) and sodium periodate (APS) to obtain corresponding oxidized chitosan, subsequently cross-linked with chitosan solution containing formaldehyde to harvest SPD-oxidized chitosan aerogels (SCAs) and APS-SPD-oxidized ones (ASCAs) after aging, solvent exchange and supercritical drying processes. We found that the morphologies of as-prepared chitosan aerogels are strongly dependent upon the oxidation pattern towards chitosan. The structural textures of SCAs and ASCAs appear nanoflake-like and nanofiber-like structures, which may be related to spatial freedom of active groups located in chitosan. Selected area electron diffraction analysis reveals that the crystalline properties of chitosan aerogels generally appear the serious deterioration comparing to raw chitosan owing to their interconnected skeletal structure formation. The occurrence of characteristic groups displays cross-linked chain construction by using chemical state measurements such as FT-IR and XPS. Further, a plausible mechanism for controlling morphology of chitosan aerogels is also established. This new family of method for creation of chitosan aerogels may open up a perspective for biomass aerogels with controllable textures.

  18. Identification of ethylene oxide in herbs, spices and other dried vegetables imported into Italy.

    PubMed

    Bononi, Monica; Quaglia, Giancarlo; Tateo, Fernando

    2014-01-01

    Gas chromatography-mass spectrometry was used to analyse ethylene oxide (EO) in 63 samples of dried vegetable materials for food use derived from import commodities and subjected to quality control for three food-transformation industries. EO residues were quantified through the determination of ethylene chlorohydrin (ECH). About 29% of the samples analysed contained more than 0.3 mg kg(-1) of EO. Thus, this specific analytical control limited to 20% of import aromatic matters needs to be increased. This paper demonstrates the importance of this specific control considering the banned use of microbial decontamination EO treatment in the European Union.

  19. Thermogravity system designed for use in dispersion strengthening studies

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1972-01-01

    A thermogravimetry system designed to study the reduction of oxides in metal and alloy powders to be used in dispersion strengthened materials is described. The apparatus was devised for use at high temperatures with controlled atmospheres. Experimental weight change and moisture evolution results for the thermal decomposition of calcium oxalate monohydrate in dry helium, and experimental weight change results for the reduction of nickel oxide in dry hydrogen and hydrogen containing 15,000 PPM water vapor are presented. The system is currently being successfully applied to the evaluation of the reduction characteristics and the removal of impurities from metals and alloys to be used for dispersion strengthening.

  20. Thermogravimetry system designed for use in dispersion strengthening studies.

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1972-01-01

    A thermogravimetry system, designed to study the reduction of oxides in metal and alloy powders to be used in dispersion strengthened materials, is described. The apparatus was devised for use at high temperatures with controlled atmospheres. Experimental weight change and moisture evolution results for the thermal decomposition of calcium oxalate monohydrate in dry helium, and experimental weight change results for the reduction of nickel oxide in dry hydrogen and hydrogen containing 15,000 p.p.m. water vapor are presented. The system is currently being successfully applied to the evaluation of the reduction characteristics and the removal of impurities from metals and alloys to be used for dispersion strengthening.

  1. High-density 3D graphene-based monolith and related materials, methods, and devices

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Charnvanichborikarn, Supakit; Kucheyev, Sergei; Montalvo, Elizabeth; Shin, Swanee; Tylski, Elijah

    2017-03-21

    A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm.sup.3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.

  2. On the stability of sub-stoichiometric uranium oxides

    NASA Astrophysics Data System (ADS)

    Winer, K.; Colmenares, C. A.; Smith, R. L.; Wooten, F.

    1986-12-01

    The oxidation of clean, high-purity polycrystalline uranium metal surfaces for low exposures to dry oxygen was studied with AES and XPS in an attempt to substantiate claims for the formation of a stable UO surface phase at ambient temperatures. We found no evidence for such a surface phase and found instead that grossly sub-stoichiometric surface oxides were formed after sequential oxygen saturation and heating.

  3. Formulation and Characterization of Inhalable Magnetic Nanocomposite Microparticles (MnMs) for Targeted Pulmonary Delivery via Spray Drying

    PubMed Central

    Stocke, Nathanael A.; Meenach, Samantha A.; Arnold, Susanne M.; Mansour, Heidi M.; Hilt, J. Zach.

    2018-01-01

    Targeted pulmonary delivery facilitates the direct application of bioactive materials to the lungs in a controlled manner and provides an exciting platform for targeting magnetic nanoparticles (MNPs) to the lungs. Iron oxide MNPs remotely heat in the presence of an alternating magnetic field (AMF) providing unique opportunities for therapeutic applications such as hyperthermia. In this study, spray drying was used to formulate magnetic nanocomposite microparticles (“MnMs”) consisting of iron oxide MNPs and D-mannitol. The physicochemical properties of these MnMs were evaluated and the in vitro aerosol dispersion performance of the dry powders was measured by the Next Generation Impactor®. For all powders the mass median aerosol diameter (MMAD) was < 5 µm and deposition patterns revealed that MnMs could deposit throughout the lungs. Heating studies with a custom AMF showed that MNPs retain excellent thermal properties after spray drying into composite dry powders, with specific absorption ratios (SAR) >200 W/g, and in vitro studies on a human lung cell line indicated moderate cytotoxicity of these materials. These inhalable composites present a class of materials with many potential applications and pose a promising approach for thermal treatment of the lungs through targeted pulmonary administration of MNPs. PMID:25542988

  4. In situ characterization of Zircaloy-4 oxidation at 500 °C in dry air

    NASA Astrophysics Data System (ADS)

    Vermoyal, J. J.; Dessemond, L.; Hammou, A.; Frichet, A.

    2001-10-01

    The in situ oxidation of Zircaloy-4 at 500 °C in dry air was investigated by thermogravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The coating of the alloy by a platinum film as electrode material was observed as not to modify the oxidation kinetic properties. After an initial cubic rate law, a transition to a quasi-linear curve occurs. The independence of the oxidation behavior to the Pt coupling is compatible with oxygen diffusion as the rate-determining step. During the pre-transition step, the rest potential of the cell Pt/oxide/Zy-4, the color of the oxide and the modulus of the single EIS signature indicate the high non-stoichiometry of the oxide. The kinetic transition was proposed to be correlated to the degradation of the film into a partially porous layer. This alteration of the oxide is associated to the appearance of a 1.2 V constant rest potential and the modification of the impedance diagrams in two high modulus contributions. The Cole-Cole representation has been used to demonstrate that the time variation of impedance spectra is related to the oxide growth. An equivalent circuit including two RC loops in series, whose capacitances are frequency dispersed, was proposed to be related to the film structure. Fitted data show that the thickness of the assumed protective layer of the film, close to the metal-oxide interface, is time independent in agreement with a constant oxidation rate. Finally, electrical properties of this inner layer were found to be quite different in pre- and post-transition stage.

  5. Selective oxidation of steroidal allylic alcohols using pyrazole and pyridinium chlorochoromate.

    PubMed

    Parish, E J; Chitrakorn, S; Lowery, S

    1984-07-01

    ABASTRACT: This paper presents a modified method for the selective oxidation of allylic alchols. Pyrazole, when used with pyridinium chlorochromate, is a mild and useful reagent system for the rapid and selective oxidation of steroidal allylic alcohols to the corresponding α, β-unsaturated ketones. The reaction of each substrate was carried out by adding the oxidant to a dry methylene chloride solution containing pyrazole and an allylic alchol. This report is the first on the use of pyrazole to augment selective oxidation by a chronium (VI) reagent.

  6. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOEpatents

    Joubert, James I.

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  7. Method of applying a cerium diffusion coating to a metallic alloy

    DOEpatents

    Jablonski, Paul D [Salem, OR; Alman, David E [Benton, OR

    2009-06-30

    A method of applying a cerium diffusion coating to a preferred nickel base alloy substrate has been discovered. A cerium oxide paste containing a halide activator is applied to the polished substrate and then dried. The workpiece is heated in a non-oxidizing atmosphere to diffuse cerium into the substrate. After cooling, any remaining cerium oxide is removed. The resulting cerium diffusion coating on the nickel base substrate demonstrates improved resistance to oxidation. Cerium coated alloys are particularly useful as components in a solid oxide fuel cell (SOFC).

