Science.gov

Sample records for drying cycle loveday

  1. Colloid Mobilization in a Fractured Soil during Dry-Wet Cycles: Role of Drying Duration and Flow Path Permeability.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2015-08-04

    In subsurface soils, colloids are mobilized by infiltrating rainwater, but the source of colloids and the process by which colloids are generated between rainfalls are not clear. We examined the effect of drying duration and the spatial variation of soil permeability on the mobilization of in situ colloids in intact soil cores (fractured and heavily weathered saprolite) during dry-wet cycles. Measuring water flux at multiple sampling ports at the core base, we found that water drained through flow paths of different permeability. The duration of antecedent drying cycles affected the amount of mobilized colloids, particularly in high-flux ports that received water from soil regions with a large number of macro- and mesopores. In these ports, the amount of mobilized colloids increased with increased drying duration up to 2.5 days. For drying durations greater than 2.5 days, the amount of mobilized colloids decreased. In contrast, increasing drying duration had a limited effect on colloid mobilization in low-flux ports, which presumably received water from soil regions with fewer macro- and mesopores. On the basis of these results, we attribute this dependence of colloid mobilization upon drying duration to colloid generation from dry pore walls and distribution of colloids in flow paths, which appear to be sensitive to the moisture content of soil after drying and flow path permeability. The results are useful for improving the understanding of colloid mobilization during fluctuating weather conditions.

  2. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    SciTech Connect

    Moisseytsev, A.; Sienicki, J. J.; Lv, Q.

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  3. [Dynamic changes of soil amino sugar contents under drying and wetting cycle].

    PubMed

    Zhang, Wei; Han, Yong-Jiao; He, Hong-Bo; Xie, Hong-Tu; Zhang, Xu-Dong

    2012-04-01

    A soil incubation test was conducted to study the quantitative changes of three amino sugars (glucosamine, muramic acid, and galactosamine) derived from microbes under drying and wetting cycle, and to analyze the relative contribution of soil bacteria and fungi to the turnover of soil organic matter by using the measured glucosamine/muramic acid ratio. Under continuous wetting, the degradation of bacteria-derived muramic acid was faster than that of fungi-derived glucosamine, and the degradation rate of galactosamine was the lowest. Drying and wetting cycle altered the degradation characteristics of the three amino sugars. As compared with that under continuous wetting, the degradation rate of bacteria-derived muramic acid at the prophase of drying and wetting was faster than that of fungi-derived glucosamine, and, with the increasing frequency of drying and wetting cycle, the degradation rate of fungi-derived glucosamine was faster than that of bacteria-derived muramic acid. These results indicated that drying and wetting cycle changed the course of the microbial transformation of soil amino sugar-derived nitrogen.

  4. Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J.; Marquet, Pierre

    2009-05-01

    Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.

  5. Impact of Wetting/Oven-Drying Cycles on the Mechanical and Physical Properties of Birch Plywood

    NASA Astrophysics Data System (ADS)

    Sooru, M.; Kasepuu, K.; Kask, R.; Lille, H.

    2015-11-01

    The objective of this study was to explore some physical and mechanical properties and the dimensional stability of birch (Betula sp.) nine-ply veneers glued with phenol-formaldehyde (PF) after 10 cycles of soaking/oven-drying. The properties to be determined were bending strength (BS), modulus of elasticity in bending (MOE), Janka hardness (JH) and thickness swelling (TS), which were tested according to the European Standards (EN). An analytical equation was used for approximation of the change in the physical and mechanical properties of the samples depending on the number of cycles. It was shown that the values of the studied properties were affected most by the first soaking and drying cycles after which BS and MOE decreased continuously while the values of JH and TS stabilized. After 10 cycles the final values of BS, MOE, JH and TS accounted for 75-81%, 95%, 82% and 98.5% of the initial values, respectively.

  6. Effect of drying-wetting cycles on leaching behavior of cement solidified lead-contaminated soil.

    PubMed

    Li, Jiang-Shan; Xue, Qiang; Wang, Ping; Li, Zhen-Ze; Liu, Lei

    2014-12-01

    Lead contaminated soil was treated by different concentration of ordinary Portland cement (OPC). Solidified cylindrical samples were dried at 40°C in oven for 48 h subsequent to 24h of immersing in different solution for one drying-wetting. 10 cycles were conducted on specimens. The changes in mass loss of specimens, as well as leaching concentration and pH of filtered leachates were studied after each cycle. Results indicated that drying-wetting cycles could accelerate the leaching and deterioration of solidified specimens. The cumulative leached lead with acetic acid (pH=2.88) in this study was 109, 83 and 71 mg respectively for solidified specimens of cement-to-dry soil (C/Sd) ratios 0.2, 0.3 and 0.4, compared to 37, 30, and 25mg for a semi-dynamic leaching test. With the increase of cycle times, the cumulative mass loss of specimens increased linearly, but pH of filtered leachates decreased. The leachability and deterioration of solidified specimens increased with acidity of solution. Increases of C/Sd clearly reduced the leachability and deterioration behavior.

  7. Determination for dry layer resistance of sucrose under various primary drying conditions using a novel simulation program for designing pharmaceutical lyophilization cycle.

    PubMed

    Kodama, Tatsuhiro; Sawada, Hiroyuki; Hosomi, Hiroshi; Takeuchi, Masahito; Wakiyama, Naoki; Yonemochi, Etsuo; Terada, Katsuhide

    2013-08-16

    Dry layer resistance, which is the resistance of dried cake against water vapor flow generated from sublimation, is one of the important parameters to predict maximum product temperature and drying time during primary drying in lyophilization. The purpose of this study was to develop the predictive model of dry layer resistance under various primary drying conditions using the dry layer resistance obtained from a preliminary lyophilization run. When the maximum dry layer resistance was modified under the assumption that the chamber pressure is zero, the modified dry layer resistance, which is defined as specific dry layer resistance, correlated well with the sublimation rate. From this correlation, the novel predictive model including the empirical formula of sublimation rate and specific dry layer resistance is proposed. In this model, the dry layer resistance under various conditions of shelf temperature and chamber pressure was successfully predicted based on the relationship of the sublimation rate and specific dry layer resistance of the edge and center vials obtained from the product temperature in one preliminary cycle run. It is expected that this predictive model could be a practical and useful tool to predict product temperature during primary drying.

  8. Do drying and rewetting cycles modulate effects of sulfadiazine spiked manure in soil?

    PubMed

    Jechalke, Sven; Radl, Viviane; Schloter, Michael; Heuer, Holger; Smalla, Kornelia

    2016-05-01

    Naturally occurring drying-rewetting events in soil have been shown to affect the dissipation of veterinary antibiotics entering soil by manure fertilization. However, knowledge of effects on the soil microbial community structure and resistome is scarce. Here, consequences of drying-rewetting cycles on effects of sulfadiazine (SDZ) in soil planted with Dactylis glomerata L. were investigated in microcosms. Manure containing SDZ or not was applied to the pregrown grass and incubated for 56 days in a climate chamber. Water was either added daily or reduced during two drying events of 7 days, each followed by a recovery phase. Total community DNA was analyzed to reveal the effects on the bacterial community structure and on the abundance of sul1, sul2, intI1 ,intI2, qacE+qacEΔ1, traN and korB genes relative to 16S rRNA genes. 16S rRNA gene-based DGGE fingerprints indicated that drying-rewetting cycles modulated the effects of SDZ on the bacterial community structure in the soil. Furthermore, the SDZ treatment increased the relative abundance of sulfonamide resistance and integrase genes compared to the control. However, this increase was not different between moisture regimes, indicating that drying-rewetting had only a negligible effect on the selection of the resistome by SDZ in the manured soil.

  9. Corrosion of weathering steel and iron under wet-dry cycling conditions: Influence of the rise of temperature during the dry period

    NASA Astrophysics Data System (ADS)

    Davalos, J.; Gracia, M.; Marco, J. F.; Gancedo, J. R.

    1992-04-01

    The effect of a dry-hot period on the SO2 corrosion of weatherig steel and pure iron under wet-dry cycling was investigated. Corrosion products were identified by Mössbauer spectroscopy and X-ray powder diffraction. The formation of an intermediate corrosion layer of spm α-FeOOH only on weathering steel was the most significant result.

  10. Investigation of design space for freeze-drying: use of modeling for primary drying segment of a freeze-drying cycle.

    PubMed

    Koganti, Venkat Rao; Shalaev, Evgenyi Y; Berry, Mark R; Osterberg, Thomas; Youssef, Maickel; Hiebert, David N; Kanka, Frank A; Nolan, Martin; Barrett, Rosemary; Scalzo, Gioval; Fitzpatrick, Gillian; Fitzgibbon, Niall; Luthra, Sumit; Zhang, Liling

    2011-09-01

    In this work, we explore the idea of using mathematical models to build design space for the primary drying portion of freeze-drying process. We start by defining design space for freeze-drying, followed by defining critical quality attributes and critical process parameters. Then using mathematical model, we build an insilico design space. Input parameters to the model (heat transfer coefficient and mass transfer resistance) were obtained from separate experimental runs. Two lyophilization runs are conducted to verify the model predictions. This confirmation of the model predictions with experimental results added to the confidence in the insilico design space. This simple step-by-step approach allowed us to minimize the number of experimental runs (preliminary runs to calculate heat transfer coefficient and mass transfer resistance plus two additional experimental runs to verify model predictions) required to define the design space. The established design space can then be used to understand the influence of critical process parameters on the critical quality attributes for all future cycles.

  11. Quantification of hysteresis effects on a soil subjected to drying and wetting cycles

    NASA Astrophysics Data System (ADS)

    Rafraf, Samia; Guellouz, Lamia; Guiras, Houda; Bouhlila, Rachida

    2016-10-01

    A quantitative description of soil hysteretic response during drying-wetting cycles is required to improve prediction of the soil water retention model. The objective of the study is to quantify the degree of hysteresis, which is helpful to evaluate the precision of soil water flow calculation. A new procedure to quantify the degree of hysteresis is presented. The Arya-Paris model allows assessment of hysteresis effects from initial drying curves, dynamic contact angles, degree of hysteresis value, and maximum difference value between drying and subsequent wetting curves. The experimental results show that the degree of hysteresis varies with the particle size, bulk density, void ratio, initial water content, and contact angle of the soil. The new findings can be very useful in modelling soil water flows.

  12. Effect of repeated drying-wetting-freezing-thawing cycles on the active soil organic carbon pool

    NASA Astrophysics Data System (ADS)

    Semenov, V. M.; Kogut, B. M.; Lukin, S. M.

    2014-04-01

    Samples of soddy-podzolic soil (long-term overgrown fallow and continuous bare fallow), gray forest soil (forest, farming agrocenosis), and a typical chernozem (virgin steppe, forest area, farming agrocenosis, continuous bare fallow) have been incubated under stable conditions; other samples of these soils have been subjected to six drying-wetting-incubation-freezing-thawing-incubation cycles during 136 days. The wetting of dried soils and the thawing of frozen soils result in an abrupt but short increase in the emission rate of C-CO2 by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. As the soil is depleted in potentially mineralizable organic matter, the rate of the C-CO2 emission pulses initiated by disturbing impacts decreases. The cumulative extra production of C-CO2 by soils of natural lands for six cycles makes up 21-40% of that in the treatments with stable incubation conditions; the corresponding value for cultivated soils, including continuous clean fallow, is in the range of 45-82%. The content of potentially mineralizable organic matter in the soils subjected to recurrent drying-wetting-freezingthawing cycles decreased compared to the soils without disturbing impacts by 1.6-4.4 times, and the mineralization constants decreased by 1.9-3.6 times. It has been emphasized that the cumulative effect of drying-wetting-freezing-thawing cycles is manifested not only in the decrease in the total Corg from the soil but also in the reduction of the mineralization potential of the soil organic matter.

  13. The corrosion products of weathering steel and pure iron in simulated wet-dry cycles

    NASA Astrophysics Data System (ADS)

    Dávalos, J.; Marco, J. F.; Gracia, M.; Gancedo, J. R.

    1991-11-01

    Mössbauer spectroscopy and X-ray diffraction were used to establish the composition of the rust formed on pure iron and weathering steel after exposure to several wet-dry cycles in an SO2-polluted atmosphere. α-FeOOH poorly crystallized and quasi amorphous ferrihydrite are identified as the main corrosion products. The rust has different particle size for iron and weathering steel samples.

  14. Effects of Wet and Dry Cycles on TNT Losses From Soils.

    DTIC Science & Technology

    1992-11-01

    compound or its microbial or photochemical transformation products as the soil undergoes wetting and drying cycles. Spe - cific objectives of the study...15. NUMBER OF PAGES 18 Degradation Explosives TNT 16 . PRICE CODE Environmental fate Soils 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19...Form 298 (Rev 2-89) Pfrnp rbod bv ANi Std 19-8 2,8 102 13. (Concluded). passed through XAD resin to trap volatile organic compounds followed by four

  15. Impact of repeated dry-wet cycles on soil CO2 efflux in a beech forest

    NASA Astrophysics Data System (ADS)

    Leitner, Sonja; Saronjic, Nermina; Kobler, Johannes; Holtermann, Christian; Zechmeister-Boltenstern, Sophie; Zimmermann, Michael

    2015-04-01

    Climate change research predicts that both frequency and intensity of weather extremes such as severe droughts and heavy rainfall events will increase in mid Europe over the next decades. Because soil moisture is one of the major factors controlling microbially-driven soil processes, a changed moisture regime will impact soil organic matter (SOM) decomposition and nutrient cycling. This in turn can lead to feedback effects between altered precipitation and changed soil CO2 fluxes which can intensify climate change. Soil microorganisms can go into a state of dormancy or form inactive cysts to protect themselves from osmotic stress during soil drying. However, severe droughts increase microbial mortality which slows down SOM decomposition and decreases soil CO2 efflux. The rewetting of dry soil, on the other hand, causes large CO2 emissions, which is also known as the "Birch effect". Until today it is not clear whether these CO2 peaks outweigh the drought-induced decrease of total CO2 efflux. To investigate the impact of repeated dry-wet cycles on soil CO2 efflux we are conducting a precipitation manipulation experiment in a temperate Austrian beech forest. Roofs exclude rainfall and simulate drought periods, and heavy rainfall events are simulated with a sprinkler system. We apply repeated dry-wet cycles in two intensities: one treatment receives 6 cycles of 1 month drought followed by 75mm irrigation, and a parallel treatment receives 3 cycles of 2 months drought followed by 150mm irrigation. Soil CO2 efflux is constantly monitored with an automated flux chamber system, and environmental parameters are recorded via dataloggers. Our results show that droughts significantly reduce soil CO2 effluxes, and that the reductions depend on the length of the drought periods, with longer droughts leading to stronger reductions of CO2 effluxes. In the first 24 to 48h after rewetting, CO2 emissions strongly increased, and then slowly decreased again. Soil CO2 efflux was

  16. Quality by design: scale-up of freeze-drying cycles in pharmaceutical industry.

    PubMed

    Pisano, Roberto; Fissore, Davide; Barresi, Antonello A; Rastelli, Massimo

    2013-09-01

    This paper shows the application of mathematical modeling to scale-up a cycle developed with lab-scale equipment on two different production units. The above method is based on a simplified model of the process parameterized with experimentally determined heat and mass transfer coefficients. In this study, the overall heat transfer coefficient between product and shelf was determined by using the gravimetric procedure, while the dried product resistance to vapor flow was determined through the pressure rise test technique. Once model parameters were determined, the freeze-drying cycle of a parenteral product was developed via dynamic design space for a lab-scale unit. Then, mathematical modeling was used to scale-up the above cycle in the production equipment. In this way, appropriate values were determined for processing conditions, which allow the replication, in the industrial unit, of the product dynamics observed in the small scale freeze-dryer. This study also showed how inter-vial variability, as well as model parameter uncertainty, can be taken into account during scale-up calculations.

  17. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    NASA Astrophysics Data System (ADS)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  18. The Resilience of Microbial Community under Drying and Rewetting Cycles of Three Forest Soils

    PubMed Central

    Zhou, Xue; Fornara, Dario; Ikenaga, Makoto; Akagi, Isao; Zhang, Ruifu; Jia, Zhongjun

    2016-01-01

    Forest soil ecosystems are associated with large pools and fluxes of carbon (C) and nitrogen (N), which could be strongly affected by variation in rainfall events under current climate change. Understanding how dry and wet cycle events might influence the metabolic state of indigenous soil microbes is crucial for predicting forest soil responses to environmental change. We used 454 pyrosequencing and quantitative PCR to address how present (DNA-based) and potentially active (RNA-based) soil bacterial communities might response to the changes in water availability across three different forest types located in two continents (Africa and Asia) under controlled drying and rewetting cycles. Sequencing of rRNA gene and transcript indicated that Proteobacteria, Actinobacteria, and Acidobacteria were the most responsive phyla to changes in water availability. We defined the ratio of rRNA transcript to rRNA gene abundance as a key indicator of potential microbial activity and we found that this ratio was increased following soil dry-down process whereas it decreased after soil rewetting. Following rewetting Crenarchaeota-like 16S rRNA gene transcript increased in some forest soils and this was linked to increases in soil nitrate levels suggesting greater nitrification rates under higher soil water availability. Changes in the relative abundance of (1) different microbial phyla and classes, and (2) 16S and amoA genes were found to be site- and taxa-specific and might have been driven by different life-strategies. Overall, we found that, after rewetting, the structure of the present and potentially active bacterial community structure as well as the abundance of bacterial (16S), archaeal (16S) and ammonia oxidizers (amoA), all returned to pre-dry-down levels. This suggests that microbial taxa have the ability to recover from desiccation, a critical response, which will contribute to maintaining microbial biodiversity in harsh ecosystems under environmental perturbations

  19. Release of aged 14C-atrazine residues from soil facilitated by dry-wet cycles

    NASA Astrophysics Data System (ADS)

    Jablonowski, N. D.; Yu, K.; Koeppchen, S.; Burauel, P.

    2012-04-01

    Intermittent dry-wet cycles may have an important effect on soil structure and aged pesticide residues release (1). A laboratory study was conducted to assess the maximum potential of water extractable aged atrazine residues influenced by soil drying and wetting. The used soil was obtained from an outdoor lysimeter (gleyic cambisol; Corg: 1.45%), containing environmentally aged (22 years) 14C-atrazine residues. For the experiment, soil from 0-10 cm depth was used since most residual 14C activity was previously found in this layer (2,3). Triplicate soil samples with a residual water content of approx. 8% were either dried (45° C) prior water addition or directly mixed with distilled water (soil+water: 1+2, w:w). The samples were shaken (150 rmp, 60 min, at 21° C), centrifuged (approx. 2000 g), and the supernatants were filtered. Water-extracted residual 14C activity was detected via liquid scintillation counter. The total water-extracted 14C activity (the amount of residual 14C activity in a sample equals 100%) was significantly higher (p

  20. Dry/Wet Cycles Change the Activity and Population Dynamics of Methanotrophs in Rice Field Soil

    PubMed Central

    Ma, Ke; Conrad, Ralf

    2013-01-01

    The methanotrophs in rice field soil are crucial in regulating the emission of methane. Drainage substantially reduces methane emission from rice fields. However, it is poorly understood how drainage affects microbial methane oxidation. Therefore, we analyzed the dynamics of methane oxidation rates, composition (using terminal restriction fragment length polymorphism [T-RFLP]), and abundance (using quantitative PCR [qPCR]) of methanotroph pmoA genes (encoding a subunit of particulate methane monooxygenase) and their transcripts over the season and in response to alternate dry/wet cycles in planted paddy field microcosms. In situ methane oxidation accounted for less than 15% of total methane production but was enhanced by intermittent drainage. The dry/wet alternations resulted in distinct effects on the methanotrophic communities in different soil compartments (bulk soil, rhizosphere soil, surface soil). The methanotrophic communities of the different soil compartments also showed distinct seasonal dynamics. In bulk soil, potential methanotrophic activity and transcription of pmoA were relatively low but were significantly stimulated by drainage. In contrast, however, in the rhizosphere and surface soils, potential methanotrophic activity and pmoA transcription were relatively high but decreased after drainage events and resumed after reflooding. While type II methanotrophs dominated the communities in the bulk soil and rhizosphere soil compartments (and to a lesser extent also in the surface soil), it was the pmoA of type I methanotrophs that was mainly transcribed under flooded conditions. Drainage affected the composition of the methanotrophic community only minimally but strongly affected metabolically active methanotrophs. Our study revealed dramatic dynamics in the abundance, composition, and activity of the various type I and type II methanotrophs on both a seasonal and a spatial scale and showed strong effects of dry/wet alternation cycles, which enhanced

  1. Dry/Wet cycles change the activity and population dynamics of methanotrophs in rice field soil.

    PubMed

    Ma, Ke; Conrad, Ralf; Lu, Yahai

    2013-08-01

    The methanotrophs in rice field soil are crucial in regulating the emission of methane. Drainage substantially reduces methane emission from rice fields. However, it is poorly understood how drainage affects microbial methane oxidation. Therefore, we analyzed the dynamics of methane oxidation rates, composition (using terminal restriction fragment length polymorphism [T-RFLP]), and abundance (using quantitative PCR [qPCR]) of methanotroph pmoA genes (encoding a subunit of particulate methane monooxygenase) and their transcripts over the season and in response to alternate dry/wet cycles in planted paddy field microcosms. In situ methane oxidation accounted for less than 15% of total methane production but was enhanced by intermittent drainage. The dry/wet alternations resulted in distinct effects on the methanotrophic communities in different soil compartments (bulk soil, rhizosphere soil, surface soil). The methanotrophic communities of the different soil compartments also showed distinct seasonal dynamics. In bulk soil, potential methanotrophic activity and transcription of pmoA were relatively low but were significantly stimulated by drainage. In contrast, however, in the rhizosphere and surface soils, potential methanotrophic activity and pmoA transcription were relatively high but decreased after drainage events and resumed after reflooding. While type II methanotrophs dominated the communities in the bulk soil and rhizosphere soil compartments (and to a lesser extent also in the surface soil), it was the pmoA of type I methanotrophs that was mainly transcribed under flooded conditions. Drainage affected the composition of the methanotrophic community only minimally but strongly affected metabolically active methanotrophs. Our study revealed dramatic dynamics in the abundance, composition, and activity of the various type I and type II methanotrophs on both a seasonal and a spatial scale and showed strong effects of dry/wet alternation cycles, which enhanced

  2. Wet-dry cycles effect on ash water repellency. A laboratory experiment.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerdà, Artemi; Oliva, Marc; Mataix, Jorge; Jordán, Antonio

    2014-05-01

    In the immediate period after the fire, the ash layer has a strong influence on soil hydrological processes, as runoff, infiltration and erosion. Ash is very dynamic in the space and time. Until the first rainfall periods, ash is (re)distributed by the wind. After it can cover the soil surface, infiltrate or transported to other areas by water transport (Pereira et al., 2013a, b). This will have strong implications on nutrient redistribution and vegetation recovery. Ash layer may affect soil water repellency in different ways, depending on fire severity, soil properties and vegetation. Ash produced at low temperatures after low-severity burning is usually hydrophobic (Bodi et al., 2011, 2012). Wet-dry cycles have implications on ash physical and chemical properties, changing their effects in space and time. The aim of this study is to analyse the effects of fire temperature and severity on ash water repellency. Pinus sylvestris needles were collected in a Lithuania forest in Dzukija National Park (53º 54' N and 24º 22' E), transported to laboratory and washed with deionized water to remove soil particles and other residues. Needle samples were dried during 24 hours and exposed to different temperatures: 200, 300, 400 and 500 ºC, during 2 hours. Ash colour was analysed according to the Munsell Soil Color charts. Ash was black (10 YR 2/1) at 200 ºC, very dark grey (10YR 3/1) at 300 ºC, gray (10YR 5/1) at 400 ºC and light gray (10YR 7/1) at 500 ºC. Ten samples of ash released after each treatment were placed in plastic dishes (50 mm in diameter) in an amount enough to form a 5 mm thick layer, and ash water repellency was measured according to the Water Drop Penetration Test. Later, ash was carefully wetted with 15 ml of deionized water and placed in an oven during 4 days (96 hours), as in Bodí et al. (2012). This procedure was repeated 5 times in order to observe the effects of wet-dry cycles in ash water repellency. The results showed significant differences

  3. Brittle-viscous deformation cycles in the dry lower continental crust

    NASA Astrophysics Data System (ADS)

    Menegon, Luca; Pennacchioni, Giorgio

    2015-04-01

    Many rheological models of the lithosphere (based on "strength envelopes") predict a weak aseismic lower crust below the strong brittle upper crust. An alternative view, based on the distribution of crustal seismicity, is that the lower crust could also be strong and seismic. It has been suggested that a strong, seismogenic lower crust results from the dry conditions of granulite facies rocks, which inhibit crystal plastic flow. This study investigates exhumed networks of shear zones from Nusfjord (Lofoten, northern Norway) to understand initiation and localization of viscous shearing in the dry lower crust. In the study area, different sets of ultramylonitic shear zones are hosted in the massive coarse-grained anorthosite. Metamorphic conditions of 720 °C, 0.9 GPa have been estimated for ductile deformation using amphibole-plagioclase geothermobarometry. Field evidence indicates that ductile shearing exploited pseudotachylyte veins and the associated damage zone of extensive fracturing. Undeformed pseudotachylyte veins locally overprint mylonitic pseudotachylytes suggesting that frictional melting occurred at the same metamorphic conditions of mylonitization. The deep crustal origin of the pseudotachylytes is also indicated by (1) the presence of microlites of labradoritic plagioclase and clinopyroxene, and of dendritic garnet, and (2) the recrystallization of clinopyroxene in the damage zone flanking the pseudotachylyte veins. Therefore the association of pseudotachylytes and mylonites records brittle-viscous deformation cycles under lower crustal conditions. The ultramylonites show phase mixing, fine grain size (5-20 μm) and equant shape of all minerals. Nucleation of amphibole in triple junctions and dilatant sites is common. EBSD analysis indicates that the minerals in the matrix are internally strain free and do not show a crystallographic preferred orientation. Taken together, these observations suggest that diffusion creep and grain boundary sliding were

  4. Exploring African Aridification and Wet/dry Cycles Over the Last 3 MA

    NASA Astrophysics Data System (ADS)

    Meyers, C.; Tierney, J. E.; DeMenocal, P. B.

    2011-12-01

    Marine sediment records document a gradual increase in aeolian dust supply from Africa over the last 3 Ma in the Atlantic, Gulf of Aden, and Mediterranean (Larrasoaña et al., 2003, deMenocal 2004), with 'steps' in period and amplitude at ~2.8 Ma, ~1.7 Ma, and ~1.0 Ma. However, Mediterranean sapropel sequences document regular, precession-paced wet/dry cycles from changes in the strength of the African monsoon and Nile runoff since at least the Miocene (Rossignol-Strick, 1985, Krijgsman et al., 1995, Lourens et al., 1996). The influence of long-term drying trends in Africa on the movements and strength of the African monsoon over the late Pliocene and Pleistocene is not understood. We have constructed a biomarker-based African climate record by analyzing concentrations and δ D from long-chain, saturated fatty acid methyl esters (FAMEs) in eastern Mediterranean ODP Site 967 sediments from 2.8 - 3.1 Ma and 1.6 - 1.8 Ma. Long-chain fatty acids are produced in the leaf waxes of terrestrial plants (Eglinton and Hamilton, 1967) and are transported to marine sediments via aeolian and fluvial action. Sapropel sediments corresponding with precession minima and enhanced Nile River runoff (Rossignol-Strick, 1985) contain much higher concentrations of FAMEs than carbonate-rich sediments. Comparisons of the two intervals will be presented to illustrate changes in monsoon strength from 3 Ma to 1.6 Ma.

  5. Dry-cured ham tissue characterization by fast field cycling NMR relaxometry and quantitative magnetization transfer.

    PubMed

    Bajd, Franci; Gradišek, Anton; Apih, Tomaž; Serša, Igor

    2016-05-31

    Fast field cycling (FFC) and quantitative magnetization transfer (qMT) NMR methods are two powerful tools in NMR analysis of biological tissues. The qMT method is well established in biomedical NMR applications, while the FFC method is often used in investigations of molecular dynamics on which longitudinal NMR relaxation times of the investigated material critically depend. Despite their proven analytical potential, these two methods were rarely used in NMR studies of food, especially when combined together. In our study, we demonstrate the feasibility of a combined FFC/qMT-NMR approach for the fast and nondestructive characterization of dry-curing ham tissues differing by protein content. The characterization is based on quantifying the pure quadrupolar peak area (area under the quadrupolar contribution of dispersion curve obtained by FFC-NMR) and the restricted magnetization pool size (obtained by qMT-NMR). Both quantities correlate well with concentration of partially immobilized, nitrogen-containing and proton magnetization exchanging muscle proteins. Therefore, these two quantities could serve as potential markers for dry-curing process monitoring. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Dry/Wet Cycling and the Thermodynamics and Kinetics of Prebiotic Polymer Synthesis.

    PubMed

    Ross, David S; Deamer, David

    2016-07-26

    The endoergic nature of protein and nucleic acid assembly in aqueous media presents two questions that are fundamental to the understanding of life's origins: (i) how did the polymers arise in an aqueous prebiotic world; and (ii) once formed in some manner, how were they sufficiently persistent to engage in further chemistry. We propose here a quantitative resolution of these issues that evolved from recent accounts in which RNA-like polymers were produced in evaporation/rehydration cycles. The equilibrium Nm + Nn ↔ Nm+n + H₂O is endoergic by about 3.3 kcal/mol for polynucleotide formation, and the system thus lies far to the left in the starting solutions. Kinetic simulations of the evaporation showed that simple Le Châtelier's principle shifts were insufficient, but the introduction of oligomer-stabilizing factors of 5-10 kcal/mol both moved the process to the right and respectively boosted and retarded the elongation and hydrolysis rates. Molecular crowding and excluded volume effects in present-day cells yield stabilizing factors of that order, and we argue here that the crowded conditions in the evaporites generate similar effects. Oligomer formation is thus energetically preferred in those settings, but the process is thwarted in each evaporation step as diffusion becomes rate limiting. Rehydration dissipates disordered oligomer clusters in the evaporites, however, and subsequent dry/wet cycling accordingly "ratchets up" the system to an ultimate population of kinetically trappedthermodynamically preferred biopolymers.

  7. Dry/Wet Cycling and the Thermodynamics and Kinetics of Prebiotic Polymer Synthesis

    PubMed Central

    Ross, David S.; Deamer, David

    2016-01-01

    The endoergic nature of protein and nucleic acid assembly in aqueous media presents two questions that are fundamental to the understanding of life’s origins: (i) how did the polymers arise in an aqueous prebiotic world; and (ii) once formed in some manner, how were they sufficiently persistent to engage in further chemistry. We propose here a quantitative resolution of these issues that evolved from recent accounts in which RNA-like polymers were produced in evaporation/rehydration cycles. The equilibrium Nm + Nn ↔ Nm+n + H2O is endoergic by about 3.3 kcal/mol for polynucleotide formation, and the system thus lies far to the left in the starting solutions. Kinetic simulations of the evaporation showed that simple Le Châtelier’s principle shifts were insufficient, but the introduction of oligomer-stabilizing factors of 5–10 kcal/mol both moved the process to the right and respectively boosted and retarded the elongation and hydrolysis rates. Molecular crowding and excluded volume effects in present-day cells yield stabilizing factors of that order, and we argue here that the crowded conditions in the evaporites generate similar effects. Oligomer formation is thus energetically preferred in those settings, but the process is thwarted in each evaporation step as diffusion becomes rate limiting. Rehydration dissipates disordered oligomer clusters in the evaporites, however, and subsequent dry/wet cycling accordingly “ratchets up” the system to an ultimate population of kinetically trappedthermodynamically preferred biopolymers. PMID:27472365

  8. Rainfall and wet and dry cycle's impact on ash thickness. A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Keestra, Saskia; Peters, Piet; Cerdà, Artemi

    2016-04-01

    Ash is the most important and effective soil protection in the immediate period after the fire (Cerda and Doerr, 2008; Pereira et al., 2015a). This protection can last for days or weeks depending on the fire severity, topography of the burned area and post-fire meteorological conditions. In the initial period after the fire, ash is easily transported by wind. However after the first rainfalls, ash is eroded, or bind in soil surface (Pereira et al., 2013, 2015a). Ash thickness has implications on soil protection. The soil protection against the erosion and the ash capacity to retain water increases with the ash thickness (Bodi et al., 2014). Ash cover is very important after fire because store water and releases into soil a large amount of nutrients, fundamental to vegetation recuperation (Pereira et al., 2014). Despite the importance of ash thickness in post fire environments, little information is available about the effects of rainfall and wet and dry cycle's effects on ash thickness. This work aims to fill this gap. The objective of this study is to investigate the impacts of rainfall and wet and dry cycles in the ash thickness of two different under laboratory conditions. Litter from Oak (Quercus robur) and Spruce (Picea abis) were collected to and exposed during 2 hours to produce ash at 200 and 400 C. Subsequently a layer of 15 mm ash was spread on soil surface in small boxes (24x32 cm) and then subjected to rainfall simulation. Boxes were placed at a 17% of inclination and a rainfall intensity of 55 mm/h during 40 minutes was applied. After the rainfall simulation the plots were stored in an Oven at the temperature of 25 C during four days, in order to identify the effects of wet and dry cycles (Bodi et al., 2013). Ash thickness was measured after the first rainfall (AFR), before the second rainfall (BSR) - after the dry period of 4 days - and after the second rainfall (ASR). In each box a grid with 57 points was designed in order to analyse ash thickness

  9. Effect of incubation temperature and wet-dry cycle on the availabilities of Cd, Pb and Zn in soil.

    PubMed

    Si, Ji-tao; Tian, Bao-guo; Wang, Hong-tao

    2006-01-01

    The effect of incubation temperature and wet-dry cycle on the availabilities of Cd, Pb and Zn was studied. Three soils with pH ranging from 3.8 to 7.3, organic carbon (OC) from 0.7% to 2.4%, and clay from 12.3% to 35.6% were selected. Soils were spiked with reagent grade Cd(NO3)2, Pb(NO3)2, and Zn(NO3)2 at concentrations of 30 mg Cd/kg soil, 300 mg Zn/kg soil and 2000 mg Pb/kg soil. The soils were incubated at 35, 60, 105 degrees C, respectively and went through four wet-dry cycles. Metal availability in soils was estimated by soil extraction with 0.1 mol/L Ca(NO3)2. According to this study, the effect of the spiking temperature on the metal availabilities was different among the metals, soils and wet-dry cycles. Mostly, 35 degrees C was the first recommended spiking temperature for Cd and Pb while no spiking temperature was obviously better than others for Zn. Three wet-dry cycles was recommended regardless of the type of metals and incubation temperature.

  10. Life cycle assessment of fuel ethanol derived from corn grain via dry milling.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-01

    Life cycle analysis enables to investigate environmental performance of fuel ethanol used in an E10 fueled compact passenger vehicle. Ethanol is derived from corn grain via dry milling. This type of analysis is an important component for identifying practices that will help to ensure that a renewable fuel, such as ethanol, may be produced in a sustainable manner. Based on data from eight counties in seven Corn Belt states as corn farming sites, we show ethanol derived from corn grain as E10 fuel would reduce nonrenewable energy and greenhouse gas emissions, but would increase acidification, eutrophication and photochemical smog, compared to using gasoline as liquid fuel. The ethanol fuel systems considered in this study offer economic benefits, namely more money returned to society than the investment for producing ethanol. The environmental performance of ethanol fuel system varies significantly with corn farming sites because of different crop management practices, soil properties, and climatic conditions. The dominant factor determining most environmental impacts considered here (i.e., greenhouse gas emissions, acidification, eutrophication, and photochemical smog formation) is soil related nitrogen losses (e.g., N2O, NOx, and NO3-). The sources of soil nitrogen include nitrogen fertilizer, crop residues, and air deposition. Nitrogen fertilizer is probably the primary source. Simulations using an agro-ecosystem model predict that planting winter cover crops would reduce soil nitrogen losses and increase soil organic carbon levels, thereby greatly improving the environmental performance of the ethanol fuel system.

  11. An Invasive Grass Species Alters Carbon Cycling in Hawaiian Dry Forest

    NASA Astrophysics Data System (ADS)

    Litton, C. M.; Sandquist, D. R.; Cordell, S.

    2004-12-01

    At lower elevations on the leeward side of the island of Hawaii, remnant native forests are heavily invaded by an introduced African bunchgrass, Pennisetum setaceum (fountain grass). Our research is designed to determine the consequences of this invasion for carbon (C) cycling in Hawaiian dry forests. We examined above- and belowground C pools and fluxes in 400 m2 replicated forest plots (n = 4) with fountain grass (grass plots) and in areas where fountain grass had been removed for ˜3 years (removal plots). C pools were estimated with direct sampling and allometric equations developed in situ for the dominant tree species. Aboveground net primary productivity (ANPP) was estimated as aboveground biomass increment plus litterfall minus loss from mortality (trees) and with clip plots (grass and herbaceous species); total belowground carbon allocation (TBCA) was estimated using a conservation of mass, C balance approach. Our results indicate that the invasion of a non-native grass in this ecosystem has considerable impacts on both C pools and fluxes. Aboveground, tree biomass did not differ between treatments (P = 0.57) but the presence of fountain grass led to a 7.5-fold increase in understory biomass in grass plots compared to removal plots (P < 0.01). Tree ANPP was significantly higher in removal plots for both foliage (0.10 and 0.06 kg C m-2 yr-1 for removal and grass plots, respectively; P = 0.02) and wood (0.13 and 0.05 kg C m-2 yr-1 for removal and grass plots, respectively; P < 0.01). However, grass ANPP was ˜35% greater than tree foliage productivity in grass plots. Despite this added foliar productivity, total ANPP (Tree + Grass ANPP) was significantly higher in removal plots (P = 0.04). Belowground, grass plots exhibited higher rates of soil-surface CO2 efflux (1.09 and 1.38 kg C m-2 yr-1 for removal and grass plots, respectively; P = 0.03 ). Likewise, TBCA was significantly higher in grass plots (1.21 kg C m-2 yr-1) than in removal plots (0.97 kg C m-2

  12. Mössbauer study of the corrosion behaviour of pure iron and weathering steel under a wet-dry cycle

    NASA Astrophysics Data System (ADS)

    Marco, J. F.; Dávalos, J.; Gancedo, J. R.; Gracia, M.

    1989-03-01

    Mossbauer spectroscopy (MBS) and X-ray diffraction (XRD) have been used to establish the composition of the rust layer formed on weathering steel and pure iron under several wet-dry cycles in a SO2-polluted atmosphere. FeSO3-3H2O, FeSO4-4H2O, and poorly crystalline ferrihydrite were identified as the only corrosion products. The Mossbauer spectrum of FeSO3-3H2O is reported.

  13. Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature.

    PubMed

    Bosca, Serena; Barresi, Antonello A; Fissore, Davide

    2013-10-01

    This paper is focused on the use of an innovative Process Analytical Technology for the fast design and optimization of freeze-drying cycles for pharmaceuticals. The tool is based on a soft-sensor, a device that uses the experimental measure of product temperature during freeze-drying, a mathematical model of the process, and the Extended Kalman Filter algorithm to estimate the sublimation flux, the residual amount of ice in the vial, and some model parameters (heat and mass transfer coefficients). The accuracy of the estimations provided by the soft-sensor has been shown using as test case aqueous solutions containing different excipients (sucrose, polyvinylpyrrolidone), processed at various operating conditions, pointing out that the soft-sensor allows a fast estimation of model parameters and product dynamics without involving expensive hardware or time consuming analysis. The possibility of using the soft-sensor to calculate in-line (or off-line) the design space of the primary drying phase is here presented and discussed. Results evidences that by this way, it is possible to identify the values of the heating fluid temperature that maintain product temperature below the limit value, as well as the operating conditions that maximize the sublimation flux. Various experiments have been carried out to test the effectiveness of the proposed approach for a fast design of the cycle, evidencing that drying time can be significantly reduced, without impairing product quality.

  14. Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India

    NASA Astrophysics Data System (ADS)

    Dhanushkodi, Saravanan; Wilson, Vincent H.; Sudhakar, Kumarasamy

    2015-12-01

    Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.

  15. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS).

    PubMed

    Kuu, Wei Y; Nail, Steven L

    2009-09-01

    Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.

  16. Thresholds in soil response to water stress: intensity and duration of dry-wet cycles induce differential soil C and bacterial diversity dynamics

    NASA Astrophysics Data System (ADS)

    Kaisermann, Aurore; Nunan, Naoise; Maron, Pierre-Alain; Terrat, Sébastien; Lata, Jean-Christophe

    2013-04-01

    After the wetting of dry soils, a CO2 flush (known as the 'Birch effect') is often observed. Although the Birch effect can often result in large CO2 fluxes, the process is not sufficiently well understood to predict its intensity. In particular, the impact of dry-wet cycles on microbial communities is poorly understood, as are the consequences of the possible changes for soil functioning. Using microcosm-based experiments, we investigated different climate change scenarios, such as drying periods of different durations (with co-variation of drying intensity and drought duration) and different rainfall intensities. The effects of four dry-wet cycles on the (i) immediate intensity of the Birch effect, (ii) rate of return to basal C mineralisation (functional resilience), (iii) total amount of CO2 released during a 5-month incubation and (iv) the dynamics of bacterial diversity were determined. Bacterial diversity was measured by pyrosequencing. The CO2 flush increased as a function of drying intensity, drought duration and wetting intensity but was not affected by the number of dry-wet cycles. However, the functional resilience was slower after the first dry-wet cycle than subsequent cycles, suggesting an adaptation of the microbial communities to water-stress. However, this was not associated with a higher stability of bacterial community since the pyrosequencing data showed that drying decreased bacterial diversity after each dry-wet cycle, but only if a threshold of minimal moisture is exceeded. These modifications were permanent over the long term and suggest that the communities were characterised by functional redundancy. Moderate droughts had no effect on overall CO2 emissions but severe droughts led to a lower loss of soil C due to the absence of mineralisation during the longer periods of desiccation that was not compensated by over-mineralisation during Birch effect. The study highlighted moisture threshold beyond which it can be observed a Birch effect and

  17. Abundance, Distribution and Cycling of Organic Carbon and Nitrogen in University Valley (McMurdo Dry Valleys of Antarctica) Permafrost Soils with Differing Ground Thermal and Moisture Conditions: Analogue to C-N Cycle on Mars

    NASA Astrophysics Data System (ADS)

    Faucher, B. F.; Lacelle, D. L.; Davila, A. D.; Pollard, W. P.; McKay, C. P. M.

    2016-05-01

    High elevation McMurdo Dry Valleys of Antarctica are key Mars analogue sites. Our investigation focuses on the link between ground ice origin, distribution and cycling of organic carbon and nitrogen in University Valley, and its soil habitability.

  18. Three Gorges Dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: Evidence from H-O isotopes.

    PubMed

    Deng, Kai; Yang, Shouye; Lian, Ergang; Li, Chao; Yang, Chengfan; Wei, Hailun

    2016-08-15

    As the largest hydropower project in the world, the Three Gorges Dam (TGD) has attracted great concerns in terms of its impact on the Changjiang (Yangtze) River and coastal marine environments. In this study, we measured or collected the H-O isotopic data of river water, groundwater and precipitation in the mid-lower Changjiang catchment during the dry seasons of recent years. The aim was to investigate the changes of river water cycle in response to the impoundment of the TGD. Isotopic evidences suggested that the mid-lower Changjiang river water was ultimately derived from precipitation, but dominated by the mixing of different water masses with variable sources and isotopic signals as well. The isotopic parameter "deuterium excess" (d-excess) yielded large fluctuations along the mid-lower mainstream during the initial stage of the TGD impoundment, which was inherited from the upstream water with inhomogeneous isotopic signals. However, as the reservoir water level rising to the present stage, small variability of d-excess was observed along the mid-lower mainstream. This discrepancy could be explained that the TGD impoundment had significantly altered the water cycle downstream the dam, with the rising water level increasing the residence time and enhancing the mixing of reservoir water derived from upstream. This eventually resulted in the homogenization of reservoir water, and thus small fluctuations of d-excess downstream the dam after the quasi-normal stage (2008 to present). We infer that the retention effect of large reservoirs has greatly buffered the d-excess natural variability of water cycle in large river systems. Nevertheless, more research attention has to be paid to the damming effect on the water cycle in the river, estuarine and coastal areas, especially during the dry seasons.

  19. A comparative life cycle assessment of conventional hand dryer and roll paper towel as hand drying methods.

    PubMed

    Joseph, Tijo; Baah, Kelly; Jahanfar, Ali; Dubey, Brajesh

    2015-05-15

    A comparative life cycle assessment, under a cradle to gate scope, was carried out between two hand drying methods namely conventional hand dryer use and dispenser issued roll paper towel use. The inventory analysis for this study was aided by the deconstruction of a hand dryer and dispenser unit besides additional data provided by the Physical Resources department, from the product system manufacturers and information from literature. The LCA software SimaPro, supported by the ecoinvent and US-EI databases, was used towards establishing the environmental impacts associated with the lifecycle stages of both the compared product systems. The Impact 2002+ method was used for classification and characterization of these environmental impacts. An uncertainty analysis addressing key input data and assumptions made, a sensitivity analysis covering the use intensity of the product systems and a scenario analysis looking at a US based use phase for the hand dryer were also conducted. Per functional unit, which is to achieve a pair of dried hands, the dispenser product system has a greater life cycle impact than the dryer product system across three of four endpoint impact categories. The use group of lifecycle stages for the dispenser product system, which represents the cradle to gate lifecycle stages associated with the paper towels, constitutes the major portion of this impact. For the dryer product system, the use group of lifecycle stages, which essentially covers the electricity consumption during dryer operation, constitutes the major stake in the impact categories. It is evident from the results of this study that per dry, for a use phase supplied by Ontario's grid (2010 grid mix scenario) and a United States based manufacturing scenario, the use of a conventional hand dryer (rated at 1800 W and under a 30s use intensity) has a lesser environmental impact than with using two paper towels (100% recycled content, unbleached and weighing 4 g) issued from a roll

  20. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange.

    PubMed

    Morillas, Lourdes; Durán, Jorge; Rodríguez, Alexandra; Roales, Javier; Gallardo, Antonio; Lovett, Gary M; Groffman, Peter M

    2015-10-01

    Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment.

