Sample records for dsc wide angle

  1. Structure and Phase Transitions of Poly (Hexamethylene p,p'-Bibenzoate) as Studied by DSC and Real-Time SAXS/WAXS Employing Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katerska, B.; Krasteva, M.; Perez, E.

    2007-04-23

    Real-time small and wide angle X-ray scattering as well as DSC studies were carried out in order to analyzes the structure and phase transitions of liquid crystalline thermotropic poly(methylene p,p' bibenzoat)

  2. Nanospheres with a smectic hydrophobic core and an amorphous PEG hydrophilic shell: structural changes and implications for drug delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, N. Sanjeeva; Zhang, Zheng; Borsadia, Siddharth

    The structural changes in nanospheres with a crystalline core and an amorphous diffuse shell were investigated by small-angle neutron scattering (SANS), small-, medium-, and wide-angle X-ray scattering (SAXS, MAXS and WAXS), and differential scanning calorimetry (DSC).

  3. In-situ synchrotron wide-angle X-ray diffraction as a rapid method for cocrystal/salt screening.

    PubMed

    Dong, Pin; Lin, Ling; Li, Yongcheng; Huang, Zhengwei; Lang, Tianqun; Wu, Chuanbin; Lu, Ming

    2015-12-30

    The purpose of this work was to explore in-situ synchrotron wide-angle X-ray diffraction (WAXD) as a rapid and accurate tool to screen and monitor the formation of cocrystal/salts during heating. The active pharmaceutical ingredients (caffeine, carbamazepine and lamotrigine) were respectively mixed with the coformer (saccharin), and then heated by the hot stage. Real-time process monitoring was performed using synchrotron WAXD to assess cocrystal formation and subsequently compared to differential scanning calorimetry (DSC) measurements. The effect of heating rates and cocrystal growth behavior were investigated. Synchrotron WAXD was fast and sensitive to detect cocrystal formation with the appearance of characteristic diffraction rings, even at the heating rate of 30°C/min, while DSC curves showed overlapped peaks. Unlike the indirect characterization of DSC on endo/exothermic peaks, synchrotron WAXD can directly and qualitatively determine cocrystal by diffraction peaks. The diffraction intensity-temperature curves and the corresponding first-derivative curves clearly exhibited the growth behavior of cocrystal upon heating, providing useful information to optimize the process temperature of hot melt extrusion to continuously manufacture cocrystal. The study suggests that in-situ synchrotron WAXD could provide a one-step process to screen cocrystal at high efficiency and reveal the details of cocrystal/salts growth behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Peel/seal properties of poly(ethylene methyl acrylate)/polybutene-1 blend films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammdi, Seyedeh Raziyeh; Ajji, Abdellah; Tabatabaei, Seyed H.

    Nowadays, the possibility to easy open a food package is of great interest both from the consumer and food producers’ perspective. In this study, the peel/seal properties of poly (ethylene methyl acrylate) (EMA)/polybutene-1 (PB-1) blend films were investigated. Three blends of EMA/PB-1 with different methyl acrylate (MA) content were prepared using cast extrusion process. Differential Scanning Calorimetry (DSC) was used to investigate the thermal behavior as well as the crystalinity of the blends. The effect of polymer matrix on the crystalline structure of PB-1 was studied using Wide Angle X-ray Diffraction (WAXD) and DSC. T-peel tests were carried out onmore » the heat sealed films at various seal temperatures. The effect of MA content and heat seal temperature on peel/seal properties (i.e. peel initiation temperature, temperature window of sealability and peel strength) of the films were studied.« less

  5. Physicochemical Properties of α-Form Hydrated Crystalline Phase of 3-(10-Carboxydecyl)-1,1,1,3,5,5,5-heptamethyl Trisiloxane/Higher alcohol/Polyoxyethylene (5 mol) Glyceryl monostearate/Water System.

    PubMed

    Uyama, Makoto; Araki, Hidefumi; Fukuhara, Tadao; Watanabe, Kei

    2018-06-07

    The α-form hydrated crystalline phase (often called as an α-gel) is one of the hydrated crystalline phases which can be exhibited by surfactants and lipids. In this study, a novel system of an α-form hydrated crystal was developed, composed of 3-(10-carboxydecyl)-1,1,1,3,5,5,5-heptamethyl trisiloxane (CDTS), polyoxyethylene (5 mol) glyceryl monostearate (GMS-5), higher alcohol. This is the first report to indicate that a silicone surfactant can form an α-form hydrated crystal. The physicochemical properties of this system were characterized by small and wide angle X-ray scattering (SWAXS), differential scanning calorimetry (DSC), and diffusion-ordered NMR spectroscopy (DOSY) experiments. SWAXS and DSC measurements revealed that a plurality of crystalline phases coexist in the CDTS/higher alcohol/water ternary system. By adding GMS-5 to the ternary system, however, a wide region of a single α-form hydrated crystalline phase was obtained. The self-diffusion coefficients (D sel ) from the NMR measurements suggested that all of the CDTS, GMS-5, and higher alcohol molecules were incorporated into the same α-form hydrated crystals.

  6. Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization

    NASA Astrophysics Data System (ADS)

    Wang, Shujun; Zhang, Xiu; Wang, Shuo; Copeland, Les

    2016-06-01

    A thorough understanding of starch gelatinization is extremely important for precise control of starch functional properties for food processing and human nutrition. Here we reveal the molecular mechanism of starch gelatinization by differential scanning calorimetry (DSC) in conjunction with a protocol using the rapid viscosity analyzer (RVA) to generate material for analysis under conditions that simulated the DSC heating profiles. The results from DSC, FTIR, Raman, X-ray diffraction and small angle X-ray scattering (SAXS) analyses all showed that residual structural order remained in starch that was heated to the DSC endotherm end temperature in starch:water mixtures of 0.5 to 4:1 (v/w). We conclude from this study that the DSC endotherm of starch at a water:starch ratio of 2 to 4 (v/w) does not represent complete starch gelatinization. The DSC endotherm of starch involves not only the water uptake and swelling of amorphous regions, but also the melting of starch crystallites.

  7. Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization

    PubMed Central

    Wang, Shujun; Zhang, Xiu; Wang, Shuo; Copeland, Les

    2016-01-01

    A thorough understanding of starch gelatinization is extremely important for precise control of starch functional properties for food processing and human nutrition. Here we reveal the molecular mechanism of starch gelatinization by differential scanning calorimetry (DSC) in conjunction with a protocol using the rapid viscosity analyzer (RVA) to generate material for analysis under conditions that simulated the DSC heating profiles. The results from DSC, FTIR, Raman, X-ray diffraction and small angle X-ray scattering (SAXS) analyses all showed that residual structural order remained in starch that was heated to the DSC endotherm end temperature in starch:water mixtures of 0.5 to 4:1 (v/w). We conclude from this study that the DSC endotherm of starch at a water:starch ratio of 2 to 4 (v/w) does not represent complete starch gelatinization. The DSC endotherm of starch involves not only the water uptake and swelling of amorphous regions, but also the melting of starch crystallites. PMID:27319782

  8. Preliminary Tests for Ti-Mo-Zr-Ta Alloys as Potential Biomaterials

    NASA Astrophysics Data System (ADS)

    Bălţatu, M. S.; Vizureanu, P.; Bălan, T.; Lohan, M.; Ţugui, C. A.

    2018-06-01

    Nowadays, there is a continuing concern for the research and development of alloys for medical and biomedical applications. In order to check the biocompatible character of a new Ti-Mo-Zr-Ta alloys, it is necessary to carry out preliminary laboratory tests to follow how a biomaterial surface would interact with the host. The paper presents tests for Ti-Mo-Zr-Ta alloys like contact angle and DSC test to identify biocompatible character. Contact angle measurement is an experimental technique used to assess the hydrophilic or hydrophobic character of surfaces by reference to the 90º contact angle value and to characterize the thermal behavior, for temperature range between 36.5-37.2ºC, interval which a biomaterial works inside the healthy human body, was used DSC test.

  9. Controllable stearic acid crystal induced high hydrophobicity on cellulose film surface.

    PubMed

    He, Meng; Xu, Min; Zhang, Lina

    2013-02-01

    A novel, highly hydrophobic cellulose composite film (RCS) with biodegradability was fabricated via solvent-vaporized controllable crystallization of stearic acid in the porous structure of cellulose films (RC). The interface structure and properties of the composite films were investigated with wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, solid-state (13)C NMR, water uptake, tensile testing, water contact angle, and biodegradation tests. The results indicated that the RCS films exhibited high hydrophobicity (water contact angle achieved to 145°), better mechanical properties in the humid state and lower water uptake ratio than RC. Interestingly, the stearic acid crystallization was induced by the pore wall of the cellulose matrix to form a micronano binary structure, resulting in a rough surface. The rough surface with a hierarchical structure containing micronanospace on the RCS film surface could trap abundant air, leading to the high hydrophobicity. Moreover, the RCS films were flexible, biodegradable, and low-cost, showing potential applications in biodegradable water-proof packaging.

  10. Bicellar systems as vehicle for the treatment of impaired skin.

    PubMed

    Rubio, L; Alonso, C; Rodríguez, G; Cócera, M; Barbosa-Barros, L; Coderch, L; de la Maza, A; Parra, J L; López, O

    2014-02-01

    This study assesses the potential usefulness of bicellar systems to retard the penetration of drugs into damaged skin. The active compound used in this study was diclofenac diethylamine (DDEA). Initially, physicochemical characterisation of the DDEA bicellar systems was performed at different temperatures by small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) techniques. Subsequently, in vitro percutaneous absorption of bicellar systems into in vitro damaged skin was studied. SAXS results indicated a slight decrease in the width of their bilayers with increasing temperature, with no apparent stacking in those systems. WAXS patterns were compatible with an orthorhombic lateral packing of the nanoaggregates. The thermogram obtained by DSC indicated a decrease in gel-to-liquid crystalline transition temperature (Tm) when the drug was included into bicellar systems. A retardation effect for DDEA was detected by in vitro percutaneous absorption studies when DDEA was vehiculised in the bicellar systems with respect to an aqueous solution of the drug. It seems that the use of bicellar systems as a vehicle for topical application of DDEA on skin with an impaired barrier function may inhibit the penetration of DDEA to the systemic level. Such systems may consequently repair stratum corneum barrier function to some extent. The use of these systems could be considered a new alternative strategy to treat topically pathological skin with different drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Chemistry and properties of poly(arylene ether benzoxazole)s

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.

    1992-01-01

    Several new poly(arylene ether benzoxazole)s (PAEBs) were prepared by the nucleophilic displacement reaction of activated aromatic difluorides with two novel bis(hydroxyphenyl benzoxazole), using potassium carbonate. The 6F-containing PAEBs exhibited better solubility and higher Tgs than did the 6,6'-bis-(2-(4-hydroxyphenyl)benzoxazole)-derived polymers. Several of the 6,6'bis(2-(4-hydroxyphenyl)benzoxazole)-derived polymers exhibited crystallinity by DSC and wide-angle X-ray diffraction. Unorientated thin film properties of the 6F-containing PAEBs were comparable to those of other 6F-containing PAEBS that were previously reported. The chemistry and the physical and mechanical properties of the above polymers are discussed.

  12. A SAXS-WAXS study of the endothermic transitions in amorphous or supercooled liquid itraconazole

    DOE PAGES

    Benmore, C. J.; Mou, Q.; Benmore, K. J.; ...

    2016-10-07

    Small and wide angle high energy x-ray scattering experiments were performed upon cooling itraconazole from the melt to investigate the structural origin of the two transitions at ~74 °C and ~90 °C observed in DSC measurements. Slight changes to the main WAXS peak at Q = 1.33 ± 0.01 Å –1 were observed at 90 °C and are found to be inter-molecular in nature, suggesting a liquid to isotropic transition. This finding was supported by complementary wide angle neutron scattering measurements. For temperatures at and below ~74 °C two strong rings appear in the 2D-SAXS pattern at Q = 0.24more » ± 0.01 Å –1 and 0.43 ± 0.01 Å –1. The SAXS spectra were further deconvoluted into sharp and broad components. Lastly, a narrowing of the broad component is associated with only minor changes in the packing arrangements of the itraconazole molecules below ~90 °C, while the appearance of the sharp component below ~74 °C is attributed to the formation of a polydomain lamellar phase.« less

  13. Star-shaped azomethines based on tris(2-aminoethyl)amine. Characterization, thermal and optical study.

    PubMed

    Iwan, Agnieszka; Janeczek, Henryk; Kaczmarczyk, Bozena; Jarzabek, Bozena; Sobota, Michal; Rannou, Patrice

    2010-02-01

    The synthesis and detailed (physico)-chemical ((1)H/(13)C NMR, FTIR, UV-vis and elemental analysis) characterizations of new star-shaped compounds based on tris(2-aminoethyl)amine, including in their structure an azomethine function (HCN-) and alkoxysemiperfluorinated (-O-(CH(2))(3)-(CF(2))(7)-CF(3)), octadecyloxy aliphatic (-O-(CH(2))(17)-CH(3)) chain or two phenyl rings (-Ph-Ph-) as a terminal group, were reported. The mesomorphic behavior was investigated by means of differential scanning calorimetry (DSC), polarized optical microscopy (POM) and additionally by FTIR(T) and UV-vis(T) spectroscopy. Wide-angle X-ray diffraction (WAXD) technique was used to probe the structural properties of the azomethines. Moreover, the azomethine A1 was electro-spun to prepare fibers with poly(methyl methacrylate) (PMMA) and investigated by DSC and POM. Additionally, a film of the A1 with PMMA was cast from chloroform and the thermal properties of the film were compared with the thermal properties of the fiber and powder. It was showed that terminal groups dramatically influence the thermal and optical properties of the star-shaped azomethines. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  14. Polarization Angle Calibration and B-Mode Characterization with the BICEP and Keck Array CMB Telescopes

    NASA Astrophysics Data System (ADS)

    Bullock, Eric

    Since its discovery in 1964, the Cosmic Microwave Background (CMB) has led to widespread acceptance of the Big Bang cosmological paradigm as an explanation for the evolution of the Universe. However, this paradigm does not explain the origin of the initial conditions, leading to such issues as the "horizon problem" and "flatness problem." In the early 1980's, the inflationary paradigm was introduced as a possible source for the initial conditions. This theory postulates that the Universe underwent a period of exponential expansion within a tiny fraction of a second after the beginning. Such an expansion is predicted to inject a stochastic background of gravitational waves that could imprint a detectable B-mode (curl-like) signal in the polarization of the CMB. It is this signal that the family of telescopes used by the B ICEP1, BICEP2, and Keck Array collaborations were designed to detect. These telescopes are small aperture, on-axis, refracting telescopes. We have used the data from these telescopes, particularly BICEP2 and the Keck Array, to place the tightest constraints, as of March 2016, on the tensor-to-scalar ratio of the CMB of r 0.05 < 0.07. In this dissertation, we provide an overview of the Keck Array telescopes and analysis of the data. We also investigate, as the main focus of this dissertation, a device we call the Dielectric Sheet Calibrator (DSC) that is used to measure the polarization angles of our detectors as projected on the sky. With these measurements, we gain the potential to separate the polarization rotation effects of parity-violating physics, such as cosmic birefringence, from a systematic uncertainty on our detectors' polarization angles. Current calibration techniques for polarization sensitive CMB detectors claim an accuracy of +/-0.5°, which sets a limit for determining the usefulness of the DSC. Through a series of consistency tests on a single Keck Array receiver, we demonstrate a statistical uncertainty on the DSC measurements of +/-0.03° and estimate a systematic uncertainty of +/-0.2°. which meets the minimum goal. We also conclude that there is no conflict between the DSC-derived polarization angles of this single receiver and the rotation derived from that receiver's CMB data under the hypothesis of no cosmic birefringence.

  15. Synthesis and characterization of novel fluoroalkyl-terminated hyperbranched polyurethane latex

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Zhao, Weijia; Hao, Lifen; Wang, Sha; Pei, Mengmeng; Wang, Xuechuan

    2018-04-01

    Waterborne polyurethane (PU) emulsions are widely used in various fields and the demand for them is ever-increasing over the years. However, the hydrophilic chain extender inevitably bonded into the PU backbone can affect the water tolerance of PU. Thus, it is of great importance to improve PU water resistance effectively. Herein, novel fluoroalkyl-terminated hyperbranched polyurethane (HBPUF) latex was accordingly synthesized by graft reaction of perfluorohexyl ethyl alcohol and hyperbranched polyurethane (HBPU), which was previously obtained from interaction between hydroxyl-terminated hyperbranched polymer and PU prepolymer manufactured via the acetone process, as well as using neutralization, adding water, and high-speed stirring operations. We characterized the resultants and investigated its surface properties by IR, NMR, TEM, XRD, TGA, DSC, FE-SEM, AFM, XPS, and contact angle measurements, etc. IR and NMR tests confirmed that the fluorinated fragments had been grafted onto the tail end of HBPU. TEM, XRD, DSC, and FE-SEM results all accounted for the fact that there were multi-crystals in PU, HBPU and HBPUF. TGA results showed that thermal stabilities of the PU, HBPU, and HBPUF latex films were enhanced in turn. XPS and AFM analyses demonstrated that the fluorine-containing segments from the HBPUF terminals were prone to migrate and enrich on the film-air surface of the HBPUF latex film, which made water contact angle and water absorption of the HBPUF film be as 113.9° and 11.1%, respectively, compared to those of the PU film (77.8° and 136.2%). This research indicates that water resistance of the PU film can be efficiently enhanced by fluorinated polyurethane with novel fluoroalkyl-terminated hyperbranched structure.

  16. Reversibility between glass and melting transitions of poly(oxyethylene)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qui, Wulin; Pyda, Marek; Nowak-Pyda, Elisabieta

    2005-01-01

    The heat capacities, C{sub p}, of poly(oxyethylene), POE, with molar masses from 1500 to 900,000 Da, were analyzed by differential scanning calorimetry (DSC), quasi-isothermal, temperature-modulated DSC (TMDSC), and wide-angle X-ray diffraction (WAXD). There is no change in crystal structure before melting, but the lattice parameters increase rapidly in the melting region. Perfected extended-chain and once- or twice-folded crystals of the oligomers with a molar mass above 1100 Da melt practically fully irreversibly and permit direct measurement of the thermodynamic C{sub p}. The folded-chain crystals of high molar mass show some locally reversible melting. The reversing, apparent C{sub p} depends onmore » molar mass and amplitude and frequency of modulation. After separation from the latent heat effects, the reversible, thermodynamic C{sub p} depends on the melting temperature for low molar masses and increases beyond the vibrational C{sub p} due to conformational motion. Molar masses of 8000-20,000 have almost the same C{sub p}. These observations permit a quantitative discussion of the thermodynamic C{sub p} and the locally reversible melting of the globally metastable POE in the melting range. The increase in C{sub p} between 250 K and the melting temperature is interpreted as a glass transition within the crystal.« less

  17. Solvent-Induced Crystallization in Poly(Ethylene Terephthalate) during Mass Transport

    NASA Astrophysics Data System (ADS)

    Ouyang, Hao

    2001-03-01

    The solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon¡¦s model for Case I (Fickian), Case II (swelling) and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was studied by wide angle x-ray scattering (WAXS), small angle x-ray scattering (SAXS), Differential Scanning Calorimeter (DSC), density gradient column, and Fourier Transform Infra-Red (FTIR). During this process, the matrix is under a compressive strain that causes different kinetic path of crystallization as compared to that by thermal annealing. This state of strain will assist the development of the solvent-induced crystallization. It also can be explained in terms of the principle of Le Chatelier if the local equilibrium is assumed. The model regarding the crystallization was proposed in terms of the study of long period L, the crystal thickness lc and the thickness of amorphous layer la, obtained from the linear correlation function and interface distribution function.

  18. Kinetics of the subtransition in dipalmitoylphosphatidylcholine.

    PubMed

    Tristram-Nagle, S; Wiener, M C; Yang, C P; Nagle, J F

    1987-07-14

    The kinetics of the interconversions of the subgel and gel phases in dipalmitoylphosphatidylcholine have been studied by using differential dilatometry, differential scanning calorimetry (DSC), and neutral buoyancy centrifugation as a function of incubation temperature and deuteriation of the solvent. As seen by others, DSC scans show two peaks in the subgel transition region for incubation temperatures below 1 degree C. After incubation at 0.1 degree C, the DSC peak that occurs at the lower scanning temperature appears with an incubation half-time of 0.5 day and eventually converts into a peak at higher scanning temperature with an incubation half-time of 18 days. By varying the scanning rate, we show that these two peaks merge into one at slow scanning rates with a common equilibrium transition temperature of 13.8 degrees C, in agreement with equilibrium calorimetry and dilatometry (delta V = 0.017 +/- 0.001 mL/g). For incubation temperatures above 4.6 degrees C, only one peak appears in both scanning dilatometry and calorimetry. While the initial rate of subgel conversion is smaller at the higher incubation temperatures, after 300 h a higher percentage of the sample has converted to subgel than at the lower incubation temperatures. We suggest that higher incubation temperatures (near 5 degrees C) are preferable for forming the stable subgel phase, and we present a colliding domain picture that indicates why this may be so. Our results in D2O and the similarity of the kinetics of volume decrease with the kinetics of wide-angle diffraction lines also support the suggestion that the partial loss of interlamellar water plays a kinetic role in subgel formation.

  19. Dye-sensitized solar cells consisting of dye-bilayer structure stained with two dyes for harvesting light of wide range of wavelength

    NASA Astrophysics Data System (ADS)

    Inakazu, Fumi; Noma, Yusuke; Ogomi, Yuhei; Hayase, Shuzi

    2008-09-01

    Dye-sensitized solar cells (DSCs) containing dye-bilayer structure of black dye and NK3705 (3-carboxymethyl-5-[3-(4-sulfobutyl)-2(3H)-bezothiazolylidene]-2-thioxo-4-thiazolidinone, sodium salt) in one TiO2 layer (2-TiO-BD-NK) are reported. The 2-TiO-BD-NK structure was fabricated by staining one TiO2 layer with these two dyes, step by step, under a pressurized CO2 condition. The dye-bilayer structure was observed by using a confocal laser scanning microscope. The short circuit current (Jsc) and the incident photon to current efficiency of the cell (DSC-2-TiO-BD-NK) was almost the sum of those of DSC stained with black dye only (DSC-1-TiO-BD) and DSC stained with NK3705 only (DSC-1-TiO-NK).

  20. Synthesis and characterization of cassava starch with maleic acid derivatives by etherification reaction.

    PubMed

    Clasen, Samuel H; Müller, Carmen M O; Parize, Alexandre L; Pires, Alfredo T N

    2018-01-15

    Cassava starch was grafted with three different esters by the etherification reaction and its modification was characterized by 1 H NMR, FTIR, DSC, SEM, XDR, contact angle and SLS. The samples grafted with diethyl maleate, dipropyl maleate, and dibutyl maleate showed DS values of 2.3, 1.0 and 2.0, respectively, determined from 1 H NMR analysis and confirmed by FTIR analysis, with the appearance of bands at 1721, 1550 and 1126cm -1 . The FTIR, XRD, SEM and DSC results indicated a change in the intra and intermolecular hydrogen interactions in the grafted starch when compared to native starch. Based on the contact angles, it was observed that the macromolecular starch chain acquired hydrophobic characteristics through the substitution of the hydrogens with di maleate esters. The characteristics acquired by grafted starch allow it to be used for the encapsulation of bioactive molecules for the production of bioactive packages and the production of biodegradable packages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Dynamics of uniaxially oriented elastomers using dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Hyungki; Fragiadakis, Daniel; Martin, Darren; Runt, James

    2009-03-01

    We summarize our initial dielectric spectroscopy investigation of the dynamics of oriented segmented polyurethanes and crosslinked polyisoprene elastomers. A specially designed uniaxial stretching rig is used to control the draw ratio, and the electric field is applied normal to the draw direction. For the segmented PUs, we observe a dramatic reduction in relaxation strength of the soft phase segmental process with increasing extension ratio, accompanied by a modest decrease in relaxation frequency. Crosslinking of the polyisoprene was accomplished with dicumyl peroxide and the dynamics of uncrosslinked and crosslinked versions are investigated in the undrawn state and at different extension ratios. Complimentary analysis of the crosslinked PI is conducted with wide angle X- ray diffraction to examine possible strain-induced crystallization, DSC, and swelling experiments. Quantitative analysis of relaxation strengths and shapes as a function of draw ratio will be discussed.

  2. Mutual interaction between high and low stereo-regularity components for crystallization and melting behaviors of polypropylene blend fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Kouya; Takarada, Wataru; Kikutani, Takeshi, E-mail: kikutani.t.aa@m.titech.ac.jp

    Crystallization and melting behaviors of blend fibers of two types of polypropylene (PP), i.e. high stereo-regularity/high molecular weight PP (HPP) and low stereo-regularity/low molecular weight PP (LPP), was investigated. Blend fibers consisting of various HPP/LPP compositions were prepared through the melt spinning process. Differential scanning calorimetry (DSC), temperature modulated DSC (TMDSC) and wide-angle X-ray diffraction (WAXD) analysis were applied for clarifying the crystallization and melting behaviors of individual components. In the DSC measurement of blend fibers with high LPP composition, continuous endothermic heat was detected between the melting peaks of LPP at around 40 °C and that of HPP atmore » around 160 °C. Such endothermic heat was more distinct for the blend fibers with higher LPP composition indicating that the melting of LPP in the heating process was hindered because of the presence of HPP crystals. On the other hand, heat of crystallization was detected at around 90 °C in the case of blend fibers with LPP content of 30 to 70 wt%, indicating that the crystallization of HPP component was taking place during the heating of as-spun blend fibers in the DSC measurement. Through the TMDSC analysis, re-organization of the crystalline structure through the simultaneous melting and re-crystallization was detected in the cases of HPP and blend fibers, whereas re-crystallization was not detected during the melting of LPP fibers. In the WAXD analysis during the heating of fibers, amount of a-form crystal was almost constant up to the melting in the case of single component HPP fibers, whereas there was a distinct increase of the intensity of crystalline reflections from around 100 °C, right after the melting of LPP in the case of blend fibers. These results suggested that the crystallization of HPP in the spinning process as well as during the conditioning process after spinning was hindered by the presence of LPP.« less

  3. Media Coverage of FDA Drug Safety Communications about Zolpidem: A Quantitative and Qualitative Analysis.

    PubMed

    Woloshin, Steve; Schwartz, Lisa M; Dejene, Sara; Rausch, Paula; Dal Pan, Gerald J; Zhou, Esther H; Kesselheim, Aaron S

    2017-05-01

    FDA issues Drug Safety Communications (DSCs) to alert health care professionals and the public about emerging safety information affecting prescription and over-the-counter drugs. News media may amplify DSCs, but it is unclear how DSC messaging is transmitted through the media. We conducted a content analysis of the lay media coverage reaching the broadest audience to characterize the amount and content of media coverage of two zolpidem DSCs from 2013. After the first DSC, zolpidem news stories increased from 19 stories/week in the preceding 3 months to 153 following its release. Most (81%) appeared in the lay media, and 64% focused on the DSC content. After the second DSC, news stories increased from 24 stories/week in the preceding 3 months to 39 following. Among the 100 unique lay media news stories, at least half correctly reported three key DSC messages: next-day impairment and drowsiness as common safety hazards, lower doses for some but not all zolpidem products, and women's higher risk for impairment. Other DSC messages were reported in fewer than one-third of stories, such as the warning that impairment can happen even when people feel fully awake. The first-but not the second-zolpidem DSC generated high-profile news coverage. The finding that some messages were widely reported but others were not emphasizes the importance of ensuring translation of key DSC content.

  4. Effect of Phytosterols on the Crystallization Behavior of Oil-in-Water Milk Fat Emulsions.

    PubMed

    Zychowski, Lisa M; Logan, Amy; Augustin, Mary Ann; Kelly, Alan L; Zabara, Alexandru; O'Mahony, James A; Conn, Charlotte E; Auty, Mark A E

    2016-08-31

    Milk has been used commercially as a carrier for phytosterols, but there is limited knowledge on the effect of added plant sterols on the properties of the system. In this study, phytosterols dispersed in milk fat at a level of 0.3 or 0.6% were homogenized with an aqueous dispersion of whey protein isolate (WPI). The particle size, morphology, ζ-potential, and stability of the emulsions were investigated. Emulsion crystallization properties were examined through the use of differential scanning calorimetry (DSC) and Synchrotron X-ray scattering at both small and wide angles. Phytosterol enrichment influenced the particle size and physical appearance of the emulsion droplets, but did not affect the stability or charge of the dispersed particles. DSC data demonstrated that, at the higher level of phytosterol addition, crystallization of milk fat was delayed, whereas, at the lower level, phytosterol enrichment induced nucleation and emulsion crystallization. These differences were attributed to the formation of separate phytosterol crystals within the emulsions at the high phytosterol concentration, as characterized by Synchrotron X-ray measurements. X-ray scattering patterns demonstrated the ability of the phytosterol to integrate within the milk fat triacylglycerol matrix, with a concomitant increase in longitudinal packing and system disorder. Understanding the consequences of adding phytosterols, on the physical and crystalline behavior of emulsions may enable the functional food industry to design more physically and chemically stable products.

  5. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water

    DOE PAGES

    Zhang, Ben; DeBartolo, Janae E.; Song, Jie

    2017-01-26

    Maintaining adequate or enhancing mechanical properties of shape memory polymers (SMPs) after shape recovery in an aqueous environment are greatly desired for biomedical applications of SMPs as self-fitting tissue scaffolds or minimally invasive surgical implants. Here we report stable temporary shape fixing and facile shape recovery of biodegradable triblock amphiphilic SMPs containing a poly(ethylene glycol) (PEG) center block and flanking poly(lactic acid) or poly(lactic-co-glycolic acid) blocks in warm water, accompanied with concomitant enhanced mechanical strengths. Differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD) and small-angle X-ray scattering (SAXS) analyses revealed that the unique stiffening of the amphiphilic SMPs upon hydrationmore » was due to hydration-driven microphase separation and PEG crystallization. We further demonstrated that the chemical composition of degradable blocks in these SMPs could be tailored to affect the persistence of hydration-induced stiffening upon subsequent dehydration. These properties combined open new horizons for these amphiphilic SMPs for smart weight-bearing in vivo applications (e.g. as self-fitting intervertebral discs). In conclusion, this study also provides a new material design strategy to strengthen polymers in aqueous environment in general.« less

  6. Isomeric oxydiphthalic anhydride polyimides

    NASA Technical Reports Server (NTRS)

    Gerber, Margaret K.; Pratt, J. Richard; Stclair, Terry L.

    1988-01-01

    Much of the polyimide research at Langley Research Center has focused on isomeric modification of the diamine component; polyimides having considerably improved processability and adhesion have resulted. The present structure-property study was designed to investigate how isomeric attachment of the three oxydiphthalic anhydride (ODPA) polyimides affects their properties. Each dianhydride, 3,4,3',4'-oxydiphthalic anhydride (4,4'-OPDA,I), 2,3,2',3'-oxydiphthalic anhydride (3,3'-ODPA,II), and 2,3,3',4'-oxydiphthalic anhydride (3,4'-OPDA,III), was reacted with p-phenylenediamine, 4,4'-oxydianiline, 3,3'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, and 4,4'-bis(3-aminophenoxy)benzophenone in DMAc. The inherent viscosities of the resulting poly(amic acids) were determined. Thermally imidized films were studied for their creasability and solubility, as well as by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide angle X-ray scattering (WAXS). A comparison of these properties will be made.

  7. A theoretical framework to model DSC-MRI data acquired in the presence of contrast agent extravasation

    NASA Astrophysics Data System (ADS)

    Quarles, C. C.; Gochberg, D. F.; Gore, J. C.; Yankeelov, T. E.

    2009-10-01

    Dynamic susceptibility contrast (DSC) MRI methods rely on compartmentalization of the contrast agent such that a susceptibility gradient can be induced between the contrast-containing compartment and adjacent spaces, such as between intravascular and extravascular spaces. When there is a disruption of the blood-brain barrier, as is frequently the case with brain tumors, a contrast agent leaks out of the vasculature, resulting in additional T1, T2 and T*2 relaxation effects in the extravascular space, thereby affecting the signal intensity time course and reducing the reliability of the computed hemodynamic parameters. In this study, a theoretical model describing these dynamic intra- and extravascular T1, T2 and T*2 relaxation interactions is proposed. The applicability of using the proposed model to investigate the influence of relevant MRI pulse sequences (e.g. echo time, flip angle), and physical (e.g. susceptibility calibration factors, pre-contrast relaxation rates) and physiological parameters (e.g. permeability, blood flow, compartmental volume fractions) on DSC-MRI signal time curves is demonstrated. Such a model could yield important insights into the biophysical basis of contrast-agent-extravasastion-induced effects on measured DSC-MRI signals and provide a means to investigate pulse sequence optimization and appropriate data analysis methods for the extraction of physiologically relevant imaging metrics.

  8. Theoretical Aspects of Differential Scanning Calorimetry as a Tool for the Studies of Equilibrium Thermodynamics in Pharmaceutical Solid Phase Transitions.

    PubMed

    Faroongsarng, Damrongsak

    2016-06-01

    Although differential scanning calorimetry (DSC) is a non-equilibrium technique, it has been used to gain energetic information that involves phase equilibria. DSC has been widely used to characterize the equilibrium melting parameters of small organic pharmaceutical compounds. An understanding of how DSC measures an equilibrium event could make for a better interpretation of the results. The aim of this mini-review was to provide a theoretical insight into the DSC measurement to obtain the equilibrium thermodynamics of a phase transition especially the melting process. It was demonstrated that the heat quantity obtained from the DSC thermogram (ΔH) was related to the thermodynamic enthalpy of the phase transition (ΔH (P) ) via: ΔH = ΔH (P) /(1 + K (- 1)) where K was the equilibrium constant. In melting, the solid and liquefied phases presumably coexist resulting in a null Gibbs free energy that produces an infinitely larger K. Thus, ΔH could be interpreted as ΔH (P). Issues of DSC investigations on melting behavior of crystalline solids including polymorphism, degradation impurity due to heating in situ, and eutectic melting were discussed. In addition, DSC has been a tool for determination of the impurity based on an ideal solution of the melt that is one of the official methods used to establish the reference standard.

  9. Analytical solutions by squeezing to the anisotropic Rabi model in the nonperturbative deep-strong-coupling regime

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Yu; Chen, Xiang-You

    2017-12-01

    An unexplored nonperturbative deep strong coupling (npDSC) achieved in superconducting circuits has been studied in the anisotropic Rabi model by the generalized squeezing rotating-wave approximation. Energy levels are evaluated analytically from the reformulated Hamiltonian and agree well with numerical ones in a wide range of coupling strength. Such improvement ascribes to deformation effects in the displaced-squeezed state presented by the squeezed momentum variance, which are omitted in previous displaced states. The atom population dynamics confirms the validity of our approach for the npDSC strength. Our approach offers the possibility to explore interesting phenomena analytically in the npDSC regime in qubit-oscillator experiments.

  10. Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes.

    PubMed

    Sewell, Holly L; Kaster, Anne-Kristin; Spormann, Alfred M

    2017-12-19

    The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi In this report, we investigated genomes of single cells obtained from deep-sea sediments of the Peruvian Margin, which are enriched in such Chloroflexi 16S rRNA gene sequence analysis placed two of these single-cell-derived genomes (DscP3 and Dsc4) in a clade of subphylum I Chloroflexi which were previously recovered from deep-sea sediment in the Okinawa Trough and a third (DscP2-2) as a member of the previously reported DscP2 population from Peruvian Margin site 1230. The presence of genes encoding enzymes of a complete Wood-Ljungdahl pathway, glycolysis/gluconeogenesis, a Rhodobacter nitrogen fixation (Rnf) complex, glyosyltransferases, and formate dehydrogenases in the single-cell genomes of DscP3 and Dsc4 and the presence of an NADH-dependent reduced ferredoxin:NADP oxidoreductase (Nfn) and Rnf in the genome of DscP2-2 imply a homoacetogenic lifestyle of these abundant marine Chloroflexi We also report here the first complete pathway for anaerobic benzoate oxidation to acetyl coenzyme A (CoA) in the phylum Chloroflexi (DscP3 and Dsc4), including a class I benzoyl-CoA reductase. Of remarkable evolutionary significance, we discovered a gene encoding a formate dehydrogenase (FdnI) with reciprocal closest identity to the formate dehydrogenase-like protein (complex iron-sulfur molybdoenzyme [CISM], DET0187) of terrestrial Dehalococcoides/Dehalogenimonas spp. This formate dehydrogenase-like protein has been shown to lack formate dehydrogenase activity in Dehalococcoides/Dehalogenimonas spp. and is instead hypothesized to couple HupL hydrogenase to a reductive dehalogenase in the catabolic reductive dehalogenation pathway. This finding of a close functional homologue provides an important missing link for understanding the origin and the metabolic core of terrestrial Dehalococcoides/Dehalogenimonas spp. and of reductive dehalogenation, as well as the biology of abundant deep-sea Chloroflexi IMPORTANCE The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi In this report, we investigated genomes of single cells obtained from deep-sea sediments and provide evidence for a homacetogenic lifestyle of these abundant marine Chloroflexi Moreover, genome signature and key metabolic genes indicate an evolutionary relationship between these deep-sea sediment microbes and terrestrial, reductively dehalogenating Dehalococcoides . Copyright © 2017 Sewell et al.

  11. Center Variation and Outcomes Associated with Delayed Sternal Closure Following Stage 1 Palliation for Hypoplastic Left Heart Syndrome

    PubMed Central

    Johnson, Jason N.; Jaggers, James; Li, Shuang; O’Brien, Sean M.; Li, Jennifer S.; Jacobs, Jeffrey P.; Jacobs, Marshall L.; Welke, Karl F.; Peterson, Eric D.; Pasquali, Sara K.

    2009-01-01

    Objectives There is debate whether primary or delayed sternal closure (DSC) is the best strategy following Stage 1 palliation (S1P) for hypoplastic left heart syndrome (HLHS). We describe center variation in DSC following S1P and associated outcomes. Methods Society of Thoracic Surgeons Congenital Database participants performing S1P for HLHS from 2000–2007 were included. We examined center variation in DSC, and compared in-hospital mortality, prolonged length of stay (LOS >6wks), and postoperative infection in centers with low (≤25% of cases), middle (26%–74% of cases), and high (≥75% of cases) DSC utilization, adjusting for patient and center factors. Results There were 1283 patients (45 centers) included. Median age and weight at surgery were 6d (IQR4-9d) and 3.2 kg (IQR2.8–3.5kg); 59% were male. DSC was used in 74% (range 3–100% of cases/center). In centers with high (n=23) and middle (n=17) vs. low (n=5) DSC utilization, there was a greater proportion of patients with prolonged LOS and infection, and a trend toward increased in-hospital mortality in unadjusted analysis. In multivariable analysis, there was no difference in mortality. Centers with high and middle DSC utilization had prolonged LOS [OR (95%CI): 2.83(1.46–5.47) p=0.002 and 2.23(1.17–4.26) p=0.02] and more infection [2.34(1.20–4.57) p=0.01 and 2.37(1.36–4.16) p=0.003]. Conclusions Utilization of DSC following S1P varies widely. These observational data suggest more frequent use of DSC is associated with longer LOS and higher postoperative infection rates. Further evaluation of the risks and benefits of DSC in the management of these complex infants is necessary. PMID:20167337

  12. Dissolution enhancement of tadalafil by liquisolid technique.

    PubMed

    Lu, Mei; Xing, Haonan; Yang, Tianzhi; Yu, Jiankun; Yang, Zhen; Sun, Yanping; Ding, Pingtian

    2017-02-01

    This study aimed to enhance the dissolution of tadalafil, a poorly water-soluble drug by applying liquisolid technique. The effects of two critical formulation variables, namely drug concentration (17.5% and 35%, w/w) and excipients ratio (10, 15 and 20) on dissolution rates were investigated. Pre-compression tests, including particle size distribution, flowability determination, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM), were carried out to investigate the mechanism of dissolution enhancement. Tadalafil liquisolid tablets were prepared and their quality control tests, dissolution study, contact angle measurement, Raman mapping, and storage stability test were performed. The results suggested that all the liquisolid tablets exhibited significantly higher dissolution rates than the conventional tablets and pure tadalafil. FT-IR spectrum reflected no drug-excipient interactions. DSC and XRD studies indicated reduction in crystallinity of tadalafil, which was further confirmed by SEM and Raman mapping outcomes. The contact angle measurement demonstrated obvious increase in wetting property. Taken together, the reduction of particle size and crystallinity, and the improvement of wettability were the main mechanisms for the enhanced dissolution rate. No significant changes were observed in drug crystallinity and dissolution behavior after storage based on XRD, SEM and dissolution results.

  13. Sodium hydrogen carbonate as an alternative blowing agent in the preparation of palm-based polyurethane foam

    NASA Astrophysics Data System (ADS)

    Shakir, Amira Shakim Abdul; Badri, Khairiah Haji; Hua, Chia Chin

    2016-11-01

    An environmental-friendly blowing agent has been used to fabricate flexible polyurethane (PU) foam. Polyurethane foam was prepared from palm kernel oil-based monoester polyol (PKO-p) via prepolymerization method. Acetone has been used as solvent in this study. The developed polyurethane foam was characterized using tensile, differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TGA), optical microscope and drop shape analyzer. The mechanical properties of the PU-reference (PU-R) and PU-NaHCO3 foam was analyzed by tensile using ASTM D 3574-01. From the results, the elongation of PU- NaHCO3 shows reduction to 26.3 % compared to PU-R. The DSC showed two glass transition temperatures in all samples that belonged to the PU-R and PU-NaHCO3. TGA revealed that the incorporation of sodium hydrogen carbonate into the PU system did not show significant difference as compared to the control PU. The morphology of both PU was investigated using optical microscope. Contact angle has been measured to determine the hydrophobicity of the PU. The PU- NaHCO3 exhibited an increase in contact angle (93.1°).

  14. Investigation of surface-modified solid lipid nanocontainers formulated with a heterolipid-templated homolipid.

    PubMed

    Attama, A A; Müller-Goymann, C C

    2007-04-04

    There is increasing interest in the search for improved drug delivery systems with greater versatility. Consequently, many drug delivery systems have been studied. In this study, surface-modified lipid nanocontainers were formulated with a homolipid from Capra hircus (goat fat) templated with a heterolipid (Phospholipon 90G) which was also the surface modifier. The solid lipid nanocontainers (SLN) were formulated by hot high pressure homogenisation using increasing concentrations of polysorbate 80 as the mobile surfactant. Prior to SLN preparation, the templated homolipid was formulated by fusion to obtain a homogeneous lipid matrix, which was characterized using differential scanning calorimetry (DSC), polarized light microscopy (PLM) and wide angle X-ray diffraction (WAXD) to obtain its thermal and crystal characteristics. Isothermal heat conduction microcalorimetry (IMC) and freeze-fracture transmission electron microscopy (FFTEM) studies were carried out on the templated homolipid and SLN containing 1.0% (w/w) of polysorbate 80 to study their in situ crystallization kinetics and morphology, respectively. The formulated SLN were also subjected to time-resolved DSC, WAXD and particle size analyses for one month. The thermal and crystal characteristics were compared with those of the bulk lipid matrix (templated homolipid). Result of the particle size analysis indicated that the particles size remained roughly within the lower nanometer range after one month. FFTEM micrograph of the lipid matrices revealed lamellar sheets for Phospholipon 90G and layered triglyceride structures for the homolipid and Phospholipon 90G-templated homolipid. FFTEM micrograph of SLN revealed anisometric structures. PLM of the templated homolipid did not show, but goat fat (homolipid) alone showed slight growth in crystals with time. WAXD and DSC studies revealed minor increase in crystallinity of the new lipid matrix after one month and DSC also detected templation of homolipid by the heterolipid noted by the disappearance of the lower melting peak of the homolipid. However, for the SLN, WAXD results showed low crystalline particles while DSC only showed a very little endothermic process after one month of storage at 20 degrees C. The implication of this finding is that progression of the SLN to highly ordered particles over time would not occur. This will be favourable for any incorporated drug as drug expulsion, due to increase in crystallinity, will not occur. Result obtained from analysis of the isothermal crystallization exotherms indicated that the templated homolipid and SLN1 containing 1.0% polysorbate 80 possess similar nucleation mechanisms and growth dimensions different from the pure homolipid. The SLN containing 0.5 and 1.0% polysorbate 80 possessed good properties and could prove to be good delivery systems for drugs for parenteral or ocular administration. The result of this study also shows a method of improving natural lipids for use in particulate drug delivery systems.

  15. Comparing Single-Point and Multi-point Calibration Methods in Modulated DSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Buskirk, Caleb Griffith

    2017-06-14

    Heat capacity measurements for High Density Polyethylene (HDPE) and Ultra-high Molecular Weight Polyethylene (UHMWPE) were performed using Modulated Differential Scanning Calorimetry (mDSC) over a wide temperature range, -70 to 115 °C, with a TA Instruments Q2000 mDSC. The default calibration method for this instrument involves measuring the heat capacity of a sapphire standard at a single temperature near the middle of the temperature range of interest. However, this method often fails for temperature ranges that exceed a 50 °C interval, likely because of drift or non-linearity in the instrument's heat capacity readings over time or over the temperature range. Therefore,more » in this study a method was developed to calibrate the instrument using multiple temperatures and the same sapphire standard.« less

  16. Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties

    PubMed Central

    Muñoz-Bonilla, Alexandra; Cerrada, María L.; Fernández-García, Marta; Kubacka, Anna; Ferrer, Manuel; Fernández-García, Marcos

    2013-01-01

    Nanocomposites obtained from the incorporation of synthesized TiO2 nanoparticles (≈10 nm average primary particle size) in different amounts, ranging from 0.5 to 5 wt.%, into a biodegradable polycaprolactone matrix are achieved via a straightforward and commercial melting processing. The resulting nanocomposites have been structurally and thermally characterized by transmission electron microscopy (TEM), wide/small angle X-ray diffraction (WAXS/SAXS, respectively) and differential scanning calorimetry (DSC). TEM evaluation provides evidence of an excellent nanometric dispersion of the oxide component in the polymeric matrix, with aggregates having an average size well below 100 nm. Presence of these TiO2 nanoparticles induces a nucleant effect during polymer crystallization. Moreover, the antimicrobial activity of nanocomposites has been tested using both UV and visible light against Gram-negative Escherichia coli bacteria and Gram-positive Staphylococcus aureus. The bactericidal behavior has been explained through the analysis of the material optical properties, with a key role played by the creation of new electronic states within the polymer-based nanocomposites. PMID:23629663

  17. Production and properties of high strength Ni free Zr-based BMGs

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Wang, W. H.

    2014-06-01

    Bulk metallic glasses (BMGs) are well known for very attractive physical, mechanical and thermal properties. Zr-based BMGs are used as structural materials in sports goods, electronics, jewelry, medical and aerospace applications. Ni free Zr48Cu36Al8M8 (M = Nb, Ti and Ta) BMGs are successfully synthesized by Cu mold casting technique. Differential scanning calorimetery (DSC) results show that the Zr48Cu36Al8Nb8 BMG have good thermal stability, wide supercooled liquid region of 80 K and contain the double stage crystallization. The alloy has fracture strength of 1.953 GPa. Shear angle was measured to be in the range of 43.5±5° for the alloy studied. Vicker's hardness of the BMGs was found to be over 500 Hv for the as cast alloy which enhanced about 11 % more by annealing up to 600 °C/20 min. Intersected shear bands were observed. The observed promising mechanical and thermal properties showed that BMG studied can be used for industrial applications.

  18. Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites.

    PubMed

    Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna

    2016-05-01

    The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.

  19. Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites

    PubMed Central

    Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna

    2016-01-01

    The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability. PMID:27222742

  20. Supernucleation and Orientation of Poly(butylene terephthalate) Crystals in Nanocomposites Containing Highly Reduced Graphene Oxide

    PubMed Central

    2017-01-01

    The ring-opening polymerization of cyclic butylene terephthalate into poly(butylene terephthalate) (pCBT) in the presence of reduced graphene oxide (RGO) is an effective method for the preparation of polymer nanocomposites. The inclusion of RGO nanoflakes dramatically affects the crystallization of pCBT, shifting crystallization peak temperature to higher temperatures and, overall, increasing the crystallization rate. This was due to a supernucleating effect caused by RGO, which is maximized by highly reduced graphene oxide. Furthermore, combined analyses by differential scanning calorimetry (DSC) experiments and wide-angle X-ray diffraction (WAXS) showed the formation of a thick α-crystalline form pCBT lamellae with a melting point of ∼250 °C, close to the equilibrium melting temperature of pCBT. WAXS also demonstrated the pair orientation of pCBT crystals with RGO nanoflakes, indicating a strong interfacial interaction between the aromatic rings of pCBT and RGO planes, especially with highly reduced graphene oxide. PMID:29296028

  1. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyzer (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, Douglas W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current C development and cutting edge research. The Thermal Evolved Gas Analyzer (MGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil.

  2. Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes

    PubMed Central

    Sewell, Holly L.; Kaster, Anne-Kristin

    2017-01-01

    ABSTRACT The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments of the Peruvian Margin, which are enriched in such Chloroflexi. 16S rRNA gene sequence analysis placed two of these single-cell-derived genomes (DscP3 and Dsc4) in a clade of subphylum I Chloroflexi which were previously recovered from deep-sea sediment in the Okinawa Trough and a third (DscP2-2) as a member of the previously reported DscP2 population from Peruvian Margin site 1230. The presence of genes encoding enzymes of a complete Wood-Ljungdahl pathway, glycolysis/gluconeogenesis, a Rhodobacter nitrogen fixation (Rnf) complex, glyosyltransferases, and formate dehydrogenases in the single-cell genomes of DscP3 and Dsc4 and the presence of an NADH-dependent reduced ferredoxin:NADP oxidoreductase (Nfn) and Rnf in the genome of DscP2-2 imply a homoacetogenic lifestyle of these abundant marine Chloroflexi. We also report here the first complete pathway for anaerobic benzoate oxidation to acetyl coenzyme A (CoA) in the phylum Chloroflexi (DscP3 and Dsc4), including a class I benzoyl-CoA reductase. Of remarkable evolutionary significance, we discovered a gene encoding a formate dehydrogenase (FdnI) with reciprocal closest identity to the formate dehydrogenase-like protein (complex iron-sulfur molybdoenzyme [CISM], DET0187) of terrestrial Dehalococcoides/Dehalogenimonas spp. This formate dehydrogenase-like protein has been shown to lack formate dehydrogenase activity in Dehalococcoides/Dehalogenimonas spp. and is instead hypothesized to couple HupL hydrogenase to a reductive dehalogenase in the catabolic reductive dehalogenation pathway. This finding of a close functional homologue provides an important missing link for understanding the origin and the metabolic core of terrestrial Dehalococcoides/Dehalogenimonas spp. and of reductive dehalogenation, as well as the biology of abundant deep-sea Chloroflexi. PMID:29259088

  3. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahmer, Ahmad Zahrin, E-mail: ahmadzsahmer@gmail.com; Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Zaine, Siti Nur Azella, E-mail: ct.azella@gmail.com

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoormore » consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.« less

  4. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current development and cutting edge research. The Thermal Evolved Gas Analyzer (TEGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil. Additional information is available in the original extended abstract.