  8. PREPARATION OF HIGH-DENSITY, COMPACTIBLE THORIUM OXIDE PARTICLES

    DOEpatents

    McCorkle, K.H.; Kleinsteuber, A.T.; Schilling, C.E.; Dean, O.C.

    1962-05-22

    A method is given for preparing millimeter-size, highdensity thorium oxide particles suitable for fabrication into nuclear reactor feel elements by means of vibratory compaction. A thorium oxide gel containing 3.7 to 7 weight per cent residual volatile nitrate and water is prepared by drying a thorium oxide sol. The gel is then slowly heated to a temperature of about 450DEC, and the resulting gel fragments are calcined. The starting sol is prepared by repeated dispersion of oxalate-source thorium oxide in a nitrate system or by dispersion of steam-denitrated thorium oxide in water. (AEC)

  9. The effect of spray-drying parameters on the flavor of nonfat dry milk and milk protein concentrate 70.

    PubMed

    Park, Curtis W; Stout, Mark A; Drake, MaryAnne

    2016-12-01

    Unit operations during production influence the sensory properties of nonfat dry milk (NFDM) and milk protein concentrate (MPC). Off-flavors in dried dairy ingredients decrease consumer acceptance of ingredient applications. Previous work has shown that spray-drying parameters affect physical and sensory properties of whole milk powder and whey protein concentrate. The objective of this study was to determine the effect of inlet temperature and feed solids concentration on the flavor of NFDM and MPC 70% (MPC70). Condensed skim milk (50% solids) and condensed liquid MPC70 (32% solids) were produced using pilot-scale dairy processing equipment. The condensed products were then spray dried at either 160, 210, or 260°C inlet temperature and 30, 40, or 50% total solids for NFDM and 12, 22, or 32% for MPC70 in a randomized order. The entire experiment was replicated 3 times. Flavor of the NFDM and MPC70 was evaluated by sensory and instrumental volatile compound analyses. Surface free fat, particle size, and furosine were also analyzed. Both main effects (30, 40, and 50% solids and 160, 210, and 260°C inlet temperature) and interactions between solids concentration and inlet temperature were investigated. Interactions were not significant. In general, results were consistent for NFDM and MPC70. Increasing inlet temperature and feed solids concentration increased sweet aromatic flavor and decreased cardboard flavor and associated lipid oxidation products. Increases in furosine with increased inlet temperature and solids concentration indicated increased Maillard reactions during drying. Particle size increased and surface free fat decreased with increasing inlet temperature and solids concentration. These results demonstrate that increasing inlet temperatures and solids concentration during spray drying decrease off-flavor intensities in NFDM and MPC70 even though the heat treatment is greater compared with low temperature and low solids. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process.

    PubMed

    Grohganz, Holger; Lee, Yan-Ying; Rantanen, Jukka; Yang, Mingshi

    2013-04-15

    Freeze-drying and spray-drying are often applied drying techniques for biopharmaceutical formulations. The formation of different solid forms upon drying is often dependent on the complex interplay between excipient selection and process parameters. The purpose of this study was to investigate the influence of the chosen drying method on the solid state form. Mannitol-lysozyme solutions of 20mg/mL, with the amount of lysozyme varying between 2.5% and 50% (w/w) of total solid content, were freeze-dried and spray-dried, respectively. The resulting solid state of mannitol was analysed by near-infrared spectroscopy in combination with multivariate analysis and further, results were verified with X-ray powder diffraction. It was seen that the prevalence of the mannitol polymorphic form shifted from β-mannitol to δ-mannitol with increasing protein concentration in freeze-dried formulations. In spray-dried formulations an increase in protein concentration resulted in a shift from β-mannitol to α-mannitol. An increase in final drying temperature of the freeze-drying process towards the temperature of the spray-drying process did not lead to significant changes. It can thus be concluded that it is the drying process in itself, rather than the temperature, that leads to the observed solid state changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Peat Land Oxidation Enhances Subsidence in the Venice Watershed

    NASA Astrophysics Data System (ADS)

    Gambolati, Giuseppe; Putti, Mario; Teatini, Pietro; Camporese, Matteo; Ferraris, Stefano; Stori, Giuseppe Gasparetto; Nicoletti, Vincenzo; Silvestri, Sonia; Rizzetto, Federica; Tosi, Luigi

    2005-06-01

    The southernmost part of the Venice Lagoon catchment was progressively reclaimed from marshland starting from the end of the 19th century and finishing in the late 1930s (Figure 1). As a major result, the area was turned into a fertile farmland. At present, the area is kept dry by a distributed drainage system that collects the water from a capillary network of ditches, and pumps it into the lagoon or the sea. By its very origin this area lies below sea level and progressively sinks mainly because of bio-oxidation of the histosols (soils with high organic content) that represent a large fraction of the outcropping soil in the area. The bio-oxidation process occurs in close connection with the agricultural practices and is currently responsible for a subsidence rate of between 1.5 and 2 cm/yr. The Venice Organic Soil Subsidence (VOSS) project was undertaken with the objective of understanding the process of land settlement in this area, quantifying past and present subsidence rates, and advancing possible remedial measures that would not penalize the current agricultural activities of the area. The study, conducted in close collaboration with the local Land Reclamation Authority (Consorzio di Bonifica) and the farmland owners, is focused on a hydrologically controlled catchment, the Zennare Basin (Venice, Italy).

  12. Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria.

    PubMed

    He, Zhanfei; Cai, Chen; Shen, Lidong; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a newly discovered biological process that couples anaerobic oxidation of methane (AOM) to nitrite reduction. In this study, three different inocula, methanogenic sludge, paddy soil, and freshwater sediment were used to enrich n-damo bacteria in three sequencing batch reactors (SBRs), and three n-damo enrichment cultures, C1, C2 and C3, were obtained, respectively. After 500 days of incubation, Methylomirabilis oxyfera-like bacteria and n-damo activities were observed in cultures C1, C2, and C3, and the specific activities were 0.8 ± 0.1, 1.4 ± 0.1, and 1.0 ± 0.1 μmol CH4 h(-1) g(-1) VSS, respectively. The copy numbers of 16S rRNA genes from cultures C1, C2, and C3 were 5.0 ± 0.4 × 10(8), 6.1 ± 0.1 × 10(9), and 1.0 ± 0.2 × 10(9) copies g(-1) dry weight, respectively. The results indicated that paddy soil is an excellent inoculum for n-damo bacterial enrichment. This work expanded the alternative source of n-damo inoculum and benefited the further research of n-damo process.

  13. Conversion of alkali metal sulfate to the carbonate

    DOEpatents

    Sheth, A.C.

    1979-10-01

    A process is described for converting potassium sulfate to potassium carbonate in which a mixture of potassium sulfate and calcium oxide are reacted at a temperature in the range of between about 700/sup 0/C and about 800/sup 0/C with a gaseous mixture having a minor amount of hydrogen and/or carbon monoxide in a diluent with the calcium oxide being present in an amount not greater than about 20 percent by weight of the potassium sulfate to produce an aqueous mixture of potassium sulfide, potassium bisulfide, potassium hydroxide and calcium sulfide and a gaseous mixture of steam and hydrogen sulfide. The potassium and calcium salts are quenched to produce an aqueous slurry of soluble potassium salts and insoluble calcium salts and a gaseous mixture of steam and hydrogen sulfide. The insoluble calcium salts are then separated from the aqueous solution of soluble potassium salts. The calcium salts are dried to produce calcium sulfide, calcium bisulfide and steam, and then, the calcium sulfide and calcium bisulfide are converted to the oxide and recycled. The soluble potassium salts are carbonated to produce potassium carbonate which is concentrated and the precipitated crystals separated. the sulfur-containing compounds are further treated. This process was developed for desulfurization and reprocessing of spent seed from open-cycle coal-fired MHD generators for reuse.

  14. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit

    NASA Astrophysics Data System (ADS)

    Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard

    The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.