  1. Impact of repeated dry-wet cycles on soil greenhouse gas emissions, extracellular enzyme activity and nutrient cycling in a temperate forest

    NASA Astrophysics Data System (ADS)

    Leitner, Sonja; Zimmermann, Michael; Bockholt, Jan; Schartner, Markus; Brugner, Paul; Holtermann, Christian; Zechmeister-Boltenstern, Sophie

    2014-05-01

    Climate change research predicts that both frequency and intensity of weather extremes such as long drought periods and heavy rainfall events will increase in mid Europe over the next decades. Soil moisture is one of the major factors controlling microbial soil processes, and it has been widely agreed that feedback effects between altered precipitation and changed soil fluxes of the greenhouse gases CO2, CH4 and N2O could intensify climate change. In a field experiment in an Austrian beech forest, we established a precipitation manipulation experiment, which will be conducted for 3 years. We use roofs to exclude rainfall from reaching the forest soil and simulate drought periods, and a sprinkler system to simulate heavy rainfall events. We applied repeated dry-wet cycles in two intensities: one treatment received 6 cycles of 1 month drought followed by 75mm irrigation within 2 hours, and a parallel treatment received 3 cycles of 2 months drought followed by 150mm irrigation within 3 hours. We took soil samples 1 day before, 1 day after and 1 week after rewetting events and analyzed them for soil nutrients and extracellular enzyme activities. Soil fluxes of CO2, N2O and CH4 were constantly monitored with an automated flux chamber system, and environmental parameters were recorded via dataloggers. In addition, we determined fluxes and nutrient concentrations of bulk precipitation, throughfall, stemflow, litter percolate and soil water. Next we plan to analyze soil microbial community composition via PLFAs to investigate microbial stress resistance and resilience, and we will use ultrasonication to measure soil aggregate stability and protection of soil organic matter in stressed and control plots. The results of the first year show that experimental rainfall manipulation has influenced soil extracellular enzymes. Potential phenoloxidase activity was significantly reduced in stressed treatments compared to control plots. All measured hydrolytic enzymes (cellulase

  2. Effects of Soil Warming and Drying on Methane Cycling in Northern Peatlands

    NASA Astrophysics Data System (ADS)

    White, J. R.; Shannon, R. D.; Bridgham, S. D.

    2007-12-01

    Boreal peatlands contain a large portion of the earth's terrestrial organic carbon and may be particularly vulnerable to changes in climate. Temperature conditions in boreal regions are predicted to increase during the twenty-first century which may accelerate changes in soil microbial processes and plant community dynamics. Climate-driven changes in plant community composition might affect the pathways and rates of methanogenesis, the plant-mediated emission of methane and the scavenging of methane by methanotrophic bacteria. Climate change may also affect nutrient availability and cycling that indirectly affect methane cycling. To date, these feedbacks have not been incorporated into the carbon cycling components of climate models. We investigated the effects of soil warming and water-table manipulations on methane cycling in a field mesocosm experiment in northern Minnesota, USA. Large intact soil monoliths removed from a bog and fen received infrared warming treatments crossed with water-table treatments for six years. In years 5 and 6, concentrations, fluxes and isotopic compositions of methane were measured along with acetate, sulfate, ammonium, belowground net primary productivity and changes in N retention. Methane cycling is affected by changes in N availability associated with soil decomposition and through increased root productivity. An expansion of the rhizosphere of woody shrubs in bogs during the initial 4 yrs was associated with greater methane emission rates. We speculate that an increase in labile substrates associated with root exudates and enhanced plant transport may be factors contributing to the increase in methane emissions. Stable isotopic data from porewater support acetate fermentation as the principal pathway of methanogenesis in bog plots (mean ä13CH4 = -39.3 °). Under warm, wet conditions, the majority of the methane was isotopically heavy (mean ä13CH4 = -28.1 °), suggesting a predominance of methanotrophic activity throughout the

  3. Halogens in the Dry Valleys Lakes, Antarctica: dynamic cycling between water, sediment, and cryogenic evaporites

    NASA Astrophysics Data System (ADS)

    Snyder, G. T.; Dowling, C. B.; Harbert, A.; Lu, H.; Lyons, W. B.; Welch, K. A.

    2006-12-01

    Many of the McMurdo Dry Valleys lakes of Antarctica exhibit saline to hypersaline bottom waters whose chemistry is distinct from that of sea water. The source and relative abundance of dissolved Cl, Br, and I in these unusual waters has been modified by several potential processes including: seawater incursions, water- rock interactions, microbial scavenging, glacial melting and precipitation, and atmospheric deposition. Since all of these processes are affected by both long-term and short-term climate change, lake waters and the salts that are deposited around them provide sensitive indicators of lake dessication and refilling in the past. We present elemental analyses, not only of the lake water, but also of bottom sediments and cryogenic evaporites recovered from the Dry Valleys. XRD analyses indicate that gypsum and antarcticite are precipitated around saline lakes presently situated more than 40 km from the ocean (Vanda, Don Juan, Joyce), while mirabilite is found near small pools in the Garwood Valley, only a few km from the ocean. Lake water enrichments in Ca and Cl, relative to Na suggest that either dissolution of gypsum and antarcticite has occurred in Don Juan Pond and Lake Vanda, or that these two small bodies of water previously lost sodium to mirabilite formation. Lakes Fryxell and Joyce, as well as waters in Garwood Valley show near-sea water ratios. Dissolved iodine, and to a lesser extent bromine, are commonly associated with diagenesis of marine organic matter in regions of high productivity, so it is surprising that the Dry Valleys lake waters are enriched in these two elements. These enrichments are also apparent in pore fluids of shallow sediments on the lake bottoms. In addition, the sediments themselves are highly enriched in iodine in the upper 5 cm (up to 77 ppm). This is likely due to remobilization of dissolved iodide, which is mobile in reduced form, but becomes fixed as adsorbed or organic iodine upon diffusing into shallow oxic

  4. Isotopic composition of Antarctic Dry Valley nitrate: Implications for NOy sources and cycling in Antarctica

    USGS Publications Warehouse

    Michalski, G.; Bockheim, James G.; Kendall, C.; Thiemens, M.

    2005-01-01

    Nitrates minerals from the Dry Valleys of Antarctica have been analyzed for their oxygen and nitrogen isotopic compositions. The 15N was depleted with δ15N values ranging from −9.5 to −26.2‰, whereas the 17O and 18O isotopes were highly enriched (with excess 17O) with δ18O values spanning 62–76‰ and Δ17O values from 28.9 to 32.7‰. These are the largest 17O enrichments observed in any known mineral. The oxygen isotopes indicate that nitrate is from a combination of tropospheric transport of photochemically produced HNO3 and HNO3 formed in the stratosphere.

  5. Modeling the grazing effect on dry grassland carbon cycling with modified Biome-BGC grazing model

    NASA Astrophysics Data System (ADS)

    Luo, Geping; Han, Qifei; Li, Chaofan; Yang, Liao

    2014-05-01

    Identifying the factors that determine the carbon source/sink strength of ecosystems is important for reducing uncertainty in the global carbon cycle. Arid grassland ecosystems are a widely distributed biome type in Xinjiang, Northwest China, covering approximately one-fourth the country's land surface. These grasslands are the habitat for many endemic and rare plant and animal species and are also used as pastoral land for livestock. Using the modified Biome-BGC grazing model, we modeled carbon dynamics in Xinjiang for grasslands that varied in grazing intensity. In general, this regional simulation estimated that the grassland ecosystems in Xinjiang acted as a net carbon source, with a value of 0.38 Pg C over the period 1979-2007. There were significant effects of grazing on carbon dynamics. An over-compensatory effect in net primary productivity (NPP) and vegetation carbon (C) stock was observed when grazing intensity was lower than 0.40 head/ha. Grazing resulted in a net carbon source of 23.45 g C m-2 yr-1, which equaled 0.37 Pg in Xinjiang in the last 29 years. In general, grazing decreased vegetation C stock, while an increasing trend was observed with low grazing intensity. The soil C increased significantly (17%) with long-term grazing, while the soil C stock exhibited a steady trend without grazing. These findings have implications for grassland ecosystem management as it relates to carbon sequestration and climate change mitigation, e.g., removal of grazing should be considered in strategies that aim to increase terrestrial carbon sequestrations at local and regional scales. One of the greatest limitations in quantifying the effects of herbivores on carbon cycling is identifying the grazing systems and intensities within a given region. We hope our study emphasizes the need for large-scale assessments of how grazing impacts carbon cycling. Most terrestrial ecosystems in Xinjiang have been affected by disturbances to a greater or lesser extent in the past

  6. The Effect of Limited Diffusion and Wet–Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids

    PubMed Central

    Higgs, Paul G.

    2016-01-01

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479

  7. Alcohol-related mortality, drinking behavior, and business cycles: are slumps really dry seasons?

    PubMed

    Johansson, Edvard; Böckerman, Petri; Prättälä, Ritva; Uutela, Antti

    2006-09-01

    This paper explores the connection between alcohol-related mortality, drinking behavior, and macroeconomic conditions in Finland using both aggregate and microlevel data from recent decades. The aggregate data reveal that an improvement in economic conditions produces a decrease in alcohol-related mortality. Microlevel data show that alcohol consumption increases during economic expansion while the probability of being a drinker remains unchanged. This demonstrates that alcohol-related mortality and self-reported alcohol consumption may be delinked in the short-run business cycle context. One explanation for this paradox is that most harmful forms of drinking are not captured in survey-based data used to study the effect of macroeconomic conditions on alcohol consumption. Our evidence does not overwhelmingly support the conclusions reported for the United States that temporary economic downturns are good for health.

  8. The capacity of soil particles for spontaneous formation of macroaggregates after a wetting-drying cycle

    NASA Astrophysics Data System (ADS)

    Kholodov, V. A.

    2013-06-01

    The capacity of soil particles for spontaneous formation of aggregates >0.25 mm was studied in a laboratory experiment. The particles from soil aggregates (3-1 mm) (initially aggregated particles, APs) and initially free particles (FPs) of <0.25 mm in size were isolated from the soddy-podzolic and chernozemic soils under fallow and from the arable soddy-podzolic soil. The aggregates of 3-1 mm were ground and passed through a 0.25-mm sieve. Then, the aggregates and free particles were poured with water and dried, and the content of the formed aggregates and their water stability were determined; in the samples from the arable soddy-podzolic soil, the organic carbon content was also determined in the newly formed aggregates. The FPs from the untilled soils formed almost no aggregates. At the same time, the APs from these soils manifested the ability for the spontaneous formation of aggregates, including water-stable aggregates. In the arable soddy-podzolic soil, on the contrary, both FPs and APs demonstrated the capacity for spontaneous self-organization into aggregates. The water stability of the self-organized aggregates from the arable soil was similar regardless of their source (APs or FPs). It was supposed that the ability of the FPs from the arable soil to form macroaggregates reflects the mechanical degradation of the aggregates in the soil: tillage results in the degradation of the aggregates, and the particles capable of spontaneously aggregation temporarily fall in the fraction of <0.25 mm. The water-stable aggregates produced from the APs or FPs of the arable soil contained more organic carbon (1.89%) in comparison with the water-stable aggregates separated from the initial 3- to 1-mm aggregates of this soil (1.31%).

  9. Effects of soil warming and drying on methane cycling in a northern peatland mesocosm study

    NASA Astrophysics Data System (ADS)

    White, Jeffrey R.; Shannon, Robert D.; Weltzin, Jake F.; Pastor, John; Bridgham, Scott D.

    2008-09-01

    Boreal peatlands contain a large portion of the Earth's terrestrial organic carbon and may be particularly vulnerable to changes in climate. Temperatures in boreal regions are predicted to increase during the twenty-first century which may accelerate changes in soil microbial processes and plant community dynamics. In particular, climate-driven changes in plant community composition might affect the pathways and rates of methanogenesis, the plant-mediated emission of methane, and the scavenging of methane by methanotrophic bacteria. Climate change may also affect methane cycling through changes in pore water chemistry. To date, these feedbacks have not been incorporated into the carbon cycling components of climate models. We investigated the effects of soil warming and water table manipulations on methane cycling in a field mesocosm experiment in northern Minnesota, USA. Large intact soil monoliths removed from a bog and fen received infrared warming treatments crossed with water table treatments for 6 years. In years 5 and 6, concentrations, fluxes, and isotopic compositions of methane were measured along with aboveground and belowground net primary productivity and pore water concentrations of acetate, sulfate, ammonium, nitrate, and dissolved organic carbon. Water table level was the dominant control over methane flux in the fen mesocosms, likely through its effect on methane oxidation rates. However, pore water chemistry and plant productivity were important secondary factors in explaining methane flux in the fen mesocosms, and these factors appeared to be the predominant controls over methane flux in the bog mesocosms. The water table and IR treatments had large effects on pore water chemistry and plant productivity, so the indirect effects of climate change appear to be just as important as the direct effects of changing temperature and water table level in controlling future methane fluxes from northern peatlands. Pore water sulfate, ammonium, nitrate, and

  10. The impacts of drying and rewetting cycles on potential methanogenesis in wetland soils

    NASA Astrophysics Data System (ADS)

    Kannenberg, S.; Ludwig, S.; Nelson, L.; Rich, H.; Spawn, S.; Porterfield, J.; Schade, J. D.

    2012-12-01

    Wetlands are currently the world's largest natural emitter of methane, a greenhouse gas that is over 20 times more effective at trapping heat than carbon dioxide. The magnitude of expansion and contraction of wetlands is likely to increase in response to greater severity of precipitation and drought events predicted by climate change models. Increased severity of precipitation and drought events will result in greater variability in size and ephemerality of wetlands. One possible outcome of these size fluctuations is the increase in the anoxic areas preferred by methanogens. Thus, it is becoming increasingly important to discover how production of methane may change as conditions vary. Our objective was to investigate how wetland dynamics, including variability in size and ephemerality, affect methanogenesis and influence the underlying microbial community. We sampled soil from three wetlands of differing ephemerality on the St. Olaf Natural Lands. We measured water and KCl-extractable NO3 and NH4 and used chloroform-fumigation direct-extraction (CFDE) to estimate microbial biomass in each soil sample. Subsamples of each core were incubated in bottles under anoxic conditions in the dark to measure rate of methane production. Bottles were incubated for 9 weeks and headspace samples were collected after 2, 24, and 48 hours and 1 week, and then weekly thereafter. Headspace samples were analyzed for CH4 to calculate rates of methanogenesis. The rate of methane production over the first 48 hours was positively correlated with soil moisture, and negatively correlated with nitrate levels. At the end of the incubation period, methane production was not related to moisture and nitrate, and was positively correlated with soil organic matter. In addition, we observed a lag time before the onset of significant methane flux, followed by a rapid increase in concentration. This lag time was shorter in wet soils than in dry soils. These data suggest that wet, low-nitrate soils

  11. The repeated drying-wetting and freezing-thawing cycles affect only the active pool of soil organic matter

    NASA Astrophysics Data System (ADS)

    Semenov, Vyacheslav; Zinyakova, Natalya; Tulina, Anastasiya

    2016-04-01

    The decrease in the content of soil organic carbon, particularly in active form, is one of the major problems of the 21st century, which is closely related to the disturbance of the biogeochemical carbon cycle and to the increase in the emission of carbon dioxide into the atmosphere. The main reasons for the SOM losses are the surplus of the SOM active pool losses due to mineralization, erosion, and infiltration over the input of fresh organic matter to the soil, as well as the changes in the soil conditions and processes due to natural and anthropogenic disturbing impacts. Experiments were carried out with mixed samples from the upper layers of soddy-podzolic soil, gray forest soil, and typical chernozems. Soil samples as controls were incubated after wetting for 150 days. The dynamics and cumulative production of C-CO2 under stable temperature (22°C) and moisture conditions were determined; the initial content of potentially mineralizable organic matter (C0) in the soil at the beginning of the incubation was then calculated to use these data as the control. Other soil samples were exposed in flasks to the following successive treatments: wetting →incubation → freezing → thawing → incubation →drying. Six repeated cycles of disturbing impacts were performed for 140 days of the experiment. After six cycles, the soil samples were incubated under stable temperature and moisture conditions for 150 days. The wetting of dried soils and the thawing of frozen soils are accompanied by the pulsed dynamics of the C-CO2 production with an abrupt increase in the rate of the C-CO2 emission within several days by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. The rate of the C-CO2 production pulses under each subsequent impact decreased compared to the preceding one similarly for all studied soils, which could be due to the depletion in potentially mineralizable soil organic matter (C0). The cumulative extra C-CO2 production by

  12. Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil.

    PubMed

    Ma, Ke; Conrad, Ralf; Lu, Yahai

    2012-01-01

    Intermittent drainage can substantially reduce methane emission from rice fields, but the microbial mechanisms remain poorly understood. In the present study, we determined the rates of methane production and emission, the dynamics of ferric iron and sulfate, and the abundance of methanogen mcrA genes (encoding the alpha subunit of methyl coenzyme M reductase) and their transcripts in response to alternate dry/wet cycles in paddy field soil. We found that intermittent drainage did not affect the growth of rice plants but significantly reduced the rates of both methane production and emission. The dry/wet cycles also resulted in shifts of soil redox conditions, increasing the concentrations of ferric iron and sulfate in the soil. Quantitative PCR analysis revealed that both mcrA gene copies and mcrA transcripts significantly decreased after dry/wet alternation compared to continuous flooding. Correlation and regression analyses showed that the abundance of mcrA genes and transcripts positively correlated with methane production potential and soil water content and negatively correlated with the concentrations of ferric iron and sulfate in the soil. However, the transcription of mcrA genes was reduced to a greater extent than the abundance of mcrA genes, resulting in very low mcrA transcript/gene ratios after intermittent drainage. Furthermore, terminal restriction fragment length polymorphism analysis revealed that the composition of methanogenic community remained stable under dry/wet cycles, whereas that of metabolically active methanogens strongly changed. Collectively, our study demonstrated a stronger effect of intermittent drainage on the abundance of mcrA transcripts than of mcrA genes in rice field soil.

  13. Plague cycles in two rodent species from China: Dry years might provide context for epizootics in wet years

    USGS Publications Warehouse

    Eads, David; Biggins, Dean E.; Xu, Lei; Liu, Qiyong

    2016-01-01

    Plague, a rodent-associated, flea-borne zoonosis, is one of the most notorious diseases in history. Rates of plague transmission can increase when fleas are abundant. Fleas commonly desiccate and die when reared under dry conditions in laboratories, suggesting fleas will be suppressed during droughts in the wild, thus reducing the rate at which plague spreads among hosts. In contrast, fleas might increase in abundance when precipitation is plentiful, producing epizootic outbreaks during wet years. We tested these hypotheses using a 27-yr data set from two rodents in Inner Mongolia, China: Mongolian gerbils (Meriones unguiculatus) and Daurian ground squirrels (Spermophilus dauricus). For both species of rodents, fleas were most abundant during years preceded by dry growing seasons. For gerbils, the prevalence of plague increased during wet years preceded by dry growing seasons. If precipitation is scarce during the primary growing season, succulent plants decline in abundance and, consequently, herbivorous rodents can suffer declines in body condition. Fleas produce more offspring and better survive when parasitizing food-limited hosts, because starving animals tend to exhibit inefficient behavioral and immunological defenses against fleas. Further, rodent burrows might buffer fleas from xeric conditions aboveground during dry years. After a dry year, fleas might be abundant due to the preceding drought, and if precipitation and succulent plants become more plentiful, rodents could increase in density, thereby creating connectivity that facilitates the spread of plague. Moreover, in wet years, mild temperatures might increase the efficiency at which fleas transmit the plague bacterium, while also helping fleas to survive as they quest among hosts. In this way, dry years could provide context for epizootics of plague in wet years.

  14. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests.

    PubMed

    Waring, Bonnie G; Adams, Rachel; Branco, Sara; Powers, Jennifer S

    2016-01-01

    Rates of ecosystem nitrogen (N) cycling may be mediated by the presence of ectomycorrhizal fungi, which compete directly with free-living microbes for N. In the regenerating tropical dry forests of Central America, the distribution of ectomycorrhizal trees is affected by succession and soil parent material, both of which may exert independent influence over soil N fluxes. In order to quantify these interacting controls, we used a scale-explicit sampling strategy to examine soil N cycling at scales ranging from the microsite to ecosystem level. We measured fungal community composition, total and inorganic N pools, gross proteolytic rate, net N mineralization and microbial extracellular enzyme activity at multiple locations within 18 permanent plots that span dramatic gradients of soil N concentration, stand age and forest composition. The ratio of inorganic to organic N cycling was correlated with variation in fungal community structure, consistent with a strong influence of ectomycorrhiza on ecosystem-scale N cycling. However, on average, > 61% of the variation in soil biogeochemistry occurred within plots, and the effects of forest composition were mediated by this local-scale heterogeneity in total soil N concentrations. These cross-scale interactions demonstrate the importance of a spatially explicit approach towards an understanding of controls on element cycling.

  15. Mössbauer and XRD analysis of corrosion products on weathering steel treated by wet-dry cycles using various solutions

    NASA Astrophysics Data System (ADS)

    Oyabu, Matashige; Nomura, Kiyoshi; Koike, Yuya; Okazawa, Atsushi

    2016-12-01

    Weathering steels (COR-TEN) were corroded by wet-dry cycles using a splay of various solutions in a laboratory. Corrosion products on weathering steel were characterized by X-ray diffractometry and Mössbauer spectrometry at room and low temperatures. Fine α-FeOOH, γ-FeOOH and γ-Fe 2 O 3 are fundamentally formed in various atmospheric conditions. β-FeOOH is additionally formed under the existence of chloride ions, but not formed when sulfate ions are coexisting. Spraying a NaF solution prevents the progress of corrosion.

  16. Coupled effects of treated effluent irrigation and wetting-drying cycles on transport of triazines through unsaturated soil columns.

    PubMed

    Seol, Y; Lee, L S

    2001-01-01

    The physical and chemical parameters controlling the movement of atrazine (6-chloro-N2-ethyl-N4-isopropyl-l,3,5-triazine-2,4-diamine; 98.8%) and prometryn [N,N'-bis(1-methylethyl)-6-(methylthio)-l,3,5triazine-2,4-diamine; 99.5%] were investigated in columns infiltrated with treated effluent under unsaturated transient conditions and subjected to drying events at 22 or 60 degrees C followed by rewetting. Three soils varying in soil pH and texture and three solutions were used. The infiltrating solutions consisted of either a CaCl2 matrix (CC), a swine waste-derived lagoon effluent (SW), or a simulated buffer solution (SB) representative of the element composition and pH of the SW but with no dissolved organic matter. Several parameters were monitored including leachate triazine concentrations, pH, dissolved organic carbon (DOC), inorganic carbon, and flow rates. Compared with CC, application of SW and SB increased column leachate pH, enhanced dissolution of organic carbon and particle dispersion, and decreased average flow rates, which allowed for increased desorption time. The coupled effect of these processes enhanced movement of triazines in some cases, with SW generally having the greatest effect. The individual effect of increased pH was more pronounced for prometryn (pKa=4.05) versus atrazine (pKa=1.66), and most dramatic for the soil with the lowest initial pH. High-temperature drying, which simulated intensive evaporation, further enhanced the dissolution of soil organic matter and the reduction in leachate flow rates with SW and SB applications; however, the net effect under the experimental conditions employed varied with soil type. Relative to low-temperature drying, high-temperature drying in the silty clay loam-packed columns reduced pesticide migration.

  17. Priming effect of 13C-labelled wheat straw in no-tillage soil under drying and wetting cycles in the Loess Plateau of China

    PubMed Central

    Liu, Enke; Wang, Jianbo; Zhang, Yanqing; Angers, Denis A.; Yan, Changrong; Oweis, Theib; He, Wenqing; Liu, Qin; Chen, Baoqing

    2015-01-01

    The objectives of this study were to determine the effects of drying and wetting (DW) cycles on soil organic carbon (SOC) mineralisation and on the priming effect (PE) induced by the addition of 13C-labelled wheat straw to long-term no-tillage (NT) and conventional-tillage (CT) soils. We observed that the SOC mineralisation rate in rewetted soils was greater than that in soils that were kept at constant water content. The proportion of CO2 derived from the straw declined dramatically during the first 10 days. The priming direction was first positive, and then became slightly negative. The PE was higher under DW cycles than under constant water content. There was no significant effect of the tillage system on the SOC mineralisation rate or PE. The data indicate that the DW cycles had a significant effect on the SOC mineralisation rate and on the PE, demonstrating a positive combined effect between wheat straw and moisture fluctuations. Further research is needed to study the role of microbial communities and C pools in affecting the SOC mineralisation response to DW cycles. PMID:26345303

  18. Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica

    NASA Astrophysics Data System (ADS)

    Fisher, David A.; Lacelle, Denis; Pollard, Wayne; Davila, Alfonso; McKay, Christopher P.

    2016-11-01

    In the upper McMurdo Dry Valleys, 90% of the measured ice table depths range from 0 to 80 cm; however, numerical models predict that the ice table is not in equilibrium with current climate conditions and should be deeper than measured. This study explored the effects of boundary conditions (air versus ground surface temperature and humidity), ground temperature cycles, and their diminishing amplitude with depth and advective flows (Darcy flow and wind pumping) on water vapor fluxes in soils and ice table depths using the REGO vapor diffusion model. We conducted a series of numerical experiments that illustrated different hypothetical scenarios and estimated the water vapor flux and ice table depth using the conditions in University Valley, a small high elevation valley. In situ measurements showed that while the mean annual ground surface temperature approximates that in the air, the mean annual ground surface relative humidity (>85%ice) was significantly higher than in the atmosphere ( 50%ice). When ground surface temperature and humidity were used as boundary conditions, along with damping diurnal and annual temperature cycles within the sandy soil, REGO predicted that measured ice table depths in the valley were in equilibrium with contemporary conditions. Based on model results, a dry soil column can become saturated with ice within centuries. Overall, the results from the new soil data and modeling have implications regarding the factors and boundary conditions that affect the stability of ground ice in cold and hyperarid regions where liquid water is rare.

  19. Dynamic effects of wet-dry cycles and crust formation on the saturated hydraulic conductivity of surface soils in the constructed Hühnerwasser ("Chicken Creek") catchment

    NASA Astrophysics Data System (ADS)

    Hinz, Christoph; Schümberg, Sabine; Kubitz, Anita; Frank, Franzi; Cheng, Zhang; Nanu Frechen, Tobias; Pohle, Ina

    2016-04-01

    Highly disturbed soils and substrates used in land rehabilitation undergo rapid changes after the first wetting events which in turn can lead to ecosystem degradation. Such changes were detected during the early development of the constructed Hühnerwasser ("Chicken Creek") catchment in Lusatia, Germany. Surface substrates consisting of quaternary sandy sediments formed surface seals during the first rainfall events leading to reduced infiltration and substantially increased surface runoff. Subsequently biological soil crusts formed and stabilised the surface. The aim of this study is to investigate the factors that cause the hydraulic conductivity to decrease using undisturbed and disturbed soil samples. Based on the hypothesis that physical and biological crusts lower the hydraulic conductivity, the first set of experiments with undisturbed soil cores from the Hühnerwasser catchment were carried out to measure the saturated hydraulic conductivity using the constant head method. Measurements were done with intact cores and repeated after the surface crust was removed. As the quaternary glacial sediments tend to display hard setting behaviour, we further hypothesised that the mobilisation of fine particles within the cores lead to pore clogging and that wet-dry cycles will therefore decrease hydraulic conductivity. A second set of experiments using the same methodology consisted of five repeated measurements of hydraulic conductivity after each drying cycle. These measurements were done with undisturbed core samples as well as repacked cores in order to assess how dry packing affects the dynamics of the hydraulic conductivity somewhat similar to the situation during the first wetting after completion of the catchment construction. For all experiments, the temporal evolution of hydraulic conductivity was measured and the turbidity of the effluent was recorded. The results clearly demonstrated that the substrate is highly unstable. The first set of experiments

  20. Dry Mouth

    MedlinePlus

    ... of this page please turn Javascript on. Dry Mouth What Is Dry Mouth? Dry mouth is the feeling that there is ... when a person has dry mouth. How Dry Mouth Feels Dry mouth can be uncomfortable. Some people ...

  1. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    PubMed

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors.

  2. Suspended sediment transport in the Deepwater Navigation Channel, Yangtze River Estuary, China, in the dry season 2009: 1. Observations over spring and neap tidal cycles

    NASA Astrophysics Data System (ADS)

    Song, Dehai; Wang, Xiao Hua; Cao, Zhenyi; Guan, Weibing

    2013-10-01

    The in situ data in the Deepwater Navigation Channel (DNC), Yangtze River Estuary (YRE), China, in the dry season 2009, shows spring tides associated with greater maximum velocities, more mixing, less stratification, and diffused fluid mud; whereas neap tides are associated with smaller maximum velocities, greater stratification, inhibited mixing, and stratified fluid muds. The balance of salt flux indicates the seaward salt transport is dominated by fluvial flows, and the landward salt transport is generated by compensation flows during spring tides, but shear effects during neap tidal cycles. The balance of suspended sediment flux illustrates the offshore sediment transport is dominated by fluvial flows as well, but the onshore transport is induced by tidal-pumping effects on spring tides, and shear effects on neaps. The suspended sediment transport is strongly affected by the salinity distribution and salinity-gradient-induced stratification in the DNC. The spring-neap asymmetry is generated by the estuarine gravitational circulation during low-flow conditions; while the flood-ebb asymmetric stratification within a tidal cycle is due to the semidiurnal tidally movement of the salt front.

  3. Wetting and drying cycles drive variations in the stable carbon isotope ratio of respired carbon dioxide in semi-arid grassland.

    PubMed

    Shim, Jee H; Pendall, Elise; Morgan, Jack A; Ojima, Dennis S

    2009-05-01

    In semi-arid regions, where plants using both C(3) and C(4) photosynthetic pathways are common, the stable C isotope ratio (delta(13)C) of ecosystem respiration (delta(13)C(R)) is strongly variable seasonally and inter-annually. Improved understanding of physiological and environmental controls over these variations will improve C cycle models that rely on the isotopic composition of atmospheric CO(2). We hypothesized that timing of precipitation events and antecedent moisture interact with activity of C(3) and C(4) grasses to determine net ecosystem CO(2) exchange (NEE) and delta(13)C(R). Field measurements included CO(2) and delta(13)C fluxes from the whole ecosystem and from patches of different plant communities, biomass and delta(13)C of plants and soils over the 2000 and 2001 growing seasons. NEE shifted from C source to sink in response to rainfall events, but this shift occurred after a time lag of up to 2 weeks if a dry period preceded the rainfall. The seasonal average of delta(13)C(R) was higher in 2000 (-16 per thousand) than 2001 (20 per thousand), probably due to drier conditions during the 2000 growing season (79.7 mm of precipitation from April up to and including July) than in 2001 (189 mm). During moist conditions, delta(13)C averaged -22 per thousand from C(3) patches, -16 per thousand from C(4) patches, and -19 per thousand from mixed C(3) and C(4) patches. However, during dry conditions the apparent spatial differences were not obvious, suggesting reduced autotrophic activity in C(4) grasses with shallow rooting depth, soon after the onset of dry conditions. Air and soil temperatures were negatively correlated with delta(13)C(R); vapor pressure deficit was a poor predictor of delta(13)C(R), in contrast to more mesic ecosystems. Responses of respiration components to precipitation pulses were explained by differences in soil moisture thresholds between C(3) and C(4) species. Stable isotopic composition of respiration in semi-arid ecosystems is

  4. Interactive effects of distillers dried grains with solubles and housing system on reproductive performance and longevity of sows over three reproductive cycles.

    PubMed

    Li, X; Baidoo, S K; Li, Y Z; Shurson, G C; Johnston, L J

    2014-04-01

    An experiment was conducted to evaluate the interactive effects of dietary distillers dried grains with solubles (DDGS) in sow diets and housing systems on reproductive performance and longevity. Sows (311 for parity 0 and 90 for parity 1) were assigned randomly within parity to 1 of 4 treatments and maintained on these treatments for up to 3 reproductive cycles. Sows were fed either fortified corn-soybean meal control diets (CON) during gestation and lactation or diets containing 40% DDGS in gestation and 20% DDGS in lactation and were housed either in individual stalls or group pens with electronic sow feeders during gestation. Sows fed DDGS had smaller (P < 0.05) litter size (born alive, 11.0 vs. 11.6; weaning, 9.8 vs. 10.2) and had more (P < 0.05) stillborns (0.9 vs. 0.7) than sows fed CON. Litters nursing sows fed DDGS gained less weight (P < 0.01) than litters nursing sows fed CON (47.8 vs. 49.8 kg, respectively). Group-housed sows tended to farrow smaller litters (born alive, 11.0 vs. 11.5; P < 0.10) and had fewer pigs at weaning (9.9 vs. 10.2; P < 0.05) compared with stall-housed sows. Litters from group-housed sows tended (P < 0.10) to gain less weight while suckling than those from stall-housed sows (48.3 vs. 49.4 kg, respectively). Diet did not affect the percentage of sows that completed each successive reproductive cycle. Stall housing tended to increase (P = 0.06) the completion rate of sows at the second reproductive cycle (80.0 vs. 68.2%) and increased (P < 0.05) the completion rate of sows in the third reproductive cycle (68.9 vs. 55.8%) compared with group housing. Sows fed DDGS produced fewer (P < 0.05) live-born pigs (26.2 vs. 27.4) and tended (P < 0.10) to have fewer pigs weaned (23.7 vs. 24.5) over 3 reproductive cycles compared with sows fed CON. Stall-housed sows farrowed more (P < 0.05) total pigs (30.1 vs. 26.7) and live pigs (28.4 vs. 25.2) and had more weaned pigs (25.2 vs. 23.1) compared with group-housed sows over 3 reproductive cycles

  5. Dry Mouth

    MedlinePlus

    ... or chewing tobacco can increase dry mouth symptoms. Methamphetamine use. Methamphetamine use can cause severe dry mouth and damage to teeth, a condition also known as "meth mouth." If you don't have enough saliva ...

  6. Dry Mouth

    MedlinePlus

    Dry mouth is the feeling that there is not enough saliva in your mouth. Everyone has a dry mouth once in a while - if they are nervous, ... under stress. But if you have a dry mouth all or most of the time, it can ...

  7. A New Analysis Method of the Dry Sliding Wear Process Based on the Low Cycle Fatigue Theory and the Finite Element Method

    NASA Astrophysics Data System (ADS)

    Abdi, Mohammad; Taheri, Ali Karimi; Bakhtiarydavijani, Amirhamed

    2014-03-01

    In the present work, a combination of a dynamic explicit finite element model and the low cycle fatigue theory is used to simulate the steady-state abrasive wear occurring between an as-cast eutectoid steel and a carbide-tungsten disk. While the low cycle fatigue theory has been used to model wear in softer non-ferrous alloys, this work shows its applicability and accuracy for use in harder alloys, such as the eutectoid steel used in this research which is strengthened with added chromium. The novelty of this work lies in calculating the Manson-Coffin relation constants from a coupled finite element model with experimental tests instead of the previously used Slip line method. The D Manson-Coffin constant, obtained around 2, is in agreement with previous works given in the literature showing that the low cycle fatigue is a general wear mechanism in the steady-state wear of the alloy tested in this work.

  8. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin.

    PubMed

    Maliki, Raphiou; Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0-10 and 10-20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems.

  9. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin

    PubMed Central

    Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems. PMID:27446635

  10. Soil dehydrogenase in a land degradation-rehabilitation gradient: observations from a savanna site with a wet/dry seasonal cycle.

    PubMed

    Doi, Ryoichi; Ranamukhaarachchi, Senaratne Leelananda

    2009-01-01

    Soil dehydrogenase activity is a good indicator of overall microbial activity in soil, and it can serve as a good indicator of soil condition. However, seasonal changes in soil moisture content may have an effect on soil dehydrogenase activity, making an accurate assessment of soil condition difficult. In this study, we attempted to determine the significance of soil dehydrogenase activity for assessing soil condition, and we attempted to find a way to account for the influence of soil moisture content on soil dehydrogenase activity.' Soils were sampled in dry evergreen forest (original vegetation), bare ground (severely degraded) and Acacia plantation plots established on bare ground in 1986 and 1987 in Sakaerat, Thailand. Soil physico-chemical characteristics and dehydrogenase activity in the Acacia plantation soil had few differences from those in the evergreen forest soil. Soil dehydrogenase activity varied significantly between the bare ground and the forests regardless of the season (wet or dry), while the season did not produce a significant variation in soil dehydrogenase activity, as determined by repeated measures analysis of variance (p=0.077). The physico-chemical data provided the first principal component as a good measure of soil fertility. Values of soil dehydrogenase activity significantly correlated to scores of the soil samples of the first principal component (R=0.787, p<0.001). We found that soil dehydrogenase activity is a useful indicator of the extent of soil degradation and the rehabilitative effects of reforestation in this part of Thailand.

  11. Use of a sub-gasket and soft gas diffusion layer to mitigate mechanical degradation of a hydrocarbon membrane for polymer electrolyte fuel cells in wet-dry cycling

    NASA Astrophysics Data System (ADS)

    Ishikawa, Hiroshi; Teramoto, Takeshi; Ueyama, Yasuhiro; Sugawara, Yasushi; Sakiyama, Yoko; Kusakabe, Masato; Miyatake, Kenji; Uchida, Makoto

    2016-09-01

    The mechanical durability of hydrocarbon (HC) membranes, used for polymer electrolyte fuel cells (PEFCs), was evaluated by the United States Department of Energy (USDOE) stress protocol involving wet-dry cycling, and the degradation mechanism is discussed. The HC membrane ruptured in the edge region of the membrane electrode assembly (MEA) after 300 cycles due to a concentration of the mechanical stress. Post-test analysis of stress-strain measurements revealed that the membrane mechanical strain decreased more than 80% in the edge region of the MEA and about 50% in the electrode region, compared with the pristine condition. Size exclusion chromatography (SEC) indicated that the average molecular weight of the HC polymer increased slightly, indicating some cross-linking, while the IEC decreased slightly, indicating ionomer degradation. As a result of two types of modifications, a sub-gasket (SG) and a soft gas diffusion layer (GDL) in the MEA edge region, the mechanical stress decreased, and the durability increased, the membrane lasting more than 30,000 cycles without mechanical failure.

  12. Peat porewater chloride concentration profiles in the Everglades during wet/dry cycles from January 1996 to June 1998: Field measurements and theoretical analysis

    USGS Publications Warehouse

    Reddy, M.M.; Reddy, M.B.; Kipp, K.L.; Burman, A.; Schuster, P.; Rawlik, P.S.

    2008-01-01

    Water quality is a key aspect of the Everglades Restoration Project, the largest water reclamation and ecosystem management project proposed in the United States. Movement of nutrients and contaminants to and from Everglades peat porewater could have important consequences for Everglades water quality and ecosystem restoration activities. In a study of Everglades porewater, we observed complex, seasonally variable peat porewater chloride concentration profiles at several locations. Analyses and interpretation of these changing peat porewater chloride concentration profiles identifies processes controlling conservative solute movement at the peat-surface water interface, that is, solutes whose transport is minimally affected by chemical and biological reactions. We examine, with an advection-diffusion model, how alternating wet and dry climatic conditions in the Florida Everglades mediate movement of chloride between peat porewater and marsh surface water. Changing surface water-chloride concentrations alter gradients at the interface between peat and overlying water and hence alter chloride flux across that interface. Surface water chloride concentrations at two frequently monitored sites vary with marsh water depth, and a transfer function was developed to describe daily marsh surface water chloride concentration as a function of marsh water depth. Model results demonstrate that porewater chloride concentrations are driven by changing surface water chloride concentrations, and a sensitivity analysis suggests that inclusion of advective transport in the model improves the agreement between the calculated and the observed chloride concentration profiles. Copyright ?? 2007 John Wiley & Sons, Ltd.

  13. Ester-Mediated Amide Bond Formation Driven by Wet–Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth**

    PubMed Central

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-01-01

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides—oligomers with a combination of ester and amide linkages—in model prebiotic reactions that are driven by wet–cool/dry–hot cycles. Through a combination of ester–amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. PMID:26201989

  14. Process-based modeling of coupled energy and water cycle under dry tropical conditions: an experiment at local scale in the cultivated Sahel (South-West Niger)

    NASA Astrophysics Data System (ADS)

    Velluet, C.; Demarty, J.; Cappelaere, B.; Braud, I.; Boulain, N.; Charvet, G.; Chazarin, J.-P.; Mainassara, I.; Boucher, M.; Issoufou, H. B.-A.; Ibrahim, M.; Oi, M.; Ramier, D.; Benarrosh, N.; Yahou, H.

    2012-04-01

    In the dry tropics in general and, particularly in the African Sahel, agro-ecosystems and hydrosystems are very sensitive to climate variability and land management. In turn, it has been shown that soil moisture, vegetation and surface fluxes produce substantial feedback effects on rainfall-producing atmospheric convection. Therefore, it is of prime importance to understand and to model the dynamics of the soil-plant-atmosphere continuum in response to contrasted meteorological and terrestrial conditions for this area. The objective of this study is to produce a process-based model of water and energy transfers in the soil and land-atmosphere interface over an entire 5-year period, at local scale, for the two main land cover types of South-West Niger: millet-crop and fallow savannah. A comprehensive dataset is available over that whole period in two such fields of the Wankama catchment, making it a rather unique asset for West Africa. This area is typical of the central Sahel conditions, with ~400-600 mm annual rainfall concentrated in the 4-5 months wet season, followed by the 7-8 months dry season. Soils are essentially sandy and prone to surface crusting, which induces a strong vertical contrast in hydrodynamic properties. The dataset used here includes 5 years of atmospheric forcing (rainfall, wind speed, sun and atmosphere radiation, air temperature and moisture) and validation variables (net radiation, turbulent fluxes and soil temperature and moisture profiles), recorded every 30 min. The seasonal course of vegetation phenology (LAI, height, biomass) and soil characteristics (particle size and density profiles) are also available. The SiSPAT (Simple Soil-Plant-Atmosphere Transfer, Braud et al., 1995) physically-based model is used for this study. It solves the mass and heat transfer system of equations in the soil, with vapour phase, coupled with a two-component (bare soil and one vegetation layer) water and energy budget at the surface-atmosphere interface

  15. Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media

    SciTech Connect

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-09-01

    For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

  16. century drying

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin I.; Smerdon, Jason E.; Seager, Richard; Coats, Sloan

    2014-11-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  17. Dry cell battery poisoning

    MedlinePlus

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  18. Colorful drying.

    PubMed

    Lakio, Satu; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-03-01

    Drying is one of the standard unit operations in the pharmaceutical industry and it is important to become aware of the circumstances that dominate during the process. The purpose of this study was to test microcapsulated thermochromic pigments as heat indicators in a fluid bed drying process. The indicator powders were manually granulated with alpha-lactose monohydrate resulting in three particle-size groups. Also, pellets were coated with the indicator powders. The granules and pellets were fluidized in fluid bed dryer to observe the progress of the heat flow in the material and to study the heat indicator properties of the indicator materials. A tristimulus colorimeter was used to measure CIELAB color values. Color indicator for heat detection can be utilized to test if the heat-sensitive API would go through physical changes during the pharmaceutical drying process. Both the prepared granules and pellets can be used as heat indicator in fluid bed drying process. The colored heat indicators give an opportunity to learn new aspects of the process at real time and could be exploded, for example, for scaling-up studies.

  19. Carbon, nitrogen cycling and land cover changes during regrowth in African dry tropical forests: integrating perspectives from field and satellite data across a chronosequence in the Miombo Woodlands of western Tanzania

    NASA Astrophysics Data System (ADS)

    Mayes, M. T.; Melillo, J. M.; Mustard, J. F.; Neill, C.; Nyadzi, G.

    2015-12-01

    Seasonally dry tropical forests in Africa (SDTFs), such as forests in Miombo Woodlands, are experiencing high rates of deforestation, degradation and regrowth. Increasing proportions of forest are disturbed or composed of young regrowth stands (<40 yr), yet the degree and dynamics of how forest structure, biogeochemical and hydrological cycling recover with regrowth are poorly understood. Here, we examine how forest structure, carbon (C) and nitrogen (N) cycling change with regrowth following cultivation in forests of western Tanzania's Miombo. This work addresses 3 questions: (1) What are the timescales of aboveground tree C stock recovery and patterns of soil mineral N availability with regrowth; (2) How does N demand for tree leaf production compare to indicators of available mineral N in surface soils from young to mature forest sites; (3) How does canopy structure vary with regrowth and disturbance and scale to Landsat-style satellite data? We established a chronosequence of 18 sites with ages 3 to >40 years since abandonment. At each, we inventoried trees to quantify aboveground tree C stocks, sampled soils to 100 cm to measure C, total and mineral N (NH4+, NO3-), and surveyed canopy cover with point-line transects, spherical densiometer and photometric leaf area measures. We also conducted soil incubations to determine nitrogen mineralization potentials. Tree C stocks ranged from 0.4 ± 0.1 Mg C ha-1 for 3-4 year sites to 27.2 ± 5.2 Mg C ha-1 for 30-40 year sites, and were 44.5 ± 7.4 Mg C ha-1 for mature forest sites. Rates of aboveground tree C stock changes (0.78 - 0.89 Mg C ha-1 yr-1) were comparable to the few published for Miombo forests. However, tree C stocks at 10 - 24 year sites (5.2 ± 1.1 Mg C ha -1) were much lower than those reported in comparable studies. Only sites > 30-40 years had C stocks approaching mature forests. Further analyses will compare N dynamics from leaves and soil across the chronosequence, and relate them to the trends in

  20. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-04

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  1. Solar drying in the Caribbean

    SciTech Connect

    Headley, O. )

    1992-03-01

    The United Nations Food and Agricultural Organisation (FAO) has estimated that a quarter of crops are lost through inadequate handling after harvesting. The use of solar dryers can reduce these losses and improve the quality of food. Oliver Headley of the University of the West Indies overviews a range of dryers developed in the Caribbean region. Solar dryers have been used in various parts of the Caribbean for the past eighteen years. The main types are: closed cycle dryers with separate flat plate collector; open cycle dryers with roof vanes against direct sunlight; open cycle dryers with rockbed heat storage units; open cycle dryers with chimneys for air circulation; wire basket dryers with flow through ventilation; barn roof collectors feeding packed bed dryers. During the dry season (January to April), mean daily insolation in a typical Caribbean island is about 25 MJ/m{sup 2}. With such an abundant resource, solar crop drying emerged as a preferred method for the preservation of perishable commodities. In territories without fossil fuel reserves solar energy is an obvious alternative since it does not involve expenditure of scarce foreign exchange. Research and development work in solar crop drying was conducted both at experimental sites in the University and in rural districts throughout the region. Several types of dryer were designed and tested.

  2. Gas storage in "dry water" and "dry gel" clathrates.

    PubMed

    Carter, Benjamin O; Wang, Weixing; Adams, Dave J; Cooper, Andrew I

    2010-03-02

    "Dry water" (DW) is a free-flowing powder prepared by mixing water, hydrophobic silica particles, and air at high speeds. We demonstrated recently that DW can be used to dramatically enhance methane uptake rates in methane gas hydrate (MGH). Here, we expand on our initial work, demonstrating that DW can be used to increase the kinetics of formation of gas clathrates for gases other than methane, such as CO(2) and Kr. We also show that the stability of the system toward coalescence can be increased via the inclusion of a gelling agent to form a "dry gel", thus dramatically improving the recyclability of the material. For example, the addition of gellan gum allows effective reuse over at least eight clathration cycles without the need for reblending. DW and its "dry gel" modification may represent a potential platform for recyclable gas storage or gas separation on a practicable time scale in a static, unmixed system.

  3. Self-protection in dry recycle technologies

    SciTech Connect

    Hannum, W.H.; Wade, D.; Stanford, G.