  5. Comparison of Clinical Results and Injury Risk of Posterior Tibial Cortex Between Attune and Press Fit Condylar Sigma Knee Systems.

    PubMed

    Song, Sang Jun; Park, Cheol Hee; Liang, Hu; Kang, Se Gu; Park, Jong Jun; Bae, Dae Kyung

    2018-02-01

    We compared clinical and radiographic results after total knee arthroplasty (TKA) using Attune and Press Fit Condylar Sigma, and investigated whether use of the current prosthesis increased injury risk to the tibial cortex in Asian patients. We also assessed whether a preoperative posterior tibial slope angle (PSA) is associated with the injury when using the current prosthesis. The 300 TKAs with Attune (group A) were compared to the 300 TKAs with Press Fit Condylar Sigma (group B). Demographics were not different, except follow-up periods (24.8 vs 33.3 months, P < .001). The Western Ontario and McMaster Universities Index and range of motion were compared. A minimum distance between tibial component stem and posterior tibial cortex (mDSC) was compared. The correlation between preoperative PSA and mDSC was analyzed in group A. The postoperative Western Ontario and McMaster Universities Index and range of motion of group A were better than those of group B (17.7 vs 18.8, P = .004; 131.4° vs 129.0°, P = .008). The mDSC was shorter in group A (6.3 vs 7.0 mm, P < .001), which made up a higher proportion of the high-risk group for posterior tibial cortical injury with an mDSC of <4 mm (20.0% vs 10.7%, P = .002). A negative correlation was found between the preoperative PSA and mDSC in group A (r = -0.205, P < .001). The TKA using the current prosthesis provided more satisfactory results than the TKA using the previous prosthesis. However, the injury risk to the posterior tibial cortex increased in the knees with a large PSA when using the current prosthesis for Asian patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Elaboration, structural, spectroscopy, DSC investigations and Hirshfeld surface analysis of a one-dimensional self-assembled organic-inorganic hybrid compound

    NASA Astrophysics Data System (ADS)

    Mesbeh, Radhia; Hamdi, Besma; Zouari, Ridha

    2017-01-01

    The new organic-inorganic hybrid of the formula [H2mela]Cu2Cl6, where mela = 1,3,5-triazine-2,4,6-triamine, has been synthesized by the reaction of 1,3,5-triazine-2,4,6-triamine and copper(II) chloride dihydrate in the presence of hydrochloric acid. This compound has been determined by X-ray diffraction analysis and characterized by FT-IR, Raman, NMR characterization, differential scanning calorimetric (DSC) analysis, dielectric measurements and Hirshfeld surface. 1,3,5-triazinidium-2,4,6-triamine hexachlorodicuprate(II) crystallizes in the monoclinic system with space group P21/c. The final refinement of the structure of the program led to the reliability factors unweighted R1 = 3.53% and weighted WR2 = 8.87%. The observed internal C3sbnd N31sbnd C1 and C3sbnd N23sbnd C2 angle (121.5 and 121.4°) at protanated N-atom are significantly greater the other ring angle C1sbnd N12sbnd C2 (117.1°). The titled compound crystallizes as an organic-inorganic one-dimensional (1D) structure. The crystal structure was stabilized by two types of hydrogen bonding Nsbnd H⋯Cl and Nsbnd H⋯N. The infrared spectra was recorded in the 4000-400 cm-1 frequency region and the Raman spectra was recorded in the external region of the anionic sublattice vibration 4000-50 cm-1 at room temperature. Solid-state 13C and 63Cu MAS-NMR spectroscopies are in agreement with the X-ray structure. The differential scanning calorimetric (DSC) show the presence of a structural phase transition of the title compound at 338 K. Hirshfeld surface analyses for visually analyzing intermolecular interactions in crystal structures employing molecular surface contours and 2D fingerprint plots have been used to examine molecular shapes.

  7. Differential scanning calorimetry study and computer modeling of β ⇒ α phase transformation in a Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Malinov, S.; Guo, Z.; Sha, W.; Wilson, A.

    2001-04-01

    The relationship between heat-treatment parameters and microstructure in titanium alloys has so far been mainly studied empirically, using characterization techniques such as microscopy. Calculation and modeling of the kinetics of phase transformation have not yet been widely used for these alloys. Differential scanning calorimetry (DSC) has been widely used for the study of a variety of phase transformations. There has been much work done on the calculation and modeling of the kinetics of phase transformations for different systems based on the results from DSC study. In the present work, the kinetics of the β ⇒ α transformation in a Ti-6Al-4V titanium alloy were studied using DSC, at continuous cooling conditions with constant cooling rates of 5 °C, 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C/min. The results from calorimetry were then used to trace and model the transformation kinetics in continuous cooling conditions. Based on suitably interpreted DSC results, continuous cooling-transformation (CCT) diagrams were calculated with lines of isotransformed fraction. The kinetics of transformation were modeled using the Johnson-Mehl-Avrami (JMA) theory and by applying the “concept of additivity.” The JMA kinetic parameters were derived. Good agreement between the calculated and experimental transformed fractions is demonstrated. Using the derived kinetic parameters, the β ⇒ α transformation in a Ti-6Al-4V alloy can be described for any cooling path and condition. An interpretation of the results from the point of view of activation energy for nucleation is also presented.

  8. Simultaneous Synchrotron WAXD and Fast Scanning (Chip) Calorimetry: On the (Isothermal) Crystallization of HDPE and PA11 at High Supercoolings and Cooling Rates up to 200 °C s(-1).

    PubMed

    Baeten, Dorien; Mathot, Vincent B F; Pijpers, Thijs F J; Verkinderen, Olivier; Portale, Giuseppe; Van Puyvelde, Peter; Goderis, Bart

    2015-06-01

    An experimental setup, making use of a Flash DSC 1 prototype, is presented in which materials can be studied simultaneously by fast scanning calorimetry (FSC) and synchrotron wide angle X-ray diffraction (WAXD). Accumulation of multiple, identical measurements results in high quality, millisecond WAXD patterns. Patterns at every degree during the crystallization and melting of high density polyethylene at FSC typical scanning rates from 20 up to 200 °C s(-1) are discussed in terms of the temperature and scanning rate dependent material crystallinities and crystal densities. Interestingly, the combined approach reveals FSC thermal lag issues, for which can be corrected. For polyamide 11, isothermal solidification at high supercooling yields a mesomorphic phase in less than a second, whereas at very low supercooling crystals are obtained. At intermediate supercooling, mixtures of mesomorphic and crystalline material are generated at a ratio proportional to the supercooling. This ratio is constant over the isothermal solidification time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Investigation on Polylactide (PLA)/Poly(butylene adipate-co-terephthalate) (PBAT)/Bark Flour of Plane Tree (PF) Eco-Composites

    PubMed Central

    Dou, Qiang; Cai, Jun

    2016-01-01

    Polylactide (PLA)/poly(butylene adipate-co-terephthalate) (PBAT)/bark flour of plane tree (PF) eco-composites were prepared via melt blending. The morphologies, mechanical properties, crystal structures and melting and crystallization behaviors of the eco-composites were investigated by means of scanning electron microscopy (SEM), mechanical tests, polarized light microscopy (PLM), wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC), respectively. It is shown that the interfacial adhesion between PLA matrix and PF is weak and the mechanical properties of PLA/PF eco-composites are poor. The titanate treatment improves the adhesion between the matrix and the filler and enhances the stiffness of the eco-composites. The toughness is improved by PBAT and ductile fractured surfaces can be found. The spherulitic size of PLA is decreased by the addition of PF. The α crystalline form of PLA remains in the composites. Compared with PF, T-PF (PF treated by a titanate coupling agent) and PBAT have negative effects on the crystallization of PLA. PMID:28773515

  10. Radiation-grafting of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) onto silicone rubber

    NASA Astrophysics Data System (ADS)

    Flores-Rojas, G. G.; Bucio, E.

    2016-10-01

    Silicone rubber (SR) was modified with a graft of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) using either gamma-radiation or azobisisobutyronitrile (AIBN). The graft efficiency was evaluated as a function of monomer concentration, absorbed dose, reaction temperature, and concentration of AIBN. The hydrophilicity of the grafted films was measured by contact angle and their equilibrium swelling time in ethanol. Additional characterization by infrared (FTIR-ATR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is also reported.

  11. Protecting Location Privacy for Outsourced Spatial Data in Cloud Storage

    PubMed Central

    Gui, Xiaolin; An, Jian; Zhao, Jianqiang; Zhang, Xuejun

    2014-01-01

    As cloud computing services and location-aware devices are fully developed, a large amount of spatial data needs to be outsourced to the cloud storage provider, so the research on privacy protection for outsourced spatial data gets increasing attention from academia and industry. As a kind of spatial transformation method, Hilbert curve is widely used to protect the location privacy for spatial data. But sufficient security analysis for standard Hilbert curve (SHC) is seldom proceeded. In this paper, we propose an index modification method for SHC (SHC∗) and a density-based space filling curve (DSC) to improve the security of SHC; they can partially violate the distance-preserving property of SHC, so as to achieve better security. We formally define the indistinguishability and attack model for measuring the privacy disclosure risk of spatial transformation methods. The evaluation results indicate that SHC∗ and DSC are more secure than SHC, and DSC achieves the best index generation performance. PMID:25097865

  12. Long noncoding RNAs in digestive system cancers: Functional roles, molecular mechanisms, and clinical implications (Review).

    PubMed

    Fu, Min; Zou, Chen; Pan, Lei; Liang, Wei; Qian, Hui; Xu, Wenrong; Jiang, Pengcheng; Zhang, Xu

    2016-09-01

    Long noncoding RNAs (lncRNAs) are emerging as new players in various diseases including cancer. LncRNAs have been shown to play multifaceted roles in the development, progression, and metastasis of cancer. In this review, we highlight the lncRNAs that are critically involved in the pathogenesis of digestive system cancers (DSCs). We summarize the roles of the lncRNAs in DSCs and the underlying mechanisms responsible for their functions. The DSC-associated lncRNAs interact with a wide spectrum of molecules to regulate gene expression at transcriptional, post-transcriptional, and translational levels. We also provide new insights into the clinical significance of these lncRNAs, which are found to be closely associated with the aggressiveness of DSCs and could predict the prognosis of DSC patients. Moreover, lncRNAs have been suggested as promising therapeutic targets in DSCs. Therefore, better understanding of the functional roles of lncRNAs will provide new biomarkers for DSC diagnosis, prognosis, and therapy.

  13. Protecting location privacy for outsourced spatial data in cloud storage.

    PubMed

    Tian, Feng; Gui, Xiaolin; An, Jian; Yang, Pan; Zhao, Jianqiang; Zhang, Xuejun

    2014-01-01

    As cloud computing services and location-aware devices are fully developed, a large amount of spatial data needs to be outsourced to the cloud storage provider, so the research on privacy protection for outsourced spatial data gets increasing attention from academia and industry. As a kind of spatial transformation method, Hilbert curve is widely used to protect the location privacy for spatial data. But sufficient security analysis for standard Hilbert curve (SHC) is seldom proceeded. In this paper, we propose an index modification method for SHC (SHC(∗)) and a density-based space filling curve (DSC) to improve the security of SHC; they can partially violate the distance-preserving property of SHC, so as to achieve better security. We formally define the indistinguishability and attack model for measuring the privacy disclosure risk of spatial transformation methods. The evaluation results indicate that SHC(∗) and DSC are more secure than SHC, and DSC achieves the best index generation performance.

  14. Polymer Structure and Water States in Salt-Containing Polyampholyte Hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Xinda; Elliott, Janet A. W.; Lee, Byeongdu; Chung, Hyun-Joong

    The phase behavior of water in hydrogels has broad impact on various applications, such as lubrication, adhesion, and electrical conductivity, as well as the hydrogel's low temperature properties. The status of the water molecules is correlated to the structure of the polymer chains in the hydrogel. In this study, the structure and water status of a model charge-balanced polyampholyte poly(4-vinylbenzenesulfonate-co-[3-(methacryloylamino) propyl] trimethylammonium chloride), were investigated by using differential scanning calorimetry (DSC) and small-angle x-ray scattering (SAXS). A globular network structure suggested by SAXS results dictated the depression of the freezing point of water in the hydrogel, as supported by the DSC results. The polyampholyte chains undergo an irreversible collapse during dialysis in deionized water. Such collapsed hydrogels are not able to prevent freezing of water molecules. The results of both synthesis condition and post-synthesis treatments for polyampholyte hydrogels provide us insights to design optimal polyampholyte hydrogels for low temperature applications.

  15. Broad hexagonal columnar mesophases formation in bioinspired transition-metal complexes of simple fatty acid meta-octaester derivatives of meso-tetraphenyl porphyrins.

    PubMed

    Wu, Bin; Chen, Keyang; Deng, Yuchen; Chen, Jian; Liu, Chengjie; Cheng, Rongshi; Chen, Dongzhong

    2015-02-23

    A series of meta-substituted fatty acid octaester derivatives and their transition-metal complexes of meso- tetraphenyl porphyrins (TPP-8OOCR, with R = C(n-1)H(2n-1), n = 8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable-temperature small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8-TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12-TPP) and the palmitic acid octaester (C16-TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12-TPPM and C16-TPPM with M = Zn, Cu, or Ni, exhibited well-organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNi

  16. Nature and properties of ionomer assemblies. II.

    PubMed

    Capek, Ignác

    2005-12-30

    The principle subject in the current paper is to summarize and characterize the ionomers based on polymers and copolymers such as polystyrene (PSt), polyisoprene (PIP), polybutadiene (PB), poly(styrene-b-isobutylene-b-styrene) (PSt-PIB-PSt), poly(butadiene-styrene) (PB-PSt), poly(ethylene terephthalate) (PET), poly(butylene adipate) (PBA), poly(butylene succinate) (PBSi), poly(dimethylcarbosiloxanes), polyurethane, etc. The self-assembly of ionomers, models concerning ionomer morphologies, physical and rheological properties of ionomer phase and percolation behavior of ionomers were discussed. The ionomer phase materials and dispersions have been characterized by differential scanning calorimetry (DSC), small-angle X-ray catering (SAXS), small-angle neutron scattering (SANS), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), etc. The wide range of compositions, molecular architectures, and morphologies present in ionomeric disperse systems are of great interest. The research is particularly devoted to the potential application of these materials and an understanding of the fundamental principles of the ionomers. They are extremely complex systems, sensitive to changes in structure and composition, and therefore not easily amenable to modeling and to the derivation of general patterns of behavior. The reviewed data indicate that a large number of parameters are important in influencing multiplet formation and clustering in random ionomers. Among these are the ion content, size of the polyion and counterion, dielectric constant of the host, T(g) of the polymer, rigidity or persistence length of the backbone, position of the ion pair relative to the backbone, steric constraints, amount and nature of added additive (plasticizer), thermal history, etc.

  17. Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience

    PubMed Central

    Gill, Pooria; Moghadam, Tahereh Tohidi; Ranjbar, Bijan

    2010-01-01

    This paper reviews the best-known differential scanning calorimetries (DSCs), such as conventional DSC, microelectromechanical systems-DSC, infrared-heated DSC, modulated-temperature DSC, gas flow-modulated DSC, parallel-nano DSC, pressure perturbation calorimetry, self-reference DSC, and high-performance DSC. Also, we describe here the most extensive applications of DSC in biology and nanoscience. PMID:21119929

  18. Novel synergistic transparent k-Carrageenan/Xanthan gum/Gellan gum hydrogel film: Mechanical, thermal and water barrier properties.

    PubMed

    Balasubramanian, R; Kim, Sam Soo; Lee, Jaewoong

    2018-06-24

    The aim is to develop novel synergistic transparent k-Carrageenan/Xanthan gum/Gellan gum (k-C/X/G) hydrogel films with different weight ratio composition and to study the effect of these compositions on the physical properties of the films. The structure and morphological properties of the films were investigated by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). Results for FT-IR, DSC and SEM analysis showed a clear interaction between k-C, X, and G to form a new material. The mechanical, thermal and water barrier properties such as water vapor permeability (WVP), water contact angle (WCA) and moisture content were determined. The temperature at 5% weight loss (T 5% ) are in the range of 64.2-121.9 °C. The WVP exhibits are in the range of 1.8-2.4, contact angle are in the range of 32-65.8° and moisture content 16.5-21.51. The hydrogel film had good tensile strength of 19.1-31.0 MPa and elongation at break of 13-19% and tensile modulus of 1.6-2.4 GPa. The UV results indicate that the films were very transparent. The range of properties of the ternary k-C/X/G hydrogel films suggest that the presence molecular interaction and cross linking within the blends. Copyright © 2018. Published by Elsevier B.V.

  19. An MRI-compatible patient rotation system - design, construction, and first organ deformation results.

    PubMed

    Whelan, Brendan; Liney, Gary P; Dowling, Jason A; Rai, Robba; Holloway, Lois; McGarvie, Leigh; Feain, Ilana; Barton, Michael; Berry, Megan; Wilkins, Rob; Keall, Paul

    2017-02-01

    Conventionally in radiotherapy, a very heavy beam forming apparatus (gantry) is rotated around a patient. From a mechanical perspective, a more elegant approach is to rotate the patient within a stationary beam. Key obstacles to this approach are patient tolerance and anatomical deformation. Very little information on either aspect is available in the literature. The purpose of this work was therefore to design and test an MRI-compatible patient rotation system such that the feasibility of a patient rotation workflow could be tested. A patient rotation system (PRS) was designed to fit inside the bore of a 3T MRI scanner (Skyra, Siemens) such that 3D images could be acquired at different rotation angles. Once constructed, a pelvic imaging study was carried out on a healthy volunteer. T2-weighted MRI images were taken every 45° between 0° and 360°, (with 0° equivalent to supine). The prostate, bladder, and rectum were segmented using atlas-based auto contouring. The images from each angle were registered back to the 0° image in three steps: (a) Rigid registration was based on MRI visible markers on the couch. (b) Rigid registration based on the prostate contour (equivalent to a rigid shift to the prostate). (c) Nonrigid registration. The Dice similarity coefficient (DSC) and mean average surface distance (MASD) were calculated for each organ at each step. The PRS met all design constraints and was successfully integrated with the MRI scanner. Phantom images showed minimal difference in signal or noise with or without the PRS in the MRI scanner. For the MRI images, the DSC (mean ± standard deviation) over all angles in the prostate, rectum, and bladder was 0.60 ± 0.11, 0.56 ± 0.15, and 0.76 ± 0.06 after rigid couch registration, 0.88 ± 0.03, 0.81 ± 0.08, and 0.86 ± 0.03 after rigid prostate guided registration, and 0.85 ± 0.03, 0.88 ± 0.02, 0.87 ± 0.02 after nonrigid registration. An MRI-compatible patient rotation system has been designed, constructed, and tested. A pelvic study was carried out on a healthy volunteer. Rigid registration based on the prostate contour yielded DSC overlap statistics in the prostate superior to interobserver contouring variability reported in the literature. © 2016 American Association of Physicists in Medicine.

  20. IDH mutant and 1p/19q co-deleted oligodendrogliomas: tumor grade stratification using diffusion-, susceptibility-, and perfusion-weighted MRI.

    PubMed

    Lin, Yu; Xing, Zhen; She, Dejun; Yang, Xiefeng; Zheng, Yingyan; Xiao, Zebin; Wang, Xingfu; Cao, Dairong

    2017-06-01

    Currently, isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion are proven diagnostic biomarkers for both grade II and III oligodendrogliomas (ODs). Non-invasive diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), and dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) are widely used to provide physiological information (cellularity, hemorrhage, calcifications, and angiogenesis) of neoplastic histology and tumor grade. However, it is unclear whether DWI, SWI, and DSC-PWI are able to stratify grades of IDH-mutant and 1p/19q co-deleted ODs. We retrospectively reviewed the conventional MRI (cMRI), DWI, SWI, and DSC-PWI obtained on 33 patients with IDH-mutated and 1p/19q co-deleted ODs. Features of cMRI, normalized ADC (nADC), intratumoral susceptibility signals (ITSSs), normalized maxim CBV (nCBV), and normalized maximum CBF (nCBF) were compared between low-grade ODs (LGOs) and high-grade ODs (HGOs). Receiver operating characteristic curve and logistic regression were applied to determine diagnostic performances. HGOs tended to present with prominent edema and enhancement. nADC, ITSSs, nCBV, and nCBF were significantly different between groups (all P < 0.05). The combination of SWI and DSC-PWI for grading resulted in sensitivity and specificity of 100.00 and 93.33%, respectively. IDH-mutant and 1p/19q co-deleted ODs can be stratified by grades using cMRI and advanced magnetic resonance imaging techniques including DWI, SWI, and DSC-PWI. Combined ITSSs with nCBV appear to be a promising option for grading molecularly defined ODs in clinical practice.

  1. Chitosan pretreatment for cotton dyeing with black tea

    NASA Astrophysics Data System (ADS)

    Campos, J.; Díaz-García, P.; Montava, I.; Bonet-Aracil, M.; Bou-Belda, E.

    2017-10-01

    Chitosan is used in a wide range of applications due to its intrinsic properties. Chitosan is a biopolymer obtained from chitin and among their most important aspects highlights its bonding with cotton and its antibacterial properties. In this study two different molecular weight chitosan are used in the dyeing process of cotton with black tea to evaluate its influence. In order to evaluate the effect of the pretreatment with chitosan, DSC and reflection spectrophotometer analysis are performed. The curing temperature is evaluated by the DSC analysis of cotton fabric treated with 15 g/L of chitosan, whilst the enhancement of the dyeing is evaluated by the colorimetric coordinates and the K/S value obtained spectrophotometrically. This study shows the extent of improvement of the pretreatment with chitosan in dyeing with natural products as black tea.

  2. Preparation and characterization of antibacterial electrospun chitosan/poly (vinyl alcohol)/graphene oxide composite nanofibrous membrane

    NASA Astrophysics Data System (ADS)

    Yang, Shuai; Lei, Peng; Shan, Yujuan; Zhang, Dawei

    2018-03-01

    In this paper, chitosan (CS)/poly (vinyl alcohol) (PVA)/graphene oxide (GO) composite nanofibrous membranes were prepared via electrospinning. Such nanofibrous membranes have been characterized and investigated for their morphological, structural, thermal stability, hydrophilic and antibacterial properties. SEM images showed that the uniform and defect-free nanofibers were obtained and GO sheets, shaping spindle and spherical, were partially embedded into nanofibers. FTIR, XRD, DSC and TGA indicated the good compatibility between CS and PVA. There were strong intermolecular hydrogen bonds between the chitosan and PVA molecules. Contact angle measurement indicated that while increasing the content of GO, the distance between fibers increased and water drop showed wetting state on the surface of nanofibrous membranes. As a result, the contact angle decreased significantly. Meanwhile, good antibacterial activity of the prepared nanofibrous membranes were exhibited against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus.

  3. Friction stir welding of Zr-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Ji, Y. S.; Fujii, H.; Maeda, M.; Nakata, K.; Kimura, H.; Inoue, A.; Nogi, K.

    2009-05-01

    A Zr55Cu30Al10Ni5 bulk metallic glass plate was successfully welded below its crystallization temperature by friction stir welding. The flash formation and heat concentration at the shoulder edge was minimized using a wider tool and the angle of the recessed shoulder surface was 3°. To analyze the crystallization of the base material and stir zone, the microstructure and mechanical properties were analyzed using DSC, XRD, TEM, and micro-hardness. As a result, it was found that the amorphous structure and original mechanical properties were maintained in the whole joints.

  4. A novel preparation of milk protein/polyethylene terephthalate fabric

    NASA Astrophysics Data System (ADS)

    Zhou, J. F.; Zheng, D. D.; Zhong, L.; Zhang, F. X.; Zhang, G. X.

    2016-07-01

    In this work, -NH2 groups were introduced to polyethylene terephthalate (PET) fibers by nitration and reduction method, and then milk protein was grafted on the nitrated and reduced PET (NR PET) fibers by sucrose glycidyl ether crosslinking agent. FTIR suggested the milk protein was successfully grafted on PET fiber surface. SEM images showed a layer of substance covered on the PET fiber surface. DSC demonstrated an excellent thermal stability of milk protein/PET fiber. The moisture regain was improved by milk protein/PET fiber. Moreover, the crease recovery angle and stiffness were retained by the milk protein/PET fabric.

  5. Partially-overlapped viewing zone based integral imaging system with super wide viewing angle.

    PubMed

    Xiong, Zhao-Long; Wang, Qiong-Hua; Li, Shu-Li; Deng, Huan; Ji, Chao-Chao

    2014-09-22

    In this paper, we analyze the relationship between viewer and viewing zones of integral imaging (II) system and present a partially-overlapped viewing zone (POVZ) based integral imaging system with a super wide viewing angle. In the proposed system, the viewing angle can be wider than the viewing angle of the conventional tracking based II system. In addition, the POVZ can eliminate the flipping and time delay of the 3D scene as well. The proposed II system has a super wide viewing angle of 120° without flipping effect about twice as wide as the conventional one.

  6. Phase Diagram of an Ethylene Glycol-Hexamethylphosphorotriamide System

    NASA Astrophysics Data System (ADS)

    Solonina, I. A.; Rodnikova, M. N.; Kiselev, M. R.; Khoroshilov, A. V.

    2018-02-01

    The phase diagram of an ethylene glycol (EG)-hexamethylphosphorotriamide (HMPT) system is studied over two wide temperature intervals (+25°C…-90°C…+40°C) and (-150°C…+40°C) by means of differential scanning calorimetry using INTERTECH DSC Q100 and METTLER TA4000 DSC instruments (Switzerland) in the DSC30 mode with variable cooling/heating rates. Substantial overcooling of the liquid phase, a glass transition, and different types of interaction are observed in the system. No thermal effects are observed in intermediate range of concentrations during the slow cooling/heating processes, and the system remains liquid until the glass transition. The presence of such a metastable phase is attributed to a sharp rise in the viscosity of the system due to different kinds of interaction between the components. HMPT: 2EG and HMPT: EG compounds with crystallization temperatures of +5 and -0.5°C, respectively, are observed upon rapid cooling and slow heating. Changes in enthalpy are calculated for all of the observed thermal effects. The distinction from the phase diagram of H2O-HMFT (literary data) is explained by the difference in the interactions between system components and by the structural differences between EG and H2O.

  7. A simple three dimensional wide-angle beam propagation method

    NASA Astrophysics Data System (ADS)

    Ma, Changbao; van Keuren, Edward

    2006-05-01

    The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.

  8. A simple three dimensional wide-angle beam propagation method.

    PubMed

    Ma, Changbao; Van Keuren, Edward

    2006-05-29

    The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.

  9. Wide-angle vision for road views

    NASA Astrophysics Data System (ADS)

    Huang, F.; Fehrs, K.-K.; Hartmann, G.; Klette, R.

    2013-03-01

    The field-of-view of a wide-angle image is greater than (say) 90 degrees, and so contains more information than available in a standard image. A wide field-of-view is more advantageous than standard input for understanding the geometry of 3D scenes, and for estimating the poses of panoramic sensors within such scenes. Thus, wide-angle imaging sensors and methodologies are commonly used in various road-safety, street surveillance, street virtual touring, or street 3D modelling applications. The paper reviews related wide-angle vision technologies by focusing on mathematical issues rather than on hardware.

  10. Pseudo-extravasation rate constant of dynamic susceptibility contrast-MRI determined from pharmacokinetic first principles.

    PubMed

    Li, Xin; Varallyay, Csanad G; Gahramanov, Seymur; Fu, Rongwei; Rooney, William D; Neuwelt, Edward A

    2017-11-01

    Dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) is widely used to obtain informative perfusion imaging biomarkers, such as the relative cerebral blood volume (rCBV). The related post-processing software packages for DSC-MRI are available from major MRI instrument manufacturers and third-party vendors. One unique aspect of DSC-MRI with low-molecular-weight gadolinium (Gd)-based contrast reagent (CR) is that CR molecules leak into the interstitium space and therefore confound the DSC signal detected. Several approaches to correct this leakage effect have been proposed throughout the years. Amongst the most popular is the Boxerman-Schmainda-Weisskoff (BSW) K 2 leakage correction approach, in which the K 2 pseudo-first-order rate constant quantifies the leakage. In this work, we propose a new method for the BSW leakage correction approach. Based on the pharmacokinetic interpretation of the data, the commonly adopted R 2 * expression accounting for contributions from both intravascular and extravasating CR components is transformed using a method mathematically similar to Gjedde-Patlak linearization. Then, the leakage rate constant (K L ) can be determined as the slope of the linear portion of a plot of the transformed data. Using the DSC data of high-molecular-weight (~750 kDa), iron-based, intravascular Ferumoxytol (FeO), the pharmacokinetic interpretation of the new paradigm is empirically validated. The primary objective of this work is to empirically demonstrate that a linear portion often exists in the graph of the transformed data. This linear portion provides a clear definition of the Gd CR pseudo-leakage rate constant, which equals the slope derived from the linear segment. A secondary objective is to demonstrate that transformed points from the initial transient period during the CR wash-in often deviate from the linear trend of the linearized graph. The inclusion of these points will have a negative impact on the accuracy of the leakage rate constant, and even make it time dependent. Copyright © 2017 John Wiley & Sons, Ltd.

  11. The use of new facility by means internal balance with sting support for wide range Angle of Attack aircraft

    NASA Astrophysics Data System (ADS)

    Subagyo; Daryanto, Yanto; Risnawan, Novan

    2018-04-01

    The development of facilities for the testing of wide range angle of attack aircraft in the wind tunnel at subsonic regime has done and implemented. Development required to meet the test at an angle of attack from -20 ° to 40 °. Testing the wide range angle of attack aircraft with a wide variation of the angle of attack become important needs. This can be done simply by using the sting support-equipped by internal balance to measure the forces and moments component aerodynamics. The results of development and use on the wide range angle of attack aircraft testing are aerodynamics characteristics in the form of the coefficient three components forces and the three components of the moment. A series of test aircraft was successfully carried out and the results are shown in the form of graphs of characteristic of aerodynamics at wind speed 70 m/s.

  12. How ionic species structure influences phase structure and transitions from protic ionic liquids to liquid crystals to crystals.

    PubMed

    Greaves, Tamar L; Broomhall, Hayden; Weerawardena, Asoka; Osborne, Dale A; Canonge, Bastien A; Drummond, Calum J

    2017-12-14

    The phase behaviour of n-alkylammonium (C6 to C16) nitrates and formates has been characterised using synchrotron small angle and wide angle X-ray scattering (SAXS/WAXS), differential scanning calorimetry (DSC), cross polarised optical microscopy (CPOM) and Fourier transform infrared spectroscopy (FTIR). The protic salts may exist as crystalline, liquid crystalline or ionic liquid materials depending on the alkyl chain length and temperature. n-Alkylammonium nitrates with n ≥ 6 form thermotropic liquid crystalline (LC) lamellar phases, whereas n ≥ 8 was required for the formate series to form this LC phase. The protic ionic liquid phase showed an intermediate length scale nanostructure resulting from the segregation of the polar and nonpolar components of the ionic liquid. This segregation was enhanced for longer n-alkyl chains, with a corresponding increase in the correlation length scale. The crystalline and liquid crystalline phases were both lamellar. Phase transition temperatures, lamellar d-spacings, and liquid correlation lengths for the n-alkylammonium nitrates and formates were compared with those for n-alkylammonium chlorides and n-alkylamines. Plateau regions in the liquid crystalline to liquid phase transition temperatures as a function of n for the n-alkylammonium nitrates and formates are consistent with hydrogen-bonding and cation-anion interactions between the ionic species dominating alkyl chain-chain van der Waals interactions, with the exception of the mid chained hexyl- and heptylammonium formates. The d-spacings of the lamellar phases for both the n-alkylammonium nitrates and formates were consistent with an increase in chain-chain layer interdigitation within the bilayer-based lamellae with increasing alkyl chain length, and they were comparable to the n-alkylammonium chlorides.

  13. Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions.

    PubMed

    Sóti, Péter Lajos; Bocz, Katalin; Pataki, Hajnalka; Eke, Zsuzsanna; Farkas, Attila; Verreck, Geert; Kiss, Éva; Fekete, Pál; Vigh, Tamás; Wagner, István; Nagy, Zsombor K; Marosi, György

    2015-10-15

    Three solvent based methods: spray drying (SD), electrospinning (ES) and air-assisted electrospinning (electroblowing; EB) were used to prepare solid dispersions of itraconazole and Eudragit E. Samples with the same API/polymer ratios were prepared in order to make the three technologies comparable. The structure and morphology of solid dispersions were identified by scanning electron microscopy and solid phase analytical methods such as, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Raman chemical mapping. Moreover, the residual organic solvents of the solid products were determined by static headspace-gas chromatography/mass spectroscopy measurements and the wettability of samples was characterized by contact angle measurement. The pharmaceutical performance of the three dispersion type, evaluated by dissolution tests, proved to be very similar. According to XRPD and DSC analyses, made after the production, all the solid dispersions were free of any API crystal clusters but about 10 wt% drug crystallinity was observed after three months of storage in the case of the SD samples in contrast to the samples produced by ES and EB in which the polymer matrix preserved the API in amorphous state. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effect of PEO molecular weight on the miscibility and dynamics in epoxy/PEO blends.

    PubMed

    Lu, Shoudong; Zhang, Rongchun; Wang, Xiaoliang; Sun, Pingchuan; Lv, Weifeng; Liu, Qingjie; Jia, Ninghong

    2015-11-01

    In this work, the effect of poly(ethylene oxide) (PEO) molecular weight in blends of epoxy (ER) and PEO on the miscibility, inter-chain weak interactions and local dynamics were systematically investigated by multi-frequency temperature modulation DSC and solid-state NMR techniques. We found that the molecular weight (M(w)) of PEO was a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interactions between PEO and ER. A critical PEO molecular weight (M(crit)) around 4.5k was found. PEO was well miscible with ER when the molecular weight was below M(crit), where the chain motion of PEO was restricted due to strong inter-chain hydrogen bonding interactions. However, for the blends with high molecular weight PEO (M(w) > M(crit)), the miscibility between PEO and ER was poor, and most of PEO chains were considerably mobile. Finally, polarization inversion spin exchange at magic angle (PISEMA) solid-state NMR experiment further revealed the different mobility of the PEO in ER/PEO blends with different molecular weight of PEO at molecular level. Based on the DSC and NMR results, a tentative model was proposed to illustrate the miscibility in ER/PEO blends.

  15. Piroxicam cocrystals with phenolic coformers: preparation, characterization, and dissolution properties.

    PubMed

    Emami, Shahram; Adibkia, Khosro; Barzegar-Jalali, Mohammad; Siahi-Shadbad, Mohammadreza

    2018-04-04

    This study explores the preparation and investigation of dissolution properties of piroxicam cocrystals. Differential scanning calorimetry (DSC) was used to determine the capability of resorcinol (RES), methylparaben (MPB), and vanillin (VAN) to form cocrystals with piroxicam (PRX). Generation of cocrystals was attempted by liquid assisted grinding and slurry methods. Cocrystals were characterized by thermal methods, powder X-ray diffraction, and Fourier-transform infrared spectroscopy. Apparent solubility, intrinsic dissolution rate (IDR), and powder dissolution profile of cocrystals were compared with anhydrous piroxicam, piroxicam monohydrate (PRXMH), and previously reported piroxicam-succinic acid cocrystal. Contact angles and particle sizes of the studied solids were also measured. Based on the DSC screening results, we prepared and characterized PRX-RES and PRX-MPB cocrystals. Interestingly, the cocrystals not only failed to improve apparent solubility and IDR of PRX but also showed lower values than PRX that were attributed to induction of phase transformation of PRX to PRXMH. In contrary, cocrystals performed better than PRX in powder dissolution studies. The higher dissolution rates of cocrystals were explained by improved wettability and reduced sizes. This study has highlighted the complexity of solid state properties of cocrystals and has provided new evidence for the in-solution stability issues of cocrystals.

  16. Effects of glycerol monosterate on TPUs crystallization and its foaming behavior

    NASA Astrophysics Data System (ADS)

    Hossieny, N.; Nofar, M.; Shaayegan, V.; Park, C. B.

    2014-05-01

    Thermoplastic polyurethane (TPU) containing 0-2 wt% glycerol monosterate (GMS) were compounded by a twin screw compounder and then foamed using a batch process and n-butane. Differential scanning calorimetry (DSC) and high-pressure DSC were performed to evaluate the effects of GMS and pressurized butane on the crystallization kinetics of TPU. The results showed that the synergistic effect of GMS and high pressure butane significantly promoted hard segment (HS) crystallization in the TPU-GMS samples. The TPU-GMS samples showed significant increase in crystallinity over a wide range of saturation temperatures in the presence of butane compared to neat melt-compounded TPU (PR-TPU). Comparing the foam characteristics of PR-TPU and TPU-GMS samples, it was observed that both samples exhibited microcellular morphology with high cell density over a wide range of processing temperatures of 150°C - 170°C. However at a high foaming temperature (170°C), PR-TPU foams showed high cell coalescence compared to TPU-GMS. Furthermore, TPU-GMS samples showed a much higher expansion ratio compared to PR-TPU over a wide range of processing temperatures. The lubricating effect of GMS assisted the HS to stack together and form crystalline domains. These HS crystalline domains are present at high temperature acting both as a heterogeneous nucleating sites as well as reinforcement leading to the observed microcellular morphology with a high expansion ratio in TPU-GMS samples.

  17. Preventing collapsing of vascular scaffolds: The mechanical behavior of PLA/PCL composite structure prostheses during in vitro degradation.

    PubMed

    Li, Chaojing; Wang, Fujun; Chen, Peifeng; Zhang, Ze; Guidoin, Robert; Wang, Lu

    2017-11-01

    The success of blood conduit replacement with synthetic graft is highly dependent on the architecture, and mechanical properties of the graft, especially for biodegradable grafts serving as scaffolds for in-situ tissue engineering. Particularly, the property of the radial compression recovery represents a critical to keep the patency during biointegration. Bi-component composite vascular grafts (cVG) made of polylactic acid (PLA) fabric and polycaprolactone (PCL) were developed with superior mechanical properties. In this research, the compressive and tensile properties of the prototypes were characterized when they were subjected to accelerated degradation. In addition, the prepared cVG were analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and wide angle X-ray diffraction (WAXD) to illustrate the gradual loss of mechanical properties. The results demonstrated that the cVG retained the circular cross-section even through its tensile strength decreased during degradation. The cVG samples containing a high percentage of PLA fibers lost their tensile strength faster, while the samples with lower PLA percentage lost the compressive resistance strength more quickly. This unique fabric-based composite biodegradable vascular prosthesis with an outstanding radical compression recovery could be a good candidate for in-situ formation of tissue engineered vascular graft. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei; Wang, Yangyang; Wang, Weiyu

    All acrylic-based thermoplastic elastomers (TPEs) offer potential alternatives to the widely-used styrenic TPEs. However, the high entanglement molecular weight ( M e) of polyacrylates, as compared to polydienes, leads to “disappointing” mechanical performance as compared to styrenic TPEs. In this study, triblock copolymers composed of alkyl acrylates with different pendant groups and different glass transition temperatures ( T gs), i.e. 1-adamatyl acrylate (AdA) and tetrahydrofurfuryl acrylate (THFA), were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization. Thermal characterization of the resulting polymers was performed using differential scanning calorimetry (DSC), and the T gs of both segments were observed for themore » block copolymers. This indication of microphase separation behavior was further demonstrated using atomic-force microscopy (AFM) and small angle X-ray scattering (SAXS). Dynamic mechanical analysis (DMA) showed that the softening temperature of the PAdA domains is 123 °C, which is higher than that of both styrenic TPEs and commercial acrylic based TPEs with poly(methyl methacrylate) (PMMA) hard block. Here, the resulting triblock copolymers also exhibited stress–strain behavior superior to that of conventional all acrylic-based TPEs composed of PMMA and poly( n-butyl acrylate) (PBA) made by controlled radical processes, while the tensile strength was lower than for products made by living anionic polymerization.« less

  20. HDPE/Chitosan Blends Modified with Organobentonite Synthesized with Quaternary Ammonium Salt Impregnated Chitosan

    PubMed Central

    de Araújo, Maria José G.; Barbosa, Rossemberg C.; Fook, Marcus Vinícius L.; Canedo, Eduardo L.; Silva, Suédina M. L.; Medeiros, Eliton S.; Leite, Itamara F.

    2018-01-01

    In this study, blends based on a high density polyethylene (HDPE) and chitosan (CS) were successfully prepared by melt processing, in a laboratory internal mixer. The CS biopolymer content effect (up to maximum of 40%), and, the addition of bentonite clay modified with quaternary ammonium salt (CTAB) impregnated chitosan as a compatibilizing agent, on the properties of the blends was analyzed by Fourier transform-infrared spectroscopy (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analyses (TG), tensile strength, and scanning electron microscopy (SEM). The use of clay modified with CTAB impregnated chitosan, employing a method developed here, improved the compatibility of HDPE with chitosan, and therefore the thermal and some of the mechanical properties were enhanced, making HDPE/chitosan blends suitable candidates for food packaging. It was possible to obtain products of synthetic polymer, HDPE, with natural polymer, chitosan, using a method very used industrially, with acceptable and more friendly properties to the environment, when compared to conventional synthetic polymers. In addition, due to the possibility of impregnated chitosan with quaternary ammonium salt exhibit higher antibacterial activity than neat chitosan, the HDPE/chitosan/organobentonite blends may be potentially applied in food containers to favor the preservation of food for a longer time in comparison to conventional materials. PMID:29438286

  1. HDPE/Chitosan Blends Modified with Organobentonite Synthesized with Quaternary Ammonium Salt Impregnated Chitosan.

    PubMed

    de Araújo, Maria José G; Barbosa, Rossemberg C; Fook, Marcus Vinícius L; Canedo, Eduardo L; Silva, Suédina M L; Medeiros, Eliton S; Leite, Itamara F

    2018-02-13

    In this study, blends based on a high density polyethylene (HDPE) and chitosan (CS) were successfully prepared by melt processing, in a laboratory internal mixer. The CS biopolymer content effect (up to maximum of 40%), and, the addition of bentonite clay modified with quaternary ammonium salt (CTAB) impregnated chitosan as a compatibilizing agent, on the properties of the blends was analyzed by Fourier transform-infrared spectroscopy (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analyses (TG), tensile strength, and scanning electron microscopy (SEM). The use of clay modified with CTAB impregnated chitosan, employing a method developed here, improved the compatibility of HDPE with chitosan, and therefore the thermal and some of the mechanical properties were enhanced, making HDPE/chitosan blends suitable candidates for food packaging. It was possible to obtain products of synthetic polymer, HDPE, with natural polymer, chitosan, using a method very used industrially, with acceptable and more friendly properties to the environment, when compared to conventional synthetic polymers. In addition, due to the possibility of impregnated chitosan with quaternary ammonium salt exhibit higher antibacterial activity than neat chitosan, the HDPE/chitosan/organobentonite blends may be potentially applied in food containers to favor the preservation of food for a longer time in comparison to conventional materials.

  2. A study of thermal transitions in a new semicrystalline thermoplastic polyimide

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard; St.clair, Terry L.; Gerber, Margaret K.; Gautreaux, Carol R.

    1988-01-01

    A polyimide derive from 4,4'-isophthaloyl diphthalic anhydride (IDPA) and 1,3-bis (4-aminophenoxy 4'-benzoyl) benzene (1,3-BABB) having semicrystalline behavior was prepared and characterized by differential scanning calorimetry (DSC) and wide angle X-ray scattering (WAXS). Thus a poly(amic acid) film cured in air for one hour each at 100 and 200 C displayed an endotherm at 286 C, followed by a crystallization exotherm at 317 C, and a second melting transition at 350 C. The 286 C melting point appeared to result from earlier solvent-induced crystallization. Films cast from DMAc, air dried, and soaked in methylene chloride could not be induced into semicrystallinity. The fully cured polyimide has a Tg of 216 C. Films heated to temperatures as high as 100 C for one hour in air were transparent and light yellow in color. Those films heated to or above 125 C were translucent. Polarized light microscopy revealed the presence of spherulites 608 micrometers in diameter in a sample cured to 275 C in air. Two film samples, one cured to 275 and the other to 325 C, were evaluated for tensile and ultimate strength, modulus, and percent elongation at 25 and 200 C. These values remained essentially constant at each test temperature.

  3. Surface modification of polypropylene mesh devices with cyclodextrin via cold plasma for hernia repair: Characterization and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Sanbhal, Noor; Mao, Ying; Sun, Gang; Xu, Rui Fang; Zhang, Qian; Wang, Lu

    2018-05-01

    Light weight polypropylene (PP) mesh is the most widely used implant among all other synthetic meshes for hernia repair. However, infection is the complication associated to all synthetic meshes after hernia repair. Thus, to manage mesh related infection; antibacterial drug is generally loaded to surgical implants to supply drug locally in mesh implanted site. Nevertheless, PP mesh restricts the loading of antibacterial drug at operated area due to its low wettability. The aim of this study was to introduce a novel antimicrobial PP mesh modified with β-cyclodextrine (CD) and loaded with antimicrobial agent for infection prevention. A cold oxygen plasma treatment was able to activate the surfaces of polypropylene fibers, and then CD was incorporated onto the surfaces of PP fibers. Afterward, triclosan, as a model antibacterial agent, was loaded into CD cavity to provide desired antibacterial functions. The modified polypropylene mesh samples CD-Tric-1, CD-Tric-3 exhibited excellent inhibition zone and continuous antibacterial efficacy against E. coli and S. aureus up to 6 and 7 days respectively. Results of AFM, SEM, FTIR and antibacterial tests evidenced that oxygen plasma process is necessary to increase chemical connection between CD molecules and PP fibers. The samples were also characterized by using EDX, XRD, TGA, DSC and water contact angle.

  4. Biodiesel: Characterization by DSC and P-DSC

    NASA Astrophysics Data System (ADS)

    Chiriac, Rodica; Toche, François; Brylinski, Christian

    Thermal analytical methods such as differential scanning calorimetry (DSC) have been successfully applied to neat petrodiesel and engine oils in the last 25 years. This chapter shows how DSC and P-DSC (pressurized DSC) techniques can be used to compare, characterize, and predict some properties of alternative non-petroleum fuels, such as cold flow behavior and oxidative stability. These two properties are extremely important with respect to the operability, transport, and long-term storage of biodiesel fuel. It is shown that the quantity of unsaturated fatty acids in the fuel composition has an important impact on both properties. In addition, it is shown that the impact of fuel additives on the oxidative stability or the cold flow behavior of biodiesel can be studied by means of DSC and P-DSC techniques. Thermomicroscopy can also be used to study the cold flow behavior of biodiesel, giving information on the size and the morphology of crystals formed at low temperature.

  5. Xeroderma Pigmentosum with Severe Neurological Manifestations/De Sanctis–Cacchione Syndrome and a Novel XPC Mutation

    PubMed Central

    Hernandez-Quiceno, Sara

    2017-01-01

    Several genetic disorders caused by defective nucleotide excision repair that affect the skin and the nervous system have been described, including Xeroderma Pigmentosum (XP), De Sanctis–Cacchione syndrome (DSC), Cockayne syndrome, and Trichothiodystrophy. Cutaneous photosensitivity with an increased risk of skin malignancy is a common feature of these disorders, but clinical manifestations commonly overlap these syndromes. Several genes have been found to be altered in these pathologies, but we lack more genotype-phenotype correlations in order to make an accurate diagnosis. Very few cases of DSC syndrome have been reported in the literature. We present a case of a 12-year-old Colombian male, with multiple skin lesions in sun-exposed areas from the age of 3 months and a history of 15 skin cancers. He also displayed severe neurologic abnormalities (intellectual disability, ataxia, altered speech, and hyperreflexia), short stature, and microcephaly, which are features associated with DSC. Genetic testing revealed a novel germline mutation in the XP-C gene (c.547A>T). This is the first case of an XP-C mutation causing De Sanctis–Cacchione syndrome. Multigene panel testing is becoming more widely available and accessible in the clinical setting and will help rapidly unveil the molecular etiology of these rare genetic disorders. PMID:28255305

  6. Loss of Desmocollin 3 in Skin Tumor Development and Progression

    PubMed Central

    Chen, Jiangli; O’Shea, Charlene; Fitzpatrick, James E.; Koster, Maranke I.; Koch, Peter J.

    2011-01-01

    Desmocollin 3 (DSC3) is a desmosomal cadherin that is required for maintaining cell adhesion in the epidermis as demonstrated by the intra-epidermal blistering observed in Dsc3 null skin. Recently, it has been suggested that deregulated expression of DSC3 occurs in certain human tumor types. It is not clear whether DSC3 plays a role in the development or progression of cancers arising in stratified epithelia such as the epidermis. To address this issue, we generated a mouse model in which Dsc3 expression is ablated in K-Ras oncogene-induced skin tumors. Our results demonstrate that loss of Dsc3 leads to an increase in K-Ras induced skin tumors. We hypothesize that acantholysis-induced epidermal hyperplasia in the Dsc3 null epidermis facilitates Ras-induced tumor development. Further, we demonstrate that spontaneous loss of DSC3 expression is a common occurrence during human and mouse skin tumor progression. This loss occurs in tumor cells invading the dermis. Interestingly, other desmosomal proteins are still expressed in tumor cells that lack DSC3, suggesting a specific function of DSC3 loss in tumor progression. While loss of DSC3 on the skin surface leads to epidermal blistering, it does not appear to induce loss of cell-cell adhesion in tumor cells invading the dermis, most likely due to a protection of these cells within the dermis from mechanical stress. We thus hypothesize that DSC3 can contribute to the progression of tumors both by cell adhesion-dependent (skin surface) and likely by cell adhesion-independent (invading tumor cells) mechanisms. PMID:21681825

  7. Desmocollin 2 is a new immunohistochemical marker indicative of squamous differentiation in urothelial carcinoma.

    PubMed

    Hayashi, Tetsutaro; Sentani, Kazuhiro; Oue, Naohide; Anami, Katsuhiro; Sakamoto, Naoya; Ohara, Shinya; Teishima, Jun; Noguchi, Tsuyoshi; Nakayama, Hirofumi; Taniyama, Kiyomi; Matsubara, Akio; Yasui, Wataru

    2011-10-01

    Urothelial carcinoma (UC) with squamous differentiation tends to present at higher stages than pure UC. To distinguish UC with squamous differentiation from pure UC, a sensitive and specific marker is needed. Desmocollin 2 (DSC2) is a protein localized in desmosomal junctions of stratified epithelium, but little is known about its biological significance in bladder cancer. We examined the utility of DSC2 as a diagnostic marker. We analysed the immunohistochemical characteristics of DSC2, and studied the relationship of DSC2 expression with the expression of the known markers uroplakin III (UPIII), cytokeratin (CK)7, CK20, epidermal growth factor receptor (EGFR), and p53. DSC2 staining was detected in 24 of 25 (96%) cases of UC with squamous differentiation, but in none of 85 (0%) cases of pure UC. DSC2 staining was detected only in areas of squamous differentiation. DSC2 expression was mutually exclusive of UPIII expression, and was correlated with EGFR expression. Furthermore, DSC2 expression was correlated with higher stage (P = 0.0314) and poor prognosis (P = 0.0477). DSC2 staining offers high sensitivity (96%) and high specificity (100%) for the detection of squamous differentiation in UC. DSC2 is a useful immunohistochemical marker for separation of UC with squamous differentiation from pure UC. 2011 Blackwell Publishing Limited.