  15. Dielectric spectroscopic studies on the water hyacinth plant collected from agriculture drainage.

    PubMed

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M; Fahem, Amin

    2016-06-05

    The present paper aims to investigate the sensitivity of dielectric spectroscopy to changes in concentrations of pollutants (heavy metals and metal oxides) uptake by the water hyacinth plant collected from agriculture wastewater drainage. The measurements were carried out on the dried root and shoot plant parts before and after subjecting to different microwave heating powers for different times. Dielectric properties of the untreated root were investigated at temperature range (30-90°C). X-ray fluorescence spectroscopy (XRF) results showed that the concentration of metals and metals oxides are higher in plant root than in plant shoot. Accordingly, the obtained dielectric properties were found to depend on the applied electric field frequency, magnitude of heating power as well as concentrations of pollutants. Analysis of experimental data represented by the imaginary part of the dielectric modulus M″ (ω) revealed to the presence of three different relaxation processes. The lower frequency relaxation process was associated to charge carriers conduction whereas those appeared at higher frequencies were associated to different types of interfacial polarization. The plant ability for removing heavy metals and metal oxides from the aquatic environments would be enhanced upon subjecting to microwave heating power with 400 W for 30 min. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Limitations of Thioglycolate Broth as a Sterility Test Medium for Materials Exposed to Gaseous Ethylene Oxide1

    PubMed Central

    Doyle, John E.; Mehrhof, William H.; Ernst, Robert R.

    1968-01-01

    Although ethylene oxide is a reliable sterilizer, the process may be limited by diffusion. Thus, situations may exist where microorganisms are protected from the sterilizing gas. It is possible that the exterior of a substance may be sterilized, whereas the interior is not. We investigated three general types of materials in which this limitation of diffusion could occur: the bore of glass and plastic tubing, the center of cotton balls, and plastic adhesive film/paper backing interface. These materials were contaminated as close to their geometric center as possible with Bacillus subtilis var. niger spores occluded in crystals of sodium chloride. After exposure of the contaminated materials (except aluminum foil) to ethylene oxide, thioglycolate broth (a standard sterility-test medium) indicated sterility, whereas Trypticase Soy Broth indicated nonsterility. It is likewise possible that aerobic microorganisms, surviving in or on material after exposure to dry heat or steam sterilization processes, would not be recovered by thioglycollate broth. Entrapped aerobic organisms will probably not grow out in the low oxygen tension zone of an anaerobic medium such as thioglycollate broth. It is recommended than an aerobic medium such as Trypticase Soy Broth be used concurrently with thioglycolate broth for sterility testing. PMID:4973064

  17. Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells and method for fabrication thereof

    NASA Technical Reports Server (NTRS)

    Schroeder, James E. (Inventor); Anderson, Harlan U. (Inventor)

    1990-01-01

    An unitary layered ceramic structure is disclosed which comprises co-sintered layers. The co-sintered structure comprises a sintered central layer of yttria stabilized zirconia (YSZ) which is about 8 mole percent yttria and having a density of at least about 95% of theoretical, and sintered outer layers of strontium lanthanum manganite (LSM) having the approximate molecular composition La.sub.0.8 Sr.sub.0.2 MnO.sub.3, having a density from about 50 to about 60% of theoretical, and having interconnected porosity from about 40 to 50% with an interconnected pore diameter from about one micron to about five microns. The sintered central layer is sandwiched by and bonded and sintered to the outer layers and is essentially free of significant amounts of manganese. A process for making the unitary composition-of-matter is also disclosed which involves tape casting a LSM tape and then on top thereof casting a YSZ tape. The process comprises presintering LSM powder at 1250.degree. F., crushing the presintered commercially available LSM powder, forming a slurry with the crushed LSM, a binder and solvent, tape casting the slurry and allowing the slurry to air dry. A mixture of commercially available submicron size particle YSZ powder is milled with a dispersant and solvent to disperse the YSZ particles thereby forming a dispersed YSZ slurry. The YSZ slurry is then tape cast on the dried LSM tape. If desired, a third layer of LSM can be cast on top of the dried YSZ layer. After drying the composite LSM/YSZ and LSM/YSZ/LSM tapes are fired at 1300.degree. C. No migration of manganese into the YSZ layer was observed with scanning electron microscope/edax in the sintered multilayer tape.

  18. Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells

    NASA Technical Reports Server (NTRS)

    Schroeder, James E. (Inventor); Anderson, Harlan U. (Inventor)

    1991-01-01

    A unitary layered ceramic structure is disclosed which comprises co-sintered layers. The co-sintered structure comprises a sintered central layer of yttria stabilized zirconia (YSZ) which is about 8 mole percent yttria and having a density of at least about 95% of theoretical, and sintered outer layers of strontium lanthanum manganite (LSM) having the approximate molecular composition La.sub.0.8 Sr.sub.0.2 MnO.sub.3, having a density from about 50 to about 60% of theoretical, and having interconnected porosity from about 40 to 50% with an interconnected pore diameter from about one micron to about five microns. The sintered central layer is sandwiched by and bonded and sintered to the outer layers and is essentially free of significant amounts of manganese. A process for making the unitary composition-of-matter is also disclosed which involves tape casting a LSM tape and then on top thereof casting a YSZ tape. The process comprises presintering LSM powder at 1250.degree. F., crushing the presintered commercially available LSM powder, forming a slurry with the crushed LSM, a binder and solvent, tape casting the slurry and allowing the slurry to air dry. A mixture of commercially available submicron size particle YSZ powder is milled with a dispersant and solvent to disperse the YSZ particles thereby forming a dispersed YSZ slurry. The YSZ slurry is then tape cast on the dried LSM tape. If desired, a third layer of LSM can be cast on top of the dried YSZ layer. After drying the composite LSM/YSZ and LSM/YSZ/LSM tapes are fired at 1300.degree. C. No migration of manganese into the YSZ layer was observed with scanning electron microscope/edax in the sintered multilayer tape.

  19. Sensitivity analyses of factors influencing CMAQ performance for fine particulate nitrate.

    PubMed

    Shimadera, Hikari; Hayami, Hiroshi; Chatani, Satoru; Morino, Yu; Mori, Yasuaki; Morikawa, Tazuko; Yamaji, Kazuyo; Ohara, Toshimasa

    2014-04-01

    Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO4(2-)), nitrate (NO3(-)) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO4(2-) concentration, but clearly overestimated PM2.5 NO3(-) concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3(-) concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3(-). The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.

  20. Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions

    NASA Astrophysics Data System (ADS)

    Al-Kindi, Suad S.; Pope, Francis D.; Beddows, David C.; Bloss, William J.; Harrison, Roy M.

    2016-12-01

    A chemical reaction chamber system has been developed for the processing of oleic acid aerosol particles with ozone under two relative humidity conditions: dry and humidified to 65 %. The apparatus consists of an aerosol flow tube, in which the ozonolysis occurs, coupled to a scanning mobility particle sizer (SMPS) and an aerosol time-of-flight mass spectrometer (ATOFMS) which measure the evolving particle size and composition. Under both relative humidity conditions, ozonolysis results in a significant decrease in particle size and mass which is consistent with the formation of volatile products that partition from the particle to the gas phase. Mass spectra derived from the ATOFMS reveal the presence of the typically observed reaction products: azelaic acid, nonanal, oxononanoic acid and nonanoic acid, as well as a range of higher molecular weight products deriving from the reactions of reaction intermediates with oleic acid and its oxidation products. These include octanoic acid and 9- and 10-oxooctadecanoic acid, as well as products of considerably higher molecular weight. Quantitative evaluation of product yields with the ATOFMS shows a marked dependence upon both particle size association (from 0.3 to 2.1 µm diameter) and relative humidity. Under both relative humidity conditions, the percentage residual of oleic acid increases with increasing particle size and the main lower molecular weight products are nonanal and oxononanoic acid. Under dry conditions, the percentage of higher molecular weight products increases with increasing particle size due to the poorer internal mixing of the larger particles. Under humidified conditions, the percentage of unreacted oleic acid is greater, except in the smallest particle fraction, with little formation of high molecular weight products relative to the dry particles. It is postulated that water reacts with reactive intermediates, competing with the processes which produce high molecular weight products. Whilst the oleic acid model aerosol system is of limited relevance to complex internally mixed atmospheric aerosol, the generic findings presented in this paper give useful insights into the nature of heterogeneous chemical processes.