    1995-12-01

    In response to the INFCE conclusions, the U.S. undertook development of a new dry fuel cycle. Dry recycle processes have been demonstrated to be feasible. Safeguarding such fuel cycles will be dramatically simpler than the PUREX fuel cycle. At every step of the processes, the materials meet the {open_quotes}spent-fuel standard.{close_quotes} The scale is compatible with collocation of power reactors and their recycle facility, eliminating off-site transportation and storage of plutonium-bearing materials. Material diverted either covertly or overtly would be difficult (relative to material available by other means) to process into weapons feedstock.

  4. Dry Macular Degeneration

    MedlinePlus

    Dry macular degeneration Overview By Mayo Clinic Staff Dry macular degeneration is a common eye disorder among people over 65. ... vision in your direct line of sight. Dry macular degeneration may first develop in one eye and then ...

  5. Drying temperature effects on fish dry mass measurements

    USGS Publications Warehouse

    Lantry, B.F.; O'Gorman, R.

    2007-01-01

    Analysis of tissue composition in fish often requires dry samples. Time needed to dry fish decreases as temperature is increased, but additional volatile material may be lost. Effects of 10??C temperature increases on percentage dry mass (%DM) were tested against 60??C controls for groups of lake trout Salvelinus namaycush, rainbow smelt Osmerus mordax, slimy sculpin Cottus cognatus, and alewife Alosa pseudoharengus. Lake trout %DMs were lower at greater temperatures, but not significantly different from 60??C controls. Rainbow smelt and slimy sculpin %DMs were lower at greater temperatures and differences were significant when test temperatures reached 90??C. Significant differences were not found in tests using alewives because variability in %DM was high between fish. To avoid inter-fish variability, 30 alewives were each dried successively at 60, 70, 80, and then 90??C and for all fish %DM declined at each higher temperature. In general, %DMs were lower at greater temperatures and after reaching a stable dry weight, fish did not lose additional mass if temperature remained constant. Results indicate that caution should be used when comparing dry mass related indices from fish dried at different temperatures because %DM was negatively related to temperature. The differences in %DM observed with rising temperature could account for substantial portions of the variability in reported energy values for the species tested. Differences in %DM means for the 60 vs. 80??C and 60 vs. 90??C tests for rainbow smelt and alewife could represent of from 8 to 38% of observed annual energy cycles for Lakes Ontario and Michigan.

  6. Dry mouth during cancer treatment

    MedlinePlus

    Chemotherapy - dry mouth; Radiation therapy - dry mouth; Transplant - dry mouth; Transplantation - dry mouth ... National Cancer Institute. Chemotherapy and you: support for people with cancer. Updated May 2007. ... ...

  7. BIOMASS DRYING TECHNOLOGIES

    EPA Science Inventory

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the d...

  8. Experimental study on drying kinetic of cassava starch in a pneumatic drying system

    NASA Astrophysics Data System (ADS)

    Suherman, Kumoro, Andri Cahyo; Kusworo, Tutuk Djoko

    2015-12-01

    The aims of this study are to present the experimental research on the drying of cassava starch in a pneumatic dryer, to describe its drying curves, as well as to calculate its thermal efficiency. The effects of operating conditions, namely the inlet air temperature (60-100 °C) and solid-gas flow rate ratio (Ms/Mg 0.1-0.3) were studied. Heat transfer is accomplished through convection mechanism in a drying chamber based on the principle of direct contact between the heated air and the moist material. During the drying process, intensive heat and mass transfer between the drying air and the cassava starch take place. In order to meet the SNI standards on solid water content, the drying process was done in two cycles. The higher the temperature of the drying air, the lower the water content of the solids exiting the dryer. Thermal efficiency of the 2nd cycle was found to be lower than the 1st cycle.

  9. Dry eye syndrome

    MedlinePlus

    ... of dry eyes include: Dry environment or workplace (wind, air conditioning) Sun exposure Smoking or second-hand ... NOT smoke and avoid second-hand smoke, direct wind, and air conditioning. Use a humidifier, especially in ...

  10. The carbon dioxide cycle

    USGS Publications Warehouse

    James, P.B.; Hansen, G.B.; Titus, T.N.

    2005-01-01

    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  11. Energy-efficient regenerative liquid desiccant drying process

    DOEpatents

    Ko, Suk M.; Grodzka, Philomena G.; McCormick, Paul O.

    1980-01-01

    This invention relates to the use of desiccants in conjunction with an open oop drying cycle and a closed loop drying cycle to reclaim the energy expended in vaporizing moisture in harvested crops. In the closed loop cycle, the drying air is brought into contact with a desiccant after it exits the crop drying bin. Water vapor in the moist air is absorbed by the desiccant, thus reducing the relative humidity of the air. The air is then heated by the used desiccant and returned to the crop bin. During the open loop drying cycle the used desiccant is heated (either fossil or solar energy heat sources may be used) and regenerated at high temperature, driving water vapor from the desiccant. This water vapor is condensed and used to preheat the dilute (wet) desiccant before heat is added from the external source (fossil or solar). The latent heat of vaporization of the moisture removed from the desiccant is reclaimed in this manner. The sensible heat of the regenerated desiccant is utilized in the open loop drying cycle. Also, closed cycle operation implies that no net energy is expended in heating drying air.

  12. Dry deposition velocities

    SciTech Connect

    Sehmel, G.A.

    1984-03-01

    Dry deposition velocities are very difficult to predict accurately. In this article, reported values of dry deposition velocities are summarized. This summary includes values from the literature on field measurements of gas and particle dry deposition velocities, and the uncertainties inherent in extrapolating field results to predict dry deposition velocities are discussed. A new method is described for predicting dry deposition velocity using a least-squares correlation of surface mass transfer resistances evaluated in wind tunnel experiments. 14 references, 4 figures, 1 table.

  13. Structure of drying costs

    SciTech Connect

    Sztabert, Z.T.

    1996-05-01

    A knowledge of cost structure and cost behavior is necessary in the management activities, particularly in the domain of investment or production decision making, as well as in the areas of production cost planning and control. Prediction and analysis of values of cost components for different technologies of drying are important when selection of a drying method and drying equipment should be done. Cost structures of lumber and coal drying processes together with an application of the factor method for prediction of the drying cost are presented.

  14. Drying low rank coal and retarding spontaneous ignition

    SciTech Connect

    Bellow, E.J. Jr.; Bixel, J.C.; Heaney, W.F.; Yan, T.Y.

    1989-05-09

    A method is described of passivating and cooling heated dried coal comprising: (a) heating particulate coal to a temperature between about 190 and about 230/sup 0/F to dry to the desired level: and (b) coating the resulting heated particulate coal with an aqueous emulsion of a hydrocarbon selected from the group consisting of petroleum resid, light cycle oil, heavy cycle oil, clarified slurry oil, durene, asphaltenes, coal tar and coal tar pitch.

  15. Design of drying chamber and biomass furnace for sun-biomass hybrid rice-drying machine

    NASA Astrophysics Data System (ADS)

    Satria, Dhimas; Haryadi, Austin, Ruben; Kurniawan, Bobby

    2016-03-01

    In most Asian countries, rice drying is carried out manually by exposing rice to sunlight. However, problem occurs when rain season comes. Lack of sunlight deters the drying process. This paper proposes a design of mechanical rice drying machine with hybrid sun-biomass energy source. Pahl & Beitz method, which consists of four steps process: function planning and clarification, design concept, design prototype, and design details; are used as design methodology. Based on design result and calculation, in this paper propose specifications for drying machine and biomass furnace. Drying chamber is a continuous flow system with pneumatic-conveyor as blower. This hybrid utilizes two types of energy sources, sun and biomass. The proposed machine has capacity of 500 kilograms per cycle using 455 Watt of energy, which is more efficient than ordinary heater. Biomass furnace utilizes heat transfer by means of arranging 64 pieces of stainless steel pipes of 0.65 diameters in parallel.

  16. Ambient Dried Aerogels

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  17. Dry Snow Metamorphism

    DTIC Science & Technology

    2012-09-19

    REPORT Dry Snow Metamorphism Final Report Grant: 51065-EV 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The goal of this project was to characterize the...structural evolution of dry snow as it underwent metamorphism under either quasi-isothermal conditions or a temperature gradient, and to determine...Z39.18 - 5-Aug-2011 Dry Snow Metamorphism Final Report Grant: 51065-EV Report Title ABSTRACT The goal of this project was to characterize the structural

  18. Menstrual Cycle

    MedlinePlus

    ... receive Pregnancy email updates Enter email Submit The menstrual cycle Day 1 starts with the first day of ... drop around Day 25 . This signals the next menstrual cycle to begin. The egg will break apart and ...

  19. Indiana Corn Dry Mill

    SciTech Connect

    2006-09-01

    The goal of this project is to perform engineering, project design, and permitting for the creation and commercial demonstration of a corn dry mill biorefinery that will produce fuel-grade ethanol, distillers dry grain for animal feed, and carbon dioxide for industrial use.

  20. Tray Drying of Solids.

    ERIC Educational Resources Information Center

    Afacan, Artin; Masliyah, Jacob

    1984-01-01

    Describes a drying experiment useful in presenting the concept of simultaneous heat and mass transfer. Background information, equipment requirements, experimental procedures, and results are provided. The reasonably good agreement in the calculated rate of drying and that observed experimentally makes students feel confident in applying…

  1. Dry imaging cameras.

    PubMed

    Indrajit, Ik; Alam, Aftab; Sahni, Hirdesh; Bhatia, Mukul; Sahu, Samaresh

    2011-04-01

    Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow.

  2. Packaged kiln dried firewood

    SciTech Connect

    Cutrara, A.

    1986-07-01

    A process is described for kiln drying firewood consisting of essentially uniform lengths of split firewood pieces, the process comprising splitting essentially uniform lengths of green tree logs to form firewood pieces, placing the firewood pieces in open mesh bags to provide a plurality of bags of firewood, placing the plurality of bags of green firewood pieces in a kiln drying oven, kiln drying the pieces at temperatures in excess of 150/sup 0/F. by moving heated air over the pieces until the pieces have an overall moisture content ranging from 15% up to 30% by weight, operating the kiln at a temperature below a level which would render the structural characteristics of the bag useless and removing the kiln dried firewood pieces in the plurality of bags from the kiln drying oven.

  3. Annotated Bibliography for Drying Nuclear Fuel

    SciTech Connect

    Rebecca E. Smith

    2011-09-01

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  4. Freeze drying method

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  5. Freeze drying apparatus

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  6. Acoustoconvection Drying of Meat

    NASA Astrophysics Data System (ADS)

    Zhilin, A. A.; Fedorov, A. V.

    2016-03-01

    The dynamics of moisture extraction from meat samples by the acoustoconvection and thermoconvection methods has been investigated. To describe the dynamics of moisture extraction from meat, we propose a simple relaxation model with a relaxation time of 8-10 min in satisfactorily describing experimental data on acoustoconvection drying of meat. For thermoconvection drying the relaxation time is thereby 30 and 45 min for the longitudinal and transverse positions of fibers, respectively.

  7. Investment opportunity: the FPL (Forest Products Laboratory) low-cost solar-dry kiln

    SciTech Connect

    Harpole, G.B.

    1988-09-01

    Two equations are presented that may be used to estimate a maximum investment limit and working capital requirements for the FPL low-cost solar-dry kiln systems. The equations require data for drying-cycle time, green-lumber cost, and kiln-dried lumber costs. Results are intended to provide a preliminary estimate.

  8. Drying SDS-Polyacrylamide Gels.

    PubMed

    Sambrook, Joseph; Russell, David W

    2006-09-01

    INTRODUCTIONThis protocol describes a method for drying SDS-polyacrylamide gels. Gels containing proteins radiolabeled with (35)S-labeled amino acids must be dried before autoradiographic images can be obtained. Nonradioactive gels can also be preserved by drying.

  9. Solar fish drying in the Republic of Guinea

    SciTech Connect

    Cosby, R.M.; Govaer, D. ); Diallo, A.

    1990-09-01

    The use of a natural-flow solar dryer for drying fish in the Republic of Guinea was investigated. The construction of a simple, family-size, prototype solar dryer required only basic fabrication skills and materials readily available in Guinea. Drying experiments on whiting and catfish under simulated sunlight demonstrated an initial drying phase with a constant water-removal rate followed by a decreasing rate until drying ceased. Overall drying rates indicated that a residential-scale dryer could operate on a two-day cycle and provide a quality dried product. The utilization of the ubiquitous solar energy resource in a stand-alone, locally constructed, small-scale unit for the purpose of food preservation can have positive economic, environmental, and social impacts in Guinea. 2 refs., 3 figs.

  10. Cycle Analysis

    SciTech Connect

    Wright, Steven A.

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop and provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.

  11. Freeze-drying today and tomorrow.

    PubMed

    Leary, J H; Stanford, E A

    1976-10-01

    The freeze-drying process and equipment have been improved over the years; the cycle times have shortened and the dried products have improved as a result. This talk will deal with these improvements and how we have progressed from the early systems to where we are today. Such areas of discussion will include: vacuum pumping systems, how they are sized and designed to meet the needs for general and special applications; heat transfer systems, and their use in maintaining the drying profile; condensing surface design, and what is best for certain types of dryers; controls and instrumentation, and how these have played a big part in the drying process and have made it possible to get repeatability; refrigeration systems, and the part they play in the performance of freeze-drying; and lastly the effect of internal stoppering, bottomless trays, and other items such as these have had on the present state of the art. It goes without saying that there have been many changes and there will continue to be changes and we shall endeavor to look into the future--as to what might well bo some of these changes. Included in the talk will be a number of slides and illustrations to point out the various items as they are discussed.

  12. Cycling injuries.

    PubMed Central

    Cohen, G. C.

    1993-01-01

    Bicycle-related injuries have increased as cycling has become more popular. Most injuries to recreational riders are associated with overuse or improper fit of the bicycle. Injuries to racers often result from high speeds, which predispose riders to muscle strains, collisions, and falls. Cyclists contact bicycles at the pedals, seat, and handlebars. Each is associated with particular cycling injuries. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8471908

  13. Trigger Point Dry Needling.

    PubMed

    2017-03-01

    Increasingly, physical therapists in the United States and throughout the world are using dry needling to treat musculoskeletal pain, even though this treatment has been a controversial addition to practice. To better generalize to physical therapy practice the findings about dry needling thus far, the authors of a study published in the March 2017 issue of JOSPT identified the need for a systematic review examining the effectiveness of dry needling performed by physical therapists on people with musculoskeletal pain. Their review offers a meta-analysis of data from several included studies and assesses the evidence for risks of bias. J Orthop Sports Phys Ther 2017;47(3):150. doi:10.2519/jospt.2017.0502.

  14. Magnetically responsive dry fluids

    NASA Astrophysics Data System (ADS)

    Sousa, Filipa L.; Bustamante, Rodney; Millán, Angel; Palacio, Fernando; Trindade, Tito; Silva, Nuno J. O.

    2013-07-01

    Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid.Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01784b

  15. Vapor Compression Cycle Design Program (CYCLE_D)

    National Institute of Standards and Technology Data Gateway

    SRD 49 NIST Vapor Compression Cycle Design Program (CYCLE_D) (PC database for purchase)   The CYCLE_D database package simulates the vapor compression refrigeration cycles. It is fully compatible with REFPROP 9.0 and covers the 62 single-compound refrigerants . Fluids can be used in mixtures comprising up to five components.

  16. Dry piston coal feeder

    DOEpatents

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  17. Drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, David; Sobac, Benjamin; Loquet, Boris; Sampol, José.

    2010-11-01

    The drying of a drop of human blood is fascinating by the complexity of the physical mechanisms that occur as well as the beauty of the phenomenon which has never been previously evidenced in the literature. The final stage of full blood evaporation reveals for a healthy person the same regular pattern with a good reproducibility. Other tests on anemia and hyperlipidemic persons were performed and presented different patterns. By means of digital camera, the influence of the motion of red blood cells (RBCs) which represent about 50% of the blood volume, is revealed as well as its consequences on the final stages of drying. The mechanisms which lead to the final pattern of dried blood drops are presented and explained on the basis of fluid and solid mechanics in conjunction with the principles of hematology. Our group is the first to evidence that the specific regular patterns characteristic of a healthy individual do not appear in a dried drop of blood from a person with blood disease. Blood is a complex colloidal suspension for which the flow motion is clearly non-Newtonian. When drops of blood evaporate, all the colloids are carried by the flow motion inside the drop and interact.

  18. Quality of dry ginger (Zingiber officinale) by different drying methods.

    PubMed

    E, Jayashree; R, Visvanathan; T, John Zachariah

    2014-11-01

    Ginger rhizomes sliced to various lengths of 5, 10, 15, 20, 30, 40, 50 mm and whole rhizomes were dried from an initial moisture content of 81.3 % to final moisture content of less than 10 % by various drying methods like sun drying, solar tunnel drying and cabinet tray drying at temperatures of 50, 55, 60 and 65 °C. Slicing of ginger rhizomes significantly reduced the drying time of ginger in all the drying methods. It was observed that drying of whole ginger rhizomes under sun took the maximum time (9 days) followed by solar tunnel drying (8 days). Significant reduction in essential oil and oleoresin content of dry ginger was found as the slice length decreased. The important constituents of ginger essential oil like zingiberene, limonene, linalool, geraniol and nerolidol as determined using a gas chromatography was also found to decrease during slicing and as the drying temperature increased. The pungency constituents in the oleoresin of ginger like total gingerols and total shogoals as determined using a reverse phase high performance liquid chromatography also showed a decreasing trend on slicing and with the increase in drying temperature. It was observed from the drying studies that whole ginger rhizomes dried under sun drying or in a solar tunnel drier retained the maximum essential oil (13.9 mg/g) and oleoresin content (45.2 mg/g) of dry ginger. In mechanical drying, the drying temperature of 60 °C was considered optimum however there was about 12.2 % loss in essential oil at this temperature.

  19. Menu Cycles.

    ERIC Educational Resources Information Center

    Clayton, Alfred; Almony, John

    The curriculum guide for commercial foods instruction is designed to aid the teacher in communicating the importance of menu cycles in commercial food production. It also provides information about the necessary steps in getting food from the raw form to the finished product, and then to the consumer. In addition to providing information on how to…

  20. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  1. The questionably dry eye.

    PubMed Central

    Mackie, I. A.; Seal, D. V.

    1981-01-01

    This paper is concerned with the recognition of the dry eye when the clinical diagnosis is in doubt and other external eye diseases may be present. Papillary conjunctivitis is common to the dry eye as well as other pathological conditions and confuses the diagnosis. We have correlated the factors involved in the assessment for dryness. We have shown that particulate matter in the unstained tear film is associated with low tear lysozyme concentration. Tear flow and tear lysozyme are not necessarily interrelated, but a low lysozyme concentration (tear lysozyme ratio < 1.0) is associated with keratoconjunctivitis sicca. The Schirmer I test can produce false positive results, and we have suggested a modification to overcome this. This modified test will detect the eye with severely depleted lysozyme secretion, but it is unreliable for detecting the eye with moderately depleted secretion. We find that its lowest normal limit should be considered as 6 mm. Images PMID:7448154

  2. Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems

    NASA Astrophysics Data System (ADS)

    Barrett, J. E.; Virginia, R. A.; Lyons, W. B.; McKnight, D. M.; Priscu, J. C.; Doran, P. T.; Fountain, A. G.; Wall, D. H.; Moorhead, D. L.

    2007-03-01

    Among aquatic and terrestrial landscapes of the McMurdo Dry Valleys, Antarctica, ecosystem stoichiometry ranges from values near the Redfield ratios for C:N:P to nutrient concentrations in proportions far above or below ratios necessary to support balanced microbial growth. This polar desert provides an opportunity to evaluate stoichiometric approaches to understand nutrient cycling in an ecosystem where biological diversity and activity are low, and controls over the movement and mass balances of nutrients operate over 10-106 years. The simple organisms (microbial and metazoan) comprising dry valley foodwebs adhere to strict biochemical requirements in the composition of their biomass, and when activated by availability of liquid water, they influence the chemical composition of their environment according to these ratios. Nitrogen and phosphorus varied significantly in terrestrial and aquatic ecosystems occurring on landscape surfaces across a wide range of exposure ages, indicating strong influences of landscape development and geochemistry on nutrient availability. Biota control the elemental ratio of stream waters, while geochemical stoichiometry (e.g., weathering, atmospheric deposition) evidently limits the distribution of soil invertebrates. We present a conceptual model describing transformations across dry valley landscapes facilitated by exchanges of liquid water and biotic processing of dissolved nutrients. We conclude that contemporary ecosystem stoichiometry of Antarctic Dry Valley soils, glaciers, streams, and lakes results from a combination of extant biological processes superimposed on a legacy of landscape processes and previous climates.

  3. Pore scale processes in dry soils

    NASA Astrophysics Data System (ADS)

    Schimel, J.

    2015-12-01

    Almost all soils experience regular drought and rewetting events. Yet most of our understanding of soil processes focuses on the moist periods, when plants are growing and nutrients are actively cycling. Yet, as soils dry, processes continue, yet change. Microbes shift their metabolic pathways from growth to survival, producing extracellular polymeric substances (EPS), sporulating, and going dormant. Under dry conditions, biotic processes are constrained but abiotic, chemical processes continue potentially altering soil aggregation and structure; in clayey California annual grassland & woodland soils pools of bioavailable water extractable organic carbon (WEOC) increase as does microbial biomass. Finally at rewetting, the pulse of water mobilizes resources, stimulates microbial activity and produces a flush of respiration and nutrient mineralization that can mobilize resources that had been previously inaccessible. One question that has driven much research has been where the organic matter comes from that drives these processes. We had hypothesized that the source of C for the dry-season increases was from the previous winter's dead roots, but field experiments where we maintained plots plant-free for two years showed no decline in the production of WEOC, nor in the early-season respiration pulses following rewetting. In this presentation, we will discuss recent work integrating measurements on aggregation (driven both by biotic and abiotic processes), EPS production, and the dynamics of WEOC and microbial biomass and how they function differently under dry and moist conditions.

  4. Ultrasonic Clothes Drying Technology

    SciTech Connect

    Patel, Viral; Momen, Ayyoub

    2016-05-09

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE’s Building Technologies Office in 2014.

  5. Ultrasonic Clothes Drying Technology

    ScienceCinema

    Patel, Viral; Momen, Ayyoub

    2016-07-12

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE’s Building Technologies Office in 2014.

  6. Superlubricity of dry nanocontacts

    NASA Astrophysics Data System (ADS)

    Gnecco, Enrico; Maier, Sabine; Meyer, Ernst

    2008-09-01

    We discuss how various forms of dry superlubricity, recently observed on the nanoscale, have been interpreted by simple phenomenological models. In particular, we review the cases of static and dynamic single-contact lubricity, thermolubricity, and structural lubricity. All these phenomena have been studied by friction force microscopy and explained using the classical Prandtl-Tomlinson model and its extensions, including thermal activation, temporal and spatial variations of the surface energy corrugation, and multiple-contact effects.

  7. Drying of fiber webs

    DOEpatents

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  8. Drying of fiber webs

    DOEpatents

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  9. Simple Solutions for Dry Eye

    MedlinePlus

    ... are more concentrated in the tear film of dry eye patients. In hot weather, sleep with the windows shut and keep cool with air conditioning. • Dry eye patients often develop or aggravate allergies. An ...

  10. Microwave applications to rock specimen drying in laboratory

    NASA Astrophysics Data System (ADS)

    Park, Jihwan; Park, Hyeong-Dong

    2014-05-01

    Microwave heating is the process in which electromagnetic wave with 300 MHz - 300 GHz heats dielectric material. Although in the beginning microwave was mainly used in food industry to cook or heat the food, it soon became clear that microwave had a large potential for other applications. It was thus introduced in geological fields of investigation like mineral processing, oil sand and oil shale extraction, soil remediation, waste treatment. However, the drying techniques using microwave was rarely treated in geology field. According to the ISRM suggested methods, experimental rock specimens in laboratory test were dried in 105°C oven for a period of at least 24 hours. In this method, hot air transmits heats to material by means of thermal conduction, and the heat was transferred from the surface to the inside of the rock specimens. The thermal gradient and moisture gradient can deteriorate the specimens, and energy can be wasted in bulk heating the specimens. The aim of our study was to compare physical property, microstructural property, and energy efficiency between microwave drying method and conventional oven drying method, and to suggest new method for rock drying. Granite, basalt, and sandstone were selected as specimens and were made in cylinder shape with 54 mm diameter. To compare two different methods, one set of saturated specimens were dried in 105°C conventional oven and the other set of saturated specimens were dried in microwave oven. After dried, the specimens were cooled and saturated in 20°C water 48 hours. The saturation-drying were repeated 50 cycles, and the physical property and microstructural property were measured every 10 cycles. Absorption and elastic wave velocity were measured to investigate the change of physical property, and microscope image and X-ray computed tomography image were obtained to investigate the change of microstructural property of rock specimens. The electricity consumption of conventional oven and microwave oven

  11. Effect of wetting and drying on the bioavailability of organic compounds sequestered in soil

    SciTech Connect

    White, J.C.; Quinones-Rivera, A.; Alexander, M.

    1998-12-01

    A study was conducted to determine whether cycles of wetting and drying alter the availability of organic compounds that have aged in soil. Subjecting soil to wetting-and drying cycles during periods of aging <60 d decreased the biodegradability, extractability, and uptake by earthworms of phenanthrene and reduced the extractability of di(2-ethylhexyl) phthalate (DEHP) sequestered in soil compared with soil aged at constant moisture. The mineralization of sequestered DEHP was greater in soil that was wet and dried during a 41-d period of aging than in soil incubated at constant moisture. Wetting and drying soil during periods of aging of 100 or more days had no effect on the biodegradability or assimilation by Eisenia foetida of sequestered phenanthrene and DEHP. Subjecting soil containing previously sequestered phenanthrene to one, three, or four wetting-and-drying cycles increased the biodegradability of the compound. The extractability of sequestered phenanthrene was greater in soil that was wet and dried once after aging than in soil maintained at constant moisture, but three wetting-and-drying cycles did not affect extractability. The biodegradability of sequestered DEHP was unaffected by wetting and drying. The authors suggest that wetting and drying may be useful in the remediation of contaminated soils.

  12. Terrestrial Planets Accreted Dry

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Blichert-Toft, J.

    2007-12-01

    Plate tectonics shaped the Earth, whereas the Moon is a dry and inactive desert. Mars probably came to rest within the first billion years of its history, and Venus, although internally very active, has a dry inferno for its surface. The strong gravity field of a large planet allows for an enormous amount of gravitational energy to be released, causing the outer part of the planetary body to melt (magma ocean), helps retain water on the planet, and increases the pressure gradient. The weak gravity field and anhydrous conditions prevailing on the Moon stabilized, on top of its magma ocean, a thick buoyant plagioclase lithosphere, which insulated the molten interior. On Earth, the buoyant hydrous phases (serpentines) produced by reactions between the terrestrial magma ocean and the wet impactors received from the outer Solar System isolated the magma and kept it molten for some few tens of million years. The elemental distributions and the range of condensation temperatures show that the planets from the inner Solar System accreted dry. The interior of planets that lost up to 95% of their K cannot contain much water. Foundering of their wet surface material softened the terrestrial mantle and set the scene for the onset of plate tectonics. This very same process may have removed all the water from the surface of Venus 500 My ago and added enough water to its mantle to make its internal dynamics very strong and keep the surface very young. Because of a radius smaller than that of the Earth, not enough water could be drawn into the Martian mantle before it was lost to space and Martian plate tectonics never began. The radius of a planet therefore is the key parameter controlling most of its evolutional features.

  13. Dry removal of asbestos.

    PubMed

    Elias, J D

    1981-08-01

    A method for the dry removal of friable asbestos has been developed. The Workplace Safety and Health Branch in Manitoba's Limited have co-operated in the production of an improved procedure. It was employed for the first time in the fall of 1979 when the Industrial Hygiene Section was asked for advice about removal of asbestos from a Winnipeg School Division warehouse. Fans were used to maintain the work area under negative pressure to prevent the spread of asbestos throughout the building. The exhaust air was filtered to prevent environmental contamination, and special precautions were taken to protect workers.

  14. Method of drying articles

    DOEpatents

    Janney, Mark A.; Kiggans, Jr., James O.

    1999-01-01

    A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.

  15. Method of drying articles

    DOEpatents

    Janney, M.A.; Kiggans, J.O. Jr.

    1999-03-23

    A method of drying a green particulate article includes the steps of: (a) Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and (b) contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores. 3 figs.

  16. Electrohydrodynamic Drying of Carrot Slices

    PubMed Central

    Ding, Changjiang; Lu, Jun; Song, Zhiqing

    2015-01-01

    Carrots have one of the highest levels of carotene, and they are rich in vitamins, fiber and minerals. However, since fresh carrots wilt rapidly after harvest under inappropriate storage conditions, drying has been used to improve their shelf life and retain nutritional quality. Therefore, to further investigate the potential of this method, carrot slices were dried in an EHD system in order to study the effect of different voltages on drying rate. As measures of quality, carotene content and rehydration ratio were, respectively, compared against the conventional oven drying regime. Carotene, the main component of the dried carrot, and rehydration characteristics of the dried product can both indicate quality by physical and chemical changes during the drying process. Mathematical modeling and simulation of drying curves were also performed, using root mean square error, reduced mean square of the deviation and modeling efficiency as the primary criteria to select the equation that best accounts for the variation in the drying curves of the dried samples. Theoretically, the Page model was best suited for describing the drying rate curve of carrot slices at 10kV to 30kV. Experimentally, the drying rate of carrots was notably greater in the EHD system when compared to control, and quality, as determined by carotene content and rehydration ratio, was also improved when compared to oven drying. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the drying properties of carrots, and, as a result, it provides deeper insight into the industrial potential of the EHD drying technique. PMID:25874695

  17. Electrohydrodynamic drying of carrot slices.

    PubMed

    Ding, Changjiang; Lu, Jun; Song, Zhiqing

    2015-01-01

    Carrots have one of the highest levels of carotene, and they are rich in vitamins, fiber and minerals. However, since fresh carrots wilt rapidly after harvest under inappropriate storage conditions, drying has been used to improve their shelf life and retain nutritional quality. Therefore, to further investigate the potential of this method, carrot slices were dried in an EHD system in order to study the effect of different voltages on drying rate. As measures of quality, carotene content and rehydration ratio were, respectively, compared against the conventional oven drying regime. Carotene, the main component of the dried carrot, and rehydration characteristics of the dried product can both indicate quality by physical and chemical changes during the drying process. Mathematical modeling and simulation of drying curves were also performed, using root mean square error, reduced mean square of the deviation and modeling efficiency as the primary criteria to select the equation that best accounts for the variation in the drying curves of the dried samples. Theoretically, the Page model was best suited for describing the drying rate curve of carrot slices at 10kV to 30kV. Experimentally, the drying rate of carrots was notably greater in the EHD system when compared to control, and quality, as determined by carotene content and rehydration ratio, was also improved when compared to oven drying. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the drying properties of carrots, and, as a result, it provides deeper insight into the industrial potential of the EHD drying technique.

  18. Drying and decontamination of raw pistachios with sequential infrared drying, tempering and hot air drying.

    PubMed

    Venkitasamy, Chandrasekar; Brandl, Maria T; Wang, Bini; McHugh, Tara H; Zhang, Ruihong; Pan, Zhongli

    2017-04-04

    Pistachio nuts have been associated with outbreaks of foodborne disease and the industry has been impacted by numerous product recalls due to contamination with Salmonella enterica. The current hot air drying of pistachios has low energy efficiency and drying rates, and also does not guarantee the microbial safety of products. In the study described herein, dehulled and water-sorted pistachios with a moisture content (MC) of 38.14% (wet basis) were dried in a sequential infrared and hot air (SIRHA) drier to <9% MC. The decontamination efficacy was assessed by inoculating pistachios with Enterococcus faecium, a surrogate of Salmonella enterica used for quality control in the almond industry. Drying with IR alone saved 105min (34.4%) of drying time compared with hot air drying. SIRHA drying of pistachios for 2h with infrared (IR) heat followed by tempering at a product temperature of 70°C for 2h and then by hot air drying shortened the drying time by 40min (9.1%) compared with drying by hot air only. This SIRHA method also reduced the E. faecium cell population by 6.1-logCFU/g kernel and 5.41-logCFU/g shell of pistachios. The free fatty acid contents of SIRHA dried pistachios were on par with that of hot air dried samples. Despite significant differences in peroxide values (PV) of pistachio kernels dried with the SIRHA method compared with hot air drying at 70°C, the PV were within the permissible limit of 5Meq/kg for edible oils. Our findings demonstrate the efficacy of SIRHA drying in achieving simultaneous drying and decontamination of pistachios.

  19. Advances in drying: Volume 4

    SciTech Connect

    Mujumdar, A.S.

    1987-01-01

    Topics covered in this volume include recent thoughts in modeling of drying phenomena, use of computers in rational design of drying particulates, recent advances in drying of wood, and heat/mass transfer phenomena in drying of solids. As the readers will no doubt notice, special effort is made to ensure the truly international nature of the contents of this serial publication. As existing knowledge on drying and dryers becomes more widely and readily accessible, it is expected that more and more dryers will be designed rationally rather than built solely with the benefit of empiricism.

  20. Robotic dry stripping of airframes - Phase II

    NASA Astrophysics Data System (ADS)

    Pauli, Robert A.; Wittenberg, Art M.

    1989-03-01

    This paper describes a program for the development of a dust-free closed-cycle robotic system for dry stripping of airframes, designed to insure dust-free work environment and reduce plastic-media loss, the contamination risk, and the media inventory requirement. Phase I of the program involved building a prototype of the proposed robotic arm and its dust enclosure to prove basic automation concepts, showing reasonable paint removal rate from a curved surface, and establishing that the process is dust-free and recovers plastic media in a closed-cycle fashion. This paper contains calculations on the effect of different blasting parameters in order to determine optimum values required for the completion of Phase I. Also presented is the progress achieved by the Phase II of the program, which is to prove the total concept by building the complete system and demonstrating its capability.

  1. Effect of season on estrous cycle of Yankasa sheep.

    PubMed

    Igono, M O; Molokwu, E C; Aliu, Y O

    1982-09-01

    An investigation was conducted to establish the effects of harmattan and hot-dry season on estrous cycle length, onset, and duration of estrus in Yankasa sheep indigenous to the Nigerian guinea savanna zone. Mean cycle lengths were 16.8 +/- 0.58 and 16.4 +/- 0.53 days during harmattan and hot-dry seasons, respectively; short cycles, 5-13 days, and long cycles, 21 to 30 days, were observed during both seasons. During the harmattan season, 57.1% of estrus began at night while 70% started at night during the hot-dry season. The duration of normal estrus observed during the harmattan, 33.6 +/- 5.87h, significantly decreased (P0.05) during the hot-dry season (24.0 +/- 5.45h). It is suggested that twice daily observation at 12-hour intervals will suffice to detect estrus in this breed of sheep.

  2. Drying and decontamination of pistachios with sequential infrared drying, tempering and hot air drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pistachio industry is in need of improved drying technology as the current hot air drying has low energy efficiency and drying rate and high labor cost and also does not produce safe products against microbial contamination. In the current study, dehulled and water- sorted pistachios with a mois...

  3. Dry EEG Electrodes

    PubMed Central

    Lopez-Gordo, M. A.; Sanchez-Morillo, D.; Valle, F. Pelayo

    2014-01-01

    Electroencephalography (EEG) emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications. PMID:25046013

  4. Terrestrial Carbon Cycle Variability.

    PubMed

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor

    2016-01-01

    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2, temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y (-1)) with respect to a large and uncertain background (123 +/- 4 Pg-C y (-1)), and

  5. Terrestrial Carbon Cycle Variability

    PubMed Central

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor

    2016-01-01

    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2, temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y -1) with respect to a large and uncertain background (123 +/- 4 Pg-C y -1), and

  6. Steam drying -- Modeling and applications

    SciTech Connect

    Wimmerstedt, R.; Hager, J.

    1996-08-01

    The concept of steam drying originates from the mid of the last century. However, a broad industrial acceptance of the technique has so far not taken place. The paper deals with modelling the steam drying process and applications of steam drying within certain industrial sectors where the technique has been deemed to have special opportunities. In the modelling section the mass and heat transfer processes are described along with equilibrium, capillarity and sorption phenomena occurring in porous materials during the steam drying process. In addition existing models in the literature are presented. The applications discussed involve drying of fuels with high moisture contents, cattle feed exemplified by sugar beet pulp, lumber, paper pulp, paper and sludges. Steam drying is compared to flue gas drying of biofuels prior to combustion in a boiler. With reference to a current installation in Sweden, the exergy losses, as manifested by loss of co-generation capacity, are discussed. The energy saving potential when using steam drying of sugar beet pulp as compared to other possible plant configurations is demonstrated. Mechanical vapor recompression applied to steam drying is analyzed with reference to reported data from industrial plants. Finally, environmental advantages when using steam drying are presented.

  7. Dry aging of beef; Review.

    PubMed

    Dashdorj, Dashmaa; Tripathi, Vinay Kumar; Cho, Soohyun; Kim, Younghoon; Hwang, Inho

    2016-01-01

    The present review has mainly focused on the specific parameters including aging (aging days, temperature, relative humidity, and air flow), eating quality (flavor, tenderness and juiciness), microbiological quality and economic (shrinkage, retail yields and cost) involved beef dry aging process. Dry aging is the process where beef carcasses or primal cuts are hanged and aged for 28 to 55 d under controlling environment conditions in a refrigerated room with 0° to 4 °C and with relative humidity of 75 to 80 %. However there are various opinions on dry aging procedures and purveyors of such products are passionate about their programs. Recently, there has been an increased interest in dry aging process by a wider array of purveyors and retailers in the many countries. Dry aging process is very costly because of high aging shrinkage (6 to15 %), trims loss (3 to 24 %), risk of contamination and the requirement of highest grades meat with. The packaging in highly moisture-permeable bag may positively impact on safety, quality and shelf stability of dry aged beef. The key effect of dry aging is the concentration of the flavor that can only be described as "dry-aged beef". But the contribution of flavor compounds of proteolysis and lipolysis to the cooked dry aged beef flavor is not fully known. Also there are limited scientific studies of aging parameters on the quality and palatability of dry aged beef.

  8. A commercially viable solar wood drying kiln system

    SciTech Connect

    Vore, J.B. de; Denny, G.S.; Harper, T.S.

    1999-01-01

    The purpose of the study was to create a totally passive solar wood drying kiln that would dry lumber to 9% moisture content in a reasonable amount of time. A series of modifications led to a kiln design that dried freshly-cut lumber to 8% in a 29-day period with no case hardening or cracking. Air speed, internal and external temperatures and relative humidity levels were measured at 5-minute intervals. The average temperature inside the kiln was 12% higher with relative humidity levels 19% lower than outside the kiln. It is hypothesized that the daily cycles of heating and cooling permitted the interior moisture of the wood to reach the surface through diffusion, thus lessening stress and speeding drying of the lumber.

  9. Strengthening contrast between precipitation in tropical wet and dry regions

    NASA Astrophysics Data System (ADS)

    Polson, D.; Hegerl, G. C.

    2017-01-01

    The wet-gets-wetter, dry-gets-drier paradigm (WWDD) is widely used to summarize the expected response of the hydrological cycle to global warming. While some studies find that changes in observations and climate models support the WWDD paradigm, others find that it is more complicated at local scales and over land. This discrepancy is partly explained by differences in model climatologies and by movement of the wet and dry regions. Here we show that by tracking changes in wet and dry regions as they shift over the tropics and vary in models, mean precipitation changes follow the WWDD pattern in observations and models over land and ocean. However, this signal is reduced and disappears in model dry regions, when these factors are not accounted for. Accounting for seasonal and interannual shifts of the regions and climatological differences between models reduces uncertainty in predictions of future precipitation changes and makes these changes detectable earlier.

  10. Dry Ice Etches Terrain

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Every year seasonal carbon dioxide ice, known to us as 'dry ice,' covers the poles of Mars. In the south polar region this ice is translucent, allowing sunlight to pass through and warm the surface below. The ice then sublimes (evaporates) from the bottom of the ice layer, and carves channels in the surface.

    The channels take on many forms. In the subimage shown here (figure 1) the gas from the dry ice has etched wide shallow channels. This region is relatively flat, which may be the reason these channels have a different morphology than the 'spiders' seen in more hummocky terrain.

    Observation Geometry Image PSP_003364_0945 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Apr-2007. The complete image is centered at -85.4 degrees latitude, 104.0 degrees East longitude. The range to the target site was 251.5 km (157.2 miles). At this distance the image scale is 25.2 cm/pixel (with 1 x 1 binning) so objects 75 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel . The image was taken at a local Mars time of 06:57 PM and the scene is illuminated from the west with a solar incidence angle of 75 degrees, thus the sun was about 15 degrees above the horizon. At a solar longitude of 219.6 degrees, the season on Mars is Northern Autumn.

  11. Dry Processing of Used Nuclear Fuel

    SciTech Connect

    K. M. Goff; M. F. Simpson

    2009-09-01

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  12. Current Clinical Trials in Dry AMD and the Definition of Appropriate Clinical Outcome Measures.

    PubMed

    Yehoshua, Zohar; Rosenfeld, Philip J; Albini, Thomas A

    2011-05-01

    Currently, there is no proven drug treatment for dry age-related macular degeneration (AMD). Several different treatment strategies are being investigated, including complement inhibition, neuroprotection, and visual cycle inhibitors, and novel clinical trial endpoints are being explored. Studies have identified genetic predispositions for dry AMD associated with complement dysfunction. Consequently, complement-based therapeutic treatment modalities are promising.

  13. [Tear osmolarity and dry eye].

    PubMed

    Pan, Shi-yin; Xiao, Xiang-hua; Wang, Yang-zheng; Liu, Xian-ning; Zhu, Xiu-ping

    2011-05-01

    Dry eye is a common eye disease, and its incidence rate has been escalating. The increased tear osmolarity is one of the main reasons for complaint, damage and inflammation of dry eye patients. With the breakthrough of testing technology for tear osmolarity, more research and application of tear osmolarity was reported, and papers on tear osmolarity of normal eye and dry eye in different regions were also published. In this article, the progress of the tear osmolarity research, the range of tear osmolarity and its application in diagnosis and therapy of dry eye was introduced, and the prospect for the clinical application of hypotonic artificial tears was also discussed.

  14. Space Technology for Crop Drying

    NASA Technical Reports Server (NTRS)

    1980-01-01

    McDonnell Douglas came up with a new method of drying agricultural crops derived from vacuum chamber technology called MIVAC, a compression of microwave vacuum drying system. A distant cousin of the home microwave oven, MIVAC dries by means of electrically- generated microwaves introduced to a crop-containing vacuum chamber. Microwaves remove moisture quickly and the very low pressure atmosphere in the chamber permits effective drying at much lower than customary temperatures. Thus energy demand is doubly reduced by lower heat requirement and by the shorter time electric power is needed.

  15. Absorption Heat Pump Cycles

    NASA Astrophysics Data System (ADS)

    Kunugi, Yoshifumi; Kashiwagi, Takao

    Various advanced absorption cycles are studied, developed and invented. In this paper, their cycles are classified and arranged using the three categories: effect, stage and loop, then an outline of the cycles are explained on the Duehring diagram. Their cycles include high COP cycles for refrigerations and heat pumps, high temperature lift cycles for heat transformer, absorption-compression hybrid cycles and heat pump transformer cycle. The highest COPi is attained by the seven effect cycle. In addition, the cycles for low temperature are invented and explained. Furthermore the power generation • refrigeration cycles are illustrated.

  16. Sessile nanofluid droplet drying.

    PubMed

    Zhong, Xin; Crivoi, Alexandru; Duan, Fei

    2015-03-01

    Nanofluid droplet evaporation has gained much audience nowadays due to its wide applications in painting, coating, surface patterning, particle deposition, etc. This paper reviews the drying progress and deposition formation from the evaporative sessile droplets with the suspended insoluble solutes, especially nanoparticles. The main content covers the evaporation fundamental, the particle self-assembly, and deposition patterns in sessile nanofluid droplet. Both experimental and theoretical studies are presented. The effects of the type, concentration and size of nanoparticles on the spreading and evaporative dynamics are elucidated at first, serving the basis for the understanding of particle motion and deposition process which are introduced afterward. Stressing on particle assembly and production of desirable residue patterns, we express abundant experimental interventions, various types of deposits, and the effects on nanoparticle deposition. The review ends with the introduction of theoretical investigations, including the Navier-Stokes equations in terms of solutions, the Diffusion Limited Aggregation approach, the Kinetic Monte Carlo method, and the Dynamical Density Functional Theory. Nanoparticles have shown great influences in spreading, evaporation rate, evaporation regime, fluid flow and pattern formation of sessile droplets. Under different experimental conditions, various deposition patterns can be formed. The existing theoretical approaches are able to predict fluid dynamics, particle motion and deposition patterns in the particular cases. On the basis of further understanding of the effects of fluid dynamics and particle motion, the desirable patterns can be obtained with appropriate experimental regulations.

  17. Staying dry under water

    NASA Astrophysics Data System (ADS)

    Jones, Paul; Cruz-Chu, Eduardo; Megaridis, Constantine; Walther, Jens; Koumoutsakos, Petros; Patankar, Neelesh

    2012-11-01

    Lotus leaves are known for their non-wetting properties due to the presence of surface texture. The superhydrophobic behavior arises because of the prevention of liquid water from entering the pores of the roughness. Present superhydrophobic materials rely on air trapped within the surface pores to avoid liquid permeation. This is typically unsustainable for immersed bodies due to dissolution of the air, especially under elevated pressures. Here, molecular dynamics simulations are used to demonstrate the non-wetting behavior of an immersed ten-nanometer pore. This is accomplished by establishing thermodynamically sustained vapor pockets of the surrounding liquid medium. Over 300,000 atoms were used to construct the nanopore geometry and simulate SPC/E water molecules. Ambient pressure was varied along two isotherms (300 K, and 500 K). This approach for vapor-stabilization could offer valuable guidance for maintaining surfaces dry even in a submerged state without relying on trapped air. The approach may be extended to control general phase behavior of water adjacent to textured surfaces. ISEN support is gratefully acknowledged.

  18. Forward Osmosis Brine Drying

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Shaw, Hali; Hyde, Deirdre; Beeler, David; Parodi, Jurek

    2015-01-01

    The Forward Osmosis Brine Drying (FOBD) system is based on a technique called forward osmosis (FO). FO is a membrane-based process where the osmotic potential between brine and a salt solution is equalized by the movement of water from the brine to the salt solution. The FOBD system is composed of two main elements, the FO bag and the salt regeneration system. This paper discusses the results of testing of the FO bag to determine the maximum water recovery ratio that can be attained using this technology. Testing demonstrated that the FO bag is capable of achieving a maximum brine water recovery ratio of the brine of 95%. The equivalent system mass was calculated to be 95 kg for a feed similar to the concentrated brine generated on the International Space Station and 86 kg for an Exploration brine. The results have indicated that the FOBD can process all the brine for a one year mission for between 11% to 10% mass required to bring the water needed to make up for water lost in the brine if not recycled. The FOBD saves 685 kg and when treating the International Space Station brine and it saves 829 kg when treating the Exploration brine. It was also demonstrated that saturated salt solutions achieve a higher water recovery ratios than solids salts do and that lithium chloride achieved a higher water recovery ratio than sodium chloride.