  8. Extending the Utility of the Parabolic Approximation in Medical Ultrasound Using Wide-Angle Diffraction Modeling.

    PubMed

    Soneson, Joshua E

    2017-04-01

    Wide-angle parabolic models are commonly used in geophysics and underwater acoustics but have seen little application in medical ultrasound. Here, a wide-angle model for continuous-wave high-intensity ultrasound beams is derived, which approximates the diffraction process more accurately than the commonly used Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation without increasing implementation complexity or computing time. A method for preventing the high spatial frequencies often present in source boundary conditions from corrupting the solution is presented. Simulations of shallowly focused axisymmetric beams using both the wide-angle and standard parabolic models are compared to assess the accuracy with which they model diffraction effects. The wide-angle model proposed here offers improved focusing accuracy and less error throughout the computational domain than the standard parabolic model, offering a facile method for extending the utility of existing KZK codes.

  9. Clinical application of plasma thermograms. Utility, practical approaches and considerations.

    PubMed

    Garbett, Nichola C; Mekmaysy, Chongkham S; DeLeeuw, Lynn; Chaires, Jonathan B

    2015-04-01

    Differential scanning calorimetry (DSC) studies of blood plasma are part of an emerging area of the clinical application of DSC to biofluid analysis. DSC analysis of plasma from healthy individuals and patients with various diseases has revealed changes in the thermal profiles of the major plasma proteins associated with the clinical status of the patient. The sensitivity of DSC to the concentration of proteins, their interactions with other proteins or ligands, or their covalent modification underlies the potential utility of DSC analysis. A growing body of literature has demonstrated the versatility and performance of clinical DSC analysis across a range of biofluids and in a number of disease settings. The principles, practice and challenges of DSC analysis of plasma are described in this article. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Clinical application of plasma thermograms. Utility, practical approaches and considerations

    PubMed Central

    Garbett, Nichola C.; Mekmaysy, Chongkham S.; DeLeeuw, Lynn; Chaires, Jonathan B.

    2014-01-01

    Differential scanning calorimetry (DSC) studies of blood plasma are part of an emerging area of the clinical application of DSC to biofluid analysis. DSC analysis of plasma from healthy individuals and patients with various diseases has revealed changes in the thermal profiles of the major plasma proteins associated with the clinical status of the patient. The sensitivity of DSC to the concentration of proteins, their interactions with other proteins or ligands, or their covalent modifications underlies the potential utility of DSC analysis. A growing body of literature has demonstrated the versatility and performance of clinical DSC analysis across a range of biofluids and in a number of disease settings. The principles, practice and challenges of DSC analysis of plasma are described in this article. PMID:25448297

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paliwal, B; Asprey, W; Yan, Y

    Purpose: In order to take advantage of the high resolution soft tissue imaging available in MR images, we investigated 3D images obtained with the low field 0.35 T MR in ViewRay to serve as an alternative to CT scans for radiotherapy treatment planning. In these images, normal and target structure delineation can be visualized. Assessment is based upon comparison with the CT images and the ability to produce comparable contours. Methods: Routine radiation oncology CT scans were acquired on five patients. Contours of brain, brainstem, esophagus, heart, lungs, spinal cord, and the external body were drawn. The same five patientsmore » were then scanned on the ViewRay TrueFISP-based imaging pulse sequence. The same organs were selected on the MR images and compared to those from the CT scan. Physical volume and the Dice Similarity Coefficient (DSC) were used to assess the contours from the two systems. Image quality stability was quantitatively ensured throughout the study following the recommendations of the ACR MR accreditation procedure. Results: The highest DSC of 0.985, 0.863, and 0.843 were observed for brain, lungs, and heart respectively. On the other hand, the brainstem, spinal cord, and esophagus had the lowest DSC. Volume agreement was most satisfied for the heart (within 5%) and the brain (within 2%). Contour volume for the brainstem and lung (a widely dynamic organ) varied the most (27% and 19%). Conclusion: The DSC and volume measurements suggest that the results obtained from ViewRay images are quantitatively consistent and comparable to those obtained from CT scans for the brain, heart, and lungs. MR images from ViewRay are well-suited for treatment planning and for adaptive MRI-guided radiotherapy. The physical data from 0.35 T MR imaging is consistent with our geometrical understanding of normal structures.« less

  12. Coupling distributed stormwater collection and managed aquifer recharge: Field application and implications.

    PubMed

    Beganskas, S; Fisher, A T

    2017-09-15

    Groundwater is increasingly important for satisfying California's growing fresh water demand. Strategies like managed aquifer recharge (MAR) can improve groundwater supplies, mitigating the negative consequences of persistent groundwater overdraft. Distributed stormwater collection (DSC)-MAR projects collect and infiltrate excess hillslope runoff before it reaches a stream, focusing on 40-400 ha drainage areas (100-1000 ac). We present results from six years of DSC-MAR operation-including high resolution analyses of precipitation, runoff generation, infiltration, and sediment transport-and discuss their implications for regional resource management. This project generated significant water supply benefit over six years, including an extended regional drought, collecting and infiltrating 5.3 × 10 5  m 3 (426 ac-ft). Runoff generation was highly sensitive to sub-daily storm frequency, duration, and intensity, and a single intense storm often accounted for a large fraction of annual runoff. Observed infiltration rates varied widely in space and time. The basin-average infiltration rate during storms was 1-3 m/d, with point-specific rates up to 8 m/d. Despite efforts to limit sediment load, 8.2 × 10 5  kg of fine-grained sediment accumulated in the infiltration basin over three years, likely reducing soil infiltration capacity. Periodic removal of accumulated material, better source control, and/or improved sediment detention could mitigate this effect in the future. Regional soil analyses can maximize DSC-MAR benefits by identifying high-infiltration capacity features and characterizing upland sediment sources. A regional network of DSC-MAR projects could increase groundwater supplies while contributing to improved groundwater quality, flood mitigation, and stakeholder engagement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Comparison of protocols measuring diffusion and partition coefficients in the stratum corneum

    PubMed Central

    Rothe, H.; Obringer, C.; Manwaring, J.; Avci, C.; Wargniez, W.; Eilstein, J.; Hewitt, N.; Cubberley, R.; Duplan, H.; Lange, D.; Jacques‐Jamin, C.; Klaric, M.; Schepky, A.

    2017-01-01

    Abstract Partition (K) and diffusion (D) coefficients are important to measure for the modelling of skin penetration of chemicals through the stratum corneum (SC). We compared the feasibility of three protocols for the testing of 50 chemicals in our main studies, using three cosmetics‐relevant model chemicals with a wide range of logP values. Protocol 1: SC concentration‐depth profile using tape‐stripping (measures KSC/v and DSC/HSC 2, where HSC is the SC thickness); Protocol 2A: incubation of isolated SC with chemical (direct measurement of KSC/v only) and Protocol 2B: diffusion through isolated SC mounted on a Franz cell (measures KSC/v and DSC/HSC 2, and is based on Fick's laws). KSC/v values for caffeine and resorcinol using Protocol 1 and 2B were within 30% of each other, values using Protocol 2A were ~two‐fold higher, and all values were within 10‐fold of each other. Only indirect determination of KSC/v by Protocol 2B was different from the direct measurement of KSC/v by Protocol 2A and Protocol 1 for 7‐EC. The variability of KSC/v for all three chemicals using Protocol 2B was higher compared to Protocol 1 and 2A. DSC/HSC 2 values for the three chemicals were of the same order of magnitude using all three protocols. Additionally, using Protocol 1, there was very little difference between parameters measured in pig and human SC. In conclusion, KSC/v, and DSC values were comparable using different methods. Pig skin might be a good surrogate for human skin for the three chemicals tested. Copyright © 2017 The Authors Journal of Applied Toxicology published by John Wiley & Sons Ltd. PMID:28139006

  14. Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index1

    PubMed Central

    Zou, Kelly H.; Warfield, Simon K.; Bharatha, Aditya; Tempany, Clare M.C.; Kaus, Michael R.; Haker, Steven J.; Wells, William M.; Jolesz, Ferenc A.; Kikinis, Ron

    2005-01-01

    Rationale and Objectives To examine a statistical validation method based on the spatial overlap between two sets of segmentations of the same anatomy. Materials and Methods The Dice similarity coefficient (DSC) was used as a statistical validation metric to evaluate the performance of both the reproducibility of manual segmentations and the spatial overlap accuracy of automated probabilistic fractional segmentation of MR images, illustrated on two clinical examples. Example 1: 10 consecutive cases of prostate brachytherapy patients underwent both preoperative 1.5T and intraoperative 0.5T MR imaging. For each case, 5 repeated manual segmentations of the prostate peripheral zone were performed separately on preoperative and on intraoperative images. Example 2: A semi-automated probabilistic fractional segmentation algorithm was applied to MR imaging of 9 cases with 3 types of brain tumors. DSC values were computed and logit-transformed values were compared in the mean with the analysis of variance (ANOVA). Results Example 1: The mean DSCs of 0.883 (range, 0.876–0.893) with 1.5T preoperative MRI and 0.838 (range, 0.819–0.852) with 0.5T intraoperative MRI (P < .001) were within and at the margin of the range of good reproducibility, respectively. Example 2: Wide ranges of DSC were observed in brain tumor segmentations: Meningiomas (0.519–0.893), astrocytomas (0.487–0.972), and other mixed gliomas (0.490–0.899). Conclusion The DSC value is a simple and useful summary measure of spatial overlap, which can be applied to studies of reproducibility and accuracy in image segmentation. We observed generally satisfactory but variable validation results in two clinical applications. This metric may be adapted for similar validation tasks. PMID:14974593

  15. Direct Ca2+-dependent Heterophilic Interaction between Desmosomal Cadherins, Desmoglein and Desmocollin, Contributes to Cell–Cell Adhesion

    PubMed Central

    Chitaev, Nikolai A.; Troyanovsky, Sergey M.

    1997-01-01

    Human fibrosarcoma cells, HT-1080, feature extensive adherens junctions, lack mature desmosomes, and express a single known desmosomal protein, Desmoglein 2 (Dsg2). Transfection of these cells with bovine Desmocollin 1a (Dsc1a) caused dramatic changes in the subcellular distribution of endogenous Dsg2. Both cadherins clustered in the areas of the adherens junctions, whereas only a minor portion of Dsg2 was seen in these areas in the parental cells. Deletion mapping showed that intact extracellular cadherin-like repeats of Dsc1a (Arg1-Thr170) are required for the translocation of Dsg2. Deletion of the intracellular C-domain that mediates the interaction of Dsc1a with plakoglobin, or the CSI region that is involved in the binding to desmoplakin, had no effect. Coimmunoprecipitation experiments of cell lysates stably expressing Dsc1a with anti-Dsc or -Dsg antibodies demonstrate that the desmosomal cadherins, Dsg2 and Dsc1a, are involved in a direct Ca2+-dependent interaction. This conclusion was further supported by the results of solid phase binding experiments. These showed that the Dsc1a fragment containing cadherin-like repeats 1 and 2 binds directly to the extracellular portion of Dsg in a Ca2+-dependent manner. The contribution of the Dsg/ Dsc interaction to cell–cell adhesion was tested by coculturing HT-1080 cells expressing Dsc1a with HT-1080 cells lacking Dsc but expressing myc-tagged plakoglobin (MPg). In the latter cells, MPg and the endogenous Dsg form stable complexes. The observed specific coimmunoprecipitation of MPg by anti-Dsc antibodies in coculture indicates that an intercellular interaction between Dsc1 and Dsg is involved in cell–cell adhesion. PMID:9214392

  16. Distinct Roles of the DmNav and DSC1 Channels in the Action of DDT and Pyrethroids

    PubMed Central

    Rinkevich, Frank D.; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S.; Dong, Ke

    2015-01-01

    Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (parats) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a parats1 allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in parats1 mutant flies was almost completely abolished in parats1;DSC1−/− double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w1118A), and the parats1;DSC1−/− double mutant flies were even more resistant to DDT compared to the DSC1 knockout or parats1 mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance. PMID:25687544

  17. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Cheng, Xudong; Pan, Yuelei; Li, Congcong; Gong, Lunlun; Zhang, Heping

    2018-04-01

    In order to maintain the integrity, glass fiber (GF) reinforced silica aerogel composites were synthesized using methltrimethoxysilane (MTMS) and water glass co-precursor by freeze drying method. The composites were characterized by scanning electron microscopy, Brunauer-Emmett-Teller analysis, uniaxial compressive test, three-point bending test, thermal conductivity analysis, contact angle test, TG-DSC analysis. It was found that the molar ratio of MTMS/water glass could significantly affect the properties of composites. The bulk density and thermal conductivity first decreased and then increased with the increasing molar ratio. The composites showed remarkable mechanical strength and flexibility compared with pure silica aerogel. Moreover, when the molar ratio is 1.8, the composites showed high specific surface area (870.9 m2/g), high contact angle (150°), great thermal stability (560 °C) and low thermal conductivity (0.0248 W/m·K). These outstanding properties indicate that GF/aerogels have broad prospects in the field of thermal insulation.

  18. Crystallization in Micellar Cores: confinement effects and dynamics

    NASA Astrophysics Data System (ADS)

    Lund, Reidar; Zinn, Thomas; Willner, Lutz; Department of Chemistry, University of Oslo Team; Forschungszentrum Jülich Collaboration

    It is well known that liquids confined to small nanoscopic pores and droplets exhibit thermal behavior very different from bulk samples. Here we demonstrate that n-alkanes forming 2-3 nm small micellar cores are considerably affected by confinement in analogue with hard confined systems. We study micelles form by self-assembly of a series of well-defined n-Alkyl-PEO polymers in aqueous solutions. By using small-angle X-ray scattering (SAXS), densiometry and differential scanning calorimetry (DSC), we show that n-alkane exhibit a first-order phase transition i.e. melting. Correlating the structural and thermodynamic data, we find that a melting depression can be accurately described by the Gibbs-Thomson equation. ∖f1 The effect of core crystallinity on the molecular exchange kinetics is investigated using time-resolved small-angle neutron scattering (TR-SANS). We show that there are considerable entropic and enthalpic contributions from the chain packing that affect the kinetic stability of micelles. ∖pard

  19. 47 CFR 80.409 - Station logs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... calling (DSC) equipment has been verified by actual communications or a test call; (ii) The portable... devices which do not have integral navigation receivers, including: VHF DSC, MF DSC, satellite EPIRB and HF DSC or INMARSAT SES. On a ship without integral or directly connected navigation receiver input to...

  20. 47 CFR 80.409 - Station logs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... calling (DSC) equipment has been verified by actual communications or a test call; (ii) The portable... devices which do not have integral navigation receivers, including: VHF DSC, MF DSC, satellite EPIRB and HF DSC or INMARSAT SES. On a ship without integral or directly connected navigation receiver input to...

  1. The Zeldovich approximation and wide-angle redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Castorina, Emanuele; White, Martin

    2018-06-01

    The contribution of line-of-sight peculiar velocities to the observed redshift of objects breaks the translational symmetry of the underlying theory, modifying the predicted 2-point functions. These `wide angle effects' have mostly been studied using linear perturbation theory in the context of the multipoles of the correlation function and power spectrum . In this work we present the first calculation of wide angle terms in the Zeldovich approximation, which is known to be more accurate than linear theory on scales probed by the next generation of galaxy surveys. We present the exact result for dark matter and perturbatively biased tracers as well as the small angle expansion of the configuration- and Fourier-space two-point functions and the connection to the multi-frequency angular power spectrum. We compare different definitions of the line-of-sight direction and discuss how to translate between them. We show that wide angle terms can reach tens of percent of the total signal in a measurement at low redshift in some approximations, and that a generic feature of wide angle effects is to slightly shift the Baryon Acoustic Oscillation scale.

  2. Realization of an Ultra-thin Metasurface to Facilitate Wide Bandwidth, Wide Angle Beam Scanning.

    PubMed

    Bah, Alpha O; Qin, Pei-Yuan; Ziolkowski, Richard W; Cheng, Qiang; Guo, Y Jay

    2018-03-19

    A wide bandwidth, ultra-thin, metasurface is reported that facilitates wide angle beam scanning. Each unit cell of the metasurface contains a multi-resonant, strongly-coupled unequal arm Jerusalem cross element. This element consists of two bent-arm, orthogonal, capacitively loaded strips. The wide bandwidth of the metasurface is achieved by taking advantage of the strong coupling within and between its multi-resonant elements. A prototype of the proposed metasurface has been fabricated and measured. The design concept has been validated by the measured results. The proposed metasurface is able to alleviate the well-known problem of impedance mismatch caused by mutual coupling when the main beam of an array is scanned. In order to validate the wideband and wide scanning ability of the proposed metasurface, it is integrated with a wideband antenna array as a wide angle impedance matching element. The metasurface-array combination facilitates wide angle scanning over a 6:1 impedance bandwidth without the need for bulky dielectrics or multi-layered structures.

  3. 47 CFR 80.359 - Frequencies for digital selective calling (DSC).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Frequencies for digital selective calling (DSC... for digital selective calling (DSC). (a) General purpose calling. The following table describes the calling frequencies for use by authorized ship and coast stations for general purpose DSC. There are three...

  4. Design and long-term monitoring of DSC/CIGS tandem solar module

    NASA Astrophysics Data System (ADS)

    Vildanova, M. F.; Nikolskaia, A. B.; Kozlov, S. S.; Shevaleevskiy, O. I.

    2015-11-01

    This paper describes the design and development of tandem dye-sensitized/Cu(In, Ga)Se (DSC/CIGS) PV modules. The tandem PV module comprised of the top DSC module and a bottom commercial 0,8 m2 CIGS module. The top DSC module was made of 10 DSC mini-modules with the field size of 20 × 20 cm2 each. Tandem DSC/CIGS PV modules were used for providing the long-term monitoring of energy yield and electrical parameters in comparison with standalone CIGS modules under outdoor conditions. The outdoor test facility, containing solar modules of both types and a measurement unit, was located on the roof of the Institute of Biochemical Physics in Moscow. The data obtained during monitoring within the 2014 year period has shown the advantages of the designed tandem DSC/CIGS PV-modules over the conventional CIGS modules, especially for cloudy weather and low-intensity irradiation conditions.

  5. Distinct roles of the DmNav and DSC1 channels in the action of DDT and pyrethroids.

    PubMed

    Rinkevich, Frank D; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S; Dong, Ke

    2015-03-01

    Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (para(ts)) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a para(ts1) allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in para(ts1) mutant flies was almost completely abolished in para(ts1);DSC1(-/-) double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w(1118A)), and the para(ts1);DSC1(-/-) double mutant flies were even more resistant to DDT compared to the DSC1 knockout or para(ts1) mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Enhancement of solubility and antidiabetic effects of Repaglinide using spray drying technique in STZ-induced diabetic rats.

    PubMed

    Varshosaz, Jaleh; Minayian, Mohsen; Ahmadi, Mahdieh; Ghassami, Erfaneh

    2017-09-01

    The purpose of the study was to enhance the solubility of the poorly water-soluble drug, Repaglinide using spray drying based solid dispersion technique by different carriers including Eudragit E100, hydroxyl propyl cellulose Mw 80 000 and poly vinyl pyrollidone K30. Optimization of the best formulation was carried out according to drug solubility, release profile, particle size and angle of repose of the solid dispersions. The optimized sample was characterized using X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The morphology of the dispersions was studied by SEM. The blood glucose lowering effect of spray dried solid dispersions was studied in normal and streptozocin-induced diabetic rats. The results showed that Eudragit E100 in 1:3 ratio could enhance drug solubility by 100-fold. DSC studies indicated a marked change in melting point of the drug possibly due to strong hydrogen bonds between the drug and Eudragit, while FT-IR study did not show obvious interactions between them. According to XRPD results Repaglinide converted to an amorphous state in the spray dried dispersions. Spray dried Repaglinide reduced the blood glucose level significantly during the 8 h of obtaining blood samples in comparison with untreated drug (p < 0.05).

  7. Preparation and Characterization of Liquisolid Compacts for Improved Dissolution of Telmisartan

    PubMed Central

    Narra, Nataraj; Rama Rao, Tadikonda

    2014-01-01

    The objective of the present work was to obtain pH independent and improved dissolution profile for a poorly soluble drug, telmisartan using liquisolid compacts. Liquisolid compacts were prepared using Transcutol HP as vehicle, Avicel PH102 as carrier, and Aerosil 200 as a coating material. The formulations were evaluated for drug excipient interactions, change in crystallinity of drug, flow properties, and general quality control tests of tablets using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), angle of repose, and various pharmacopoeial tests. In vitro dissolution studies were performed at three pH conditions (1.2, 4.5 and 7.4). Stability studies were performed at 40°C and 75% RH for three months. The formulation was found to comply with Indian pharmacopoeial limits for tablets. FTIR studies confirmed no interaction between drug and excipients. XRD and DSC studies indicate change/reduction in crystallinity of drug. Dissolution media were selected based on the solubility studies. The optimized formulation showed pH independent release profile with significant improvement (P < 0.005) in dissolution compared to plain drug and conventional marketed formulation. No significant difference was seen in the tablet properties, and drug release profile after storage for 3 months. PMID:25371826

  8. Improved Cytotoxic Effect of Doxorubicin by Its Combination with Sclareol in Solid Lipid Nanoparticle Suspension.

    PubMed

    Oliveira, Mariana Silva; Lima, Bruno Henrique Santiago; Goulart, Gisele Assis Castro; Mussi, Samuel Vidal; Borges, Gabriel Silva Marques; Oréfice, Rodrigo Lambert; Ferreira, Lucas Antônio Miranda

    2018-08-01

    This work aims to develop, characterize, and evaluate the anticancer activity of solid lipid nanoparticles (SLN) containing doxorubicin (DOX), an antitumoral from the antracycline class, and sclareol (SC), a lipophilic labdene diterpene (SLN-DOX-SC). The SLN were characterized by Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Small Angle X-ray Diffraction (SAXS), in vitro release, transmission electron microscopy, and polarized light microscopy. Evaluation of cell viability was performed in two cell cultures: MCF-7 (human breast cancer) and 4T1 (murine breast cancer). The SLN showed a size in the range of 128 nm, negative zeta potential, DOX encapsulation efficiency (EE) of 99%, and drug loading (DL) of 66 mg/g. Characterization of the formulation by DSC, XRD, and SAXS revealed the presence of DOX inside the nanoparticles of SLN and suggested increased expulsion/release of this drug when associated with SC. The release profiles revealed that the SLN-DOX-SC showed controlled release of DOX at pH 7.4 with enhanced drug release at low pH, useful for cancer treatment. The SLN-DOX-SC demonstrated to be more effective than the free DOX against 4T1 cells. So, the developed SLN efficiently encapsulate DOX and SC and show good potential as an alternative for cancer treatment.

  9. Human decidual stromal cells secrete soluble pro-apoptotic factors during decidualization in a cAMP-dependent manner.

    PubMed

    Leno-Durán, E; Ruiz-Magaña, M J; Muñoz-Fernández, R; Requena, F; Olivares, E G; Ruiz-Ruiz, C

    2014-10-10

    Is there a relationship between decidualization and apoptosis of decidual stromal cells (DSC)? Decidualization triggers the secretion of soluble factors that induce apoptosis in DSC. The differentiation and apoptosis of DSC during decidualization of the receptive decidua are crucial processes for the controlled invasion of trophoblasts in normal pregnancy. Most DSC regress in a time-dependent manner, and their removal is important to provide space for the embryo to grow. However, the mechanism that controls DSC death is poorly understood. The apoptotic response of DSC was analyzed after exposure to different exogenous agents and during decidualization. The apoptotic potential of decidualized DSC supernatants and prolactin (PRL) was also evaluated. DSC lines were established from samples of decidua from first trimester pregnancies. Apoptosis was assayed by flow cytometry. PRL production, as a marker of decidualization, was determined by enzyme-linked immunosorbent assay. DSCs were resistant to a variety of apoptosis-inducing substances. Nevertheless, DSC underwent apoptosis during decidualization in culture, with cAMP being essential for both apoptosis and differentiation. In addition, culture supernatants from decidualized DSC induced apoptosis in undifferentiated DSC, although paradoxically these supernatants decreased the spontaneous apoptosis of decidual lymphocytes. Exogenously added PRL did not induce apoptosis in DSC and an antibody that neutralized the PRL receptor did not decrease the apoptosis induced by supernatants. Further studies are needed to examine the involvement of other soluble factors secreted by decidualized DSC in the induction of apoptosis. The present results indicate that apoptosis of DSC occurs in parallel to differentiation, in response to decidualization signals, with soluble factors secreted by decidualized DSC being responsible for triggering cell death. These studies are relevant in the understanding of how the regression of decidua, a crucial process for successful pregnancy, takes place. This work was supported by the Consejería de Economía, Innovación y Ciencia, Junta de Andalucía (Grant CTS-6183, Proyectos de Investigación de Excelencia 2010 to C.R.-R.) and the Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain (Grants PS09/00339 and PI12/01085 to E.G.O.). E.L.-D. was supported by fellowships from the Ministerio de Educación y Ciencia, Spain and the University of Granada. The authors have no conflict of interest. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    PubMed Central

    Osten, Julia; Milkereit, Benjamin; Schick, Christoph; Kessler, Olaf

    2015-01-01

    In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181) in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed) was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC) was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  11. Microstructural Organization of Elastomeric Polyurethanes with Siloxane-Containing Soft Segments

    NASA Astrophysics Data System (ADS)

    Choi, Taeyi; Weklser, Jadwiga; Padsalgikar, Ajay; Runt, James

    2011-03-01

    In the present study, we investigate the microstructure of two series of segmented polyurethanes (PUs) containing siloxane-based soft segments and the same hard segments, the latter synthesized from diphenylmethane diisocyanate and butanediol. The first series is synthesized using a hydroxy-terminated polydimethylsiloxane macrodiol and varying hard segment contents. The second series are derived from an oligomeric diol containing both siloxane and aliphatic carbonate species. Hard domain morphologies were characterized using tapping mode atomic force microscopy and quantitative analysis of hard/soft segment demixing was conducted using small-angle X-ray scattering. The phase transitions of all materials were investigated using DSC and dynamic mechanical analysis, and hydrogen bonding by FTIR spectroscopy.

  12. Stable high absorption metamaterial for wide-angle incidence of terahertz wave

    NASA Astrophysics Data System (ADS)

    Du, Qiujiao; Zeng, Zuoxun; Xiang, Dong; Lv, Tao; Zhang, Guangyong; Yang, Hongwu

    2014-04-01

    We propose a metamaterial based on metallic Jerusalem cross and cross-wire structures for realizing relatively stable high absorption with respect to the wide angle incidence of both polarized terahertz (THz) waves. Numerical simulations are carried out to verify the proposed absorber. For both transverse electric and transverse magnetic polarizations, absorptions around 0.93 THz reach nearly up to unity under normal incidence and maintain above 97% over a wide incidence angle range. The THz absorber can be easily micro-fabricated due to a thickness about 40 times smaller than operating wavelength. The proposed metamaterial is a promising candidate as absorbing element in THz thermal imager, due to its wide angle, stable high absorption and very thin thickness.

  13. Wide-angle full-vector beam propagation method based on an alternating direction implicit preconditioner

    NASA Astrophysics Data System (ADS)

    Chui, Siu Lit; Lu, Ya Yan

    2004-03-01

    Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.

  14. Wide-angle full-vector beam propagation method based on an alternating direction implicit preconditioner.

    PubMed

    Chui, Siu Lit; Lu, Ya Yan

    2004-03-01

    Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.

  15. Preparation and characterization of cyanocobalamin (vit B12) microemulsion properties and structure for topical and transdermal application.

    PubMed

    Salimi, Anayatollah; Sharif Makhmal Zadeh, Behzad; Moghimipour, Eskandar

    2013-07-01

    The objective of this study was to design a topical microemulsion of Vit B12 and to study the correlation between internal structure and physicochemical properties of the microemulsions. Microemulsions are thermodynamically stable mixtures of water, oil, surfactants and usually cosurfactants with several advantages for topical and transdermal drug delivery. The formulation of microemulsions for pharmaceutical use requires a clear understanding of the properties and microstructures of the microemulsions. In this study, phase behavior and microstructure of traditional and novel microemulsions of Vit B12 have been investigated by Small-angle X-ray (SAXS), differential scanning calorimetery (DSC) and measuring density, particle size, conductivity and surface tension. WO and bicontinuous microemulsion with different microstructures were found in novel and traditional formulations. In this study, amount of water, surfactant concentration, oil/ surfactant ratio and physicochemical properties of cosurfactants influenced the microstructures. In both formulations, water behavior was affected by the concentration of the surfactant. Water Solubilization capacity and enthalpy of exothermic peak of interfacial and free water of traditional formulations were more than novel ones. This means that the affinity of water to interfacial film is dependent on the surfactant properties.   This study showed that both microemulsions provided good solubility of Vit B12 with a wide range of internal structure. Low water solubilization capacity is a common property of microemulsions that can affect drug release and permeability through the skin.  Based on Vit B12 properties, specially, intermediate oil and water solubility, better drug partitioning into the skin may be obtained by traditional formulations with wide range of structure and high amount of free and bounded water.    

  16. An all-reflective wide-angle flat-field telescope for space

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1984-01-01

    An all-reflective wide-angle flat-field telescope (WAFFT) designed and built at Goddard Space Flight Center demonstrates the markedly improved wide-angle imaging capability which can be achieved with a design based on a recently announced class of unobscured 3-mirror optical systems. Astronomy and earth observation missions in space dictate the necessity or preference for wide-angle all-reflective systems which can provide UV through IR wavelength coverage and tolerate the space environment. An initial prototype unit has been designed to meet imaging requirements suitable for monitoring the ultraviolet sky from space. The unobscured f/4, 36 mm efl system achieves a full 20 x 30 deg field of view with resolution over a flat focal surface that is well matched for use with advanced ultraviolet image array detectors. Aspects of the design and fabrication approach, which have especially important bearing on the system solution, are reviewed; and test results are compared with the analytic performance predictions. Other possible applications of the WAFFT class of imaging system are briefly discussed. The exceptional wide-angle, high quality resolution, and very wide spectral coverage of the WAFFT-type optical system could make it a very important tool for future space research.

  17. Short-focus and ultra-wide-angle lens design in wavefront coding

    NASA Astrophysics Data System (ADS)

    Zhang, Jiyan; Huang, Yuanqing; Xiong, Feibing

    2016-10-01

    Wavefront coding (WFC) is a hybrid technology designed to increase depth of field of conventional optics. The goal of our research is to apply this technology to the short-focus and ultra-wide-angle lens which suffers from the aberration related with large field of view (FOV) such as coma and astigmatism. WFC can also be used to compensate for other aberration which is sensitive to the FOV. Ultra-wide-angle lens has a little depth of focus because it has small F number and short-focus. We design a hybrid lens combing WFC with the ultra-wide-angle lens. The full FOV and relative aperture of the final design are up to170° and 1/1.8 respectively. The focal length is 2 mm. We adopt the cubic phase mask (CPM) in the design. The conventional design will have a wide variation of the point spread function (PSF) across the FOV and it is very sensitive with the variation of the FOV. The new design we obtain the PSF is nearly invariant over the whole FOV. But the result of the design also shows the little difference between the horizontal and vertical length of the PSF. We analyze that the CPM is non-symmetric phase mask and the FOV is so large, which will generate variation in the final image quality. For that reason, we apply a new method to avoid that happened. We try to make the rays incident on the CPM with small angle and decrease the deformation of the PSF. The experimental result shows the new method to optimize the CPM is fit for the ultra-wide-angle lens. The research above will be a helpful instruction to design the ultra-wide-angle lens with WFC.

  18. Spinnability and Characteristics of Polyvinylidene Fluoride (PVDF)-based Bicomponent Fibers with a Carbon Nanotube (CNT) Modified Polypropylene Core for Piezoelectric Applications

    PubMed Central

    Glauß, Benjamin; Steinmann, Wilhelm; Walter, Stephan; Beckers, Markus; Seide, Gunnar; Gries, Thomas; Roth, Georg

    2013-01-01

    This research explains the melt spinning of bicomponent fibers, consisting of a conductive polypropylene (PP) core and a piezoelectric sheath (polyvinylidene fluoride). Previously analyzed piezoelectric capabilities of polyvinylidene fluoride (PVDF) are to be exploited in sensor filaments. The PP compound contains a 10 wt % carbon nanotubes (CNTs) and 2 wt % sodium stearate (NaSt). The sodium stearate is added to lower the viscosity of the melt. The compound constitutes the fiber core that is conductive due to a percolation CNT network. The PVDF sheath’s piezoelectric effect is based on the formation of an all-trans conformation β phase, caused by draw-winding of the fibers. The core and sheath materials, as well as the bicomponent fibers, are characterized through different analytical methods. These include wide-angle X-ray diffraction (WAXD) to analyze crucial parameters for the development of a crystalline β phase. The distribution of CNTs in the polymer matrix, which affects the conductivity of the core, was investigated by transmission electron microscopy (TEM). Thermal characterization is carried out by conventional differential scanning calorimetry (DSC). Optical microscopy is used to determine the fibers’ diameter regularity (core and sheath). The materials’ viscosity is determined by rheometry. Eventually, an LCR tester is used to determine the core’s specific resistance. PMID:28811400

  19. Water hyacinth: a possible alternative rate retarding natural polymer used in sustained release tablet design

    PubMed Central

    Khatun, Sabera; Sutradhar, Kumar B.

    2014-01-01

    In recent years natural polymers have been widely used because of their effectiveness and availability over synthetic polymers. In this present investigation matrix tablets of Metformin hydrochloride were formulated using Water hyacinth powder and its rate retardant activity was studied. Tablets were prepared using wet granulation method with 8% starch as granulating agent and 5, 10, 15, 20, 25 and 30% of Water hyacinth powder to the drug. In preformulation study, angle of repose, Carr's Index and Hausner ratio were calculated. Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) studies were performed and no interactions were found between drug and excipients. Weight variation, friability, hardness, thickness, diameter, and in vitro release study were performed with the prepared matrix tablets. Dissolution studies were conducted using USP type II apparatus at a speed of 100 rpm at 37°C ± 0.5 temperature for 8 h. Though all the formulations comply with both BP and USP requirements, formulation F-1 (5% of Water hyacinth) was the best fitted formula. The drug release patterns were explained in different kinetic models such as Zero order, First order, Higuchi, Hixson Crowell, and Korsmeyer-Peppas equations. The current investigation implies that Water hyacinth has the potential to be used as a rate-retarding agent in sustained release drug formulations. PMID:24966835

  20. Poly(ethylene glycol) layered silicate nanocomposites for retarded drug release prepared by hot-melt extrusion.

    PubMed

    Campbell, Kayleen; Craig, Duncan Q M; McNally, Tony

    2008-11-03

    Composites of paracetamol loaded poly(ethylene glycol) (PEG) with a naturally derived and partially synthetic layered silicate (nanoclay) were prepared using hot-melt extrusion. The extent of dispersion and distribution of the paracetamol and nanoclay in the PEG matrix was examined using a combination of field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and wide-angle X-ray diffraction (WAXD). The paracetamol polymorph was shown to be well dispersed in the PEG matrix and the nanocomposite to have a predominately intercalated and partially exfoliated morphology. The form 1 monoclinic polymorph of the paracetamol was unaltered after the melt mixing process. The crystalline behaviour of the PEG on addition of both paracetamol and nanoclay was investigated using differential scanning calorimetry (DSC) and polarised hot-stage optical microscopy. The crystalline content of PEG decreased by up to 20% when both drug and nanoclay were melt blended with PEG, but the average PEG spherulite size increased by a factor of 4. The time taken for 100% release of paracetamol from the PEG matrix and corresponding diffusion coefficients were significantly retarded on addition of low loadings of both naturally occurring and partially synthetic nanoclays. The dispersed layered silicate platelets encase the paracetamol molecules, retarding diffusion and altering the dissolution behaviour of the drug molecule in the PEG matrix.

  1. All acrylic-based thermoplastic elastomers with high upper service temperature and superior mechanical properties

    DOE PAGES

    Lu, Wei; Wang, Yangyang; Wang, Weiyu; ...

    2017-08-25

    All acrylic-based thermoplastic elastomers (TPEs) offer potential alternatives to the widely-used styrenic TPEs. However, the high entanglement molecular weight ( M e) of polyacrylates, as compared to polydienes, leads to “disappointing” mechanical performance as compared to styrenic TPEs. In this study, triblock copolymers composed of alkyl acrylates with different pendant groups and different glass transition temperatures ( T gs), i.e. 1-adamatyl acrylate (AdA) and tetrahydrofurfuryl acrylate (THFA), were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization. Thermal characterization of the resulting polymers was performed using differential scanning calorimetry (DSC), and the T gs of both segments were observed for themore » block copolymers. This indication of microphase separation behavior was further demonstrated using atomic-force microscopy (AFM) and small angle X-ray scattering (SAXS). Dynamic mechanical analysis (DMA) showed that the softening temperature of the PAdA domains is 123 °C, which is higher than that of both styrenic TPEs and commercial acrylic based TPEs with poly(methyl methacrylate) (PMMA) hard block. Here, the resulting triblock copolymers also exhibited stress–strain behavior superior to that of conventional all acrylic-based TPEs composed of PMMA and poly( n-butyl acrylate) (PBA) made by controlled radical processes, while the tensile strength was lower than for products made by living anionic polymerization.« less

  2. Predictors of Intraocular Pressure After Phacoemulsification in Primary Open-Angle Glaucoma Eyes with Wide Versus Narrower Angles (An American Ophthalmological Society Thesis)

    PubMed Central

    Lin, Shan C.; Masis, Marisse; Porco, Travis C.; Pasquale, Louis R.

    2017-01-01

    Purpose To assess if narrower-angle status and anterior segment optical coherence tomography (AS-OCT) parameters can predict intraocular pressure (IOP) drop in primary open-angle glaucoma (POAG) patients after cataract surgery. Methods This was a prospective case series of consecutive cataract surgery patients with POAG and no peripheral anterior synechiae (PAS) using a standardized postoperative management protocol. Preoperatively, patients underwent gonioscopy and AS-OCT. The same glaucoma medication regimen was resumed by 1 month. Potential predictors of IOP reduction included narrower-angle status by gonioscopy and angle-opening distance (AOD500) as well as other AS-OCT parameters. Mixed-effects regression adjusted for use of both eyes and other potential confounders. Results We enrolled 66 eyes of 40 glaucoma patients. The IOP reduction at 1 year was 4.2±3 mm Hg (26%, P<.001) in the narrower-angle group vs 2.2±3 mm Hg (14%, P<.001) in the wide-angle group (P=.027 for difference), as classified by gonioscopy. By AOD500 classification, the narrower-angle group had 3.4±3 mm Hg (21%, P<.001) reduction vs 2.5±3 mm Hg (16%, P<.001) in the wide-angle group (P=.031 for difference). When the entire cohort was assessed, iris thickness, iris area, and lens vault were correlated with increasing IOP reduction at 1 year (P<.05 for all). Conclusions In POAG eyes, cataract surgery lowered IOP to a greater degree in the narrower-angle group than in the wide-angle group, and parameters relating to iris thickness and area, as well as lens vault, were correlated with IOP reduction. These findings can guide ophthalmologists in their selection of cataract surgery as a potential management option. PMID:29147104

  3. Predictors of Intraocular Pressure After Phacoemulsification in Primary Open-Angle Glaucoma Eyes with Wide Versus Narrower Angles (An American Ophthalmological Society Thesis).

    PubMed

    Lin, Shan C; Masis, Marisse; Porco, Travis C; Pasquale, Louis R

    2017-08-01

    To assess if narrower-angle status and anterior segment optical coherence tomography (AS-OCT) parameters can predict intraocular pressure (IOP) drop in primary open-angle glaucoma (POAG) patients after cataract surgery. This was a prospective case series of consecutive cataract surgery patients with POAG and no peripheral anterior synechiae (PAS) using a standardized postoperative management protocol. Preoperatively, patients underwent gonioscopy and AS-OCT. The same glaucoma medication regimen was resumed by 1 month. Potential predictors of IOP reduction included narrower-angle status by gonioscopy and angle-opening distance (AOD500) as well as other AS-OCT parameters. Mixed-effects regression adjusted for use of both eyes and other potential confounders. We enrolled 66 eyes of 40 glaucoma patients. The IOP reduction at 1 year was 4.2±3 mm Hg (26%, P <.001) in the narrower-angle group vs 2.2±3 mm Hg (14%, P <.001) in the wide-angle group ( P =.027 for difference), as classified by gonioscopy. By AOD500 classification, the narrower-angle group had 3.4±3 mm Hg (21%, P <.001) reduction vs 2.5±3 mm Hg (16%, P <.001) in the wide-angle group ( P =.031 for difference). When the entire cohort was assessed, iris thickness, iris area, and lens vault were correlated with increasing IOP reduction at 1 year ( P <.05 for all). In POAG eyes, cataract surgery lowered IOP to a greater degree in the narrower-angle group than in the wide-angle group, and parameters relating to iris thickness and area, as well as lens vault, were correlated with IOP reduction. These findings can guide ophthalmologists in their selection of cataract surgery as a potential management option.

  4. Comparative study of pulsed-continuous arterial spin labeling and dynamic susceptibility contrast imaging by histogram analysis in evaluation of glial tumors.

    PubMed

    Arisawa, Atsuko; Watanabe, Yoshiyuki; Tanaka, Hisashi; Takahashi, Hiroto; Matsuo, Chisato; Fujiwara, Takuya; Fujiwara, Masahiro; Fujimoto, Yasunori; Tomiyama, Noriyuki

    2018-06-01

    Arterial spin labeling (ASL) is a non-invasive perfusion technique that may be an alternative to dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) for assessment of brain tumors. To our knowledge, there have been no reports on histogram analysis of ASL. The purpose of this study was to determine whether ASL is comparable with DSC-MRI in terms of differentiating high-grade and low-grade gliomas by evaluating the histogram analysis of cerebral blood flow (CBF) in the entire tumor. Thirty-four patients with pathologically proven glioma underwent ASL and DSC-MRI. High-signal areas on contrast-enhanced T 1 -weighted images or high-intensity areas on fluid-attenuated inversion recovery images were designated as the volumes of interest (VOIs). ASL-CBF, DSC-CBF, and DSC-cerebral blood volume maps were constructed and co-registered to the VOI. Perfusion histogram analyses of the whole VOI and statistical analyses were performed to compare the ASL and DSC images. There was no significant difference in the mean values for any of the histogram metrics in both of the low-grade gliomas (n = 15) and the high-grade gliomas (n = 19). Strong correlations were seen in the 75th percentile, mean, median, and standard deviation values between the ASL and DSC images. The area under the curve values tended to be greater for the DSC images than for the ASL images. DSC-MRI is superior to ASL for distinguishing high-grade from low-grade glioma. ASL could be an alternative evaluation method when DSC-MRI cannot be used, e.g., in patients with renal failure, those in whom repeated examination is required, and in children.

  5. X-ray, DFT, FTIR and thermal study of the antimicrobial N-benzenesulfonyl-1H-1,2,3-benzotriazole

    NASA Astrophysics Data System (ADS)

    Komrovsky, Fabián; Sperandeo, Norma R.; Vera, D. Mariano A.; Caira, Mino R.; Mazzieri, María R.

    2018-07-01

    N-benzenesulfonyl-1H-1,2,3-benzotriazole (NBSBZT) is a compound with significant trypanocidal and bactericidal activities, which we reported previously. In this work a combined experimental and theoretical study of its structural and molecular properties is communicated. The crystal structure of NBSBZT was determined by single crystal X-ray diffraction. The molecular vibrations and behavior on heating of NBSBZT were investigated by Fourier Transform Infrared (FTIR) Spectroscopy, Differential Scanning Calorimetry (DSC), Thermogravimetry (TG) and Hot Stage Microscopy (HSM). In parallel, Quantum Chemical calculations based on Density Functional Theory (DFT) and Scaled Quantum Mechanics methods were used to determine the geometrical, energetic and vibrational characteristics of NBSBZT. The study demonstrated that NBSBZT crystallized in the triclinic space group P‾1 (No. 2) with two inversion-related molecules in the unit cell (Z = 2). Its overall molecular conformation can be described by two torsion angles, namely φ1 (N2sbnd N1sbnd S10sbnd C13) = -94.5(2)° and φ2 (N1sbnd S10sbnd C13sbnd C14) = 84.2(2)°. The minimum energy structures found by theoretical calculations showed φ1 = -67.6° and φ2 = 88.0° in vacuum; however, in water, the torsion angles were -77.5° and 88.7°, respectively. The differences in φ1 (Δφ1solid state-vacuum = 26.9° and Δφ1solid state-water = 17.0°) could be attributed to the high intermolecular cohesive forces present in the crystal of NBSBZT. A good correlation between the experimental and theoretical mid-FTIR spectra was found. The DSC, TG and HSM results indicated that NBSBZT was a solvent-free solid, which melted at 128.8 °C but decomposed above 130 °C.

  6. Investigations on neutron irradiated 3D carbon fibre reinforced carbon composite material

    NASA Astrophysics Data System (ADS)

    Venugopalan, Ramani; Alur, V. D.; Patra, A. K.; Acharya, R.; Srivastava, D.

    2018-04-01

    As against conventional graphite materials carbon-carbon (C/C) composite materials are now being contemplated as the promising candidate materials for the high temperature and fusion reactor owing to their high thermal conductivity and high thermal resistance, better mechanical/thermal properties and irradiation stability. The current need is for focused research on novel carbon materials for future new generation nuclear reactors. The advantage of carbon-carbon composite is that the microstructure and the properties can be tailor made. The present study encompasses the irradiation of 3D carbon composite prepared by reinforcement using PAN carbon fibers for nuclear application. The carbon fiber reinforced composite was subjected to neutron irradiation in the research reactor DHRUVA. The irradiated samples were characterized by Differential Scanning Calorimetry (DSC), small angle neutron scattering (SANS), XRD and Raman spectroscopy. The DSC scans were taken in argon atmosphere under a linear heating program. The scanning was carried out at temperature range from 30 °C to 700 °C at different heating rates in argon atmosphere along with reference as unirradiated carbon composite. The Wigner energy spectrum of irradiated composite showed two peaks corresponding to 200 °C and 600 °C. The stored energy data for the samples were in the range 110-170 J/g for temperature ranging from 30 °C to 700 °C. The Wigner energy spectrum of irradiated carbon composite did not indicate spontaneous temperature rise during thermal annealing. Small angle neutron scattering (SANS) experiments have been carried out to investigate neutron irradiation induced changes in porosity of the composite samples. SANS data were recorded in the scattering wave vector range of 0.17 nm-1 to 3.5 nm-1. Comparison of SANS profiles of irradiated and unirradiated samples indicates significant change in pore morphology. Pore size distributions of the samples follow power law size distribution with different exponent. Narrowing of SANS profile of the irradiated sample indicates creation of significant number of larger pores due to neutron irradiation.

  7. Wide-angle imaging system with fiberoptic components providing angle-dependent virtual material stops

    NASA Technical Reports Server (NTRS)

    Vaughan, Arthur H. (Inventor)

    1993-01-01

    A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180 deg strip or arc of a target image. Light received by the spherical mirror section is reflected to a frustoconical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180 deg strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.

  8. 3. WIDE ANGLE OF NEUTRAL BUOYANCY SIMULATOR (NBS) FROM WITHIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. WIDE ANGLE OF NEUTRAL BUOYANCY SIMULATOR (NBS) FROM WITHIN NBS HIGHBAY DOORS. DIVE BELL IN FOREGROUND. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  9. Evaluation of lens distortion errors in video-based motion analysis

    NASA Technical Reports Server (NTRS)

    Poliner, Jeffrey; Wilmington, Robert; Klute, Glenn K.; Micocci, Angelo

    1993-01-01

    In an effort to study lens distortion errors, a grid of points of known dimensions was constructed and videotaped using a standard and a wide-angle lens. Recorded images were played back on a VCR and stored on a personal computer. Using these stored images, two experiments were conducted. Errors were calculated as the difference in distance from the known coordinates of the points to the calculated coordinates. The purposes of this project were as follows: (1) to develop the methodology to evaluate errors introduced by lens distortion; (2) to quantify and compare errors introduced by use of both a 'standard' and a wide-angle lens; (3) to investigate techniques to minimize lens-induced errors; and (4) to determine the most effective use of calibration points when using a wide-angle lens with a significant amount of distortion. It was seen that when using a wide-angle lens, errors from lens distortion could be as high as 10 percent of the size of the entire field of view. Even with a standard lens, there was a small amount of lens distortion. It was also found that the choice of calibration points influenced the lens distortion error. By properly selecting the calibration points and avoidance of the outermost regions of a wide-angle lens, the error from lens distortion can be kept below approximately 0.5 percent with a standard lens and 1.5 percent with a wide-angle lens.

  10. Soil-release behaviour of polyester fabrics after chemical modification with polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Miranda, T. M. R.; Santos, J.; Soares, G. M. B.

    2017-10-01

    The fibres cleanability depends, among other characteristics, on their hydrophilicity. Hydrophilic fibres are easy-wash materials but hydrophobic fibres are difficult to clean due to their higher water-repellent surfaces. This type of surfaces, like polyester (PET), produce an accumulation of electrostatic charges, which favors adsorption and retention of dirt. Thus, the polyester soil-release properties can be increased by finishing processes that improve fiber hydrophilicity. In present study, PET fabric modification was described by using poly(ethylene glycol) (PEG) and N,N´-dimethylol-4,5-dihydroxyethylene urea (DMDHEU) chemically modified resin. Briefly, the modification process was carried out in two steps, one to hydrolyse the polyester and create hydroxyl and carboxylic acid groups on the surface and other to crosslink the PEG chains. The resulting materials were characterized by contact angle, DSC and FTIR-ATR methods. Additionally, the soil release behavior and the mechanical properties of modified PET were evaluated. For the best process conditions, the treated PET presented 0° contact angle, grade 5 stain release and acceptable mechanical performance.