  1. A role for seed storage proteins in Arabidopsis seed longevity

    PubMed Central

    Nguyen, Thu-Phuong; Cueff, Gwendal; Hegedus, Dwayne D; Rajjou, Loïc; Bentsink, Leónie

    2015-01-01

    Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana genotypes, that carry introgression fragments at the position of seed longevity quantitative trait loci and as a result display different levels of seed longevity, was investigated. Seeds at two physiological states, after-ripened seeds that had the full germination ability and aged (stored) seeds of which the germination ability was severely reduced, were compared. Aged dry seed proteomes were markedly different from the after-ripened and reflected the seed longevity level of the four genotypes, despite the fact that dry seeds are metabolically quiescent. Results confirmed the role of antioxidant systems, notably vitamin E, and indicated that protection and maintenance of the translation machinery and energy pathways are essential for seed longevity. Moreover, a new role for seed storage proteins (SSPs) was identified in dry seeds during ageing. Cruciferins (CRUs) are the most abundant SSPs in Arabidopsis and seeds of a triple mutant for three CRU isoforms (crua crub cruc) were more sensitive to artificial ageing and their seed proteins were highly oxidized compared with wild-type seeds. These results confirm that oxidation is involved in seed deterioration and that SSPs buffer the seed from oxidative stress, thus protecting important proteins required for seed germination and seedling formation. PMID:26184996

  2. Design and synthesis of inorganic/organic hybrid electrochemical materials

    NASA Astrophysics Data System (ADS)

    Harreld, John H.

    An ambient pressure method for drying sol-gel materials is developed to synthesize high porosity (80--90%), high surface area vanadium oxide and silica aerogel materials (150--300 and 1000 m2/g for vanadium pentoxide and silica, respectively). The synthesis approach uses liquid exchange to replace the pore fluid with a low surface tension, nonpolar solvent which reduces the capillary pressures developed during drying. The Good-Girifalco interaction parameter is used to calculate pore stresses resulting from drying silica gels from various liquids. Vanadium oxide/polypyrrole hybrid aerogels are prepared using three strategies. These approaches focus on either sequential or consecutive polymerization of the inorganic and organic networks. Microcomposite aerogels are synthesized by encapsulating a dispersion of preformed polypyrrole in a vanadium pentoxide gel. In the second approach, pyrrole is polymerized and doped within the pore volume of preformed vanadium pentoxide gel. When the inorganic and organic precursors are polymerized simultaneously, the resulting gels exhibited a nanometer scaled microstructure with homogeneous distributions of either phases. Through this route, a suitable microstructure and composition for a lithium secondary battery cathode is obtained. Lithiated aerogels of hydrated nickel, cobalt, and mixed nickel-cobalt oxides are synthesized from lithium hydroxide and transition metal acetate precursors. The XRD analyses indicate that the nickel containing gels exhibit a lithium deficiency (less than 1 Li/transition metal. By increasing the concentration of the lithium precursor the lithium content in nickel oxides is increased, and additional base solution is no longer required to catalyze gelation. A non-hydrolytic sol-gel approach is utilized to create tin oxide and tin-aluminum binary oxide aerogels with high porosity (90%) and high surface area (300 m2/g). XRD data from single phase tin oxide aerogel indicates the growth of SnO2 crystallites between 150--400°C in air, accompanied by a reduction in surface area (30 m2/g). Heated tin oxide aerogel exhibits comparable reversible specific capacity (390 mAh/g) as that of commercial SnO2 (420 mAh/g). Amorphous tin oxide aerogel is stabilized to higher temperatures when aluminum oxide is incorporated into the structure. The tin oxide phase remains electrochemically active towards lithium insertion and exhibits excellent reversibility during cycling.

  3. Towards the Knittability of Graphene Oxide Fibres

    PubMed Central

    Seyedin, Shayan; Romano, Mark S.; Minett, Andrew I.; Razal, Joselito M.

    2015-01-01

    Recent developments in graphene oxide fibre (GO) processing include exciting demonstrations of hand woven textile structures. However, it is uncertain whether the fibres produced can meet the processing requirements of conventional textile manufacturing. This work reports for the first time the production of highly flexible and tough GO fibres that can be knitted using textile machinery. The GO fibres are made by using a dry-jet wet-spinning method, which allows drawing of the spinning solution (the GO dispersion) in several stages of the fibre spinning process. The coagulation composition and spinning conditions are evaluated in detail, which led to the production of densely packed fibres with near-circular cross-sections and highly ordered GO domains. The results are knittable GO fibres with Young’s modulus of ~7.9 GPa, tensile strength of ~135.8 MPa, breaking strain of ~5.9%, and toughness of ~5.7 MJ m−3. The combination of suitable spinning method, coagulation composition, and spinning conditions led to GO fibres with remarkable toughness; the key factor in their successful knitting. This work highlights important progress in realising the full potential of GO fibres as a new class of textile. PMID:26459866

  4. Controllable Electrochromic Polyamide Film and Device Produced by Facile Ultrasonic Spray-coating.

    PubMed

    Liu, Huan-Shen; Chang, Wei-Chieh; Chou, Chin-Yen; Pan, Bo-Cheng; Chou, Yi-Shan; Liou, Guey-Sheng; Liu, Cheng-Liang

    2017-09-20

    Thermally stable TPA-OMe polyamide films with high transmittance modulation in response to applied potential are formed by facile ultrasonic spray-coating. Four processing conditions (Film A, Film B, Film C and Film D) through tuning both solution concentrations and deposition temperatures can be utilized for the formation of wet and dry deposited films with two film thickness intervals. The electrochromic results show that the dry deposited rough films at higher deposition temperature generally reveal a faster electrochromic response, lower charge requirements (Q) and less conspicuous color changes (smaller optical density change (ΔOD) and lightness change (ΔL*)) during the oxidation process as compared to the wet deposited smooth films at lower deposition temperature. Moreover, thicker electrochromic films from increased solution concentration exhibit more obvious changes between coloration and bleaching transition. All these four polyamide films display colorless-to-turquoise electrochromic switching with good redox stability. The large scale patterned electrochromic film and its application for assembled device (10 × 10 cm 2 in size) are also produced and reversibly operated for color changes. These represent a major solution-processing technique produced by ultrasonic spray-coating method towards scalable and cost-effective production, allowing more freedoms to facilitate the designed electrochromic devices as required.

  5. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from a designated facility is 400 micrograms per dry standard cubic meter, corrected to 7 percent... discharged to the atmosphere from a designated facility is 27 milligrams per dry standard cubic meter... standard cubic meter, corrected to 7 percent oxygen. (ii) [Reserved] (iii) The emission limit for opacity...

  6. Preliminary evidence of oxidation in standard oven drying of cotton: attenuated total reflectance/ Fourier transform spectroscopy, colorimetry, and particulate matter formation

    USDA-ARS?s Scientific Manuscript database

    Moisture is paramount to cotton fiber properties dictating harvesting, ginning, storage and spinning as well as others. Currently, oven drying in air is often utilized to generate the percentage of moisture in cotton fibers. Karl Fischer Titration another method for cotton moisture, has been compa...

  7. Identification and characterization of dimeric oxidation products of p-cymene-2,3-diol isolated from Thymus vulgaris L.

    PubMed

    Rainis, Guido; Ternes, Waldemar

    2014-01-08

    The aim of this study was to investigate the oxidation products of p-cymene-2,3-diol, a major antioxidative constituent of thyme (Thymus vulgaris L.). Although a dimeric form of p-cymene-2,3-diol and some derivative substances exhibiting valuable food technological and health-promoting properties have been reported in earlier publications, no obvious correlation has been shown between these substances. A modified HPLC-ESI-MS method made it possible to prove that two dimers, 3,4,3',4'-tetrahydroxy-5,5'-diisopropyl-2,2'-dimethylbiphenyl (1) and the newly identified 3',4'-dihydroxy-5,5'-diisopropyl-2,2'-dimethylbiphenyl-3,4-dione (2), are oxidation products of p-cymene-2,3-diol. 2 was characterized by the fragmentation pattern determined by multiple mass spectrometry, (1)H NMR, (13)C NMR, H-H COSY, HSQC, and HMBC. Both biphenyls were also quantitated in freeze-dried thyme as well as in a food matrix spiked with thyme extract. Model experiments using raw and cooked minced pork meat as matrix and sodium nitrite as oxidizing and reduction agent with and without ascorbic acid as protective reagent showed the correlation between food processing and dimer generation.