  19. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  20. Impacts of "wet seasons get wetter, dry seasons get drier"

    NASA Astrophysics Data System (ADS)

    Chou, C.; Lan, C.; Lee, C.; Chung, C.; Laio, Y.; Chiang, J. C.

    2012-12-01

    Global temperatures have increased for the past few decades. Changes to the global hydrological cycle have also been observed, but with a greater uncertainty and a strong spatial variation. The most robust change is that wet regions get wetter and dry regions get drier. Here we demonstrate that the tendency of wet-get-wetter and dry-get-drier occurs over the course of the seasonal cycle: wet seasons get wetter and dry seasons get drier, enhancing the annual precipitation range. Over 1979-2010, the globally-averaged changes in precipitation are 13.64±2.86%°C-1, -39.73±7.38%°C-1 and 33.03±6.42%°C-1 respectively for wet seasons, dry seasons, and the annual range. The trend magnitudes vary over a shorter evaluation period (1988-2010), but the sign of the tendencies remain the same. The magnitudes of these globally-averaged trends imply an inconclusive change in the strength of the corresponding tropical circulation. Regionally, the "wet seasons get wetter (dry seasons get drier)" tendency occurs over areas with greater (less) annual mean precipitation. The enhanced annual precipitation range may strongly impact local agriculture and water resources even in situations where the annual mean precipitation does not change significantly.

  1. Hydrological cycle.

    PubMed

    Gonçalves, H C; Mercante, M A; Santos, E T

    2011-04-01

    The Pantanal hydrological cycle holds an important meaning in the Alto Paraguay Basin, comprising two areas with considerably diverse conditions regarding natural and water resources: the Plateau and the Plains. From the perspective of the ecosystem function, the hydrological flow in the relationship between plateau and plains is important for the creation of reproductive and feeding niches for the regional biodiversity. In general, river declivity in the plateau is 0.6 m/km while declivity on the plains varies from 0.1 to 0.3 m/km. The environment in the plains is characteristically seasonal and is home to an exuberant and abundant diversity of species, including some animals threatened with extinction. When the flat surface meets the plains there is a diminished water flow on the riverbeds and, during the rainy season the rivers overflow their banks, flooding the lowlands. Average annual precipitation in the Basin is 1,396 mm, ranging from 800 mm to 1,600 mm, and the heaviest rainfall occurs in the plateau region. The low drainage capacity of the rivers and lakes that shape the Pantanal, coupled with the climate in the region, produce very high evaporation: approximately 60% of all the waters coming from the plateau are lost through evaporation. The Alto Paraguay Basin, including the Pantanal, while boasting an abundant availability of water resources, also has some spots with water scarcity in some sub-basins, at different times of the year. Climate conditions alone are not enough to explain the differences observed in the Paraguay River regime and some of its tributaries. The complexity of the hydrologic regime of the Paraguay River is due to the low declivity of the lands that comprise the Mato Grosso plains and plateau (50 to 30 cm/km from east to west and 3 to 1.5 cm/km from north to south) as well as the area's dimension, which remains periodically flooded with a large volume of water.

  2. NiH2 Cycle Life Study

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Roger P.; Armantrout, Jon D.; Rao, Gopalakrishna M.

    2002-01-01

    Cycle life studies have been performed at Eagle Picher Technologies (EPT), on HST Mantech design cells with various pedigrees of slurry and dry sinter processed electrodes, to evaluate peak load voltage performance during generic load profile testing. These tests provide information for determining voltage and capacity fade (degradation) mechanisms, and their impact on nickel hydrogen cell cycle life. Comparison of peak load voltage fade, as a function of State of Charge and cycle life, with capacity data from HST indicates that the cycle life limiting mechanism is due to impedance growth, and formation of a second discharge plateau. With a second plateau on discharge, capacity from the cell is still available, but at an unacceptable low voltage of 0.8 V per cell (17.6 V battery). Data shows that cell impedance increases with cycle number and depth of discharge, as expected.

  3. Whey drying on porous carriers

    SciTech Connect

    Mitura, E.; Kaminski, W.

    1996-05-01

    Whey is treated very often as a waste which pollutes the natural environment. Whey which is a valuable source of protein, lacrose, vitamins and mineral salts should be utilized completely. The present paper is a proposal of whey drying on porous carriers. It is proved experimentally that the proposed drying method guarantees good product quality.

  4. Dry eye disease after LASIK

    PubMed Central

    Ţuru, L; Alexandrescu, C; Stana, D; Tudosescu, R

    2012-01-01

    LASIK is a surgical tehnique for the correction of refractive errors (myopia, hyperopia, astygmatism). It results in a reshape of the cornea with ocular surface and especially tear film disease. It is a cause for a iatrogenic dry eye syndrome. Neurogenic and inflamatory theory explain this disease. The main therapy of dry eye is the replacement with artificial tears. PMID:22574092

  5. Dry root rot of chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry root rot of chickpea is a serious disease under dry hot summer conditions, particularly in the semi-arid tropics of Ethiopia, and in central and southern India. It usually occurs at reproductive stages of the plant. Symptoms include drooping of petioles and leaflets of the tips, but not the low...

  6. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect

    DiBella, F.A.

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  7. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect

    DiBella, F.A. )

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  8. The nitrogen cycle: Atmosphere interactions

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  9. High performance surface-emitting lasers with dry etched facets

    NASA Astrophysics Data System (ADS)

    Ou, S. S.; Jansen, M.; Yang, J. J.; Sergant, M.; Mawst, L. J.; Botez, D.; Roth, T. J.; Hess, C.; Tu, C.

    1992-12-01

    The fabrication, performance characteristics, and applications of monolithic in-plane surface-emitting lasers (IPSELs) with dry-etched 45-degree micromirrors are reviewed. Several types of such laser diode structures in both junction-up and junction-down configurations are considered. The performance goals for IPSELs with 45-degree micromirrors are high power and efficiency, high duty cycle and CW operation, good reliability, and high fabrication yields. The proposed approach for achieving these goals includes uniform quantum well material growth and dry etching of the laser micromirrors with tight fabrication tolerances.

  10. Hot, Dry and Cloudy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Hot, Dry and Cloudy

    This artist's concept shows a cloudy Jupiter-like planet that orbits very close to its fiery hot star. NASA's Spitzer Space Telescope was recently used to capture spectra, or molecular fingerprints, of two 'hot Jupiter' worlds like the one depicted here. This is the first time a spectrum has ever been obtained for an exoplanet, or a planet beyond our solar system.

    The ground-breaking observations were made with Spitzer's spectrograph, which pries apart infrared light into its basic wavelengths, revealing the 'fingerprints' of molecules imprinted inside. Spitzer studied two planets, HD 209458b and HD 189733b, both of which were found, surprisingly, to have no water in the tops of their atmospheres. The results suggest that the hot planets are socked in with dry, high clouds, which are obscuring water that lies underneath. In addition, HD209458b showed hints of silicates, suggesting that the high clouds on that planet contain very fine sand-like particles.

    Capturing the spectra from the two hot-Jupiter planets was no easy feat. The planets cannot be distinguished from their stars and instead appear to telescopes as single blurs of light. One way to get around this is through what is known as the secondary eclipse technique. In this method, changes in the total light from a so-called transiting planet system are measured as a planet is eclipsed by its star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone.

    This technique, first used by Spitzer in 2005 to directly detect the light from an exoplanet, currently only works at infrared wavelengths, where the differences in brightness between the planet and star are less, and the planet's light is easier to pick out. For example, if the experiment had been done in visible light, the total light from the system would appear to be unchanged

  11. Space and Industrial Brine Drying Technologies

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  12. The Contemporary Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.

    2003-12-01

    The global carbon cycle refers to the exchanges of carbon within and between four major reservoirs: the atmosphere, the oceans, land, and fossil fuels. Carbon may be transferred from one reservoir to another in seconds (e.g., the fixation of atmospheric CO2 into sugar through photosynthesis) or over millennia (e.g., the accumulation of fossil carbon (coal, oil, gas) through deposition and diagenesis of organic matter). This chapter emphasizes the exchanges that are important over years to decades and includes those occurring over the scale of months to a few centuries. The focus will be on the years 1980-2000 but our considerations will broadly include the years ˜1850-2100. Chapter 8.09, deals with longer-term processes that involve rates of carbon exchange that are small on an annual timescale (weathering, vulcanism, sedimentation, and diagenesis).The carbon cycle is important for at least three reasons. First, carbon forms the structure of all life on the planet, making up ˜50% of the dry weight of living things. Second, the cycling of carbon approximates the flows of energy around the Earth, the metabolism of natural, human, and industrial systems. Plants transform radiant energy into chemical energy in the form of sugars, starches, and other forms of organic matter; this energy, whether in living organisms or dead organic matter, supports food chains in natural ecosystems as well as human ecosystems, not the least of which are industrial societies habituated (addicted?) to fossil forms of energy for heating, transportation, and generation of electricity. The increased use of fossil fuels has led to a third reason for interest in the carbon cycle. Carbon, in the form of carbon dioxide (CO2) and methane (CH4), forms two of the most important greenhouse gases. These gases contribute to a natural greenhouse effect that has kept the planet warm enough to evolve and support life (without the greenhouse effect the Earth's average temperature would be -33

  13. No Heat Spray Drying Technology

    SciTech Connect

    Beetz, Charles

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  14. Drying of thin colloidal films

    NASA Astrophysics Data System (ADS)

    Routh, Alexander F.

    2013-04-01

    When thin films of colloidal fluids are dried, a range of transitions are observed and the final film profile is found to depend on the processes that occur during the drying step. This article describes the drying process, initially concentrating on the various transitions. Particles are seen to initially consolidate at the edge of a drying droplet, the so-called coffee-ring effect. Flow is seen to be from the centre of the drop towards the edge and a front of close-packed particles passes horizontally across the film. Just behind the particle front the now solid film often displays cracks and finally the film is observed to de-wet. These various transitions are explained, with particular reference to the capillary pressure which forms in the solidified region of the film. The reasons for cracking in thin films is explored as well as various methods to minimize its effect. Methods to obtain stratified coatings through a single application are considered for a one-dimensional drying problem and this is then extended to two-dimensional films. Different evaporative models are described, including the physical reason for enhanced evaporation at the edge of droplets. The various scenarios when evaporation is found to be uniform across a drying film are then explained. Finally different experimental techniques for examining the drying step are mentioned and the article ends with suggested areas that warrant further study.

  15. High-intensity drying processes: Impulse drying. Annual report

    SciTech Connect

    Orloff, D.I.; Phelan, P.M.

    1993-12-01

    Experiments were conducted on a sheet-fed pilot-scale shoe press to compare impulse drying and double-felted pressing. Both an IPST (Institute of Paper Science and Technology) ceramic coated and Beloit Type A press roll were evaluated for lienrboard sheet structures having a wide range of z-direction permeability. Purpose was to find ways of correcting sheet sticking problems observed in previous pilot-scale shoe press experiments. Results showed that impulse drying was superior to double felted pressing in both press dryness and in important paper physical properties. Impulse drying critical temperature was found to depend on specific surface of the heated layer of the sheet, thermal properties of the press roll surface, and choice of felt. Impulse drying of recycled and two-ply liner was demonstrated for both Southern Pile and Douglas fir-containing furnishes.

  16. Aging and dry eye disease

    PubMed Central

    Ding, Juan; Sullivan, David A.

    2012-01-01

    Dry eye disease is a prevalent eye disorder that in particular affects the elderly population. One of the major causes of dry eye, meibomian gland dysfunction (MGD), shows increased prevalence with aging. MGD is caused by hyperkeratinization of the ductal epithelium of meibomian gland and reduced quantity and/or quality of meibum, the holocrine product that stabilizes and prevents the evaporation of the tear film. Of note, retinoids which are used in current anti-aging cosmetics may promote the development of MGD and dry eye disease. In this review, we will discuss the possible mechanisms of age-related MGD. PMID:22569356

  17. Spent fuel drying system test results (second dry-run)

    SciTech Connect

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks have been detected in the basins and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the second dry-run test, which was conducted without a fuel element. With the concurrence of project management, the test protocol for this run, and subsequent drying test runs, was modified. These modifications were made to allow for improved data correlation with drying procedures proposed under the IPS. Details of these modifications are discussed in Section 3.0.

  18. 2008 National dry mill corn ethanol survey.

    PubMed

    Mueller, Steffen

    2010-09-01

    Emerging regulations require an examination of corn ethanol's greenhouse gas emissions on a life cycle basis, including emissions from energy consumed at the plant level. However, comprehensive survey data of the industry's average performance dates back to 2001, prior to the industry's expansion phase. Responding to the need for updated data, we conducted a survey to collect energy and processing data for average dry mill ethanol produced during 2008. The study finds that the average liter of anhydrous corn ethanol produced during 2008 requires 28% less thermal energy than 2001 ethanol: 7.18 MJ/l compared to 10 MJ/l. Also, 2008 ethanol requires 32% less electricity: 0.195 kWh/l compared to 0.287 kWh/l, but anhydrous ethanol yields from corn are 5.3% higher and total 0.416 l/kg compared to 0.395 l/kg. Findings also suggest that older plants installed energy efficiency retrofits.

  19. Freeze-drying processes and wind erodibility of a clay loam soil in southern Alberta

    SciTech Connect

    Bullock, M S.; Larney, F. J.; McGinn, Sean M.; Izaurralde, R Cesar C.

    1999-01-01

    Freeze-drying has been implicated as a factor causing soil aggregate breakdown on the Canadian Prairies and northern Great Plains. Aggregates of a Dark Brown Chernozemic clay loam soil sampled in October 1993 and January and April 1994 were subjected to repeated cycles of wetting (to 0.1, 0.2 and 0.3 kg kg-1 water contents) freezing, and freeze-drying under laboratory conditions. The October 1993 samples showed less disruption when initially exposed to freeze-drying cycles compared to samples taken in January and April 1994. Using regression analysis, we predicted that 31 freeze-dry cycles were required for the 0.1 kg kg-1 water content aggregates to reach 60% erodible fraction (EF, % aggregates <0.86 mm), 9 cycles for the 0.2 kg kg-1 aggregates and 2 for 0.3 kg kg-1 aggregates. In a field study, conducted over the 1994-1995 winter on a similar clay loam soil, we estimated the number of freeze-drying cycles using large vapor pressure (VPL) and small vapor pressure (VPS) gradients bet ween the soil surface (which had a mean winter water content of {approx}0.1 kg kg-1) and the atmosphere. With solar energy adjustments, we predicted that the number of freeze-dry cycles required for the soil to reach 60% EF was 60 for VPL and 37 for VPS conditions. The latter number was similar to the 31 cycles predicted in the laboratory study of aggregates at 0.1 water content. Our results demonstrate that freeze-drying is an important overwinter process in the breakdown of soil aggregates and hence wind erosion risk in the Canadian prairie region.

  20. Sustaining dry surfaces under water

    NASA Astrophysics Data System (ADS)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-08-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  1. Sustaining dry surfaces under water.

    PubMed

    Jones, Paul R; Hao, Xiuqing; Cruz-Chu, Eduardo R; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M; Varanasi, Kripa K; Megaridis, Constantine M; Walther, Jens H; Koumoutsakos, Petros; Espinosa, Horacio D; Patankar, Neelesh A

    2015-08-18

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  2. Sustaining dry surfaces under water

    PubMed Central

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  3. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  4. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    NASA Astrophysics Data System (ADS)

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-06-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions.

  5. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    PubMed Central

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-01-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions. PMID:26066704

  6. Dry PMR-15 Resin Powders

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D.; Roberts, Gary D.

    1988-01-01

    Shelf lives of PMR-15 polymides lengthened. Procedure involves quenching of monomer reactions by vacuum drying of PRM-15 resin solutions at 70 to 90 degree F immediately after preparation of solutions. Absence of solvent eliminates formation of higher esters and reduces formation of imides to negligible level. Provides fully-formulated dry PMR-15 resin powder readily dissolvable in solvent at room temperature immediately before use. Resins used in variety of aerospace, aeronautical, and commercial applications.

  7. Drying in cyclones -- A review

    SciTech Connect

    Nebra, S.A.; Silva, M.A.; Mujumdar, A.S.

    2000-03-01

    This paper presents an overview of the flow, heat and mass transfer characteristics of vortex (or cyclone) dryers. The focus is on the potential of the cyclone configuration for drying of particulates. A selective review is made of the literature pertains to single phase and gas-particle flow in cyclone geometries. Recent data on drying of particulates in cyclone dryers are summarized. 56 refs.

  8. Morphology of drying blood pools

    NASA Astrophysics Data System (ADS)

    Laan, Nick; Smith, Fiona; Nicloux, Celine; Brutin, David; D-Blood project Collaboration

    2016-11-01

    Often blood pools are found on crime scenes providing information concerning the events and sequence of events that took place on the scene. However, there is a lack of knowledge concerning the drying dynamics of blood pools. This study focuses on the drying process of blood pools to determine what relevant information can be obtained for the forensic application. We recorded the drying process of blood pools with a camera and measured the weight. We found that the drying process can be separated into five different: coagulation, gelation, rim desiccation, centre desiccation, and final desiccation. Moreover, we found that the weight of the blood pool diminishes similarly and in a reproducible way for blood pools created in various conditions. In addition, we verify that the size of the blood pools is directly related to its volume and the wettability of the surface. Our study clearly shows that blood pools dry in a reproducible fashion. This preliminary work highlights the difficult task that represents blood pool analysis in forensic investigations, and how internal and external parameters influence its dynamics. We conclude that understanding the drying process dynamics would be advancement in timeline reconstitution of events. ANR funded project: D-Blood Project.

  9. Dry Eyes and Glaucoma: Double Trouble

    MedlinePlus

    ... News About Us Donate In This Section Dry Eyes and Glaucoma: Double Trouble email Send this article ... disease bothers the patient more. What Causes Dry Eye Syndrome? Dry eye can be caused by many ...

  10. The Kiln Drying of Wood for Airplanes

    NASA Technical Reports Server (NTRS)

    Tiemann, Harry D

    1919-01-01

    This report is descriptive of various methods used in the kiln drying of woods for airplanes and gives the results of physical tests on different types of woods after being dried by the various kiln-drying methods.

  11. Mucins in contact lens wear and dry eye conditions.

    PubMed

    Ramamoorthy, Padmapriya; Nichols, Jason J

    2008-08-01

    Ocular mucins are thought to play integral roles in ocular surface lubrication, anchoring of the aqueous, stabilizing the lipid components of the tear film, eliminating foreign bodies and pathogens, and with potential involvement in cell cycle mediation and apoptotic activity of ocular surface epithelia. Ocular mucins are of secreted and membrane-associated types. Secreted mucins may be of large gel-forming type or small soluble mucins (e.g., MUC5AC and MUC7). Membrane-associated mucins such as MUCs 1 and 4 are a major component of the glycocalyx. They are thought to render structural support to the microplicae and mediate epithelial cell cycle and apoptotic activity. The alterations in ocular mucins with contact lens wear are unclear. Recent work shows mucin expression may be up-regulated during the early years of contact lens wear, and with long-term lens wear, mucin expression may return to normal levels or sub-normal levels, although this is not well understood. Further, the polar nature of mucins may be associated with their affinity for contact lens surfaces making them a component of contact lens deposition. This has potential implications in the wettability and tolerability of contact lenses, and may be impacted by surface coatings, polymer characteristics, or care solutions. Conjunctival mucin gene expression and secretion may be deficient in several ocular surface disorders associated with dry eye. Deficiency and alterations in glycosylation characteristics of MUC5AC and MUC2 have been reported in both Sjögren and non-Sjögren dry eye types. Decreased binding of the membrane-associated mucin MUC16 to the conjunctival epithelium has been reported in Sjögren dry eye while MUC1 alterations have been reported in Sjögren and non-Sjögren dry eye states. In view of the mucin involvement in dry eye conditions, stimulation of mucus secretion pathways may hold promise in the pharmaceutical treatment of dry eye.

  12. Bipolar mood cycles and lunar tidal cycles.

    PubMed

    Wehr, T A

    2017-01-24

    In 17 patients with rapid cycling bipolar disorder, time-series analyses detected synchronies between mood cycles and three lunar cycles that modulate the amplitude of the moon's semi-diurnal gravimetric tides: the 14.8-day spring-neap cycle, the 13.7-day declination cycle and the 206-day cycle of perigee-syzygies ('supermoons'). The analyses also revealed shifts among 1:2, 1:3, 2:3 and other modes of coupling of mood cycles to the two bi-weekly lunar cycles. These shifts appear to be responses to the conflicting demands of the mood cycles' being entrained simultaneously to two different bi-weekly lunar cycles with slightly different periods. Measurements of circadian rhythms in body temperature suggest a biological mechanism through which transits of one of the moon's semi-diurnal gravimetric tides might have driven the patients' bipolar cycles, by periodically entraining the circadian pacemaker to its 24.84-h rhythm and altering the pacemaker's phase-relationship to sleep in a manner that is known to cause switches from depression to mania.Molecular Psychiatry advance online publication, 24 January 2017; doi:10.1038/mp.2016.263.

  13. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

    2003-08-01

    This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

  14. Spent fuel drying system test results (first dry-run)

    SciTech Connect

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site. Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first dry-run test, which was conducted without a fuel element. The empty test apparatus was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The data from this dry-run test can serve as a baseline for the first two fuel element tests, 1990 (Run 1) and 3128W (Run 2). The purpose of this dry-run was to establish the background levels of hydrogen in the system, and the hydrogen generation and release characteristics attributable to the test system without a fuel element present. This test also serves to establish the background levels of water in the system and the water release characteristics. The system used for the drying test series was the Whole Element Furnace Testing System, described in Section 2.0, which is located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in section 3.0, and the experimental

  15. Potential evapotranspiration and continental drying

    NASA Astrophysics Data System (ADS)

    Milly, P. C. D.; Dunne, K. A.

    2016-10-01

    By various measures (drought area and intensity, climatic aridity index, and climatic water deficits), some observational analyses have suggested that much of the Earth’s land has been drying during recent decades, but such drying seems inconsistent with observations of dryland greening and decreasing pan evaporation. `Offline’ analyses of climate-model outputs from anthropogenic climate change (ACC) experiments portend continuation of putative drying through the twenty-first century, despite an expected increase in global land precipitation. A ubiquitous increase in estimates of potential evapotranspiration (PET), driven by atmospheric warming, underlies the drying trends, but may be a methodological artefact. Here we show that the PET estimator commonly used (the Penman-Monteith PET for either an open-water surface or a reference crop) severely overpredicts the changes in non-water-stressed evapotranspiration computed in the climate models themselves in ACC experiments. This overprediction is partially due to neglect of stomatal conductance reductions commonly induced by increasing atmospheric CO2 concentrations in climate models. Our findings imply that historical and future tendencies towards continental drying, as characterized by offline-computed runoff, as well as other PET-dependent metrics, may be considerably weaker and less extensive than previously thought.

  16. Potential evapotranspiration and continental drying

    USGS Publications Warehouse

    Milly, Paul C.D.; Dunne, Krista A.

    2016-01-01

    By various measures (drought area and intensity, climatic aridity index, and climatic water deficits), some observational analyses have suggested that much of the Earth’s land has been drying during recent decades, but such drying seems inconsistent with observations of dryland greening and decreasing pan evaporation. ‘Offline’ analyses of climate-model outputs from anthropogenic climate change (ACC) experiments portend continuation of putative drying through the twenty-first century, despite an expected increase in global land precipitation. A ubiquitous increase in estimates of potential evapotranspiration (PET), driven by atmospheric warming, underlies the drying trends, but may be a methodological artefact. Here we show that the PET estimator commonly used (the Penman–Monteith PET for either an open-water surface or a reference crop) severely overpredicts the changes in non-water-stressed evapotranspiration computed in the climate models themselves in ACC experiments. This overprediction is partially due to neglect of stomatal conductance reductions commonly induced by increasing atmospheric CO2 concentrations in climate models. Our findings imply that historical and future tendencies towards continental drying, as characterized by offline-computed runoff, as well as other PET-dependent metrics, may be considerably weaker and less extensive than previously thought.

  17. Quantification of perchloroethylene residues in dry-cleaned fabrics.

    PubMed

    Sherlach, Katy S; Gorka, Alexander P; Dantzler, Alexa; Roepe, Paul D

    2011-11-01

    We have used a novel gas chromatography/mass spectrometry (GC/MS)-based approach to quantify perchloroethylene (PCE) residues in dry-cleaned fabrics. Residual PCE was extracted from fabric samples with methanol and concentration was calculated by the gas chromatographic peak area, standardized using PCE calibration data. Extracts examined were from samples of 100% wool, polyester, cotton, or silk, which were dry cleaned from one to six times in seven different Northern Virginia dry-cleaning establishments. Additional experiments were conducted to investigate the kinetics of PCE release in the extraction solvent and to the open air. We found that polyester, cotton, and wool retained ≥ µM levels of PCE, that these levels increased in successive dry-cleaning cycles, and that PCE is slowly volatilized from these fabrics under ambient room air conditions. We found that silk does not retain appreciable PCE. Measured differences across dry-cleaning establishments and fabric type suggest more vigorous monitoring of PCE residues may be warranted. Environ. Toxicol. Chem. 2011;30:2481-2487. © 2011 SETAC.

  18. Fragmentation of drying paint layers

    NASA Astrophysics Data System (ADS)

    Bakos, Katinka; Dombi, András; Járai-Szabó, Ferenc; Néda, Zoltán

    2013-11-01

    Fragmentation of thin layers of drying granular materials on a frictional surface are studied both by experiments and computer simulations. Besides a qualitative description of the fragmentation phenomenon, the dependence of the average fragment size as a function of the layer thickness is thoroughly investigated. Experiments are done using a special nail polish, which forms characteristic crack structures during drying. In order to control the layer thickness, we diluted the nail polish in acetone and evaporated in a controlled manner different volumes of this solution on glass surfaces. During the evaporation process we managed to get an instable paint layer, which formed cracks as it dried out. In order to understand the obtained structures a previously developed spring-block model was implemented in a three-dimensional version. The experimental and simulation results proved to be in excellent qualitative and quantitative agreement. An earlier suggested scaling relation between the average fragment size and the layer thickness is reconfirmed.

  19. The Solar Cycle.

    PubMed

    Hathaway, David H

    The solar cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev-Ohl (even-odd) Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24.

  20. The Solar Cycle

    NASA Astrophysics Data System (ADS)

    Hathaway, David H.

    2015-12-01

    The solar cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev-Ohl (even-odd) Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24.

  1. Is Blood Lactate Removal During Water Immersed Cycling Faster than During Cycling on Land?

    PubMed Central

    Masi, Fabrízio Di; De Souza Vale, Rodrigo Gomes; Dantas, Estélio Henrique Martin; Barreto, Ana Cristina Lopes; Novaes, Jefferson da Silva; Reis, Victor M.

    2007-01-01

    The aim of the present study was to compare lactate removal during active recovery performed during cycling in water immersion (CW) and during cycling on land (CL), after a similar exercise bout in male adults. Eleven healthy and physically active men, aged between 20 and 26 years old participated in the experiment. Before the experimental tests, the ventilatory threshold of the subjects was determined. Each subject completed the experimental tests twice, with one week separating the two periods of experiment. The subjects exercised on the treadmill during 6 min at a speed 10% above the speed corresponding to their ventilatory threshold. Subsequently, the subjects recovered from the exercise bout either on a stationary bike (CL) or on a aquatic-specific bike (CW). On the subsequent week the subjects performed the same protocol but with a different recovery condition. Recovery condition assignment for the first test was counterbalanced (six subjects started with one condition and five with the other). Capillary blood samples were collected after each test and during the recovery period (at 3, 6, 9 and 15 minutes) and blood lactate was measured. The blood lactate values during CW were lower than during CL and significant differences were observed at the 6th minute (p ≤ 0.05) and at the 15th minute of recovery (p ≤ 0.05). Therefore, we may conclude that active recovery using cycling in water immersion may be more efficient than cycling on land for blood lactate removal. Key pointsPrevious studies have found positive effects of half liquid environment on blood lactate removal.However, few studies have compared lactate removal in half liquid and in dry land conditions with the use of stationary bikes.We have compared the lactate removal during active recovery on half-liquid cycling and active recovery on dry land cycling after a similar exercise bout in male adults.The blood lactate values during the recovery were lower after half-liquid cycling when compared with

  2. Fundamentals of freeze-drying.

    PubMed

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    Given the increasing importance of reducing development time for new pharmaceutical products, formulation and process development scientists must continually look for ways to "work smarter, not harder." Within the product development arena, this means reducing the amount of trial and error empiricism in arriving at a formulation and identification of processing conditions which will result in a quality final dosage form. Characterization of the freezing behavior of the intended formulation is necessary for developing processing conditions which will result in the shortest drying time while maintaining all critical quality attributes of the freeze-dried product. Analysis of frozen systems was discussed in detail, particularly with respect to the glass transition as the physical event underlying collapse during freeze-drying, eutectic mixture formation, and crystallization events upon warming of frozen systems. Experiments to determine how freezing and freeze-drying behavior is affected by changes in the composition of the formulation are often useful in establishing the "robustness" of a formulation. It is not uncommon for seemingly subtle changes in composition of the formulation, such as a change in formulation pH, buffer salt, drug concentration, or an additional excipient, to result in striking differences in freezing and freeze-drying behavior. With regard to selecting a formulation, it is wise to keep the formulation as simple as possible. If a buffer is needed, a minimum concentration should be used. The same principle applies to added salts: If used at all, the concentration should be kept to a minimum. For many proteins a combination of an amorphous excipient, such as a disaccharide, and a crystallizing excipient, such as glycine, will result in a suitable combination of chemical stability and physical stability of the freeze-dried solid. Concepts of heat and mass transfer are valuable in rational design of processing conditions. Heat transfer by conduction

  3. Drying leather with vacuum and toggling sequentially

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated a drying method that will enable leather to be dried under vacuum and stretch sequentially to improve area yield. Vacuum drying offers fast speed at a low temperature, which would be advantageous to heat-vulnerable chrome-free leather. Adding a toggle action after vacuum drying cou...

  4. 7 CFR 58.813 - Dry whey.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Dry whey. 58.813 Section 58.813 Agriculture... Products Bearing Usda Official Identification § 58.813 Dry whey. The quality requirements for dry whey shall be in accordance with the U.S. Standards for Dry Whey. Supplemental Specifications for...

  5. Foam-mat Drying Technology: A Review.

    PubMed

    Hardy, Z; Jideani, V A

    2015-07-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method which allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40 -90°C) at atmospheric pressure. Methyl cellulose (0.25 - 2%), egg white (3 - 20%), maltodextrin (0.5 - 05%) and gum Arabic (2 - 9%) are the commonly utilised additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous and sticky products which cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying and improved product quality it provides.

  6. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  7. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  8. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  9. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  10. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida...

  11. Dry machinability of aluminum alloys.

    SciTech Connect

    Shareef, I.; Natarajan, M.; Ajayi, O. O.; Energy Technology; Department of IMET

    2005-01-01

    Adverse effects of the use of cutting fluids and environmental concerns with regard to cutting fluid disposability is compelling industry to adopt Dry or near Dry Machining, with the aim of eliminating or significantly reducing the use of metal working fluids. Pending EPA regulations on metal cutting, dry machining is becoming a hot topic of research and investigation both in industry and federal research labs. Although the need for dry machining may be apparent, most of the manufacturers still consider dry machining to be impractical and even if possible, very expensive. This perception is mainly due to lack of appropriate cutting tools that can withstand intense heat and Built-up-Edge (BUE) formation during dry machining. The challenge of heat dissipation without coolant requires a completely different approach to tooling. Special tooling utilizing high-performance multi-layer, multi-component, heat resisting, low friction coatings could be a plausible answer to the challenge of dry machining. In pursuit of this goal Argonne National Labs has introduced Nano-crystalline near frictionless carbon (NFC) diamond like coatings (DLC), while industrial efforts have led to the introduction of composite coatings such as titanium aluminum nitride (TiAlN), tungsten carbide/carbon (WC/C) and others. Although, these coatings are considered to be very promising, they have not been tested either from tribological or from dry machining applications point of view. As such a research program in partnership with federal labs and industrial sponsors has started with the goal of exploring the feasibility of dry machining using the newly developed coatings such as Near Frictionless Carbon Coatings (NFC), Titanium Aluminum Nitride (TiAlN), and multi-layer multicomponent nano coatings such as TiAlCrYN and TiAlN/YN. Although various coatings are under investigation as part of the overall dry machinability program, this extended abstract deals with a systematic investigation of dry

  12. Phase transitions in freeze-dried systems - quantification using in situ synchrotron X-ray diffractometry

    SciTech Connect

    Varshney, Dushyant B.; Sundaramurthi, Prakash; Kumar, Satyendra; Shalaev, Evgenyi Y.; Kang, Shin-Woong; Gatlin, Larry A.; Suryanarayanan, Raj

    2009-09-02

    The purpose is: (1) To develop a synchrotron X-ray diffraction (SXRD) method to monitor phase transitions during the entire freeze-drying cycle. Aqueous sodium phosphate buffered glycine solutions with initial glycine to buffer molar ratios of 1:3 (17:50 mM), 1:1 (50 mM) and 3:1 were utilized as model systems. (2) To investigate the effect of initial solute concentration on the crystallization of glycine and phosphate buffer salt during lyophilization. Phosphate buffered glycine solutions were placed in a custom-designed sample cell for freeze-drying. The sample cell, covered with a stainless steel dome with a beryllium window, was placed on a stage capable of controlled cooling and vacuum drying. The samples were cooled to -50 C and annealed at -20 C. They underwent primary drying at -25 C under vacuum until ice sublimation was complete and secondary drying from 0 to 25 C. At different stages of the freeze-drying cycle, the samples were periodically exposed to synchrotron X-ray radiation. An image plate detector was used to obtain time-resolved two-dimensional SXRD patterns. The ice, {beta}-glycine and DHPD phases were identified based on their unique X-ray peaks. When the solutions were cooled and annealed, ice formation was followed by crystallization of disodium hydrogen phosphate dodecahydrate (DHPD). In the primary drying stage, a significant increase in DHPD crystallization followed by incomplete dehydration to amorphous disodium hydrogen phosphate was evident. Complete dehydration of DHPD occurred during secondary drying. Glycine crystallization was inhibited throughout freeze-drying when the initial buffer concentration (1:3 glycine to buffer) was higher than that of glycine. A high-intensity X-ray diffraction method was developed to monitor the phase transitions during the entire freeze-drying cycle. The high sensitivity of SXRD allowed us to monitor all the crystalline phases simultaneously. While DHPD crystallizes in frozen solution, it dehydrates

  13. Longevity Of Dry Film Lubricants

    NASA Technical Reports Server (NTRS)

    Kannel, J. W.; Stockwell, R. D.

    1993-01-01

    Report describes evaluation of dry film lubricants candidate for use in rotary joints of proposed Space Station. Study included experiments and theoretical analyses focused on longevity of sputtered molybdenum disulfide films and ion-plated lead films under conditions partially simulating rolling contact.

  14. A new dry biomedical electrode

    NASA Technical Reports Server (NTRS)

    Luce, R. S.; Cleveland, G. J.

    1973-01-01

    Electronic circuitry contains new operational amplifier which incorporates monolithic super-gain transistors. Electrode does not provide voltage amplification; instead, it acts as current amplifier to make it possible to pick up electrical potentials from surface of highly resistant dry skin.

  15. Granular flow: Dry and wet

    NASA Astrophysics Data System (ADS)

    Mitarai, N.; Nakanishi, H.

    2012-04-01

    Granular material is a collection of macroscopic particles that are visible with naked eyes. The non-equilibrium nature of the granular materials makes their rheology quite different from that of molecular systems. In this minireview, we present the unique features of granular materials focusing on the shear flow of dry granular materials and granule-liquid mixture.

  16. Dry bin filler for apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A unique dry bin filler for apples using a sequenced tray was developed to reduce bruising in packing operations. Research and commercial trials in West Virginia, Pennsylvania, and Washington State demonstrated the ability to fill bins evenly and with low damage. Cultivars with different bruising su...

  17. Drying Milk With Boiler Exhaust

    NASA Technical Reports Server (NTRS)

    Broussard, M. R.

    1984-01-01

    Considerable energy saved in powdered-milk industry. Only special requirement boiler fired with natural gas or other clean fuel. Boiler flue gas fed to spray drier where it directly contacts product to be dried. Additional heat supplied by auxillary combustor when boiler output is low. Approach adaptable to existing plants with minimal investment because most already equipped with natural-gas-fired boilers.

  18. Microwave drying of seed cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A small lab dryer was designed for use in drying seed cotton with components of a microwave generator mounted thereon. The magnetron emitted radiation directly into the seed cotton and a fan directed air cross-flow to the radiation direction. The microwave components were a 1.1 kW magnetron, trans...

  19. Effects of heat exposure in the absence of hyperthermia on power output during repeated cycling sprints

    PubMed Central

    Arimitsu, T; Yunoki, T; Kimura, T; Yamanaka, R; Yano, T

    2014-01-01

    The aim of this study was to investigate the effects of heat exposure in the absence of hyperthermia on power output during repeated cycling sprints. Seven males performed four 10-s cycling sprints interspersed by 30 s of active recovery on a cycle ergometer in hot-dry and thermoneutral environments. Changes in rectal temperature were similar under the two ambient conditions. The mean 2-s power output over the 1st–4th sprints was significantly lower under the hot-dry condition than under the thermoneutral condition. The amplitude of the electromyogram was lower under the hot-dry condition than under the thermoneutral condition during the early phase (0–3 s) of each cycling sprint. No significant difference was observed for blood lactate concentration between the two ambient conditions. Power output at the onset of a cycling sprint during repeated cycling sprints is decreased due to heat exposure in the absence of hyperthermia. PMID:25729145

  20. Bioactive maca (Lepidium meyenii) alkamides are a result of traditional Andean postharvest drying practices.

    PubMed

    Esparza, Eliana; Hadzich, Antonella; Kofer, Waltraud; Mithöfer, Axel; Cosio, Eric G

    2015-08-01

    Maca, Lepidium meyenii Walpers (Brassicaceae), is an annual herbaceous plant native to the high plateaus of the Peruvian central Andes. Its underground storage hypocotyls have been a traditional medicinal agent and dietary staple since pre-Columbian times. Reported properties include energizing and fertility-enhancing effects. Published reports have focused on the benzylalkamides (macamides) present in dry hypocotyls as one of the main bioactive components. Macamides are secondary amides formed by benzylamine and a fatty acid moiety, with varying hydrocarbon chain lengths and degree of unsaturation. Although it has been assumed that they are usually present in fresh undamaged tissues, analyses show them to be essentially absent from them. However, hypocotyls dried by traditional Andean postharvest practices or industrial oven drying contain up to 800μgg(-1) dry wt (2.3μmolg(-1) dry wt) of macamides. In this study, the generation of macamides and their putative precursors were studied during nine-week traditional drying trials at 4200m altitude and in ovens under laboratory conditions. Freeze-thaw cycles in the open field during drying result in tissue maceration and release of free fatty acids from storage and membrane lipids up to levels of 1200μgg(-1) dry wt (4.3μmolg(-1) dry wt). Endogenous metabolism of the isothiocyanates generated from glucosinolate hydrolysis during drying results in maximal benzylamine values of 4300μgg(-1) dry wt (40.2μmolg(-1) dry wt). Pearson correlation coefficients of the accumulation profiles of benzylamine and free fatty acid to that of macamides showed good values of 0.898 and 0.934, respectively, suggesting that both provide sufficient substrate for amide synthesis during the drying process.

  1. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect

    Edward K. Levy; Nenad Sarunac; Wei Zhang

    2004-07-01

    This is the sixth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. Coal drying experiments were performed with a Powder River Basin coal to measure the effects of fluidization velocity and drying temperature on rate of drying in a batch drying process. Comparisons to computational results using the batch bed drying model show good agreement. Comparisons to drying results with North Dakota lignite at the same process conditions confirm the lignite dries slightly more rapidly than the PRB. Experiments were also carried out to determine the effects of inlet air humidity on drying rate. The specific humidity ranged from a value typical for air at temperatures near freezing to a value for 30 C air at 90 percent relative humidity. The experimental results show drying rate is strongly affected by inlet air humidity, with the rate decreasing with more humid inlet air. The temperature of the drying process also plays a strong role, with the negative impacts of high inlet moisture being less of a factor in a higher temperature drying process. Concepts for coal drying systems integrated into a power plant were developed. These make use of hot circulating cooling water from the condenser, steam extraction from the turbine cycle and thermal energy extracted from hot flue gas, in various combinations. Analyses are under way to calculate the effects of drying system design and process conditions on unit performance, emissions, and cooling tower makeup water.

  2. Drying rate and temperature profile for superheated steam vacuum drying and moist air drying of softwood lumber

    SciTech Connect

    Pang, S.; Dakin, M.

    1999-07-01

    Two charges of green radiata pine sapwood lumber were dried, ether using superheated steam under vacuum (90 C, 0.2 bar abs.) or conventionally using hot moist air (90/60 C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air. The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying.

  3. Soil N fluxes in three contrasting dry tropical forests.

    PubMed

    Tokuchi, N; Nakanishi, A; Wachirinrat, C; Takeda, H

    2001-11-20

    A comparative study of N fluxes in soil among a dry dipterocarp forest (DDF), a dry evergreen forest (DEF), and a hill evergreen forest (HEF) in Thailand was done. N fluxes in soil were estimated using an ion exchange resin core method and a buried bag method. Soil C and N pools were 38 C Mg/ha/30 cm and 2.5 N Mg/ha/30 cm in DDF, 82 C Mg/ha/30 cm and 6.2 N Mg/ha/30 cm in DEF, and 167 C Mg/ha/30 cm and 9.3 N Mg/ha/30 cm in HEF. Low C concentration in the DDF and DEF sites was compensated by high fine soil content. In the highly weathered tropical soil, fine soil content seemed to be important for C accumulation. Temporal and vertical fluctuations of N fluxes were different among the sites. The highest N flux was exhibited at the onset of the wet season in DDF, whereas inorganic N production and estimated uptake of N were relatively stable during the wet season in DEF and HEF. It is suggested that N cycling in soil becomes stable in dry tropical forests to intermediate in temperate forests. N deposition may result in large changes of N cycling in the DDF and DEF due to low accumulations of C and N.

  4. Effect of drying conditions on crystallinity of amylose nanoparticles prepared by nanoprecipitation.

    PubMed

    Yan, Xiaoxia; Chang, Yanjiao; Wang, Qian; Fu, Youjia; Zhou, Jiang

    2017-04-01

    In this study, amylose nanoparticles prepared by nanoprecipitation were dried at different conditions. The crystalline structure, crystallinity, re-dispersibility and morphological characteristic of the amylose nanoparticles after drying were investigated. X-ray diffraction analysis revealed that the V-type crystalline structure of the amylose nanoparticles formed in the drying process instead of the precipitation process, and drying condition significantly affects the crystallinity. The temperature cycles drying at 4°C and 40°C considerably increased crystallinity of the amylose nanoparticles, 24h (4/40°C, 12h/12h) drying under 11% relative humidity could give rise to a crystallinity up to 50.05%. The applied drying procedures had no obvious effect on the appearance of the amylose nanoparticles. The Z average-size (d. nm) and polydispersity index (PDI) obtained from dynamic light scattering analysis suggested that the drying processes caused some aggregates, but the dried amylose nanoparticles could be well dispersed in water.

  5. Use of gas turbine exhaust for the direct drying of food products: Final report

    SciTech Connect

    Not Available

    1988-06-01

    The objective of this program was to evaluate the merits of using natural gas-fired gas turbine exhaust to directly dry food products. A survey of drying practices utilized in the food industry and a detailed review of worldwide regulatory drying practices were completed. An investigation of the economic advantages associated with direct drying was also considered. Four drying scenarios were used as part of the analysis: Dilution - hot turbine exhaust gases were diluted with ambient air to achieve temperatures suitable for food product drying; Indirect Heat Exchanger - gas turbine exhaust was directed through an intermediate heat exchanger to avoid flue-gas contamination of the ambient air; Tri-Generation - exhaust gases from the gas turbine were first directed to a heat recovery boiler and then through the drying system to dry the food product; and Conventional Cogeneration - the most conventional simple cycle gas turbine cogeneration (this scenario served as the baseline for all evaluations). Although the economics associated with direct drying appear attractive, the principal concern of any potential use would be the extraordinarily high NO/sub x/ levels and the potential nitrate and nitrosamine (potential carcinogens and carcinogenic precursors) contamination in food products. 21 refs., 21 figs., 17 tabs.

  6. Systemic Review of Dry Socket: Aetiology, Treatment, and Prevention

    PubMed Central

    Saleh, Lubna Ahmed; Umair, Ayesha; Azzeghaiby, Saleh Nasser; Hanouneh, Salah

    2015-01-01

    Our systemic review is to make a comprehensive review about the aetiology, treatment and the prevention of dry socket, the inclusion criteria were all the studies that discuss the dry socket and its etiology, treatment and prevention and exclusion criteria were all the studies that discuss the other complications of tooth extraction, the materials and methods used for this systemic review was to search in the Pub Medline database between 2008 to 2013, using specific words “dry socket, aetiology, treatment and prevention” and published in the English language, the articles were screened by abstract for relevance to aetiology, treatment and prevention of dry socket, 82 papers were identified in pub med but a total of 36 out of Publications were included in the final systemic review according to the specific keywords and materials mentioned above. The occurrence of dry socket in an everyday oral surgery or dental practice is unavoidable. The risk factors are smoking, surgical trauma, single extractions, age, sex, medical history, systemic disorder, extraction site, amount of anaesthesia, operator experience, antibiotics use prior to surgery, difficulty of the surgery and the previous surgical site infection in addition to oral Contraceptives, menstrual cycle and immediate postextraction socket irrigation with normal saline. The traditional options of treatment are directed toward palliative care, such as the irrigation of the surgical site, avoiding curetting the extraction socket, Packing with a zinc oxide– eugenol paste on iodoform gauze can be considered to relieve acute pain episodes, there is also new agents in the market can accelerate the healing of the socket such as PRGF and GECB. The prevention methods include avoiding smoking before and after surgery and a traumatic surgery, the use of antibiotics, such as, azithromycin, can be considered, the other preventive measures such as chlorhecidine rinse or gel can be effective in the reduction of dry socket

  7. Hanford spent nuclear fuel cold vacuum drying proof of performance test procedure

    SciTech Connect

    McCracken, K.J.

    1998-06-10

    This document provides the test procedure for cold testing of the first article skids for the Cold Vacuum Drying (CVD) process at the Facility. The primary objective of this testing is to confirm design choices and provide data for the initial start-up parameters for the process. The current scope of testing in this document includes design verification, drying cycle determination equipment performance testing of the CVD process and MCC components, heat up and cool-down cycle determination, and thermal model validation.