  11. Functional characterization of the Dsc E3 ligase complex in the citrus postharvest pathogen Penicillium digitatum.

    PubMed

    Ruan, Ruoxin; Chung, Kuang-Ren; Li, Hongye

    2017-12-01

    Sterol regulatory element binding proteins (SREBPs) are required for sterol homeostasis in eukaryotes. Activation of SREBPs is regulated by the Dsc E3 ligase complex in Schizosaccharomyces pombe and Aspergillus spp. Previous studies indicated that an SREBP-coding gene PdsreA is required for fungicide resistance and ergosterol biosynthesis in the citrus postharvest pathogen Penicillium digitatum. In this study, five genes, designated PddscA, PddscB, PddscC, PddscD, and PddscE encoding the Dsc E3 ligase complex were characterized to be required for fungicide resistance, ergosterol biosynthesis and CoCl 2 tolerance in P. digitatum. Each of the dsc genes was inactivated by target gene disruption and the resulted phenotypes were analyzed and compared. Genetic analysis reveals that, of five Dsc complex components, PddscB is the core subunit gene in P. digitatum. Although the resultant dsc mutants were able to infect citrus fruit and induce maceration lesions as the wild-type, the mutants rarely produced aerial mycelia on affected citrus fruit peels. P. digitatum Dsc proteins regulated not only the expression of genes involved in ergosterol biosynthesis but also that of PdsreA. Yeast two-hybrid assays revealed a direct interaction between the PdSreA protein and the Dsc proteins. Ectopic expression of the PdSreA N-terminus restored fungicide resistance in the dsc mutants. Our results provide important evidence to understand the mechanisms underlying SREBP activation and regulation of ergosterol biosynthesis in plant pathogenic fungi. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Thermally Switchable Thin Films of an ABC Triblock Copolymer of Poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shanju; Liu, Zhan; Bucknall, David G.

    2011-01-01

    The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed.

  13. Preparation and Characterization of Extruded Composites Based on Polypropylene and Chitosan Compatibilized with Polypropylene-Graft-Maleic Anhydride.

    PubMed

    Carrasco-Guigón, Fernando Javier; Rodríguez-Félix, Dora Evelia; Castillo-Ortega, María Mónica; Santacruz-Ortega, Hisila C; Burruel-Ibarra, Silvia E; Encinas-Encinas, Jose Carmelo; Plascencia-Jatomea, Maribel; Herrera-Franco, Pedro Jesus; Madera-Santana, Tomas Jesus

    2017-01-25

    The preparation of composites of synthetic and natural polymers represent an interesting option to combine properties; in this manner, polypropylene and chitosan extruded films using a different proportion of components and polypropylene-graft-maleic anhydride (PPgMA) as compatibilizer were prepared. The effect of the content of the biopolymer in the polypropylene (PP) matrix, the addition of compatibilizer, and the particle size on the properties of the composites was analyzed using characterization by fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), tensile strength, and contact angle, finding that in general, the addition of the compatibilizer and reducing the particle size of the chitosan, favored the physicochemical and morphological properties of the films.

  14. Transforming Benzophenoxazine Laser Dyes into Chromophores for Dye-Sensitized Solar Cells: A Molecular Engineering Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schröder, Florian A. Y. N.; Cole, Jacqueline M.; Waddell, Paul G.

    2015-02-03

    The re-functionalization of a series of four well-known industrial laser dyes, based on benzophenoxazine, is explored with the prospect of molecularly engineering new chromophores for dye-sensitized solar cell (DSC) applications. Such engineering is important since a lack of suitable dyes is stifling the progress of DSC technology. The conceptual idea involves making laser dyes DSC-active by chemical modification, while maintaining their key property attributes that are attractive to DSC applications. This molecular engineering follows a step-wise approach. Firstly, molecular structures and optical absorption properties are determined for the parent laser dyes: Cresyl Violet (1); Oxazine 170 (2); Nile Blue Amore » (3), Oxazine 750 (4). These reveal structure-property relationships which define the prerequisites for computational molecular design of DSC dyes; the nature of their molecular architecture (D-π-A) and intramolecular charge transfer. Secondly, new DSC dyes are computationally designed by the in silico addition of a carboxylic acid anchor at various chemical substitution points in the parent laser dyes. A comparison of the resulting frontier molecular orbital energy levels with the conduction band edge of a TiO2 DSC photoanode and the redox potential of two electrolyte options I-/I3- and Co(II/III)tris(bipyridyl) suggests promise for these computationally designed dyes as co-sensitizers for DSC applications.« less

  15. Identification of immunohistochemical markers for distinguishing lung adenocarcinoma from squamous cell carcinoma

    PubMed Central

    Zhan, Cheng; Yan, Li; Wang, Lin; Sun, Yang; Wang, Xingxing; Lin, Zongwu; Zhang, Yongxing; Wang, Qun

    2015-01-01

    Background Immunohistochemical staining has been widely used in distinguishing lung adenocarcinoma (LUAD) from lung squamous cell carcinoma (LUSC), which is of vital importance for the diagnosis and treatment of lung cancer. Due to the lack of a comprehensive analysis of different lung cancer subtypes, there may still be undiscovered markers with higher diagnostic accuracy. Methods Herein first, we systematically analyzed high-throughput data obtained from The Cancer Genome Atlas (TCGA) database. Combining differently expressed gene screening and receiver operating characteristic (ROC) curve analysis, we attempted to identify the genes which might be suitable as immunohistochemical markers in distinguishing LUAD from LUSC. Then we detected the expression of six of these genes (MLPH, TMC5, SFTA3, DSG3, DSC3 and CALML3) in lung cancer sections using immunohistochemical staining. Results A number of genes were identified as candidate immunohistochemical markers with high sensitivity and specificity in distinguishing LUAD from LUSC. Then the staining results confirmed the potentials of the six genes (MLPH, TMC5, SFTA3, DSG3, DSC3 and CALML3) in distinguishing LUAD from LUSC, and their sensitivity and specificity were not less than many commonly used markers. Conclusions The results revealed that the six genes (MLPH, TMC5, SFTA3, DSG3, DSC3 and CALML3) might be suitable markers in distinguishing LUAD from LUSC, and also validated the feasibility of our methods for identification of candidate markers from high-throughput data. PMID:26380766

  16. Modeling of the non-isothermal crystallization kinetics of polyamide 6 composites during thermoforming

    NASA Astrophysics Data System (ADS)

    Kugele, Daniel; Dörr, Dominik; Wittemann, Florian; Hangs, Benjamin; Rausch, Julius; Kärger, Luise; Henning, Frank

    2017-10-01

    The combination of thermoforming processes of continuous-fiber reinforced thermoplastics and injection molding offers a high potential for cost-effective use in automobile mass production. During manufacturing, the thermoplastic laminates are initially heated up to a temperature above the melting point. This is followed by continuous cooling of the material during the forming process, which leads to crystallization under non-isothermal conditions. To account for phase change effects in thermoforming simulation, an accurate modeling of the crystallization kinetics is required. In this context, it is important to consider the wide range of cooling rates, which are observed during processing. Consequently, this paper deals with the experimental investigation of the crystallization at cooling rates varying from 0.16 K/s to 100 K/s using standard differential scanning calorimetry (DSC) and fast scanning calorimetry (Flash DSC). Two different modeling approaches (Nakamura model, modified Nakamura-Ziabicki model) for predicting crystallization kinetics are parameterized according to DSC measurements. It turns out that only the modified Nakamura-Ziabicki model is capable of predicting crystallization kinetics for all investigated cooling rates. Finally, the modified Nakamura-Ziabicki model is validated by cooling experiments using PA6-CF laminates with embedded temperature sensors. It is shown that the modified Nakamura-Ziabicki model predicts crystallization at non-isothermal conditions and varying cooling rates with a good accuracy. Thus, the study contributes to a deeper understanding of the non-isothermal crystallization and presents an overall method for modeling crystallization under process conditions.

  17. Physical characterization of polyethylene glycols by thermal analytical technique and the effect of humidity and molecular weight.

    PubMed

    Majumdar, R; Alexander, K S; Riga, A T

    2010-05-01

    Polyethylene glycols (PEGs) are well known as excipients in tablet dosage formulations. PEGs are generally known to be inert and have very few interactions with other components in the solid dosage forms. However, the physical nature of PEGs and how they affect the disintegration of tablets is not very well understood for the different molecular weights of PEGs. The knowledge of the effect of molecular weight of PEGs on their physical properties and the effect of humidity on the physical properties of PEGs are important parameters for the choice of a PEG to be acceptable as an excipient in pharmaceutical formulations. This study was done to determine the precision of the DSC physical properties for a wide range of PEGs with varying molecular weights from 194 to 23000 daltons. Nine different molecular weights of PEGs were examined in a DSC controlled Heat-Cool-Heat-Cool-Heat (HCHCH) cycle and the observed reproducible values of melting temperature, heat of fusion, crystallization temperature and the heat of crystallization were compared with values obtained from the literature and the observed percent crystallinity was again cross-checked by X-ray Diffraction (XRD) studies. The comparison values indicated acceptable precision. This study was also done to check the effect of humidity on the DSC physical properties for the entire range of PEGs. The results indicated that humidity probably has a higher effect on the physical properties of the low molecular weight PEGs as compared to the high molecular weight PEGs.

  18. Polymorphic phase transitions and molecular motion in pyridinium chlorochromate

    NASA Astrophysics Data System (ADS)

    Pajaķ, Z.; Szafrańska, B.; Czarnecki, P.; Mayer, J.; Kozak, A.

    1997-08-01

    DTA, DSC, NMR and dielectric studies have been performed for pyridinium chlorochromate over a wide temperature range. A sequence of four solid-solid phase transitions was discovered. The in-plane complex reorientation of the cation is described by a three-well potential model with two correlation times. At higher temperatures one observes simultaneous cation tumbling and diffusion. Thus existence of a new ionic plastic phase is revealed. The domain structure observed suggests ferroelastic properties of the compound.

  19. Polyacrylonitrile/Carbon Nanotube Composite: Precursor for Next Generation Carbon Fiber

    DTIC Science & Technology

    2010-02-23

    difficult to get the accurate time for the end of reactions. The curing process of thermosetting materials has been widely studied by investigating...Ramis X, Cadenato A, Morancho JM, Salla JM. Curing of a thermosetting powder coating by means of DMTA, TMA and DSC. Polymer. 2003;44(7):2067-79. [17...Cadenato A, Salla JM, Ramis X, Morancho JM, Marroyo LM, Martin JL. Determination of gel and vitrification times of thermoset curing process by means of

  20. Twist-3 contributions to wide-angle photoproduction of pions

    NASA Astrophysics Data System (ADS)

    Kroll, P.; Passek-Kumerički, K.

    2018-04-01

    We investigate wide-angle π0 photoproduction within the handbag approach to twist-3 accuracy. In contrast to earlier work both the 2-particle as well as the 3-particle twist-3 contributions are taken into account. It is shown that both are needed for consistent results that respect gauge invariance and crossing properties. The numerical studies reveal the dominance of the twist-3 contribution. With it fair agreement with the recent CLAS measurement of the π0 cross section is obtained. We briefly comment also on wide-angle photoproduction of other pseudoscalar mesons.

  1. Acoustic metamaterials with broadband and wide-angle impedance matching

    NASA Astrophysics Data System (ADS)

    Liu, Chenkai; Luo, Jie; Lai, Yun

    2018-04-01

    We propose a general approach to design broadband and wide-angle impedance-matched acoustic metamaterials. Such an unusual acoustic impedance matching characteristic can be well explained by using a spatially dispersive effective medium theory. For demonstrations, we used silicone rubber, which has a huge impedance contrast with water, to design one- and two-dimensional acoustic structures which are almost perfectly impedance matched to water for a wide range of incident angles and in a broad frequency band. Our work opens up an approach to realize extraordinary acoustic impedance matching properties via metamaterial-design techniques.

  2. Self-Assembled CNT-Polymer Hybrids in Single-Walled Carbon Nanotubes Dispersed Aqueous Triblock Copolymer Solutions

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, D.; Manjunatha, A. S.; Poojitha, C. G.

    2018-04-01

    We have carried out scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), electrical conductivity, and 1H NMR studies as a function of temperature on single-walled carbon nanotubes (SWCNTs) dispersed aqueous triblock copolymer (P123) solutions. The single-walled carbon nanotubes in this system aggregate to form bundles, and the bundles aggregate to form net-like structures. Depending on the temperature and phases of the polymer, this system exhibits three different self-assembled CNT-polymer hybrids. We find CNT-unimer hybrid at low temperatures, CNT-micelle hybrid at intermediate temperatures wherein the polymer micelles are adsorbed in the pores of the CNT nets, and another type of CNT-micelle hybrid at high temperatures wherein the polymer micelles are adsorbed on the surface of the CNT bundles. Our DSC thermogram showed two peaks related to these structural changes in the CNT-polymer hybrids. Temperature dependence of the 1H NMR chemical shifts of the molecular groups of the polymer and the AC electrical conductivity of the composite also showed discontinuous changes at the temperatures at which the CNT-polymer hybrid's structural changes are seen. Interestingly, for a higher CNT concentration (0.5 wt.%) in the system, the aggregated polymer micelles adsorbed on the CNTs exhibit cone-like and cube-like morphologies at the intermediate and at high temperatures respectively.

  3. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Gentile, T. R.; Ye, Q.; Kirchhoff, A.; Watson, S. M.; Rodriguez-Rivera, J. A.; Qiu, Y.; Broholm, C.

    2016-09-01

    Wide-angle polarization analysis with polarized 3He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells.

  4. Quantitative measurement of indomethacin crystallinity in indomethacin-silica gel binary system using differential scanning calorimetry and X-ray powder diffractometry.

    PubMed

    Pan, Xiaohong; Julian, Thomas; Augsburger, Larry

    2006-02-10

    Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) methods were developed for the quantitative analysis of the crystallinity of indomethacin (IMC) in IMC and silica gel (SG) binary system. The DSC calibration curve exhibited better linearity than that of XRPD. No phase transformation occurred in the IMC-SG mixtures during DSC measurement. The major sources of error in DSC measurements were inhomogeneous mixing and sampling. Analyzing the amount of IMC in the mixtures using high-performance liquid chromatography (HPLC) could reduce the sampling error. DSC demonstrated greater sensitivity and had less variation in measurement than XRPD in quantifying crystalline IMC in the IMC-SG binary system.

  5. Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons

    PubMed Central

    Xue, Chun-hua; Wu, Feng; Jiang, Hai-tao; Li, Yunhui; Zhang, Ye-wen; Chen, Hong

    2016-01-01

    We theoretically investigate wide-angle spectrally selective absorber by utilizing dispersionless Tamm plasmon polaritons (TPPs) under TM polarization. TPPs are resonant tunneling effects occurring on the interface between one-dimensional photonic crystals (1DPCs) and metal slab, and their dispersion properties are essentially determined by that of 1DPCs. Our investigations show that dispersionless TPPs can be excited in 1DPCs containing hyperbolic metamaterials (HMMs) on metal substrate. Based on dispersionless TPPs, electromagnetic waves penetrate into metal substrate and are absorbed entirely by lossy metal, exhibiting a narrow-band and wide-angle perfect absorption for TM polarization. Our results exhibit nearly perfect absorption with a value over 98% in the angle of incidence region of 0–80 degree. PMID:27991565

  6. Implementation of DSC model and application for analysis of field pile tests under cyclic loading

    NASA Astrophysics Data System (ADS)

    Shao, Changming; Desai, Chandra S.

    2000-05-01

    The disturbed state concept (DSC) model, and a new and simplified procedure for unloading and reloading behavior are implemented in a nonlinear finite element procedure for dynamic analysis for coupled response of saturated porous materials. The DSC model is used to characterize the cyclic behavior of saturated clays and clay-steel interfaces. In the DSC, the relative intact (RI) behavior is characterized by using the hierarchical single surface (HISS) plasticity model; and the fully adjusted (FA) behavior is modeled by using the critical state concept. The DSC model is validated with respect to laboratory triaxial tests for clay and shear tests for clay-steel interfaces. The computer procedure is used to predict field behavior of an instrumented pile subjected to cyclic loading. The predictions provide very good correlation with the field data. They also yield improved results compared to those from a HISS model with anisotropic hardening, partly because the DSC model allows for degradation or softening and interface response.

  7. Design of a polarization-independent, wide-angle, broadband visible absorber

    NASA Astrophysics Data System (ADS)

    Jia, Xiuli; Wang, Xiaoou

    2018-01-01

    Many optical systems benefit from elements that can absorb a broad range of wavelengths over a wide range of angles, independent of polarization. In this paper, we present a polarization-independent, wide-angle, broadband absorber in the visible regime that exploits strong symmetric and asymmetric resonance modes of electromagnetic dipoles. It makes use of a bilayer cross-pattern structure which is simple, having five layers that include two stacks of metal ribbon in cross-patterns, two dielectric spacers and a metal reflecting layer. Simulations show that the design exhibits a significantly enhanced absorption property when compared to a device with a bilayer metal film structure or any other complex structure of cross-patterns that have no intersection angle. The maximum absorption efficiency of the device is 100% at resonances, and its absorption characteristics can be maintained over a wide range of angles of incidence - up to ± 60° - regardless of the incident polarization. This strategy can, in principle, be applied to other material systems and could be useful in diverse applications, including thermal emitters, photovoltaics and photodetectors.

  8. Gelatinisation kinetics of corn and chickpea starches using DSC, RVA, and dynamic rheometry

    USDA-ARS?s Scientific Manuscript database

    The gelatinisation kinetics (non-isothermal) of corn and chickpea starches at different heating rates were calculated using differential scanning calorimetry (DSC), rapid visco analyser (RVA), and oscillatory dynamic rheometry. The data obtained from the DSC thermogram and the RVA profiles were fitt...

  9. 47 CFR 80.225 - Requirements for selective calling equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... selective calling (DSC) equipment and selective calling equipment installed in ship and coast stations, and...-STD, “RTCM Recommended Minimum Standards for Digital Selective Calling (DSC) Equipment Providing... Class ‘D’ Digital Selective Calling (DSC)—Methods of testing and required test results,” March 2003. ITU...

  10. 47 CFR 80.359 - Frequencies for digital selective calling (DSC).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Frequencies for digital selective calling (DSC... for digital selective calling (DSC). (a) General purpose calling. The following table describes the... Digital Selective-Calling Equipment in the Maritime Mobile Service,” with Annexes 1 through 5, 2004, and...

  11. Relationships Between Molecular Structure and Chemical Reactivity in Hypergolic Ionic Liquids: Progress Toward Designing Green Fuels for Bipropellant Applications

    DTIC Science & Technology

    2012-05-01

    molten salts can be employed over a wide range of applications, which include solvents, 7 electrolytes , 8 pharmaceuticals and therapeutics,9 and...waxy, hygroscopic solid at room temperature, where the additional products in the HP series exist as liquids at room 9 temperature. In general...compressed aluminum pans. Melting and decomposition points for solids were measured by DSC from 40 to 400 oC at a scan rate of 5 ºC/min. IR spectra

  12. Photometric theory for wide-angle phenomena

    NASA Technical Reports Server (NTRS)

    Usher, Peter D.

    1990-01-01

    An examination is made of the problem posed by wide-angle photographic photometry, in order to extract a photometric-morphological history of Comet P/Halley. Photometric solutions are presently achieved over wide angles through a generalization of an assumption-free moment-sum method. Standard stars in the field allow a complete solution to be obtained for extinction, sky brightness, and the characteristic curve. After formulating Newton's method for the solution of the general nonlinear least-square problem, an implementation is undertaken for a canonical data set. Attention is given to the problem of random and systematic photometric errors.

  13. Agreement between image grading of conventional (45°) and ultra wide-angle (200°) digital images in the macula in the Reykjavik eye study.

    PubMed

    Csutak, A; Lengyel, I; Jonasson, F; Leung, I; Geirsdottir, A; Xing, W; Peto, T

    2010-10-01

    To establish the agreement between image grading of conventional (45°) and ultra wide-angle (200°) digital images in the macula. In 2008, the 12-year follow-up was conducted on 573 participants of the Reykjavik Eye Study. This study included the use of the Optos P200C AF ultra wide-angle laser scanning ophthalmoscope alongside Zeiss FF 450 conventional digital fundus camera on 121 eyes with or without age-related macular degeneration using the International Classification System. Of these eyes, detailed grading was carried out on five cases each with hard drusen, geographic atrophy and chorioretinal neovascularisation, and six cases of soft drusen. Exact agreement and κ-statistics were calculated. Comparison of the conventional and ultra wide-angle images in the macula showed an overall 96.43% agreement (κ=0.93) with no disagreement at end-stage disease; although in one eye chorioretinal neovascularisation was graded as drusenoid pigment epithelial detachment. Of patients with drusen only, the exact agreement was 96.1%. The detailed grading showed no clinically significant disagreement between the conventional 45° and 200° images. On the basis of our results, there is a good agreement between grading conventional and ultra wide-angle images in the macula.

  14. Comparison of the transformation temperatures of heat-activated Nickel-Titanium orthodontic archwires by two different techniques.

    PubMed

    Obaisi, Noor Aminah; Galang-Boquiren, Maria Therese S; Evans, Carla A; Tsay, Tzong Guang Peter; Viana, Grace; Berzins, David; Megremis, Spiro

    2016-07-01

    The purpose of this study was to investigate the suitability of the Bend and Free Recovery (BFR) method as a standard test method to determine the transformation temperatures of heat-activated Ni-Ti orthodontic archwires. This was done by determining the transformation temperatures of two brands of heat-activated Ni-Ti orthodontic archwires using the both the BFR method and the standard method of Differential Scanning Calorimetry (DSC). The values obtained from the two methods were compared with each other and to the manufacturer-listed values. Forty heat-activated Ni-Ti archwires from both Rocky Mountain Orthodontics (RMO) and Opal Orthodontics (Opal) were tested using BFR and DSC. Round (0.016 inches) and rectangular (0.019×0.025 inches) archwires from each manufacturer were tested. The austenite start temperatures (As) and austenite finish temperatures (Af) were recorded. For four of the eight test groups, the BFR method resulted in lower standard deviations than the DSC method, and, overall, the average standard deviation for BFR testing was slightly lower than for DSC testing. Statistically significant differences were seen between the transformation temperatures obtained from the BFR and DSC test methods. However, the Af temperatures obtained from the two methods were remarkably similar with the mean differences ranging from 0.0 to 2.1°C: Af Opal round (BFR 26.7°C, DSC 27.6°C) and rectangular (BFR 27.6°C, DSC 28.6°C); Af RMO round (BFR 25.5°C, DSC 25.5°C) and rectangular (BFR 28.0°C, DSC 25.9°C). Significant differences were observed between the manufacturer-listed transformation temperatures and those obtained with BFR and DSC testing for both manufacturers. The results of this study suggest that the Bend and Free Recovery method is suitable as a standard method to evaluate the transformation temperatures of heat-activated Ni-Ti orthodontic archwires. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions.

    PubMed

    Simmat, I; Georg, P; Georg, D; Birkfellner, W; Goldner, G; Stock, M

    2012-09-01

    The goal of the current study was to evaluate the commercially available atlas-based autosegmentation software for clinical use in prostate radiotherapy. The accuracy was benchmarked against interobserver variability. A total of 20 planning computed tomographs (CTs) and 10 cone-beam CTs (CBCTs) were selected for prostate, rectum, and bladder delineation. The images varied regarding to individual (age, body mass index) and setup parameters (contrast agent, rectal balloon, implanted markers). Automatically created contours with ABAS(®) and iPlan(®) were compared to an expert's delineation by calculating the Dice similarity coefficient (DSC) and conformity index. Demo-atlases of both systems showed different results for bladder (DSC(ABAS) 0.86 ± 0.17, DSC(iPlan) 0.51 ± 0.30) and prostate (DSC(ABAS) 0.71 ± 0.14, DSC(iPlan) 0.57 ± 0.19). Rectum delineation (DSC(ABAS) 0.78 ± 0.11, DSC(iPlan) 0.84 ± 0.08) demonstrated differences between the systems but better correlation of the automatically drawn volumes. ABAS(®) was closest to the interobserver benchmark. Autosegmentation with iPlan(®), ABAS(®) and manual segmentation took 0.5, 4 and 15-20 min, respectively. Automatic contouring on CBCT showed high dependence on image quality (DSC bladder 0.54, rectum 0.42, prostate 0.34). For clinical routine, efforts are still necessary to either redesign algorithms implemented in autosegmentation or to optimize image quality for CBCT to guarantee required accuracy and time savings for adaptive radiotherapy.

  16. Wide Angle of Incidence-Insensitive Polarization-Independent THz Metamaterial Absorber for Both TE and TM Mode Based on Plasmon Hybridizations.

    PubMed

    Huang, Xiu Tao; Lu, Cong Hui; Rong, Can Can; Wang, Sheng Ming; Liu, Ming Hai

    2018-04-25

    An ultra-wide-angle THz metamaterial absorber (MA) utilizing sixteen-circular-sector (SCR) resonator for both transverse electric (TE) and transverse magnetic (TM) mode is designed and investigated numerically. At normal incidence, the absorptivity of the proposed MA is higher than 93.7% at 9.05 THz for different polarization angles, due to the rotational symmetry structure of the unit cell. Under oblique incidence, the absorptivity can still exceed 90%, even when the incident angle is up to 70° for both TE and TM mode. Especially, the frequency variation in TE mode is less than 0.25% for different incident angles from 0° to 70°. The electric field (E z ) distributions are used to explain the absorption mechanism. Numerical simulation results show that the high absorption with wide-angle independence stems from fundamental dipole resonance and gap surface plasmons. The broadband deep-infrared MA is also obtained by stacking three metal-dielectric layers. The designed MA has great potential in bolometric pixel elements, biomedical sensors, THz imaging, and solar cells.

  17. 7 CFR 1710.114 - TIER, DSC, OTIER and ODSC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false TIER, DSC, OTIER and ODSC requirements. 1710.114... AND GUARANTEES Loan Purposes and Basic Policies § 1710.114 TIER, DSC, OTIER and ODSC requirements. (a) General. Requirements for coverage ratios are set forth in the borrower's mortgage, loan contract, or...

  18. The impact of N,N-dimethyldodecylamine N-oxide (DDAO) concentration on the crystallisation of sodium dodecyl sulfate (SDS) systems and the resulting changes to crystal structure, shape and the kinetics of crystal growth.

    PubMed

    Summerton, Emily; Hollamby, Martin J; Zimbitas, Georgina; Snow, Tim; Smith, Andrew J; Sommertune, Jens; Bettiol, Jeanluc; Jones, Christopher; Britton, Melanie M; Bakalis, Serafim

    2018-05-19

    At low temperatures stability issues arise in commercial detergent products when surfactant crystallisation occurs, a process which is not currently well-understood. An understanding of the phase transition can be obtained using a simple binary SDS (sodium dodecyl sulfate) + DDAO (N,N-dimethyldodecylamine N-oxide) aqueous system. It expected that the crystallisation temperature of an SDS system can be lowered with addition of DDAO, thus providing a route to improve detergent stability. Detergent systems are typically comprised of anionic surfactants, non-ionic surfactants and water. This study explores the crystallisation of a three component system consisting of sodium dodecyl sulfate (SDS), N,N-dimethyldodecylamine N-oxide (DDAO), and water using wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and confocal Raman microscopy. The presence of DDAO lowered the crystallisation temperature of a 20 wt% SDS system. For all aqueous mixtures of SDS + DDAO at low temperatures, SDS hydrated crystals, SDS.1/2H 2 O or SDS·H 2 O, formed. SDS hydrates comprising of layers of SDS separated by water layers. DDAO tended to reside in the vicinity of these SDS crystals. In the absence of DDAO an additional intermediary hydrate structure, SDS.1/8H 2 O, formed whereas for mixed SDS + DDAO systems no such structure was detected during crystallisation. Copyright © 2018. Published by Elsevier Inc.

  19. Synthesis and characterisation of coating polyurethane cationomers containing fluorine built-in hard urethane segments

    PubMed Central

    Król, Bożena; Pikus, Stanisław; Chmielarz, Paweł; Skrzypiec, Krzysztof

    2010-01-01

    Polyurethane cationomers were synthesised in the reaction of 4,4’-methylenebis(phenyl isocyanate) with polyoxyethylene glycol (M = 2,000) or poly(tetrafluoroethyleneoxide-co-difluoromethylene oxide) α,ω-diisocyanate and N-methyl diethanolamine. Amine segments were built-in to the urethane-isocyanate prepolymer in the reaction with 1-bromobutane or formic acid, and then they were converted to alkylammonium cations. The obtained isocyanate prepolymers were then extended in the aqueous medium that yielded stable aqueous dispersions which were applied on the surfaces of test poly(tetrafluoroethylene) plates. After evaporation of water, the dispersions formed thin polymer coatings. 1H, 13C NMR and IR spectral methods were employed to confirm chemical structures of synthesised cationomers. Based on 1H NMR and IR spectra, the factors κ and α were calculated, which represented the polarity level of the obtained cationomers. The DSC, wide angle X-ray scattering and atom force microscopy methods were employed for the microstructural assessment of the obtained materials. Changes were discussed in the surface free energy and its components, as calculated independently according to the method suggested by van Oss–Good, in relation to chemical and physical structures of cationomers as well as morphology of coating surfaces obtained from those cationomers. Fluorine incorporated into cationomers (about 30%) contributed to lower surface free energy values, down to about 15 mJ/m2. That was caused by gradual weakening of long-range interactions within which the highest share is taken by dispersion interactions. PMID:20927181

  20. Applications of high pressure differential scanning calorimetry to aviation fuel thermal stability research

    NASA Technical Reports Server (NTRS)

    Neveu, M. C.; Stocker, D. P.

    1985-01-01

    High pressure differential scanning calorimetry (DSC) was studied as an alternate method for performing high temperature fuel thermal stability research. The DSC was used to measure the heat of reaction versus temperature of a fuel sample heated at a programmed rate in an oxygen pressurized cell. Pure hydrocarbons and model fuels were studied using typical DSC operating conditions of 600 psig of oxygen and a temperature range from ambient to 500 C. The DSC oxidation onset temperature was determined and was used to rate the fuels on thermal stability. Kinetic rate constants were determined for the global initial oxidation reaction. Fuel deposit formation is measured, and the high temperature volatility of some tetralin deposits is studied by thermogravimetric analysis. Gas chromatography and mass spectrometry are used to study the chemical composition of some DSC stressed fuels.

  1. Amylose Phase Composition As Analyzed By FTIR In A Temperature Ramp: Influence Of Short Range Order On The Thermodynamic Properties

    NASA Astrophysics Data System (ADS)

    Bernazzani, Paul; Delmas, Genevieve

    1998-03-01

    Amylose, a major component of starch, is one of the most important biopolymers, being mainly associated with the pharmacological and food industries. Although widely studied, a complete control and understanding of the physical properties of amylose is still lacking. It is well known that structure and phase transition are important aspects of the functionality of biopolymers since they influence physical attributes such as appearance, digestibility, water holding capacity, etc. In the past, we have studied polyethylene phase composition by DSC in a very slow temperature (T) ramp (1K/h) and have demonstrated the presence and importance of short-range order on the polymer and its characteristics. In this study, we evaluated the phase composition of potato amylose and associated the thermodynamic properties with the presence of short-range order. Two methods were correlated, DSC (in a 1K/h T-ramp) and FTIR as a function of temperature, also in a 1K/h T-ramp. The effects of the various phases on thermodynamic properties such as gelation and enzyme or chemical resistance are discussed.

  2. A statistical method for lung tumor segmentation uncertainty in PET images based on user inference.

    PubMed

    Zheng, Chaojie; Wang, Xiuying; Feng, Dagan

    2015-01-01

    PET has been widely accepted as an effective imaging modality for lung tumor diagnosis and treatment. However, standard criteria for delineating tumor boundary from PET are yet to develop largely due to relatively low quality of PET images, uncertain tumor boundary definition, and variety of tumor characteristics. In this paper, we propose a statistical solution to segmentation uncertainty on the basis of user inference. We firstly define the uncertainty segmentation band on the basis of segmentation probability map constructed from Random Walks (RW) algorithm; and then based on the extracted features of the user inference, we use Principle Component Analysis (PCA) to formulate the statistical model for labeling the uncertainty band. We validated our method on 10 lung PET-CT phantom studies from the public RIDER collections [1] and 16 clinical PET studies where tumors were manually delineated by two experienced radiologists. The methods were validated using Dice similarity coefficient (DSC) to measure the spatial volume overlap. Our method achieved an average DSC of 0.878 ± 0.078 on phantom studies and 0.835 ± 0.039 on clinical studies.

  3. Low-Grade Glioma Segmentation Based on CNN with Fully Connected CRF

    PubMed Central

    Li, Zeju; Shi, Zhifeng; Guo, Yi; Chen, Liang; Mao, Ying

    2017-01-01

    This work proposed a novel automatic three-dimensional (3D) magnetic resonance imaging (MRI) segmentation method which would be widely used in the clinical diagnosis of the most common and aggressive brain tumor, namely, glioma. The method combined a multipathway convolutional neural network (CNN) and fully connected conditional random field (CRF). Firstly, 3D information was introduced into the CNN which makes more accurate recognition of glioma with low contrast. Then, fully connected CRF was added as a postprocessing step which purposed more delicate delineation of glioma boundary. The method was applied to T2flair MRI images of 160 low-grade glioma patients. With 59 cases of data training and manual segmentation as the ground truth, the Dice similarity coefficient (DSC) of our method was 0.85 for the test set of 101 MRI images. The results of our method were better than those of another state-of-the-art CNN method, which gained the DSC of 0.76 for the same dataset. It proved that our method could produce better results for the segmentation of low-grade gliomas. PMID:29065666

  4. Low-Grade Glioma Segmentation Based on CNN with Fully Connected CRF.

    PubMed

    Li, Zeju; Wang, Yuanyuan; Yu, Jinhua; Shi, Zhifeng; Guo, Yi; Chen, Liang; Mao, Ying

    2017-01-01

    This work proposed a novel automatic three-dimensional (3D) magnetic resonance imaging (MRI) segmentation method which would be widely used in the clinical diagnosis of the most common and aggressive brain tumor, namely, glioma. The method combined a multipathway convolutional neural network (CNN) and fully connected conditional random field (CRF). Firstly, 3D information was introduced into the CNN which makes more accurate recognition of glioma with low contrast. Then, fully connected CRF was added as a postprocessing step which purposed more delicate delineation of glioma boundary. The method was applied to T2flair MRI images of 160 low-grade glioma patients. With 59 cases of data training and manual segmentation as the ground truth, the Dice similarity coefficient (DSC) of our method was 0.85 for the test set of 101 MRI images. The results of our method were better than those of another state-of-the-art CNN method, which gained the DSC of 0.76 for the same dataset. It proved that our method could produce better results for the segmentation of low-grade gliomas.

  5. Cytotoxicity Evaluation and Magnetic Characteristics of Mechano-thermally Synthesized CuNi Nanoparticles for Hyperthermia

    NASA Astrophysics Data System (ADS)

    Amrollahi, P.; Ataie, A.; Nozari, A.; Seyedjafari, E.; Shafiee, A.

    2015-03-01

    CuNi alloys are very well known, both in academia and industry, based on their wide range of applications. In the present investigation, the previously synthesized Cu0.5Ni0.5 nanoparticles (NPs) by mechano-thermal method were studied more extensively. Phase composition and morphology of the samples were studied by employing x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The Curie temperature ( T c) was determined by differential scanning calorimetry (DSC). In vitro cytotoxicity was studied through methyl-thiazolyl-tetrazolium (MTT) assay. XRD and FESEM results indicated the formation of single-phase Cu0.5Ni0.5. TEM micrographs showed that the mean particle size of powders is 20 nm. DSC results revealed that T c of mechano-thermally synthesized Cu0.5Ni0.5 is 44 °C. The MTT assay results confirmed the viability and proliferation of human bone marrow stem cells in contact with Cu0.5Ni0.5 NPs. In summary, the fabricated particles were demonstrated to have potential in low concentrations for cancer treatment applications.

  6. Characterization of silicon carbide and diamond detectors for neutron applications

    NASA Astrophysics Data System (ADS)

    Hodgson, M.; Lohstroh, A.; Sellin, P.; Thomas, D.

    2017-10-01

    The presence of carbon atoms in silicon carbide and diamond makes these materials ideal candidates for direct fast neutron detectors. Furthermore the low atomic number, strong covalent bonds, high displacement energies, wide bandgap and low intrinsic carrier concentrations make these semiconductor detectors potentially suitable for applications where rugged, high-temperature, low-gamma-sensitivity detectors are required, such as active interrogation, electronic personal neutron dosimetry and harsh environment detectors. A thorough direct performance comparison of the detection capabilities of semi-insulating silicon carbide (SiC-SI), single crystal diamond (D-SC), polycrystalline diamond (D-PC) and a self-biased epitaxial silicon carbide (SiC-EP) detector has been conducted and benchmarked against a commercial silicon PIN (Si-PIN) diode, in a wide range of alpha (Am-241), beta (Sr/Y-90), ionizing photon (65 keV to 1332 keV) and neutron radiation fields (including 1.2 MeV to 16.5 MeV mono-energetic neutrons, as well as neutrons from AmBe and Cf-252 sources). All detectors were shown to be able to directly detect and distinguish both the different radiation types and energies by using a simple energy threshold discrimination method. The SiC devices demonstrated the best neutron energy discrimination ratio (E\\max (n=5 MeV)/E\\max (n=1 MeV)  ≈5), whereas a superior neutron/photon cross-sensitivity ratio was observed in the D-PC detector (E\\max (AmBe)/E\\max (Co-60)  ≈16). Further work also demonstrated that the cross-sensitivity ratios can be improved through use of a simple proton-recoil conversion layer. Stability issues were also observed in the D-SC, D-PC and SiC-SI detectors while under irradiation, namely a change of energy peak position and/or count rate with time (often referred to as the polarization effect). This phenomenon within the detectors was non-debilitating over the time period tested (> 5 h) and, as such, stable operation was possible. Furthermore, the D-SC, self-biased SiC-EP and semi-insulating SiC detectors were shown to operate over the temperature range -60 °C to +100 °C.

  7. Combining Diffusion Tensor Metrics and DSC Perfusion Imaging: Can It Improve the Diagnostic Accuracy in Differentiating Tumefactive Demyelination from High-Grade Glioma?

    PubMed

    Hiremath, S B; Muraleedharan, A; Kumar, S; Nagesh, C; Kesavadas, C; Abraham, M; Kapilamoorthy, T R; Thomas, B

    2017-04-01

    Tumefactive demyelinating lesions with atypical features can mimic high-grade gliomas on conventional imaging sequences. The aim of this study was to assess the role of conventional imaging, DTI metrics ( p:q tensor decomposition), and DSC perfusion in differentiating tumefactive demyelinating lesions and high-grade gliomas. Fourteen patients with tumefactive demyelinating lesions and 21 patients with high-grade gliomas underwent brain MR imaging with conventional, DTI, and DSC perfusion imaging. Imaging sequences were assessed for differentiation of the lesions. DTI metrics in the enhancing areas and perilesional hyperintensity were obtained by ROI analysis, and the relative CBV values in enhancing areas were calculated on DSC perfusion imaging. Conventional imaging sequences had a sensitivity of 80.9% and specificity of 57.1% in differentiating high-grade gliomas ( P = .049) from tumefactive demyelinating lesions. DTI metrics ( p : q tensor decomposition) and DSC perfusion demonstrated a statistically significant difference in the mean values of ADC, the isotropic component of the diffusion tensor, the anisotropic component of the diffusion tensor, the total magnitude of the diffusion tensor, and rCBV among enhancing portions in tumefactive demyelinating lesions and high-grade gliomas ( P ≤ .02), with the highest specificity for ADC, the anisotropic component of the diffusion tensor, and relative CBV (92.9%). Mean fractional anisotropy values showed no significant statistical difference between tumefactive demyelinating lesions and high-grade gliomas. The combination of DTI and DSC parameters improved the diagnostic accuracy (area under the curve = 0.901). Addition of a heterogeneous enhancement pattern to DTI and DSC parameters improved it further (area under the curve = 0.966). The sensitivity increased from 71.4% to 85.7% after the addition of the enhancement pattern. DTI and DSC perfusion add profoundly to conventional imaging in differentiating tumefactive demyelinating lesions and high-grade gliomas. The combination of DTI metrics and DSC perfusion markedly improved diagnostic accuracy. © 2017 by American Journal of Neuroradiology.

  8. Preparation and Characterization of Extruded Composites Based on Polypropylene and Chitosan Compatibilized with Polypropylene-Graft-Maleic Anhydride

    PubMed Central

    Carrasco-Guigón, Fernando Javier; Rodríguez-Félix, Dora Evelia; Castillo-Ortega, María Mónica; Santacruz-Ortega, Hisila C.; Burruel-Ibarra, Silvia E.; Encinas-Encinas, Jose Carmelo; Plascencia-Jatomea, Maribel; Herrera-Franco, Pedro Jesus; Madera-Santana, Tomas Jesus

    2017-01-01

    The preparation of composites of synthetic and natural polymers represent an interesting option to combine properties; in this manner, polypropylene and chitosan extruded films using a different proportion of components and polypropylene-graft-maleic anhydride (PPgMA) as compatibilizer were prepared. The effect of the content of the biopolymer in the polypropylene (PP) matrix, the addition of compatibilizer, and the particle size on the properties of the composites was analyzed using characterization by fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), tensile strength, and contact angle, finding that in general, the addition of the compatibilizer and reducing the particle size of the chitosan, favored the physicochemical and morphological properties of the films. PMID:28772464

  9. Wide-Angle, Flat-Field Telescope

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1987-01-01

    All-reflective system unvignetted. Wide-angle telescope uses unobstructed reflecting elements to produce flat image. No refracting elements, no chromatic aberration, and telescope operates over spectral range from infrared to far ultraviolet. Telescope used with such image detectors as photographic firm, vidicons, and solid-state image arrays.

  10. Effect of sugar addition on glass transition temperatures of cassava starch with low to intermediate moisture contents.

    PubMed

    Figueroa, Yetzury; Guevara, Marvilan; Pérez, Adriana; Cova, Aura; Sandoval, Aleida J; Müller, Alejandro J

    2016-08-01

    This work studies how sucrose (S) addition modifies the thermal properties of cassava starch (CS). Neat CS and CS-S blends with 4, 6 and 8% sugar contents (CS-S-4%, CS-S-6% and CS-S-8%) were prepared and analyzed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA), in a wide range of moisture levels (2-20%). In equilibrated samples with moisture contents lower than 10%, twoendothermic steps were observed during first DSC heating scans and two corresponding relaxation maxima in tan δ were detected by DMTA. The first transition, detected at around 45-55°C by both DSC and DMTA, is frequently found in starchy foods, while the second observed at higher temperatures is associated to the glass transition temperature of the blends. At higher moisture contents, only one thermal transition was observed. Samples analyzed immediately after cooling from the melt (i.e., after erasing their thermal history), exhibited a single glass transition temperature, regardless of their moisture content. Addition of sugar promotes water plasticization of CS only at high moisture contents. In the low moisture content range, anti-plasticization was observed for both neat and sugar-added CS samples. Addition of sugar decreases the moisture content needed to achieve the maximum value of the glass transition temperature before plasticization starts. The results of this work may be valuable for the study of texture establishment in low moisture content extruded food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Data report for onshore-offshore wide-angle seismic recordings in the Bering-Chukchi Sea, Western Alaska and eastern Siberia

    USGS Publications Warehouse

    Brocher, Thomas M.; Allen, Richard M.; Stone, David B.; Wolf, Lorraine W.; Galloway, Brian K.

    1995-01-01

    This report presents fourteen deep-crustal wide-angle seismic reflection and refraction profiles recorded onland in western Alaska and eastern Siberia from marine air gun sources in the Bering-Chukchi Seas. During a 20-day period in August, 1994, the R/V Ewing acquired two long (a total of 3754 km) deep-crustal seismic-reflection profiles on the continental shelf of the Bering and Chukchi Seas, in a collaborative project between Stanford University and the United States Geological Survey (USGS). The Ewing's 137.7 liter (8355 cu. in.) air gun array was the source for both the multichannel reflection and the wide-angle seismic data. The Ewing, operated by the Lamont-Doherty Earth Observatory, steamed northward from Nunivak Island to Barrow, and returned, firing the air gun array at intervals of either 50 m or 75 m. About 37,700 air gun shots were fired along the northward directed Lines 1 and 2, and more than 40,000 air gun shots were fired along the southward directed Line 3. The USGS and the University of Alaska, Fairbanks (UAF), deployed an array of twelve 3-component REFTEK and PDAS recorders in western Alaska and eastern Siberia which continuously recorded the air gun signals fired during the northward bound Lines 1 and 2. Seven of these recorders also continuously recorded the southward bound Line 3. These wide-angle seismic data were acquired to: (1) image reflectors in the upper to lower crust, (2) determine crustal and upper mantle refraction velocities, and (3) provide important constraints on the geometry of the Moho along the seismic lines. In this report, we describe the land recording of wide-angle data conducted by the USGS and the UAF, describe in detail how the wide-angle REFTEK and PDAS data were reduced to common receiver gather seismic sections, and illustrate the wide-angle seismic data obtained by the REFTEKs and PDAS's. Air gun signals were observed to ranges in excess of 400 km, and crustal and upper /mantle refractions indicate substantial variation in the crustal thickness along the transect.

  12. Optimal design of wide-view-angle waveplate used for polarimetric diagnosis of lithography system

    NASA Astrophysics Data System (ADS)

    Gu, Honggang; Jiang, Hao; Zhang, Chuanwei; Chen, Xiuguo; Liu, Shiyuan

    2016-03-01

    The diagnosis and control of the polarization aberrations is one of the main concerns in a hyper numerical aperture (NA) lithography system. Waveplates are basic and indispensable optical components in the polarimetric diagnosis tools for the immersion lithography system. The retardance of a birefringent waveplate is highly sensitive to the incident angle of the light, which makes the conventional waveplate not suitable to be applied in the polarimetric diagnosis for the immersion lithography system with a hyper NA. In this paper, we propose a method for the optimal design of a wideview- angle waveplate by combining two positive waveplates made from magnesium fluoride (MgF2) and two negative waveplates made from sapphire using the simulated annealing algorithm. Theoretical derivations and numerical simulations are performed and the results demonstrate that the maximum variation in the retardance of the optimally designed wide-view-angle waveplate is less than +/- 0.35° for a wide-view-angle range of +/- 20°.

  13. Beyond the plane-parallel and Newtonian approach: wide-angle redshift distortions and convergence in general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertacca, Daniele; Maartens, Roy; Raccanelli, Alvise

    We extend previous analyses of wide-angle correlations in the galaxy power spectrum in redshift space to include all general relativistic effects. These general relativistic corrections to the standard approach become important on large scales and at high redshifts, and they lead to new terms in the wide-angle correlations. We show that in principle the new terms can produce corrections of nearly 10% on Gpc scales over the usual Newtonian approximation. General relativistic corrections will be important for future large-volume surveys such as SKA and Euclid, although the problem of cosmic variance will present a challenge in observing this.

  14. 47 CFR 80.1087 - Ship radio equipment-Sea area A1.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... an INMARSAT ship earth station capable of two way communication. (b) The VHF radio installation... which the ship is normally navigated, operating either: (1) On VHF using DSC; or (2) Through the polar... voyages within coverage of MF coast stations equipped with DSC; or (4) On HF using DSC; or (5) Through the...

  15. 47 CFR 80.1087 - Ship radio equipment-Sea area A1.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... an INMARSAT ship earth station capable of two way communication. (b) The VHF radio installation... which the ship is normally navigated, operating either: (1) On VHF using DSC; or (2) Through the polar... voyages within coverage of MF coast stations equipped with DSC; or (4) On HF using DSC; or (5) Through the...

  16. 47 CFR 80.1087 - Ship radio equipment-Sea area A1.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... an INMARSAT ship earth station capable of two way communication. (b) The VHF radio installation... which the ship is normally navigated, operating either: (1) On VHF using DSC; or (2) Through the polar... voyages within coverage of MF coast stations equipped with DSC; or (4) On HF using DSC; or (5) Through the...

  17. Development of a Web-based GIS monitoring and environmental assessment system for the Black Sea: application in the Danube Delta area.

    PubMed

    Tziavos, Ilias N; Alexandridis, Thomas K; Aleksandrov, Borys; Andrianopoulos, Agamemnon; Doukas, Ioannis D; Grigoras, Ion; Grigoriadis, Vassilios N; Papadopoulou, Ioanna D; Savvaidis, Paraskevas; Stergioudis, Argyrios; Teodorof, Liliana; Vergos, Georgios S; Vorobyova, Lyudmila; Zalidis, Georgios C

    2016-08-01

    In this paper, the development of a Web-based GIS system for the monitoring and assessment of the Black Sea is presented. The integrated multilevel system is based on the combination of terrestrial and satellite Earth observation data through the technological assets provided by innovative information tools and facilities. The key component of the system is a unified, easy to update geodatabase including a wide range of appropriately selected environmental parameters. The collection procedure of current and historical data along with the methods employed for their processing in three test areas of the current study are extensively discussed, and special attention is given to the overall design and structure of the developed geodatabase. Furthermore, the information system includes a decision support component (DSC) which allows assessment and effective management of a wide range of heterogeneous data and environmental parameters within an appropriately designed and well-tested methodology. The DSC provides simplified and straightforward results based on a classification procedure, thus contributing to a monitoring system not only for experts but for auxiliary staff as well. The examples of the system's functionality that are presented highlight its usability as well as the assistance that is provided to the decision maker. The given examples emphasize on the Danube Delta area; however, the information layers of the integrated system can be expanded in the future to cover other regions, thus contributing to the development of an environmental monitoring system for the entire Black Sea.

  18. Noctilucent cloud polarimetry: Twilight measurements in a wide range of scattering angles

    NASA Astrophysics Data System (ADS)

    Ugolnikov, Oleg S.; Maslov, Igor A.; Kozelov, Boris V.; Dlugach, Janna M.

    2016-06-01

    Wide-field polarization measurements of the twilight sky background during several nights with bright and extended noctilucent clouds in central and northern Russia in 2014 and 2015 are used to build the phase dependence of the degree of polarization of sunlight scattered by cloud particles in a wide range of scattering angles (from 40° to 130°). This range covers the linear polarization maximum near 90° and large-angle slope of the curve. The polarization in this angle range is most sensitive to the particle size. The method of separation of scattering on cloud particles from the twilight background is presented. Results are compared with T-matrix simulations for different sizes and shapes of ice particles; the best-fit model radius of particles (0.06 μm) and maximum radius (about 0.1 μm) are estimated.

  19. Potential for differentiation of pseudoprogression from true tumor progression with dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging using ferumoxytol versus gadoteridol: A pilot study

    PubMed Central

    Gahramanov, Seymur; Raslan, Ahmed; Muldoon, Leslie L.; Hamilton, Bronwyn E.; Rooney, William D.; Varallyay, Csanad G.; Njus, Jeffrey M.; Haluska, Marianne; Neuwelt, Edward A.