  8. Antioxidant activities of red tilapia (Oreochromis niloticus) protein hydrolysates as influenced by thermolysin and alcalase

    NASA Astrophysics Data System (ADS)

    Daud, Nur'Aliah; Babji, Abdul Salam; Yusop, Salma Mohamad

    2013-11-01

    The hydrolysis process was performed on fish meat from Red Tilapia (Oreochromis niloticus) by enzymes thermolysin and alcalase under optimum conditions. The hydrolysis was performed from 0 - 4 hours at 37°C. Hydrolysates after 2 hours incubation with thermolysin and alcalase had degree of hydrolysis of 76.29 % and 63.49 %, respectively. The freeze dried protein hydrolysate was tested for peptide content and characterized with respect to amino acid composition. The result of increased peptide content in Red Tilapia (O. Niloticus) hydrolysates obtained was directly proportional to the increase activities of different proteolytic enzymes. The result of amino acid composition showed that the sample used contained abundant Gly, Ala, Asp, Glu, Lys and Leu in residues or peptide sequences. Both enzymatic hydrolysates were tested for anti-oxidant activity with DPPH and ABTS assay. Alcalase yielded higher anti-oxidative activity than Thermolysin hydrolysates after 1 hour incubation, but both enzymes hydrolysates showed a significant decrease of anti-oxidant activity after 2 hours of incubation. Hydrolysates from Red Tilapia may contribute as a health promoting ingredient in functional foods to reduce oxidation stress caused by accumulated free radicals.

  9. Impact Fretting Wear Behavior of Alloy 690 Tubes in Dry and Deionized Water Conditions

    NASA Astrophysics Data System (ADS)

    Cai, Zhen-Bing; Peng, Jin-Fang; Qian, Hao; Tang, Li-Chen; Zhu, Min-Hao

    2017-07-01

    The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibration, and it will take potential hazards to the service of the equipment. However, the present study focuses on the tangential fretting wear of alloy 690 tubes. Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent. Therefore, impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated. Deionized water is used to simulate the flow environment of the equipment, and the dry environment is used for comparison. Varied analytical techniques are employed to characterize the wear and tribochemical behavior during impact fretting wear. Characterization results indicate that cracks occur at high impact load in both water and dry equipment; however, the water as a medium can significantly delay the cracking time. The crack propagation behavior shows a jagged shape in the water, but crack extended disorderly in dry equipment because the water changed the stress distribution and retarded the friction heat during the wear process. The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatigue wear and friction oxidation. The effect of medium(water) on fretting wear is revealed, which plays a potential and promising role in the service of nuclear power device and other flow equipments.

  10. Dry Season Impact on Physiological Functioning of Two Tropical Tree Species in the Daintree Rainforest, Northeast Australia

    NASA Astrophysics Data System (ADS)

    Cernusak, L. A.; Dempsey, R.; Cheesman, A.; Meir, P.; Laurance, S.

    2016-12-01

    We measured leaf gas exchange, leaf biochemistry, and stem growth in two tropical tree species in the Daintree rainforest. The site experiences an average dry season length of three months, with global climate change predictions indicating that this could increase. Of the two studied species, Elaeocarpus angustifolius is wide-spread and early-successional, whereas Endiandra microneura is locally endemic and late-successional. Measurements started in 2014 and ended in 2015, thus encompassing the 2014 dry season. Upper canopy foliage was accessed from a 48 m tall canopy crane. Photosynthetic rates were higher during the wet season in Elaeocarpus than in Endiandra, consistent with its pioneering habit. Elaeocarpus showed larger reductions in both photosynthesis and stomatal conductance in response to the dry season than did Endiandra. Dry season depression of photosynthesis was associated with reduced intercellular carbon dioxide concentrations in Endiandra, but not in Elaeocarpus, indicating a role for photo-inhibition in restricting photosynthesis during the dry season in the early successional species, but not in the late successional species. Consistently, Endiandra invested more heavily in photoprotective and anti-oxidative compounds in its upper canopy foliage than did Elaeocarpus. Stem growth rates were four-fold higher in Elaeocarpus than in Endiandra during the wet season, reflecting the successional status of the two species. Stem growth slowed in both species in response to the dry season, and all but ceased by the late dry season. With the onset of the early wet season, stem growth increased markedly, and Elaeocarpus again maintained much faster growth than Endiandra. Overall, our results indicate that at the leaf level, biochemical and physiological processes associated with photosynthesis were more vulnerable to dry season stress in Elaeocarpus than in Endiandra; however, at the whole-plant level, our measurements and the geographic distribution of Elaeocarpus suggest that its overall performance is robust in the face of the dry season. The difference between insights at the leaf-level and those at the whole-plant level presumably reflects a strategy in Elaeocarpus of investing in cheaper, shorter lived, and more easily replaced leaves than does the late successional species, Endiandra.

  11. RECOMMENDED OPERATING PROCEDURE NO. 45: ANALYSIS OF NITROUS OXIDE FROM COMBUSTION SOURCES

    EPA Science Inventory

    The recommended operating procedure (ROP) has been prepared for use in research activities conducted by EPA's Air and Energy Engineering Research Laboratory (AEERL). he procedure applies to the measurement of nitrous oxide (N2O) in dry gas samples extracted from gas streams where...

  12. Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry.

    PubMed

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  13. Effect of Lanthanum-Natural Zeolite, La/NZA catalyst on biodiesel production from crude palm oil

    NASA Astrophysics Data System (ADS)

    Setianingsih, A.; Wisrayetti; Khairat; Bahri, S.

    2018-04-01

    Biodiesel can be produced from vegetable oils through the trans-esterification process. In this study, potential vegetable oil of Crude Palm Oil (CPO) was used as sample. The purposes of this research were to produce biodiesel from CPO as an alternative fuel, having study the ratio of impregnation of Lanthanum on NZA, and its catalyst weight to the biodiesel yield. The La/NZA catalyst is made as followed, first the natural zeolite size was reduced using grinding, then activated using HCl 6 N and NH4Cl 1 N, followed with the drying process. La is impregnated into NZA as solution having variations of 1 and 3% (w/w) of NZA, then it was followed with dried in an oven, calcination, oxidation and reduction. Production of biodiesel is carried out through two stages of esterification and transesterification processes. In the trans-esterification process conducted with the various variation of catalyst weight i.e. 1, 2 and 3% of La/NZA (w/w) for a total weight of 80 grams of CPO sample, having the ratio of oil : methanol 1 : 9. Reaction was lasted for 60 minutes at 60°C having 400 rpm stirring speed. From the result, the conversion of 85.37% is given by the run on using 3% La/NZA catalyst having catalyst weight 1%.

  14. Formation of porous surface layers in reaction bonded silicon nitride during processing

    NASA Technical Reports Server (NTRS)

    Shaw, N. J.; Glasgow, T. K.

    1979-01-01

    Microstructural examination of reaction bonded silicon nitride (RBSN) has shown that there is often a region adjacent to the as-nitrided surfaces that is even more porous than the interior of this already quite porous material. Because this layer of large porosity is considered detrimental to both the strength and oxidation resistance of RBSN, a study was undertaken to determine if its formation could be prevented during processing. All test bars studied were made from a single batch of Si powder which was milled for 4 hours in heptane in a vibratory mill using high density alumina cylinders as the grinding media. After air drying the powder, bars were compacted in a single acting die and hydropressed.

  15. Isotropic plasma etching of Ge Si and SiN x films

    DOE PAGES

    Henry, Michael David; Douglas, Erica Ann

    2016-08-31

    This study reports on selective isotropic dry etching of chemically vapor deposited (CVD) Ge thin film, release layers using a Shibaura chemical downstream etcher (CDE) with NF 3 and Ar based plasma chemistry. Relative etch rates between Ge, Si and SiN x are described with etch rate reductions achieved by adjusting plasma chemistry with O 2. Formation of oxides reducing etch rates were measured for both Ge and Si, but nitrides or oxy-nitrides created using direct injection of NO into the process chamber were measured to increase Si and SiN x etch rates while retarding Ge etching.

  16. Simultaneous decontamination of cross-polluted soils with heavy metals and PCBs using a nano-metallic Ca/CaO dispersion mixture.

    PubMed

    Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Sakita, Shogo; Simion, Cristian

    2014-01-01

    In the present work, we investigated the use of nano-metallic calcium (Ca) and calcium oxide (CaO) dispersion mixture for the simultaneous remediation of contaminated soils with both heavy metals (As, Cd, Cr, and Pb) and polychlorinated biphenyls (PCBs). Regardless of soil moisture content, nano-metallic Ca/CaO dispersion mixture achieved about 95-99% of heavy metal immobilization by a simple grinding process. During the same treatment, reasonable PCB hydrodechlorination efficiencies were obtained (up to 97%), though higher hydrodechlorination efficiency by preliminary drying of soil was observed.