  8. Spray-freeze-dried dry powder inhalation of insulin-loaded liposomes for enhanced pulmonary delivery.

    PubMed

    Bi, Ru; Shao, Wei; Wang, Qun; Zhang, Na

    2008-11-01

    Nowadays, growing attention has been paid to the pulmonary region as a target for the delivery of peptide and protein drugs, especially macromolecules with systemic effect like insulin, since the pulmonary route exhibits numerous benefits to be an alternative for repeated injection. Furthermore, encapsulation of insulin into liposomal carriers is an attractive way to increase drug retention time and control the drug release in the lung; however, its long-term stability during storage in the reservoir and the process of aerosolization might be suspected when practically applied. Thus, the aim of this study was to design and characterize dry powder inhalation of insulin-loaded liposomes prepared by novel spray-freeze-drying method for enhanced pulmonary delivery. Process variables such as compressed air pressure, pump speed, and concentration were optimized for parameters such as mean particle diameter, moisture content, and fine particle fraction of the produced powders. Influence of different kinds and amounts of lyoprotectants was also evaluated for the best preservation of the drug entrapped in the liposome bilayers after the dehydration-rehydration cycle. The in vivo study of intratracheal instillation of insulin-loaded liposomes to diabetic rats showed successful hypoglycemic effect with low blood glucose level and long-lasting period and a relative pharmacological bioavailability as high as 38.38% in the group of 8 IU/kg dosage.

  9. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect

    Carter, J.

    2011-01-03

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  10. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect

    Jones, R.; Carter, J.

    2010-10-13

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  11. Toward intradermal vaccination: preparation of powder formulations by collapse freeze-drying.

    PubMed

    Etzl, Elsa E; Winter, Gerhard; Engert, Julia

    2014-03-01

    Intradermal powder immunization is an emerging technique in vaccine delivery. The purpose of this study was to generate powder particles for intradermal injection by freeze-drying and subsequent cryo-milling. Two different freeze-drying protocols were compared, a moderate freeze-drying cycle and an aggressive freeze-drying cycle, which induced a controlled collapse of the sugar matrix. Ovalbumin served as model antigen. The influence of collapse drying and cryo-milling on particle morphology and protein stability was investigated. Cryo-milling generated irregularly shaped particles of size 20-70 µm. The recovery of soluble monomer of ovalbumin was not changed during freeze-drying and after cryo-milling, or after 12 months of storage at 2-8 °C. A slight increase in higher molecular weight aggregates was found in formulations containing the polymer dextran after 12 months of storage at 50 °C. Light obscuration measurements showed an increase in cumulative particle counts after cryo-milling that did not further increase during storage at 2-8 °C for 12 months. The applicability of the cryo-milling process to other therapeutic proteins was shown using recombinant human granulocyte-colony stimulating factor. Collapse freeze-drying and subsequent cryo-milling allows the generation of particles suitable for intradermal powder injection.

  12. Uncertainty analysis as essential step in the establishment of the dynamic Design Space of primary drying during freeze-drying.

    PubMed

    Mortier, Séverine Thérèse F C; Van Bockstal, Pieter-Jan; Corver, Jos; Nopens, Ingmar; Gernaey, Krist V; De Beer, Thomas

    2016-06-01

    compared to the deterministic dynamic Design Space; however, the risk of failure is under control. Experimental verification revealed that only a risk of failure acceptance level of 0.01% yielded a guaranteed zero-defect quality end-product. The computed process settings with a risk of failure acceptance level of 0.01% resulted in a decrease of more than half of the primary drying time in comparison with a regular, conservative cycle with fixed settings.

  13. HIV Life Cycle

    MedlinePlus

    HIV Overview The HIV Life Cycle (Last updated 9/13/2016; last reviewed 9/8/2016) Key Points HIV gradually destroys the immune ... life cycle. What is the connection between the HIV life cycle and HIV medicines? Antiretroviral therapy (ART) ...

  14. Dry Eye and Designer Ophthalmics

    PubMed Central

    Laurie, Gordon W.; Olsakovsky, Leslie A.; Conway, Brian P.; McKown, Robert L.; Kitagawa, Kazuko; Nichols, Jason J.

    2009-01-01

    EST, proteomic, and antibody capture assays are revealing a level of tear film protein complexity far greater than previously appreciated. A systems biology approach will be needed to fully appreciate function as tear protein doses fluctuate in time through different conditions. Although consensus is growing on what fully constitutes the human tear proteome, questions remain about the source and significance of the ∼256 tear proteins designated as ‘intracellular’. Many of these may derive from normal cellular turnover and could therefore be informative. A further >183 are designated as ‘extracellular’. Surprisingly, only 4 – 5% of these appear to be dysregulated in the three forms of dry eye preliminarily examined to date. Some differ and a couple overlap, suggesting that disease-specific signatures could be identified. Future dry eye treatment might include recombinant tear protein rescue as a personalized ophthalmic approach to ocular surface disease. PMID:18677231

  15. Superficial versus deep dry needling.

    PubMed

    Baldry, Peter

    2002-08-01

    Ninety percent of my patients with myofascial trigger point (MTrP) pain have this alone and are treated with superficial dry needling. Approximately 10% have concomitant MTrP pain and nerve root compression pain. These are treated with deep dry needling. SUPERFICIAL DRY NEEDLING (SDN): The activated and sensitised nociceptors of a MTrP cause it to be so exquisitely tender that firm pressure applied to it gives rise to a flexion withdrawal reflex (jump sign) and in some cases the utterance of an expletive (shout sign). The optimum strength of SDN at a MTrP site is the minimum necessary to abolish these two reactions. With respect to this patients are divided into strong, average and weak responders. The responsiveness of each individual is determined by trial and error. It is my practice to insert a needle (0.3mm x 30mm) into the tissues immediately overlying the MTrP to a depth of 5-10 mm and to leave it in situ long enough for the two reactions to be abolished. For an average reactor this is about 30secs. For a weak reactor it is several minutes. And for a strong reactor the insertion of the needle and its immediate withdrawal is all that is required. Following treatment muscle stretching exercises should be carried out, and any steps taken to eliminate factors that might lead to the reactivation of the MTrPs. DEEP DRY NEEDLING (DDN): This in my practice is only used either when primary MTrP activity causes shortening of muscle sufficient enough to bring about compression of nerve roots. Or when there is nerve compression pain usually from spondylosis or disc prolapse and the secondary development of MTrP activity. Unlike SDN, DDN is a painful procedure and one which gives rise to much post-treatment soreness.

  16. Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments.

    PubMed

    Knapp, Alan K; Hoover, David L; Wilcox, Kevin R; Avolio, Meghan L; Koerner, Sally E; La Pierre, Kimberly J; Loik, Michael E; Luo, Yiqi; Sala, Osvaldo E; Smith, Melinda D

    2015-02-03

    Climate change is intensifying the hydrologic cycle and is expected to increase the frequency of extreme wet and dry years. Beyond precipitation amount, extreme wet and dry years may differ in other ways, such as the number of precipitation events, event size, and the time between events. We assessed 1614 long-term (100 year) precipitation records from around the world to identify key attributes of precipitation regimes, besides amount, that distinguish statistically extreme wet from extreme dry years. In general, in regions where mean annual precipitation (MAP) exceeded 1000 mm, precipitation amounts in extreme wet and dry years differed from average years by ~40% and 30%, respectively. The magnitude of these deviations increased to >60% for dry years and to >150% for wet years in arid regions (MAP<500 mm). Extreme wet years were primarily distinguished from average and extreme dry years by the presence of multiple extreme (large) daily precipitation events (events >99th percentile of all events); these occurred twice as often in extreme wet years compared to average years. In contrast, these large precipitation events were rare in extreme dry years. Less important for distinguishing extreme wet from dry years were mean event size and frequency, or the number of dry days between events. However, extreme dry years were distinguished from average years by an increase in the number of dry days between events. These precipitation regime attributes consistently differed between extreme wet and dry years across 12 major terrestrial ecoregions from around the world, from deserts to the tropics. Thus, we recommend that climate change experiments and model simulations incorporate these differences in key precipitation regime attributes, as well as amount into treatments. This will allow experiments to more realistically simulate extreme precipitation years and more accurately assess the ecological consequences.

  17. McMurdo Dry Valleys

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the few areas of Antarctica not covered by thousands of meters of ice, the McMurdo Dry Valleys stand out in this satellite image. For a few weeks each summer temperatures are warm enough to melt glacial ice, creating streams that feed freshwater lakes that lie at the bottom of the valleys. Beneath a cap of ice these lakes remains unfrozen year-round, supporting colonies of bacteria and phytoplankton. Over the past 14 years, however, summers have been colder than usual, and the lakes are becoming more and more frozen. If the trend continues, the biological communities they support may go into hibernation. Most of Antarctica has cooled along with the Dry Valleys, in contrast to much of the rest of the Earth, which has warmed over the past 100 years. No one knows if the trend is related to global climate, or just a quirk in the weather. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) instrument on December 18, 1999. For more information, visit: National Public Radio's Mixed Signals from Antarctica Declassified Satellite Imagery of the McMurdo Dry Valleys Image by Robert Simmon, based on data provided by the NASA GSFC Oceans and Ice Branch and the Landsat 7 Science Team

  18. Ingested hyaluronan moisturizes dry skin

    PubMed Central

    2014-01-01

    Hyaluronan (HA) is present in many tissues of the body and is essential to maintain moistness in the skin tissues, which contain approximately half the body’s HA mass. Due to its viscosity and moisturizing effect, HA is widely distributed as a medicine, cosmetic, food, and, recently marketed in Japan as a popular dietary supplement to promote skin moisture. In a randomized, double-blind, placebo-controlled clinical study it was found that ingested HA increased skin moisture and improved treatment outcomes for patients with dry skin. HA is also reported to be absorbed by the body distributed, in part, to the skin. Ingested HA contributes to the increased synthesis of HA and promotes cell proliferation in fibroblasts. These effects show that ingestion of HA moisturizes the skin and is expected to improve the quality of life for people who suffer from dry skin. This review examines the moisturizing effects of dry skin by ingested HA and summarizes the series of mechanisms from absorption to pharmacological action. PMID:25014997

  19. Skin aging and dry skin.

    PubMed

    Hashizume, Hideo

    2004-08-01

    Skin aging appears to be the result of both scheduled and continuous "wear and tear" processes that damage cellular DNA and proteins. Two types of aging, chronological skin aging and photoaging, have distinct clinical and histological features. Chronological skin aging is a universal and inevitable process characterized primarily by physiologic alterations in skin function. In this case, keratinocytes are unable to properly terminally differentiate to form a functional stratum corneum, and the rate of formation of neutral lipids that contribute to the barrier function slows, causing dry, pale skin with fine wrinkles. In contrast, photoaging results from the UVR of sunlight and the damage thus becomes apparent in sun-exposed skin. Characteristics of this aging type are dry and sallow skin displaying fine wrinkles as well as deep furrows, resulting from the disorganization of epidermal and dermal components associated with elastosis and heliodermatitis. Understanding of the functions of the skin and the basic principles of moisturizer use and application is important for the prevention of skin aging. Successful treatment of dry skin with appropriate skin care products gives the impression of eternal youth.

  20. The microbial cell cycle

    SciTech Connect

    Nurse, P.; Streiblova, E.

    1984-01-01

    This book concentrates on the major problems of cell cycle control in microorganisms. A wide variety of microorganisms, ranging from bacteria and yeasts to hyphal fungi, algae, and ciliates are analyzed, with emphasis on the basic similarities among the organisms. Different ways of looking at cell cycle control which emphasize aspects of the problem such as circadian rhythms, limit cycle oscillators, and cell size models, are considered. New approaches such as the study of cell cycle mutants, and cloning of cell cycle control genes are also presented.

  1. Defect management on photomasks with dry treatment assistance

    NASA Astrophysics Data System (ADS)

    Shi, Irene; Guo, Eric; Lu, Max

    2016-10-01

    One of the key challenges of photomask manufacture is to achieve defect-free masks. Clean and repair has been applied to manage defects and particles on the mask imported during manufacturing processes. Since photomask patterns become smaller and more complicated as integrated circuit (IC) scaling to 28 nm node and below, the increasingly importance of mask quality compels us continuously research on more effective defect treatment solutions, to achieve mask yield enhancement and on-schedule delivery. In this paper, we would like to introduce new approaches of defect management with dry treatment assistance, according to particular defect types. One is using plasma etching gases of Cl2/O2 to change the properties of glue compounds adhering to the mask surface, and make them removed by conventional cleaning. Another is the application of O2 plasma dry treatment for the benefit of alleviation on scan damage phenomenon, which comes from contamination on the scan area due to excessive repair cycles.

  2. Microalgal drying and cell disruption--recent advances.

    PubMed

    Show, Kuan-Yeow; Lee, Duu-Jong; Tay, Joo-Hwa; Lee, Tse-Min; Chang, Jo-Shu

    2015-05-01

    Production of intracellular metabolites or biofuels from algae involves various processing steps, and extensive work on laboratory- and pilot-scale algae cultivation, harvesting and processing has been reported. As algal drying and cell disruption are integral processes of the unit operations, this review examines recent advances in algal drying and disruption for nutrition or biofuel production. Challenges and prospects of the processing are also outlined. Engineering improvements in addressing the challenges of energy efficiency and cost-effective and rigorous techno-economic analyses for a clearer prospect comparison between different processing methods are highlighted. Holistic life cycle assessments need to be conducted in assessing the energy balance and the potential environmental impacts of algal processing. The review aims to provide useful information for future development of efficient and commercially viable algal food products and biofuels production.

  3. Introduction to combined cycles

    NASA Astrophysics Data System (ADS)

    Moore, M. J.

    Ideas and concepts underlying the technology of combined cycles including the scientific principles involved and the reasons these cycles are in fashion at the present time, are presented. A cycle is a steady flow process for conversion of heat energy into work, in which a working medium passes through a range of states, returning to its original state. Cycles for power production are the steam cycle, which is a closed cycle, and the gas turbine, which represents an open cycle. Combined cycle thermodynamic parameters, are discussed. The general arrangement of the plant is outlined and important features of their component parts described. The scope for future development is discussed. It is concluded that for the next few years the natural gas fired combined cycle will be the main type of plant installed for electricity generation and cogeneration. Whilst gas turbines may not increase substantially in unit size, there remains scope for further increase in firing temperature with consequent increase in cycle performance. However the larger global reserves of coal are providing an incentive to the development of plant for clean coal combustion using the inherent advantage of the combined cycle to attain high efficiencies.

  4. Simple Solutions for Treating Dry Mouth

    MedlinePlus

    Patient Education Sheet Simple Solutions for Treating Dry Mouth Clinicians: Please make as many copies of this ... Philadelphia, for authoring “Simple Solutions for Treating Dry Mouth.” Ask your family doctor to discontinue or provide ...

  5. Thin layer solar drying of rough rice

    SciTech Connect

    Zaman, M.A.; Bala, B.K. )

    1989-01-01

    This paper presents a set of simple empirical equations for natural air flow solar drying of rough rice in mixed-mode type dryer, box-type dryer and open floor drying system. The moisture contents predicted by the equations were in good agreement with the observed values. The effect of drying air temperature on the drying rate constants for these three cases were found to be insignificant. The equilibrium moisture content appeared to be the most important variable controlling the drying rate. The highest drying rate was observed in case of mixed-mode dryer. The drying rate of box dryer was next to that of mixed-mode dryer. This study shows that the introduction of solar dryer for drying of rough rice is highly recommended in Bangladesh.

  6. 27 CFR 24.202 - Dried fruit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... deficient in sugar, sufficient pure dry sugar may be added to increase the total solids content to 25... exclusive of pulp). Pure dry sugar may be used for sweetening. After complete fermentation or...

  7. 27 CFR 24.202 - Dried fruit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... deficient in sugar, sufficient pure dry sugar may be added to increase the total solids content to 25... exclusive of pulp). Pure dry sugar may be used for sweetening. After complete fermentation or...

  8. 27 CFR 24.202 - Dried fruit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... deficient in sugar, sufficient pure dry sugar may be added to increase the total solids content to 25... exclusive of pulp). Pure dry sugar may be used for sweetening. After complete fermentation or...

  9. 27 CFR 24.202 - Dried fruit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... deficient in sugar, sufficient pure dry sugar may be added to increase the total solids content to 25... exclusive of pulp). Pure dry sugar may be used for sweetening. After complete fermentation or...

  10. Dry Mouth? Don't Delay Treatment

    MedlinePlus

    ... Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products For Consumers Home For Consumers Consumer Updates Dry Mouth? Don' ... or neck cancer. back to top Advice for Consumers If you have persistent dry mouth: Talk to ...

  11. Nanoceria: a Potential Therapeutic for Dry AMD.

    PubMed

    Cai, Xue; McGinnis, James F

    2016-01-01

    Age-related macular degeneration (AMD) is the leading cause of blinding diseases. The "dry" form of AMD is the most common form of AMD. In contrast to the treatable neovascular (wet) AMD, no effective treatment is available for dry AMD. In this review, we summarize the animal models and therapeutic strategies for dry AMD. The novel candidates as potential treatment targets and the potential effectiveness of nanoceria as a treatment of dry AMD are also discussed.

  12. Drying and color characteristics of coriander foliage using convective thin-layer and microwave drying.

    PubMed

    Shaw, Mark; Meda, Venkatesh; Tabil, Lope; Opoku, Anthony

    2007-01-01

    Heat sensitive properties (aromatic, medicinal, color) provide herbs and spices with their high market value. In order to prevent extreme loss of heat sensitive properties when drying herbs, they are normally dried at low temperatures for longer periods of time to preserve these sensory properties. High energy consumption often results from drying herbs over a long period. Coriander (Coriandrum sativum L., Umbelliferae) was dehydrated in two different drying units (thin layer convection and microwave dryers) in order to compare the drying and final product quality (color) characteristics. Microwave drying of the coriander foliage was faster than convective drying. The entire drying process took place in the falling rate period for both microwave and convective dried samples. The drying rate for the microwave dried samples ranged from 42.3 to 48.2% db/min and that of the convective dried samples ranged from 7.1 to 12.5% db/min. The fresh sample color had the lowest L value at 26.83 with higher L values for all dried samples. The results show that convective thin layer dried coriander samples exhibited a significantly greater color change than microwave dried coriander samples. The color change index values for the microwave dried samples ranged from 2.67 to 3.27 and that of the convective dried samples varied from 4.59 to 6.58.

  13. 27 CFR 24.202 - Dried fruit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Dried fruit. 24.202... OF THE TREASURY ALCOHOL WINE Production of Agricultural Wine § 24.202 Dried fruit. In the production of wine from dried fruit, a quantity of water sufficient to restore the moisture content to that...

  14. Compton Dry-Cask Imaging System

    ScienceCinema

    None

    2016-07-12

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  15. 7 CFR 58.409 - Drying room.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Drying room. 58.409 Section 58.409 Agriculture... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58.409 Drying room. When applicable, a drying room of adequate size shall be provided to accommodate...

  16. Composite drying with simultaneous vacuum and toggling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drying is an important mechanical operation in the leather making process. Leather acquires its final texture, consistency and flexibility in the drying operation. Vacuum drying offers fast water removal at a low temperature, which is particularly advantageous to heat-vulnerable chrome-free leathe...

  17. Composite drying with simultaneous vacuum and toggling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drying is one of key steps to govern the physical properties of leather and it is where leather acquires its final texture, consistency and flexibility. Recently we have been working diligently to improve chrome-free leather by optimizing its drying process. We developed a drying method using a co...

  18. 21 CFR 131.149 - Dry cream.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Dry cream. 131.149 Section 131.149 Food and Drugs... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.149 Dry cream. (a) Description. Dry cream is the product obtained by removal of water only from pasteurized milk or cream or...

  19. Compton Dry-Cask Imaging System

    SciTech Connect

    2011-01-01

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  20. 7 CFR 51.2287 - Well dried.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Well dried. 51.2287 Section 51.2287 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.2287 Well dried. Well dried means that the portion of kernel is firm and crisp, not pliable...

  1. 7 CFR 51.2287 - Well dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Well dried. 51.2287 Section 51.2287 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2287 Well dried. Well dried...

  2. 7 CFR 51.2086 - Well dried.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Well dried. 51.2086 Section 51.2086 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Well dried. Well dried means that the kernel is firm and brittle, not pliable or leathery....

  3. 7 CFR 51.2961 - Well dried.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Well dried. 51.2961 Section 51.2961 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Walnuts in the Shell Definitions § 51.2961 Well dried. Well dried means that...

  4. 7 CFR 51.1444 - Well dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Well dried. 51.1444 Section 51.1444 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Pecans Definitions § 51.1444 Well dried. Well dried means that the...

  5. 7 CFR 51.2086 - Well dried.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Well dried. 51.2086 Section 51.2086 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Almonds in the Shell Definitions § 51.2086 Well dried. Well dried means that...

  6. 7 CFR 51.2119 - Well dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Well dried. 51.2119 Section 51.2119 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Almonds Definitions § 51.2119 Well dried. Well dried means that the...

  7. 7 CFR 51.2961 - Well dried.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Well dried. 51.2961 Section 51.2961 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Well dried. Well dried means that the kernel is firm and crisp, not pliable or leathery....

  8. 7 CFR 51.2119 - Well dried.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Well dried. 51.2119 Section 51.2119 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2119 Well dried. Well dried means that the kernel is firm and brittle, and not pliable or leathery....

  9. 7 CFR 51.2119 - Well dried.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Well dried. 51.2119 Section 51.2119 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Almonds Definitions § 51.2119 Well dried. Well dried means that the...

  10. 7 CFR 51.2086 - Well dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Well dried. 51.2086 Section 51.2086 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Almonds in the Shell Definitions § 51.2086 Well dried. Well dried means that...

  11. 7 CFR 51.2119 - Well dried.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Well dried. 51.2119 Section 51.2119 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2119 Well dried. Well dried means that the kernel is firm and brittle, and not pliable or leathery....

  12. 7 CFR 51.2961 - Well dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Well dried. 51.2961 Section 51.2961 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Walnuts in the Shell Definitions § 51.2961 Well dried. Well dried means that...

  13. 7 CFR 51.2961 - Well dried.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Well dried. 51.2961 Section 51.2961 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Well dried. Well dried means that the kernel is firm and crisp, not pliable or leathery....

  14. 7 CFR 51.1444 - Well dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Well dried. 51.1444 Section 51.1444 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Pecans Definitions § 51.1444 Well dried. Well dried means that the...

  15. 7 CFR 51.2287 - Well dried.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Well dried. 51.2287 Section 51.2287 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2287 Well dried. Well dried...

  16. 7 CFR 51.1444 - Well dried.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Well dried. 51.1444 Section 51.1444 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Pecans Definitions § 51.1444 Well dried. Well dried means that the portion of kernel is firm and crisp, not pliable or leathery....

  17. 7 CFR 51.1444 - Well dried.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Well dried. 51.1444 Section 51.1444 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Pecans Definitions § 51.1444 Well dried. Well dried means that the portion of kernel is firm and crisp, not pliable or leathery....

  18. 7 CFR 51.2287 - Well dried.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Well dried. 51.2287 Section 51.2287 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.2287 Well dried. Well dried means that the portion of kernel is firm and crisp, not pliable...

  19. 7 CFR 51.2119 - Well dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Well dried. 51.2119 Section 51.2119 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Almonds Definitions § 51.2119 Well dried. Well dried means that the...

  20. 7 CFR 51.2086 - Well dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Well dried. 51.2086 Section 51.2086 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Almonds in the Shell Definitions § 51.2086 Well dried. Well dried means that...

  1. 7 CFR 51.2287 - Well dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Well dried. 51.2287 Section 51.2287 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2287 Well dried. Well dried...

  2. 7 CFR 51.2086 - Well dried.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Well dried. 51.2086 Section 51.2086 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Well dried. Well dried means that the kernel is firm and brittle, not pliable or leathery....

  3. 7 CFR 51.2961 - Well dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Well dried. 51.2961 Section 51.2961 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Walnuts in the Shell Definitions § 51.2961 Well dried. Well dried means that...

  4. 7 CFR 51.1444 - Well dried.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Well dried. 51.1444 Section 51.1444 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Pecans Definitions § 51.1444 Well dried. Well dried means that the...

  5. Thermal resistance of naturally occurring airborne bacterial spores. [Viking spacecraft dry heat decontamination simulation

    NASA Technical Reports Server (NTRS)

    Puleo, J. R.; Bergstrom, S. L.; Peeler, J. T.; Oxborrow, G. S.

    1978-01-01

    Simulation of a heat process used in the terminal dry-heat decontamination of the Viking spacecraft is reported. Naturally occurring airborne bacterial spores were collected on Teflon ribbons in selected spacecraft assembly areas and subsequently subjected to dry heat. Thermal inactivation experiments were conducted at 105, 111.7, 120, 125, 130, and 135 C with a moisture level of 1.2 mg of water per liter. Heat survivors were recovered at temperatures of 135 C when a 30-h heating cycle was employed. Survivors were recovered from all cycles studied and randomly selected for identification. The naturally occurring spore population was reduced an average of 2.2 to 4.4 log cycles from 105 to 135 C. Heating cycles of 5 and 15 h at temperature were compared with the standard 30-h cycle at 111.7, 120, and 125 C. No significant differences in inactivation (alpha = 0.05) were observed between 111.7 and 120 C. The 30-h cycle differs from the 5- and 15-h cycles at 125 C. Thus, the heating cycle can be reduced if a small fraction (about 0.001 to 0.0001) of very resistant spores can be tolerated.

  6. Infrared Thermography for Monitoring of Freeze-Drying Processes: Instrumental Developments and Preliminary Results

    PubMed Central

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-01-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from −40°C to 25°C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5°C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8°C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13°C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10°C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union 103:2088–2097, 2014 PMID:24902839

  7. Infrared thermography for monitoring of freeze-drying processes: instrumental developments and preliminary results.

    PubMed

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-07-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from -40 °C to 25 °C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5 °C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8 °C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13 °C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10 °C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes.

  8. Creep of dry clinopyroxene aggregates

    NASA Astrophysics Data System (ADS)

    Bystricky, Misha; Mackwell, Stephen

    2001-01-01

    We have determined diffusional and dislocation creep rheologies for clinopyroxenite Ca1.0Mg0.8Fe0.2Si2O6 under dry conditions by deforming natural and hot-pressed samples at confining pressures of 300-430 MPa and temperatures of 1100°-1250°C with the oxygen fugacity buffered by either nickel-nickel oxide or iron-wüstite powders. The coarse-grained natural Sleaford Bay clinopyroxenite yielded a stress exponent of n = 4.7 ± 0.2 and an activation energy for creep of Q = 760 ± 40 kJ mol-1, consistent with deformation in the dislocation creep regime. The strength of the natural clinopyroxenite is consistent with previous high-temperature measurements of dislocation creep behavior of Sleaford Bay clinopyroxenite by Kirby and Kronenberg [1984] and Boland and Tullis [1986]. Fine-grained clinopyroxenite was prepared from ground powders of the natural clinopyroxenite. Hot-pressed samples were deformed under similar conditions to the natural samples. Mixed-mode deformation behavior was observed, with diffusional creep (n = 1) at lower differential stresses and dislocation creep (with n and Q similar to those of the natural samples) at higher differential stresses. Within the dislocation creep field the predried hot-pressed samples generally yielded creep rates that were about an order of magnitude faster than the natural samples. Thus, even at the highest differential stresses, a component of strain accommodation by grain boundary diffusion was present in the hot-pressed samples. Optical and electron microscope investigations of the deformation microstructures of the natural and hot-pressed samples show evidence for mechanical twinning and activation of dislocation slip systems. When extrapolated to geological conditions expected in the deep crust and upper mantle on Earth and other terrestrial planets, the strength of dry single-phase clinopyroxene aggregates is very high, exceeding that of dry olivine-rich rocks.

  9. Small polarons in dry DNA

    NASA Astrophysics Data System (ADS)

    Chacham, Helio; Alexandre, Simone S.; Soler, Jose M.; Artacho, Emilio

    2004-03-01

    The phenomenon of charge transport in DNA has been attracting attention of both biologists and physicists. From the biology side, there are evidences that charge injection can be associated to damage, mutation, and repair processes in DNA. From the physical sciences side, recent developments in nanotechnology now allow the measurement of currents through single DNA molecules in dried samples, which depict semiconductor behavior. Several mechanisms have been proposed for charge migration and transport in DNA. In that respect, detailed electrical transport measurements through DNA molecules containing identical base pairs (poly(dA)-poly(dT) and poly(dG)-poly(dC)) have been recently reported by Yoo et al [1]. These results fit extremely well a model in which the conduction is due to small polaron motion. In particular, these results indicate that the I-V characteristic of poly(dG)-poly(dC) DNA above 200 K is consistent with a small polaron hopping regime with an activation energy of 0.12 eV. In this work [2] we investigate the polaron formation in dry DNA by applying ab initio calculations to both neutral and charged fragments of dry poly(dG)-poly(dC). Our calculations show that the hole polaron in dry poly(dG)-poly(dC) DNA is a clear case of small polaron. This is verified by four basic properties: (i) the small variation of the polaron binding energy as a function of the DNA fragment size, for small fragment sizes, which is an indication of polaron localization; (ii) the fact that the width of the uppermost valence band is an order of magnitude smaller than the polaron binding energy; (iii) the explicit localization of the hole wavefunction for the largest considered fragment (four base pairs), indicated by the fact that about half of the norm of the hole is localized on a single guanine site; (iv) the localization of structural deformations at the nucleotides where the hole is concentrated. Our calculations also give a polaron binding energy of 0.30 eV. This allows

  10. Freeze-dried bank bone.

    PubMed

    Delloye, C; Buccafusca, G C

    1989-09-01

    The authors present their experience with freeze-dried bone of human origin. Since 1983, 500 preserved allografts have been implanted in 228 patients. The implants were monitored radiographically and, based on perfect fusion with the recipient bone, the results were as follows: excellent: 78%; good: 8.6%; failure: 12.4%. In nearly all the cases of failure this was attributed to an erronous implant method or an improper use of the graft. Bank bone is only osteoconductive: thus, in the absence of osteogenetic properties, a perfect method of implant and its correct use are essential.

  11. Dry-cleaning of graphene

    SciTech Connect

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  12. Dry-Column Flash Chromatography

    NASA Astrophysics Data System (ADS)

    Shusterman, Alan J.; McDougal, Patrick G.; Glasfeld, Arthur

    1997-10-01

    Dry-column flash chromatography is a safe, powerful, yet easily learned preparative chromatography technique. It has proven useful in research, and an adaptation of the technique for use in large teaching laboratories (general chemistry, organic chemistry) is described here. The student version is similar to vacuum filtration, uses the same compact, readily available glassware, and inexpensive and safe solvents (ethyl acetate and hexane) and adsorbent (Merck grade 60 silica gel). The technique is sufficiently simple and powerful that a beginning student can successfully resolve diastereomers on sample scales ranging from 100 mg to >1 g.

  13. Comparing the Life Cycle Energy Consumption, Global ...

    EPA Pesticide Factsheets

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability

  14. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  15. Experimental study of cassava sun drying

    SciTech Connect

    Njie, D.N.; Rumsey, T.R.

    1997-03-01

    Sun drying experiments were performed to compare drying of cassava chips in sheet-metal trays with drying on mesh wire trays. In the sheet-metal trays, there was air flow across the top of the bed chips, while the mesh wire trays permitted air to flow through the bed. Drying rate was faster and more uniform in the trays with through-flow air circulation. Higher temperatures were reached by chips in the sheet-metal trays than those in the mesh trays because of contact heating, but the drying rate was lower because of the reduced air flow.

  16. Drying and Quality Characteristics of Fresh and Sugar-infused Blueberries Dried with Infrared Radiation Heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the finished product quality and infrared (IR) drying characteristics of fresh and sugar-infused blueberries dried with a catalytic infrared (CIR) dryer. IR drying tests were conducted at four product temperatures (60, 70, 80, and 90oC) to evaluate the drying rate, and the color and te...

  17. Simultaneously cycled NMR spectroscopy.

    PubMed

    Parish, David M; Szyperski, Thomas

    2008-04-09

    Simultaneously cycled (SC) NMR was introduced and exemplified by implementing a set of 2-D [1H,1H] SC exclusive COSY (E.COSY) NMR experiments, that is, rf pulse flip-angle cycled (SFC), rf pulse phase cycled (SPC), and pulsed field gradient (PFG) strength cycled (SGC) E.COSY. Spatially selective 1H rf pulses were applied as composite pulses such that all steps of the respective cycles were affected simultaneously in different slices of the sample. This increased the data acquisition speed for an n-step cycle n-fold. A high intrinsic sensitivity was achieved by defining the cycles in a manner that the receiver phase remains constant for all steps of the cycle. Then, the signal resulting from applying the cycle corresponded to the sum of the signals from all steps of the cycle. Hence, the detected free induction decay did not have to be separated into the contributions arising from different slices, and read-out PFGs, which not only greatly reduce sensitivity but also negatively impact lineshapes in the direct dimension, were avoided. The current implementation of SFC E.COSY reached approximately 65% of the intrinsic sensitivity of the conventional phase cycled congener, making this experiment highly attractive whenever conventional data acquisition is sampling limited. Highly resolved SC E.COSY yielding accurate 3J-coupling values was recorded for the 416 Da plant alkaloid tomatidine within 80 min, that is, 12 times faster than with conventional phase cycled E.COSY. SC NMR is applicable for a large variety of NMR experiments and thus promises to be a valuable addition to the arsenal of approaches for tackling the NMR sampling problem to avoid sampling limited data acquisition.

  18. Vuilleumier Cycle Cryogenic Refrigeration

    DTIC Science & Technology

    1976-04-01

    WORDS (Continue on reverse side if necessary and identify by block number) Cryogenic Refrigerator Vuilleumier Cycle 20. ABSTRACT (Continue on reverse ...The energy added to the gas was stored in the regenerator packing, or matrix, by gas flow in the reverse direction during a previous part of the cycle ...AFFDL-TR-76-17 VUILLEUMIER CYCLE CRYOGENIC REFRIGERATION ENVIRONMENTAL CONTROL BRANCH 4 VEHICLE EQUIPMENT DIVISION APRIL 1976 TECHNICAL REPORT AFFDL

  19. Atmospheric freeze drying assisted by power ultrasound

    NASA Astrophysics Data System (ADS)

    Santacatalina, J. V.; Cárcel, J. A.; Simal, S.; Garcia-Perez, J. V.; Mulet, A.

    2012-12-01

    Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that purpose, AFD experiments were carried out with carrot cubes (10 mm side) at constant air velocity (2 ms-1), temperature (-10°C) and relative humidity (10%) with (20.5 kWm-3,USAFD) and without (AFD) ultrasonic application. A diffusion model was used in order to quantify the influence of US in drying kinetics. To evaluate the quality of dry products, rehydration capacity and textural properties were determined. The US application during AFD of carrot involved the increase of drying rate. The effective moisture diffusivity identified in USAFD was 73% higher than in AFD experiments. On the other hand, the rehydration capacity was higher in USAFD than in AFD and the hardness of dried samples did not show significant (p<0.05) differences. Therefore, US application during AFD significantly (p<0.05) sped-up the drying process preserving the quality properties of the dry product.

  20. Compressive mechanical properties of porous GO materials prepared from freeze-drying method

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Li, Zheng; Liu, Xing; Ren, Hu-Ming; Tang, Xian-Qiong; Zhang, Ping; Ding, Yan-Huai

    2017-02-01

    In this paper porous graphene oxide (GO) foams were prepared from freeze-drying method. Compressive mechanical properties of GO foams with different density were investigated by uniaxial compression experiments and finite element (FE) simulation. GO foam exhibited excellent elasticity, which recovered to its original length even after 300 cycles. The structural evolution during the compression was revealed by FE simulation.

  1. DRY DEPOSITION OF REDUCED AND REACTIVE NITROGEN: A SURROGATE SURFACES APPROACH. (R826647)

    EPA Science Inventory

    Nitrogen dry deposition causes pH modification of ecosystems, promotes
    eutrophication in some water bodies, interferes with the nutrient geochemical
    cycle on land, and has a deteriorating effect on buildings. In this study, a
    water surface sampler (WSS) and knife-l...

  2. [Microbial response mechanism for drying and rewetting effect on soil respiration in grassland ecosystem: a review].

    PubMed

    He, Yun-Long; Qi, Yu-Chun; Dong, Yun-She; Peng, Qin; Sun, Liang-Jie; Jia, Jun-Qiang; Guo, Shu-Fang; Yan, Zhong-Qing

    2014-11-01

    As one of the most important and wide distribution community type among terrestrial ecosystems, grassland ecosystem plays a critical role in the global carbon cycles and climate regulation. China has extremely rich grassland resources, which have a huge carbon sequestration potential and are an important part of the global carbon cycle. Drying and rewetting is a common natural phenomenon in soil, which might accelerate soil carbon mineralization process, increase soil respiration and exert profound influence on microbial activity and community structure. Under the background of the global change, the changes in rainfall capacity, strength and frequency would inevitably affect soil drying and wetting cycles, and thus change the microbial activity and community structure as well as soil respiration, and then exert important influence on global carbon budget. In this paper, related references in recent ten years were reviewed. The source of soil released, the trend of soil respiration over time and the relationship between soil respiration and microbial biomass, microbial activity and microbial community structure during the processes of dry-rewetting cycle were analyzed and summarized, in order to better understand the microbial response mechanism for drying and rewetting effecting on soil respiration in grassland ecosystem, and provide a certain theoretical basis for more accurate evaluation and prediction of future global carbon balance of terrestrial ecosystems and climate change.

  3. Cocoon drying through solar energy

    SciTech Connect

    Kulunk, M.

    1983-12-01

    In this paper, silk cocoon drying operations through solar energy have been presented. Nearly no comprehensive work has been appeared in literature on this unusual application. General mechanism of solar drying methods are presented by some authors for instance, Roman and Jindal. This application seems vitally significant for silk cocoon producer countries like Turkey. The rate of production accelerates year by year and it is about 3000 tons per year presently in Turkey. In Turkey, by now and currently, a water vapour chamber is utilized in the killing process of silkworm. Vapour produced by burning of conventional fuels posses many drawbacks beside being very expensive and also non-renewable. Vapour effects the quality and quantity of silk thread negatively. For instance, the colour of silk cocoon tends to turn to pale instead of being gleamy. This is not tolerable. The length and mass of silk thread obtained per a typical cocoon sample is increased about 10.1 and 16.5 per cent respectively in the average by using solar energy.

  4. Dry borax applicator operator's manual.

    SciTech Connect

    Karsky, Richard, J.

    1999-01-01

    Annosum root rot affects conifers throughout the Northern Hemisphere, infecting their roots and eventually killing the trees. The fungus Heterobasidion annosum causes annosum root rot. The fungus colonizes readily on freshly cut stumps. Partially cut stands have a high risk of infestation because the fungus can colonize on each of the stumps and potentially infect the neighboring trees. Wind and rain carry the annosum spores. Spores that land on freshly cut stumps grow down the stump's root system where they can infect living trees through root grafts or root contacts. Once annosum becomes established, it can remain active for many years in the Southern United States and for several decades in the north. About 7% of the trees that become infected die. When thinning, stumps can be treated successfully using a competing fungus, Phlebia gigantea, and with ''Tim-Bor'' in liquid formulations. These liquid products are no longer approved in the United States. Only the dry powder form is registered and approved by the EPA. Stumps can be treated with a dry formula of borax, (Sporax), significantly reducing one of the primary routes by which Heterobasidion annosum infects a stand of trees. Sporax is used by the USDA Forest Service to control annosum root rot. Sporax is now applied by hand, but once the felled trees are skidded it becomes very hard to locate the stumps. A stump applicator will reduce error, labor costs, and hazards to workers.

  5. Drying of solids in fluidized beds

    SciTech Connect

    Kannan, C.S.; Thomas, P.P.; Varma, Y.B.G.

    1995-09-01

    Fluidized bed drying is advantageously adopted in industrial practice for drying of granular solids such as grains, fertilizers, chemicals, and minerals either for long shelf life or to facilitate further processing or handling. Solids are dried in batch and in continuous fluidized beds corresponding to cross-flow and countercurrent flow of phases covering a wide range in drying conditions. Materials that essentially dry with constant drying rate and then give a falling drying rate approximately linear with respect to solids moisture content (sand) as well as those with an extensive falling rate period with the subsequent falling rate being a curve with respect to the moisture content (mustard, ragi, poppy seeds) are chosen for the study. The performance of the continuous fluidized bed driers is compared with that of batch fluidized bed driers; the performance is predicted using batch kinetics, the residence time distribution of solids, and the contact efficiency between the phases.

  6. Increasing contrasts between wet and dry precipitation extremes during the "global warming hiatus" (1998-2013)

    NASA Astrophysics Data System (ADS)

    Lau, W. K. M.; Wu, H. T.

    2015-12-01

    We investigate changes in daily precipitation extremes using TRMM data (1998-2013), which coincides with the so-called "global warming hiatus". Results show a structural change in probability distribution functions (pdf) of local precipitation events (LPE) during this period, indicating more intense LPE, less moderate LPE, and more dry (no-rain) days globally. Analyses for land and ocean separately reveal more complex and nuanced changes over land, characterized by a strong positive trend (+12.0% per decade, 99% confidence level (c.l.)) in frequency of extreme LPE's over the Northern Hemisphere extratropics during the wet season, but a negative global trend (-6.6% per decade, 95% c.l.) during the dry season. Analyses of the risk of drought based on the number of dry days show a significant global drying trend (3.2% per decade, 99% c.l.) over land during the dry season. Regions of pronounced increased drought include western and central US, northeastern Asia and southern Europe/Mediterranean. Trends in cloud distributions from TRMM VIS-IR, and relative humidity from reanalysis have also been examined. Overall, the changes in water cycle parameters are consistent with increasing contrasts between wet and dry precipitation extremes, as reported in previous studies based on observations and climate model projections for a longer period, implying changes in global water cycle was underway during 1998-2013 as if there is no "global warming hiatus". The implications of the present results will be discussed.

  7. Sludge-Drying Lagoons: a Potential Significant Methane Source in Wastewater Treatment Plants.

    PubMed

    Pan, Yuting; Ye, Liu; van den Akker, Ben; Ganigué Pagès, Ramon; Musenze, Ronald S; Yuan, Zhiguo

    2016-02-02

    "Sludge-drying lagoons" are a preferred sludge treatment and drying method in tropical and subtropical areas due to the low construction and operational costs. However, this method may be a potential significant source of methane (CH4) because some of the organic matter would be microbially metabolized under anaerobic conditions in the lagoon. The quantification of CH4 emissions from lagoons is difficult due to the expected temporal and spatial variations over a lagoon maturing cycle of several years. Sporadic ebullition of CH4, which cannot be easily quantified by conventional methods such as floating hoods, is also expected. In this study, a novel method based on mass balances was developed to estimate the CH4 emissions and was applied to a full-scale sludge-drying lagoon over a three year operational cycle. The results revealed that processes in a sludge-drying lagoon would emit 6.5 kg CO2-e per megaliter of treated sewage. This would represent a quarter to two-thirds of the overall greenhouse gas (GHG) emissions from wastewater-treatment plants (WWTPs). This work highlights the fact that sludge-drying lagoons are a significant source of CH4 that adds substantially to the overall GHG footprint of WWTPs despite being recognized as a cheap and energy-efficient means of drying sludge.

  8. Intermittent pool beds are permanent cyclic habitats with distinct wet, moist and dry phases.

    PubMed

    Dell, Anthony I; Alford, Ross A; Pearson, Richard G

    2014-01-01

    Recognition that intermittent pools are a single habitat phase of an intermittent pool bed that cycles between aquatic and terrestrial habitat greatly enhances their usefulness for addressing general questions in ecology. The aquatic phase has served as a model system in many ecological studies, because it has distinct habitat boundaries in space and time and is an excellent experimental system, but the aquatic to terrestrial transition and terrestrial phase remain largely unstudied. We conducted a field experiment within six replicate natural intermittent pool beds to explore macroinvertebrate community dynamics during the transition from aquatic to terrestrial habitat and during the terrestrial phase. We monitored and compared macroinvertebrate communities within leaf packs that i) remained wet, ii) underwent drying (i.e., started wet and then dried), and iii) remained dry. Our results show that i) a diverse macroinvertebrate community inhabits all phases of intermittent pool beds, ii) pool drying involves colonization by an assemblage of macroinvertebrates not recorded in permanently terrestrial leaf packs, iii) the community within dried leaf packs remains distinct from that of permanently terrestrial leaf packs for an extended period following drying (possibly until subsequent refilling), and iv) there are likely to be strong spatial and temporal resource linkages between the aquatic and terrestrial communities. The unique environmental characteristics of intermittent pool beds, which repeatedly cycle from aquatic to terrestrial habitat, should continue to make them valuable study systems.

  9. Intermittent Pool Beds Are Permanent Cyclic Habitats with Distinct Wet, Moist and Dry Phases

    PubMed Central

    Dell, Anthony I.; Alford, Ross A.; Pearson, Richard G.

    2014-01-01

    Recognition that intermittent pools are a single habitat phase of an intermittent pool bed that cycles between aquatic and terrestrial habitat greatly enhances their usefulness for addressing general questions in ecology. The aquatic phase has served as a model system in many ecological studies, because it has distinct habitat boundaries in space and time and is an excellent experimental system, but the aquatic to terrestrial transition and terrestrial phase remain largely unstudied. We conducted a field experiment within six replicate natural intermittent pool beds to explore macroinvertebrate community dynamics during the transition from aquatic to terrestrial habitat and during the terrestrial phase. We monitored and compared macroinvertebrate communities within leaf packs that i) remained wet, ii) underwent drying (i.e., started wet and then dried), and iii) remained dry. Our results show that i) a diverse macroinvertebrate community inhabits all phases of intermittent pool beds, ii) pool drying involves colonization by an assemblage of macroinvertebrates not recorded in permanently terrestrial leaf packs, iii) the community within dried leaf packs remains distinct from that of permanently terrestrial leaf packs for an extended period following drying (possibly until subsequent refilling), and iv) there are likely to be strong spatial and temporal resource linkages between the aquatic and terrestrial communities. The unique environmental characteristics of intermittent pool beds, which repeatedly cycle from aquatic to terrestrial habitat, should continue to make them valuable study systems. PMID:25244550

  10. New approaches and potential treatments for dry age-related macular degeneration.

    PubMed

    Damico, Francisco Max; Gasparin, Fabio; Scolari, Mariana Ramos; Pedral, Lycia Sampaio; Takahashi, Beatriz Sayuri

    2012-01-01

    Emerging treatments for dry age-related macular degeneration (AMD) and geographic atrophy focus on two strategies that target components involved in physiopathological pathways: prevention of photoreceptors and retinal pigment epithelium loss (neuroprotection induction, oxidative damage prevention, and visual cycle modification) and suppression of inflammation. Neuroprotective drugs, such as ciliary neurotrophic factor, brimonidine tartrate, tandospirone, and anti-amyloid β antibodies, aim to prevent apoptosis of retinal cells. Oxidative stress and depletion of essential micronutrients are targeted by the Age-Related Eye Disease Study (AREDS) formulation. Visual cycle modulators reduce the activity of the photoreceptors and retinal accumulation of toxic fluorophores and lipofuscin. Eyes with dry age-related macular degeneration present chronic inflammation and potential treatments include corticosteroid and complement inhibition. We review the current concepts and rationale of dry age-related macular degeneration treatment that will most likely include a combination of drugs targeting different pathways involved in the development and progression of age-related macular degeneration.