    2010-01-01

    Purpose We evaluated dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging (DSC-MRI) using gadoteridol in comparison to the iron oxide nanoparticle blood pool agent, ferumoxytol in patients with glioblastoma multiforme (GBM) who received standard radiochemotherapy (RCT). Methods and Materials Fourteen patients with GBM received standard RCT and underwent 19 MRI sessions that included DSC-MRI acquisitions with gadoteridol on day 1 and ferumoxytol on day 2. Relative cerebral blood volume (rCBV) values were calculated from DSC data obtained from each contrast agent. T1-weighted acquisition post-gadoteridol administration was used to identify enhancing regions. Results In 7 MRI sessions of clinically presumptive active tumor, gadoteridol-DSC showed low rCBV in 3 and high rCBV in 4, while ferumoxytol-DSC showed high rCBV in all 7 sessions (p=0.002). After RCT, 7 MRI sessions showed increased gadoteridol contrast enhancement on T1-weighted scans coupled with low rCBV without significant differences between contrast agents (p=0.9). Based on post-gadoteridol T1-weighted scans, DSC-MRI, and clinical presentation four patterns of response to RCT were observed: 1) regression, 2) pseudoprogression, 3) true progression, and 4) mixed response. Conclusion We conclude that DSC-MRI with a blood-pool agent such as ferumoxytol may provide a better monitor of tumor rCBV than DSC-MRI with gadoteridol. Lesions demonstrating increased enhancement on T1-weighted MRI coupled with low ferumoxytol rCBV, are likely exhibiting pseudoprogression, while high rCBV with ferumoxytol is a better marker than gadoteridol for determining active tumor. These interesting pilot observations suggest that ferumoxytol may differentiate tumor progression from pseudoprogression, and warrant further investigation. PMID:20395065

  20. Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial

    NASA Astrophysics Data System (ADS)

    Wu, Dong; Liu, Yumin; Yu, Zhongyuan; Chen, Lei; Ma, Rui; Li, Yutong; Li, Ruifang; Ye, Han

    2016-12-01

    In this paper, we propose a novel three dimensional metamaterial design with eight-fold rotational symmetry that shows a polarization-insensitive, wide-angle and broadband perfect absorption in the microwave band. By simulation, the polarization-insensitive absorption is over 90% between 26.9 GHz to 32.9 GHz, and the broadband absorption remains a good absorption performance to a wide incident angles for both TE and TM polarizations. The magnetic field distribution are investigated to interpret the physical mechanism of broadband absorption. The broadband absorption is based on overlapping the multiple magnetic resonances at the neighboring frequencies by coupling effects of multiple metallic split-ring resonators (SRRs). Moreover, it is demonstrate that the designed structure can be extended to other frequencies by scale down the size of the unit cell, such as the visible frequencies. The simulated results show that the absorption of the smaller absorber is above 90% in the frequency range from 467 THz to 765 THz(392-642 nm), which include orange to purple light in visible region(400-760nm). The wide-angle and polarization-insensitive stabilities of the smaller absorber is also demonstrated at visible region. The proposed work provides a new design of realization of a polarization-insensitive, wide-angle and broadband absorber ranging different frequency bands, and such a structure has potential application in the fields of solar cell, imaging and detection.

  1. Comparison between wide-angle OCT angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy.

    PubMed

    Sawada, Osamu; Ichiyama, Yusuke; Obata, Syunpei; Ito, Yuka; Kakinoki, Masashi; Sawada, Tomoko; Saishin, Yoshitsugu; Ohji, Masahito

    2018-04-30

    To compare the ability of wide-angle optical coherence tomography angiography (OCTA) with that of ultra-wide field fluorescein angiography (UWFFA) to detect non-perfusion areas (NPAs) or retinal neovascularization (NV) in eyes with diabetic retinopathy (DR). Patients with DR underwent UWFFA using the Optos® panoramic 200Tx imaging system and wide-angle OCTA with 12 × 12 mm fields of five visual fixations using the PLEX Elite 9000®. We compared the abilities of UWFFA and OCTA to detect NPAs and NV. Fifty-eight eyes of 33 patients (mean age, 60.0 years old; female/male, 16/17) with DR were evaluated. NPAs were detected in 47 out of 58 eyes using UWFFA and in 48 eyes using OCTA. NVs were detected in 25 out of the 58 eyes using UWFFA and in 26 eyes using OCTA. The sensitivity for detection of NPA using OCTA was 0.98, and the specificity was 0.82. The sensitivity for detection of NV was 1.0, and the specificity was 0.97. The wide-angle OCTA seems to be clinically useful for the detection of NPAs or NV.

  2. Fibre laser cutting of polycaprolactone sheet for stents manufacturing: A feasibility study

    NASA Astrophysics Data System (ADS)

    Guerra, Antonio J.; Farjas, Jordi; Ciurana, Joaquim

    2017-10-01

    The role of the stent is temporary and it is limited to the intervention and shortly thereafter. Bioresorbable polymer stents were introduced to overcome this problem, making the stent manufacturing process rather difficult considering the complexity of the material. The stent forecast sale makes constant technology development necessary on this field. The adaptation of the laser manufacturing industry to these new materials is costly, thus further studies employing different sorts of lasers are necessary. This paper aims to explore the feasibility of 1.08 μm wavelength fibre laser to cut polycaprolactone sheet, which is especially interesting for long-term implantable devices, such as stents. The laser cut samples were analysed by Differential Scanning Calorimetry (DSC), Tensile Stress Test, and Optical Microscopy in order to study the effects of the laser process over the workpiece. The parameters measured were: taper angle, dimensional precision, material structure changes and mechanical properties changes. Results showed a dimensional precision above 95.75% with a taper angle lower than 0.033°. The laser ablation process has exhibited a minor influence upon material properties. Results exhibit the feasibility of fibre laser to cut polycaprolactone, making the fibre laser an alternative to manufacture stents.

  3. Synthesis and characterization of hydroxyl-functionalized caprolactone copolymers and their effect on adhesion, proliferation, and differentiation of human mesenchymal stem cells.

    PubMed

    Seyednejad, Hajar; Vermonden, Tina; Fedorovich, Natalja E; van Eijk, Roel; van Steenbergen, Mies J; Dhert, Wouter J A; van Nostrum, Cornelus F; Hennink, Wim E

    2009-11-09

    The aim of this study was to develop new hydrophilic polyesters for tissue engineering applications. In our approach, poly(benzyloxymethyl glycolide-co-epsilon-caprolactone)s (pBHMG-CLs) were synthesized through melt copolymerization of epsilon-caprolactone (CL) and benzyl-protected hydroxymethyl glycolide (BHMG). Deprotection of the polymers yielded copolymers with pendant hydroxyl groups, poly(hydroxymethylglycolide-co-epsilon-caprolactone) (pHMG-CL). The synthesized polymers were characterized by GPC, NMR, and DSC techniques. The resulting copolymers consisting of up to 10% of HMG monomer were semicrystalline with a melting temperature above body temperature. Water contact angle measurements of polymeric films showed that increasing HMG content resulted in higher surface hydrophilicity, as evidenced from a decrease in receding contact angle from 68 degrees for PCL to 40 degrees for 10% HMG-CL. Human mesenchymal stem cells showed good adherence onto pHMG-CL films as compared to the more hydrophobic PCL surfaces. The cells survived and were able to differentiate toward osteogenic lineage on pHMG-CL surfaces. This study shows that the aforementioned hydrophilic polymers are attractive candidates for the design of scaffolds for tissue engineering applications.

  4. Structure-properties relationships of novel poly(carbonate-co-amide) segmented copolymers with polyamide-6 as hard segments and polycarbonate as soft segments

    NASA Astrophysics Data System (ADS)

    Yang, Yunyun; Kong, Weibo; Yuan, Ye; Zhou, Changlin; Cai, Xufu

    2018-04-01

    Novel poly(carbonate-co-amide) (PCA) block copolymers are prepared with polycarbonate diol (PCD) as soft segments, polyamide-6 (PA6) as hard segments and 4,4'-diphenylmethane diisocyanate (MDI) as coupling agent through reactive processing. The reactive processing strategy is eco-friendly and resolve the incompatibility between polyamide segments and PCD segments in preparation processing. The chemical structure, crystalline properties, thermal properties, mechanical properties and water resistance were extensively studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermal gravity analysis (TGA), Dynamic mechanical analysis (DMA), tensile testing, water contact angle and water absorption, respectively. The as-prepared PCAs exhibit obvious microphase separation between the crystalline hard PA6 phase and amorphous PCD soft segments. Meanwhile, PCAs showed outstanding mechanical with the maximum tensile strength of 46.3 MPa and elongation at break of 909%. The contact angle and water absorption results indicate that PCAs demonstrate outstanding water resistance even though possess the hydrophilic surfaces. The TGA measurements prove that the thermal stability of PCA can satisfy the requirement of multiple-processing without decomposition.

  5. Integration of least angle regression with empirical Bayes for multi-locus genome-wide association studies

    USDA-ARS?s Scientific Manuscript database

    Multi-locus genome-wide association studies has become the state-of-the-art procedure to identify quantitative trait loci (QTL) associated with traits simultaneously. However, implementation of multi-locus model is still difficult. In this study, we integrated least angle regression with empirical B...

  6. Wide angle view of the Flight control room of Mission control center

    NASA Image and Video Library

    1984-10-06

    Wide angle view of the flight control room (FCR) of the Mission Control Center (MCC). Some of the STS 41-G crew can be seen on a large screen at the front of the MCC along with a map tracking the progress of the orbiter.

  7. Formulation and characterization of liquid crystal systems containing azelaic acid for topical delivery.

    PubMed

    Aytekin, Merve; Gursoy, R Neslihan; Ide, Semra; Soylu, Elif H; Hekimoglu, Sueda

    2013-02-01

    The aim of this study is to prepare and characterize azelaic acid (AzA) containing liquid crystal (LC) drug delivery systems for topical use. Two ternary phase diagrams, containing liquid paraffin as the oil component and a mixture of two nonionic surfactants (Brij 721P and Brij 72), were constructed. Formulations chosen from the phase diagrams were characterized by polarized light microscopy, rheological analyses, differential scanning calorimetry (DSC), and small angle x-ray scattering spectroscopy. Polarized light microscopy proved that except the oil/water emulsion (O/W E), other formulations showed lamellar LC structure. In vitro release studies indicated that the fastest release was achieved by the Lamellar LC (LLC) and O/W E systems, whereas slower release was obtained from the emulsion containing lamellar LC (E-LLC) and distorted lamellar LC (D-LLC) systems. Results of rheological measurements both supported the results of in vitro release studies and showed that the emulsion containing the LC (E-LLC) system had the most stable structure. The formulations and their effect on stratum corneum (SC) were evaluated by DSC studies. The lamellar LC (LLC), emulsion containing lamellar liquid crystal (E-LLC), and O/W E formulations had an effect on both lipid and protein components of SC, whereas distorted lamellar liquid crystal (D-LLC) system had an effect on only the lipid components of SC. LLC systems could be considered promising for the topical delivery of AzA.

  8. Development of Dorzolamide Loaded 6-O-Carboxymethyl Chitosan Nanoparticles for Open Angle Glaucoma

    PubMed Central

    Ahmed, Mohammed Hadi

    2013-01-01

    Chitosan (CS) is a biodegradable, biocompatible, and mucoadhesive natural polymer soluble in acidic pH only and can be irritating to the eye. Objective of the study was to synthesize water soluble 6-O-carboxymethyl (OCM-CS) derivative of CS, and to develop CS and OCM-CS nanoparticles (NPs) loaded with dorzolamide hydrochloride (DRZ). CS was reacted with monochloroacetic acid (MCA) for OCM-CS synthesis and was characterized by FT-IR, DSC, and 13C NMR. CS and OCM-CS NPs were prepared by ionic gelation method. Ocular irritation potential were evaluated and therapeutic efficacy was measured by reduction in intraocular pressure (IOP) in normotensive rabbits. Maximum yield was obtained when the ratio of water/isopropyl alcohol was 1/4 at 55°C. The FT-IR, DSC and 13C NMR confirmed the formation of an ether linkage between hydroxyl groups of CS and MCA. The particle size and zeta potential of optimised CSNPs was 250.3 ± 2.62 nm and +33.47 ± 0.723 mV, whereas those for OCM-CSNPs were 187.1 ± 2.72 nm and 30.87 ± 0.86 mV. The entrapment efficiency was significantly improved for OCM-CSNPs, compared to CSNPs. OCM-CSNPs had tailored drug release and improved bioavailability with reduction in pulse entry as compared to CSNPs. Hence, it can be concluded that DRZ loaded OCM-CSNPs would be better alternative option to available eye drops for glaucoma treatment. PMID:24222858

  9. Development of dorzolamide loaded 6-o-carboxymethyl chitosan nanoparticles for open angle glaucoma.

    PubMed

    Shinde, Ujwala; Ahmed, Mohammed Hadi; Singh, Kavita

    2013-01-01

    Chitosan (CS) is a biodegradable, biocompatible, and mucoadhesive natural polymer soluble in acidic pH only and can be irritating to the eye. Objective of the study was to synthesize water soluble 6-O-carboxymethyl (OCM-CS) derivative of CS, and to develop CS and OCM-CS nanoparticles (NPs) loaded with dorzolamide hydrochloride (DRZ). CS was reacted with monochloroacetic acid (MCA) for OCM-CS synthesis and was characterized by FT-IR, DSC, and (13)C NMR. CS and OCM-CS NPs were prepared by ionic gelation method. Ocular irritation potential were evaluated and therapeutic efficacy was measured by reduction in intraocular pressure (IOP) in normotensive rabbits. Maximum yield was obtained when the ratio of water/isopropyl alcohol was 1/4 at 55°C. The FT-IR, DSC and (13)C NMR confirmed the formation of an ether linkage between hydroxyl groups of CS and MCA. The particle size and zeta potential of optimised CSNPs was 250.3 ± 2.62 nm and +33.47 ± 0.723 mV, whereas those for OCM-CSNPs were 187.1 ± 2.72 nm and 30.87 ± 0.86 mV. The entrapment efficiency was significantly improved for OCM-CSNPs, compared to CSNPs. OCM-CSNPs had tailored drug release and improved bioavailability with reduction in pulse entry as compared to CSNPs. Hence, it can be concluded that DRZ loaded OCM-CSNPs would be better alternative option to available eye drops for glaucoma treatment.

  10. An elegant access to formation and vaporization enthalpies of ionic liquids by indirect DSC experiment and "in silico" calculations.

    PubMed

    Verevkin, Sergey P; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Schick, Christoph; Jayaraman, Saivenkataraman; Maginn, Edward J

    2012-07-14

    We used DSC for determination of the reaction enthalpy of the synthesis of the ionic liquid [C(4)mim][Cl]. A combination of DSC and quantum chemical calculations presents a new, indirect way to study thermodynamics of ionic liquids. The new procedure was validated with two direct experimental measurements and MD simulations.

  11. D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things

    PubMed Central

    Akan, Ozgur B.

    2018-01-01

    Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST). PMID:29538405

  12. D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things.

    PubMed

    Aktas, Metin; Kuscu, Murat; Dinc, Ergin; Akan, Ozgur B

    2018-01-01

    Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST).

  13. Dynamics of Polymorphic Transformations in Palm Oil, Palm Stearin and Palm Kernel Oil Characterized by Coupled Powder XRD-DSC.

    PubMed

    Zaliha, Omar; Elina, Hishamuddin; Sivaruby, Kanagaratnam; Norizzah, Abd Rashid; Marangoni, Alejandro G

    2018-06-01

    The in situ polymorphic forms and thermal transitions of refined, bleached and deodorized palm oil (RBDPO), palm stearin (RBDPS) and palm kernel oil (RBDPKO) were investigated using coupled X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results indicated that the DSC onset crystallisation temperature of RBDPO was at 22.6°C, with a single reflection at 4.2Å started to appear from 23.4 to 17.1°C, and were followed by two prominent exothermic peaks at 20.1°C and 8.5°C respectively. Further cooling to -40°C leads to the further formation of a β'polymorph. Upon heating, a of β'→βtransformation was observed between 32.1 to 40.8°C, before the sample was completely melted at 43.0°C. The crystallization onset temperature of RBDPS was 44.1°C, with the appearance of the α polymorph at the same temperature as the appearance of the first sharp DSC exothermic peak. This quickly changed from α→β´ in the range 25 to 21.7°C, along with the formation of a small β peak at -40°C. Upon heating, a small XRD peak for the β polymorph was observed between 32.2 to 36.0°C, becoming a mixture of (β´+ β) between 44.0 to 52.5°C. Only the β polymorph survived further heating to 59.8°C. For RBDPKO, the crystallization onset temperature was 11.6°C, with the formation of a single sharp exothermic peak at 6.5°C corresponding to the β' polymorphic form until the temperature reached -40°C. No transformation of the polymorphic form was observed during the melting process of RBDPKO, before being completely melted at 33.2°C. This work has demonstrated the detailed dynamics of polymorphic transformations of PKO and PS, two commercially important hardstocks used widely by industry and will contribute to a greater understanding of their crystallization and melting dynamics.

  14. Predictive Modeling of Fast-Curing Thermosets in Nozzle-Based Extrusion

    NASA Technical Reports Server (NTRS)

    Xie, Jingjin; Randolph, Robert; Simmons, Gary; Hull, Patrick V.; Mazzeo, Aaron D.

    2017-01-01

    This work presents an approach to modeling the dynamic spreading and curing behavior of thermosets in nozzle-based extrusions. Thermosets cover a wide range of materials, some of which permit low-temperature processing with subsequent high-temperature and high-strength working properties. Extruding thermosets may overcome the limited working temperatures and strengths of conventional thermoplastic materials used in additive manufacturing. This project aims to produce technology for the fabrication of thermoset-based structures leveraging advances made in nozzle-based extrusion, such as fused deposition modeling (FDM), material jetting, and direct writing. Understanding the synergistic interactions between spreading and fast curing of extruded thermosetting materials will provide essential insights for applications that require accurate dimensional controls, such as additive manufacturing [1], [2] and centrifugal coating/forming [3]. Two types of thermally curing thermosets -- one being a soft silicone (Ecoflex 0050) and the other being a toughened epoxy (G/Flex) -- served as the test materials in this work to obtain models for cure kinetics and viscosity. The developed models align with extensive measurements made with differential scanning calorimetry (DSC) and rheology. DSC monitors the change in the heat of reaction, which reflects the rate and degree of cure at different crosslinking stages. Rheology measures the change in complex viscosity, shear moduli, yield stress, and other properties dictated by chemical composition. By combining DSC and rheological measurements, it is possible to establish a set of models profiling the cure kinetics and chemorheology without prior knowledge of chemical composition, which is usually necessary for sophisticated mechanistic modeling. In this work, we conducted both isothermal and dynamic measurements with both DSC and rheology. With the developed models, numerical simulations yielded predictions of diameter and height of droplets, along with width and height of extruded lines cured at varied temperatures. Experimental results carried out on a goniometric platform and a nozzle-based 3D printer showed agreement with the numerical simulations. Finally, this presentation will show how the models are adaptable to the planning of tool paths and designs in additive manufacturing.

  15. Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility.

    PubMed

    Zhijiang, Cai; Yi, Xu; Haizheng, Yang; Jia, Jianru; Liu, Yuanpei

    2016-01-01

    Poly(hydroxybutyrate) (PHB)/cellulose acetate (CA) blend nanofiber scaffolds were fabricated by electrospinning using the blends of chloroform and DMF as solvent. The blend nanofiber scaffolds were characterized by SEM, FTIR, XRD, DSC, contact angle and tensile test. The blend nanofibers exhibited cylindrical, uniform, bead-free and random orientation with the diameter ranged from 80-680 nm. The scaffolds had very well interconnected porous fibrous network structure and large aspect surface areas. It was found that the presence of CA affected the crystallization of PHB due to formation of intermolecular hydrogen bonds, which restricted the preferential orientation of PHB molecules. The DSC result showed that the PHB and CA were miscible in the blend nanofiber. An increase in the glass transition temperature was observed with increasing CA content. Additionally, the mechanical properties of blend nanofiber scaffolds were largely influenced by the weight ratio of PHB/CA. The tensile strength, yield strength and elongation at break of the blend nanofiber scaffolds increased from 3.3 ± 0.35 MPa, 2.8 ± 0.26 MPa, and 8 ± 0.77% to 5.05 ± 0.52 MPa, 4.6 ± 0.82 MPa, and 17.6 ± 1.24% by increasing PHB content from 60% to 90%, respectively. The water contact angle of blend nanofiber scaffolds decreased about 50% from 112 ± 2.1° to 60 ± 0.75°. The biodegradability was evaluated by in vitro degradation test and the results revealed that the blend nanofiber scaffolds showed much higher degradation rates than the neat PHB. The cytocompatibility of the blend nanofiber scaffolds was preliminarily evaluated by cell adhesion studies. The cells incubated with PHB/CA blend nanofiber scaffold for 48 h were capable of forming cell adhesion and proliferation. It showed much better biocompatibility than pure PHB film. Thus, the prepared PHB/CA blend nanofiber scaffolds are bioactive and may be more suitable for cell proliferation suggesting that these scaffolds can be used for wound dressing or tissue-engineering scaffolds. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Polarization Transfer in Wide-Angle Compton Scattering and Single-Pion Photoproduction from the Proton

    NASA Astrophysics Data System (ADS)

    Fanelli, C.; Cisbani, E.; Hamilton, D. J.; Salmé, G.; Wojtsekhowski, B.; Ahmidouch, A.; Annand, J. R. M.; Baghdasaryan, H.; Beaufait, J.; Bosted, P.; Brash, E. J.; Butuceanu, C.; Carter, P.; Christy, E.; Chudakov, E.; Danagoulian, S.; Day, D.; Degtyarenko, P.; Ent, R.; Fenker, H.; Fowler, M.; Frlez, E.; Gaskell, D.; Gilman, R.; Horn, T.; Huber, G. M.; de Jager, C. W.; Jensen, E.; Jones, M. K.; Kelleher, A.; Keppel, C.; Khandaker, M.; Kohl, M.; Kumbartzki, G.; Lassiter, S.; Li, Y.; Lindgren, R.; Lovelace, H.; Luo, W.; Mack, D.; Mamyan, V.; Margaziotis, D. J.; Markowitz, P.; Maxwell, J.; Mbianda, G.; Meekins, D.; Meziane, M.; Miller, J.; Mkrtchyan, A.; Mkrtchyan, H.; Mulholland, J.; Nelyubin, V.; Pentchev, L.; Perdrisat, C. F.; Piasetzky, E.; Prok, Y.; Puckett, A. J. R.; Punjabi, V.; Shabestari, M.; Shahinyan, A.; Slifer, K.; Smith, G.; Solvignon, P.; Subedi, R.; Wesselmann, F. R.; Wood, S.; Ye, Z.; Zheng, X.

    2015-10-01

    Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θcmp=70 ° . The longitudinal transfer KLL, measured to be 0.645 ±0.059 ±0.048 , where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is ˜3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude.

  17. Polarization Transfer in Wide-Angle Compton Scattering and Single-Pion Photoproduction from the Proton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanelli, C.; Cisbani, E.; Hamilton, D. J.

    Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of theta(p)(cm) cm = 70 degrees. The longitudinal transfer K-LL, measured to be 0.645 +/- 0.059 +/- 0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying themore » spin of the proton. However, the observed value is similar to 3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude.« less

  18. "Sticky electrons" transport and interfacial transfer of electrons in the dye-sensitized solar cell.

    PubMed

    Peter, Laurence

    2009-11-17

    Dye-sensitized solar cells (DSCs, also known as Gratzel cells) mimic the photosynthetic process by using a sensitizer dye to harvest light energy to generate electrical power. Several functional features of these photochemical devices are unusual, and DSC research offers a rewarding arena in which to test new ideas, new materials, and new methodologies. Indeed, one of the most attractive chemical features of the DSC is that the basic concept can be used to construct a range of devices, replacing individual components with alternative materials. Despite two decades of increasing research activity, however, many aspects of the behavior of electrons in the DSC remain puzzling. In this Account, we highlight current understanding of the processes involved in the functioning of the DSC, with particular emphasis on what happens to the electrons in the mesoporous film following the injection step. The collection of photoinjected electrons appears to involve a random walk process in which electrons move through the network of interconnected titanium dioxide nanoparticles while undergoing frequent trapping and detrapping. During their passage to the cell contact, electrons may be lost by transfer to tri-iodide species in the redox electrolyte that permeates the mesoporous film. Competition between electron collection and back electron transfer determines the performance of a DSC: ideally, all injected electrons should be collected without loss. This Account then goes on to survey recent experimental and theoretical progress in the field, placing particular emphasis on issues that need to be resolved before we can gain a clear picture of how the DSC works. Several important questions about the behavior of "sticky" electrons, those that undergo multiple trapping and detrapping, in the DSC remain unanswered. The most fundamental of these concerns is the nature of the electron traps that appear to dominate the time-dependent photocurrent and photovoltage response of DSCs. The origin of the nonideality factor in the relationship between the intensity and the DSC photovoltage is also unclear, as is the discrepancy in electron diffusion length values determined by steady-state and non-steady-state methods. With these unanswered questions, DSC research is likely to remain an active and fruitful area for some years to come.

  19. Characterization of some selected vulcanized and raw silicon rubber materials

    NASA Astrophysics Data System (ADS)

    Sasikala, A.; Kala, A.

    2017-06-01

    Silicone Rubber is a high need of importance of Medical devices, Implants, Aviation and Aerospace wiring applications. Silicone rubbers are widely used in industry, and there are in multiple formulations. A raw and vulcanized silicone rubber Chemical and Physical structures of particles was confirmed and mechanical strength has been analyzed by FTIR spectroscopy. Thermal properties studied from Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analysis. Activation energy of the rubber materials were calculated using Broido method, Piloyon-Novikova relation and coats-Red fern methods.

  20. A Versatile Method for Nanostructuring Metals, Alloys and Metal Based Composites

    NASA Astrophysics Data System (ADS)

    Gurau, G.; Gurau, C.; Bujoreanu, L. G.; Sampath, V.

    2017-06-01

    A new severe plastic deformation method based on High Pressure Torsion is described. The method patented as High Speed High Pressure Torsion (HSHPT) shows a wide scope and excellent adaptability assuring large plastic deformation degree on metals, alloys even on hard to deform or brittle alloys. The paper present results obtained on aluminium, magnesium, titan, iron and coper alloys. In addition capability of HSHPT to process metallic composites is described. OM SEM, TEM, DSC, RDX and HV investigation methods were employed to confirm fine and ultrafine structure.

  1. Robust design study on the wide angle lens with free distortion for mobile lens

    NASA Astrophysics Data System (ADS)

    Kim, Taeyoung; Yong, Liu; Xu, Qing

    2017-10-01

    Recently new trend applying wide angle in mobile imaging lens is attracting. Specially, customer requirements for capturing wider scene result that a field of view of lens be wider than 100deg. Introduction of retro-focus type lens in mobile imaging lens is required. However, imaging lens in mobile phone always face to many constraints such as lower total length, low F/# and higher performance. The sensitivity for fabrication may become more severe because of wide angle FOV. In this paper, we investigate an optical lens design satisfy all requirements for mobile imaging lens. In order to accomplish Low cost and small depth of optical system, we used plastic materials for all element and the productivity is considered for realization. The lateral color is minimized less than 2 pixels and optical distortion is less than 5%. Also, we divided optical system into 2 part for robust design. The compensation between 2 groups can help us to increase yield in practice. The 2 group alignment for high yield may be a promising solution for wide angle lens.

  2. Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Qian, Shuo; Garrison, Ben; Smith, Tyler; Kim, Peter

    2018-04-01

    A nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0 wt. % at 1100 °C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness, and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.

  3. Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering

    DOE PAGES

    Yan, Yong; Qian, Shuo; Garrison, Ben; ...

    2018-04-15

    In this study, a nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0wt. % at 1100°C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness,more » and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.« less

  4. Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yong; Qian, Shuo; Garrison, Ben

    In this study, a nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0wt. % at 1100°C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness,more » and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.« less

  5. Synthesis and Characterization of Hydrophobic Silica Thin Layer Derived from Methyltrimethoxysilane (MTMS)

    NASA Astrophysics Data System (ADS)

    Darmawan, Adi; Utari, Riyadini; Eka Saputra, Riza; Suhartana; Astuti, Yayuk

    2018-01-01

    This study investigated the synthesis and characterization of MTMS hydrophobic silica prepared by sol-gel method. In principle, silica xerogels and silica thin layer were obtained by reacting MTMS in ethanol solvent in some pH variations. The MTMS solution was used to modify the surface of the ceramic plate by dipcoating method to further be calcined at two different temperatures of 350°C and 500°C. The silica xerogels were analysed by FTIR, TGA-DSC and GSA to determine functional group characteristics, thermal properties and pore morphology respectively. Meanwhile, the silica thin layers were analysed their hydrophobic properties using water contact angle measurement and surface roughness determination using SEM. The results showed that the higher the pH used in the MTMS solution, the higher the resulting contact angle. The highest contact angle was obtained at pH 8.12 which reached 94.7° and 79.5° for silica thin layer calcined at 350°C and 500°C, respectively. The TGA results indicated that the methyl group survived up to 400°C and disappeared at 500°C which had implications on silica thin layer hydrophobic nature. GSA result exhibited that the silica xerogel had a close structure with a very low pore volume. While the SEM-EDX results displayed that the silica thin layer prepared at acidic pH had smoother surface morphology and became rough when prepared at an alkaline pH.

  6. Subduction erosion off central Java: transition from accretion to erosion manifested by wide-angle seismic studies

    NASA Astrophysics Data System (ADS)

    Wittwer, A.; Flueh, E.; Rabbel, W.; Wagner, D.

    2006-12-01

    In this study, offshore wide-angle data acquired by ocean bottom instruments of a combined onshore- offshore investigation of the tectonic framework of central Java will be presented. The joint interdisciplinary project MERAMEX (Merapi Amphibious Experiment) was carried out in order to characterize the subduction of the Indo-Australian plate beneath Eurasia. The interpretation of three wide-angle data profiles, modelled with forward raytracing, indicates that the subduction of the Roo Rise with its thickened oceanic crust strongly influences the subduction zone. The dip angle of the downgoing oceanic plate is 10° and its crustal thickness increases to the east from 8 km to 9 km between both dip profiles off central Java. Large scale forearc uplift is manifested in isolated forearc highs, reaching water depths of only 1000 m compared to 2000 m water depth off western Java, and results from oceanic basement relief subduction. A broad band of seamounts trends E-W at approximately 10°S. Its incipient subduction off central Java causes frontal erosion of the margin here and leads to mass wasting due to oversteepening of the upper trench wall. A suite of wide-angle profiles off southern Sumatra to central Java indicates a clear change in the tectonic environment between longitude 108°E and 109°E. The well-developed accretionary wedge off southern Sumatra and western Java changes into a small frontal prism with steep slope angles of the upper plate off central Java.

  7. Thermodynamics of micellization from heat-capacity measurements.

    PubMed

    Šarac, Bojan; Bešter-Rogač, Marija; Lah, Jurij

    2014-06-23

    Differential scanning calorimetry (DSC), the most important technique for studying the thermodynamics of structural transitions of biological macromolecules, is seldom used in quantitative thermodynamic studies of surfactant micellization/demicellization. The reason for this could be ascribed to an insufficient understanding of the temperature dependence of the heat capacity of surfactant solutions (DSC data) in terms of thermodynamics, which leads to problems with the design of experiments and interpretation of the output signals. We address these issues by careful design of DSC experiments performed with solutions of ionic and nonionic surfactants at various surfactant concentrations, and individual and global mass-action model analysis of the obtained DSC data. Our approach leads to reliable thermodynamic parameters of micellization for all types of surfactants, comparable with those obtained by using isothermal titration calorimetry (ITC). In summary, we demonstrate that DSC can be successfully used as an independent method to obtain temperature-dependent thermodynamic parameters for micellization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Degradation of components in drug formulations: a comparison between HPLC and DSC methods.

    PubMed

    Ceschel, G C; Badiello, R; Ronchi, C; Maffei, P

    2003-08-08

    Information about the stability of drug components and drug formulations is needed to predict the shelf-life of the final products. The studies on the interaction between the drug and the excipients may be carried out by means of accelerated stability tests followed by analytical determination of the active principle (HPLC and other methods) and by means of the differential scanning calorimetry (DSC). This research has been focused to the acetyl salicylic acid (ASA) physical-chemical characterisation by using DSC method in order to evaluate its compatibility with some of the most used excipients. It was possible to show, with the DSC method, the incompatibility of magnesium stearate with ASA; the HPLC data confirm the reduction of ASA concentration in the presence of magnesium stearate. With the other excipients the characteristic endotherms of the drug were always present and no or little degradation was observed with the accelerated stability tests. Therefore, the results with the DSC method are comparable and in good agreement with the results obtained with other methods.

  9. DSC of human hair: a tool for claim support or incorrect data analysis?

    PubMed

    Popescu, C; Gummer, C

    2016-10-01

    Differential scanning calorimetry (DSC) data are increasingly used to substantiate product claims of hair repair. Decreasing peak temperatures may indicate structural changes and chemical damage. Increasing the DSC, wet peak temperature is, therefore, often considered as proof of hair repair. A detailed understanding of the technique and hair structure indicates that this may not be a sound approach. Surveying the rich literature on the use of dynamic thermal analysis (DTA) and differential scanning calorimetry (DSC) for the analyses of human hair and the effect of cosmetic treatments, we underline some of the problems of hair structure and data interpretation. To overcome some of the difficulties of data interpretation, we advise that DSC acquired data should be supported by other techniques when used for claim substantiation. In this way, one can provide meaningful interpretation of the hair science and robust data for product claims support. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  10. Traffic Sign Recognition with Invariance to Lighting in Dual-Focal Active Camera System

    NASA Astrophysics Data System (ADS)

    Gu, Yanlei; Panahpour Tehrani, Mehrdad; Yendo, Tomohiro; Fujii, Toshiaki; Tanimoto, Masayuki

    In this paper, we present an automatic vision-based traffic sign recognition system, which can detect and classify traffic signs at long distance under different lighting conditions. To realize this purpose, the traffic sign recognition is developed in an originally proposed dual-focal active camera system. In this system, a telephoto camera is equipped as an assistant of a wide angle camera. The telephoto camera can capture a high accuracy image for an object of interest in the view field of the wide angle camera. The image from the telephoto camera provides enough information for recognition when the accuracy of traffic sign is low from the wide angle camera. In the proposed system, the traffic sign detection and classification are processed separately for different images from the wide angle camera and telephoto camera. Besides, in order to detect traffic sign from complex background in different lighting conditions, we propose a type of color transformation which is invariant to light changing. This color transformation is conducted to highlight the pattern of traffic signs by reducing the complexity of background. Based on the color transformation, a multi-resolution detector with cascade mode is trained and used to locate traffic signs at low resolution in the image from the wide angle camera. After detection, the system actively captures a high accuracy image of each detected traffic sign by controlling the direction and exposure time of the telephoto camera based on the information from the wide angle camera. Moreover, in classification, a hierarchical classifier is constructed and used to recognize the detected traffic signs in the high accuracy image from the telephoto camera. Finally, based on the proposed system, a set of experiments in the domain of traffic sign recognition is presented. The experimental results demonstrate that the proposed system can effectively recognize traffic signs at low resolution in different lighting conditions.

  11. Effect of milling on DSC thermogram of excipient adipic acid.

    PubMed

    Ng, Wai Kiong; Kwek, Jin Wang; Yuen, Aaron; Tan, Chin Lee; Tan, Reginald

    2010-03-01

    The purpose of this research was to investigate why and how mechanical milling results in an unexpected shift in differential scanning calorimetry (DSC) measured fusion enthalpy (Delta(fus)H) and melting point (T(m)) of adipic acid, a pharmaceutical excipient. Hyper differential scanning calorimetry (hyper-DSC) was used to characterize adipic acid before and after ball-milling. An experimental study was conducted to evaluate previous postulations such as electrostatic charging using the Faraday cage method, crystallinity loss using powder X-ray diffraction (PXRD), thermal annealing using DSC, impurities removal using thermal gravimetric analysis (TGA) and Karl Fischer titration. DSC thermograms showed that after milling, the values of Delta(fus)H and T(m) were increased by approximately 9% and 5 K, respectively. Previous suggestions of increased electrostatic attraction, change in particle size distribution, and thermal annealing during measurements did not explain the differences. Instead, theoretical analysis and experimental findings suggested that the residual solvent (water) plays a key role. Water entrapped as inclusions inside adipic acid during solution crystallization was partially evaporated by localized heating at the cleaved surfaces during milling. The correlation between the removal of water and melting properties measured was shown via drying and crystallization experiments. These findings show that milling can reduce residual solvent content and causes a shift in DSC results.

  12. DSC: software tool for simulation-based design of control strategies applied to wastewater treatment plants.

    PubMed

    Ruano, M V; Ribes, J; Seco, A; Ferrer, J

    2011-01-01

    This paper presents a computer tool called DSC (Simulation based Controllers Design) that enables an easy design of control systems and strategies applied to wastewater treatment plants. Although the control systems are developed and evaluated by simulation, this tool aims to facilitate the direct implementation of the designed control system to the PC of the full-scale WWTP (wastewater treatment plants). The designed control system can be programmed in a dedicated control application and can be connected to either the simulation software or the SCADA of the plant. To this end, the developed DSC incorporates an OPC server (OLE for process control) which facilitates an open-standard communication protocol for different industrial process applications. The potential capabilities of the DSC tool are illustrated through the example of a full-scale application. An aeration control system applied to a nutrient removing WWTP was designed, tuned and evaluated with the DSC tool before its implementation in the full scale plant. The control parameters obtained by simulation were suitable for the full scale plant with only few modifications to improve the control performance. With the DSC tool, the control systems performance can be easily evaluated by simulation. Once developed and tuned by simulation, the control systems can be directly applied to the full-scale WWTP.

  13. Structural and Thermal Behavior of Meglumine-Based Supra-Amphiphiles in Bulk and Assembled in Water.

    PubMed

    Ferreira, Leonardo M B; Kurokawa, Suzy S S; Alonso, Jovan D; Cassimiro, Douglas Lopes; Souza, Ana Luiza Ribeiro de; Fonseca, Mariana; Sarmento, Victor Hugo V; Regasini, Luis Octávio; Ribeiro, Clóvis Augusto

    2016-11-15

    Supra-amphiphiles are a new class of building blocks that are fabricated by means of noncovalent forces. In this work, we studied the formation of supra-amphiphiles by combining hydrophilic meglumine (MEG) with hydrophobic maleated castor oils (MACO). Spectroscopic analysis demonstrated that ionic interactions are the main driving force in the fabrication of these materials. Subsequently, supra-amphiphile/water systems were examined for their structure and water behavior by polarized optical microscopy (POM), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). Micellar and lamellar liquid crystalline phases were observed. Finally, we observed that the supra-amphiphiles produced using an excess of MEG retain a large amount of water. As bound water plays an important role in biointerfacial interactions, we anticipate that these materials will display a pronounced potential for biomedical applications.

  14. Alternative Fluoropolymers to Avoid the Challenges Associated with Perfluorooctanoic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo,J.; Resnick, P.; Efimenko, K.

    2008-01-01

    The degradation of stain-resistant coating materials leads to the release of biopersistent perfluorooctanoic acid (PFOA) to the environment. In order to find the environmentally friendly substitutes, we have designed and synthesized a series of nonbiopersistant fluorinated polymers containing perfluorobutyl groups in the side chains. The surface properties of the new coating materials were characterized by static and dynamic contact angle measurements. The new coating materials demonstrate promising hydrophobic and oleophobic properties with low surfaces tensions. The wetting properties and surface structure of the polymers were tuned by varying the 'spacer' structures between the polymer backbones and the perfluorinated groups ofmore » the side chains. The relationship between orientations of the fluorinated side chains and performances of polymer surfaces were further investigated by near-edge X-ray fine absorption structure (NEXAFS) experiments and differential scanning calorimetry (DSC).« less

  15. Voxel-based correlation between coregistered single-photon emission computed tomography and dynamic susceptibility contrast magnetic resonance imaging in subjects with suspected Alzheimer disease.

    PubMed

    Cavallin, L; Axelsson, R; Wahlund, L O; Oksengard, A R; Svensson, L; Juhlin, P; Wiberg, M Kristoffersen; Frank, A

    2008-12-01

    Current diagnosis of Alzheimer disease is made by clinical, neuropsychologic, and neuroimaging assessments. Neuroimaging techniques such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) could be valuable in the differential diagnosis of Alzheimer disease, as well as in assessing prognosis. To compare SPECT and MRI in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer disease (AD). 24 patients, eight with AD, 10 with MCI, and six controls, were investigated with SPECT using (99m)Tc-hexamethylpropyleneamine oxime (HMPAO, Ceretec; GE Healthcare Ltd., Little Chalsont UK) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a contrast-enhancing gadobutrol formula (Gadovist; Bayer Schering Pharma, Berlin, Germany). Voxel-based correlation between coregistered SPECT and DSC-MR images was calculated. Region-of-interest (ROI) analyses were then performed in 24 different brain areas using brain registration and analysis of SPECT studies (BRASS; Nuclear Diagnostics AB, Stockholm, Sweden) on both SPECT and DSC-MRI. Voxel-based correlation between coregistered SPECT and DSC-MR showed a high correlation, with a mean correlation coefficient of 0.94. ROI analyses of 24 regions showed significant differences between the control group and AD patients in 10 regions using SPECT and five regions in DSC-MR. SPECT remains superior to DSC-MRI in differentiating normal from pathological perfusion, and DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer disease.

  16. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    PubMed

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-07

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  17. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  18. Inclusion complexes of cypermethrin and permethrin with monochlorotriazinyl-beta-cyclodextrin: A combined spectroscopy, TG/DSC and DFT study

    NASA Astrophysics Data System (ADS)

    Yao, Qi; You, Bin; Zhou, Shuli; Chen, Meng; Wang, Yujiao; Li, Wei

    2014-01-01

    The suitable size hydrophobic cavity and monochlorotriazinyl group as a reactive anchor make MCT-β-CD to be widely used in fabric finishing. In this paper, the inclusion complexes of monochlorotriazinyl-beta-cyclodextrin (MCT-β-CD) with cypermethrin (CYPERM) and permethrin (PERM) are synthesized and analyzed by TG/DSC, FT-IR and Raman spectroscopy. TG/DSC reveals that the decomposed temperatures of inclusion complexes are lower by 25-30 °C than that of physical mixtures. DFT calculations in conjunction with FT-IR and Raman spectral analyses are used to study the structures of MCT-β-CD and their inclusion complexes. Four isomers of trisubstituted MCT-β-CD are designed and DFT calculations reveal that 1,3,5-trisubstituted MCT-β-CD has the lowest energy and can be considered as main component of MCT-β-CD. The ground-state geometries, vibrational wavenumbers, IR and Raman intensities of MCT-β-CD and their inclusion complexes were calculated at B3LYP/6-31G (d) level of theory. Upon examining the optimized geometry of inclusion complex, we find that the CYPERM and PERM are inserted into the toroid of MCT-β-CD from the larger opening. The band at 1646 cm-1 in IR and at 1668 cm-1 in Raman spectrum reveals that monochloroazinyl group of MCT-β-CD exists in ketone form but not in anion form. The noticeable IR and Raman shift of phenyl reveals that these two benzene rings of CYPERM and PERM stays inside the cavity of MCT-β-CD and has weak interaction with MCT-β-CD. This spectroscopy conclusion is consistent with theoretical predicted structure.

  19. Wide-angle seismic recording from the 2002 Georgia Basin Geohazards Initiative, northwestern Washington and British Columbia

    USGS Publications Warehouse

    Brocher, Thomas M.; Pratt, Thomas L.; Spence, George D.; Riedel, Michael; Hyndman, Roy D.

    2003-01-01

    This report describes the acquisition and processing of shallow-crustal wide-angle seismicreflection and refraction data obtained during a collaborative study in the Georgia Strait, western Washington and southwestern British Columbia. The study, the 2002 Georgia Strait Geohazards Initiative, was conducted in May 2002 by the Pacific Geoscience Centre, the U.S. Geological Survey, and the University of Victoria. The wide-angle recordings were designed to image shallow crustal faults and Cenozoic sedimentary basins crossing the International Border in southern Georgia basin and to add to existing wide-angle recordings there made during the 1998 SHIPS experiment. We recorded, at wide-angle, 800 km of shallow penetration multichannel seismic-reflection profiles acquired by the Canadian Coast Guard Ship (CCGS) Tully using an air gun with a volume of 1.967 liters (120 cu. in.). Prior to this reflection survey, we deployed 48 Refteks onshore to record the airgun signals at wide offsets. Three components of an oriented, 4.5 Hz seismometer were digitally recorded at all stations. Nearly 160,300 individual air gun shots were recorded along 180 short seismic reflection lines. In this report, we illustrate the wide-angle profiles acquired using the CCGS Tully, describe the land recording of the air gun signals, and summarize the processing of the land recorder data into common-receiver gathers. We also describe the format and content of the archival tapes containing the SEGY-formated, common-receiver gathers for the Reftek data. Data quality is variable but the experiment provided useful data from 42 of the 48 stations deployed. Three-fourths of all stations yielded useful first-arrivals to source-receiver offsets beyond 10 km: the average maximum source-receiver offset for first arrivals was 17 km. Six stations yielded no useful data and useful firstarrivals were limited to offsets less than 10 km at five stations. We separately archived our recordings of 86 local and regional earthquakes ranging in magnitude from 0.2 to 4.3 and 16 teleseisms ranging in magnitude 5.5 to 6.5.

  20. Master Volunteer Life Cycle: A Wide Angle Lens on the Volunteer Experience

    ERIC Educational Resources Information Center

    Strauss, Andrea Lorek; Rager, Amy

    2017-01-01

    Extension master volunteer programs, such as master naturalist and master gardener, often focus heavily on volunteer education. The model presented here describes the full life cycle of a master volunteer's experience in the program, putting education in the context of other essential program components. By zooming out to a wide-angle view of the…

  1. Quantitative angle-insensitive flow measurement using relative standard deviation OCT.

    PubMed

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-30

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .

  2. Quantitative angle-insensitive flow measurement using relative standard deviation OCT

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-01

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo.

  3. The road to JCAHO disease-specific care certification: a step-by-step process log.

    PubMed

    Morrison, Kathy

    2005-01-01

    In 2002, the Joint Commission on Accreditation of Healthcare Organizations (JCAHO) implemented Disease-Specific Care (DSC) certification. This is a voluntary program in which organizations have their disease management program evaluated by this regulatory agency. Some of the DSC categories are stroke, heart failure, acute MI, diabetes, and pneumonia. The criteria for any disease management program certification are: compliance with consensus-based national standards, effective use of established clinical practice guidelines to manage and optimize care, and an organized approach to performance measurement and improvement activities. Successful accomplishment of DSC certification defines organizations as Centers of Excellence in management of that particular disease. This article will review general guidelines for DSC certification with an emphasis on Primary Stroke Center certification.

  4. Liquigroud technique: a new concept for enhancing dissolution rate of glibenclamide by combination of liquisolid and co-grinding technologies.

    PubMed

    Azharshekoufeh, Leila; Shokri, Javad; Barzegar-Jalali, Mohammad; Javadzadeh, Yousef

    2017-01-01

    Introduction: The potential of combining liquisolid and co-grinding technologies (liquiground technique) was investigated to improve the dissolution rate of a water-insoluble agent (glibenclamide) with formulation-dependent bioavailability. Methods: To this end, different formulations of liquisolid tablets with a wide variety of non-volatile solvents contained varied ratios of drug: solvent and dissimilar carriers were prepared, and then their release profiles were evaluated. Furthermore, the effect of size reduction by ball milling on the dissolution behavior of glibenclamide from liquisolid tablets was investigated. Any interaction between the drug and the excipient or crystallinity changes during formulation procedure was also examined using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results: The present study revealed that classic liquisolid technique did not significantly affect the drug dissolution profile as compared to the conventional tablets. Size reduction obtained by co-grinding of liquid medication was more effective than the implementation of liquisolid technique in enhancing the dissolution rate of glibenclamide. The XRD and DSC data displayed no formation of complex or any crystallinity changes in both formulations. Conclusion: An enhanced dissolution rate of glibenclamide is achievable through the combination of liquisolid and co-grinding technologies.

  5. Influence of the active compounds of Perilla frutescens leaves on lipid membranes.

    PubMed

    Duelund, Lars; Amiot, Arnaud; Fillon, Alexandra; Mouritsen, Ole G

    2012-02-24

    The leaves of the annual plant Perilla frutescens are used widely as a spice and a preservative in Asian food as well as in traditional medicine. The active compounds in the leaves are the cyclic monoterpene limonene (1) and its bio-oxidation products, perillaldehyde (2), perillyl alcohol (3), and perillic acid (4). These compounds are known to be biologically active and exhibit antimicrobial, anticancer, and anti-inflammatory effects that could all be membrane mediated. In order to assess the possible biophysical effects of these compounds on membranes quantitatively, the influence of limonene and its bio-oxidation products has been investigated on a membrane model composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) using differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC), and electron paramagnetic resonance spectroscopy (EPR). It was found that limonene (1), perillyl alcohol (2), and perillaldehyde (3) partitioned into the DMPC membrane, whereas perillic acid (4) did not. The DSC results demonstrated that all the partitioning compounds strongly perturbed the phase transition of DMPC, whereas no perturbation of the local membrane order was detected by EPR spectroscopy. The results of the study showed that limonene (1) and its bio-oxidation products affect membranes in rather subtle ways.

  6. Development of a synthetic aperture radar design approach for wide-swath implementation

    NASA Technical Reports Server (NTRS)

    Jean, B. R.

    1981-01-01

    The first phase of a study program to develop an advanced synthetic aperture radar design concept is presented. Attributes of particular importance for the system design include wide swath coverage, reduced power requirements, and versatility in the selection of frequency, polarization and incident angle. The multiple beam configuration provides imaging at a nearly constant angle of incidence and offers the potential of realizing a wide range of the attributes desired for an orbital imaging radar for Earth resources applications.

  7. Development of wide-angle 2D light scattering static cytometry

    NASA Astrophysics Data System (ADS)

    Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao

    2016-10-01

    We have recently developed a 2D light scattering static cytometer for cellular analysis in a label-free manner, which measures side scatter (SSC) light in the polar angular range from 79 to 101 degrees. Compared with conventional flow cytometry, our cytometric technique requires no fluorescent labeling of the cells, and static cytometry measurements can be performed without flow control. In this paper we present an improved label-free static cytometer that can obtain 2D light scattering patterns in a wider angular range. By illuminating the static microspheres on chip with a scanning optical fiber, wide-angle 2D light scattering patterns of single standard microspheres with a mean diameter of 3.87 μm are obtained. The 2D patterns of 3.87 μm microspheres contain both large-angle forward scatter (FSC) and SSC light in the polar angular range from 40 to 100 degrees, approximately. Experimental 2D patterns of 3.87 μm microspheres are in good agreement with Mie theory simulated ones. The wide-angle light scattering measurements may provide a better resolution for particle analysis as compared with the SSC measurements. Two dimensional light scattering patterns of HL-60 human acute leukemia cells are obtained by using our static cytometer. Compared with SSC 2D light scattering patterns, wide-angle 2D patterns contain richer information of the HL-60 cells. The obtaining of 2D light scattering patterns in a wide angular range could help to enhance the capabilities of our label-free static cytometry for cell analysis.