  17. Volatile organic compounds and isoprene oxidation products at a temperate deciduous forest site

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Greenberg, Jim; Guenther, Alex; Zimmerman, Pat; Geron, Chris

    1998-09-01

    Biogenic volatile organic compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs such as chlorofluorocarbons (CFCs), alkanes, alkenes and aromatic compounds. Isoprene was the dominant BVOC during daytime. Primary products from BVOC oxidation were methylvinylketone, methacrolein and 3-methylfuran. Other compounds studied include the BVOCs α-pinene, camphene, β-pinene, p-cymene, limonene and cis-3-hexenyl acetate and a series of light alkanes, aromatic hydrocarbons and seven of the CFCs. The correlation of meteorological parameters, with the mixing ratios of these different compounds, reveals information on atmospheric oxidation processes and transport. Long-lived VOCs show very steady mixing ratio time series. Regionally and anthropogenically emitted VOCs display distinct diurnal cycles with a strong mixing ratio decrease in the morning from the breakup of the nocturnal boundary layer. Nighttime mixing ratio increases of CFCs and anthropogenic VOCs are suspected to derive from emissions within the Knoxville urban area into the shallow nocturnal boundary layer. In contrast, the time series of BVOCs and their oxidation products are determined by a combination of emission control, atmospheric oxidation and deposition, and boundary layer dynamics. Mixing ratio time series data for monoterpenes and cis-3-hexenyl acetate suggest a temporarily emission rate increase during and after heavy rain events. The isoprene oxidation products demonstrate differences in the oxidation pathways during night and day and in their dry and wet deposition rates.

  18. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  19. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  20. Effect of several environmental parameters on carbon metabolism in histosols.

    PubMed

    Tate, R L

    1980-12-01

    High specific activity(14)C-labeled glucose, succinate, acetate, salicylate, and amino acids were used to examine carbon metabolism by the microbial community of Pahokee muck (aLithic medisaprist), a drained, cultivated soil of the Florida Everglades. Variations in carbon oxidation were observed from the end of the wet season through the dry season in a fallow (bare) field. Evolution of(14)CO2 varied with the substrate added and time. Calculation of(14)CO2 evolution for each substrate as a proportion of total respiration of the microbial community which was measured by succinate oxidation (relative oxidation) allowed for determination of the proportion of metabolic activity contributed by the oxidation of each carbon source. Except for the May sample when an approximate 30% decline in relative salicylate oxidation activity was observed, the proportion of total catabolic activity contributed by salicylate oxidation and acetate degradation was constant with time. Relative oxidation of glucose and amino acids ranged from 0.12 to 0.52 and 0.10 to 0.23, respectively. At two times during the dry season, the effect of depth of soil and crop on the carbon oxidation was examined. Relative acetate and amino acid oxidation were constant with depth whereas statistically significant variation was observed in glucose and salicylate oxidation. Generally, with the latter substrates, the activity declined with increased soil depth. Greatest effect of crop on these metabolic activities was noted with oxidation of salicylate in soils from a St. Augustinegrass [Stenatophrum secundatum (Walt.) Kuntz] pasture. In these soils, oxidation of salicylate was nearly double that of the fallow field or of soil planted with sugarcane (Saccharum sp.).

  1. Oxidative Stress Induced Inflammation Initiates Functional Decline of Tear Production

    PubMed Central

    Uchino, Yuichi; Kawakita, Tetsuya; Miyazawa, Masaki; Ishii, Takamasa; Onouchi, Hiromi; Yasuda, Kayo; Ogawa, Yoko; Shimmura, Shigeto; Ishii, Naoaki; Tsubota, Kazuo

    2012-01-01

    Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1) using a modified tetracycline system (Tet-On/Off system). This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC) in humans). The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease. PMID:23071526

  2. Effect of surface treatment on unalloyed titanium implants: spectroscopic analyses.

    PubMed

    Kilpadi, D V; Raikar, G N; Liu, J; Lemons, J E; Vohra, Y; Gregory, J C

    1998-06-15

    Surgical implant finishing and sterilization procedures were investigated to determine surface characteristics of unalloyed titanium (Ti). All specimens initially were cleaned with phosphoric acid and divided into five groups for comparisons of different surface treatments (C = cleaned as above, no further treatment; CP = C and passivated in nitric acid; CPS = CP and dry-heat sterilized; CPSS = CPS and resterilized; CS = C and dry-heat sterilized). Auger (AES), X-ray photoelectron (XPS), and Raman spectroscopic methods were used to examine surface compositions. The surface oxides formed by all treatments primarily were TiO2, with some Ti2O3 and possibly TiO. Significant concentrations of carbonaceous substances also were observed. The cleaning procedure alone resulted in residual phosphorus, primarily as phosphate groups along with some hydrogen phosphates. A higher percentage of physisorbed water appeared to be associated with the phosphorus. Passivation (with HNO3) alone removed phosphorus from the surface; specimens sterilized without prior passivation showed the thickest oxide and phosphorus profiles, suggesting that passivation alters the oxide characteristics either directly by altering the oxide structure or indirectly by removing moieties that alter the oxide. Raman spectroscopy showed no crystalline order in the oxide. Carbon, oxygen, phosphorus, and nitrogen presence were found to correlate with previously determined surface energy.

  3. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and... 7 Agriculture 5 2014-01-01 2014-01-01 false Importation of dried, cured, or processed fruits...

  4. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and... 7 Agriculture 5 2013-01-01 2013-01-01 false Importation of dried, cured, or processed fruits...

  5. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and... 7 Agriculture 5 2012-01-01 2012-01-01 false Importation of dried, cured, or processed fruits...

  6. Analysis of maizena drying system using temperature control based fuzzy logic method

    NASA Astrophysics Data System (ADS)

    Arief, Ulfah Mediaty; Nugroho, Fajar; Purbawanto, Sugeng; Setyaningsih, Dyah Nurani; Suryono

    2018-03-01

    Corn is one of the rice subtitution food that has good potential. Corn can be processed to be a maizena, and it can be used to make type of food that has been made from maizena, viz. Brownies cake, egg roll, and other cookies. Generally, maizena obtained by drying process carried out 2-3 days under the sun. However, drying process not possible during the rainy season. This drying process can be done using an automatic drying tool. This study was to analyze the design result and manufacture of maizena drying system with temperature control based fuzzylogic method. The result show that temperature of drying system with set point 40°C - 60°C work in suitable condition. The level of water content in 15% (BSN) and temperatureat 50°C included in good drying process. Time required to reach the set point of temperature in 50°C is 7.05 minutes. Drying time for 500 gr samples with temperature 50°C and power capacity 127.6 watt was 1 hour. Based on the result, drying process using temperature control based fuzzy logic method can improve energy efficiency than the conventional method of drying using a direct sunlight source with a temperature that cannot be directly controlled by human being causing the quality of drying result of flour is erratic.

  7. Preparation and characterization of microparticles of β-cyclodextrin/glutathione and chitosan/glutathione obtained by spray-drying.