  11. Dry Valley streams in Antarctica: Ecosystems waiting for water

    USGS Publications Warehouse

    McKnight, Diane M.; Niyogi, D.K.; Alger, A.S.; Bomblies, A.; Conovitz, P.A.; Tate, C.M.

    1999-01-01

    effects of reintroducing water flow to channels in which flow has not occurred for decades or centuries. The present work of the McMurdo Dry Valleys LTER has led us to conclude that the legacy of past conditions constitutes a dominant influence on present-day ecosystem structure and function in the dry valleys (Moorhead et al. 1999). For example, Virginia-and Wall (1999) have found that soil nematodes are partly sustained by relict organic carbon from algae that grew during the high lake stands of 8000-10,000 years ago. Similarly, the growth of current algal populations in the lakes of the dry valleys is supported by diffusion of nutrients from relict nutrient pools in the deep bottom waters (Priscu et al. 1999). For the stream ecosystems, abundant algal mats are present in channels that have stable stone pavements, which formed through freeze-thaw cycles occurring over long periods, possibly hundreds of years. We hypothesize that these stone pavements are an important ecological legacy permitting the successful 'waiting for water' strategy. Similarly, the biodiversity of algal species that can survive the harsh conditions in the streams of the dry valleys may be stable for centuries or more, representing a second important ecological legacy.

  12. Kilogram-scale production of SnO(2) yolk-shell powders by a spray-drying process using dextrin as carbon source and drying additive.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2014-05-05

    A simple and general method for the large-scale production of yolk-shell powders with various compositions by a spray-drying process is reported. Metal salt/dextrin composite powders with a spherical and dense structure were obtained by spray drying and transformed into yolk-shell powders by simple combustion in air. Dextrin plays a key role in the preparation of precursor powders for fabricating yolk-shell powders by spray drying. Droplets containing metal salts and dextrin show good drying characteristics even in a severe environment of high humidity. Sucrose, glucose, and polyvinylpyrrolidone are widely used as carbon sources in the preparation of metal oxide/carbon composite powders; however, they are not appropriate for large-scale spray-drying processes because of their caramelization properties and adherence to the surface of the spray dryer. SnO2 yolk-shell powders were studied as the first target material in the spray-drying process. Combustion of tin oxalate/dextrin composite powders at 600 °C in air produced single-shelled SnO2 yolk-shell powders with the configuration SnO2 @void@SnO2 . The SnO2 yolk-shell powders prepared by the simple spray-drying process showed superior electrochemical properties, even at high current densities. The discharge capacities of the SnO2 yolk-shell powders at a current density of 2000 mA g(-1) were 645 and 570 mA h g(-1) for the second and 100th cycles, respectively; the corresponding capacity retention measured for the second cycle was 88 %.

  13. CO2 (dry ice) cleaning system

    NASA Technical Reports Server (NTRS)

    Barnett, Donald M.

    1995-01-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  14. The Oxygen Cycle.

    ERIC Educational Resources Information Center

    Swant, Gary D.

    Produced for primary grades, this booklet provides study of the oxygen-carbon dioxide cycle in nature. Line drawings, a minimum amount of narrative, and a glossary of terms make up its content. The booklet is designed to be used as reading material, a coloring book, or for dramatic arts with students acting out parts of the cycle. This work was…

  15. Seeing the Carbon Cycle

    ERIC Educational Resources Information Center

    Drouin, Pamela; Welty, David J.; Repeta, Daniel; Engle-Belknap, Cheryl A.; Cramer, Catherine; Frashure, Kim; Chen, Robert

    2006-01-01

    In this article, the authors present a classroom experiment that was developed to introduce middle school learners to the carbon cycle. The experiment deals with transfer of CO[subscript 2] between liquid reservoirs and the effect CO[subscript 2] has on algae growth. It allows students to observe the influence of the carbon cycle on algae growth,…

  16. The carbon cycle revisited

    NASA Technical Reports Server (NTRS)

    Bolin, Bert; Fung, Inez

    1992-01-01

    Discussions during the Global Change Institute indicated a need to present, in some detail and as accurately as possible, our present knowledge about the carbon cycle, the uncertainties in this knowledge, and the reasons for these uncertainties. We discuss basic issues of internal consistency within the carbon cycle, and end by summarizing the key unknowns.

  17. Teaching the Krebs Cycle.

    ERIC Educational Resources Information Center

    Akeroyd, F. Michael

    1983-01-01

    Outlines a simple but rigorous treatment of the Krebs Cycle suitable for A-level Biology students. The importance of the addition of water molecules in various stages of the cycle is stressed as well as the removal of hydrogen atoms by the oxidizing enzymes. (JN)

  18. Your Menstrual Cycle

    MedlinePlus

    ... your best Fighting germs Your sexuality What are STDs and STIs? Seeing the doctor Quizzes Links to more information on girls' ... What happens during your menstrual cycle The menstrual cycle includes not just your period, but the rise and fall of hormones and other body changes ...

  19. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  20. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  1. Biomass drying in a pulsed fluidized bed without inert bed particles

    SciTech Connect

    Jia, Dening; Bi, Xiaotao; Lim, C. Jim; Sokhansanj, Shahab; Tsutsumi, Atsushi

    2016-08-29

    Batch drying was performed in the pulsed fluidized bed with various species of biomass particles as an indicator of gas–solid contact efficiency and mass transfer rate under different operating conditions including pulsation duty cycle and particle size distribution. The fluidization of cohesive biomass particles benefited from the shorter opening time of pulsed gas flow and increased peak pressure drop. The presence of fines enhanced gas–solid contact of large and irregular biomass particles, as well as the mass transfer efficiency. A drying model based on two-phase theory was proposed, from which effective diffusivity was calculated for various gas flow rates, temperature and pulsation frequency. Intricate relationship was discovered between pulsation frequency and effective diffusivity, as mass transfer was deeply connected with the hydrodynamics. Effective diffusivity was also found to be proportional to gas flow rate and drying temperature. In conclusion, operating near the natural frequency of the system also favored drying and mass transfer.

  2. Predicting the Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    The 11-year sunspot cycle was discovered by an amateur astronomer in 1844. Visual and photographic observations of sunspots have been made by both amateurs and professionals over the last 400 years. These observations provide key statistical information about the sunspot cycle that do allow for predictions of future activity. However, sunspots and the sunspot cycle are magnetic in nature. For the last 100 years these magnetic measurements have been acquired and used exclusively by professional astronomers to gain new information about the nature of the solar activity cycle. Recently, magnetic dynamo models have evolved to the stage where they can assimilate past data and provide predictions. With the advent of the Internet and open data policies, amateurs now have equal access to the same data used by professionals and equal opportunities to contribute (but, alas, without pay). This talk will describe some of the more useful prediction techniques and reveal what they say about the intensity of the upcoming sunspot cycle.

  3. Dry holes of Georges Bank

    SciTech Connect

    Bailey, D.M.

    1982-11-01

    After winning the controversial Georges Bank debate, five oil companies have found only commercially unprofitable dry holes, which experts predict will become anywhere from marginal to vital in future years. The economic boom that offshore drilling was to bring to New England has not materialized despite rumors that the companies found either oil or gas that they are not yet ready to announce. Bad weather and the high cost of offshore drilling may be more responsible for the removal of drilling rigs from the area, but an industry-wide survey finds that only 2200 of 4800 offshore rigs are currently operating. Debate over Georges Bank focused on possible damage to the fishing industry and the windfall the government will receive if leasing is accelerated. Many expect to see rigs returning to Georges Bank in the spring. (DCK)

  4. Dry fermentation of agricultural residues

    NASA Astrophysics Data System (ADS)

    Jewell, W. J.; Chandler, J. A.; Dellorto, S.; Fanfoni, K. J.; Fast, S.; Jackson, D.; Kabrick, R. M.

    1981-09-01

    A dry fermentation process is discussed which converts agricultural residues to methane, using the residues in their as produced state. The process appears to simplify and enhance the possibilities for using crop residues as an energy source. The major process variables investigated include temperature, the amount and type of inoculum, buffer requirements, compaction, and pretreatment to control the initial available organic components that create pH problems. A pilot-scale reactor operation on corn stover at a temperature of 550 C, with 25 percent initial total solids, a seed-to-feed ratio of 2.5 percent, and a buffer-to-feed ratio of 8 percent achieved 33 percent total volatile solids destruction in 60 days. Volumetric biogas yields from this unit were greater than 1 vol/vol day for 12 days, and greater than 0.5 vol/vol day for 32 days, at a substrate density of 169 kg/m (3).

  5. Wetter for fine dry powder

    DOEpatents

    Hall, James E.; Williams, Everett H.

    1977-01-01

    A system for wetting fine dry powders such as bentonite clay with water or other liquids is described. The system includes a wetting tank for receiving water and a continuous flow of fine powder feed. The wetting tank has a generally square horizontal cross section with a bottom end closure in the shape of an inverted pyramid. Positioned centrally within the wetting tank is a flow control cylinder which is supported from the walls of the wetting tank by means of radially extending inclined baffles. A variable speed motor drives a first larger propeller positioned immediately below the flow control cylinder in a direction which forces liquid filling the tank to flow downward through the flow control cylinder and a second smaller propeller positioned below the larger propeller having a reverse pitch to oppose the flow of liquid being driven downward by the larger propeller.

  6. Setting up the drying regimes based on the theory of moisture migration during drying

    NASA Astrophysics Data System (ADS)

    Vasić, M.; Radojević, Z.

    2016-08-01

    Drying is energy intensive process which has important effect on the quality of the clay tiles that are dried commercially. Chamber and tunnel dryers are constantly improving. Better technical equipment and operational strategies have lead to higher quality of the dried clay products. The moisture migration during isothermal drying process can be visually traced on the curve that represents the relationship between variable effective moisture diffusivity (MR) with time (t). Proposed non isothermal drying regimes were consisted from several isothermal segments. For the first time, the choice of isothermal segments specification and its duration was not specified by experience or by trial-and-error method. It was detected from the isothermal curves Deff - MR in accordance with the theory of moisture migration during drying. Proposed drying regimes were tested. Clay roofing tiles were dried without cracks. Dried clay roofing tiles has satisfied all requirements defined in EN 1304 norm related to the shape regularity and mechanical properties.

  7. Transcutaneous delivery and thermostability of a dry trivalent inactivated influenza vaccine patch

    PubMed Central

    Frolov, Vladimir G.; Seid, Robert C.; Odutayo, Olabisi; Al‐Khalili, Mohammad; Yu, Jianmei; Frolova, Olga Y.; Vu, Hong; Butler, Barbara A.; Look, Jee Loon; Ellingsworth, Larry R.; Glenn, Gregory M.

    2008-01-01

    A patch containing a trivalent inactivated influenza vaccine (TIV) was prepared in a dried, stabilized formulation for transcutaneous delivery. When used in a guinea pig immunogenicity model, the dry patch was as effective as a wet TIV patch in inducing serum anti‐influenza IgG antibodies. When the dry TIV patch was administered with LT as an adjuvant, a robust immune response was obtained that was comparable with or better than an injected TIV vaccine. When stored sealed in a nitrogen‐purged foil, the dry TIV patch was stable for 12 months, as measured by HA content, under both refrigerated and room temperature conditions. Moreover, the immunological potency of the vaccine product was not affected by long‐term storage. The dry TIV patch was also thermostable against three cycles of alternating low‐to‐high temperatures of −20/25 and −20/40°C, and under short‐term temperature stress conditions. These studies indicate that the dry TIV patch product can tolerate unexpected environmental stresses that may be encountered during shipping and distribution. Because of its effectiveness in vaccine delivery and its superior thermostable characteristics, the dry TIV patch represents a major advance for needle‐free influenza vaccination. PMID:19453472

  8. Bacterial regrowth potential in alkaline sludges from open-sun and covered sludge drying beds.

    PubMed

    Alkan, U; Topaç, F O; Birden, B; Baskaya, H S

    2007-10-01

    The aim of this study was to compare the regrowth potentials of wastewater sludges dried in two pilot-scale drying processes namely, Open-Sun Sludge Drying Bed (OSDB) and Covered Sludge Drying Bed (CSDB). Quicklime and/or coal fly ash were added to raw sludge samples prior to drying processes in order to enhance bacterial inactivation. Following three drying cycles (March-April, June-July and August-October), sludge samples were taken from the beds for the regrowth experiments. Addition of alkaline materials prevented the regrowth of faecal coliforms in all rewetted samples except for the samples obtained after the rainfall events in OSDB. Rewetting of these samples in the regrowth experiments increased faecal coliform numbers by 3.5-7 log units. In contradiction, the observed bacterial numbers in rewetted alkaline samples from CSDB were below the EPA Class B criterion (2 million MPN g(-1) dry sludge). The combination of additional heat from solar collectors, protection from the rain and the unfavourable living conditions owing to alkaline materials appeared to inactivate bacteria more effectively in CSDB and hence eliminated regrowth potential more efficiently.

  9. Two Quantum Polytropic Cycles

    NASA Astrophysics Data System (ADS)

    Arias-Hernández, L. A.; Morales-Serrano, A. F.

    2002-11-01

    In this work we follow the Bender et al paper [1] to study the quantum analogues of the Stirling and Ericsson polytropic cycles. In the context of the classical thermodynamics, the Stirling and Ericsson cycles correspond to reversible heat engines with two isothermal processes joined by two polytropic branches which occur in a device called regenerator. If this device is an ideal one, the efficiency of these cycles is the Carnot efficiency. Here, we introduce the quantum analogues of the Stirling and Ericsson cycles, the first one based on a double square potential well with a finite potential barrier, since in this system the tunnel effect could be the analogue to the regeneration classical process, therefore the isochoric quantum branches would really correspond to an internal energy storage, and the last one with an unknown system where the isobaric quantum processes don't induce changes in its quantum state. With these systems the quantum engines have cycles consisting of polytropic and isothermal quantum processes analogues to the corresponding classical processes. We show that in both cases the quantum cycles have an efficiency given by ηCQM = 1 - EC/EH, which is the same expression for the quantum analogue of the Carnot cycle studied by Bender.

  10. Thin layer drying of tomato slices.

    PubMed

    Das Purkayastha, Manashi; Nath, Amit; Deka, Bidyut Chandra; Mahanta, Charu Lata

    2013-08-01

    The hot air convective drying characteristics of blanched tomato (Lycopersicon esculantum L.) slices have been investigated. Drying experiments were carried out at four different temperatures (50, 60, 65 and 70 °C). The effect of drying temperatures on the drying behavior of the tomato slices was evaluated. All drying experiments had only falling rate period. The average effective diffusivity values varied from 0.5453 × 10(-9) to 2.3871 × 10(-9) m(2)/s over the temperature range studied and the activation energy was estimated to be 61.004 kJ/mol. In order to select a suitable form of the drying curve, six different thin layer drying models (Henderson-Pabis, Page, Diamante et al., Wang and Singh, Logarithmic and Newton models) were fitted to the experimental data. The goodness of fit tests indicated that the Logarithmic model gave the best fit to experimental results, which was closely followed by the Henderson-Pabis model. The influence of varied drying temperatures on quality attributes of the tomato slices viz. Hunter color parameters, ascorbic acid, lycopene, titratable acidity, total sugars, reducing sugars and sugar/acid ratio of dried slices was also studied. Slices dried at 50 and 60 °C had high amount of total sugars, lycopene, sugar/acid ratio, Hunter L- and a-values. Drying of slices at 50 °C revealed optimum retention of ascorbic acid, sugar/acid ratio and red hue, whereas, drying at higher temperature (65 and 70 °C) resulted in a considerable decrease in nutrients and colour quality of the slices.

  11. [An experience of dried cornea transplantation].

    PubMed

    Gundorova, R A; Chentsova, E V; Makarov, P V; Kugusheva, A É; Rakova, A V

    2011-01-01

    Sometimes an urgent lamellar keratoplasty remains the only treatment option for corneal defect closure. When fresh donor tissue is absent as it is regular in recent years dried cornea transplantation becomes reasonable. In recent years in ocular trauma department 320 transplantations of dried on silicagel cornea were performed. Analysis of results allows to conclude that use of dried cornea is a promising surgical procedure to preserve the globe and in some cases to prepare the eye with severe trauma for subsequent optic surgery.

  12. Wet/dry cooling tower and method

    DOEpatents

    Glicksman, Leon R.; Rohsenow, Warren R.

    1981-01-01

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  13. Applied physiology of cycling.

    PubMed

    Faria, I E

    1984-01-01

    Historically, the bicycle has evolved through the stages of a machine for efficient human transportation, a toy for children, a finely-tuned racing machine, and a tool for physical fitness development, maintenance and testing. Recently, major strides have been made in the aerodynamic design of the bicycle. These innovations have resulted in new land speed records for human powered machines. Performance in cycling is affected by a variety of factors, including aerobic and anaerobic capacity, muscular strength and endurance, and body composition. Bicycle races range from a 200m sprint to approximately 5000km. This vast range of competitive racing requires special attention to the principle of specificity of training. The physiological demands of cycling have been examined through the use of bicycle ergometers, rollers, cycling trainers, treadmill cycling, high speed photography, computer graphics, strain gauges, electromyography, wind tunnels, muscle biopsy, and body composition analysis. These techniques have been useful in providing definitive data for the development of a work/performance profile of the cyclist. Research evidence strongly suggests that when measuring the cyclist's aerobic or anaerobic capacity, a cycling protocol employing a high pedalling rpm should be used. The research bicycle should be modified to resemble a racing bicycle and the cyclist should wear cycling shoes. Prolonged cycling requires special nutritional considerations. Ingestion of carbohydrates, in solid form and carefully timed, influences performance. Caffeine appears to enhance lipid metabolism. Injuries, particularly knee problems which are prevalent among cyclists, may be avoided through the use of proper gearing and orthotics. Air pollution has been shown to impair physical performance. When pollution levels are high, training should be altered or curtailed. Effective training programmes simulate competitive conditions. Short and long interval training, blended with long

  14. Host selection and gonotrophic cycle length of Anopheles punctimacula in southern Mexico.

    PubMed

    Ulloa, Armando; Gonzalez-Cerón, Lilia; Rodríguez, Mario H

    2006-12-01

    The host preference, survival rates, and length of the gonotrophic cycle of Anopheles punctimacula was investigated in southern México. Mosquitoes were collected in 15-day separate experiments during the rainy and dry seasons. Daily changes in the parous-nulliparous ratio were recorded and the gonotrophic cycle length was estimated by a time series analysis. Anopheles punctimacula was most abundant during the dry season and preferred animals to humans. The daily survival rate in mosquitoes collected in animal traps was 0.96 (parity rate = 0.86; gonotrophic cycle = 4 days). The length of gonotrophic cycle of 4 days was estimated on the base of a high correlation coefficient value appearing every 4 days. The minimum time estimated for developing mature eggs after blood feeding was 72 h. The proportion of mosquitoes living enough to transmit Plasmodium vivax malaria during the dry season was 0.35.

  15. Effect of season on the oestrous cycle of cows (Bos indicus) indigenous to northern Nigeria.

    PubMed

    Zakari, A Y; Molokwu, E C; Osori, D I

    1981-09-12

    A seasonal effect was demonstrated on the occurrence of oestrus and on the length of oestrous cycles in Bunaji and Bokoloji cows. There was a gradual lengthening of oestrous cycle which resulted in fewer cycles occurring in the dry and pre-rainy seasons. Oestrous cycle length was the same for Bunaji (22.89 +/-0.70 days) and Bokoloji (23.76 +/- 0.65 days) cows (P less than 0.05). Season had an equally depressing effect on the duration and intensity of oestrus in both breeds of cows. During the dry and pre-rainy seasons the behavioural signs of oestrus were poorly manifested and lasted for only a short period. During the rainy and pre-dry seasons, the duration of oestrus and behavioural signs were much more pronounced.

  16. Liquid Crystal Research Shows Deformation By Drying

    NASA Technical Reports Server (NTRS)

    2003-01-01

    These images, from David Weitz's liquid crystal research, show ordered uniform sized droplets (upper left) before they are dried from their solution. After the droplets are dried (upper right), they are viewed with crossed polarizers that show the deformation caused by drying, a process that orients the bipolar structure of the liquid crystal within the droplets. When an electric field is applied to the dried droplets (lower left), and then increased (lower right), the liquid crystal within the droplets switches its alignment, thereby reducing the amount of light that can be scattered by the droplets when a beam is shone through them.

  17. Optimal energy management in grain drying.

    PubMed

    Gunasekaran, S

    1986-01-01

    Grain drying is very specific to the geographic location, kind of drying system, and the type of grain. Under a given set of conditions, the optimal system can be selected based on careful evaluation. However, a good choice of drying systems, procedures, and management practices can be made from the information already available. The review of several grain-drying procedures has provided some insight in making a quick evaluation of the process and arriving at the most suitable system for a particular application. Despite extensive research efforts, the present knowledge of grain drying is yet insufficient to optimally design each drying process with respect to capacity, quality, and energy requirement. There is a need for incorporating grain and air parameters more accurately. It is also important to develop comprehensive drying simulation models to encompass agronomic practices, such as planting and harvesting. Recent efforts indicate a strong influence of planting and harvesting strategies on optimal drying and storage system selection. Results of the varietal trials at Ohio State University indicate that it is now possible to select midseason varieties, which dry down rapidly, without sacrificing yield. Also, low moisture at harvest is important to the energy management process because it affects total drying time and energy required. It is also important from a quality standpoint because kernel damage increases rapidly at harvesting moisture levels above 25%. The trend in grain-dryer design has shifted from focusing on drying capacity and operation reliability to energy consumption. The development in design of energy efficient continuous-flow dryers has been significant. Multistage concurrentflow dryers are excellent examples. Various aspects of dryer staging for efficient operation and control are yet to be determined. Recirculation of the exhaust air is a proven method of improving energy efficiency. Likewise, in batch-in-bin systems, stirring and

  18. Cold vacuum drying facility design requirements

    SciTech Connect

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  19. FINAL REPORT: Transformational electrode drying process

    SciTech Connect

    Claus Daniel, C.; Wixom, M.

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

  20. Transient Load Following and Control Analysis of Advanced S-CO2 Power Conversion with Dry Air Cooling

    SciTech Connect

    Moisseytsev, Anton; Sienicki, James J.

    2016-01-01

    Supercritical carbon dioxide (S-CO2) Brayton cycles are under development as advanced energy converters for advanced nuclear reactors, especially the Sodium-Cooled Fast Reactor (SFR). The use of dry air cooling for direct heat rejection to the atmosphere ultimate heat sink is increasingly becoming a requirement in many regions due to restrictions on water use. The transient load following and control behavior of an SFR with an S-CO2 cycle power converter utilizing dry air cooling have been investigated. With extension and adjustment of the previously existing control strategy for direct water cooling, S-CO2 cycle power converters can also be used for load following operation in regions where dry air cooling is a requirement

  1. Sensitivity of Amazonian TOA flux diurnal cycle composite monthly variability to choice of reanalysis

    NASA Astrophysics Data System (ADS)

    Dodson, J. Brant; Taylor, Patrick C.

    2016-05-01

    Amazonian deep convection experiences a strong diurnal cycle driven by the cycle in surface sensible heat flux, which contributes to a significant diurnal cycle in the top of the atmosphere (TOA) radiative flux. Even when accounting for seasonal variability, the TOA flux diurnal cycle varies significantly on the monthly timescale. Previous work shows evidence supporting a connection between variability in the convective and radiative cycles, likely modulated by variability in monthly atmospheric state (e.g., convective instability). The hypothesized relationships are further investigated with regression analysis of the radiative diurnal cycle and atmospheric state using additional meteorological variables representing convective instability and upper tropospheric humidity. The results are recalculated with three different reanalyses to test the reliability of the results. The radiative diurnal cycle sensitivity to upper tropospheric humidity is about equal in magnitude to that of convective instability. In addition, the results are recalculated with the data subdivided into the wet and dry seasons. Overall, clear-sky radiative effects have a dominant role in radiative diurnal cycle variability during the dry season. Because of this, even in a convectively active region, the clear-sky radiative effects must be accounted for in order to fully explain the monthly variability in diurnal cycle. Finally, while there is general agreement between the different reanalysis-based results when examining the full data time domain (without regard to time of year), there are significant disagreements when the data are divided into wet and dry seasons. The questionable reliability of reanalysis data is a major limitation.

  2. Sensitivity of Amazonian TOA flux diurnal cycle composite monthly variability to choice of reanalysis.

    PubMed

    Dodson, J Brant; Taylor, Patrick C

    2016-05-16

    Amazonian deep convection experiences a strong diurnal cycle driven by the cycle in surface sensible heat flux, which contributes to a significant diurnal cycle in the top of the atmosphere (TOA) radiative flux. Even when accounting for seasonal variability, the TOA flux diurnal cycle varies significantly on the monthly timescale. Previous work shows evidence supporting a connection between variability in the convective and radiative cycles, likely modulated by variability in monthly atmospheric state (e.g., convective instability). The hypothesized relationships are further investigated with regression analysis of the radiative diurnal cycle and atmospheric state using additional meteorological variables representing convective instability and upper tropospheric humidity. The results are recalculated with three different reanalyses to test the reliability of the results. The radiative diurnal cycle sensitivity to upper tropospheric humidity is about equal in magnitude to that of convective instability. In addition, the results are recalculated with the data subdivided into the wet and dry seasons. Overall, clear-sky radiative effects have a dominant role in radiative diurnal cycle variability during the dry season. Because of this, even in a convectively active region, the clear-sky radiative effects must be accounted for in order to fully explain the monthly variability in diurnal cycle. Finally, while there is general agreement between the different reanalysis-based results when examining the full data time domain (without regard to time of year), there are significant disagreements when the data are divided into wet and dry seasons. The questionable reliability of reanalysis data is a major limitation.

  3. Cycle isolation monitoring

    SciTech Connect

    Svensen, L.M. III; Zeigler, J.R.; Todd, F.D.; Alder, G.C.

    2009-07-15

    There are many factors to monitor in power plants, but one that is frequently overlooked is cycle isolation. Often this is an area where plant personnel can find 'low hanging fruit' with great return on investment, especially high energy valve leakage. This type of leakage leads to increased heat rate, potential valve damage and lost generation. The fundamental question to ask is 'What is 100 Btu/kW-hr of heat rate worth to your plant? On a 600 MW coal-fired power plant, a 1% leakage can lead to an 81 Btu/kW-hr impact on the main steam cycle and a 64 Btu/kW-hr impact on the hot reheat cycle. The article gives advice on methods to assist in detecting leaking valves and to monitor cycle isolation. A software product, TP. Plus-CIM was designed to estimate flow rates of potentially leaking valves.

  4. Mining the Learning Cycle.

    ERIC Educational Resources Information Center

    Hemler, Debra; King, Hobart

    1996-01-01

    Describes an approach that uses the learning cycle to meaningfully teach students about mineral properties while alleviating the tedious nature of identifying mineral specimens. Discusses mineral properties, cooperative learning, and mineral identification. (JRH)

  5. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  6. Solar Cycle Prediction.

    PubMed

    Petrovay, Kristóf

    A review of solar cycle prediction methods and their performance is given, including forecasts for cycle 24. The review focuses on those aspects of the solar cycle prediction problem that have a bearing on dynamo theory. The scope of the review is further restricted to the issue of predicting the amplitude (and optionally the epoch) of an upcoming solar maximum no later than right after the start of the given cycle. Prediction methods form three main groups. Precursor methods rely on the value of some measure of solar activity or magnetism at a specified time to predict the amplitude of the following solar maximum. Their implicit assumption is that each numbered solar cycle is a consistent unit in itself, while solar activity seems to consist of a series of much less tightly intercorrelated individual cycles. Extrapolation methods, in contrast, are based on the premise that the physical process giving rise to the sunspot number record is statistically homogeneous, i.e., the mathematical regularities underlying its variations are the same at any point of time and, therefore, it lends itself to analysis and forecasting by time series methods. Finally, instead of an analysis of observational data alone, model based predictions use physically (more or less) consistent dynamo models in their attempts to predict solar activity. In their overall performance during the course of the last few solar cycles, precursor methods have clearly been superior to extrapolation methods. Nevertheless, most precursor methods overpredicted cycle 23, while some extrapolation methods may still be worth further study. Model based forecasts have not yet had a chance to prove their skills. One method that has yielded predictions consistently in the right range during the past few solar cycles is that of K. Schatten et al., whose approach is mainly based on the polar field precursor. The incipient cycle 24 will probably mark the end of the Modern Maximum, with the Sun switching to a state of

  7. Diurnal Cycle Computations

    SciTech Connect

    Covey, Curt; Doutriaux, Charles

    2016-12-01

    Directory /export_backup/covey1/CMIP5/Precipitation/DiurnalCycle/GridpointTimeseries/CMCCBCM_etal/ on crunchy.llnl.gov contains Python / UV-CDAT scripts compositeDiurnalStatistics.py and fourierDiurB nalAllGrid.py. compositeDiurnalStatistics.py reads high-time-frequency climate data from one or more years and computes 24 hour composite-mean and composite-standard-deviation cycles for one requested month.

  8. Experimental Performance of a Thermoelectric Heat-Pump Drying System for Drying Herbs

    NASA Astrophysics Data System (ADS)

    Wongsim, K.; Jamradloedluk, J.; Lertsatitthanakorn, C.; Siriamornpun, S.; Rungsiyopas, M.; Soponronnarit, S.

    2015-06-01

    In this study we investigated thermoelectric (TE) heat-pump drying of laurel clock vine leaves, and the effect of drying-air temperature on the characteristics of the leaves. The TE drying system comprised four TE modules each with its own rectangular fin heat sink. The hot side of each TE module was fixed to its own heat sink; the cold sides were fixed to heat-pipe heat sinks and a drying chamber. The drying time depended on drying-air temperature. The heating capacity and coefficient of performance (COP) increased as the current supplied to the TE modules was increased. Calculated COP for the entire TE heat-pump drying system were 1.28 and 0.81 for drying-air temperatures of 50 and 40°C, respectively.

  9. Quantifying the adaptive cycle

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  10. Solar Cycle Predictions

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2012-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.

  11. Quantifying the Adaptive Cycle.

    PubMed

    Angeler, David G; Allen, Craig R; Garmestani, Ahjond S; Gunderson, Lance H; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  12. Nutrient addition effects on tropical dry forests: a mini-review from microbial to ecosystem scales

    NASA Astrophysics Data System (ADS)

    Powers, Jennifer; Becklund, Kristen; Gei, Maria; Iyengar, Siddarth; Meyer, Rebecca; O'Connell, Christine; Schilling, Erik; Smith, Christina; Waring, Bonnie; Werden, Leland

    2015-06-01

    Humans have more than doubled inputs of reactive nitrogen globally and greatly accelerated the biogeochemical cycles of phosphorus and metals. However, the impacts of increased element mobility on tropical ecosystems remain poorly quantified, particularly for the vast tropical dry forest biome. Tropical dry forests are characterized by marked seasonality, relatively little precipitation, and high heterogeneity in plant functional diversity and soil chemistry. For these reasons, increased nutrient deposition may affect tropical dry forests differently than wet tropical or temperate forests. Here we review studies that investigated how nutrient availability affects ecosystem and community processes from the microsite to ecosystem scales in tropical dry forests. The effects of N and P addition on ecosystem carbon cycling and plant and microbial dynamics depend on forest successional stage, soil parent material and rainfall regime. Responses may depend on whether overall productivity is N- versus P-limited, although data to test this hypothesis are limited. These results highlight the many important gaps in our understanding of tropical dry forest responses to global change. Large-scale experiments are required to resolve these uncertainties.

  13. Modification of the solid-state nature of sulfathiazole and sulfathiazole sodium by spray drying.

    PubMed

    Bianco, Stefano; Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Nolan, Lorraine; Hu, Yun; Healy, Anne Marie

    2012-06-01

    Solid-state characterisation of a drug following pharmaceutical processing and upon storage is fundamental to successful dosage form development. The aim of the study was to investigate the effects of using different solvents, feed concentrations and spray drier configuration on the solid-state nature of the highly polymorphic model drug, sulfathiazole (ST) and its sodium salt (STNa). The drugs were spray-dried from ethanol, acetone and mixtures of these organic solvents with water. Additionally, STNa was spray-dried from pure water. The physicochemical properties including the physical stability of the spray-dried powders were compared to the unprocessed materials. Spray drying of ST from either acetonic or ethanolic solutions with the spray drier operating in a closed cycle mode yielded crystalline powders. In contrast, the powders obtained from ethanolic solutions with the spray drier operating in an open cycle mode were amorphous. Amorphous ST crystallised to pure form I at ≤35 % relative humidity (RH) or to polymorphic mixtures at higher RH values. The usual crystal habit of form I is needle-like, but spherical particles of this polymorph were generated by spray drying. STNa solutions resulted in an amorphous material upon processing, regardless of the solvent and the spray drier configuration employed. Moisture induced crystallisation of amorphous STNa to a sesquihydrate, whilst crystallisation upon heating gave rise to a new anhydrous polymorph. This study indicated that control of processing and storage parameters can be exploited to produce drugs with a specific/desired solid-state nature.

  14. Spray drying technique. I: Hardware and process parameters.

    PubMed

    Cal, Krzysztof; Sollohub, Krzysztof

    2010-02-01

    Spray drying is a transformation of feed from a fluid state into a dried particulate form by spraying the feed into a hot drying medium. The main aim of drying by this method in pharmaceutical technology is to obtain dry particles with desired properties. This review presents the hardware and process parameters that affect the properties of the dried product. The atomization devices, drying chambers, air-droplet contact systems, the collection of dried product, auxiliary devices, the conduct of the spray drying process, and the significance of the individual parameters in the drying process, as well as the obtained product, are described and discussed.

  15. EMISSIONS OF PERCHLOROETHYLENE FROM DRY CLEANED FABRICS

    EPA Science Inventory

    A study was conducted to evaluate the emissions of perchloroethylene (tetrachloroethylene) from dry cleaned fabrics to determine: (a) how the introduction of fresh dry cleaning into a home affects the indoor concentration of perchloroethylene, and (b) the effectiveness of ‘airing...

  16. WET AND DRY SCRUBBERS FOR EMISSION CONTROL

    EPA Science Inventory

    Generally speaking, absorption equipment includes two major categories: Wet adsorption scrubbers (or wet scrubbers); Dry absorption scrubbers (or dry scrubbers).
    Wet scrubbers: As the name implies, wet scrubbers (also known as wet collectors) are devices which use a liquid fo...

  17. Hot-dry-rock feasibility study

    SciTech Connect

    Not Available

    1981-08-01

    The hot-dry-rock project tasks are covered as follows: hot-dry-rock reservoir; generation facilities; water resources; transmission requirements; environmental issues; government and community institutional factors; leasing, ownership and management of facilities; regulations, permits, and laws; and financial considerations. (MHR)

  18. Dry phase reactor for generating medical isotopes

    DOEpatents

    Mackie, Thomas Rockwell; Heltemes, Thad Alexander

    2016-05-03

    An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.

  19. Cold vacuum drying facility 90% design review

    SciTech Connect

    O`Neill, C.T.

    1997-05-02

    This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

  20. Real-time monitoring of drying parameters in semitrailers during peanut drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient control of drying parameters is essential to ensure that peanuts are dried at the optimal rate, preserving quality and desired flavor. The present peanut drying process has limitations in means for measuring parameters such as temperature and relative humidity of the air being blown in...

  1. Improved Energy and Processing Efficiencies of Strawberry Drying Using Sequential Infrared Freeze-Drying Method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strawberries are rich in nutrients but highly perishable. Freeze-drying is an excellent dehydration method for strawberry preservation. However, freeze-drying is an expensive dehydration process due to slow drying rates, high capital operating costs and low energy efficiency. Strawberry slice wei...

  2. Menstruation and the Menstrual Cycle

    MedlinePlus

    ... Menstruation and the menstrual cycle Menstruation and the menstrual cycle > A-Z Health Topics Want help teaching your ... email updates Enter email Submit Menstruation and the menstrual cycle Menstruation is a woman's monthly bleeding. When you ...

  3. EUV extendibility via dry development rinse process

    NASA Astrophysics Data System (ADS)

    Sayan, Safak; Zheng, Tao; De Simone, Danilo; Vandenberghe, Geert

    2016-03-01

    Conventional photoresist processing involves resist coating, exposure, post-exposure bake, development, rinse and spin drying of a wafer. DDRP mitigates pattern collapse by applying a special polymer material (DDRM) which replaces the exposed/developed part of the photoresist material before wafer is spin dried. As noted above, the main mechanism of pattern collapse is the capillary forces governed by surface tension of rinse water and its asymmetrical recession from both sides of the lines during the drying step of the develop process. DDRP essentially eliminates these failure mechanisms by replacing remaining rinse water with DDRM and providing a structural framework that support resist lines from both sides during spin dry process. Dry development rinse process (DDRP) eliminates the root causes responsible for pattern collapse of photoresist line structures. Since these collapse mechanisms are mitigated, without the need for changes in the photoresist itself, achievable resolution of the state-of-the-art EUV photoresists can further be improved.

  4. Technical and economical evaluation of solar drying

    SciTech Connect

    Imre, L.

    1986-01-01

    Precondition of the successful application of solar drying is the economy mainly influenced by the savings and the costs. Components of savings and costs are related to the design of the solar dryer and the drying technology to be performed. Analysis of relations between the technical solutions and the economy is presented with regard to some often neglected or undervaluated effects, i.e. savings obtained by the absolute cleanness of solar energy, quality of the dried product and, the energy effectiveness of the drying process itself. Conclusions offer some contributions of principle to the selection of the system of solar dryer to be used, to design of solar dryers and, to direction of the drying technology.

  5. Spray drying formulation of amorphous solid dispersions.

    PubMed

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed.

  6. Inspection of Used Fuel Dry Storage Casks

    SciTech Connect

    Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

    2012-09-01

    ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

  7. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    SciTech Connect

    Demuth, Scott Francis; Sprinkle, James K.

    2015-05-26

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout of Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.

  8. A study of the effect of perchloroethylene exposure on the reproductive outcomes of wives of dry-cleaning workers

    SciTech Connect

    Eskenazi, B.; Fenster, L.; Hudes, M.; Wyrobek, A.J.; Katz, D.F.; Gerson, J.; Rempel, D.M. )

    1991-01-01

    The purpose of this investigation was to compare the reproductive outcomes of wives of men exposed to perchloroethylene in the dry-cleaning industry compared to those of wives of laundry workers. Seventeen female partners of dry cleaners and 32 partners of laundry workers were interviewed. The number of pregnancies and the standardized fertility ratios were similar between the two groups. Wives of dry cleaners did not have higher rates of spontaneous abortions. However, wives of dry cleaners were more than twice as likely to have a history of attempting to become pregnant for more than 12 months or to have sought care for an infertility problem. Cox proportional hazards models indicated that dry-cleaners' wives had half of the per-cycle pregnancy rate of wives of laundry workers, when controlling for other potential confounders (estimated rate ratio of 0.54, 95% C.I. = 0.23, 1.27).

  9. Living cell dry mass measurement using quantitative phase imaging with quadriwave lateral shearing interferometry: an accuracy and sensitivity discussion

    NASA Astrophysics Data System (ADS)

    Aknoun, Sherazade; Savatier, Julien; Bon, Pierre; Galland, Frédéric; Abdeladim, Lamiae; Wattellier, Benoit; Monneret, Serge

    2015-12-01

    Single-cell dry mass measurement is used in biology to follow cell cycle, to address effects of drugs, or to investigate cell metabolism. Quantitative phase imaging technique with quadriwave lateral shearing interferometry (QWLSI) allows measuring cell dry mass. The technique is very simple to set up, as it is integrated in a camera-like instrument. It simply plugs onto a standard microscope and uses a white light illumination source. Its working principle is first explained, from image acquisition to automated segmentation algorithm and dry mass quantification. Metrology of the whole process, including its sensitivity, repeatability, reliability, sources of error, over different kinds of samples and under different experimental conditions, is developed. We show that there is no influence of magnification or spatial light coherence on dry mass measurement; effect of defocus is more critical but can be calibrated. As a consequence, QWLSI is a well-suited technique for fast, simple, and reliable cell dry mass study, especially for live cells.

  10. Dry heat effects on survival of indigenous soil particle microflora and particle viability studies of Kennedy Space Center soil

    NASA Technical Reports Server (NTRS)

    Ruschmeyer, O. R.; Pflug, I. J.; Gove, R.; Heisserer, Y.

    1975-01-01

    Research efforts were concentrated on attempts to obtain data concerning the dry heat resistance of particle microflora in Kennedy Space Center soil samples. The in situ dry heat resistance profiles at selected temperatures for the aggregate microflora on soil particles of certain size ranges were determined. Viability profiles of older soil samples were compared with more recently stored soil samples. The effect of increased particle numbers on viability profiles after dry heat treatment was investigated. These soil particle viability data for various temperatures and times provide information on the soil microflora response to heat treatment and are useful in making selections for spacecraft sterilization cycles.

  11. Performance Comparison Between NiH2 Dry Sinter and Slurry Electrode Cells

    NASA Technical Reports Server (NTRS)

    Armantrout, J. D.; Hafen, D. P.; Rao, G. M.

    1997-01-01

    The electrical and thermal performance of dry sinter and slurry process electrode cells manufactured for the Hubble Space Telescope (HST) batteries have been characterized for a matrix of operating conditions over the temperature range from 14 to 86 F at various charge control levels. The dry sinter process electrode cells tested are similar to the onboard HST NiH2 cells. The slurry process electrode cells were developed to be less susceptible to electrode expansion and impedance changes with life. Both cell types were impregnated by the aqueous electrochemical process. Test conditions included standard capacity tests and electrical cycling using 96-minute cycling regimens incorporating gr depth-of-discharge (DOD) cycles. The dry sinter process electrodes have higher operating capacities to 1.20V/cell, but both electrode types have similar heat dissipation for the conditions tested. The results of the testing included cyclic heat generation during a typical 96-minute cycle, operating capacity data vs. cutoff voltage to generate a temperature-compensated voltage curve, and voltage characteristics suitable to develop a voltage prediction model. Analysis of data shows differences in the discharge voltage plateaus operating conditions evaluated. This is the basis for recommended changes in the battery charge control.

  12. Hot Dry Rock; Geothermal Energy

    SciTech Connect

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  13. Influence of soil moisture-carbon cycle interactions on the terrestrial carbon cycle over Europe

    NASA Astrophysics Data System (ADS)

    Mystakidis, Stefanos; Davin, Edouard L.; Gruber, Nicolas; Seneviratne, Sonia I.

    2016-04-01

    Water availability is a crucial limiting factor for terrestrial ecosystems, but relatively few studies have quantitatively assessed the influence of soil moisture variability on the terrestrial carbon cycle. Here, we investigate the role of soil moisture variability and state in the contemporary terrestrial carbon cycle over Europe. For this we use a Regional Earth System Model (RESM) based on the COSMO-CLM Regional Climate Model, coupled to the Community Land Model version 4.0 (CLM4.0) and its carbon-nitrogen module. The simulation setup consists of a control simulation over the period 1979-2010 in which soil moisture is interactive and three sensitivity simulations in which soil moisture is prescribed to a mean, a very dry or a very wet seasonal cycle without inter-annual variability. The cumulative net biome productivity varies markedly between the different experiments ranging from a strong sink of up to 6PgC in the wet experiment to a source of up to 1.2PgC in the dry experiment. Changes in the land carbon uptake are driven by a combination of two factors: the direct impact of soil moisture on plant's carbon uptake (essentially in southern Europe) and an indirect effect through changes in temperature affecting ecosystem respiration (mainly in central and northern Europe). We find that removing temporal variations in soil moisture dampens interannual variations in terrestrial carbon fluxes (Gross Primary Productivity, respiration, Net Biome Productivity) by more than 50% over most of Europe. Moreover, the analysis reveals that on annual scale about two-thirds of central Europe and about 70% of southern Europe display statistically significant effect of drying and/or wetting on the terrestrial carbon budget and its components. Our findings confirm the crucial role of soil moisture in determining the magnitude and the inter-annual variability in land CO2 uptake which is a key contributor to the year-to-year variations in atmospheric CO2 concentration.

  14. Phenological controls on inter-annual variability in ozone dry deposition velocity

    NASA Astrophysics Data System (ADS)

    Clifton, Olivia; Fiore, Arlene; Munger, J. William; Shevliakova, Elena; Horowitz, Larry; Malyshev, Sergey; Griffin, Kevin

    2016-04-01

    Our understanding of ozone removal by northern mid-latitude temperate deciduous forests is largely based on short-term observational studies, and thus year-to-year variations of this sink have received little attention. The specific pathways for ozone dry deposition include stomatal uptake and other non-stomatal processes that are poorly understood. Given the importance of ozone dry deposition to model accurately the tropospheric ozone budget and regional air quality, an improved mechanistic understanding of this ozone sink is needed. We investigate here the physical and biological controls on inter-annual variations in seasonal and diurnal cycles of ozone dry deposition velocity using nine years of hourly observations of eddy covariance ozone flux and concentration measurements at Harvard Forest, a northern mid-latitude temperate deciduous forest. We also use coincident eddy covariance water vapor flux and sensible heat flux and other micrometeorological measurements to infer stomatal conductance in order to separate the impacts of stomatal versus non-stomatal pathways on ozone deposition. There is a difference of approximately a factor of two between minimum and maximum monthly daytime mean ozone dry deposition velocities at Harvard Forest. The highest summertime mean ozone dry deposition velocities occur during 1998 and 1999 (0.72 cm/s), and similar seasonal and diurnal cycles occur in both years. The similar dry deposition velocities during these two years, however, may reflect compensation between different processes as mean daytime summertime stomatal conductance during 1998 is roughly 1.5 times higher than for 1999, suggesting large year-to-year variations in non-stomatal as well as stomatal uptake of ozone. We partition the onset and decline of the growing season each year into different periods using spring and fall phenology observations at Harvard Forest. Combining the dry deposition velocities across years during each phenological period, we find that

  15. Mercury cycling in a flooded rice paddy

    NASA Astrophysics Data System (ADS)

    Rothenberg, Sarah E.; Feng, Xinbin

    2012-09-01

    In 2008 and 2009, mercury (Hg) cycling was investigated in a flooded rice paddy in the Wanshan Hg mining region of eastern Guizhou, China, in the rice-planted (2008 and 2009) and fallow (2009) sections of the same paddy. In the rice-planted section, pore water was more acidic and pore water methylmercury (MeHg) concentrations were higher compared to the fallow section. However, iron (Fe) and sulfur (S) cycling differed in 2008 and 2009, with higher sediment Fe concentrations in 2009, when pore water MeHg and sulfate concentrations were more strongly correlated in the rice-planted section. We explored whether elevated sediment Fe contributed to S cycling and hence, Hg(II)-methylation. Critical pH values for formation of FeS(s) were estimated. Based on pore water pH collected in both sections of the paddy, the fallow section was more often a sink for FeS(s), while FeS(s) did not form in the rice-planted section, although sulfide concentrations were low in both sections in both years (i.e.,<10 μM). We hypothesized Fe(III) oxidized sulfide, and intermediate S species (e.g., polysulfides) were further oxidized to sulfate instead of forming FeS(s), thus prolonging sulfate reduction and promoting Hg(II)-methylation in the rice-planted section in 2009. Results suggested Fe(III) reduction increased electron acceptors for sulfate-reducing bacteria, which indirectly enhanced Hg(II)-methylation. Additionally, highest sediment MeHg concentrations were observed in the fallow section after the paddy was dried and re-wetted, indicating water-saving rice cultivation practices (e.g., alternating wetting and drying), may cause MeHg concentrations in paddy soil to spike, which should be further investigated.