  8. Non-isothermal crystallization kinetics and characterization of biodegradable poly(butylene succinate-co-neopentyl glycol succinate) copolyesters.

    PubMed

    Xie, Wen-Jie; Zhou, Xiao-Ming

    2015-01-01

    Both biodegradable aliphatic neat poly(butylene succinate) (PBS) and poly(butylene succinate-co-neopentyl glycol succinate) (P(BS-co-NPGS)) copolyesters with different 1,4-butanediol/neopentyl glycol ratios were synthesized through a two-step process of transesterification and polycondensation using stannous chloride and 4-Methylbenzenesulfonic acid as the co-catalysts. The structure, non-isothermal crystallization behavior, crystalline morphology and crystal structure of neat PBS and P(BS-co-NPGS) copolyesters were characterized by (1)H NMR, differential scanning calorimetry (DSC), polarized optical microscope (POM) and wide angle X-ray diffraction (WAXD), respectively. The Avrami equation modified by Jeziorny and Mo's method was employed to describe the non-isothermal crystallization kinetics of the neat PBS and its copolyesters. The modified Avrami equation could adequately describe the primary stage of non-isothermal crystallization kinetics of the neat PBS and its copolyesters. Mo's method provided a fairly satisfactory description of the non-isothermal crystallization of neat PBS and its copolyesters. Interestingly, the values of 1/t1/2, Zc and F(T) obtained by the modified Avrami equation and Mo's method analysis indicated that the crystallization rate increased first and then decreased with an increase of NPGS content compared that of neat PBS, whereas the crystallization mechanism almost kept unchanged. The results of tensile testing showed that the ductility of PBS was largely improved by incorporating NPGS units. The elongation at break increased remarkably with increasing NPGS content. In particular, the sample with 20% NPGS content showed around 548% elongation at break. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Magnetic resonance imaging in dissociated strabismus complex demonstrates generalized hypertrophy of rectus extraocular muscles.

    PubMed

    Rajab, Ghada Z; Suh, Soh Youn; Demer, Joseph L

    2017-06-01

    Dissociated strabismus complex (DSC) is an enigmatic form of strabismus that includes dissociated vertical deviation (DVD) and dissociated horizontal deviation (DHD). We employed magnetic resonance imaging (MRI) to evaluate the extraocular muscles in DSC. We studied 5 patients with DSC and mean age of 25 years (range, 12-42 years), and 15 age-matched, orthotropic control subjects. All patients had DVD; 4 also had DHD. We employed high-resolution, surface coil MRI with thin, 2 mm slices and central target fixation. Volumes of the rectus and superior oblique muscles in the region 12 mm posterior to 4 mm anterior to the globe-optic nerve junction were measured in quasi-coronal planes in central gaze. Patients with DSC had no structural abnormalities of rectus muscles or rectus pulleys or the superior oblique muscle but exhibited modest, statistically significant increased volume of all rectus muscles ranging from 20% for medial rectus to 9% for lateral rectus (P < 0.05). DSC includes various combinations of sursumduction, excycloduction, and abduction not conforming to Hering's law. We have found modest generalized enlargement of all rectus muscles. DSC is associated with generalized rectus extraocular muscle hypertrophy in the absence of other orbital abnormalities. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  10. A Unified Constitutive Model for Subglacial Till, Part II: Laboratory Tests, Disturbed State Modeling, and Validation for Two Subglacial Tills

    NASA Astrophysics Data System (ADS)

    Desai, C. S.; Sane, S. M.; Jenson, J. W.; Contractor, D. N.; Carlson, A. E.; Clark, P. U.

    2006-12-01

    This presentation, which is complementary to Part I (Jenson et al.), describes the application of the Disturbed State Concept (DSC) constitutive model to define the behavior of the deforming sediment (till) underlying glaciers and ice sheets. The DSC includes elastic, plastic, and creep strains, and microstructural changes leading to degradation, failure, and sometimes strengthening or healing. Here, we describe comprehensive laboratory experiments conducted on samples of two regionally significant tills deposited by the Laurentide Ice Sheet: the Tiskilwa Till and Sky Pilot Till. The tests are used to determine the parameters to calibrate the DSC model, which is validated with respect to the laboratory tests by comparing the predictions with test data used to find the parameters, and also comparing them with independent tests not used to find the parameters. Discussion of the results also includes comparison of the DSC model with the classical Mohr-Coulomb model, which has been commonly used for glacial tills. A numerical procedure based on finite element implementation of the DSC is used to simulate an idealized field problem, and its predictions are discussed. Based on these analyses, the unified DSC model is proposed to provide an improved model for subglacial tills compared to other models used commonly, and thus to provide the potential for improved predictions of ice sheet movements.

  11. New developments using carbon dioxide as a solvent: Monolayers and nanocomposites. 1. Reactions of organosilanes with oxidized silicon surfaces in carbon dioxide. 2. Polymer/polymer nanocomposites synthesized in carbon dioxide

    NASA Astrophysics Data System (ADS)

    Cao, Chuntao

    The aim of this research was to explore new directions for carbon dioxide. The first project emphasized silyl monolayer synthesis. Silylation reactions were performed in both liquid and supercritical carbon dioxide. Different monofunctional organosilanes reacted with silica surfaces, forming covalently attached monolayers. These monolayers were characterized using contact angle measurements, X-ray photoelectron spectroscopy, and ellipsometry. Reaction kinetics were established, and compared with silylations in organic solvents. The reaction rate in CO2 is higher than that in conventional solvents while the final coverage is slightly lower than the optimized conditions for conventional solvents. Other multi-functional silanes were also studied. The silylation of nanoporous silica surfaces showed bonding densities almost as high as the maximum value reported in literature for small-pore substrates. Overall, CO2 is a good solvent for silylations on silica surfaces. The second project was to synthesize polymer/polymer nanocomposites using a CO2-assisted templating method. Semicrystalline polymers are composed of tens-of-nanometer thick crystalline lamellae and an amorphous matrix. CO2 normally swells only the amorphous and interlamellar regions. The goal of this research was to selectively bring monomers to the amorphous and interlamellar regions with the help of CO2. In situ polymerization and precipitation fixes the structure, replicating the nano-structure of the semicrystalline polymer substrate. Ring-opening metathesis polymerization was performed inside of CO2-swollen poly(4-methyl-1-pentene) (PMP) of high crystallinity. Several polymer/polymer nanocomposites were successfully produced using this method. They were characterized by a variety of techniques, such as transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and wide angle X-ray diffraction (WAXD). Infrared studies and TEM indicated that one type of composite, polynorbomene/PMP, had a gradient distribution of polynorbornene inside of the PMP matrix. Another composite, polyoctenamer/PMP prepared by cis-cyclooctene polymerization, exhibited very interesting mechanical properties. The poly(dicyclopentadiene)/PMP composites are unique nanometer-scale blends of a highly crosslinked thermoset with a thermoplastic polymer.

  12. Bite angle effects of diphosphines in C-C and C-X bond forming cross coupling reactions.

    PubMed

    Birkholz, Mandy-Nicole; Freixa, Zoraida; van Leeuwen, Piet W N M

    2009-04-01

    Catalytic reactions of C-C and C-X bond formation are discussed in this critical review with particular emphasis on cross coupling reactions catalyzed by palladium and wide bite angle bidentate diphosphine ligands. Especially those studies have been collected that allow comparison of the ligand bite angles for the selected ligands: dppp, BINAP, dppf, DPEphos and Xantphos. Similarities with hydrocyanation and CO/ethene/MeOH reactions have been highlighted, while rhodium hydroformylation has been mentioned as a contrasting example, in which predictability is high and steric and electronic effects follow smooth trends. In palladium catalysis wide bite angles and bulkiness of the ligands facilitate generally the reductive elimination thus giving more efficient cross coupling catalysis (174 references).

  13. A study of mercuric iodide near melting using differential scanning calorimetry, Raman spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Burger, A.; Morgan, S.; Jiang, H.; Silberman, E.; Schieber, M.; Van Den Berg, L.; Keller, L.; Wagner, C. N. J.

    1989-11-01

    High-temperature studies of mercuric iodide (HgI2) involving differential scanning calorimetry (DSC), Raman spectroscopy and X-ray powder diffraction have failed to confirm the existence of a red-colored tetragonal high-temperature phase called α'-HgI2 reported by S.N. Toubektsis et al. [J. Appl. Phys. 58 (1988) 2070] using DSC measurements. The multiple DSC peaks near melting reported by Toubektsis are found by the present authors only if the sample is heated in a stainless-steel container. Using a Pyrex container or inserting a platinum foil between the HgI2 and the stainless-steel container yields only one sharp, single DSC peak at the melting point. The nonexistence of the α' phase is confirmed by high-temperature X-ray diffraction and Raman spectroscopy performed in the vicinity of the melting point. These methods clearly, indicate the existence of only the yellow orthorhombic β-HgI2 phase. The experimental high-temperature DSC, Raman and X-ray diffraction data are presented and discussed.

  14. Multispectral Image Compression Based on DSC Combined with CCSDS-IDC

    PubMed Central

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741

  15. Multispectral image compression based on DSC combined with CCSDS-IDC.

    PubMed

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.

  16. Dye-sensitized solar cells employing a SnO2-TiO2 core-shell structure made by atomic layer deposition.

    PubMed

    Karlsson, Martin; Jõgi, Indrek; Eriksson, Susanna K; Rensmo, Håkan; Boman, Mats; Boschloo, Gerrit; Hagfeldt, Anders

    2013-01-01

    This paper describes the synthesis and characterization of core-shell structures, based on SnO2 and TiO2, for use in dye-sensitized solar cells (DSC). Atomic layer deposition is employed to control and vary the thickness of the TiO2 shell. Increasing the TiO2 shell thickness to 2 nm improved the device performance of liquid electrolyte-based DSC from 0.7% to 3.5%. The increase in efficiency originates from a higher open-circuit potential and a higher short-circuit current, as well as from an improvement in the electron lifetime. SnO2-TiO2 core-shell DSC devices retain their photovoltage in darkness for longer than 500 seconds, demonstrating that the electrons are contained in the core material. Finally core-shell structures were used for solid-state DSC applications using the hole transporting material 2,2',7,7',-tetrakis(N, N-di-p-methoxyphenyl-amine)-9,9',-spirofluorene. Similar improvements in device performance were obtained for solid-state DSC devices.

  17. A three-dimensional wide-angle BPM for optical waveguide structures.

    PubMed

    Ma, Changbao; Van Keuren, Edward

    2007-01-22

    Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.

  18. A three-dimensional wide-angle BPM for optical waveguide structures

    NASA Astrophysics Data System (ADS)

    Ma, Changbao; van Keuren, Edward

    2007-01-01

    Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.

  19. Outer planets mission television subsystem optics study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An optics study was performed to establish a candidate optical system design for the proposed NASA Mariner Jupiter/Saturn 77 mission. The study was performed over the 6-month period from January through June 1972. The candidate optical system contains both a wide angle (A) and a narrow angle (B) lens. An additional feature is a transfer mirror mechanism that allows image transfer from the B lens to the vidicon initially used for the A lens. This feature adds an operational redundancy to the optical system in allowing for narrow angle viewing if the narrow angle vidicon were to fail. In this failure mode, photography in the wide angle mode would be discontinued. The structure of the candidate system consists mainly of aluminum with substructures of Invar for athermalization. The total optical system weighs (excluding vidicons) approximately 30 pounds and has overall dimensions of 26.6 by 19.5 by 12.3 inches.

  20. Development of a binary carrier system consisting polyethylene glycol 4000 - ethyl cellulose for ibuprofen solid dispersion

    PubMed Central

    Alagdar, Gada Sulaiman A.; Oo, May Kyaw; Sengupta, Pinaki; Mandal, Uttam Kumar; Jaffri, Julian Md.; Chatterjee, Bappaditya

    2017-01-01

    Background and Objective: One of the established strategies to improve solubility and dissolution rate of poorly water-soluble drugs is solid dispersion (SD). Polyethylene glycol (PEG) is used as common carrier despite its stability problem which may be overcome by the addition of hydrophobic polymer. The present research aimed to develop an SD formulation with ibuprofen, a poor water-soluble BCS Class II drug as active pharmaceutical ingredient (API) and PEG 4000-ethyl cellulose (EC) as binary carrier. Methods: Melt mixing SD method was employed using a ratio of API: binary carrier (1:3.5 w/w) (SDPE). Another SD was prepared using only PEG (SDP) as a carrier for comparative study. The developed formulation was evaluated using optical microscopy, scanning electron microscopy (SEM), determination of moisture content, differential scanning calorimetry (DSC), in vitro dissolution test, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and flow properties. Results: SEM and DSC indicated the conversion of crystalline ibuprofen to fine partly amorphous solid dispersion, which was responsible for the increase in dissolution rate of SD than a physical mixture. The release characteristics within 1 h from the higher to the lower value were the SDPE> SDP> physical mixture. Flow property evaluation using the angle of repose showed no difference between SD and PM. However, by Carr index and Hausner ratio, the flow properties of SDPE was excellent. Conclusion: The SD formulation with the PEG 4000-EC carrier can be effective to enhance in vitro dissolution of ibuprofen immediate release dosage form. PMID:29184827

  1. Poloxamer 407/188 binary thermosensitive hydrogels as delivery systems for infiltrative local anesthesia: Physico-chemical characterization and pharmacological evaluation.

    PubMed

    Akkari, Alessandra C S; Papini, Juliana Z Boava; Garcia, Gabriella K; Franco, Margareth K K Dias; Cavalcanti, Leide P; Gasperini, Antonio; Alkschbirs, Melissa Inger; Yokaichyia, Fabiano; de Paula, Eneida; Tófoli, Giovana R; de Araujo, Daniele R

    2016-11-01

    In this study, we reported the development and the physico-chemical characterization of poloxamer 407 (PL407) and poloxamer 188 (PL188) binary systems as hydrogels for delivering ropivacaine (RVC), as drug model, and investigate their use in infiltrative local anesthesia for applications on the treatment of post-operative pain. We studied drug-micelle interaction and micellization process by light scattering and differential scanning calorimetry (DSC), the sol-gel transition and hydrogel supramolecular structure by small-angle-X-ray scattering (SAXS) and morphological evaluation by Scanning Electron Microscopy (SEM). In addition, we have presented the investigation of drug release mechanisms, in vitro/in vivo toxic and analgesic effects. Micellar dimensions evaluation showed the formation of PL407-PL188 mixed micelles and the drug incorporation, as well as the DSC studies showed increased enthalpy values for micelles formation after addition of PL 188 and RVC, indicating changes on self-assembly and the mixed micelles formation evoked by drug incorporation. SAXS studies revealed that the phase organization in hexagonal structure was not affected by RVC insertion into the hydrogels, maintaining their supramolecular structure. SEM analysis showed similar patterns after RVC addition. The RVC release followed the Higuchi model, modulated by the PL final concentration and the insertion of PL 188 into the system. Furthermore, the association PL407-PL188 induced lower in vitro cytotoxic effects, increased the duration of analgesia, in a single-dose model study, without evoking in vivo inflammation signs after local injection. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Comparison of bare and amino modified mesoporous silica@poly(ethyleneimine)s xerogel as indomethacin carrier: Superiority of amino modification.

    PubMed

    Li, Jing; Xu, Lu; Wang, Hongyu; Yang, Baixue; Liu, Hongzhuo; Pan, Weisan; Li, Sanming

    2016-02-01

    The purpose of this study was to facilely develop amino modified mesoporous silica xerogel synthesized using biomimetic method (B-AMSX) and to investigate its potential ability to be a drug carrier for loading poorly water-soluble drug indomethacin (IMC). For comparison, mesoporous silica xerogel without amino modification (B-MSX) was also synthesized using the same method. The changes of characteristics before and after IMC loading were systemically studied using fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS) and nitrogen adsorption/desorption analysis. The results showed that B-MSX and B-AMSX were spherical nanoparticles with mesoporous structure. Compared with B-MSX, IMC loading capacity of B-AMSX was higher because more drug molecules can be loaded through stronger hydrogen bonding force. DSC and SAXS analysis confirmed the amorphous state of IMC after being loaded into B-MSX and B-AMSX. The in vitro drug release study revealed that B-MSX and B-AMSX improved IMC release significantly, and B-AMSX released IMC a little faster than B-MSX because of larger pore diameter of IMC-AMSX. B-MSX and B-AMSX degraded gradually in dissolution medium evidenced by color reaction and absorbance value, and B-AMSX degraded slower than B-MSX due to amino modification. In conclusion, B-AMSX with superiority of higher loading capacity and enhanced dissolution release can be considered to be a good candidate as drug carrier for IMC. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Oxidative induction time -- A review of DSC experimental effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaine, R.L.; Lundgren, C.J.; Harris, M.B.

    1997-12-31

    Over the past several years, a number of ASTM committees have explored a wide variety of experimental parameters affecting the oxidative induction time (OIT) test method in an attempt to improve its intra- and inter-laboratory precision. These studies have identified test temperature precision as a key parameter affecting OIT precision. Other parameters of importance are oxygen flow rate, specimen size, specimen pan type, oxygen pressure and catalyst effects. The work of Kuck, Bowmer, Riga, Tikuisis and Thomas are reviewed as well as the collective work of ASTM Committees E37, D2, D9 and D35.

  4. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite

    PubMed Central

    Shahabi, Sima; Najafi, Farhood; Majdabadi, Abbas; Hooshmand, Tabassom; Haghbin Nazarpak, Masoumeh; Karimi, Batool

    2014-01-01

    Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC), thermal behavior (DSC), wettability (contact angle), cell viability (MTT assay), and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial. PMID:25574485

  5. Distinguishable circumferential inclined direction tilt sensor based on fiber Bragg grating with wide measuring range and high accuracy

    NASA Astrophysics Data System (ADS)

    Jiang, Shanchao; Wang, Jing; Sui, Qingmei

    2015-11-01

    One novel distinguishable circumferential inclined direction tilt sensor is demonstrated by incorporating two strain sensitivity fiber Bragg gratings (FBGs) with two orthogonal triangular cantilever beam and using one fiber Bragg grating (FBG) as temperature compensation element. According to spatial vector and space geometry, theory calculation model of the proposed FBG tilt sensor which can be used to obtain the azimuth and tile angle of the inclined direction is established. To obtain its measuring characteristics, calibration experiment on one prototype of the proposed FBG tilt sensor is carried out. After temperature sensitivity experiment data analysis, the proposed FBG tilt sensor exhibits excellent temperature compensation characteristics. In 2-D tilt angle experiment, tilt measurement sensitivities of these two strain sensitivity FBGs are 140.85°/nm and 101.01°/nm over a wide range of 60º. Further, azimuth and tile angle of the inclined direction can be obtained by the proposed FBG tilt sensor which is verified in circumferential angle experiment. Experiment data show that relative errors of azimuth are 0.55% (positive direction) and 1.14% (negative direction), respectively, and relative errors of tilt angle are all less than 3%. Experiment results confirm that the proposed distinguishable circumferential inclined direction tilt sensor based on FBG can achieve azimuth and tile angle measurement with wide measuring range and high accuracy.

  6. Solid lipid nanodispersions containing mixed lipid core and a polar heterolipid: characterization.

    PubMed

    Attama, A A; Schicke, B C; Paepenmüller, T; Müller-Goymann, C C

    2007-08-01

    This paper describes the characterization of solid lipid nanodispersions (SLN) prepared with a 1:1 mixture of theobroma oil and goat fat as the main lipid matrix and Phospholipon 90G (P90G) as a stabilizer heterolipid, using polysorbate 80 as the mobile surfactant, with a view to applying the SLN in drug delivery. The 1:1 lipid mixture and P90G constituting the lipid matrix was first homogeneously prepared by fusion. Thereafter, the SLN were formulated with a gradient of polysorbate 80 and constant lipid matrix concentration by melt-high pressure homogenisation. The SLN were characterized by time-resolved particle size analysis, zeta potential and osmotic pressure measurements, differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). Transmission electron microscopy (TEM) and isothermal heat conduction microcalorimetry (IMC) which monitors the in situ crystallization were also carried out on the SLN containing P90G and 1.0 % w/w of polysorbate 80. The results obtained in these studies were compared with SLN prepared with theobroma oil with and without phospholipid. Particle size analysis of SLN indicated reduction in size with increase in concentration of mobile surfactant and was in the lower nanometer range after 3 months except SLN prepared without P90G or polysorbate 80. The lipid nanoparticles had negative potentials after 3 months. WAXD and DSC studies revealed low crystalline SLN after 3 months of storage except in WAXD of SLN formulated with 1.0 % w/w polysorbate 80. TEM micrograph of the SLN containing 1.0 % w/w polysorbate 80 revealed discrete particles whose sizes were in consonance with the static light scattering measurement. In situ crystallization studies in IMC revealed delayed crystallization of the SLN with 1.0 % w/w polysorbate 80. Results indicate lipid mixtures produced SLN with lower crystallinity and higher particle sizes compared with SLN prepared with theobroma oil alone with or without P90G, and would lead to higher drug incorporation efficiency when used in formulation of actives. Mixtures of theobroma oil and goat fat would be suitable for the preparation of nanostructured lipid carriers. SLN of theobroma oil containing phospholipid could prove to be a good ocular or parenteral drug delivery system considering the low particle size, particle size stability and in vivo tolerability of the component lipids. SLN prepared with lipid admixture, which had higher increase in d(90%) on storage are suitable for preparation of topical and transdermal products.

  7. Structure, wettability and thermal degradation of new fluoro-oligomer modified nanoclays.

    PubMed

    Valsecchi, R; Viganò, M; Levi, M; Turri, S

    2008-04-01

    Quaternary ammonium salts based on monofunctionalized Perfluoropolyether (PFPE) oligomers were synthesized and used for the cation exchange process of sodium Montmorillonite nanoclays. The new fluoromodified nanoclays were characterized through X-rays diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), termogravimetric analysis (TGA), differential scanning calorimetry (DSC), electronic microscopy (SEM-EDS), and contact angle measurements (CA). In particular XRD showed rather complex patterns (presence of higher order reflections) which allowed the calculation of basal spacings, regularly increasing with the molecular weight of the fluorinated macrocation. Both IR and SEM confirmed the presence of fluorinated segments at clays interface, while TGA showed a limited thermal stability with an onset of degradation temperature which seems not dependent on the molecular weight of the macrocation. CA measurements showed a peculiar behaviour, with evident dynamic hysteresis phenomena and surface tension components quite different from those of commercially available, organomodified clays.

  8. Surface hydrophobic modification of polyurethanes by diaryl carbene chemistry: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Yang, Pengfei; Wang, Yongqing; Lu, Ling; Yu, Xi; Liu, Lian

    2018-03-01

    Dodecyl diaryl diazomethane was firstly synthesized from 4,4-dihydroxybenzophenone and 1-bromododecane by a series of reaction steps. Then water-borne polyurethane films with different amount of DMPA were prepared, as well as a type of solvent-borne polyurethane film for comparison. Finally, all these polyurethane films were modified by dodecyl diaryl diazomethane. The dodecyl diaryl carbene was generated from dodecyl diaryl diazomethane by strong solar light, which was very convenient to insert into the Xsbnd H bonds (X = C, N) on the surface of polyurethane films. The contact angle test was used to characterize these films and depict the surface property. DSC analysis and tensile test were used to investigate the physical properties of polyurethane films before and after modification. It was suggested that the hydrophobic modification protocol with carbene insertion was very useful and convenient to prepare water-proof coatings outdoors under direct solar-light exposure.

  9. The morphology of blends of linear and branched polyethylenes in solid state by SANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wignall, G.D.; Londono, J.D.; Alamo, R.G.

    1994-12-31

    In a previous paper the authors have shown how small-angle neutron and X-ray scattering (SANS, SAXS) can be used to determine the melt compatibility of different polyolefins, including high-density (HD), low-density (LD), and linear low density (LLD) polyethylene. Such blends have attained widespread commercial applications, though the understanding of the mechanical and melt-flow properties of such blends has hitherto been handicapped by the absence of a consensus concerning the degree of mixing of the components, both in the melt and solid states. Recent SANS data indicate that for HDPE/LDPE blends, the melt is homogeneous for all compositions after proper accountingmore » for H/D isotope effects. In this publication the authors use complementary SANS, DSC, and SAXS to examine the types of morphologies and the different degrees of phase separation which may arise via crystallization effects on cooling from a homogeneous melt.« less

  10. The morphology of blends of linear and branched polyethylenes in solid state by SANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wignall, G.D.; Londono, J.D.; Alamo, R.G.

    1995-03-01

    In a previous paper, the authors have shown how small-angle neutron and X-ray scattering (SANS, SAXS) can be used to determine the melt compatibility of different polyolefins, including high-density (HD), low-density (LD), and linear low density (LLD) polyethylene. Such blends have attained widespread commercial applications, though the understanding of the mechanical and melt-flow properties of such blends has hitherto been handicapped by the absence of a consensus concerning the degree of mixing of the components, both in the melt and solid states. Recent SANS data indicate that for HDPE/LDPE blends, the melt is homogeneous for all compositions after proper accountingmore » for H/D isotope effects. In this publication the authors use complementary SANS, DSC, and SAXS to examine the types of morphologies and the different degrees of phase separation which may arise via crystallization effects on cooling from a homogeneous melt.« less

  11. Effects of Nanoparticle Morphology and Acyl Chain Length on Spontaneous Lipid Transfer Rates

    DOE PAGES

    Xia, Yan; Li, Ming; Charubin, Kamil; ...

    2015-11-05

    In this paper, we report on studies of lipid transfer rates between different morphology nanoparticles and lipids with different length acyl chains. The lipid transfer rate of dimyristoylphosphatidylcholine (di-C 14, DMPC) in discoidal “bicelles” (0.156 h –1) is 2 orders of magnitude greater than that of DMPC vesicles (ULVs) (1.1 × 10 –3 h –1). For both bicellar and ULV morphologies, increasing the acyl chain length by two carbons [going from di-C 14 DMPC to di-C 16, dipalmitoylphosphatidylcholine (DPPC)] causes lipid transfer rates to decrease by more than 2 orders of magnitude. Results from small angle neutron scattering (SANS), differentialmore » scanning calorimetry (DSC), and fluorescence correlation spectroscopy (FCS) are in good agreement. Finally, the present studies highlight the importance of lipid dynamic processes taking place in different morphology biomimetic membranes.« less

  12. Antimicrobial agent-free hybrid cationic starch/sodium alginate polyelectrolyte films for food packaging materials.

    PubMed

    Şen, Ferhat; Uzunsoy, İrem; Baştürk, Emre; Kahraman, Memet Vezir

    2017-08-15

    This study aimed to develop polyelectrolyte structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic starch was synthesized and characterized by FT-IR spectroscopy and 1 H NMR spectroscopy. Its nitrogen content was determined by Kjeldahl method. Polyelectrolyte structured antimicrobial food packaging materials were prepared using starch, cationic starch and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by TGA and DSC. Hydrophobicity of samples was determined by contact angle measurements. Surface morphology of samples was investigated by SEM. Moreover, gel contents of samples were determined. The obtained results prove that produced food packaging materials have good thermal, antimicrobial and surface properties, and they can be used as food packaging material in many industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The effect of polyether functional polydimethylsiloxane on surface and thermal properties of waterborne polyurethane

    NASA Astrophysics Data System (ADS)

    Zheng, Guikai; Lu, Ming; Rui, Xiaoping

    2017-03-01

    Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.

  14. Study of the structural and thermal properties of plasma treated jute fibre

    NASA Astrophysics Data System (ADS)

    Sinha, E.; Rout, S. K.; Barhai, P. K.

    2008-08-01

    Jute fibres ( Corchorus olitorius), were treated with argon cold plasma for 5, 10 and 15 min. Structural macromolecular parameters of untreated and plasma treated fibres were investigated using small angle X-ray scattering (SAXS), and the crystallinity parameters of the same fibres were determined by using X-ray diffraction (XRD). Differential scanning calorimetry (DSC) was used to study the thermal behavior of the untreated and treated fibres. Comparison and analysis of the results confirmed the changes in the macromolecular structure after plasma treatment. This is due to the swelling of cellulosic particles constituting the fibres, caused by the bombardment of high energetic ions onto the fibre surface. Differential scanning calorimetry data demonstrated the thermal instability of the fibre after cold plasma treatment, as the thermal degradation temperature of hemicelluloses and cellulose was found lowered than that of raw fibre after plasma treatment.

  15. Quantitative description of the T1 morphology and strengthening mechanisms in an age-hardenable Al-Li-Cu alloy

    NASA Astrophysics Data System (ADS)

    Dorin, Thomas; Deschamps, Alexis; De Geuser, Frédéric; Weyland, Matthew

    In the Al-Cu-Li system, the main strengthening precipitate is the T1 phase (Al2CuLi). In order to understand the strengthening related to the formation of this phase, we first present an investigation of the morphology of the T1 phase in an AA2198 alloy using Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC) in relation with the evolution of micro-hardness. In parallel, we present an investigation of the interaction between T1 precipitates and dislocations using High Angle Annular Dark Field (HAADF) imaging in an atomic resolution Scanning Transmission Electron Microscope (STEM). The atomic scale imaging of precipitates makes it possible to quantify the density of shearing events, which turns out to be insufficient to account for the imposed plastic strain. We discuss the implications of this result in terms of precipitate-dislocation interactions.

  16. Incident angle of saltating particles in wind-blown sand.

    PubMed

    Fu, Lin-Tao; Bo, Tian-Li; Gu, Hai-Hua; Zheng, Xiao-Jing

    2013-01-01

    Incident angle of saltating particles plays a very important role in aeolian events. In this paper, the incident angles of sand particles near the sand bed were measured in wind tunnel. It reveals that the incident angles range widely from 0° to 180° and thereby the means of angles are larger than published data. Surprisingly, it is found the proportion that angles of 5°-15° occupy is far below previous reports. The measuring height is probably the most important reason for the measurement differences between this study and previous investigations.

  17. ARC-1990-AC79-7127

    NASA Image and Video Library

    1990-02-14

    Range : 4 billion miles from Earth, at 32 degrees to the ecliptic. P-36057C This color image of the Sun, Earth, and Venus is one of the first, and maybe, only images that show are solar system from such a vantage point. The image is a portion of a wide angle image containing the sun and the region of space where the Earth and Venus were at the time, with narrow angle cameras centered on each planet. The wide angle was taken with the cameras darkest filter, a methane absorption band, and the shortest possible exposure, one two-hundredth of a second, to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large in the sky, as seen from Voyager's perpective at the edge of the solar system. Yet, it is still 8xs brighter than the brightest star in Earth's sky, Sirius. The image of the sun you see is far larger than the actual dimension of the solar disk. The result of the brightness is a bright burned out image with multiple reflections from the optics of the camera. The rays around th sun are a diffraction pattern of the calibration lamp which is mounted in front of the wide angle lens. the 2 narrow angle frames containing the images of the Earth and Venus have been digitally mosaicked into the wide angle image at the appropriate scale. These images were taken through three color filters and recombined to produce the color image. The violet, green, and blue filters used , as well as exposure times of .72,.48, and .72 for Earth, and .36, .24, and .36 for Venus.The images also show long linear streaks resulting from scatering of sulight off parts of the camera and its shade.

  18. Miranda

    NASA Image and Video Library

    1999-08-24

    One wide-angle and eight narrow-angle camera images of Miranda, taken by NASA Voyager 2, were combined in this view. The controlled mosaic was transformed to an orthographic view centered on the south pole.

  19. High diffraction efficiency of three-layer diffractive optics designed for wide temperature range and large incident angle.

    PubMed

    Mao, Shan; Cui, Qingfeng; Piao, Mingxu; Zhao, Lidong

    2016-05-01

    A mathematical model of diffraction efficiency and polychromatic integral diffraction efficiency affected by environment temperature change and incident angle for three-layer diffractive optics with different dispersion materials is put forward, and its effects are analyzed. Taking optical materials N-FK5 and N-SF1 as the substrates of multilayer diffractive optics, the effect on diffraction efficiency and polychromatic integral diffraction efficiency with intermediate materials POLYCARB is analyzed with environment temperature change as well as incident angle. Therefore, three-layer diffractive optics can be applied in more wide environmental temperature ranges and larger incident angles for refractive-diffractive hybrid optical systems, which can obtain better image quality. Analysis results can be used to guide the hybrid imaging optical system design for optical engineers.

  20. Wide field strip-imaging optical system

    NASA Technical Reports Server (NTRS)

    Vaughan, Arthur H. (Inventor)

    1994-01-01

    A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180-degree strip or arc of a target image. Light received by the spherical mirror section is reflected to a frusto-conical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide-angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180-degree strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.

  1. Solutions on a high-speed wide-angle zoom lens with aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Yamanashi, Takanori

    2012-10-01

    Recent development in CMOS and digital camera technology has accelerated the business and market share of digital cinematography. In terms of optical design, this technology has increased the need to carefully consider pixel pitch and characteristics of the imager. When the field angle at the wide end, zoom ratio, and F-number are specified, choosing an appropriate zoom lens type is crucial. In addition, appropriate power distributions and lens configurations are required. At points near the wide end of a zoom lens, it is known that an aspheric surface is an effective means to correct off-axis aberrations. On the other hand, optical designers have to focus on manufacturability of aspheric surfaces and perform required analysis with respect to the surface shape. Centration errors aside, it is also important to know the sensitivity to aspheric shape errors and their effect on image quality. In this paper, wide angle cine zoom lens design examples are introduced and their main characteristics are described. Moreover, technical challenges are pointed out and solutions are proposed.

  2. Ultra-broadband and wide-angle perfect absorber based on composite metal-semiconductor grating

    NASA Astrophysics Data System (ADS)

    Li, Xu; Wang, Zongpeng; Hou, Yumin

    2018-01-01

    In this letter, we present an ultra-broadband and wide-angle perfect absorber based on composite Ge-Ni grating. Near perfect absorption above 90% is achieved in a wide frequency range from 150 nm to 4200 nm, which covers almost the full spectrum of solar radiation. The absorption keeps robust in a wide range of incident angle from 0º to 60º. The upper triangle Ge grating works as an antireflection coating. The lower Ni grating works as a reflector and an effective energy trapper. The guided modes inside Ge grating are excited due to reflection of the lower Ni grating surface. In longer wavelength band, gap surface plasmons (GSPs) in the Ni grating are excited and couple with the guided modes inside the Ge grating. The coupled modes extend the perfect absorption band to the near-infrared region (150 nm-4200 nm). This design has potential application in photovoltaic devices and thermal emitters.

  3. Random Combinatorial Gradient Metasurface for Broadband, Wide-Angle and Polarization-Independent Diffusion Scattering.

    PubMed

    Zhuang, Yaqiang; Wang, Guangming; Liang, Jiangang; Cai, Tong; Tang, Xiao-Lan; Guo, Tongfeng; Zhang, Qingfeng

    2017-11-29

    This paper proposes an easy, efficient strategy for designing broadband, wide-angle and polarization-independent diffusion metasurface for radar cross section (RCS) reduction. A dual-resonance unit cell, composed of a cross wire and cross loop (CWCL), is employed to enhance the phase bandwidth covering the 2π range. Both oblique-gradient and horizontal-gradient phase supercells are designed for illustration. The numerical results agree well with the theoretical ones. To significantly reduce backward scattering, the random combinatorial gradient metasurface (RCGM) is subsequently constructed by collecting eight supercells with randomly distributed gradient directions. The proposed metasurface features an enhanced specular RCS reduction performance and less design complexity compared to other candidates. Both simulated and measured results show that the proposed RCGM can significantly suppress RCS and exhibits broadband, wide-angle and polarization independence features.

  4. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance.

    PubMed

    Zhang, Changlei; Huang, Cheng; Pu, Mingbo; Song, Jiakun; Zhao, Zeyu; Wu, Xiaoyu; Luo, Xiangang

    2017-07-18

    In this article, a dual-band wide-angle metamaterial perfect absorber is proposed to achieve absorption at the wavelength where laser radar operates. It is composed of gold ring array and a Helmholtz resonance cavity spaced by a Si dielectric layer. Numerical simulation results reveal that the designed absorber displays two absorption peaks at the target wavelength of 10.6 μm and 1.064 μm with the large frequency ratio and near-unity absorptivity under the normal incidence. The wide-angle absorbing property and the polarization-insensitive feature are also demonstrated. Localized surface plasmons resonance and Helmholtz resonance are introduced to analyze and interpret the absorbing mechanism. The designed perfect absorber can be developed for potential applications in infrared stealth field.

  5. Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry.

    PubMed

    Rodríguez Chialanza, Mauricio; Sierra, Ignacio; Pérez Parada, Andrés; Fornaro, Laura

    2018-06-01

    There are several techniques used to analyze microplastics. These are often based on a combination of visual and spectroscopic techniques. Here we introduce an alternative workflow for identification and mass quantitation through a combination of optical microscopy with image analysis (IA) and differential scanning calorimetry (DSC). We studied four synthetic polymers with environmental concern: low and high density polyethylene (LDPE and HDPE, respectively), polypropylene (PP), and polyethylene terephthalate (PET). Selected experiments were conducted to investigate (i) particle characterization and counting procedures based on image analysis with open-source software, (ii) chemical identification of microplastics based on DSC signal processing, (iii) dependence of particle size on DSC signal, and (iv) quantitation of microplastics mass based on DSC signal. We describe the potential and limitations of these techniques to increase reliability for microplastic analysis. Particle size demonstrated to have particular incidence in the qualitative and quantitative performance of DSC signals. Both, identification (based on characteristic onset temperature) and mass quantitation (based on heat flow) showed to be affected by particle size. As a result, a proper sample treatment which includes sieving of suspended particles is particularly required for this analytical approach.

  6. A calorimetric study of precipitation in aluminum alloy 2219

    NASA Astrophysics Data System (ADS)

    Papazian, John M.

    1981-02-01

    Precipitate microstructures in aluminum alloy 2219 were characterized using transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The DSC signatures of individual precipitate phases were established by comparing the DSC and TEM results from samples that had been aged such that only one precipitate phase was present. These signatures were then used to analyze the commercial tempers. It was found that DSC could readily distinguish between the T3, T4, T6, T8 and O tempers but could not distinguish amongst T81, T851 and T87. Small amounts of plastic deformation between solution treatment and aging had a significant effect on the thermograms. Aging experiments at 130 and 190 °C showed that the aging sequence and DSC response of this alloy were similar to those of pure Al-Cu when the increased copper content is taken into account. Further aging experiments at temperatures between room temperature and 130 °C showed pronounced changes of the GP zone dissolution peak as a function of aging conditions. These changes were found to be related to the effect of GP zone size on the metastable phase boundary and on the GP zone dissolution kinetics.

  7. A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion

    NASA Astrophysics Data System (ADS)

    Yagi, N.; Ohta, N.; Matsuo, T.; Tanaka, T.; Terada, Y.; Kamasaka, H.; Kometani, T.

    2010-10-01

    The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6μm at BL40XU and 50μm at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.

  8. Crustal thickness variations across the Blue Ridge mountains, southern Appalachians: an alternative procedure for migrating wide-angle reflection data

    Treesearch

    Robert B. Hawman

    2008-01-01

    Migration of wide-angle reflections generated by quarry blasts suggests that crustal thickness increases from 38 km beneath the Carolina Terrane to 47–51 km along the southeastern flank of the Blue Ridge. The migration algorithm, developed for generating single-fold images from explosions and earthquakes recorded with isolated, short-aperture arrays, uses the localized...

  9. The nature of crustal boundaries: combined interpretation of wide-angle and normal-incidence seismic data

    NASA Astrophysics Data System (ADS)

    Long, Roger E.; Matthews, Patricia A.; Graham, Daniel P.

    1994-04-01

    After a few seconds two-way traveltime, normal-incidence seismic reflection sections are composed mainly of assemblages of short reflections. Very rarely are seen continuous reflections that might correspond to the Moho or a mid-crustal discontinuity. The inferred continuity of these boundaries has traditionally come from refraction seismology. There is now a body of high quality, coincident wide-angle and normal-incidence seismic data that have been recorded with 50-100 m shot spacing and with high frequency sources (e.g. MOBIL, BABEL). The complexity and characteristics of the wide-angle arrivals seen on these data suggest that they do not originate from continuous boundaries. It is suggested that these arrivals are reflections from the same assemblage of short length reflectors that are responsible for normal-incidence reflections. Seismic velocities below the middle crust may (1) change corresponding to normal-incidence reflectivity, or (2) generally increase with depth with localised sills or lens structures of different velocity accounting for the observed reflections. Wide-angle arrivals that have traditionally been identified as reflections from crustal boundaries (e.g. the mid-crust and Moho) and which were considered indicative of a sharp velocity discontinuity from continuous boundaries, may instead result from a concentration of lamellae.

  10. Imaging of retinal and choroidal vascular tumours

    PubMed Central

    Heimann, H; Jmor, F; Damato, B

    2013-01-01

    The most common intraocular vascular tumours are choroidal haemangiomas, vasoproliferative tumours, and retinal haemangioblastomas. Rarer conditions include cavernous retinal angioma and arteriovenous malformations. Options for ablating the tumour include photodynamic therapy, argon laser photocoagulation, trans-scleral diathermy, cryotherapy, anti-angiogenic agents, plaque radiotherapy, and proton beam radiotherapy. Secondary effects are common and include retinal exudates, macular oedema, epiretinal membranes, retinal fibrosis, as well as serous and tractional retinal detachment, which are treated using standard methods (ie, intravitreal anti-angiogenic agents or steroids as well as vitreoretinal procedures, such as epiretinal membrane peeling and release of retinal traction). The detection, diagnosis, and monitoring of vascular tumours and their complications have improved considerably thanks to advances in imaging. These include spectral domain and enhanced depth imaging optical coherence tomography (SD-OCT and EDI-OCT, respectively), wide-angle photography and angiography as well as wide-angle fundus autofluorescence. Such novel imaging has provided new diagnostic clues and has profoundly influenced therapeutic strategies so that vascular tumours and secondary effects are now treated concurrently instead of sequentially, enhancing any opportunities for conserving vision and the eye. In this review, we describe how SD-OCT, EDI-OCT, autofluorescence, wide-angle photography and wide-angle angiography have facilitated the evaluation of eyes with the more common vascular tumours, that is, choroidal haemangioma, retinal vasoproliferative tumours, and retinal haemangioblastoma. PMID:23196648

  11. The Wide Angle Camera of the ROSETTA Mission

    NASA Astrophysics Data System (ADS)

    Barbieri, C.; Fornasier, S.; Verani, S.; Bertini, I.; Lazzarin, M.; Rampazzi, F.; Cremonese, G.; Ragazzoni, R.; Marzari, F.; Angrilli, F.; Bianchini, G. A.; Debei, S.; Dececco, M.; Guizzo, G.; Parzianello, G.; Ramous, P.; Saggin, B.; Zaccariotto, M.; Da Deppo, V.; Naletto, G.; Nicolosi, G.; Pelizzo, M. G.; Tondello, G.; Brunello, P.; Peron, F.

    This paper aims to give a brief description of the Wide Angle Camera (WAC), built by the Centro Servizi e AttivitàSpaziali (CISAS) of the University of Padova for the ESA ROSETTA Mission to comet 46P/Wirtanen and asteroids 4979 Otawara and 140 Siwa. The WAC is part of the OSIRIS imaging system, which comprises also a Narrow Angle Camera (NAC) built by the Laboratoire d'Astrophysique Spatiale (LAS) of Marseille. CISAS had also the responsibility to build the shutter and the front cover mechanism for the NAC. The flight model of the WAC was delivered in December 2001, and has been already integrated on ROSETTA.

  12. Optimization of nonimaging focusing heliostat in dynamic correction of astigmatism for a wide range of incident angles.

    PubMed

    Chong, Kok-Keong

    2010-05-15

    To overcome astigmatism has always been a great challenge in designing a heliostat capable of focusing the sunlight on a small receiver throughout the year. In this Letter, a nonimaging focusing heliostat with a dynamic adjustment of facet mirrors in a group manner has been analyzed for optimizing the astigmatic correction in a wide range of incident angles. This what is to the author's knowledge a new heliostat is not only designed to serve the purpose of concentrating sunlight to several hundreds of suns, but also to significantly reduce the variation of the solar flux distribution with the incident angle.

  13. Theory, design, and experimental verification of a reflectionless bianisotropic Huygens' metasurface for wide-angle refraction

    NASA Astrophysics Data System (ADS)

    Chen, Michael; Abdo-Sánchez, Elena; Epstein, Ariel; Eleftheriades, George V.

    2018-03-01

    Huygens' metasurfaces are electrically thin devices which allow arbitrary field transformations. Beam refraction is among the first demonstrations of realized metasurfaces. As previously shown for extreme-angle refraction, control over only the electric impedance and magnetic admittance of the Huygens' metasurface proved insufficient to produce the desired reflectionless field transformation. To maintain zero reflections for wide refraction angles, magnetoelectric coupling between the electric and magnetic response of the metasurface, leading to bianisotropy, can be introduced. In this paper, we report the theory, design, and experimental characterization of a reflectionless bianisotropic metasurface for extreme-angle refraction of a normally incident plane wave towards 71.8° at 20 GHz. The theory and design of three-layer asymmetric bianisotropic unit cells are discussed. The realized printed circuit board structure was tested via full-wave simulations as well as experimental characterization. To experimentally verify the prototype, two setups were used. A quasi-optical experiment was conducted to assess the specular reflections of the metasurface, while a far-field antenna measurement characterized its refraction nature. The measurements verify that the fabricated metasurface has negligible reflections and the majority of the scattered power is refracted to the desired Floquet mode. This provides an experimental demonstration of a reflectionless wide-angle refracting metasurface using a bianisotropic Huygens' metasurface at microwave frequencies.

  14. Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data

    PubMed Central

    2013-01-01

    Background The thermal decomposition of cephalexine, cefadroxil and cefoperazone under non-isothermal conditions using the TG, respectively DSC methods, was studied. In case of TG, a hyphenated technique, including EGA, was used. Results The kinetic analysis was performed using the TG and DSC data in air for the first step of cephalosporin’s decomposition at four heating rates. The both TG and DSC data were processed according to an appropriate strategy to the following kinetic methods: Kissinger-Akahira-Sunose, Friedman, and NPK, in order to obtain realistic kinetic parameters, even if the decomposition process is a complex one. The EGA data offer some valuable indications about a possible decomposition mechanism. The obtained data indicate a rather good agreement between the activation energy’s values obtained by different methods, whereas the EGA data and the chemical structures give a possible explanation of the observed differences on the thermal stability. A complete kinetic analysis needs a data processing strategy using two or more methods, but the kinetic methods must also be applied to the different types of experimental data (TG and DSC). Conclusion The simultaneous use of DSC and TG data for the kinetic analysis coupled with evolved gas analysis (EGA) provided us a more complete picture of the degradation of the three cephalosporins. It was possible to estimate kinetic parameters by using three different kinetic methods and this allowed us to compare the Ea values obtained from different experimental data, TG and DSC. The thermodegradation being a complex process, the both differential and integral methods based on the single step hypothesis are inadequate for obtaining believable kinetic parameters. Only the modified NPK method allowed an objective separation of the temperature, respective conversion influence on the reaction rate and in the same time to ascertain the existence of two simultaneous steps. PMID:23594763

  15. 3D superwide-angle one-way propagator and its application in seismic modeling and imaging

    NASA Astrophysics Data System (ADS)

    Jia, Xiaofeng; Jiang, Yunong; Wu, Ru-Shan

    2018-07-01

    Traditional one-way wave-equation based propagators have been widely used in past decades. Comparing to two-way propagators, one-way methods have higher efficiency and lower memory demands. These two features are especially important in solving large-scale 3D problems. However, regular one-way propagators cannot simulate waves that propagate in large angles within 90° because of their inherent wide angle limitation. Traditional one-way can only propagate along the determined direction (e.g., z-direction), so simulation of turning waves is beyond the ability of one-way methods. We develop 3D superwide-angle one-way propagator to overcome angle limitation and to simulate turning waves with superwide-angle propagation angle (>90°) for modeling and imaging complex geological structures. Wavefields propagating along vertical and horizontal directions are combined using typical stacking scheme. A weight function related to the propagation angle is used for combining and updating wavefields in each propagating step. In the implementation, we use graphics processing units (GPU) to accelerate the process. Typical workflow is designed to exploit the advantages of GPU architecture. Numerical examples show that the method achieves higher accuracy in modeling and imaging steep structures than regular one-way propagators. Actually, superwide-angle one-way propagator can be applied based on any one-way method to improve the effects of seismic modeling and imaging.

  16. Development of processing diagrams for polymeric die attach adhesives

    NASA Astrophysics Data System (ADS)

    Hsiung, Jen-Chou

    With a processing diagram, one can reduce the effort required to customize curing process conditions for polymeric die attach adhesives. Polymeric die attach adhesives are often cured per the manufacturer's recommendations during initial screening evaluations. In most cases, the recommended cure schedules have to be modified so as to fit differences in process equipment. Unfortunately, the modified cure schedule is usually determined by a trial-and-error method. An aim of our experiments is to understand the curing process of a wide range of polymeric die attach adhesives (conventional, fast, and snap cure adhesives) and to construct a processing diagram, i.e., "Bondability Diagram", so as to define the processing window. Such diagrams should be helpful in determining both the time and cure temperature required to produce high quality bonds. The bondability diagram can be constructed based on fundamental understandings of the phenomena involved in the curing process using a wide variety of tools. Differential Scanning Calorimetry (DSC) is utilized to study the cure kinetics and the extent of reaction. Dynamic Mechanical Analysis (DMA) is used to determine gelation times and melt viscosity under a shear mode. A modified Rheovibron is employed to perform cure characterizations under a tensile mode so that cure stresses could be determined. Thermogravimetric Analysis (TGA) is used to evaluate the outgassing phenomena. Optical Microscopy (OM) is used to detect voids. Results indicate that the cure behaviors of conventional, fast, and snap cure adhesives are different in several respects. The combination of DSC, DMA, TGA, OM, and lap shear test leads to a frame work of developing the bondability diagram concept. The bondability diagram concept provides a foundation for an understanding of the recommended cure schedule and allows one to design their own cure schedule.

  17. Fast and robust segmentation of the striatum using deep convolutional neural networks.

    PubMed

    Choi, Hongyoon; Jin, Kyong Hwan

    2016-12-01

    Automated segmentation of brain structures is an important task in structural and functional image analysis. We developed a fast and accurate method for the striatum segmentation using deep convolutional neural networks (CNN). T1 magnetic resonance (MR) images were used for our CNN-based segmentation, which require neither image feature extraction nor nonlinear transformation. We employed two serial CNN, Global and Local CNN: The Global CNN determined approximate locations of the striatum. It performed a regression of input MR images fitted to smoothed segmentation maps of the striatum. From the output volume of Global CNN, cropped MR volumes which included the striatum were extracted. The cropped MR volumes and the output volumes of Global CNN were used for inputs of Local CNN. Local CNN predicted the accurate label of all voxels. Segmentation results were compared with a widely used segmentation method, FreeSurfer. Our method showed higher Dice Similarity Coefficient (DSC) (0.893±0.017 vs. 0.786±0.015) and precision score (0.905±0.018 vs. 0.690±0.022) than FreeSurfer-based striatum segmentation (p=0.06). Our approach was also tested using another independent dataset, which showed high DSC (0.826±0.038) comparable with that of FreeSurfer. Comparison with existing method Segmentation performance of our proposed method was comparable with that of FreeSurfer. The running time of our approach was approximately three seconds. We suggested a fast and accurate deep CNN-based segmentation for small brain structures which can be widely applied to brain image analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A study of the homogeneity and deviations from stoichiometry in mercuric iodide

    NASA Astrophysics Data System (ADS)

    Burger, A.; Morgan, S.; He, C.; Silberman, E.; van den Berg, L.; Ortale, C.; Franks, L.; Schieber, M.