    PubMed

    Webber, Vanessa; de Siqueira Ferreira, Daniel; Barreto, Pedro Luis Manique; Weiss-Angeli, Valeria; Vanderlinde, Regina

    2018-03-01

    Reduced glutathione (GSH) is an efficient antioxidant on limitation of browning, of the loss of aromas and off-flavor formation in white wines. The encapsulation of GSH in a polymer system to be added in white wines may prolong its antioxidant action. The aim of this work was to prepare and characterize spray-dried microparticles using β-cyclodextrin (β-CD) or chitosan as polymers for encapsulation of GSH for its addition to wine to prevent oxidation. The microparticles obtained after the drying process were characterized regarding morphology, chemical interaction between GSH and polymers, thermal stability, microstructure, encapsulation efficiency and in vitro GSH release. SEM showed spherical microparticles, with wrinkled surfaces for β-CD/GSH and smooth surfaces for chitosan/GSH. A wide distribution of particle size was observed. In general, β-CD/GSH showed an average diameter smaller than the chitosan/GSH microparticles. FT-IR showed a possible interaction between GSH and both polymers. DSC and DRX showed that encapsulation process produced a marked decrease in GSH crystallinity. The encapsulation efficiency was 25.0% for chitosan/GSH and 62.4% for β-CD/GSH microparticles. The GSH release profiles from microparticles showed that β-CD can control the release behaviors of GSH better than chitosan in a model wine. Cumulative release data were fitted to an empirical equation to compute diffusional exponent (n), which indicates a trend the non-Fickian release of GSH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Impact of solvents and supercritical CO2 drying on the morphology and structure of polymer-based biofilms

    NASA Astrophysics Data System (ADS)

    Causa, Andrea; Salerno, Aurelio; Domingo, Concepción; Acierno, Domenico; Filippone, Giovanni

    2014-05-01

    In the present work, two-dimensional systems based on biodegradable polymers such as poly(ɛ-caprolactone) (PCL), poly(ethylene oxide) (PEO) and polylactic acid (PLA) are fabricated by means of a sustainable approach which consists in inducing phase separation in solutions of such polymers and "green" solvents, namely ethyl lactate (EL) and ethyl acetate (EA). The extraction of the solvent is promoted by a controlled drying process, which is performed in either air or supercritical CO2. The latter can indeed act as both an antisolvent, which favors the deposition of the polymer by forming a mixture with EL and EA, and a plasticizing agent, whose solvation and transport properties may considerably affect the microstructure and crystallinity of the polymer films. The morphological, topographical and crystalline properties of the films are tailored through a judicial selection of the materials and the processing conditions and assessed by means of thermal analyses, polarized optical microscopy, scanning electron microscopy and confocal interferometric microscopy. The results show that the morphological and crystalline properties of the films are strongly dependent on the choice of both the polymer/solvent system and the operating conditions during the drying step. In particular, the morphological, topographical and thermal properties of films prepared starting from highly crystalline polymers, namely PCL and PEO, are greatly affected by the crystallization of the material. Conversely, the less crystalline PLA forms almost completely amorphous films.

  9. Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel.

    PubMed

    Ren, Xiaohua; Guo, Huanhuan; Feng, Jinkui; Si, Pengchao; Zhang, Lin; Ci, Lijie

    2018-01-01

    3D porous N-doped reduced graphene oxide (N-rGO) aerogels were synthesized by a hydrothermal reduction of graphene oxide (GO) with urea and following freeze-drying process. N-rGO aerogels have a high BET surface of 499.70 m 2 /g and a high N doping content (5.93-7.46 at%) including three kinds of N (graphitic, pyridinic and pyrrolic). Their high catalytic performance for phenol oxidation in aqueous solution was investigated by catalytic activation of persulfate (PS). We have demonstrated that N-rGO aerogels are promising metal-free catalysts for phenol removal. Kinetics studies indicate that phenol degradation follows first-order reaction kinetics with the reaction rate constant of 0.16799 min -1 for N-rGO-A(1:30). Interestingly, the comparison of direct catalytic oxidation with adsorption-catalytic oxidation experiments indicates that adsorption plays an important role in the catalytic oxidation of phenol by decreasing the phenol degradation time. Spin density and adsorption modeling demonstrates that graphitic N in N-rGO plays the most important role for the catalytic performance by inducing high positive charge densities to adjacent carbon atoms and facilitating phenol adsorption on these carbon sites. Furthermore, the activation mechanism of persulfate (PS) on N-rGO was first investigated by DFT method and PS can be activated to generate strongly oxidative radical (SO 4 · - ) by transferring electrons to N-rGO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fatty acid utilization in pressure-overload hypertrophied rat hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reibel, D.K.; O'Rourke, B.

    1986-03-05

    The authors have previously shown that the levels of total tissue coenzyme A and carnitine are reduced in hypertrophied hearts of rats subjected to aortic constriction. It was therefore of interest to determine if these changes were associated with alterations in fatty acid oxidation by the hypertrophied myocardium. Hearts were excised from sham-operated and aortic-constricted rats and perfused at 10 cm H/sub 2/O left atrial filling pressure with a ventricular afterload of 80 cm of H/sub 2/O with buffer containing 1.2 mM /sup 14/C-linoleate. Heart rate and peak systolic pressure were not different in control and hypertrophied hearts. /sup 14/CO/submore » 2/ production was linear in both groups of hearts between 10 and 30 minutes of perfusion. The rate of fatty acid oxidation determined by /sup 14/CO/sub 2/ production during this time was 0.728 +/- 0.06 ..mu..moles/min/g dry in control hearts and 0.710 +/- 0.02 ..mu..moles/min/g dry in hypertrophied hearts. Comparable rates of fatty acid oxidation were associated with comparable rates of O/sub 2/ consumption in the two groups of hearts (39.06 +/- 3.50 and 36.78 +/- 2.39 ..mu..moles/g dry/min for control and hypertrophied hearts, respectively). The data indicate that the ability of the hypertrophied heart to oxidize fatty acids under these perfusion conditions is not impaired in spite of significant reductions in tissue levels of coenzyme A and carnitine.« less

  11. Quantifying manganese and nitrogen cycle coupling in manganese-rich, organic carbon-starved marine sediments: Examples from the Clarion-Clipperton fracture zone

    NASA Astrophysics Data System (ADS)

    Mogollón, José M.; Mewes, Konstantin; Kasten, Sabine

    2016-07-01

    Extensive deep-sea sedimentary areas are characterized by low organic carbon contents and thus harbor suboxic sedimentary environments where secondary (autotrophic) redox cycling becomes important for microbial metabolic processes. Simulation results for three stations in the Eastern Equatorial Pacific with low organic carbon content (<0.5 dry wt %) and low sedimentation rates (10-1-100 mm ky-1) show that ammonium generated during organic matter degradation may act as a reducing agent for manganese oxides below the oxic zone. Likewise, at these sedimentary depths, dissolved reduced manganese may act as a reducing agent for oxidized nitrogen species. These manganese-coupled transformations provide a suboxic conversion pathway of ammonium and nitrate to dinitrogen. These manganese-nitrogen interactions further explain the presence and production of dissolved reduced manganese (up to tens of μM concentration) in sediments with high nitrate (>20 μM) concentrations.

  12. Cobalt sulfide aerogel prepared by anion exchange method with enhanced pseudocapacitive and water oxidation performances.

    PubMed

    Gao, Qiuyue; Shi, Zhenyu; Xue, Kaiming; Ye, Ziran; Hong, Zhanglian; Yu, Xinyao; Zhi, Mingjia

    2018-05-25

    This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co 9 S 8 aerogel with a high surface area (274.2 m 2 g -1 ) and large pore volume (0.87 cm 3 g -1 ) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co 9 S 8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g -1 at 1 A g -1 ), good rate capability (74.3% capacitance retention from 1 to 20 A g -1 ) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.

  13. Cobalt sulfide aerogel prepared by anion exchange method with enhanced pseudocapacitive and water oxidation performances

    NASA Astrophysics Data System (ADS)

    Gao, Qiuyue; Shi, Zhenyu; Xue, Kaiming; Ye, Ziran; Hong, Zhanglian; Yu, Xinyao; Zhi, Mingjia

    2018-05-01

    This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co9S8 aerogel with a high surface area (274.2 m2 g‑1) and large pore volume (0.87 cm3 g‑1) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co9S8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g‑1 at 1 A g‑1), good rate capability (74.3% capacitance retention from 1 to 20 A g‑1) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.

  14. A novel pre-treatment for the methane production from microalgae by using N-methylmorpholine-N-oxide (NMMO).

    PubMed

    Caporgno, M P; Olkiewicz, M; Pruvost, J; Lepine, O; Legrand, J; Font, J; Bengoa, C

    2016-02-01

    The aim of this work was to study the effect of the solvent N-methylmorpholine-N-oxide (NMMO) to pre-treat Nannochloropsis oculata before the anaerobic digestion process. The results indicated that the pre-treatment affects the characteristics of the cell wall, which consequently becomes more susceptible to the microorganisms attack during anaerobic digestion. The methane production was increased by 43% after the pre-treatment, from 238±6mLCH4/gVS until 339±4mLCH4/gVS. On the contrary, the methane production from Chlorella vulgaris decreased after the pre-treatment from 251±4mLCH4/gVS to 231±3mLCH4/gVS. The failure on the pre-treatment was attributed to the particular characteristics of the substrate in consequence of a previous drying step. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Improved light extraction efficiency in GaN-based light emitting diode by nano-scale roughening of p-GaN surface.