  16. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  17. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  18. In-hospital evaluation of contamination of duodenoscopes: a quantitative assessment of the effect of drying.

    PubMed

    Alfa, M J; Sitter, D L

    1991-10-01

    A prospective, quantitative assessment was undertaken of the effect of drying on the bacterial load in duodenoscopes that had been used for endoscopic retrograde cholangiopancreatography procedures. The endoscopes were washed and disinfected using an automatic washer and samples were taken through the suction channel at 2, 24 and 48 h post-disinfection. Twenty-one of the 42 duodenoscopes tested were contaminated. The ratio of Gram-negative bacilli to Gram-positive cocci increased from 70:1 at 2 h up to 4000:1 at 48 h for those duodenoscopes that were contaminated. Pseudomonas species (6 of 12 contaminated endoscopes) and Acinetobacter species (7 of 21 contaminated endoscopes) were the most common isolates. There was visible moisture remaining in the suction channel despite the use of the complete recommended automatic washer cycle. Bacterial concentrations reached as high as 1 x 10(7) colony forming units (cfu) ml-1. An additional 10 min of drying using either an 'in house' air line or the manual machine dry prevented bacterial overgrowth of all 19 endoscopes tested 48 h post-disinfection. If the additional 10 min of drying was used, then no alcohol rinse was required. Although no infections related to use of contaminated endoscopes were reported, it was apparent that Gram-negative bacilli were multiplying to unacceptably high concentrations and that this could be prevented by an additional 10 min of drying. The additional drying was only required at the end of the endoscopy list and not between patients.

  19. Measuring dry plant residues in grasslands: A case study using AVIRIS

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Michael; Ustin, Susan L.

    1992-01-01

    Grasslands, savannah, and hardwood rangelands are critical ecosystems and sensitive to disturbance. Approximately 20 percent of the Earth's surface are grasslands and represent 3 million ha. in California alone. Developing a methodology for estimating disturbance and the effects of cumulative impacts on grasslands and rangelands is needed to effectively monitor these ecosystems. Estimating the dry biomass residue remaining on rangelands at the end of the growing season provides a basis for evaluating the effectiveness of land management practices. The residual biomass is indicative of the grazing pressure and provides a measure of the system capacity for nutrient cycling since it represents the maximum organic matter available for decomposition, and finally, provides a measure of the erosion potential for the ecosystem. Remote sensing presents a possible method for measuring dry residue. However, current satellites have had limited application due to the coarse spatial scales (relative to the patch dynamics) and insensitivity of the spectral coverage to resolve dry plant material. Several hypotheses for measuring the biochemical constituents of dry plant material, particularly cellulose and lignin, using high spectral resolution sensors were proposed. The use of Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) to measure dry plant residues over an oak savannah on the eastern slopes of the Coast Range in central California was investigated and it was asked what spatial and spectral resolutions are needed to quantitatively measure dry plant biomass in this ecosystem.

  20. Advanced heat pump cycle

    SciTech Connect

    Groll, E.A.; Radermacher, R.

    1993-07-01

    The desorption and absorption process of a vapor compression heat pump with a solution circuit (VCHSC) proceeds at gliding temperature intervals, which can be adjusted over a wide range. In case that the gliding temperature intervals in the desorber and the absorber overlap, a modification of the VCHSC employing a desorber/absorber heat exchange (DAHX) can be introduced, which results in an extreme reduction of the pressure ratio. Although the DAHX-cycle has features of a two-stage cycle, it still requires only one solution pump, one separator and one compressor. Such a cycle for the working pair ammonia/water is built in the Energy Laboratory of the Center for Environmental Energy Engineering at the University of Maryland. The experimental results obtained with the research plant are discussed and compared to those calculated with a simulation program. The possible temperature lift between heat source and heat sink depending on the achievable COP are presented.

  1. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  2. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  3. The global sulfur cycle

    NASA Technical Reports Server (NTRS)

    Sagan, D. (Editor)

    1985-01-01

    The results of the planetary biology microbial ecology's 1984 Summer Research Program, which examined various aspects of the global sulfur cycle are summarized. Ways in which sulfur flows through the many living and chemical species that inhabit the surface of the Earth were investigated. Major topics studied include: (1) sulfur cycling and metabolism of phototropic and filamentous sulfur bacteria; (2) sulfur reduction in sediments of marine and evaporite environments; (3) recent cyanobacterial mats; (4) microanalysis of community metabolism in proximity to the photic zone in potential stromatolites; and (5) formation and activity of microbial biofilms on metal sulfides and other mineral surfaces. Relationships between the global sulfur cycle and the understanding of the early evolution of the Earth and biosphere and current processes that affect global habitability are stressed.

  4. Radiation processing as a post-harvest quarantine control for raisins, dried figs and dried apricots

    NASA Astrophysics Data System (ADS)

    Cetinkaya, N.; Ozyardımci, B.; Denli, E.; Ic, E.

    2006-03-01

    The commercially packed samples of raisins, dried figs and dried apricots were irradiated using doses in the range of 0.5-1.0 kGy for disinfestation and 0.5-5.0 kGy for sensory analysis with the dose rate ranging from 1.44 to 1.92 kGy/h. Pests on dried fruits were evaluated after 0, 1, 2 and 3 months of storage for irradiated dried figs and 1, 3, 6 and 12 months of storage for raisins and dried apricots. Sensory analysis of dried figs, dried apricots and raisins were carried out after 0, 1, 3, 6 and 12 months of storage. The results indicated that radiation processing at low doses, (˜1.0 kGy) is an effective post-harvest treatment and quarantine control for these products with no adverse effects on sensory (marketing) attributes.

  5. Cryopreservation of spin-dried mammalian cells.

    PubMed

    Chakraborty, Nilay; Menze, Michael A; Malsam, Jason; Aksan, Alptekin; Hand, Steven C; Toner, Mehmet

    2011-01-01

    This study reports an alternative approach to achieve vitrification where cells are pre-desiccated prior to cooling to cryogenic temperatures for storage. Chinese Hamster Ovary (CHO) cells suspended in a trehalose solution were rapidly and uniformly desiccated to a low moisture content (<0.12 g of water per g of dry weight) using a spin-drying technique. Trehalose was also introduced into the cells using a high-capacity trehalose transporter (TRET1). Fourier Transform Infrared Spectroscopy (FTIR) was used to examine the uniformity of water concentration distribution in the spin-dried samples. 62% of the cells were shown to survive spin-drying in the presence of trehalose following immediate rehydration. The spin-dried samples were stored in liquid nitrogen (LN(2)) at a vitrified state. It was shown that following re-warming to room temperature and re-hydration with a fully complemented cell culture medium, 51% of the spin-dried and vitrified cells survived and demonstrated normal growth characteristics. Spin-drying is a novel strategy that can be used to improve cryopreservation outcome by promoting rapid vitrification.

  6. Acoustically enhanced heat exchange and drying apparatus

    DOEpatents

    Bramlette, T.T.; Keller, J.O.

    1987-07-10

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  7. Cycles in fossil diversity

    SciTech Connect

    Rohde, Robert A.; Muller, Richard A.

    2004-10-20

    It is well-known that the diversity of life appears to fluctuate during the course the Phanerozoic, the eon during which hard shells and skeletons left abundant fossils (0-542 Ma). Using Sepkoski's compendium of the first and last stratigraphic appearances of 36380 marine genera, we report a strong 62 {+-} 3 Myr cycle, which is particularly strong in the shorter-lived genera. The five great extinctions enumerated by Raup and Sepkoski may be an aspect of this cycle. Because of the high statistical significance, we also consider contributing environmental factors and possible causes.

  8. Revenue cycle management.

    PubMed

    Manley, Ray; Satiani, Bhagwan

    2009-11-01

    With the widening gap between overhead expenses and reimbursement, management of the revenue cycle is a critical part of a successful vascular surgery practice. It is important to review the data on all the components of the revenue cycle: payer contracting, appointment scheduling, preregistration, registration process, coding and capturing charges, proper billing of patients and insurers, follow-up of accounts receivable, and finally using appropriate benchmarking. The industry benchmarks used should be those of peers in identical groups. Warning signs of poor performance are discussed enabling the practice to formulate a performance improvement plan.

  9. Solar 22 years cycle

    NASA Astrophysics Data System (ADS)

    Kotov, Valery A.; Sanchez, Francis M.

    2017-01-01

    Seven observatories performed in 1968-2015 numerous daily measurements of general magnetic field of the Sun seen as a star (of a mean line-of-sight field component of the visible solar hemisphere). The new data 2013-2015 confirmed the recent prediction about saw-edged profile of the mean curve of the Hale's 22 years magnetic cycle and, thus, a hypothesis about its cosmological (partial) origin. This is supported by a special analysis of epochs of extrema of Wolf's sunspot number, demonstrating a remarkable stability, since Galileo's time, of the initial phase of the cycle, which can hardly be explained by dynamo theory exclusively.

  10. Cycles in fossil diversity.

    PubMed

    Rohde, Robert A; Muller, Richard A

    2005-03-10

    It is well known that the diversity of life appears to fluctuate during the course of the Phanerozoic, the eon during which hard shells and skeletons left abundant fossils (0-542 million years ago). Here we show, using Sepkoski's compendium of the first and last stratigraphic appearances of 36,380 marine genera, a strong 62 +/- 3-million-year cycle, which is particularly evident in the shorter-lived genera. The five great extinctions enumerated by Raup and Sepkoski may be an aspect of this cycle. Because of the high statistical significance we also consider the contributions of environmental factors, and possible causes.

  11. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Christy, John R.; Goodman, Steven J.; Miller, Tim L.; Fitzjarrald, Dan; Lapenta, Bill; Wang, Shouping

    1991-01-01

    The primary objective is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates changes on both global and regional scales. The following subject areas are covered: (1) water vapor variability; (2) multi-phase water analysis; (3) diabatic heating; (4) MSU (Microwave Sounding Unit) temperature analysis; (5) Optimal precipitation and streamflow analysis; (6) CCM (Community Climate Model) hydrological cycle; (7) CCM1 climate sensitivity to lower boundary forcing; and (8) mesoscale modeling of atmosphere/surface interaction.

  12. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge

    1993-01-01

    This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.

  13. Survival of freeze-dried bacteria.

    PubMed

    Miyamoto-Shinohara, Yukie; Sukenobe, Junji; Imaizumi, Takashi; Nakahara, Toro

    2008-02-01

    The aim of this study was to investigate the survival of freeze-dried bacterial species stored at the International Patent Organism Depository (IPOD) and to elucidate the characteristics affecting survival. Bacterial strains were freeze-dried, sealed in ampoules under a vacuum (<1 Pa), and stored in the dark at 5 degrees C. The survival of a variety of species following storage for up to 20 years was analyzed. The survival of freeze-dried species was analyzed in terms of two stages, freeze-drying and storing. Nonmotile genera showed relatively high survival after freeze-drying. Motile genera with peritrichous flagella showed low survival rates after freeze-drying. Vibrio and Aeromonas, which produce numerous flagella, showed very low survival rates. In Lactobacillus, non-trehalose-fermenting species showed better survival rates after freeze-drying than did fermenting species, and those species with teichoic acid in the cell wall showed lower survival rates during storage than species with teichoic acid in the cell membrane. Human pathogenic species of Corynebacterium, Bacillus, Streptococcus, and Klebsiella showed lower survival rates during storage than nonpathogenic species within the same genus. Among Pseudomonas species, P. chlororaphis, the only species tested that forms levan from sucrose, showed the lowest survival rate during storage in the genus. Survival rates of Gram-negative species during storage tended to be lower than those of Gram-positive species, though Chryseobacterium meningosepticum had stable survival during storage. The conclusion is that smooth cell surfaces (i.e., no flagella) and lack of trehalose outside the cytoplasm improved survival rates after freeze-drying. Because desiccation is important for survival during storage, the presence of extracellular polysaccharides or teichoic acids is disadvantageous for long-term survival. The lower survival rates of freeze-dried Gram-negative bacteria compared with those of Gram-positive bacteria

  14. Decadal variability in European wet and dry phases

    NASA Astrophysics Data System (ADS)

    Hänsel, Stephanie; Miketta, Wiebke; Matschullat, Jörg

    2013-04-01

    Climate varies over time and space, triggered by a large variety of processes. At continental and regional scales, numerous long-term changes in climate have been observed with profound direct and indirect influences on natural environments and the human society. This study focuses on the spatio-temporal characteristics and changes of long-lasting dry and wet spells in Europe for 1851-2010. Analysis is done for seven European sub-regions ranging from Northern Europa via Central Europe to the Mediterranean area. The decile indicator is used for precipitation time series to define long-lasting dry and wet phases that may last several months to years. Its calculation is based on three-month precipitation totals. Different decile-based thresholds are used to determine the start and the end of the respective dry or wet phase. They are calculated separately for each of the twelve three-month periods to account for the seasonal precipitation cycle. Links of this precipitation-based indicator to flood events in European catchments are examined. We noticed that during certain times, dry and wet phases, respectively, occur more frequent and last longer than during other times, where almost no event occurs. Considering all of Europe, dry phases were particularly frequent and long between 1880 and 1910, the mid-1940s to mid-1960s and in the mid 1970s, while wet phases showed a peak in occurrence from 1910 to the early 40s, from the mid-1960s to the early 1980s and from 1994 to 2010. The picture changes if individual sub-regions are considered. Opposite sub-regional trends lead to almost negligible or indifferent trends over Europe. Spatial extent and duration of dry phases have decreased noticeably and most pronounced in the second half of the 20th Century, while wet phases show increases in spatial extent and duration from 1851 to the present. Those developments are particularly pronounced in Northern Europe. Opposite trends - particularly for the second half of the 20th

  15. 7 CFR 58.250 - Dry whole milk.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Dry whole milk. 58.250 Section 58.250 Agriculture... Products Bearing Usda Official Identification § 58.250 Dry whole milk. Dry whole milk in commercial bulk... Grades of Dry Whole Milk. Quality requirements for dry whole milk in consumer packages shall be for...

  16. 7 CFR 58.250 - Dry whole milk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Dry whole milk. 58.250 Section 58.250 Agriculture... Products Bearing Usda Official Identification § 58.250 Dry whole milk. Dry whole milk in commercial bulk... Grades of Dry Whole Milk. Quality requirements for dry whole milk in consumer packages shall be for...

  17. 7 CFR 58.250 - Dry whole milk.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Dry whole milk. 58.250 Section 58.250 Agriculture... Products Bearing Usda Official Identification § 58.250 Dry whole milk. Dry whole milk in commercial bulk... Grades of Dry Whole Milk. Quality requirements for dry whole milk in consumer packages shall be for...

  18. Mechanisms of deterioration of nutrients. [of freeze dried foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1976-01-01

    Methods which produce freeze dried foods of improved quality were examined with emphasis on storage stability. Specific topics discussed include: microstructure of freeze dried systems, investigation of structural changes in freeze dried systems, artificial food matrices, osmotic preconcentration to yield improved quality freeze dried fruits, and storage stability of osmotically preconcentrated freeze dried fruits.

  19. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor....

  20. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor....

  1. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor....

  2. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor....

  3. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor....

  4. 7 CFR 58.250 - Dry whole milk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Dry whole milk. 58.250 Section 58.250 Agriculture... Products Bearing Usda Official Identification § 58.250 Dry whole milk. Dry whole milk in commercial bulk... Grades of Dry Whole Milk. Quality requirements for dry whole milk in consumer packages shall be for...

  5. 7 CFR 58.250 - Dry whole milk.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Dry whole milk. 58.250 Section 58.250 Agriculture... Products Bearing Usda Official Identification § 58.250 Dry whole milk. Dry whole milk in commercial bulk... Grades of Dry Whole Milk. Quality requirements for dry whole milk in consumer packages shall be for...

  6. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

    2006-09-30

    This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

  7. The Impact of Amazonian Deforestation on Dry-Season Rainfall

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.; Xu, Li-Ming; Surratt, Jason; Starr, David OC. (Technical Monitor)

    2002-01-01

    Many modeling studies have concluded that widespread deforestation of Amazonia would lead to decreased rainfall. We analyze geosynchronous infrared satellite data with respect percent cloudiness, and analyze rain estimates from microwave sensors aboard the Tropical Rainfall Measuring Mission satellite. We conclude that in the dry-season, when the effects of the surface are not overwhelmed by synoptic-scale weather disturbances, deep convective cloudiness, as well as rainfall occurrence, all increase over the deforested and non-forested (savanna) regions. This is in response to a local circulation initiated by the differential heating of the region's varying forestation. Analysis of the diurnal cycle of cloudiness reveals a shift toward afternoon hours in the deforested and savanna regions, compared to the forested regions. Analysis of 14 years of data from the Special Sensor Microwave/Imager data revealed that only in August did rainfall amounts increase over the deforested region.

  8. Quantifying the Adaptive Cycle

    EPA Science Inventory

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative...

  9. Assisted Cycling Tours

    ERIC Educational Resources Information Center

    Hollingsworth, Jan Carter

    2008-01-01

    This article discusses Assisted Cycling Tours (ACT), a Westminster, Colorado based 501(c)3, non-profit that is offering the joy of bicycle tours in breathtaking, scenic locations to children and adults with developmental and physical disabilities and their families. ACT was founded by Bob Matter and his son David with a goal of opening up the…

  10. Mosquito Life Cycle

    EPA Pesticide Factsheets

    Knowing the stages of the mosquito's life will help you prevent mosquitoes around your home and help you choose the right pesticides for your needs, if you decide to use them. All mosquito species go through four distinct stages during their live cycle.

  11. 90-Day Cycle Handbook

    ERIC Educational Resources Information Center

    Park, Sandra; Takahashi, Sola

    2013-01-01

    90-Day Cycles are a disciplined and structured form of inquiry designed to produce and test knowledge syntheses, prototyped processes, or products in support of improvement work. With any type of activity, organizations inevitably encounter roadblocks to improving performance and outcomes. These barriers might include intractable problems at…

  12. LIFE-CYCLE ASSESSMENT

    EPA Science Inventory

    Life Cycle Assessment, or LCA, is an environmental accounting and mangement approach that consider all the aspects of resource use and environmental releases associated with an industrial system from cradle-to-grave. Specifically, it is a holistic view of environmental interacti...

  13. The Science of Cycling

    ERIC Educational Resources Information Center

    Crompton, Zoe; Daniels, Shelley

    2014-01-01

    Children are engaged by finding out about science in the real world (Harlen, 2010). Many children will be cyclists or will have seen or heard about the success of British cyclists in the Olympics and the Tour de France. This makes cycling a good hook to draw children into learning science. It is also a good cross-curricular topic, with strong…

  14. Re-Cycling

    ERIC Educational Resources Information Center

    Brown, Robert W.; Covault, Corbin E.

    2015-01-01

    An old comedy routine on Saturday Night Live by Father Guido Sarducci introduced a "Five-Minute University," because five minutes is all that's remembered after graduation anyway. In counterpoint, we discuss "cycling," a teaching method for memory enhancement. Our principal implementation consists of offering a simple version…

  15. MERCURY CYCLING AND BIOMAGNIFICATION

    EPA Science Inventory

    Mercury cycling and biomagnification was studied in man-made ponds designed for watering livestock on the Cheyenne River Sioux Reservation in South Dakota. Multiple Hg species were quantified through multiple seasons for 2 years in total atmospheric deposition samples, surface wa...

  16. Please Reduce Cycle Time

    DTIC Science & Technology

    2014-12-01

    Defense AT&L: November–December 2014 4 Please Reduce Cycle Time Brian Schultz “Time is what we want most but what we use worst.” — William Penn ...Schultz is a professor of program management at the Defense Acquisition University’s Mid-Atlantic Region in California, Md. As William Penn noted

  17. The Cycle of Violence.

    ERIC Educational Resources Information Center

    Widom, Cathy Spatz

    1989-01-01

    Discussed is a project to compare a sample of 20-year-old abuse and neglect cases to a matched control group to determine the extent to which these groups have perpetuated the violence cycle. Findings are reported that show increased risk of adult violence for formerly abused children. (CW)

  18. The Geologic Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and

  19. Rainfall and labile carbon availability control litter nitrogen dynamics in a tropical dry forest.

    PubMed

    Anaya, Carlos A; García-Oliva, Felipe; Jaramillo, Víctor J

    2007-01-01

    N cycling in tropical dry forests is driven by rainfall seasonality but the mechanisms involved are not well understood. We studied the seasonal variation in N dynamics and microbial biomass in the surface litter of a tropical dry forest ecosystem in Mexico over a 2-year period. Litter was collected at 4 different times of the year to determine changes in total, soluble, and microbial C and N concentrations. Additionally, litter from each sampling date was incubated under laboratory conditions to determine potential C mineralization rate, net N mineralization, net C and N microbial immobilization, and net nitrification. Litter C concentrations were highest in the early-dry season and lowest in the rainy season, while the seasonal changes in N concentrations varied between years. Litter P was higher in the rainy than in the early-dry season. Water-soluble organic C (WSOC) and water-soluble N concentrations were highest during the early- and late-dry seasons and represented up to 4.1 and 5.9% of the total C and N, respectively. NH (4) (+) and NO (3) (-) showed different seasonal and annual variations. They represented an average 23% of soluble N. Microbial C was generally higher in the dry than in the wet seasons, while microbial N was lowest in the late-dry and highest in the early-rainy seasons. Incubations showed that lowest potential C mineralization rates and C and N microbial immobilization occurred in rainy season litter, and were positively correlated to WSOC. Net nitrification was highest in rainy season litter. Our results showed that the seasonal pattern in N dynamics was influenced by rainfall seasonality and labile C availability, and not by microbial biomass. We propose a conceptual model to hypothesize how N dynamics in the litter layer of the Chamela tropical dry forest respond to the seasonal variation in rainfall.

  20. Degradation of anionic surfactants during drying of UASBR sludges on sand drying beds.

    PubMed

    Mungray, Arvind Kumar; Kumar, Pradeep

    2008-09-01

    Anionic surfactant (AS) concentrations in wet up-flow anaerobic sludge blanket reactor (UASBR) sludges from five sewage treatment plants (STPs) were found to range from 4480 to 9,233 mg kg(-1)dry wt. (average 7,347 mg kg(-1)dry wt.) over a period of 18 months. After drying on sand drying beds (SDBs), AS in dried-stabilized sludges averaged 1,452 mg kg(-1)dry wt., a reduction of around 80%. The kinetics of drying followed simple first-order reduction of moisture with value of drying constant (k(d))=0.051 d(-1). Reduction of AS also followed first-order kinetics. AS degradation rate constant (k(AS)) was found to be 0.034 d(-1) and half-life of AS as 20 days. The order of rates of removal observed was k(d)>k(AS)>k(COD)>k(OM) (drying >AS degradation>COD reduction>organic matter reduction). For the three applications of dried-stabilized sludges (soil, agricultural soil, grassland), values of risk quotient (RQ) were found to be <1, indicating no risk.

  1. Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products.

    PubMed

    Jung, Jooyeoun; Cavender, George; Zhao, Yanyun

    2015-09-01

    This study aimed to evaluate impingement drying (ID) as a rapid drying method to dry wet apple pomace (WAP) and to investigate the fortification of dried apple pomace flour (APF) or WAP in bakery and meat products. ID at ~110 °C reduced the moisture content of apple pomace from 80 % (wet basis) to 4.5 % within 3 h, compared with 24 h to 2.2 % using 40 °C forced-air drying and ~60 h to 2.3 % using freeze drying. Furthermore, ID enhanced the extractable phenolic compounds, allowing for a 58 % increase in total phenolic content (TPC) compared with wet pomace, a 110 % and 83 % higher than TPC in forced-air dried and freeze dried samples, respectively. The 15-20 % APF-fortified cookies were found to be ~44-59 % softer, ~30 % more chewy, and ~14 % moister than those of the control. WAP-fortified meat products had significantly higher dietary fiber content (0.7-1.8 % vs. 0.1-0.2 % in control) and radical scavenging activity than that of the control. These results suggest that impingement drying is a fast and effective method for preparing dried APF with highly retained bioactive compounds, and apple pomace fortified products maintained or even had improved quality.

  2. Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer

    NASA Astrophysics Data System (ADS)

    Coşkun, Salih; Doymaz, İbrahim; Tunçkal, Cüneyt; Erdoğan, Seçil

    2016-11-01

    In this study, tomato slices were dried at three different drying air temperatures (35, 40 and 45 °C) and at 1 m/s air velocities by using a closed loop heat pump dryer (HPD). To explain the drying characteristics of tomato slices, ten thin-layer drying models were applied. The drying of tomato slices at each temperature occurred in falling-rate period; no constant-rate period of drying was observed. The drying rate was significantly influenced by drying temperature. The effective moisture diffusivity varied between 8.28 × 10-11 and 1.41 × 10-10 m2/s, the activation energy was found to be 43.12 kJ/mol. Besides, at the end of drying process, the highest mean specific moisture extraction ratio and coefficient of performance of HPD system were obtained as 0.324 kg/kWh and 2.71, respectively, at the highest drying air temperature (45 °C).

  3. Subsurface Salts in Antarctic Dry Valley Soils

    NASA Technical Reports Server (NTRS)

    Englert, P.; Bishop, J. L.; Gibson, E. K.; Koeberl, C.

    2013-01-01

    The distribution of water-soluble ions, major and minor elements, and other parameters were examined to determine the extent and effects of chemical weathering on cold desert soils. Patterns at the study sites support theories of multiple salt forming processes, including marine aerosols and chemical weathering of mafic minerals. Periodic solar-mediated ionization of atmospheric nitrogen might also produce high nitrate concentrations found in older sediments. Chemical weathering, however, was the major contributor of salts in Antarctic Dry Valleys. The Antarctic Dry Valleys represent a unique analog for Mars, as they are extremely cold and dry desert environments. Similarities in the climate, surface geology, and chemical properties of the Dry Valleys to that of Mars imply the possible presence of these soil formation mechanisms on Mars, other planets and icy satellites.

  4. Evaluation of historical dry well surveillance logs

    SciTech Connect

    Price, R.K.

    1996-09-09

    Several dry well surveillance logs from 1975 through 1995 for the SX Tank Farm have been examined to identify potential subsurface zones of radioactive contaminant migration. Several dynamic conditions of the gamma-ray emitting radioactive contaminant shave been identified.

  5. Mechanisms of Drying of Skin Forming Materials

    NASA Astrophysics Data System (ADS)

    Hassan, Haydar Mahmood

    Available from UMI in association with The British Library. The literature relating to evaporation from single droplets of pure liquids, and to the drying of droplets containing solids and of droplet sprays has been reviewed. The heat and mass transfer rates for a single droplet suspended from a nozzle were studied within a 42mm I.D. horizontal wind tunnel designed to supply hot dry air, to simulate conditions encountered in practical spray dryer. A novel rotating glass nozzle was developed to facilitate direct measurements of droplet weight and core temperature. This design minimised heat conduction through the nozzle. Revised correlations were obtained for heat and mass transfer coefficients, for evaporation from pure water droplets suspended from a rotating nozzle. (UNFORMATTED TABLE OR EQUATION FOLLOWS)eqalign {rm Nu&= rm 2.0 + 0.27 ({1over B})^{0.18}Re^{0.5}Pr ^{0.33}crrm Sh&= rm 2.0 + 0.575({Ta-Ts over Tamb})^{ -0.04}Re^{0.5}Sc^{0.33 }cr}(TABLE/EQUATION ENDS)Experimental drying studies were carried out on single droplets of different types of skin-forming materials, namely, custard, starch, gelatin, skim milk and fructose at air temperatures ranging from 19^circC to 198 ^circC. Dried crusts were recovered and examined by Scanning Electron Microscopy. Skin-forming materials were classified into three types according to the mechanisms of skin formation. In the first type (typified by droplets of custard and starch) skin formed due to gelatinisation at high temperatures. Increasing the drying temperature resulted in increased crust resistance to mass transfer due to increased granule swelling and the crust resistance was completely transferred to a skin resistance at drying temperatures >150 ^circC. In the second type e.g. gelatin droplets the skin formed immediately drying had taken place at any drying temperature. At drying temperature >60^circC a more resistant skin was formed. In the third type (typified by droplets of skim milk and fructose) the skin

  6. Spent fuel behavior in dry storage

    NASA Astrophysics Data System (ADS)

    Johnson, A. B., Jr.; Pankaskie, P. J.; Gilbert, E. R.

    1982-02-01

    Dry storage is emerging as an attractive and timely alternative to complement wet storage, and assist utilities to meet interim storage needs. Spent fuel is handled and stored under dry conditions. Dry storage of irradiated Zircaloy clad fuel in metal casks, drywells, silos and vaults is demonstrated. Hot cell and laboratory studies also are underway to investigate specific phenomena related to cladding behavior in dry storage. A substantial fraction of the LWR spent fuel inventory has aged for relatively long times and has relatively low decay heats. This suggests that much of the fuel inventory can be stored at relatively low temperatures. Alternatively, rod consolidation of the older can be considered without exceeding maximum cladding temperatures.

  7. Hydrothermal regimes of the dry active layer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Mamoru; Zhang, Yinsheng; Kadota, Tsutomu; Ohata, Tetsuo

    2006-04-01

    Evaporation and condensation in the soil column clearly influence year-round nonconductive heat transfer dynamics in the dry active layer underlying semiarid permafrost regions. We deduced this from heat flux components quantified using state-of-the-art micrometeorological data sets obtained in dry and moist summers and in winters with various snow cover depths. Vapor moves easily through large pores, some of which connect to the atmosphere, allowing (1) considerable active layer warming driven by pipe-like snowmelt infiltration, and (2) direct vapor linkage between atmosphere and deeper soils. Because of strong adhesive forces, water in the dry active layer evaporates with great difficulty. The fraction of latent heat to total soil heat storage ranged from 26 to 45% in dry and moist summers, respectively. These values are not negligible, despite being smaller than those of arctic wet active layer, in which only freezing and thawing were considered.

  8. Cold vacuum drying facility design requirements

    SciTech Connect

    Irwin, J.J.

    1997-09-24

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  9. Nitrogen loss during solar drying of biosolids.

    PubMed

    O'Shaughnessy, S A; Song, I; Artiola, J F; Choi, C Y

    2008-01-01

    Solar drying has been used extensively to dewater biosolids for ease of transportation and to a lesser degree to reduce pathogens prior to land application. The nitrogen in biosolids makes them a relatively inexpensive but valuable source of fertilizer. In this study, nitrogen loss from tilled and untilled biosolids was investigated during the solar drying process. Samples of aerobically and anaerobically digested biosolids during three solar drying experiments were analyzed for their nitrate (NO3-) and ammonium (NH4+) ions concentrations. Nitrogen losses varied depending on the solar drying season and tillage. Although not directly measured, the majority of nitrogen loss occurred through ammonia volatilization; organic nitrogen content (organic N) remained relatively stable for each sample, nitrate concentrations for the majority of samples remained below detectable levels and the decline of ammonium-nitrogen (NH4(+)-N) generally followed the trend of moisture loss in the biosolids.

  10. Dry-heat resistance of selected psychrophiles.

    PubMed

    Winans, L; Pflug, I J; Foster, T L

    1977-08-01

    The dry-heat resistance characteristics of spores of psychrophilic organisms isolated from soil samples from the Viking spacecraft assembly areas at Cape Kennedy Space Flight Center, Cape Canaveral, Fla., were studied. Spore suspensions were produced, and dry-heat D values were determined for the microorganisms that demonstrated growth or survival under a simulated Martian environment. The dry-heat tests were carried out by using the planchet-boat-hot plate system at 110 and 125 degrees C with an ambient relative humidity of 50% at 22 degrees C. The spores evaluated had a relatively low resistance to dry heat. D(110 degrees C) values ranged from 7.5 to 122 min, whereas the D(123 degrees C) values ranged from less than 1.0 to 9.8 min.

  11. Fuel-Cell Structure Prevents Membrane Drying

    NASA Technical Reports Server (NTRS)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  12. High strength air-dried aerogels

    DOEpatents

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  13. Variability of soil moisture memory for wet and dry basins

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Mahfuzur; Lu, Minjiao; Kyi, Khin Htay

    2015-04-01

    Soil moisture memory (SMM) is not only important for atmospheric weather/climate forecasting, but may also be useful in flood and drought prediction. Despite their importance, SMM studies are restricted in certain regions due to the scarcity of soil moisture data. To overcome this limitation, this study explains the variability of SMM in wet and dry basins, and shows an alternative way to predict the basin scale SMM using observed precipitation and potential evapotranspiration information only. This study presents the basin average SMM in the form of a timescale that indicates the duration of significant autocorrelations at 95% confidence intervals. The soil moisture autocorrelations were calculated using observed precipitation, potential evapotranspiration, streamflow and soil moisture data sets simulated using the XinAnJiang (XAJ) model, for 26 river basins across the USA. The XAJ model's capability to simulate seasonal cycles (temporal anomalies) of soil moisture was validated against cycles from the observed data set of the Spoon River basin of Illinois State, USA. Based on the validation experience, the XAJ model was thereafter used to simulate soil moisture data for the analysed basins. Basin scale SMM timescale ranges were computed from 11 to 133 days. The SMM timescale is highly influenced by precipitation variability and exhibits strong seasonality. Dry basins tend to show the highest memory during the winter months (December to February) and lowest in late spring (May). In contrast, wet basins have the lowest memory during winter and early spring (December to April) and highest in the late summer and early autumn (July to September). The SMM timescale displayed an exponential relationship with the basin aridity index, with an r2 value of 0.9. This relationship could be a cheap source of basin scale SMM prediction from widely available observed data sets (actual precipitation and potential evapotranspiration), and thus, could afford some knowledge of SMM

  14. The global water cycle

    NASA Astrophysics Data System (ADS)

    Oki, Taikan; Entekhabi, Dara; Harrold, Timothy Ives

    The global water cycle consists of the oceans, water in the atmosphere, and water in the landscape. The cycle is closed by the fluxes between these reservoirs. Although the amounts of water in the atmosphere and river channels are relatively small, the fluxes are high, and this water plays a critical role in society, which is dependent on water as a renewable resource. On a global scale, the meridional component of river runoff is shown to be about 10% of the corresponding atmospheric and oceanic meridional fluxes. Artificial storages and water withdrawals for irrigation have significant impacts on river runoff and hence on the overall global water cycle. Fully coupled atmosphere-land-river-ocean models of the world's climate are essential to assess the future water resources and scarcities in relation to climate change. An assessment of future water scarcity suggests that water shortages will worsen, with a very significant increase in water stress in Africa. The impact of population growth on water stress is shown to be higher than that of climate change. The virtual water trade, which should be taken into account when discussing the global water cycle and water scarcity, is also considered. The movement of virtual water from North America, Oceania, and Europe to the Middle East, North West Africa, and East Asia represents significant global savings of water. The anticipated world water crisis widens the opportunities for the study of the global water cycle to contribute to the development of sustainability within society and to the solution of practical social problems.

  15. A new experimental method for in situ corrosion monitoring under alternate wet-dry conditions.

    PubMed

    Fu, Xinxin; Dong, Junhua; Han, Enhou; Ke, Wei

    2009-01-01

    A new experimental method was applied in in situ corrosion monitoring of mild steel Q235 under alternate wet-dry conditions. The thickness of the electrolyte film during the wet cycle was monitored by a high-precision balance with a sensibility of 0.1 mg. At the same time, an electrochemical impedance technique was employed to study the effect of film thickness on corrosion rates. Experimental results showed that there was a critical electrolyte film condition for which the corrosion rate reached a maximum during wet-dry cycles. For the substrate, the critical condition could be described by a film thickness of about 17 μm. For the rusted specimen, the critical condition could be described by an electrolyte amount of about 0.038 g, which is equivalent to a film thickness of 38 μm. This monitoring system was very useful for studying atmospheric corrosion of metals covered by corrosion products.

  16. Isotope studies to determine dry deposition of sulfate to deciduous and coniferous trees: Final draft

    SciTech Connect

    Garten, C.T. Jr.

    1988-01-01

    Experiments have been conducted at two locations near Oak Ridge, Tennessee, with radioactive /sup 35/S (87 day half-life) to examine the cycling behavior of sulfur in yellow poplar (Liriodendron tulipifera), red maple (Acer rubrum), and loblolly pine (Pinus taeda) trees. Some findings pertain to methods development for estimating dry deposition of sulfur to forest canopies and the magnitude of sulfur emissions from natural sources (Task II). We will determine through field studies, the internal cycling, storage, and biogenic emission of sulfur, as traced by /sup 35/SO/sub 4//sup 2 -/, in environments impacted by atmospheric sulfate deposition; and will determine through isotope dilution studies, the contribution of foliar leaching and dry deposition to net throughfall (NTF) sulfate concentrations beneath deciduous and coniferous trees in such environments. 3 refs., 2 figs., 1 tab.

  17. Dry Eye in Pediatric Contact Lens Wearers

    PubMed Central

    Greiner, Katie L.; Walline, Jeffrey J.

    2015-01-01

    Objectives To determine whether children who wear contact lenses truly have fewer dry eye complaints than adults. Methods Ninety-four pediatric contact lens wearers, ages 8 to 14 years, were recruited and given the Contact Lens Dry Eye Questionnaire (CLDEQ) short form. The survey is designed to diagnose dry eye syndrome by obtaining information on the frequency of dryness and light sensitivity and their corresponding intensity levels within the first two hours of putting in the lenses, in the middle of the day, and at the end of the day. The responses were scored by multiplying the frequency by the average intensity and a constant. A composite score was calculated by subtracting the photophobia score from the dryness score, and the results were compared to adult samples from the literature. The questionnaire also asked whether the subject thought he/she had dry eyes while wearing contact lenses. Subjects that thought they had dry eyes and had a CLDEQ composite score >0.03 were diagnosed with dry eye. Subjects who were unsure if they dry eye or said they did not have dry eye but scored >1.29 were also diagnosed with dry eye. Results The average (± SD) age of the sample was 11.7 ± 1.5 years, 56.4% were female, 59.6% were white, and 19.1% were black. The mean (± SD) CLDEQ composite score was 0.25 ±0.50 (range= -1.20 to 1.45). In the literature, the adult mean (± SD) CLDEQ composite score was 1.02 ±0.80 (range= -0.74 to 4.50). Of the 94 surveys collected, 4.3% of children were categorized with dry eye compared to 56.2% of adults who completed the CLDEQ survey in the adult study. Conclusions Pediatric contact lens wearers have fewer complaints about dry eyes than adult contact lens wearers, which may be due to improved tear film, differences in reporting of symptoms, or modality of contact lens wear. PMID:21060258

  18. Microbial control of biogeochemistry during drying-rewetting: the legacy of drought

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes

    2014-05-01

    Drought and drying-rewetting cycles are frequent stressors for soil microbial communities; a stress that is predicted to grow increasingly severe with future climate change. Understanding how the microbial community controls biogeochemical cycles under these dynamic events is instrumental to enable predictive power for C and nutrient cycling in soils. First, we investigated the microbial growth dynamics underlying the dramatic soil C pulse induced by rewetting a dry soil at high time-resolution in a series of week-long studies in a range of soils. Second, we investigated how the duration of drought modulated the microbial responses to rewetting. Third, we investigated how the legacy of experimental field-drought modulated the microbial responses to rewetting dry soil. Fourth, we extended our analysis by investigating how the legacy of drought affected the actively growing microbial community and their biogeochemistry by assessing a cross-continental set of long term (>10 y) drought experiments including soils from ecosystems across Europe. We found two principal types of respiration responses induced by rewetting a dry soil: (i) an immediate maximal peak followed by an exponential decline or (ii) an immediate peak maintained for 20 h, followed by an intermittent period of exponential increase reaching a maximal peak rate only after > 24 h, followed by an exponential decline. Microbial growth contrasted sharply with the respiration dynamics of both types of rewetting responses. In the type (i) response a linear increase starting immediately after rewetting from zero growth and gradually converging to similar rates as in a moist control soil occurred. In the type (ii) response microbial growth remained at zero for about 20 h, followed by an exponential increase, reaching a peak value many-fold times higher than that of the moist control soils >24 h after rewetting. An extended period of drought prior to rewetting could change the microbial responses from type (i) to

  19. Persistent drying in the tropics linked to natural forcing

    NASA Astrophysics Data System (ADS)

    Winter, Amos; Zanchettin, Davide; Kushnir, Yochanan; Black, David; Breitenbach, Sebastian; Cheng, Hai; Miller, Thomas; Haug, Gerald

    2015-04-01

    Climate projections for the future indicate a regional contrast in tropical hydrologic trends between areas that are slated to dry and those that may become wet. While much of the tropical ocean under the Intertropical Convergence Zone (ITCZ) is projected to see an increase in rainfall, a wide area of Central America and surrounding oceans is expected to experience severe drying. Approximately half the world's population lives in the tropics, and future changes in the hydrological cycle will impact not just freshwater supplies but also energy production in areas dependent upon hydroelectric power. It is vital that we understand tropical forcing mechanisms and the eventual hydrological response in order to better assess projected future regional precipitation trends and variability. Paleoclimate proxies are a valuable source of information for this purpose as they provide long time series that pre-date and complement the present, often short instrumental observations. Here we present paleo-precipitation data from a speleothem located in Mesoamerica that reveal large multi-decadal declines in regional precipitation whose onset coincides with clusters of large volcanic eruptions during the 19th and 20th centuries. This reconstruction provides new independent evidence of robust long-lasting volcanic effects on climate and elucidates key aspects of the causal chain of physical processes determining the tropical climate response to global radiative forcing.

  20. Microbial ecology of extreme environments: Antarctic dry valley yeasts and growth in substrate limited habitats

    NASA Technical Reports Server (NTRS)

    Vishniac, H. S.

    1981-01-01

    The multiple stresses temperature, moisture, and for chemoheterotrophs, sources of carbon and energy of the Dry Valley Antarctica soils allow at best depauperate communities, low in species diversity and population density. The nature of community structure, the operation of biogeochemical cycles, the evolution and mechanisms of adaptation to this habitat are of interest in informing speculations upon life on other planets as well as in modeling the limits of gene life. Yeasts of the Cryptococcus vishniacil complex (Basidiobiastomycetes) are investigated, as the only known indigenes of the most hostile, lichen free, parts of the Dry Valleys. Methods were developed for isolating these yeasts (methods which do not exclude the recovery of other microbiota). The definition of the complex was refined and the importance of nitrogen sources was established as well as substrate competition in fitness to the Dry Valley habitats.

  1. Highly durable and unidirectionally stooped polymeric nanohairs for gecko-like dry adhesive

    NASA Astrophysics Data System (ADS)

    Im, Hyeon Seong; Kwon, Ki Yoon; Kim, Jong Uk; Kim, Kwang Su; Yi, Hoon; Yoo, Pil J.; Pang, Changhyun; Jeong, Hoon Eui; Kim, Tae-il

    2015-10-01

    Gecko-like dry adhesive using high aspect ratio polymeric nanohairs has insuperable limitations, although it has huge potential in many applications. Repeated harsh contacts on a target substrate lead to physical collapse of nanohairs and significant degradation of the adhesion property, because the polymeric nanohairs are quite fragile due to poor mechanical robustness. Herein, we demonstrate a highly robust gecko-like dry adhesive with unidirectionally stooped polymeric nanohairs (diameter 100 nm) with a high aspect ratio (∼9) using an ultrathin metal coating. 100 cycles of repeated adhesion tests with 1 N preloading force did not significantly degrade adhesion or cause collapse of nanohairs. We believe that this approach allows gecko-like dry adhesive to be utilized in many related applications and diverse industry interests.

  2. Solar energy assisted fluidized bed fruit drying

    NASA Astrophysics Data System (ADS)

    Kilkis, B.

    The possibility of using the fluidized-bed principle for solar drying of fruits economically and simply is explored. With the aid of computerized design methods, an optimized fluidized bed/packed bed combination was achieved, that in addition functions as a solar air heater. Based on this configuration, a novel aparatus was designed in Turkey for drying Turkish grapes. Comparisons with comparable systems are made.

  3. Methane storage in dry water gas hydrates.

    PubMed

    Wang, Weixing; Bray, Christopher L; Adams, Dave J; Cooper, Andrew I

    2008-09-03

    Dry water stores 175 v(STP)/v methane at 2.7 MPa and 273.2 K in a hydrate form which is close to the Department of Energy volumetric target for methane storage. Dry water is a silica-stabilized free-flowing powder (95% wt water), and fast methane uptakes were observed (90% saturation uptake in 160 min with no mixing) as a result of the relatively large surface-to-volume ratio of this material.

  4. Dry Mouth - Multiple Languages: MedlinePlus

    MedlinePlus

    ... مع عالج السرطان - العربية Bilingual PDF Health Information Translations Chinese - Simplified (简体中文) Dry Mouth with Cancer Treatment 癌症治疗造成的口腔干燥 - 简体中文 (Chinese - Simplified) Bilingual PDF Health Information Translations Chinese - Traditional (繁體中文) Dry Mouth with Cancer Treatment ...

  5. Dry-Enzyme Test For Gaseous Chemicals

    NASA Technical Reports Server (NTRS)

    Barzana, Eduardo; Karel, Marcus; Klibanov, Alexander

    1990-01-01

    Simple, dry-chemical test detects ethanol in human breath. Method of test also adapted to detection of such toxic chemicals as formaldehyde in airstreams. Used qualitatively to detect chemical compounds above present level; for example, ethanol above legal level for driving. Also used to indicate quantitatively concentrations of compounds. Involves dry enzyme and color indicator. Adapted to detect any gaseous compound transformed by enzymes to produce change evident to human eye or to instrument.

  6. Vegetable Drying in Two Novel Food Dryers.

    DTIC Science & Technology

    1994-11-01

    TECHNICAL REPORT AD NATICK/TR-95/008 VEGETABLE DRYING IN TWO NOVEL FOOD DRYERS by Joseph Cohen, Christopher Rees, Linnea Hallberg, and Tom C.S. Yang...VEGETABLE DRYING IN TWO NOVEL FOOD DRYERS 6. AUTHOR(S) FTBB 1313 PR: ID:TB-PST Joseph Cohen, Christopher Rees, Linnea Hallberg, and Tom C.S. Yan__ 7...up from the laboratory to large commercial units. ( Priestley , 1962). The technique involves levitating particulate solids in an upward-flowing gas

  7. Using solar dryers to dry clay bricks

    SciTech Connect

    Bernal, J.A.; Wicker, R.B.