    1990-01-01

    We have been able to determine the deviations from stoichiometry of mercuric iodide (HgI 2) by using differential scanning calorimetry (DSC). Mercury excess or iodine deficiency in mercuric iodide can be evaluated from the eutectic melting of α-Hgl 2-Hg 2I 2 at 235 °C, which appears as an additional peak in DSC thermograms. I 2 excess can be found from the existence of the I 2-α-HgI 2 eutectic melting at 103°C. An additional DSC peak appears in some samples around 112°C, that could be explained by the presence of iodine inclusions. Using resonance fluorescence spectroscopy (RFS) we have been able to determine the presence of free I 2 that is released by samples during the heating at 120 °C (crystal growth temperature), thus giving additional support to the above DSC results.

  19. A Differential Scanning Calorimetry Method for Construction of Continuous Cooling Transformation Diagram of Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Gan, Lei; Zhang, Chunxia; Shangguan, Fangqin; Li, Xiuping

    2012-06-01

    The continuous cooling crystallization of a blast furnace slag was studied by the application of the differential scanning calorimetry (DSC) method. A kinetic model describing the correlation between the evolution of the degree of crystallization with time was obtained. Bulk cooling experiments of the molten slag coupled with numerical simulation of heat transfer were conducted to validate the results of the DSC methods. The degrees of crystallization of the samples from the bulk cooling experiments were estimated by means of the X-ray diffraction (XRD) and the DSC method. It was found that the results from the DSC cooling and bulk cooling experiments are in good agreement. The continuous cooling transformation (CCT) diagram of the blast furnace slag was constructed according to crystallization kinetic model and experimental data. The obtained CCT diagram characterizes with two crystallization noses at different temperature ranges.

  20. Dynamic system classifier.

    PubMed

    Pumpe, Daniel; Greiner, Maksim; Müller, Ewald; Enßlin, Torsten A

    2016-07-01

    Stochastic differential equations describe well many physical, biological, and sociological systems, despite the simplification often made in their derivation. Here the usage of simple stochastic differential equations to characterize and classify complex dynamical systems is proposed within a Bayesian framework. To this end, we develop a dynamic system classifier (DSC). The DSC first abstracts training data of a system in terms of time-dependent coefficients of the descriptive stochastic differential equation. Thereby the DSC identifies unique correlation structures within the training data. For definiteness we restrict the presentation of the DSC to oscillation processes with a time-dependent frequency ω(t) and damping factor γ(t). Although real systems might be more complex, this simple oscillator captures many characteristic features. The ω and γ time lines represent the abstract system characterization and permit the construction of efficient signal classifiers. Numerical experiments show that such classifiers perform well even in the low signal-to-noise regime.

  1. Biodegradable block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers.

    PubMed

    Ou, Wenfeng; Qiu, Handi; Chen, Zhifei; Xu, Kaitian

    2011-04-01

    A series of block poly(ester-urethane)s (abbreviated as PU3/4HB) based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) segments were synthesized by a facile way of melting polymerization using 1,6-hexamethylene diisocyanate (HDI) as the coupling agent and stannous octanoate (Sn(Oct)(2)) as catalyst, with different 4HB contents and segment lengths. The chemical structure, molecular weight and distribution were systematically characterized by (1)H nuclear magnetic resonance spectrum (NMR), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The thermal property was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The hydrophilicity was investigated by static contact angle of deionized water and CH(2)I(2). DSC curves revealed that the PU3/4HB polyurethanes have their T(g) from -25.6 °C to -4.3 °C, and crystallinity from 2.5% to 25.3%, being almost amorphous to semi-crystalline. The obtained PU3/4HBs are hydrophobic (water contact angle 77.4°-95.9°), and their surface free energy (SFE) were studied. The morphology of platelets adhered on the polyurethane film observed by scanning electron microscope (SEM) showed that platelets were activated on the PU3/4HB films which would lead to blood coagulation. The lactate dehydrogenase (LDH) assay revealed that the PU3/4HBs displayed higher platelet adhesion property than raw materials and biodegradable polymer polylactic acid (PLA) and would be potential hemostatic materials. Crystallinity degree, hydrophobicity, surface free energy and urethane linkage content play important roles in affecting the LDH activity and hence the platelet adhesion. CCK-8 assay showed that the PU3/4HB is non-toxic and well for cell growth and proliferation of mouse fibroblast L929. It showed that the hydrophobicity is an important factor for cell growth while 3HB content of the PU3/4HB is important for the cell proliferation. Through changing the composition and the chain-length of P3/4HB-diol prepolymers, the biocompatibility of the poly(ester-urethane)s can be tailored. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  3. Ten-Meter Scale Topography and Roughness of Mars Exploration Rovers Landing Sites and Martian Polar Regions

    NASA Technical Reports Server (NTRS)

    Ivanov, Anton B.

    2003-01-01

    The Mars Orbiter Camera (MOC) has been operating on board of the Mars Global Surveyor (MGS) spacecraft since 1998. It consists of three cameras - Red and Blue Wide Angle cameras (FOV=140 deg.) and Narrow Angle camera (FOV=0.44 deg.). The Wide Angle camera allows surface resolution down to 230 m/pixel and the Narrow Angle camera - down to 1.5 m/pixel. This work is a continuation of the project, which we have reported previously. Since then we have refined and improved our stereo correlation algorithm and have processed many more stereo pairs. We will discuss results of our stereo pair analysis located in the Mars Exploration rovers (MER) landing sites and address feasibility of recovering topography from stereo pairs (especially in the polar regions), taken during MGS 'Relay-16' mode.

  4. Religiousness, Spirituality, and Salivary Cortisol in Breast Cancer Survivorship: A Pilot Study.

    PubMed

    Hulett, Jennifer M; Armer, Jane M; Leary, Emily; Stewart, Bob R; McDaniel, Roxanne; Smith, Kandis; Millspaugh, Rami; Millspaugh, Joshua

    Psychoneuroimmunological theory suggests a physiological relationship exists between stress, psychosocial-behavioral factors, and neuroendocrine-immune outcomes; however, evidence has been limited. The primary aim of this pilot study was to determine feasibility and acceptability of a salivary cortisol self-collection protocol with a mail-back option for breast cancer survivors. A secondary aim was to examine relationships between religiousness/spirituality (R/S), perceptions of health, and diurnal salivary cortisol (DSC) as a proxy measure for neuroendocrine activity. This was an observational, cross-sectional study. Participants completed measures of R/S, perceptions of health, demographics, and DSC. The sample was composed of female breast cancer survivors (n = 41). Self-collection of DSC using a mail-back option was feasible; validity of mailed salivary cortisol biospecimens was established. Positive spiritual beliefs were the only R/S variable associated with the peak cortisol awakening response (rs = 0.34, P = .03). Poorer physical health was inversely associated with positive spiritual experiences and private religious practices. Poorer mental health was inversely associated with spiritual coping and negative spiritual experiences. Feasibility, validity, and acceptability of self-collected SDC biospecimens with an optional mail-back protocol (at moderate temperatures) were demonstrated. Positive spiritual beliefs were associated with neuroendocrine-mediated peak cortisol awakening response activity; however, additional research is recommended. Objective measures of DSC sampling that include enough collection time points to assess DSC parameters would increase the rigor of future DSC measurement. Breast cancer survivors may benefit from nursing care that includes spiritual assessment and therapeutic conversations that support positive spiritual beliefs.

  5. Incident Angle of Saltating Particles in Wind-Blown Sand

    PubMed Central

    Fu, Lin-Tao; Bo, Tian-Li; Gu, Hai-Hua; Zheng, Xiao-Jing

    2013-01-01

    Incident angle of saltating particles plays a very important role in aeolian events. In this paper, the incident angles of sand particles near the sand bed were measured in wind tunnel. It reveals that the incident angles range widely from 0° to 180° and thereby the means of angles are larger than published data. Surprisingly, it is found the proportion that angles of 5°–15° occupy is far below previous reports. The measuring height is probably the most important reason for the measurement differences between this study and previous investigations. PMID:23874470

  6. Angle amplifier based on multiplexed volume holographic gratings

    NASA Astrophysics Data System (ADS)

    Cao, Liangcai; Zhao, Yifei; He, Qingsheng; Jin, Guofan

    2008-03-01

    Angle amplifier of laser beam scanner is a widely used device in optical systems. Volume holographic optical elements can be applied in the angle amplifier. Compared with the traditional angle amplifier, it has the advantages of high angle resolution, high diffraction efficiency, small size, and high angle magnification and flexible design. Bragg anglewavelength- compensating recording method is introduced. Because of the Bragg compensatory relation between angle and wavelength, this device could be recorded at another wavelength. The design of the angle amplifier recording at the wavelength of 514.2nm for the working wavelength of 632.8nm is described. An optical setup for recording the angle amplifier device is designed and discussed. Experimental results in the photorefractive crystal Fe:LiNbO 3 demonstrate the feasibility of the angle amplifier scheme.

  7. Kuipers works with DSC Hardware in the U.S. Laboratory

    NASA Image and Video Library

    2012-01-16

    ISS030-E-155917 (16 Jan. 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, prepares to place Diffusion Soret Coefficient (DSC) hardware in stowage containers in the Destiny laboratory of the International Space Station.

  8. Microstructure of Amorphous and Semi-Crystalline Polymers.

    DTIC Science & Technology

    1981-06-07

    of these materials. Further, the occurrence of nodular structures is difficult to reconcile with the results of studies of small angle neutron ...scattering and small angle neutron scattering studies of the same materials. Based on the combined results of these studies , it is suggested that the nodular...relevance here were reviewed by Flory.’ In addition to these, the results of studies using small angle neutron scattering’ and wide angle X-ray scattering

  9. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability

    NASA Astrophysics Data System (ADS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.

    2016-06-01

    Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.

  10. Perfusion information extracted from resting state functional magnetic resonance imaging.

    PubMed

    Tong, Yunjie; Lindsey, Kimberly P; Hocke, Lia M; Vitaliano, Gordana; Mintzopoulos, Dionyssios; Frederick, Blaise deB

    2017-02-01

    It is widely known that blood oxygenation level dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) is an indirect measure for neuronal activations through neurovascular coupling. The BOLD signal is also influenced by many non-neuronal physiological fluctuations. In previous resting state (RS) fMRI studies, we have identified a moving systemic low frequency oscillation (sLFO) in BOLD signal and were able to track its passage through the brain. We hypothesized that this seemingly intrinsic signal moves with the blood, and therefore, its dynamic patterns represent cerebral blood flow. In this study, we tested this hypothesis by performing Dynamic Susceptibility Contrast (DSC) MRI scans (i.e. bolus tracking) following the RS scans on eight healthy subjects. The dynamic patterns of sLFO derived from RS data were compared with the bolus flow visually and quantitatively. We found that the flow of sLFO derived from RS fMRI does to a large extent represent the blood flow measured with DSC. The small differences, we hypothesize, are largely due to the difference between the methods in their sensitivity to different vessel types. We conclude that the flow of sLFO in RS visualized by our time delay method represents the blood flow in the capillaries and veins in the brain.

  11. Geostationary Coastal and Air Pollution Events (GeoCAPE) Wide Angle Spectrometer (WAS)

    NASA Technical Reports Server (NTRS)

    Kotecki, Carl; Chu, Martha; Mannino, Antonio; Marx, Catherine Trout; Bowers, Gregory A.; Bolognese, Jeffrey A.; Matson, Elizabeth A.; McBirney, Thomas R.; Earle, Cleland P.; Choi, Michael K.; hide

    2014-01-01

    The GeoCAPE Wide Angle Spectrometer (WAS) Study was a revisit of the COEDI Study from 2012. The customer primary goals were to keep mass, volume and cost to a minimum while meeting the science objectives and maximizing flight opportunities by fitting on the largest number of GEO accommodations possible. Riding on a commercial GEO satellite minimizes total mission costs. For this study, it is desired to increase the coverage rate,km2min, while maintaining ground sample size, 375m, and spectral resolution, 0.4-0.5nm native resolution. To be able to do this, the IFOV was significantly increased, hence the wide angle moniker. The field of view for COEDI was +0.6 degrees or (2048) 375m ground pixels. The WAS Threshold (the IDL study baseline design) is +2.4 degrees IDL study baseline design) is +2.4 degrees.

  12. Monitoring the recrystallisation of amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering.

    PubMed

    Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko

    2016-07-11

    In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Wide-angle display developments by computer graphics

    NASA Technical Reports Server (NTRS)

    Fetter, William A.

    1989-01-01

    Computer graphics can now expand its new subset, wide-angle projection, to be as significant a generic capability as computer graphics itself. Some prior work in computer graphics is presented which leads to an attractive further subset of wide-angle projection, called hemispheric projection, to be a major communication media. Hemispheric film systems have long been present and such computer graphics systems are in use in simulators. This is the leading edge of capabilities which should ultimately be as ubiquitous as CRTs (cathode-ray tubes). These assertions are not from degrees in science or only from a degree in graphic design, but in a history of computer graphics innovations, laying groundwork by demonstration. The author believes that it is timely to look at several development strategies, since hemispheric projection is now at a point comparable to the early stages of computer graphics, requiring similar patterns of development again.

  14. Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle

    NASA Astrophysics Data System (ADS)

    Huang, Mulin; Cheng, Yongzhi; Cheng, Zhengze; Chen, Haoran; Mao, Xuesong; Gong, Rongzhou

    2018-05-01

    We present a wide-angle tunable dual-band terahertz (THz) metamaterial absorber (MMA) based on square graphene patch (SGP). This MMA is a simple periodic array, consisting of a dielectric substrate sandwiched with the SGP and a continuous metallic film. The designed MMA can achieve dual-band absorption by exciting fundamental and second higher-order resonance modes on SGP. The numerical simulations indicate that the absorption spectrum of the designed MMA is tuned from 0.85 THz to 1.01 THz, and from 2.84 THz to 3.37 THz when the chemical potential of the SGP is increasing from 0.4eV to 0.8eV. Moreover, it operates well in a wide-angle of the incident waves. The presented THz MMA based on the SGP could find some potential applications in optoelectronic related devices, such as sensor, emitter and wavelength selective radiators.

  15. Assessment of crustal velocity models using seismic refraction and reflection tomography

    NASA Astrophysics Data System (ADS)

    Zelt, Colin A.; Sain, Kalachand; Naumenko, Julia V.; Sawyer, Dale S.

    2003-06-01

    Two tomographic methods for assessing velocity models obtained from wide-angle seismic traveltime data are presented through four case studies. The modelling/inversion of wide-angle traveltimes usually involves some aspects that are quite subjective. For example: (1) identifying and including later phases that are often difficult to pick within the seismic coda, (2) assigning specific layers to arrivals, (3) incorporating pre-conceived structure not specifically required by the data and (4) selecting a model parametrization. These steps are applied to maximize model constraint and minimize model non-uniqueness. However, these steps may cause the overall approach to appear ad hoc, and thereby diminish the credibility of the final model. The effect of these subjective choices can largely be addressed by estimating the minimum model structure required by the least subjective portion of the wide-angle data set: the first-arrival times. For data sets with Moho reflections, the tomographic velocity model can be used to invert the PmP times for a minimum-structure Moho. In this way, crustal velocity and Moho models can be obtained that require the least amount of subjective input, and the model structure that is required by the wide-angle data with a high degree of certainty can be differentiated from structure that is merely consistent with the data. The tomographic models are not intended to supersede the preferred models, since the latter model is typically better resolved and more interpretable. This form of tomographic assessment is intended to lend credibility to model features common to the tomographic and preferred models. Four case studies are presented in which a preferred model was derived using one or more of the subjective steps described above. This was followed by conventional first-arrival and reflection traveltime tomography using a finely gridded model parametrization to derive smooth, minimum-structure models. The case studies are from the SE Canadian Cordillera across the Rocky Mountain Trench, central India across the Narmada-Son lineament, the Iberia margin across the Galicia Bank, and the central Chilean margin across the Valparaiso Basin and a subducting seamount. These case studies span the range of modern wide-angle experiments and data sets in terms of shot-receiver spacing, marine and land acquisition, lateral heterogeneity of the study area, and availability of wide-angle reflections and coincident near-vertical reflection data. The results are surprising given the amount of structure in the smooth, tomographically derived models that is consistent with the more subjectively derived models. The results show that exploiting the complementary nature of the subjective and tomographic approaches is an effective strategy for the analysis of wide-angle traveltime data.

  16. Disturbance Detection in Snow Using Polarimetric Imagery of the Visible Spectrum

    DTIC Science & Technology

    2010-12-01

    37 1. Wide- Angle Image .............................................................................37 2. Telephoto Lens Image...known qualitative results regarding polarization is that of Brewster’s angle . Sir David Brewster , a self-taught scientist and inventor, was deeply...refractive indices of materials in which they traversed ( Brewster , 1815). Coulson accurately defines Brewster’s angle : Light which is reflected at a

  17. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Leem, Jung Woo; Song, Young Min; Yu, Jae Su

    2013-10-01

    We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance.We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr02806b

  18. An investigation of indomethacin-nicotinamide cocrystal formation induced by thermal stress in the solid or liquid state.

    PubMed

    Lin, Hong-Liang; Zhang, Gang-Chun; Huang, Yu-Ting; Lin, Shan-Yang

    2014-08-01

    The impact of thermal stress on indomethacin (IMC)-nicotinamide (NIC) cocrystal formation with or without neat cogrinding was investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) microspectroscopy, and simultaneous DSC-FTIR microspectroscopy in the solid or liquid state. Different evaporation methods for preparing IMC-NIC cocrystals were also compared. The results indicated that even after cogrinding for 40 min, the FTIR spectra for all IMC-NIC ground mixtures were superimposable on the FTIR spectra of IMC and NIC components, suggesting there was no cocrystal formation between IMC and NIC after cogrinding. However, these IMC-NIC ground mixtures appear to easily undergo cocrystal formation after the application of DSC determination. Under thermal stress induced by DSC, the amount of cocrystal formation increased with increasing cogrinding time. Moreover, simultaneous DSC-FTIR microspectroscopy was a useful one-step technique to induce and clarify the thermal-induced stepwise mechanism of IMC-NIC cocrystal formation from the ground mixture in real time. Different solvent evaporation rates induced by thermal stress significantly influenced IMC-NIC cocrystal formation in the liquid state. In particular, microwave heating may promote IMC-NIC cocrystal formation in a short time. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Ursolic acid incorporation does not prevent the formation of a non-lamellar phase in pH-sensitive and long-circulating liposomes.

    PubMed

    Lopes, Sávia C A; Novais, Marcus V M; Ferreira, Diêgo S; Braga, Fernão C; Magalhães-Paniago, Rogério; Malachias, Ângelo; Oliveira, Mônica C

    2014-12-23

    Ursolic acid (UA) is a triterpene found in different plant species that has been shown to possess significant antitumor activity. However, UA presents a low water solubility, which limits its biological applications. In this context, our research group has proposed the incorporation of UA in long-circulating and pH-sensitive liposomes (SpHL-UA).These liposomes, composed of dioleylphosphatidylethanolamine (DOPE), cholesteryl hemisuccinate (CHEMS), and distearoylphosphatidylethanolamine-polyethylene glycol2000 (DSPE-PEG2000), were shown to be very promising carriers for UA. Considering that the release of UA from SpHL-UA and its antitumor activity depend upon the occurrence of the lamellar to non-lamellar phase transition of DOPE, in the present work, the interactions of UA with the components of the liposomes were evaluated, aiming to clarify their role in the structural organization of DOPE. The study was carried out by differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) under low hydration conditions. DSC studies revealed that DOPE phase transition temperatures did not shift significantly upon UA addition. On the other hand, in SAXS studies, a different pattern of DOPE phase organization was observed in the presence of UA, with the occurrence of the cubic phase Im3m at 20 °C and the cubic phase Pn3m at 60 °C. These findings suggest that UA interacts with the lipids and changes their self-assembly. However, these interactions between the lipids and UA were unable to eliminate the lamellar to non-lamellar phase transition, which is essential for the cytoplasmic delivery of UA molecules from SpHL-UA.

  20. Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex.

    PubMed

    Wang, Xinge; Luo, Zhigang; Xiao, Zhigang

    2014-01-30

    β-Cyclodextrin (β-CD), which is widely used to increase the stability, solubility, and bioavailability of guests, can form host-guest inclusion complexes with a wide variety of organic molecules. In this study the β-CD/soybean lecithin inclusion complex was prepared. The effect of reaction parameters such as reaction temperature, reaction time and the molar ratio of β-CD/soybean lecithin on inclusion ratio were studied. The inclusion ratio of the product prepared under the optimal conditions of β-CD/soybean lecithin molar ratio 2:1, reaction temperature 60°C reaction time 2h was 40.2%. The results of UV-vis, DSC, XRD and FT-IR spectrum indicated the formation of inclusion complex. The thermal stability experiment indicated that the thermal stability of soybean lecithin in inclusion complex was significantly improved compared with free soybean lecithin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Consistency of the free-volume approach to the homogeneous deformation of metallic glasses

    NASA Astrophysics Data System (ADS)

    Blétry, Marc; Thai, Minh Thanh; Champion, Yannick; Perrière, Loïc; Ochin, Patrick

    2014-05-01

    One of the most widely used approaches to model metallic-glasses high-temperature homogeneous deformation is the free-volume theory, developed by Cohen and Turnbull and extended by Spaepen. A simple elastoviscoplastic formulation has been proposed that allows one to determine various parameters of such a model. This approach is applied here to the results obtained by de Hey et al. on a Pd-based metallic glass. In their study, de Hey et al. were able to determine some of the parameters used in the elastoviscoplastic formulation through DSC modeling coupled with mechanical tests, and the consistency of the two viewpoints was assessed.

  2. The effect of the temperature on the bandgaps based on the chiral liquid crystal polymer

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Shi, Shuhui; Wang, Bainian

    2015-10-01

    Chiral side-chain liquid crystal polymer is synthesized from polysiloxanes and liqud crystal monomer 4-(Undecenoic-1- yloxybenzoyloxy)-4'-benzonitrile and 6-[4-(4- Undecenoic -1-yloxybenzoyloxy)- hydroxyphenyl] cholesteryl hexanedioate. The optical and thermal property of the monomer and polymer are shown by POM and DSC. As the unique optical property of the polymer, the bandgaps are shifted for heating temperature. The reflection bandgaps is shifted from 546nm to 429nm with temperature increase. As a photonic material, the chiral polymer which sensitive responses under the outfield is widely studied for reflection display, smart switchable reflective windows and defect model CLC laser etc.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, S.B.; Walton, T.C.

    Polyimides have gained wide acceptance for use in many aerospace composite, electrical, and industrial applications. The intent of this work is to share with the reader practical knowledge of how some of the currently available commercial systems perform. Several prepreg processable polyimide systems were evaluated for adhesive properties and characterized with the use of SEM, TGA, DSC, TMA, Dynamic Spectroscopy, and Force vs. Time Electronic Impact Analyses for comparison. The chemistry and nature of these resin systems is reviewed, including several BMIs (new hot melts examined)., Amide-Imides (Al) and Thermoplastic Polyimide (TPI). PMR-15 and a high temperature epoxy resin aremore » included for comparison of high temperature properties. 17 references.« less

  4. Doppler term in the galaxy two-point correlation function: Wide-angle, velocity, Doppler lensing and cosmic acceleration effects

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Bertacca, Daniele; Jeong, Donghui; Neyrinck, Mark C.; Szalay, Alexander S.

    2018-03-01

    We study the parity-odd part (that we shall call Doppler term) of the linear galaxy two-point correlation function that arises from wide-angle, velocity, Doppler lensing and cosmic acceleration effects. As it is important at low redshift and at large angular separations, the Doppler term is usually neglected in the current generation of galaxy surveys. For future wide-angle galaxy surveys, however, we show that the Doppler term must be included. The effect of these terms is dominated by the magnification due to relativistic aberration effects and the slope of the galaxy redshift distribution and it generally mimics the effect of the local type primordial non-Gaussianity with the effective nonlinearity parameter fNLeff of a few; we show that this would affect forecasts on measurements of fNL at low-redshift. Our results show that a survey at low redshift with large number density over a wide area of the sky could detect the Doppler term with a signal-to-noise ratio of ∼ 1 - 20, depending on survey specifications.

  5. Study of the pH-sensitive mechanism of tumor-targeting liposomes.

    PubMed

    Fan, Yang; Chen, Cong; Huang, Yiheng; Zhang, Fang; Lin, Guimei

    2017-03-01

    Currently, the phosphatidylethanolamine-based, pH-sensitive, liposome drug-delivery system has been widely developed for efficient, targeted cancer therapy. However, the mechanism of pH sensitivity was unclear; it is a main obstacle in controlling the preparation of pH-sensitive liposomes (PSLs).Therefore, our research is aimed at clarifying the pH-response mechanism of the various molecules that compose liposomes. We chose the small pH-sensitive molecules oleic acid (OA), linoleic acid (LA) and cholesteryl hemisuccinate (CHEMS) and the fundamental lipids cholesterol and phosphatidylethanolamine (PE) as test molecules. The PSLs were prepared using the thin-film hydration method and characterized in detail at various pH values (pH 5.0, 6.0 and 7.4), including particle size, ζ-potential, drug encapsulation efficiency and drug loading. The surface structure was observed by transmission electron microscopy (TEM), and the electrical conductivity of the liposome dispersion was also tested. The calorimetric analysis was conducted by Nano-differential scanning calorimetry (Nano-DSC). The in vitro drug release profile showed that PSLs exhibit good pH sensitivity. At neutral pH, the particle size was approximately 150nm, and it dramatically increased at pH 5.0. The ζ-potential increased as the pH decreased. The Nano-DSC results showed that cholesterol and CHEMS can both increase the stability and phase transfer temperature of PSLs. Conductivity increased to a maximum at pH 5.0 and was rather low at pH 7.4. In conclusion, results show that the three kinds of liposomes have pH responsive release characteristics in acidic pH. The OA-PSLs have a pH sensitive point of 5. Since CHEMS has a cholesterol-like structure, it can stabilizes the phospholipid bilayer under neutral conditions as shown in the Nano-DSC data, and because it has a special steroidal rigid structure, it exhibits better pH response characteristics under acidic conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 7 CFR 1717.850 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Earned Ratio (TIER), Debt Service Coverage (DSC), and other case-specific economic and financial factors; (ii) The variability and uncertainty of future revenues, costs, margins, TIER, DSC, and other case... construction work orders and other records, all moneys disbursed from the separate subaccount during the period...

  7. Chelating DTPA amphiphiles: ion-tunable self-assembly structures and gadolinium complexes.

    PubMed

    Moghaddam, Minoo J; de Campo, Liliana; Kirby, Nigel; Drummond, Calum J

    2012-10-05

    A series of chelating amphiphiles and their gadolinium (Gd(III)) metal complexes have been synthesized and studied with respect to their neat and lyotropic liquid crystalline phase behavior. These amphiphiles have the ability to form ion-tunable self-assembly nanostructures and their associated Gd(III) complexes have potential as magnetic resonance imaging (MRI) contrast enhancement agents. The amphiphiles are composed of diethylenetriaminepentaacetic acid (DTPA) chelates conjugated to one or two oleyl chain(s) (DTPA-MO and DTPA-BO), or isoprenoid-type chain(s) of phytanyl (DTPA-MP and DTPA-BP). The thermal phase behavior of the neat amphiphiles was examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and cross polarizing optical microscopy (POM). Self-assembly of neat amphiphiles and their associated Gd complexes, as well as their lyotropic phase behavior in water and sodium acetate solutions of different ionic strengths, were examined by POM and small and wide angle X-ray scattering (SWAXS). All neat amphiphiles exhibited lamellar structures. The non-complexed amphiphiles showed a variety of lyotropic phases depending on the number and nature of the hydrophobic chain in addition to the ionic state of the hydration. Upon hydration with increased Na-acetate concentration and the subtle changes in the effective headgroup size, the interfacial curvature of the amphiphile increased, altering the lyotropic liquid crystalline structures towards higher order mesophases such as the gyroid (Ia3d) bicontinuous cubic phase. The chelation of Gd with the DTPA amphiphiles resulted in lamellar crystalline structures for all the neat amphiphiles. Upon hydration with water, the Gd-complexed mono-conjugates formed micellar or vesicular self-assemblies, whilst the bis-conjugates transformed only partially into lyotropic liquid crystalline mesophases.

  8. The deposition and characterization of starch in Brachypodium distachyon

    PubMed Central

    Tanackovic, Vanja; Svensson, Jan T.; Jensen, Susanne L.; Buléon, Alain; Blennow, Andreas

    2014-01-01

    Brachypodium distachyon is a non-domesticated cereal. Nonetheless, Brachypodium was recently introduced as a model plant for temperate cereals. This study compares grain starch metabolism in Brachypodium and barley (Hordeum vulgare). In Brachypodium, we identified and annotated 28 genes involved in starch metabolism and identified important motifs including transit peptides and putative carbohydrate-binding modules (CBMs) of the families CBM20, CBM45, CBM48, and CBM53. Starch content was markedly lower in Brachypodium grains (12%) compared to barley grains (47%). Brachypodium starch granules were doughnut shaped and bimodally distributed into distinct small B-type (2.5–10 µm) and very small C-type (0.5–2.5 µm) granules. Large A-type granules, typical of cereals, were absent. Starch-bound phosphate, important for starch degradation, was 2-fold lower in Brachypodium compared with barley indicating different requirements for starch mobilization. The amylopectin branch profiles were similar and the amylose content was only slightly higher compared with barley cv. Golden Promise. The crystallinity of Brachypodium starch granules was low (10%) compared to barley (20%) as determined by wide-angle X-ray scattering (WAXS) and molecular disorder was confirmed by differential scanning calorimetry (DSC). The expression profiles in grain for most genes were distinctly different for Brachypodium compared to barley, typically showing earlier decline during the course of development, which can explain the low starch content and differences in starch molecular structure and granule characteristics. High transitory starch levels were observed in leaves of Brachypodium (2.8% after 14h of light) compared to barley (1.9% after 14h of light). The data suggest important pre-domesticated features of cereals. PMID:25056772

  9. The influence of guaifenesin and ketoprofen on the properties of hot-melt extruded polyethylene oxide films.

    PubMed

    Crowley, Michael M; Fredersdorf, Anke; Schroeder, Britta; Kucera, Shawn; Prodduturi, Suneela; Repka, Michael A; McGinity, James W

    2004-08-01

    Films containing polyethylene oxide (PEO) and a model drug, either guaifenesin (GFN) or ketoprofen (KTP), were prepared by hot-melt extrusion. The thermal properties of the hot-melt extruded films were investigated using differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) was used to examine the surface morphology of the films, and wide angle X-ray diffraction (XRD) was used to investigate the crystalline properties of the polymer, drugs and physical mixtures as well as the solid state structure of the films. The stability of the polymer was studied using gel permeation chromatography. The mechanical properties, including percent elongation and tensile strength of the films, were determined on an Instron according to American Society for Testing Materials (ASTM) procedures. The Hansen solubility parameter was calculated using the Hoftyzer or van Krevelen method to estimate the likelihood of drug--polymer miscibility. Both GFN and KTP were stable during the extrusion process. Melting points corresponding to the crystalline drugs were not observed in the films. Crystallization of GFN on the surface of the film was observed at all concentrations studied, however KTP crystallization did not occur until reaching the 15% level. Guaifenesin and ketoprofen were found to decrease drive load, increase PEO stability and plasticize the polymer during extrusion. The Hansen solubility parameters predicted miscibility between PEO and KTP and poor miscibility between PEO and GFN. The predictions of the solubility parameters were in agreement with the XRD and SEM results. The percent elongation decreased with increasing GFN concentrations and significantly increased with increasing levels of KTP. Both GFN and KTP decreased the tensile strength of the extruded film.

  10. Preparation, consolidation, and crystallization of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Holland, Troy

    Bulk metallic glasses (BMGs) have been widely researched over the last decade. Research has primarily focused on BMGs of differing compositions and conditions within 3 main subject areas: preparation, consolidation, and crystallization. This work endeavors to show the interrelationships among each area across several types of BMG. Two compositions of zirconium(Zr)-type BMGs were prepared by mechanical attrition using a high-energy ball mill. The thermal and x-ray diffraction show that by milling elemental powders it is possible to obtain metallic powders with a glassy nature. These powders were then consolidated using a novel, high current density hot press. Hot pressing by using a spark plasma sintering (SPS) device has shown itself to be very useful in consolidating hard to produce intermetallics and ceramics. By utilizing high current densities and extremely rapid heating rates, the consolidation of the Zr-type ball milled powders and a gas atomized iron(Fe)-type powder was achieved. Utilizing the Kissinger relationship between reaction temperatures and their heating rates allowed for higher peak consolidation temperatures without fully- or partially-devitrifying the powders. The current densities applied aid in the diffusion and thermodynamics of the devitrification reaction. This affect has had little to no previous research so it was necessary to determine the specific effects of applied currents upon the devitrification of BMGs. To determine the role of applied currents on crystallization, or devitrification, of BMGs required the application of differing currents at fixed annealing temperatures. Once this was achieved it was possible with small-angle neutron scattering (SANS), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM) to show that both the kinetics and thermodynamics of the devitrification reaction were affected.

  11. The impact of ultra-low amounts of amino-modified MMT on dynamics and properties of densely cross-linked cyanate ester resins

    NASA Astrophysics Data System (ADS)

    Bershtein, Vladimir; Fainleib, Alexander; Egorova, Larisa; Gusakova, Kristina; Grigoryeva, Olga; Kirilenko, Demid; Konnikov, Semen; Ryzhov, Valery; Yakushev, Pavel; Lavrenyuk, Natalia

    2015-04-01

    Thermostable nanocomposites based on densely cross-linked cyanate ester resins (CER), derived from bisphenol E and doped by 0.01 to 5 wt. % amino-functionalized 2D montmorillonite (MMT) nanoparticles, were synthesized and characterized using Fourier transform infrared (FTIR), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), wide-angle X-ray diffraction (WAXD), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), far-infrared (Far-IR), and creep rate spectroscopy (CRS) techniques. It was revealed that ultra-low additives, e.g., 0.025 to 0.1 wt. %, of amino-MMT nanolayers covalently embedded into CER network exerted an anomalously large impact on its dynamics and properties resulting, in particular, in some suppression of dynamics, increasing the onset of glass transition temperature by 30° to 40° and twofold rise of modulus in temperature range from 20°C to 200°C. Contrarily, the effects became negligibly small or even negative at increased amino-MMT contents, especially at 2 and 5 wt. %. That could be explained by TEM/EDXS data displaying predominance of individual amino-MMT nanolayers and their thin (2 to 3 nanolayers) stacks over more thick tactoids (5 to 10 nanolayers) and the large amino-MMT aggregates (100 to 500 nm in thickness) reversing the composite structure produced with increasing of amino-MMT content within CER matrix. The revealed effect of ultra-low amino-MMT content testifies in favor of the idea about the extraordinarily enhanced long-range action of the `constrained dynamics' effect in the case of densely cross-linked polymer networks.

  12. Single and double superimposing interferometer systems

    DOEpatents

    Erskine, David J.

    2000-01-01

    Interferometers which can imprint a coherent delay on a broadband uncollimated beam are described. The delay value can be independent of incident ray angle, allowing interferometry using uncollimated beams from common extended sources such as lamps and fiber bundles, and facilitating Fourier Transform spectroscopy of wide angle sources. Pairs of such interferometers matched in delay and dispersion can measure velocity and communicate using ordinary lamps, wide diameter optical fibers and arbitrary non-imaging paths, and not requiring a laser.

  13. Visual imaging control systems of the Mariner to Jupiter and Saturn spacecraft

    NASA Technical Reports Server (NTRS)

    Larks, L.

    1979-01-01

    Design and fabrication of optical systems for the Mariner Jupiter Saturn (Voyager) mission is described. Because of the long distances of these planets from the sun, the spacecraft was designed without solar panels with the electricity generated on-board by radio-isotope thermal generators (RTG). The presence of RTG's and Jupiter radiation environment required that the optical systems be fabricated out of radiation stabilized materials. A narrow angle and a wide angle camera are located on the spacecraft scan platform, with the narrow angle lens a modification of the Mariner 10 lens. The optical system is described, noting that the lens was modified by moving the aperture correctors forward and placing a spider mounted secondary mirror in the original back surface of the second aperture corrector. The wide angle lens was made out of cerium doped, radiation stabilized optical glass with greatest blue transmittance, which would be resistant to RTG and Jupiter radiation.

  14. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    PubMed

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  15. Learning from adaptive neural dynamic surface control of strict-feedback systems.

    PubMed

    Wang, Min; Wang, Cong

    2015-06-01

    Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables.

  16. High-Speed Digital Scan Converter for High-Frequency Ultrasound Sector Scanners

    PubMed Central

    Chang, Jin Ho; Yen, Jesse T.; Shung, K. Kirk

    2008-01-01

    This paper presents a high-speed digital scan converter (DSC) capable of providing more than 400 images per second, which is necessary to examine the activities of the mouse heart whose rate is 5–10 beats per second. To achieve the desired high-speed performance in cost-effective manner, the DSC developed adopts a linear interpolation algorithm in which two nearest samples to each object pixel of a monitor are selected and only angular interpolation is performed. Through computer simulation with the Field II program, its accuracy was investigated by comparing it to that of bilinear interpolation known as the best algorithm in terms of accuracy and processing speed. The simulation results show that the linear interpolation algorithm is capable of providing an acceptable image quality, which means that the difference of the root mean square error (RMSE) values of the linear and bilinear interpolation algorithms is below 1 %, if the sample rate of the envelope samples is at least four times higher than the Nyquist rate for the baseband component of echo signals. The designed DSC was implemented with a single FPGA (Stratix EP1S60F1020C6, Altera Corporation, San Jose, CA) on a DSC board that is a part of a high-speed ultrasound imaging system developed. The temporal and spatial resolutions of the implemented DSC were evaluated by examining its maximum processing time with a time stamp indicating when an image is completely formed and wire phantom testing, respectively. The experimental results show that the implemented DSC is capable of providing images at the rate of 400 images per second with negligible processing error. PMID:18430449

  17. Perspectives for Distributed Observations of Near-Earth Space Using a Russian-Cuban Observatory

    NASA Astrophysics Data System (ADS)

    Bisikalo, D. V.; Savanov, I. S.; Naroenkov, S. A.; Nalivkin, M. A.; Shugarov, A. S.; Bakhtigaraev, N. S.; Levkina, P. A.; Ibragimov, M. A.; Kil'pio, E. Yu.; Sachkov, M. E.; Kartashova, A. P.; Fateeva, A. M.; Uratsuka, Marta R. Rodriguez; Estrada, Ramses Zaldivar; Diaz, Antonio Alonsa; Rodríguez, Omar Pons; Figuera, Fidel Hernandes; Garcia, Maritza Garcia

    2018-06-01

    The creation of a specialized network of large, wide-angle telescopes for distributed observations of near-Earth space using a Russian-Cuban Observatory is considered. An extremely important goal of routine monitoring of near-Earth and near-Sun space is warding off threats with both natural and technogenic origins. Natural threats are associated with asteroids or comets, and technogenic threats with man-made debris in near-Earth space. A modern network of ground-based optical instruments designed to ward off such threats must: (a) have a global and, if possible, uniform geographic distribution, (b) be suitable for wide-angle, high-accuracy precision survey observations, and (c) be created and operated within a single network-oriented framework. Experience at the Institute of Astronomy on the development of one-meter-class wide-angle telescopes and elements of a super-wide-angle telescope cluster is applied to determine preferences for the composition of each node of such a network. The efficiency of distributed observations in attaining maximally accurate predictions of the motions of potentially dangerous celestial bodies as they approach the Earth and in observations of space debris and man-made satellites is estimated. The first estimates of astroclimatic conditions at the proposed site of the future Russian-Cuban Observatory in the mountains of the Sierra del Rosario Biosphere Reserve are obtained. Special attention is given to the possible use of the network to carry out a wide range of astrophysical studies, including optical support for the localization of gravitational waves and other transient events.

  18. Sorting of a multi-subunit ubiquitin ligase complex in the endolysosome system

    PubMed Central

    Yang, Xi; Arines, Felichi Mae; Zhang, Weichao

    2018-01-01

    The yeast Dsc E3 ligase complex has long been recognized as a Golgi-specific protein ubquitination system. It shares a striking sequence similarity to the Hrd1 complex that plays critical roles in the ER-associated degradation pathway. Using biochemical purification and mass spectrometry, we identified two novel Dsc subunits, which we named as Gld1 and Vld1. Surprisingly, Gld1 and Vld1 do not coexist in the same complex. Instead, they compete with each other to form two functionally independent Dsc subcomplexes. The Vld1 subcomplex takes the AP3 pathway to reach the vacuole membrane, whereas the Gld1 subcomplex travels through the VPS pathway and is cycled between Golgi and endosomes by the retromer. Thus, instead of being Golgi-specific, the Dsc complex can regulate protein levels at three distinct organelles, namely Golgi, endosome, and vacuole. Our study provides a novel model of achieving multi-tasking for transmembrane ubiquitin ligases with interchangeable trafficking adaptors. PMID:29355480

  19. Determination of the heat of hydride formation/decomposition by high-pressure differential scanning calorimetry (HP-DSC).

    PubMed

    Rongeat, Carine; Llamas-Jansa, Isabel; Doppiu, Stefania; Deledda, Stefano; Borgschulte, Andreas; Schultz, Ludwig; Gutfleisch, Oliver

    2007-11-22

    Among the thermodynamic properties of novel materials for solid-state hydrogen storage, the heat of formation/decomposition of hydrides is the most important parameter to evaluate the stability of the compound and its temperature and pressure of operation. In this work, the desorption and absorption behaviors of three different classes of hydrides are investigated under different hydrogen pressures using high-pressure differential scanning calorimetry (HP-DSC). The HP-DSC technique is used to estimate the equilibrium pressures as a function of temperature, from which the heat of formation is derived. The relevance of this procedure is demonstrated for (i) magnesium-based compounds (Ni-doped MgH2), (ii) Mg-Co-based ternary hydrides (Mg-CoHx) and (iii) Alanate complex hydrides (Ti-doped NaAlH4). From these results, it can be concluded that HP-DSC is a powerful tool to obtain a good approximation of the thermodynamic properties of hydride compounds by a simple and fast study of desorption and absorption properties under different pressures.

  20. Psychological stress during exercise: cardiorespiratory and hormonal responses.

    PubMed

    Webb, Heather E; Weldy, Michael L; Fabianke-Kadue, Emily C; Orndorff, G R; Kamimori, Gary H; Acevedo, Edmund O

    2008-12-01

    The purpose of this study was to examine the cardiorespiratory (CR) and stress hormone responses to a combined physical and mental stress. Eight participants (VO2(max) = 41.24 +/- 6.20 ml kg(-1) min(-1)) completed two experimental conditions, a treatment condition including a 37 min ride at 60% of VO2(max) with participants responding to a computerized mental challenge dual stress condition (DSC) and a control condition of the same duration and intensity without the mental challenge exercise alone condition (EAC). Significant interactions across time were found for CR responses, with heart rate, ventilation, and respiration rate demonstrating higher increases in the DSC. Additionally, norepinephrine was significantly greater in the DSC at the end of the combined challenge. Furthermore, cortisol area-under-the-curve (AUC) was also significantly elevated during the DSC. These results demonstrate that a mental challenge during exercise can exacerbate the stress response, including the release of hormones that have been linked to negative health consequences (cardiovascular, metabolic, autoimmune illnesses).

  1. Ionic liquids: differential scanning calorimetry as a new indirect method for determination of vaporization enthalpies.

    PubMed

    Verevkin, Sergey P; Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Ralys, Ricardas V; Schick, Christoph

    2012-04-12

    Differential scanning calorimetry (DSC) has been used to measure enthalpies of synthesis reactions of the 1-alkyl-3-methylimidazolium bromide [C(n)mim][Br] ionic liquids from 1-methylimidazole and n-alkyl bromides (with n = 4, 5, 6, 7, and 8). The optimal experimental conditions have been elaborated. Enthalpies of formation of these ionic liquids in the liquid state have been determined using the DSC results according to the Hess Law. The ideal-gas enthalpies of formation of [C(n)mim][Br] were calculated using the methods of quantum chemistry. They were used together with the DSC results to derive indirectly the enthalpies of vaporization of the ionic liquids under study. In order to validate the indirect determination, the experimental vaporization enthalpy of [C(4)mim][Br] was measured by using a quartz crystal microbalance (QCM). The combination of reaction enthalpy measurements by DSC with modern high-level first-principles calculations opens valuable indirect thermochemical options to obtain values of vaporization enthalpies of ionic liquids.

  2. Non-resonant dynamic stark control of vibrational motion with optimized laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Esben F.; Henriksen, Niels E.

    2016-06-28

    The term dynamic Stark control (DSC) has been used to describe methods of quantum control related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we employ analytical models that present clear and concise interpretations of the principles behind DSC. Within a linearly forced harmonic oscillator model of vibrational excitation, we show how the vibrational amplitude is related to the pulse envelope, and independent of the carrier frequency of the laser pulse, in the DSC regime. Furthermore, we shed light on the DSC regarding the construction of optimal pulse envelopes — from a time-domain as wellmore » as a frequency-domain perspective. Finally, in a numerical study beyond the linearly forced harmonic oscillator model, we show that a pulse envelope can be constructed such that a vibrational excitation into a specific excited vibrational eigenstate is accomplished. The pulse envelope is constructed such that high intensities are avoided in order to eliminate the process of ionization.« less

  3. Calorimetric evidence for two distinct molecular packing arrangements in stable glasses of indomethacin.

    PubMed

    Kearns, Kenneth L; Swallen, Stephen F; Ediger, M D; Sun, Ye; Yu, Lian

    2009-02-12

    Indomethacin glasses of varying stabilities were prepared by physical vapor deposition onto substrates at 265 K. Enthalpy relaxation and the mobility onset temperature were assessed with differential scanning calorimetry (DSC). Quasi-isothermal temperature-modulated DSC was used to measure the reversing heat capacity during annealing above the glass transition temperature Tg. At deposition rates near 8 A/s, scanning DSC shows two enthalpy relaxation peaks and quasi-isothermal DSC shows a two-step change in the reversing heat capacity. We attribute these features to two distinct local packing structures in the vapor-deposited glass, and this interpretation is supported by the strong correlation between the two calorimetric signatures of the glass to liquid transformation. At lower deposition rates, a larger fraction of the sample is prepared in the more stable local packing. The transformation of the vapor-deposited glasses into the supercooled liquid above Tg is exceedingly slow, as much as 4500 times slower than the structural relaxation time of the liquid.

  4. Mapping the megathrust beneath the northern Gulf of Alaska using wide-angle seismic reflection/refraction profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brocher, T.M.; Fuis, G.S.; Fisher, M.A.