    PubMed

    Park, Sang Jae; Sadasivam, Karthikeyan Giri; Chung, Tae Hoon; Hong, Gi Cheol; Kim, Jin Bong; Kim, Sang Mook; Park, Si-Hyun; Jeon, Seong-Ran; Lee, June Key

    2008-10-01

    Improvement in light extraction efficiency of Ultra Violet-Light Emitting Diode (UV-LED) is achieved by nano-scale roughening of p-type Gallium Nitride (p-GaN) surface. The process of surface roughening is carried out by using self assembled gold (Au) nano-clusters with support of nano-size silicon-oxide (SiO2) pillars on p-GaN surface as a dry etching mask and by p-GaN regrowth in the regions not covered by the mask after dry etching. Au nano-clusters are formed by rapid thermal annealing (RTA) process carried out at 600 degrees C for 1 min using 15 nm thick Au layer on top of SiO2. The p-GaN roughness is controlled by p-GaN regrowth time. Four different time values of 15 sec, 30 sec, 60 sec and 120 sec are considered for p-GaN regrowth. Among the four different p-GaN regrowth time values 30 sec regrown p-GaN sample has the optimum roughness to increase the electroluminescence (EL) intensity to a value approximately 60% higher than the EL intensity of a conventional LED.

  16. Dry (CO2) reforming of methane over Pt catalysts studied by DFT and kinetic modeling

    NASA Astrophysics Data System (ADS)

    Niu, Juntian; Du, Xuesen; Ran, Jingyu; Wang, Ruirui

    2016-07-01

    Dry reforming of methane (DRM) is a well-studied reaction that is of both scientific and industrial importance. In order to design catalysts that minimize the deactivation and improve the selectivity and activity for a high H2/CO yield, it is necessary to understand the elementary reaction steps involved in activation and conversion of CO2 and CH4. In our present work, a microkinetic model based on density functional theory (DFT) calculations is applied to explore the reaction mechanism for methane dry reforming on Pt catalysts. The adsorption energies of the reactants, intermediates and products, and the activation barriers for the elementary reactions involved in the DRM process are calculated over the Pt(1 1 1) surface. In the process of CH4 direct dissociation, the kinetic results show that CH dissociative adsorption on Pt(1 1 1) surface is the rate-determining step. CH appears to be the most abundant species on the Pt(1 1 1) surface, suggesting that carbon deposition is not easy to form in CH4 dehydrogenation on Pt(1 1 1) surface. In the process of CO2 activation, three possible reaction pathways are considered to contribute to the CO2 decomposition: (I) CO2* + * → CO* + O*; (II) CO2* + H* → COOH* + * → CO* + OH*; (III) CO2* + H* → mono-HCOO* + * → bi-HCOO* + * [CO2* + H* → bi-HCOO* + *] → CHO* + O*. Path I requires process to overcome the activation barrier of 1.809 eV and the forward reaction is calculated to be strongly endothermic by 1.430 eV. In addition, the kinetic results also indicate this process is not easy to proceed on Pt(1 1 1) surface. While the CO2 activation by H adsorbed over the catalyst surface to form COOH intermediate (Path II) is much easier to be carried out with the lower activation barrier of 0.746 eV. The Csbnd O bond scission is the rate-determining step along this pathway and the process needs to overcome the activation barrier of 1.522 eV. Path III reveals the CO2 activation through H adsorbed over the catalyst surface to form HCOO intermediate firstly. This reaction requires a quite high activation barrier and is a strongly endothermic process leading to a very low forward rate constant. In conclusion, Path II is the dominant reaction pathway in CO2 activation. Additionally, there are two pathways of CH oxidation by O: (A) CH* + O* → CHO* + * → CO* + H*; (B) CH* + O* → COH* + * → CO* + H*. Both the activation barriers and kinetic results demonstrate that Path A is the prior reaction pathway. Furthermore, in the two pathways of CH oxidation by OH: (C) CH* + OH* → CHOH* + * → CHO* + H*; (D) CH* + OH* → CHOH* + * → COH* + H*. Path C is easier to proceed. In conclusion, the main reaction pathway in CH oxidation according to the mechanism: CH* + OH* → CHOH* + * → CHO* + H* → CO* + 2H*. These results could provide some useful information for the operation of DRM over Pt catalysts, and are helpful to understand the mechanisms of DRM from the atomic scale.

  17. PCB in the environment: bio-based processes for soil decontamination and management of waste from the industrial production of Pleurotus ostreatus.

    PubMed

    Siracusa, Giovanna; Becarelli, Simone; Lorenzi, Roberto; Gentini, Alessandro; Di Gregorio, Simona

    2017-10-25

    Polychlorinated biphenyls (PCBs) are hazardous soil contaminants for which a bio-based technology for their recovery is essential. The objective of this study was to validate the exploitation of spent mushroom substrate (SMS), a low or null cost organic waste derived from the industrial production of P. ostreatus, as bulking agent in a dynamic biopile pilot plant. The SMS shows potential oxidative capacity towards recalcitrant compounds. The aim was consistent with the design of a process of oxidation of highly chlorinated PCBs, which is independent from their reductive dehalogenation. Feasibility was verified at a mesocosm scale and validated at pilot scale in a dynamic biopile pilot plant treating ten tons of a historically contaminated soil (9.28±0.08mg PCB/kg soil dry weight). Mixing of the SMS with the soil was required for the depletion of the contaminants. At the pilot scale, after eight months of incubation, 94.1% depletion was recorded. A positive correlation between Actinobacteria and Firmicutes active metabolism, soil laccase activity and PCB removal was observed. The SMS was found to be exploitable as a versatile low cost organic substrate capable of activating processes for the oxidation of highly chlorinated PCBs. Moreover, its exploitation as bulking agent in biopiles is a valuable management strategy for the re-utilisation of an organic waste deriving from the industrial cultivation of edible mushrooms. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Detection of Iberian ham aroma by a semiconductor multisensorial system.

    PubMed

    Otero, Laura; Horrillo, M A Carmen; García, María; Sayago, Isabel; Aleixandre, Manuel; Fernández, M A Jesús; Arés, Luis; Gutiérrez, Javier

    2003-11-01

    A semiconductor multisensorial system, based on tin oxide, to control the quality of dry-cured Iberian hams is described. Two types of ham (submitted to different drying temperatures) were selected. Good responses were obtained from the 12 elements forming the multisensor for different operating temperatures. Discrimination between the two types of ham was successfully realised through principal component analysis (PCA).

  19. The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland

    Treesearch

    J.K. Coleman Wasik; D.R. Engstrom; C.P.J. Mitchell; E.B. Swain; B.A. Monson; S.J. Balogh; J.D. Jeremiason; B.A. Branfireun; R.K. Kolka; J.E. Almendinger

    2015-01-01

    A series of severe droughts during the course of a long-term, atmospheric sulfate-deposition experiment in a boreal peatland in northern Minnesota created a unique opportunity to study how methylmercury (MeHg) production responds to drying and rewetting events in peatlands under variable levels of sulfate loading. Peat oxidation during extended dry periods mobilized...

  20. Colour changes by laser irradiation of reddish building limestones

    NASA Astrophysics Data System (ADS)

    Grossi, C. M.; Benavente, D.

    2016-10-01

    We have used X-ray photoelectron spectroscopy (XPS) as a novel method to investigate the causes of colour changes in a reddish limestone under irradiation by a Q-switched Nd:YAG 1064 nm laser. We irradiated clean dry and wet surfaces of Pidramuelle Roja, a building stone frequently used in the Asturian heritage, at fluences ranging from 0.12 to 1.47 J cm-2. We measured the colour coordinates and undertook XPS analysis of the state of oxidation of iron both before and after irradiation. Visible colour changes and potential aesthetic damage occurred on dry surfaces from a fluence of 0.31 J cm-2, with the stone showing a greening effect and very intense darkening. The colour change on dry surfaces was considerably higher than on wet surfaces, which at the highest fluence (1.47 J cm-2) was also above the human visual detection threshold. The use of XPS demonstrated that the change in colour (chroma and hue) is associated with a reduction in the iron oxidation state on dry surfaces during laser irradiation. This points out to a potential routinary use of XPS to analyse causes of colour changes during laser cleaning in other types of coloured building stones.

Top