    1996-12-31

    Experiments using a small-scale solar dryer have been performed to determine the effect of incorporating solar dryers in the pre-firing stage of clay brick production. A comparison of brick moisture content over time is presented for dry bricks that underwent additional drying either naturally through direct exposure, in convection ovens set at 65.6 C and 104 C, in the solar dryer, or sealed in plastic bags. The ambient temperature and relative humidity were monitored along with the solar dryer temperature. Results indicated the solar dryer removed from one to two percent more moisture than natural drying, but removed less moisture than did the ovens. A similar comparison of wet bricks naturally dried, oven dried, and placed in the solar dryer for periods of five and seven days is also presented. The solar dryer reduced the amount of time required for bricks to be dried to a specified moisture content and increased the amount of moisture removed for a given amount of time.

  8. Steam atmosphere drying exhaust steam recompression system

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.; Doyle, Edward F.; DiBella, Francis A.

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  9. Templated Dry Printing of Conductive Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rolfe, David Alexander

    Printed electronics can lower the cost and increase the ubiquity of electrical components such as batteries, sensors, and telemetry systems. Unfortunately, the advance of printed electronics has been held back by the limited minimum resolution, aspect ratio, and feature fidelity of present printing techniques such as gravure, screen printing and inkjet printing. Templated dry printing offers a solution to these problems by patterning nanoparticle inks into templates before drying. This dissertation shows advancements in two varieties of templated dry nanoprinting. The first, advective micromolding in vapor-permeable templates (AMPT) is a microfluidic approach that uses evaporation-driven mold filling to create submicron features with a 1:1 aspect ratio. We will discuss submicron surface acoustic wave (SAW) resonators made through this process, and the refinement process in the template manufacturing process necessary to make these devices. We also present modeling techniques that can be applied to future AMPT templates. We conclude with a modified templated dry printing that improves throughput and isolated feature patterning by transferring dry-templated features with laser ablation. This method utilizes surface energy-defined templates to pattern features via doctor blade coating. Patterned and dried features can be transferred to a polymer substrate with an Nd:YAG MOPA fiber laser, and printed features can be smaller than the laser beam width.

  10. Monitoring fluidized bed drying of pharmaceutical granules.

    PubMed

    Briens, Lauren; Bojarra, Megan

    2010-12-01

    Placebo granules consisting of lactose monohydrate, corn starch, and polyvinylpyrrolidone were prepared using de-ionized water in a high-shear mixer and dried in a conical fluidized bed dryer at various superficial gas velocities. Acoustic, vibration, and pressure data obtained over the course of drying was analyzed using various statistical, frequency, fractal, and chaos techniques. Traditional monitoring methods were also used for reference. Analysis of the vibration data showed that the acceleration levels decreased during drying and reached a plateau once the granules had reached a final moisture content of 1–2 wt.%; this plateau did not differ significantly between superficial gas velocities, indicating a potential criterion to support drying endpoint identification. Acoustic emissions could not reliably identify the drying endpoint. However, high kurtosis values of acoustic emissions measured in the filtered air exhaust corresponded to high entrainment rates. This could be used for process control to adjust the fluidization gas velocity to allow drying to continue rapidly while minimizing entrainment and possible product losses.

  11. Steam atmosphere drying exhaust steam recompression system

    DOEpatents

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  12. 21 CFR 131.147 - Dry whole milk.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.147 Dry whole milk. (a... blending fluid, condensed, or dried nonfat milk with liquid or dried cream or with fluid, condensed,...

  13. Hibiscus sabdariffa L extract drying with different carrier agent: Drying rate evaluation and color analysis

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Utari, F. D.; Kumoro, A. C.

    2017-03-01

    The aim of this study was to investigate the effect of different carrier agents on roselle or Hibiscus sabdariffa L.extract drying. Carrier agent was used for reducing stickiness of material and avoiding agglomeration as well as improving stability. The method consisted of two steps involving roselle extraction and drying process. The liquid roselle extract was mixed with carrier agent (maltodextrin-arabic gum) in various composition. The mixture was then dried at different air temperature ranging 40 - 80°C. As a response, moisture content in the extract was observed by gravimetry every 10 minutes during90 minutes. The procedurewas repeated for the drying without carrieragent. The result showed that constant rate of drying with carrier agent was higher up to l.7 times than that of without carrier agent. Based on the color analysis,roselle extract drying with carrier agent also showed reasonable quality.

  14. Effect of drying temperature and slice size on quality of dried okra (Abelmoschus esculentus (L.) Moench).

    PubMed

    Pendre, N K; Nema, Prabhat K; Sharma, Harsh P; Rathore, S S; Kushwah, S S

    2012-06-01

    Okra (Abelmoschus esculentus (L) Moench) is an important vegetable crop of India. Dried okra pods have wide use in snacks and are in great demand for domestic as well as export market. Hence, effect of four slice sizes (1, 2, 3 and 4 cm) and four drying temperatures (50, 60, 70 and 80 °C) on quality of hot air dried okra were studied. Okra pods were dried in the form of slices cut across the length at different temperatures. Quality assessment of okra was done on the basis of protein, ascorbic acid and fibre content. Okra slice sizes and drying temperatures affected all the quality parameters significantly (p < 0.05). Maximum retention of protein, ascorbic acid and fibre content were found in 2 cm long slices dried at 60 °C temperature.

  15. Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology

    DOEpatents

    Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy

    2016-05-10

    A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.

  16. Open sun drying of green bean: influence of pretreatments on drying kinetics, colour and rehydration capacity

    NASA Astrophysics Data System (ADS)

    İsmail, Osman; Kantürk Figen, Aysel; Pişkin, Sabriye

    2016-08-01

    Green bean (Phaseolus Vulgaris L), classified under legume family, is a primary source of dietary protein in human diets especially in the agricultural countries. Green bean is susceptible to rapid deterioration because of their high moisture content and in order to prevent and present the green bean drying process is applied. In this study, effects of pretreatments on drying kinetics, colour and rehydration capacity of green bean were investigated. It was observed that the pretreatment affected the drying time. The shortest drying times were obtained from pretreated samples with blanched. Drying times were determined as 47, 41 and 29 h for natural, salted and blanch, respectively. The results showed that pretreatment and ambient temperature significantly (P = 0.05) affected the drying rate and the drying time. The effective moisture diffusivity was determined by using Fick's second law and was found to be range between 3.15 × 10-10 and 1.2 × 10-10 m2/s for the pre-treated and natural green bean samples. The rehydration values were obtained 2.75, 2.71, 2.29 (g water/g dry matter) for the blanched, salted and natural samples. The effective diffusion coefficients were calculated using the data collected during the falling rate period and the experimental data are fitted to seven thin layer drying models which found in the literature. The Logarithmic model was found to best describe the drying behavior of fresh green beans under open air sun. Rehydration time and color parameters had been determined in order to improve the quality of dried green bean. Regarding with rehydration time and colour data, the best results were obtained at blanched drying conditions.

  17. Modelling of heat and mass transfer in a granular medium during high-temperature air drying. Effect of the internal gas pressure

    NASA Astrophysics Data System (ADS)

    Othmani, Hammouda; Hassini, Lamine; Lamloumi, Raja; El Cafsi, Mohamed Afif

    2016-02-01

    A comprehensive internal heat and water transfer model including the gas pressure effect has been proposed in order to improve the industrial high-temperature air drying of inserts made of agglomerated sand. In this model, the internal gas phase pressure effect was made perfectly explicit, by considering the liquid and vapour transfer by filtration and the liquid expulsion at the surface. Wet sand enclosed in a tight cylindrical glass bottle dried convectively at a high temperature was chosen as an application case. The model was validated on the basis of the experimental average water content and core temperature curves for drying trials at different operating conditions. The simulations of the spatio-temporal distribution of internal gas pressure were performed and interpreted in terms of product potential damage. Based on a compromise between the drying time and the pressure increase, a simple drying cycle was implemented in order to optimize the drying process.

  18. Global Warming and 21st Century Drying

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Smerdun, Jason E.; Seager, Richard; Coats, Sloan

    2014-01-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twentyfirst century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman- Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  19. Archaea in biogeochemical cycles.

    PubMed

    Offre, Pierre; Spang, Anja; Schleper, Christa

    2013-01-01

    Archaea constitute a considerable fraction of the microbial biomass on Earth. Like Bacteria they have evolved a variety of energy metabolisms using organic and/or inorganic electron donors and acceptors, and many of them are able to fix carbon from inorganic sources. Archaea thus play crucial roles in the Earth's global geochemical cycles and influence greenhouse gas emissions. Methanogenesis and anaerobic methane oxidation are important steps in the carbon cycle; both are performed exclusively by anaerobic archaea. Oxidation of ammonia to nitrite is performed by Thaumarchaeota. They represent the only archaeal group that resides in large numbers in the global aerobic terrestrial and marine environments on Earth. Sulfur-dependent archaea are confined mostly to hot environments, but metal leaching by acidophiles and reduction of sulfate by anaerobic, nonthermophilic methane oxidizers have a potential impact on the environment. The metabolisms of a large number of archaea, in particular those dominating the subsurface, remain to be explored.

  20. Stirling cycle cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P. (Inventor)

    1983-01-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  1. The Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Wigley, T. M. L.; Schimel, D. S.

    2005-08-01

    Reducing carbon dioxide (CO2) emissions is imperative to stabilizing our future climate. Our ability to reduce these emissions combined with an understanding of how much fossil-fuel-derived CO2 the oceans and plants can absorb is central to mitigating climate change. In The Carbon Cycle, leading scientists examine how atmospheric carbon dioxide concentrations have changed in the past and how this may affect the concentrations in the future. They look at the carbon budget and the "missing sink" for carbon dioxide. They offer approaches to modeling the carbon cycle, providing mathematical tools for predicting future levels of carbon dioxide. This comprehensive text incorporates findings from the recent IPCC reports. New insights, and a convergence of ideas and views across several disciplines make this book an important contribution to the global change literature.

  2. The microbial nitrogen cycle.

    PubMed

    Jetten, Mike S M

    2008-11-01

    This special issue highlights several recent discoveries in the microbial nitrogen cycle including the diversity of nitrogen-fixing bacteria in special habitats, distribution and contribution of aerobic ammonium oxidation by bacteria and crenarchaea in various aquatic and terrestrial ecosystems, regulation of metabolism in nitrifying bacteria, the molecular diversity of denitrifying microorganisms and their enzymes, the functional diversity of freshwater and marine anammox bacteria, the physiology of nitrite-dependent anaerobic methane oxidation and the degradation of recalcitrant organic nitrogen compounds. Simultaneously the articles in this issue show that many questions still need to be addressed, and that the microbes involved in catalyzing the nitrogen conversions still harbour many secrets that need to be disclosed to fully understand the biogeochemical nitrogen cycle, and make future predictions and global modelling possible.

  3. Thermally-dried immobilized kefir on casein as starter culture in dried whey cheese production.

    PubMed

    Dimitrellou, D; Kourkoutas, Y; Koutinas, A A; Kanellaki, M

    2009-12-01

    The aim of the present study was to evaluate the use of thermally-dried immobilized kefir on casein as a starter culture for protein-enriched dried whey cheese. For comparison reasons, dried whey cheese with thermally-dried free kefir culture and with no starter culture were also produced. The effect of the nature of the culture, the ripening temperature and the ripening process on quality characteristics of the whey cheese was studied. The association of microbial groups during cheese maturation suggested repression of spoilage and protection from pathogens due to the thermally-dried kefir, as counts of coliforms, enterobacteria and staphylococci were significantly reduced in cheeses produced using thermally-dried kefir starter cultures. The effect of the starter culture on production of volatile compounds responsible for cheese flavor was also studied using the SPME GC/MS technique. Thermally-dried immobilized kefir starter culture resulted in an improved profile of aroma-related compounds. The preliminary sensory evaluation ascertained the soft, fine taste and the overall improved quality of cheese produced with the thermally-dried immobilized kefir. The potential of protein-based thermally-dried starter cultures in dairy products is finally highlighted and assessed.

  4. [Effect on quality of Scrophulariae Radix with modern drying technology].

    PubMed

    Li, Hui-wei; Liu, Pei; Qian, Da-wei; Lu, Xue-jun; Guo, Sheng; Zhu, Zhen-hua; Duan, Jin-ao

    2015-11-01

    Modern drying technology was used to explore suitable drying process to provide scientific basis for improving drying processing methods of Scrophulariae Radix. Controlled temperature and humidity drying, vacuum drying apparatus, microwave vacuum drying apparatus, short infrared drying device were used to gain samples for analyzing. The character appearance, concentration of main components and power consumption indicators were chosen for preliminary judging. Six major components, including iridoids and phenylpropanoids were analyzed by UPLC-MS/MS method. The contents of polysaccharides were determined by UV-visible spectrophotometry. The character appearance with controlled temperature and humidity drying and short infrared drying meet the pharmacopoeia standard (Ch. p, edition 2015), while samples with vacuum and microwave vacuum drying apparatus didn't. Compared to fresh sample, concentrations of harpagide, harpagoside, aucubin and catalpol were lower in the dried samples. Angoroside-C showed no significant change before and after drying. Concentration of acteoside increased after drying. Samples with controlled temperature (70 degrees C) and humidity (15% - 10%) drying had high content and short drying time. The better drying process of Scrophulariae Radix was controlled temperature and humidity drying. The method will provide the reference for the drying technology standard of roots medicine.

  5. [Microbial geochemical calcium cycle].

    PubMed

    Zavarzin, G A

    2002-01-01

    The participation of microorganisms in the geochemical calcium cycle is the most important factor maintaining neutral conditions on the Earth. This cycle has profound influence on the fate of inorganic carbon, and, thereby, on the removal of CO2 from the atmosphere. The major part of calcium deposits was formed in the Precambrian, when prokaryotic biosphere predominated. After that, calcium recycling based on biogenic deposition by skeletal organisms became the main process. Among prokaryotes, only a few representatives, e.g., cyanobacteria, exhibit a special calcium function. The geochemical calcium cycle is made possible by the universal features of bacteria involved in biologically mediated reactions and is determined by the activities of microbial communities. In the prokaryotic system, the calcium cycle begins with the leaching of igneous rock predominantly through the action of the community of organotrophic organisms. The release of carbon dioxide to the soil air by organotrophic aerobes leads to leaching with carbonic acid and soda salinization. Under anoxic conditions, of major importance is the organic acid production by primary anaerobes (fermentative microorganisms). Calcium carbonate is precipitated by secondary anaerobes (sulfate reducers) and to a smaller degree by methanogens. The role of the cyanobacterial community in carbonate deposition is exposed by stromatolites, which are the most common organo-sedimentary Precambrian structures. Deposition of carbonates in cyanobacterial mats as a consequence of photoassimilation of CO2 does not appear to be a significant process. It is argued that carbonates were deposited at the boundary between the "soda continent", which emerged as a result of subaerial leaching with carbonic acid, and the ocean containing Ca2+. Such ecotones provided favorable conditions for the development of the benthic cyanobacterial community, which was a precursor of stromatolites.

  6. Stirling cycle engine

    DOEpatents

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  7. Nuclear Fuel Cycle

    SciTech Connect

    Dale, Deborah J.

    2014-10-28

    These slides will be presented at the training course “International Training Course on Implementing State Systems of Accounting for and Control (SSAC) of Nuclear Material for States with Small Quantity Protocols (SQP),” on November 3-7, 2014 in Santa Fe, New Mexico. The slides provide a basic overview of the Nuclear Fuel Cycle. This is a joint training course provided by NNSA and IAEA.

  8. Gondwanaland's seasonal cycle

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.; Short, David A.; Mengel, John G.

    1987-01-01

    A two-dimensional energy balance climate model has been used to simulate the seasonal temperature cycle on a supercontinent-sized land mass. Experiments with idealized and realistic geography indicate that the land-sea configuration in high latitudes exerts a strong influence on the magnitude of summer warming. These simulations provide significant insight into the evolution of climate during the Palaeozoic, and raise questions about the presumed pre-eminent role of carbon dioxide in explaining long-term climate change.

  9. Energy-saving drying and its application

    NASA Astrophysics Data System (ADS)

    Kovbasyuk, V. I.

    2015-09-01

    Superheated steam is efficiently applied as a coolant for the intensification of drying, which is an important component of many up-to-date technologies. However, traditional drying is extremely energy consuming, and many drying apparatus are environmentally unfriendly. Thus, it is important to implement the proposed drying technique using superheated steam under pressure significantly higher than the atmospheric one with subsequent steam transfer for use in a turbine for electric power generation as a compensation of energy costs for drying. This paper includes a brief thermodynamic analysis of such a technique, its environmental advantages, and possible benefits of the use of wet wastes and obtaining high-quality fuels from wet raw materials. A scheme is developed for the turbine protection from impurities that can occur in the steam at drying. Potential advantage of the technique are also the absence of heating surfaces that are in contact with wet media, the absence of the emissions to the atmosphere, and the use of low potential heat for desalination and the purification of water. The new drying technique can play an extremely important part in the implementation in the field of thermal destruction of anthropogenic wastes. In spite of the promotion of waste sorting to obtain valuable secondary raw materials, the main problem of big cities is nonutilizable waste, which makes not less than 85% of the starting quantity of waste. This can only be totally solved by combustion, which even more relates to the sewage sludge utilization. The wastes can be safely and efficiently combusted only provided that they are free of moisture. Combustion temperature optimization makes possible full destruction of dioxins and their toxic analogues.

  10. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-04-01

    This report describes research conducted between January 1, 2004 and March 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. RTI has produced laboratory scale batches (approximately 300 grams) of supported sorbents (composed of 20 to 40% sodium carbonate) with high surface area and acceptable activity. Initial rates of weight gain of the supported sorbents when exposed to a simulated flue gas exceeded that of 100% calcined sodium bicarbonate. One of these sorbents was tested through six cycles of carbonation/calcination by thermogravimetric analysis and found to have consistent carbonation activity. Kinetic modeling of the regeneration cycle on the basis of diffusion resistance at the particle surface is impractical, because the evolving gases have an identical composition to those assumed for the bulk fluidization gas. A kinetic model of the reaction has been developed on the basis of bulk motion of water and carbon dioxide at the particle surface (as opposed to control by gas diffusion). The model will be used to define the operating conditions in future laboratory- and pilot-scale testing.

  11. Future of lignite resources: a life cycle analysis.

    PubMed

    Wang, Qingsong; Liu, Wei; Yuan, Xueliang; Zheng, Xiaoning; Zuo, Jian

    2016-12-01

    Lignite is a low-quality energy source which accounts for 13 % of China's coal reserves. It is imperative to improve the quality of lignite for large-scale utilization. To further explore and analyze the influence of various key processes on the environment and economic costs, a lignite drying and compression technology is evaluated using an integrated approach of life cycle assessment and life cycle costs. Results showed that lignite mining, direct air emissions, and electricity consumption have most significant impacts on the environment. An integrated evaluation of life cycle assessment and life cycle costs showed that the most significant contributor to the environmental impacts and economic costs was the lignite mining process. The impact of transportation and wastewater treatment process on the environment and economic costs was small enough to be ignored. Critical factors were identified for reducing the environmental and economic impacts of lignite drying and compression technology. These findings provide useful inputs for both industrial practice and policy making for exploitation, processing, and utilization of lignite resources.

  12. Self-heating of dried wastewater sludge.

    PubMed

    Zerlottin, M; Refosco, D; Della Zassa, M; Biasin, A; Canu, P

    2013-01-01

    We experimentally studied the occurrence of spontaneous self-heating of sludge after drying, to understand its nature, course and remediation. The sludge originates from primary and biological treatment of both municipal and industrial wastewater, the latter largely dominant (approx. 90% total organic carbon, mainly from local tanneries). Dried sludge is collected into big-bags (approx. 1.5m(3)) and landfilled in a dedicated site. After several years of regular operation of the landfill, without any management or environmental issue, indications of local warming emerged, together with smoke and smelling emissions, and local subsidence. During a two year monitoring activity, temperatures locally as high as 80°C have been detected, 6-10 m deep. Experiments were carried out on large quantities of dried sludge (≈ 1t), monitoring the temperature of the samples over long periods of time (months), aiming to reproduce the spontaneous self-heating, under different conditions, to spot enhancing and damping factors. Results demonstrate that air is a key factor to trigger and modulate the self-heating. Water, in addition to air, supports and emphasizes the heating. Unusual drying operation was found to affect dramatically the self-heating activity, up to spontaneous combustion, while ordinary drying conditions yield a sludge with a moderate self-heating inclination. Temperature values as well as heating time scales suggest that the exothermic process nature is mainly chemical and physical, while microbiological activity might be a co-factor.

  13. Analysis of open sun drying experiments

    SciTech Connect

    Mulet, A. . Dept. of Food Technology); Berna, A. . Dept. of Chemical Engineering); Rossell, C.; Canellas, J. . Dept. of Chemistry)

    1993-01-01

    Open sun drying has lost its previous importance due to the fact that different factors affect its reliability and the quality of the products obtained. One of the set-backs for the analysis of solar drying experiments is their dependence on a non-controlled source of energy, i.e. solar radiation depends on climatic conditions and experiments are difficult to compare. It is thus necessary to investigate the advantages of a particular set up as well as the climatic influences. Open sun drying could constitute the natural reference, allowing the comparison of different drying strategies. A new way of standardizing drying times, based on solar radiation input, is proposed, to allow better evaluation of the experiments. An equivalent time is defined, allowing comparison of experiments carried out under different circumstances. Carrots and potatoes were used in these experiments. The use of the average daily solar radiation 15.28 MJ m[sup [minus]2][center dot]d[sup [minus]1] in Palma de Mallorca (39.33 N, 2.37 E), is proposed for comparison purposes. An improvement of more than 12% in the explained variance was observed, the unexplained variance being lower than 1%.

  14. Small bowel obstruction caused by dried apple

    PubMed Central

    Ooi, Sally; Hong, Khiem

    2015-01-01

    Introduction Small bowel obstruction in a virgin abdomen is an uncommon surgical condition. While malignancy, inflammatory bowel disease and foreign body are the main reported causes, undigested food bezoar causing bowel obstruction is a rare entity. We report a case of small bowel obstruction secondary to dried preserved apple having re-expanded within the gastrointestinal tract. Presentation of case A 69 year old male presented with severe abdominal distension, generalized abdominal tenderness and obstipation for 1 week. Small bowel obstruction (SBO) was confirmed on plain abdominal X-ray and CT imaging. An emergency explorative laparatomy identified a sausage-shaped intra-luminal foreign body obstructing the distal ileum. An enterotomy was performed which revealed a rehydrated, donut-shaped piece of dried apple. Discussion Swallowed items that pass through the pylorus rarely cause obstruction as they are usually small enough to pass through the rest of the bowel without difficulty. We postulate that in our patient that the dried apple was originally small enough to pass through the pylorus. However during small bowel, its’ highly absorbable nature resulted in an increase in size that prevented its’ passage through the ileocecal valve. A simple in-vitro experiment discovered that dried apple has a potential to reabsorb fluid and expand up to 35% of its initial size within 72 h. Conclusion This report illustrates the potential for dried food substances to cause intra-luminal SBO after significant expansion with rehydration. PMID:25841159

  15. Scaling theory of drying in porous media

    SciTech Connect

    Tsimpanogiannis, I.N.; Yortsos, Y.C.; Poulou, S.; Kanellopoulos, N.; Stubos, A.K.

    1999-04-01

    Concepts of immiscible displacements in porous media driven by mass transfer are utilized to model drying of porous media. Visualization experiments of drying in two-dimensional glass micromodels are conducted to identify pore-scale mechanisms. Then, a pore network approach is used to analyze the advancing drying front. It is shown that in a porous medium, capillarity induces a flow that effectively limits the extent of the front, which would otherwise be of the percolation type, to a finite width. In conjuction with the predictions of a macroscale stable front, obtained from a linear stability analysis, the process is shown to be equivalent to invasion percolation in a stabilizing gradient. A power-law scaling relation of the front width with a diffusion-based capillary number is also obtained. This capillary number reflects the fact that drying is controlled by diffusion in contrast to external drainage. The scaling exponent predicted is compatible with the experimental results of Shaw [Phys Rev. Lett. {bold 59}, 1671 (1987)]. A framework for a continuum description of the upstream drying regimes is also developed. {copyright} {ital 1999} {ital The American Physical Society}

  16. Current Approach to Dry Eye Disease.

    PubMed

    Valim, Valéria; Trevisani, Virginia Fernandes Moça; de Sousa, Jacqueline Martins; Vilela, Verônica Silva; Belfort, Rubens

    2015-12-01

    Dry eye disease (DED) is a multifactorial disease of the tears and ocular surface that causes tear film instability with potential damage to the ocular surface. The prevalence of dry eye in the world population ranges from 6 to 34 %. It is more common in those aged over 50, and affects mainly women. Since the introduction of the Schirmer's test in 1903, other tests have been developed to evaluate dry eye, such as biomicroscopy, the tear film breakup time (BUT), vital dyes (lissamine green and rose bengal), fluorescein, leaf fern test, corneal sensitivity test, conjunctiva impression cytology, optical coherence tomography (OCT), and tear osmolarity measurement. Although there is no gold standard, it is advisable to combine at least two tests. Strategies for treating DED have recently been modified and include patient education, tear substitute, corticosteroids, secretagogues, fatty acids, immunomodulators, occlusion of lacrimal puncta surgery and, tarsorrhaphy. Biological therapy and new topical immunomodulators such as tacrolimus, tofacitinib and IL-1 receptor inhibitor are being tested. In this review, the evaluation tests for dry eye are compared and the main studies on treatment are presented, with emphasis on studies in patients with Sjögren's syndrome. The authors propose an approach for the management of dry eye.

  17. Dried fruits quality assessment by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe

    2012-05-01

    Dried fruits products present different market values according to their quality. Such a quality is usually quantified in terms of freshness of the products, as well as presence of contaminants (pieces of shell, husk, and small stones), defects, mould and decays. The combination of these parameters, in terms of relative presence, represent a fundamental set of attributes conditioning dried fruits humans-senses-detectable-attributes (visual appearance, organolectic properties, etc.) and their overall quality in terms of marketable products. Sorting-selection strategies exist but sometimes they fail when a higher degree of detection is required especially if addressed to discriminate between dried fruits of relatively small dimensions and when aiming to perform an "early detection" of pathogen agents responsible of future moulds and decays development. Surface characteristics of dried fruits can be investigated by hyperspectral imaging (HSI). In this paper, specific and "ad hoc" applications addressed to propose quality detection logics, adopting a hyperspectral imaging (HSI) based approach, are described, compared and critically evaluated. Reflectance spectra of selected dried fruits (hazelnuts) of different quality and characterized by the presence of different contaminants and defects have been acquired by a laboratory device equipped with two HSI systems working in two different spectral ranges: visible-near infrared field (400-1000 nm) and near infrared field (1000-1700 nm). The spectra have been processed and results evaluated adopting both a simple and fast wavelength band ratio approach and a more sophisticated classification logic based on principal component (PCA) analysis.

  18. More extreme precipitation in the world’s dry and wet regions

    NASA Astrophysics Data System (ADS)

    Donat, Markus G.; Lowry, Andrew L.; Alexander, Lisa V.; O'Gorman, Paul A.; Maher, Nicola

    2016-05-01

    Intensification of the hydrological cycle is expected to accompany a warming climate. It has been suggested that changes in the spatial distribution of precipitation will amplify differences between dry and wet regions, but this has been disputed for changes over land. Furthermore, precipitation changes may differ not only between regions but also between different aspects of precipitation, such as totals and extremes. Here we investigate changes in these two aspects in the world’s dry and wet regions using observations and global climate models. Despite uncertainties in total precipitation changes, extreme daily precipitation averaged over both dry and wet regimes shows robust increases in both observations and climate models over the past six decades. Climate projections for the rest of the century show continued intensification of daily precipitation extremes. Increases in total and extreme precipitation in dry regions are linearly related to the model-specific global temperature change, so that the spread in projected global warming partly explains the spread in precipitation intensification in these regions by the late twenty-first century. This intensification has implications for the risk of flooding as the climate warms, particularly for the world’s dry regions.

  19. Study of a dry room in a battery manufacturing plant using a process model

    SciTech Connect

    Ahmed, Shabbir; Nelson, Paul A.; Dees, Dennis W.

    2016-09-01

    The manufacture of lithium ion batteries requires some processing steps to be carried out in a dry room, where the moisture content should remain below 100 parts per million. The design and operation of such a dry room adds to the cost of the battery. This paper studies the humidity management of the air to and from the dry room to understand the impact of design and operating parameters on the energy demand and the cost contribution towards the battery manufacturing cost. The study is conducted with the help of a process model for a dry room with a volume of 16000 cubic meters. For a defined base case scenario it is found that the dry room operation has an energy demand of approximately 400 kW. The paper explores some tradeoffs in design and operating parameters by looking at the humidity reduction by quenching the make-up air vs. at the desiccant wheel, and the impact of the heat recovery from the desiccant regeneration cycle.

  20. Drying process optimization for an API solvate using heat transfer model of an agitated filter dryer.

    PubMed

    Nere, Nandkishor K; Allen, Kimberley C; Marek, James C; Bordawekar, Shailendra V

    2012-10-01

    Drying an early stage active pharmaceutical ingredient candidate required excessively long cycle times in a pilot plant agitated filter dryer. The key to faster drying is to ensure sufficient heat transfer and minimize mass transfer limitations. Designing the right mixing protocol is of utmost importance to achieve efficient heat transfer. To this order, a composite model was developed for the removal of bound solvent that incorporates models for heat transfer and desolvation kinetics. The proposed heat transfer model differs from previously reported models in two respects: it accounts for the effects of a gas gap between the vessel wall and solids on the overall heat transfer coefficient, and headspace pressure on the mean free path length of the inert gas and thereby on the heat transfer between the vessel wall and the first layer of solids. A computational methodology was developed incorporating the effects of mixing and headspace pressure to simulate the drying profile using a modified model framework within the Dynochem software. A dryer operational protocol was designed based on the desolvation kinetics, thermal stability studies of wet and dry cake, and the understanding gained through model simulations, resulting in a multifold reduction in drying time.

  1. Study of a dry room in a battery manufacturing plant using a process model

    NASA Astrophysics Data System (ADS)

    Ahmed, Shabbir; Nelson, Paul A.; Dees, Dennis W.

    2016-09-01

    The manufacture of lithium ion batteries requires some processing steps to be carried out in a dry room, where the moisture content should remain below 100 parts per million. The design and operation of such a dry room adds to the cost of the battery. This paper studied the humidity management of the air to and from the dry room to understand the impact of design and operating parameters on the energy demand and the cost contribution towards the battery manufacturing cost. The study was conducted with the help of a process model for a dry room with a volume of 16,000 cubic meters. For a defined base case scenario it was found that the dry room operation has an energy demand of approximately 400 kW. The paper explores some tradeoffs in design and operating parameters by looking at the humidity reduction by quenching the make-up air vs. at the desiccant wheel, and the impact of the heat recovery from the desiccant regeneration cycle.

  2. Blanching, salting and sun drying of different pumpkin fruit slices.

    PubMed

    Workneh, T S; Zinash, A; Woldetsadik, K

    2014-11-01

    The study was aimed at assessing the quality of pumpkin (Cucuribita Spp.) slices that were subjected to pre-drying treatments and drying using two drying methods (uncontrolled sun and oven) fruit accessions. Pre-drying had significant (P ≤ 0.05) effect on the quality of dried pumpkin slices. 10 % salt solution dipped pumpkin fruit slices had good chemical quality. The two-way interaction between drying methods and pre-drying treatments had significant (P ≤ 0.05) effect on chemical qualities. Pumpkin subjected to salt solution dipping treatment and oven dried had higher chemical concentrations. Among the pumpkin fruit accessions, pumpkin accession 8007 had the superior TSS, total sugar and sugar to acid ratio after drying. Among the three pre-drying treatment, salt solution dipping treatment had significant (P ≤ 0.05) effect and the most efficient pre-drying treatment to retain the quality of dried pumpkin fruits without significant chemical quality deterioration. Salt dipping treatment combined with low temperature (60 °C) oven air circulation drying is recommended to maintain quality of dried pumpkin slices. However, since direct sun drying needs extended drying time due to fluctuation in temperature, it is recommended to develop or select best successful solar dryer for use in combination with pre-drying salt dipping or blanching treatments.

  3. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.

    PubMed

    Nuchuchua, O; Every, H A; Hofland, G W; Jiskoot, W

    2014-11-01

    In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations.

  4. Development of dry gram-negative bacteria biocontrol products and small pilot tests against dry rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas fluorescens strains S11:P:12, P22:Y:05, and S22:T:04 suppress four important storage potato maladies; dry rot, late blight, pink rot, and sprouting. Studies were designed to identify methods for producing a dried, efficacious biological control product. The strains were evaluated individ...

  5. Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices

    NASA Astrophysics Data System (ADS)

    Doymaz, İbrahim

    2017-01-01

    The effects of air drying temperature, slice thickness and pre-treatment application on the drying kinetics of carrot slices during convective drying in the range 50-70 °C were investigated. Results indicated that drying time, rehydration ratio and colour characteristics of carrot slices were more affected by drying air temperature, followed by pre-treatment applications. Five thin-layer drying models were applied to describe the drying kinetics. Midilli et al. model was the best model to characterize the drying kinetics of carrot slices. The moisture effective diffusivity calculated from the second Fick's law of diffusion ranged from 3.46 × 10-10 to 1.02 × 10-9 m2/s. The values of activation energy determined from the slope of the Arrhenius plot, ln( D eff ) versus 1/(T + 273.15), were 35.53, 43.42, and 37.75 kJ/mol for blanch, potas and control samples, respectively.

  6. Development of Biodegradable Polycation-Based Inhalable Dry Gene Powders by Spray Freeze Drying

    PubMed Central

    Okuda, Tomoyuki; Suzuki, Yumiko; Kobayashi, Yuko; Ishii, Takehiko; Uchida, Satoshi; Itaka, Keiji; Kataoka, Kazunori; Okamoto, Hirokazu

    2015-01-01

    In this study, two types of biodegradable polycation (PAsp(DET) homopolymer and PEG-PAsp(DET) copolymer) were applied as vectors for inhalable dry gene powders prepared by spray freeze drying (SFD). The prepared dry gene powders had spherical and porous structures with a 5~10-μm diameter, and the integrity of plasmid DNA could be maintained during powder production. Furthermore, it was clarified that PEG-PAsp(DET)-based dry gene powder could more sufficiently maintain both the physicochemical properties and in vitro gene transfection efficiencies of polyplexes reconstituted after powder production than PAsp(DET)-based dry gene powder. From an in vitro inhalation study using an Andersen cascade impactor, it was demonstrated that the addition of l-leucine could markedly improve the inhalation performance of dry powders prepared by SFD. Following pulmonary delivery to mice, both PAsp(DET)- and PEG-PAsp(DET)-based dry gene powders could achieve higher gene transfection efficiencies in the lungs compared with a chitosan-based dry gene powder previously reported by us. PMID:26343708

  7. 7 CFR 58.251 - Dry buttermilk and dry buttermilk product.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Packaging Butter and Related Products Definitions ... 7 Agriculture 3 2010-01-01 2010-01-01 false Dry buttermilk and dry buttermilk product. 58.251... AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION...

  8. Impact of tilling on biosolids drying and indicator microorganisms survival during solar drying process.

    PubMed

    Song, Inhong; Dominguez, Teodulo; Choi, Christopher Y; Kang, Moon Seong

    2014-01-01

    As biosolids application to croplands becomes a common practice, potential harm from pathogenic microbes needs to be mitigated for its safe reuse. The objective of this study was to investigate the impacts of tilling treatment on biosolids drying and microbial inactivation during the solar drying process in a semi-arid and temperate region. Solar drying experiments were conducted in sand and gravel dying beds open-to-the-air and under covering structures with biosolids to 20 cm depth from 2004 to 2006. Anaerobically- and Aerobically-digested biosolids received different tilling treatments throughout the drying process, while a series of biosolids samples were collected to determine the impact on total solids and microbial concentrations (Salmonella spp and heminth ova). Tilling treatments appeared to enhance the biosolids drying and microbial inactivation. Tilling was more effective during the cold season compared with the summer season and tilling treatments were also helpful in elevating biosolids temperature by expediting biosolids drying. The combined effect of temperature increase and moisture decrease by tilling may have resulted in faster microbial inactivation, particularly for persistent helminth ova. It was concluded that incorporation of tilling into biosolids solar drying can expedite biosolids drying as well as microbial inactivation, and thus can be an effective measure for shortening the biosolids conversion to Class A biosolids in which pathogens are reduced to below detectable levels.

  9. Fictitious Supercontinent Cycles

    NASA Astrophysics Data System (ADS)

    Marvin Herndon, J.

    2014-05-01

    "Supercontinent cycles" or "Wilson cycles" is the idea that before Pangaea there were a series of supercontinents that each formed and then broke apart and separated before colliding again, re-aggregating, and suturing into a new supercontinent in a continuing sequence. I suggest that "supercontinent cycles" are artificial constructs, like planetary orbit epicycles, attempts to describe geological phenomena within the framework of problematic paradigms, namely, planetesimal Earth formation and plate tectonics' mantle convection. The so-called 'standard model of solar system formation' is problematic as it would lead to insufficiently massive planetary cores and necessitates additional ad hoc hypotheses such as the 'frost line' between Mars and Jupiter to explain planetary differences and whole-planet melting to explain core formation from essentially undifferentiated matter. The assumption of mantle convection is crucial for plate tectonics, not only for seafloor spreading, but also for continental movement; continent masses are assumed to ride atop convection cells. In plate tectonics, plate collisions are thought to be the sole mechanism for fold-mountain formation. Indeed, the occurrence of mountain chains characterized by folding which significantly predate the breakup of Pangaea is the primary basis for assuming the existence of supercontinent cycles with their respective periods of ancient mountain-forming plate collisions. Mantle convection is physically impossible. Rayleigh Number justification has been misapplied. The mantle bottom is too dense to float to the surface by thermal expansion. Sometimes attempts are made to obviate the 'bottom heavy' prohibition by adopting the tacit assumption that the mantle behaves as an ideal gas with no viscous losses, i.e., 'adiabatic'. But the mantle is a solid that does not behave as an ideal gas as evidenced by earthquakes occurring at depths as great as 660 km. Absent mantle convection, plate tectonics is not valid

  10. Method and apparatus for drying web

    DOEpatents

    Orloff, David I.; Kloth, Gerald R.; Rudemiller, Gary R.

    1992-01-01

    The present invention is directed to a method and apparatus for drying a web of paper utilizing impulse drying techniques. In the method of the invention for drying a paper web, the paper web is transported through a pair of rolls wherein at least one of the rolls has been heated to an elevated temperature. The heated roll is provided with a surface having a low thermal diffusivity of less than about 1.times.10.sup.-6 m.sup.2 /s. The surface material of the roll is preferably prepared from a material selected from the group consisting of ceramics, polymers, glass, inorganic plastics, composite materials and cermets. The heated roll may be constructed entirely from the material having a low thermal diffusivity or the roll may be formed from metal, such as steel or aluminum, or other suitable material which is provided with a surface layer of a material having a low thermal diffusivity.

  11. Dry Climate Disconnected the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Lewis, C. F. Michael; King, John W.; Blasco, Stefan M.; Brooks, Gregory R.; Coakley, John P.; Croley, Thomas E.; Dettman, David L.; Edwards, Thomas W. D.; Heil, Clifford W.; Hubeny, J. Bradford; Laird, Kathleen R.; McAndrews, John H.; McCarthy, Francine M. G.; Medioli, Barbara E.; Moore, Theodore C.; Rea, David K.; Smith, Alison J.

    2008-12-01

    Recent studies have produced a new understanding of the hydrological history of North America's Great Lakes, showing that water levels fell several meters below lake basin outlets during an early postglacial dry climate in the Holocene (younger than 10,000 radiocarbon years, or about 11,500 calibrated or calendar years before present (B.P.)). Water levels in the Huron basin, for example, fell more than 20 meters below the basin overflow outlet between about 7900 and 7500 radiocarbon (about 8770-8290 calibrated) years B.P. Outlet rivers, including the Niagara River, presently falling 99 meters from Lake Erie to Lake Ontario (and hence Niagara Falls), ran dry. This newly recognized phase of low lake levels in a dry climate provides a case study for evaluating the sensitivity of the Great Lakes to current and future climate change.

  12. Forecast of solar cycle 25

    NASA Astrophysics Data System (ADS)

    Krasotkin, Serge; Shmorgilov, Feodor

    The revised method of equal phase averaging was used to predict the main features of the solar cycle 25. The forecast of Wolf number values was obtained not only for solar cycle maximum but for 16 phases of the cycle. The double-peak structure of the cycle maximum phase is well seen. The problems of the long- and superlong-term forecasts of solar activity are discussed.

  13. On the Importance of Cycle Minimum in Sunspot Cycle Prediction

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.

    1996-01-01

    The characteristics of the minima between sunspot cycles are found to provide important information for predicting the amplitude and timing of the following cycle. For example, the time of the occurrence of sunspot minimum sets the length of the previous cycle, which is correlated by the amplitude-period effect to the amplitude of the next cycle, with cycles of shorter (longer) than average length usually being followed by cycles of larger (smaller) than average size (true for 16 of 21 sunspot cycles). Likewise, the size of the minimum at cycle onset is correlated with the size of the cycle's maximum amplitude, with cycles of larger (smaller) than average size minima usually being associated with larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Also, it was found that the size of the previous cycle's minimum and maximum relates to the size of the following cycle's minimum and maximum with an even-odd cycle number dependency. The latter effect suggests that cycle 23 will have a minimum and maximum amplitude probably larger than average in size (in particular, minimum smoothed sunspot number Rm = 12.3 +/- 7.5 and maximum smoothed sunspot number RM = 198.8 +/- 36.5, at the 95-percent level of confidence), further suggesting (by the Waldmeier effect) that it will have a faster than average rise to maximum (fast-rising cycles have ascent durations of about 41 +/- 7 months). Thus, if, as expected, onset for cycle 23 will be December 1996 +/- 3 months, based on smoothed sunspot number, then the length of cycle 22 will be about 123 +/- 3 months, inferring that it is a short-period cycle and that cycle 23 maximum amplitude probably will be larger than average in size (from the amplitude-period effect), having an RM of about 133 +/- 39 (based on the usual +/- 30 percent spread that has been seen between observed and predicted values), with maximum amplitude occurrence likely sometime between July 1999 and October 2000.

  14. Liquid air cycle engines

    NASA Technical Reports Server (NTRS)

    Rosevear, Jerry

    1992-01-01

    Given here is a definition of Liquid Air Cycle Engines (LACE) and existing relevant technologies. Heat exchanger design and fabrication techniques, the handling of liquid hydrogen to achieve the greatest heat sink capabilities, and air decontamination to prevent heat exchanger fouling are discussed. It was concluded that technology needs to be extended in the areas of design and fabrication of heat exchangers to improve reliability along with weight and volume reductions. Catalysts need to be improved so that conversion can be achieved with lower quantities and lower volumes. Packaging studies need to be investigated both analytically and experimentally. Recycling with slush hydrogen needs further evaluation with experimental testing.

  15. Geomicrobiological cycling of antimony

    NASA Astrophysics Data System (ADS)

    Kulp, T. R.; Terry, L.; Dovick, M. A.; Braiotta, F.

    2013-12-01

    Microbiologically catalyzed oxidation and reduction of toxic metalloids (e.g., As, Se, and Te) generally proceeds much faster than corresponding abiotic reactions. These microbial transformations constitute biogeochemical cycles that control chemical speciation and environmental behavior of metalloids in aqueous environments. Particular progress has been made over the past two decades in documenting microbiological biotransformations of As, which include anaerobic respiratory reduction of As(V) to As(III), oxidation of As(III) to As(V) linked to chemoautotrophy or photoautotrophy, and cellular detoxification pathways. By contrast, microbial interactions with Sb, As's group 15 neighbor and a toxic element of emerging global concern, are poorly understood. Our work with sediment microcosms, enrichment cultures, and bacterial isolates suggests that prokaryotic metabolisms may be similarly important to environmental Sb cycling. Enrichment cultures and isolates from a Sb-contaminated mine site in Idaho exhibited Sb(V)-dependent heterotrophic respiration under anaerobic conditions and Sb(III)-dependent autotrophic growth in the presence of air. Live, anoxic cultures reduced 2 mM Sb(V) to Sb(III) within 5 d, while no activity occurred in killed controls. Sb(V) reduction was stimulated by lactate or acetate and was quantitatively coupled to the oxidation of lactate. The oxidation of radiolabeled 14C-acetate (monitored by GC-GPC) demonstrated Sb(V)-dependent oxidation to 14CO2, suggesting a dissimilatory process. Sb(V) dependent growth in cultures was demonstrated by direct counting. Microbiological reduction of Sb(V) also occurred in anerobic sediment microcosms from an uncontaminated suburban lake, but did not appear to be linked to growth and is interpreted as a mechanism of biological detoxification. Aerobic microcosms and cultures from the Idaho mine oxidized 2 mM Sb(III) to Sb(V) within 7 d and coupled this reaction to cell growth quantified by direct counting. An

  16. Geothermal Life Cycle Calculator

    DOE Data Explorer

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  17. Cycling Joule Thomson refrigerator

    NASA Technical Reports Server (NTRS)

    Tward, E. (Inventor)

    1983-01-01

    A symmetrical adsorption pump/compressor system having a pair of mirror image legs and a Joule Thomson expander, or valve, interposed between the legs thereof for providing a, efficient refrigeration cycle is described. The system further includes a plurality of gas operational heat switches adapted selectively to transfer heat from a thermal load and to transfer or discharge heat through a heat projector, such as a radiator or the like. The heat switches comprise heat pressurizable chambers adapted for alternate pressurization in response to adsorption and desorption of a pressurizing gas confined therein.

  18. Natural Cycles, Gases

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Jackman, Charles H.; Rood, R. B.; Aikin, A. C.; Stolarski, R. S.; Mccormick, M. P.; Fahey, David W.

    1992-01-01

    The major gaseous components of the exhaust of stratospheric aircraft are expected to be the products of combustion (CO2 and H2O), odd nitrogen (NO, NO2 HNO3), and products indicating combustion inefficiencies (CO and total unburned hydrocarbons). The species distributions are produced by a balance of photochemical and transport processes. A necessary element in evaluating the impact of aircraft exhaust on the lower stratospheric composition is to place the aircraft emissions in perspective within the natural cycles of stratospheric species. Following are a description of mass transport in the lower stratosphere and a discussion of the natural behavior of the major gaseous components of the stratospheric aircraft exhaust.

  19. Sometimes "Newton's Method" Always "Cycles"

    ERIC Educational Resources Information Center

    Latulippe, Joe; Switkes, Jennifer

    2012-01-01

    Are there functions for which Newton's method cycles for all non-trivial initial guesses? We construct and solve a differential equation whose solution is a real-valued function that two-cycles under Newton iteration. Higher-order cycles of Newton's method iterates are explored in the complex plane using complex powers of "x." We find a class of…

  20. Revenue cycle management: part I.

    PubMed

    Crew, Matt

    2006-01-01

    The revenue cycle starts long before a patient is seen and continues until a claim is completely resolved. Each step in the revenue cycle must be clearly defined and easy to follow. Use of various tools such as templates, forms, reports, spreadsheets, and components of your practice management system will help to provide the consistency you need for profitable revenue cycle management.