    1993-04-01

    In the northern Gulf of Alaska and Prince William Sound, wide-angle seismic reflection/refraction profiling, earthquake studies, and laboratory measurements of physical properties are used to determine the geometry of the Prince William and Yakutat terranes, and the subducting Pacific plate. In this complex region, the Yakutat terrane is underthrust beneath the Prince William terrane, and both terranes are interpreted to be underlain by the Pacific plate. Wide-angle seismic reflection/refraction profiles recorded along 5 seismic lines are used to unravel this terrane geometry. Modeled velocities in the upper crust of the Prince William terrane (to 18-km depth) agree closely with laboratorymore » velocity measurements of Orca Group phyllites and quartzofeldspathic graywackes (the chief components of the Prince William terrane) to hydrostatic pressures as high as 600 MPa (6 KBAR). An interpretation consistent with these data extends the Prince William terrane to at least 18-km depth. A landward dipping reflection at depths of 16--24 km is interpreted as the base of the Prince William terrane. This reflector corresponds to the top of the Wadati-Benioff zone seismicity and is interpreted as the megathrust. Beneath this reflector is a 6.9-km/s refractor, that is strongly reflective and magnetic, and is interpreted to be gabbro in Eocene age oceanic crust of the underthrust Yakutat terrane. Both wide-angle seismic and magnetic anomaly data indicate that the Yakutat terrane has been underthrust beneath the Prince William terrane for at least a few hundred kilometers. Wide-angle seismic data are consistent with a 9 to 10[degree] landward dip of the subducting Pacific plate, distinctly different from the inferred average 3 to 4[degree] dip of the overlying 6.9-km/s refractor and Wadati-Benioff seismic zone. The preferred interpretation of the geophysical data is that one composite plate, composed of the Pacific and Yakutat plates, is subducting beneath southern Alaska.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polan, D; Kamp, J; Lee, JY

    Purpose: To perform validation and commissioning of a commercial deformable image registration (DIR) algorithm (Velocity, Varian Medical Systems) for numerous clinical sites using single and multi-modality images. Methods: In this retrospective study, the DIR algorithm was evaluated for 10 patients in each of the following body sites: head and neck (HN), prostate, liver, and gynecological (GYN). HN DIRs were evaluated from planning (p)CT to re-pCT and pCTs to daily CBCTs using dice similarity coefficients (DSC) of corresponding anatomical structures. Prostate DIRs were evaluated from pCT to CBCTs using DSC and target registration error (TRE) of implanted RF beacons within themore » prostate. Liver DIRs were evaluated from pMR to pCT using DSC and TRE of vessel bifurcations. GYN DIRs were evaluated between fractionated brachytherapy MRIs using DSC of corresponding anatomical structures. Results: Analysis to date has given average DSCs for HN pCT-to-(re)pCT DIR for the brainstem, cochleas, constrictors, spinal canal, cord, esophagus, larynx, parotids, and submandibular glands as 0.88, 0.65, 0.67, 0.91, 0.77, 0.69, 0.77, 0.87, and 0.71, respectively. Average DSCs for HN pCT-to-CBCT DIR for the constrictors, spinal canal, esophagus, larynx, parotids, and submandibular glands were 0.64, 0.90, 0.62, 0.82, 0.75, and 0.69, respectively. For prostate pCT-to-CBCT DIR the DSC for the bladder, femoral heads, prostate, and rectum were 0.71, 0.82, 0.69, and 0.61, respectively. Average TRE using implanted beacons was 3.35 mm. For liver pCT-to-pMR, the average liver DSC was 0.94 and TRE was 5.26 mm. For GYN MR-to-MR DIR the DSC for the bladder, sigmoid colon, GTV, and rectum were 0.79, 0.58, 0.67, and 0.76, respectively. Conclusion: The Velocity DIR algorithm has been evaluated over a number of anatomical sites. This work functions to document the uncertainties in the DIR in the commissioning process so that these can be accounted for in the development of downstream clinical processes. This work was supported in part by a co-development agreement with Varian Medical Systems.« less

  6. SU-D-18C-02: Feasibility of Using a Short ASL Scan for Calibrating Cerebral Blood Flow Obtained From DSC-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, P; Chang, T; Huang, K

    2014-06-01

    Purpose: This study aimed to evaluate the feasibility of using a short arterial spin labeling (ASL) scan for calibrating the dynamic susceptibility contrast- (DSC-) MRI in a group of patients with internal carotid artery stenosis. Methods: Six patients with unilateral ICA stenosis enrolled in the study on a 3T clinical MRI scanner. The ASL-cerebral blood flow (-CBF) maps were calculated by averaging different number of dynamic points (N=1-45) acquired by using a Q2TIPS sequence. For DSC perfusion analysis, arterial input function was selected to derive the relative cerebral blood flow (rCBF) map and the delay (Tmax) map. Patient-specific CF wasmore » calculated from the mean ASL- and DSC-CBF obtained from three different masks: (1)Tmax< 3s, (2)combined gray matter mask with mask 1, (3)mask 2 with large vessels removed. One CF value was created for each number of averages by using each of the three masks for calibrating the DSC-CBF map. The CF value of the largest number of averages (NL=45) was used to determine the acceptable range(< 10%, <15%, and <20%) of CF values corresponding to the minimally acceptable number of average (NS) for each patient. Results: Comparing DSC CBF maps corrected by CF values of NL (CBFL) in ACA, MCA and PCA territories, all masks resulted in smaller CBF on the ipsilateral side than the contralateral side of the MCA territory(p<.05). The values obtained from mask 1 were significantly different than the mask 3(p<.05). Using mask 3, the medium values of Ns were 4(<10%), 2(<15%) and 2(<20%), with the worst case scenario (maximum Ns) of 25, 4, and 4, respectively. Conclusion: This study found that reliable calibration of DSC-CBF can be achieved from a short pulsed ASL scan. We suggested use a mask based on the Tmax threshold, the inclusion of gray matter only and the exclusion of large vessels for performing the calibration.« less

  7. Effect of additives on mineral trioxide aggregate setting reaction product formation.

    PubMed

    Zapf, Angela M; Chedella, Sharath C V; Berzins, David W

    2015-01-01

    Mineral trioxide aggregate (MTA) sets via hydration of calcium silicates to yield calcium silicate hydrates and calcium hydroxide (Ca[OH]2). However, a drawback of MTA is its long setting time. Therefore, many additives have been suggested to reduce the setting time. The effect those additives have on setting reaction product formation has been ignored. The objective was to examine the effect additives have on MTA's setting time and setting reaction using differential scanning calorimetry (DSC). MTA powder was prepared with distilled water (control), phosphate buffered saline, 5% calcium chloride (CaCl2), 3% sodium hypochlorite (NaOCl), or lidocaine in a 3:1 mixture and placed in crucibles for DSC evaluation. The setting exothermic reactions were evaluated at 37°C for 8 hours to determine the setting time. Separate samples were stored and evaluated using dynamic DSC scans (37°C→640°C at10°C/min) at 1 day, 1 week, 1 month, and 3 months (n = 9/group/time). Dynamic DSC quantifies the reaction product formed from the amount of heat required to decompose it. Thermographic peaks were integrated to determine enthalpy, which was analyzed with analysis of variance/Tukey test (α = 0.05). Isothermal DSC identified 2 main exothermal peaks occurring at 44 ± 12 and 343 ± 57 minutes for the control. Only the CaCl2 additive was an accelerant, which was observed by a greater exothermic peak at 101 ± 11 minutes, indicating a decreased setting time. The dynamic DSC scans produced an endothermic peak around 450°C-550°C attributed to Ca(OH)2 decomposition. The use of a few additives (NaOCl and lidocaine) resulted in significantly less Ca(OH)2 product formation. DSC was used to discriminate calcium hydroxide formation in MTA mixed with various additives and showed NaOCl and lidocaine are detrimental to MTA reaction product formation, whereas CaCl2 accelerated the reaction. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Use of thermal analysis coupled with differential scanning calorimetry, quadrupole mass spectrometry and infrared spectroscopy (TG-DSC-QMS-FTIR) to monitor chemical properties and thermal stability of fulvic and humic acids.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia; Skic, Kamil

    2017-01-01

    Thermogravimetry-coupled with differential scanning calorimetry, quadrupole mass spectrometry, and Fourier-transform infrared spectroscopy (TG-DSC-QMS-FTIR)-was applied to monitor the thermal stability (in an N2 pyrolytic atmosphere) and chemical properties of natural polymers, fulvic (FA) and humic acids (HA), isolated from chemically different soils. Three temperature ranges, R1, 40-220°C; R2, 220-430°C; and R3, 430-650°C, were distinguished from the DSC data, related to the main thermal processes of different structures (including transformations without weight loss). Weight loss (ΔM) estimated from TG curves at the above temperature intervals revealed distinct differences within the samples in the content of physically adsorbed water (at R1), volatile and labile functional groups (at R2) as well as recalcitrant and refractory structures (at R3). QMS and FTIR modules enabled the chemical identification (by masses and by functional groups, respectively) of gaseous species evolved during thermal decomposition at R1, R2 and R3. Variability in shape, area and temperature of TG, DSC, QMS and FTIR peaks revealed differences in thermal stability and chemical structure of the samples between the FAs and HAs fractions of different origin. The statistical analysis showed that the parameters calculated from QMS (areas of m/z = 16, 17, 18, 44), DSC (MaxDSC) and TG (ΔM) at R1, R2 and R3 correlated with selected chemical properties of the samples, such as N, O and COOH content as well as E2/E6 and E2/E4 indexes. This indicated a high potential for the coupled method to monitor the chemical changes of humic substances. A new humification parameter, HTD, based on simple calculations of weight loss at specific temperature intervals proved to be a good alternative to indexes obtained from other methods. The above findings showed that the TG-DSC-QMS-FTIR coupled technique can represent a useful tool for the comprehensive assessment of FAs and HAs properties related to their various origin.

  9. Use of thermal analysis coupled with differential scanning calorimetry, quadrupole mass spectrometry and infrared spectroscopy (TG-DSC-QMS-FTIR) to monitor chemical properties and thermal stability of fulvic and humic acids

    PubMed Central

    Sokołowska, Zofia; Skic, Kamil

    2017-01-01

    Thermogravimetry–coupled with differential scanning calorimetry, quadrupole mass spectrometry, and Fourier-transform infrared spectroscopy (TG-DSC-QMS-FTIR)–was applied to monitor the thermal stability (in an N2 pyrolytic atmosphere) and chemical properties of natural polymers, fulvic (FA) and humic acids (HA), isolated from chemically different soils. Three temperature ranges, R1, 40–220°C; R2, 220–430°C; and R3, 430–650°C, were distinguished from the DSC data, related to the main thermal processes of different structures (including transformations without weight loss). Weight loss (ΔM) estimated from TG curves at the above temperature intervals revealed distinct differences within the samples in the content of physically adsorbed water (at R1), volatile and labile functional groups (at R2) as well as recalcitrant and refractory structures (at R3). QMS and FTIR modules enabled the chemical identification (by masses and by functional groups, respectively) of gaseous species evolved during thermal decomposition at R1, R2 and R3. Variability in shape, area and temperature of TG, DSC, QMS and FTIR peaks revealed differences in thermal stability and chemical structure of the samples between the FAs and HAs fractions of different origin. The statistical analysis showed that the parameters calculated from QMS (areas of m/z = 16, 17, 18, 44), DSC (MaxDSC) and TG (ΔM) at R1, R2 and R3 correlated with selected chemical properties of the samples, such as N, O and COOH content as well as E2/E6 and E2/E4 indexes. This indicated a high potential for the coupled method to monitor the chemical changes of humic substances. A new humification parameter, HTD, based on simple calculations of weight loss at specific temperature intervals proved to be a good alternative to indexes obtained from other methods. The above findings showed that the TG-DSC-QMS-FTIR coupled technique can represent a useful tool for the comprehensive assessment of FAs and HAs properties related to their various origin. PMID:29240819

  10. Characterization and comparison of perezone with some analogues. Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Escobedo-González, Rene Gerardo; Bahena, Luis; Arias Tellez, José Luis; Hinojosa Torres, Jaime; Ruvalcaba, Rene Miranda; Aceves-Hernández, Juan Manuel

    2015-10-01

    Perezone had been used for centuries in the traditional Mexican medicine, it is useful and a handful of illness. Perezone and other derivatives also present activity against certain lines of cancer, such as the myeloblastoid leukemia cell line K-562 and carcinoma cell lines (PC-3 and SKLU-1) with IC50 <10 μM. Perezone and isoperezone have shown the major cytotoxic potency. Characterization of perezone was carried out by UV-Visible, IR, DSC, TGA and powder X-ray diffraction, as well as docking studies using caspase-3 structures as receptors. Theoretical studies for optimizing the geometry of perezone were carried out and the results compared with values of single crystal X-ray diffraction. The experimental values of atomic distances, angles and dihedral angles are in good agreement with the theoretical values. Interaction of perezone with the cysteine catalytic site with the caspase-3 was found in the docking studies. A docking study of perezone, with horminone, thymoquinone and isoperezone as ligands and the protein apoptein, caspase-3 as receptor, was carried to demonstrate that the hindrance steric factor, chemical structure and the functional groups are important in the biological activity of these natural products. The docking score energetic values are in good agreement with the experimental cytotoxic results obtained from the experiments when perezone and analogues were studied in different types of cancer.

  11. Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions

    PubMed Central

    Chiu, Michael H.; Prenner, Elmar J.

    2011-01-01

    Differential Scanning Calorimetry (DSC) is a highly sensitive technique to study the thermotropic properties of many different biological macromolecules and extracts. Since its early development, DSC has been applied to the pharmaceutical field with excipient studies and DNA drugs. In recent times, more attention has been applied to lipid-based drug delivery systems and drug interactions with biomimetic membranes. Highly reproducible phase transitions have been used to determine values, such as, the type of binding interaction, purity, stability, and release from a drug delivery mechanism. This review focuses on the use of DSC for biochemical and pharmaceutical applications. PMID:21430954

  12. Effects of anode geometry on forward wide-angle neon ion emissions in 3.5 kJ plasma focus device by novel mega-size panorama polycarbonate image detectors

    NASA Astrophysics Data System (ADS)

    Sohrabi, M.; Soltani, Z.; Sarlak, Z.

    2018-03-01

    Forward wide-angle neon ion emissions in a 3.5 kJ plasma focus device (PFD) were studied using 5 different anode top geometries; hollow-end cylinder, solid triangle, solid hemisphere, hollow-end cone and flat-end cone. Position-sensitive mega-size panorama polycarbonate ion image detectors (MS-PCID) developed by dual-cell circular mega-size electrochemical etching (MS-ECE) systems were applied for processesing wide-angle neon ion images on MS-PCIDs exposed on the PFD cylinder top base under a single pinch shot. The images can be simply observed, analyzed and relatively quantified in terms of ion emission angular distributions even by the unaided eyes. By analysis of the forward neon ion emission images, the ion emission yields, ion emission angular distributions, iso-fluence ion contours and solid angles of ion emissions in 4π PFD space were determined. The neon ion emission yields on the PFD cylinder top base are in an increasing order ~2.1×109, ~2.2 ×109, ~2.8×109, ~2.9×109, and ~3.5×109 neon ions/shot for the 5 stated anode top geometries respectively. The panorama neon ion images as diagnosed even by the unaided eyes demonstrate the lowest and highest ion yields from the hollow-end cylinder and flat-end cone anode tops respectively. Relative dynamic qualitative neon ion spectrometry was made by the unaided eyes demonstrating relative neon ion energy as they appear. The study also demonstrates the unique power of the MS-PCID/MS-ECE imaging system as an advanced state-of-the-art ion imaging method for wide-angle dynamic parametric studies in PFD space and other ion study applications.

  13. An efficient multiplexing approach for adaptive aircraft communications via a relay satellite.

    NASA Technical Reports Server (NTRS)

    Devieux, C.; Bisaga, J. J.

    1973-01-01

    Description of a coherent wide-angle multiplexing approach which is 4 to 8 dB more efficient in the utilization of satellite power as compared to a multicarrier transmission accessing a single TWT amplifier transponder. The wide-angle multiplexing approach achieves this performance by efficiently trading the modulation power improvement against backoff at the satellite earth terminal phase modulator. A simple addition of an amplitude clipper at the modulator input is critical to the proper operation of the system.

  14. Determining the main thermodynamic parameters of caffeine melting by means of DSC

    NASA Astrophysics Data System (ADS)

    Agafonova, E. V.; Moshchenskii, Yu. V.; Tkachenko, M. L.

    2012-06-01

    The temperature and enthalpy of the melting of caffeine, which are 235.5 ± 0.1°C and 19.6 ± 0.2 kJ/mol, respectively, are determined by DSC. The melting entropy and the cryoscopic constant of caffeine are calculated.

  15. 47 CFR 80.225 - Requirements for selective calling equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... manufacture, importation, sale or installation of non-portable DSC equipment that does not comply with either..., 2011. (5) The manufacture, importation, or sale of handheld, portable DSC equipment that does not... to establish or maintain communications provided that: (i) These signalling techniques are not used...

  16. Thermal Analysis of Plastics

    ERIC Educational Resources Information Center

    D'Amico, Teresa; Donahue, Craig J.; Rais, Elizabeth A.

    2008-01-01

    This lab experiment illustrates the use of differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) in the measurement of polymer properties. A total of seven exercises are described. These are dry exercises: students interpret previously recorded scans. They do not perform the experiments. DSC was used to determine the…

  17. Determining the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose using an automatic water vapor sorption instrument.

    PubMed

    Yuan, Xiaoda; Carter, Brady P; Schmidt, Shelly J

    2011-01-01

    Similar to an increase in temperature at constant moisture content, water vapor sorption by an amorphous glassy material at constant temperature causes the material to transition into the rubbery state. However, comparatively little research has investigated the measurement of the critical relative humidity (RHc) at which the glass transition occurs at constant temperature. Thus, the central objective of this study was to investigate the relationship between the glass transition temperature (Tg), determined using thermal methods, and the RHc obtained using an automatic water vapor sorption instrument. Dynamic dewpoint isotherms were obtained for amorphous polydextrose from 15 to 40 °C. RHc was determined using an optimized 2nd-derivative method; however, 2 simpler RHc determination methods were also tested as a secondary objective. No statistical difference was found between the 3 RHc methods. Differential scanning calorimetry (DSC) Tg values were determined using polydextrose equilibrated from 11.3% to 57.6% RH. Both standard DSC and modulated DSC (MDSC) methods were employed, since some of the polydextrose thermograms exhibited a physical aging peak. Thus, a tertiary objective was to compare Tg values obtained using 3 different methods (DSC first scan, DSC rescan, and MDSC), to determine which method(s) yielded the most accurate Tg values. In general, onset and midpoint DSC first scan and MDSC Tg values were similar, whereas onset and midpoint DSC rescan values were different. State diagrams of RHc and experimental temperature and Tg and %RH were compared. These state diagrams, though obtained via very different methods, showed relatively good agreement, confirming our hypothesis that water vapor sorption isotherms can be used to directly detect the glassy to rubbery transition. Practical Application: The food polymer science (FPS) approach, pioneered by Slade and Levine, is being successfully applied in the food industry for understanding, improving, and developing food processes and products. However, despite its extreme usefulness, the Tg, a key element of the FPS approach, remains a challenging parameter to routinely measure in amorphous food materials, especially complex materials. This research demonstrates that RHc values, obtained at constant temperature using an automatic water vapor sorption instrument, can be used to detect the glassy to rubbery transition and are similar to the Tg values obtained at constant %RH, especially considering the very different approaches of these 2 methods--a transition from surface adsorption to bulk absorption (water vapor sorption) versus a step change in the heat capacity (DSC thermal method).

  18. Serious game training improves performance in combat life-saving interventions.

    PubMed

    Planchon, Jerome; Vacher, Anthony; Comblet, Jeremy; Rabatel, Eric; Darses, Françoise; Mignon, Alexandre; Pasquier, Pierre

    2018-01-01

    In modern warfare, almost 25% of combat-related deaths are considered preventable if life-saving interventions are performed. Therefore, Tactical Combat Casualty Care (TCCC) training for soldiers is a major challenge. In 2014, the French Military Medical Service supported the development of 3D-SC1 ® , a serious game designed for the French TCCC program, entitled Sauvetage au Combat de niveau 1 (SC1). Our study aimed to evaluate the impact on performance of additional training with 3D-SC1 ® . The study assessed the performance of soldiers randomly assigned to one of two groups, before (measure 1) and after (measure 2) receiving additional training. This training involved either 3D-SC1 ® (Intervention group), or a DVD (Control group). The principal measure was the individual performance (on a 16-point scale), assessed by two investigators during a hands-on simulation. First, the mean performance score was compared between the two measures for Intervention and Control groups using a two-tailed paired t-test. Second, a multivariable linear regression was used to determine the difference in the impacts of 3D-SC1 ® and DVD training, and the order of presentation of the two scenarios, on the mean change from baseline in performance scores. A total of 96 subjects were evaluated: seven could not be followed-up, while 50 were randomly allocated to the Intervention group, and 39 to the Control group. Between measure 1 and measure 2, the mean (SD) performance score increased from 9.9 (3.13) to 14.1 (1.23), and from 9.4 (2.97) to 12.5 (1.83), for the Intervention group and Control group, respectively (p<0.0001). The adjusted mean difference in performance scores between 3D-SC1 ® and DVD training was 1.1 (95% confidence interval -0.3, 2.5) (p=0.14). Overall, the study found that supplementing SC1 training with either 3D-SC1 ® or DVD improved performance, assessed by a hands-on simulation. However, our analysis did not find a statistically significant difference between the effects of these two training tools. 3D-SC1 ® could be an efficient and pedagogical tool to train soldiers in life-saving interventions. In the current context of terrorist threat, a specifically-adapted version of 3D-SC1 ® may be a cost-effective and engaging way to train a large civilian public. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Structurally colored films with superhydrophobicity and wide viewing angles based on bumpy melanin-like particles

    NASA Astrophysics Data System (ADS)

    Yi, Bo; Shen, Huifang

    2018-01-01

    Non-iridescent structural colors and lotus effect universally existing in the nature provide a great inspiration for artificially developing angle-independent and high hydrophobic structurally colored films. To this end, a facile strategy is put forward for achieving superhydrophobic structurally colored films with wide viewing angles and high visibility based on bumpy melanin-like polydopamine-coated polystyrene particles. Here, hierarchical and amorphous structures are assembled in a self-driven manner due to particles' protrusive surfaces. The superhydrophobicity of the structurally colored films, with water contact angle up to 151°, is realized by combining the hierarchical surface roughness with a dip-coating process of polydimethylsiloxane-hexane solution, while angle-independence revealed in the films is ascribed to amorphous arrays. In addition, benefited from an essential light-absorbing property and high refractive index of polydopamine, the visibility of as-prepared colored films is fundamentally enhanced. Moreover, the mechanical robustness of the films is considerably boosted by inletting 3-aminopropyltriethoxysilane. This fabrication strategy might provide an opportunity for promoting the open-air application of structurally colored coatings.

  20. Portable mini-chamber for temperature dependent studies using small angle and wide angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Dev, Arun Singh; Kumar, Dileep; Potdar, Satish; Pandit, Pallavi; Roth, Stephan V.; Gupta, Ajay

    2018-04-01

    The present work describes the design and performance of a vacuum compatible portable mini chamber for temperature dependent GISAXS and GIWAXS studies of thin films and multilayer structures. The water cooled body of the chamber allows sample annealing up to 900 K using ultra high vacuum compatible (UHV) pyrolytic boron nitride heater, thus making it possible to study the temperature dependent evolution of structure and morphology of two-dimensional nanostructured materials. Due to its light weight and small size, the chamber is portable and can be accommodated at synchrotron facilities worldwide. A systematic illustration of the versatility of the chamber has been demonstrated at beamline P03, PETRA-III, DESY, Hamburg, Germany. Temperature dependent grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) measurements were performed on oblique angle deposited Co/Ag multilayer structure, which jointly revealed that the surface diffusion in Co columns in Co/Ag multilayer enhances by increasing temperature from RT to ˜573 K. This results in a morphology change from columnar tilted structure to densely packed morphological isotropic multilayer.

  1. The Multidimensional Influence of Acculturation on Digit Symbol-Coding and Wisconsin Card Sorting Test in Hispanics.

    PubMed

    Krch, Denise; Lequerica, Anthony; Arango-Lasprilla, Juan Carlos; Rogers, Heather L; DeLuca, John; Chiaravalloti, Nancy D

    2015-01-01

    The purpose of the current study was to evaluate the relative contribution of acculturation to two tests of nonverbal test performance in Hispanics. This study compared 40 Hispanic and 20 non-Hispanic whites on Digit Symbol-Coding (DSC) and the Wisconsin Card Sorting Test (WCST) and evaluated the relative contribution of the various acculturation components to cognitive test performance in the Hispanic group. Hispanics performed significantly worse on DSC and WCST relative to non-Hispanic whites. Multiple regressions conducted within the Hispanic group revealed that language use uniquely accounted for 11.0% of the variance on the DSC, 18.8% of the variance on WCST categories completed, and 13.0% of the variance in perseverative errors on the WCST. Additionally, years of education in the United States uniquely accounted for 14.9% of the variance in DSC. The significant impact of acculturation on DSC and WCST lends support that nonverbal cognitive tests are not necessarily culture free. The differential contribution of acculturation proxies highlights the importance of considering these separate components when interpreting performance on neuropsychological tests in clinical and research settings. Factors, such as the country where education was received, may in fact be more meaningful information than the years of education of education attained. Thus, acculturation should be considered an important factor in any cognitive evaluation of culturally diverse individuals.

  2. Crystallization processes in Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svoboda, Roman, E-mail: roman.svoboda@upce.cz; Bezdička, Petr; Gutwirth, Jan

    2015-01-15

    Highlights: • Crystallization kinetics of Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass was studied in dependence on particle size by DSC. • All studied fractions were described in terms of the SB autocatalytic model. • Relatively high amount of Te enhances manifestation of bulk crystallization mechanisms. • XRD analysis of samples crystallized under different conditions showed correlation with DSC data. • XRD analysis revealed a new crystallization mechanism indistinguishable by DSC. - Abstract: Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis were used to study crystallization in Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass under non-isothermal conditions as a function of the particlemore » size. The crystallization kinetics was described in terms of the autocatalytic Šesták–Berggren model. An extensive discussion of all aspects of a full-scale kinetic study of a crystallization process was undertaken. Dominance of the crystallization process originating from mechanically induced strains and heterogeneities was confirmed. Substitution of Se by Te was found to enhance the manifestation of the bulk crystallization mechanisms (at the expense of surface crystallization). The XRD analysis showed significant dependence of the crystalline structural parameters on the crystallization conditions (initial particle size of the glassy grains and applied heating rate). Based on this information, a new microstructural crystallization mechanism, indistinguishable by DSC, was proposed.« less

  3. Low-Angle-Incidence Microchannel Epitaxy of a-Plane GaN Grown by Ammonia-Based Metal-Organic Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya

    2012-04-01

    Low-angle-incidence microchannel epitaxy (LAIMCE) of a-plane GaN was performed using ammonia-based metal-organic molecular beam epitaxy to obtain wide and thin lateral overgrowth over a SiO2 mask. Trimethylgallium (TMG) was supplied perpendicular to the openings cut in the mask with a low incident angle of 5° relative to the substrate plane. The [NH3]/[TMG] ratio (R) dependence of GaN LAIMCE was optimized by varying R from 5 to 30. A wide lateral overgrowth of 3.7 µm with a dislocation density below the transmission electron microscope detection limit was obtained at R=15 for a thickness of 520 nm.

  4. Wide Angle, Single Screen, Gridded Square-Loop Frequency Selective Surface for Diplexing Two Closely Separated Frequency Bands

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao (Inventor)

    1996-01-01

    The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incidence angle from 0 deg normal to 40 deg from normal.

  5. Reflection color filters of the three primary colors with wide viewing angles using common-thickness silicon subwavelength gratings.

    PubMed

    Kanamori, Yoshiaki; Ozaki, Toshikazu; Hane, Kazuhiro

    2014-10-20

    We fabricated reflection color filters of the three primary colors with wide viewing angles using silicon two-dimensional subwavelength gratings on the same quartz substrate. The grating periods were 400, 340, and 300 nm for red, green, and blue filters, respectively. All of the color filters had the same grating thickness of 100 nm, which enabled simple fabrication of a color filter array. Reflected colors from the red, green, and blue filters under s-polarized white-light irradiation appeared in the respective colors at incident angles from 0 to 50°. By rigorous coupled-wave analysis, the dimensions of each color filter were designed, and the calculated reflectivity was compared with the measured reflectivity.

  6. Social Media Impact of the Food and Drug Administration's Drug Safety Communication Messaging About Zolpidem: Mixed-Methods Analysis

    PubMed Central

    Sinha, Michael S; Freifeld, Clark C; Brownstein, John S; Donneyong, Macarius M; Rausch, Paula; Lappin, Brian M; Zhou, Esther H; Dal Pan, Gerald J; Pawar, Ajinkya M; Hwang, Thomas J; Avorn, Jerry

    2018-01-01

    Background The Food and Drug Administration (FDA) issues drug safety communications (DSCs) to health care professionals, patients, and the public when safety issues emerge related to FDA-approved drug products. These safety messages are disseminated through social media to ensure broad uptake. Objective The objective of this study was to assess the social media dissemination of 2 DSCs released in 2013 for the sleep aid zolpidem. Methods We used the MedWatcher Social program and the DataSift historic query tool to aggregate Twitter and Facebook posts from October 1, 2012 through August 31, 2013, a period beginning approximately 3 months before the first DSC and ending 3 months after the second. Posts were categorized as (1) junk, (2) mention, and (3) adverse event (AE) based on a score between –0.2 (completely unrelated) to 1 (perfectly related). We also looked at Google Trends data and Wikipedia edits for the same time period. Google Trends search volume is scaled on a range of 0 to 100 and includes “Related queries” during the relevant time periods. An interrupted time series (ITS) analysis assessed the impact of DSCs on the counts of posts with specific mention of zolpidem-containing products. Chow tests for known structural breaks were conducted on data from Twitter, Facebook, and Google Trends. Finally, Wikipedia edits were pulled from the website’s editorial history, which lists all revisions to a given page and the editor’s identity. Results In total, 174,286 Twitter posts and 59,641 Facebook posts met entry criteria. Of those, 16.63% (28,989/174,286) of Twitter posts and 25.91% (15,453/59,641) of Facebook posts were labeled as junk and excluded. AEs and mentions represented 9.21% (16,051/174,286) and 74.16% (129,246/174,286) of Twitter posts and 5.11% (3,050/59,641) and 68.98% (41,138/59,641) of Facebook posts, respectively. Total daily counts of posts about zolpidem-containing products increased on Twitter and Facebook on the day of the first DSC; Google searches increased on the week of the first DSC. ITS analyses demonstrated variability but pointed to an increase in interest around the first DSC. Chow tests were significant (P<.0001) for both DSCs on Facebook and Twitter, but only the first DSC on Google Trends. Wikipedia edits occurred soon after each DSC release, citing news articles rather than the DSC itself and presenting content that needed subsequent revisions for accuracy. Conclusions Social media offers challenges and opportunities for dissemination of the DSC messages. The FDA could consider strategies for more actively disseminating DSC safety information through social media platforms, particularly when announcements require updating. The FDA may also benefit from directly contributing content to websites like Wikipedia that are frequently accessed for drug-related information. PMID:29305342

  7. What is MISR? MISR Instrument? MISR Project?

    Atmospheric Science Data Center

    2014-12-08

    ... to improve our understanding of the Earth's environment and climate. Viewing the sunlit Earth simultaneously at nine widely-spaced angles, ... types of atmospheric particles and clouds on climate. The change in reflection at different view angles affords the means to distinguish ...

  8. 47 CFR 80.179 - Unattended operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DSC in accordance with ITU-R Recommendation M.493-11, “Digital Selective-calling System for Use in the...., Washington, DC (Reference Information Center) or at the National Archives and Records Administration (NARA... condition related to ship safety. (3) The “ROUTINE” DSC category must be used. (4) Communications must be...

  9. 47 CFR 80.359 - Frequencies for digital selective calling (DSC).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... calling frequencies for use by authorized ship and coast stations for general purpose DSC. There are three.... The “Series A” designation includes coast stations along, and ship stations in, the Atlantic Ocean... location of the called station and propagation conditions. Acknowledgement is made on the paired frequency...

  10. 47 CFR 80.359 - Frequencies for digital selective calling (DSC).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... calling frequencies for use by authorized ship and coast stations for general purpose DSC. There are three.... The “Series A” designation includes coast stations along, and ship stations in, the Atlantic Ocean... location of the called station and propagation conditions. Acknowledgement is made on the paired frequency...

  11. 47 CFR 80.359 - Frequencies for digital selective calling (DSC).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... calling frequencies for use by authorized ship and coast stations for general purpose DSC. There are three.... The “Series A” designation includes coast stations along, and ship stations in, the Atlantic Ocean... location of the called station and propagation conditions. Acknowledgement is made on the paired frequency...

  12. 77 FR 42498 - Information Collection(s) Being Submitted for Review and Approval to the Office of Management and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ...: Section 80.103, Digital Selective Calling (DSC) Operating Procedures--Maritime Mobile Identity (MMSI...: Individuals or households; business or other for- profit entities and Federal Government. Number of... Marine VHF radios with Digital Selective Calling (DSC) capability in this collection. The licensee...

  13. Champagne flutes and brandy snifters: modelling protostellar outflow-cloud chemical interfaces

    NASA Astrophysics Data System (ADS)

    Rollins, R. P.; Rawlings, J. M. C.; Williams, D. A.; Redman, M. P.

    2014-10-01

    A rich variety of molecular species has now been observed towards hot cores in star-forming regions and in the interstellar medium. An increasing body of evidence from millimetre interferometers suggests that many of these form at the interfaces between protostellar outflows and their natal molecular clouds. However, current models have remained unable to explain the origin of the observational bias towards wide-angled `brandy snifter' shaped outflows over narrower `champagne flute' shapes in carbon monoxide imaging. Furthermore, these wide-angled systems exhibit unusually high abundances of the molecular ion HCO+. We present results from a chemodynamic model of such regions where a rich chemistry arises naturally as a result of turbulent mixing between cold, dense molecular gas and the hot, ionized outflow material. The injecta drives a rich and rapid ion-neutral chemistry in qualitative and quantitative agreement with the observations. The observational bias towards wide-angled outflows is explained naturally by the geometry-dependent ion injection rate causing rapid dissociation of CO in the younger systems.

  14. Use of a microscope-mounted wide-angle point of view camera to record optimal hand position in ocular surgery.

    PubMed

    Gooi, Patrick; Ahmed, Yusuf; Ahmed, Iqbal Ike K

    2014-07-01

    We describe the use of a microscope-mounted wide-angle point-of-view camera to record optimal hand positions in ocular surgery. The camera is mounted close to the objective lens beneath the surgeon's oculars and faces the same direction as the surgeon, providing a surgeon's view. A wide-angle lens enables viewing of both hands simultaneously and does not require repositioning the camera during the case. Proper hand positioning and instrument placement through microincisions are critical for effective and atraumatic handling of tissue within the eye. Our technique has potential in the assessment and training of optimal hand position for surgeons performing intraocular surgery. It is an innovative way to routinely record instrument and operating hand positions in ophthalmic surgery and has minimal requirements in terms of cost, personnel, and operating-room space. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Measurement of the dipole in the cross-correlation function of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaztanaga, Enrique; Bonvin, Camille; Hui, Lam, E-mail: gazta@ice.cat, E-mail: camille.bonvin@unige.ch, E-mail: lhui@astro.columbia.edu

    It is usually assumed that in the linear regime the two-point correlation function of galaxies contains only a monopole, quadrupole and hexadecapole. Looking at cross-correlations between different populations of galaxies, this turns out not to be the case. In particular, the cross-correlations between a bright and a faint population of galaxies contain also a dipole. In this paper we present the first attempt to measure this dipole. We discuss the four types of effects that contribute to the dipole: relativistic distortions, evolution effect, wide-angle effect and large-angle effect. We show that the first three contributions are intrinsic anti-symmetric contributions thatmore » do not depend on the choice of angle used to measure the dipole. On the other hand the large-angle effect appears only if the angle chosen to extract the dipole breaks the symmetry of the problem. We show that the relativistic distortions, the evolution effect and the wide-angle effect are too small to be detected in the LOWz and CMASS sample of the BOSS survey. On the other hand with a specific combination of angles we are able to measure the large-angle effect with high significance. We emphasise that this large-angle dipole does not contain new physical information, since it is just a geometrical combination of the monopole and the quadrupole. However this measurement, which is in excellent agreement with theoretical predictions, validates our method for extracting the dipole from the two-point correlation function and it opens the way to the detection of relativistic effects in future surveys like e.g. DESI.« less

  16. Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method.

    PubMed

    Wang, Wanlin; Zhang, Wang; Chen, Weixin; Gu, Jiajun; Liu, Qinglei; Deng, Tao; Zhang, Di

    2013-01-15

    The wide angular range of the treelike structure in Morpho butterfly scales was investigated by finite-difference time-domain (FDTD)/particle-swarm-optimization (PSO) analysis. Using the FDTD method, different parameters in the Morpho butterflies' treelike structure were studied and their contributions to the angular dependence were analyzed. Then a wide angular range was realized by the PSO method from quantitatively designing the lamellae deviation (Δy), which was a crucial parameter with angular range. The field map of the wide-range reflection in a large area was given to confirm the wide angular range. The tristimulus values and corresponding color coordinates for various viewing directions were calculated to confirm the blue color in different observation angles. The wide angular range realized by the FDTD/PSO method will assist us in understanding the scientific principles involved and also in designing artificial optical materials.

  17. Detection of Clinically Significant Retinopathy of Prematurity Using Wide-angle Digital Retinal Photography

    PubMed Central

    Chiang, Michael F.; Melia, Michele; Buffenn, Angela N.; Lambert, Scott R.; Recchia, Franco M.; Simpson, Jennifer L.; Yang, Michael B.

    2013-01-01

    Objective To evaluate the accuracy of detecting clinically significant retinopathy of prematurity (ROP) using wide-angle digital retinal photography. Methods Literature searches of PubMed and the Cochrane Library databases were conducted last on December 7, 2010, and yielded 414 unique citations. The authors assessed these 414 citations and marked 82 that potentially met the inclusion criteria. These 82 studies were reviewed in full text; 28 studies met inclusion criteria. The authors extracted from these studies information about study design, interventions, outcomes, and study quality. After data abstraction, 18 were excluded for study deficiencies or because they were superseded by a more recent publication. The methodologist reviewed the remaining 10 studies and assigned ratings of evidence quality; 7 studies were rated level I evidence and 3 studies were rated level III evidence. Results There is level I evidence from ≥5 studies demonstrating that digital retinal photography has high accuracy for detection of clinically significant ROP. Level III studies have reported high accuracy, without any detectable complications, from real-world operational programs intended to detect clinically significant ROP through remote site interpretation of wide-angle retinal photographs. Conclusions Wide-angle digital retinal photography has the potential to complement standard ROP care. It may provide advantages through objective documentation of clinical examination findings, improved recognition of disease progression by comparing previous photographs, and the creation of image libraries for education and research. Financial Disclosure(s) Proprietary or commercial disclosure may be found after the references. PMID:22541632

  18. Highly Collimated Jets and Wide-angle Outflows in HH 46/47: New Evidence from Spitzer Infrared Images

    NASA Technical Reports Server (NTRS)

    Velusamy, T.; Langer, William D.; Marsh, Kenneth. A.

    2007-01-01

    We present new details of the structure and morphology of the jets and outflows in HH 46/47 as seen in Spitzer infrared images from IRAC and MIPS, reprocessed using the 'HiRes' deconvolution technique. HiRes improves the visualization of spatial morphology by enhancing resolution (to subarcsecond levels in IRAC bands) and removing the contaminating side lobes from bright sources. In addition to sharper views of previously reported bow shocks, we have detected (1) the sharply delineated cavity walls of the wide-angle biconical outflow, seen in scattered light on both sides of the protostar, (2) several very narrow jet features at distances approximately 400 AU to approximately 0.1 pc from the star, and (3) compact emissions at MIPS 24 m with the jet heads, tracing the hottest atomic/ionic gas in the bow shocks. Together the IRAC and MIPS images provide a more complete picture of the bow shocks, tracing both the molecular and atomic/ionic gases, respectively. The narrow width and alignment of all jet-related features indicate a high degree of jet collimation and low divergence (width of approximately 400 AU increasing by only a factor of 2.3 over 0.2 pc). The morphology of this jet, bow shocks, wide-angle outflows, and the fact that the jet is nonprecessing and episodic, constrain the mechanisms for producing the jet's entrained molecular gas, and origins of the fast jet, and slower wide-angle outflow.

  19. Wide Angle Movie

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This brief movie illustrates the passage of the Moon through the Saturn-bound Cassini spacecraft's wide-angle camera field of view as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. From beginning to end of the sequence, 25 wide-angle images (with a spatial image scale of about 14 miles per pixel (about 23 kilometers)were taken over the course of 7 and 1/2 minutes through a series of narrow and broadband spectral filters and polarizers, ranging from the violet to the near-infrared regions of the spectrum, to calibrate the spectral response of the wide-angle camera. The exposure times range from 5 milliseconds to 1.5 seconds. Two of the exposures were smeared and have been discarded and replaced with nearby images to make a smooth movie sequence. All images were scaled so that the brightness of Crisium basin, the dark circular region in the upper right, is approximately the same in every image. The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS)at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.

    Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona

    Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  20. 25G compared with 20G vitrectomy under Resight non-contact wide-angle lenses for Terson syndrome.

    PubMed

    Mao, Xinbang; You, Zhipeng

    2017-08-01

    The aim of the present study was to compare the effectiveness of 25G vitrectomy to standard 20G vitrectomy for treatment of Terson syndrome under Resight non-contact wide-angle lenses. This was a case-control study of 20 patients with Terson syndrome (study group) that underwent 25G vitrectomy under Resight non-contact wide-angle lenses, with those of 20 matched patients that underwent 20G vitrectomy (control group). Medical records were reviewed from between July 2011 and October 2013. Data included results of the Early Treatment Diabetic Retinopathy Study examination, ophthalmology B-scan ultrasonography and fundus photography. The mean age, follow-up time, the preoperative visual acuity of LogMAR and the preoperative intraocular pressure (IOP) were all comparable in the two groups (all P>0.05). There were statistically significant differences in postoperative visual acuity of LogMAR compared with preoperative visual acuity (P<0.001) in both groups, but no difference between the groups (P=0.845). However, the operative times (13.5 min in study group vs. 42 min in control group) and post-operative IOP at day 1 (13.5 vs. 20 mmHg) were significantly reduced in the study group compared to the control group (P<0.001). Therefore, the present findings suggest that 25G Vitrectomy for Terson syndrome under Resight non-contact wide-angle lenses can achieve a significantly shorter operative time and lower post-operative IOP compared with 20G Vitrectomy.

  1. Optimum take-off angle in the long jump.

    PubMed

    Linthorne, Nicholas P; Guzman, Maurice S; Bridgett, Lisa A

    2005-07-01

    In this study, we found that the optimum take-off angle for a long jumper may be predicted by combining the equation for the range of a projectile in free flight with the measured relations between take-off speed, take-off height and take-off angle for the athlete. The prediction method was evaluated using video measurements of three experienced male long jumpers who performed maximum-effort jumps over a wide range of take-off angles. To produce low take-off angles the athletes used a long and fast run-up, whereas higher take-off angles were produced using a progressively shorter and slower run-up. For all three athletes, the take-off speed decreased and the take-off height increased as the athlete jumped with a higher take-off angle. The calculated optimum take-off angles were in good agreement with the athletes' competition take-off angles.

  2. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms

    PubMed Central

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; (Lamar) Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-01-01

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future. PMID:28181593

  3. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms.

    PubMed

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; Lamar Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-02-09

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.

  4. Summary of Results from the Mars Phoenix Lander's Thermal Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Boynton, W. V.; Niles, P. B.; Hoffman, J.; Lauer, H. V.; Golden, D. C.

    2009-01-01

    The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect evolved volatiles and organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS) that can detect masses in the 2 to 140 dalton range [1]. Five Martian soils were individually heated to 1000 C in the DSC ovens where evolved gases from mineral decompostion products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil.

  5. Multiplicative Quaternion Extended Kalman Filtering for Nonspinning Guided Projectiles

    DTIC Science & Technology

    2013-07-01

    tactical applications are inertial. The advantages of using quaternions rather than Euler angles to represent projectile attitude are discussed, and...projectiles generally don’t experience a wide range of heading angles , this has not a primary concern. The other major advantage of quaternions (or...DCMs) over Euler angles is their propagation equations are linear with respect to the quaternion and only depend on the IMU’s angular velocity. This

  6. Structure of gel phase DMPC determined by X-ray diffraction.

    PubMed Central

    Tristram-Nagle, Stephanie; Liu, Yufeng; Legleiter, Justin; Nagle, John F

    2002-01-01

    The structure of fully hydrated gel phase dimyristoylphosphatidylcholine lipid bilayers was obtained at 10 degrees C. Oriented lipid multilayers were used to obtain high signal-to-noise intensity data. The chain tilt angle and an estimate of the methylene electron density were obtained from wide angle reflections. The chain tilt angle is measured to be 32.3 +/- 0.6 degrees near full hydration, and it does not change as the sample is mildly dehydrated from a repeat spacing of D = 59.9 A to D = 56.5 A. Low angle diffraction peaks were obtained up to the tenth order for 17 samples with variable D and prepared by three different methods with different geometries. In addition to the usual Fourier reconstructions of the electron density profiles, model electron density profiles were fit to all the low angle data simultaneously while constraining the model to include the wide-angle data and the measured lipid volume. Results are obtained for area/lipid (A = 47.2 +/- 0.5 A(2)), the compressibility modulus (K(A) = 500 +/- 100 dyn/cm), various thicknesses, such as the hydrocarbon thickness (2D(C) = 30.3 +/- 0.2 A), and the head-to-head spacing (D(HH) = 40.1 +/- 0.1 A). PMID:12496100

  7. Poly(glycerol adipate) - indomethacin drug conjugates - synthesis and in vitro characterization.

    PubMed

    Wersig, T; Hacker, M C; Kressler, J; Mäder, K

    2017-10-05

    The linear biodegradable polyester poly(glycerol adipate) (PGA) was synthesized via enzymatic polycondensation using lipase B from Candida antarctica (CAL-B). Every monomer unit of PGA possesses a pendant hydroxyl group which is responsible for the hydrophilic character and moisture swelling. These OH groups were esterified to different degrees with the anti-inflammatory drug indomethacin in order to create a prodrug with a pH-sensitive linker for modified drug release. The structure of the conjugates was determined via ATR FT-IR spectroscopy, NMR spectroscopy, GPC and UV/VIS spectroscopy. The physical properties of polymers with different drug load were investigated using DSC, contact angle measurements and oscillatory rheology. Drug release was monitored over one month in vitro. A very slow, but continuous release was observed in PBS. Slightly acidic conditions and lipase activity are accelerating the indomethacin release. Therefore, poly(glycerol adipate) - indomethacin conjugates are promising prodrugs for the local sustained release of indomethacin. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Isopropyl Myristate-Modified Polyether-Urethane Coatings as Protective Barriers for Implantable Medical Devices

    PubMed Central

    Roohpour, Nima; Wasikiewicz, Jaroslaw M.; Moshaverinia, Alireza; Paul, Deepen; Rehman, Ihtesham U.; Vadgama, Pankaj

    2009-01-01

    Polyurethane films have potential applications in medicine, especially for packaging implantable medical devices. Although polyether-urethanes have superior mechanical properties and are biocompatible, achieving water resistance is still a challenge. Polyether based polyurethanes with two different molecular weights (PTMO1000, PTMO2000) were prepared from 4,4’-diphenylmethane diisocyanate and poly(tetra-methylene oxide). Polymer films were introduced using different concentrations (0.5-10 wt %) of isopropyl myristate lipid (IPM) as a non-toxic modifying agent. The physical and mechanical properties of these polymers were characterised using physical and spectroscopy techniques (FTIR, Raman, DSC, DMA, tensile testing). Water contact angle and water uptake of the membranes as a function of IPM concentration was also determined accordingly. The FTIR and Raman data indicate that IPM is dispersed in polyurethane at ≤ 2wt% and thermal analysis confirmed this miscibility to be dependent on soft segment length. Modified polymers showed increased tensile strength and failure strain as well as reduced water uptake by up to 24% at 1-2 wt% IPM.

  9. High performance membrane-electrode assembly based on a surface-modified membrane

    NASA Astrophysics Data System (ADS)

    Han, Sangil; Lee, Jang Woo; Kwak, Chan; Chai, Geun Seok; Son, In Hyuk; Jang, Moon Yup; An, Sung Guk; Cho, Sung Yong; Kim, Jun Young; Kim, Hyung Wook; Serov, Alexey Alexandrovych; Yoo, Youngtai; Nam, Kie Hyun

    A surface-modified membrane is prepared using a sputtering technique that deposits gold directly on a Nafion ® 115 membrane surface that is roughened with silicon carbide paper. The surface-modified membranes are characterized by means of a scanning electron microscope (SEM), differential scanning calorimetry (DSC), and water contact-angle analysis. A single direct methanol fuel cell (DMFC) with a surface-modified membrane exhibits enhanced performance (160 mW cm -2), while a bare Nafion ® 115 cell yields 113 mW cm -2 at 0.4 V and an operating temperature of 70 °C. From FE-SEM images and CO ad stripping voltammograms, it is also found that the gold layer is composed of clusters of porous nodule-like particles, which indicates that an anode with nodule-like gold leads to the preferential oxidation of carbon monoxide. These results suggest that the topology of gold in the interfacial area and its electrocatalytic nature may be the critical factors that affect DMFC performance.

  10. Synthesis and Characterization of Biodegradable Polyurethane for Hypopharyngeal Tissue Engineering

    PubMed Central

    Shen, Zhisen; Lu, Dakai; Li, Qun; Zhang, Zongyong

    2015-01-01

    Biodegradable crosslinked polyurethane (cPU) was synthesized using polyethylene glycol (PEG), L-lactide (L-LA), and hexamethylene diisocyanate (HDI), with iron acetylacetonate (Fe(acac)3) as the catalyst and PEG as the extender. Chemical components of the obtained polymers were characterized by FTIR spectroscopy, 1H NMR spectra, and Gel Permeation Chromatography (GPC). The thermodynamic properties, mechanical behaviors, surface hydrophilicity, degradability, and cytotoxicity were tested via differential scanning calorimetry (DSC), tensile tests, contact angle measurements, and cell culture. The results show that the synthesized cPU possessed good flexibility with quite low glass transition temperature (T g, −22°C) and good wettability. Water uptake measured as high as 229.7 ± 18.7%. These properties make cPU a good candidate material for engineering soft tissues such as the hypopharynx. In vitro and in vivo tests showed that cPU has the ability to support the growth of human hypopharyngeal fibroblasts and angiogenesis was observed around cPU after it was implanted subcutaneously in SD rats. PMID:25839041

  11. Excimer UV lamp irradiation induced grafting on synthetic polymers

    NASA Astrophysics Data System (ADS)

    Praschak, D.; Bahners, T.; Schollmeyer, E.

    Surface modifications on polyethyleneterephthalate (PET) films following excimer UV lamp irradiation induced grafting were studied. Characteristics of the modifications depending on the conditions during the irradiation were analysed using contact-angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). Depending on the conditions during the irradiation different surface modifications were obtained, which can generally be classified regarding the hydrophilic or hydrophobic characteristics of the resulting surface. It is shown that not every substance that meets the general demands will be grafted on synthetic polymers using excimer UV radiation. Examples of agents that can simply be grafted onto polymer surfaces and those that undergo further crosslinking, building up thin films are listed. Agents used for grafting on polymers are 1,5-hexadiene, perfluoro-4-methyl-pent-2-ene, polyethyleneglycol 200, monosilane and polyethylene. The transferability of the effects achieved to substrates such as polyparaphenylene terephthalamide or polymetaphenylene isophthalamide is shown.

  12. Novel Blend for Producing Porous Chitosan-Based Films Suitable for Biomedical Applications

    PubMed Central

    Nady, Norhan; Kandil, Sherif H.

    2018-01-01

    In this work, a chitosan–gelatin–ferulic acid blend was used in different ratios for preparing novel films that can be used in biomedical applications. Both acetic and formic acid were tested as solvents for the chitosan–gelatin–ferulic acid blend. Glycerol was tested as a plasticizer. The thickness, mechanical strength, static water contact angle and water uptake of the prepared films were determined. Also, the prepared films were characterized using different analysis techniques such as Fourier transform infrared spectroscopy (FT-IR) analysis, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Acetic acid produced continuous compact surfaces that are not recommended for testing in biomedical applications. The plasticized chitosan–gelatin–ferulic acid blend, using formic acid solvent, produced novel hexagonal porous films with a pore size of around 10–14 µm. This blend is recommended for preparing films (scaffolds) for testing in biomedical applications as it has the advantage of a decreased thickness. PMID:29301357

  13. A multifunctional cotton fabric using TiO2 and PCMs: introducing thermal comfort and self-cleaning properties

    NASA Astrophysics Data System (ADS)

    Scacchetti, F. A. P.; Pinto, E.; Soares, G.

    2017-10-01

    The development of materials with multiple functionalities is a market imperative that places new challenges on textile processing. The purpose of this study was to establish the conditions to obtain a cotton material that is comfortable, with self-cleaning and antimicrobial properties. For this purpose, microcapsules of phase change materials (mPCM) and titanium dioxide nanoparticles (TiO2 NP) were applied. The resulting fabrics were characterized with resource to infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), contact angle and scanning electron microscopy (SEM). The self-cleaning properties of treated fabrics were also analysed based on the photocatalytic ability of coated fabrics. Therefore, the decomposition of methyl orange (MO) and the degradation of red wine and curry spots under the irradiation of a solar simulator were analysed. Thus, the incorporation of TiO2 particles into the cotton fabric promoted self-cleaning and antibacterial characteristics, but the presence of PCM combined with TiO2 increases the bioactivity of materials.

  14. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications.

    PubMed

    Noorbakhsh-Soltani, S M; Zerafat, M M; Sabbaghi, S

    2018-06-01

    Environmental concerns have led to extensive research for replacing polymer-based food packaging with bio-nano-composites. In this study, incorporation of nano-cellulose into gelatin and starch matrices is investigated for this purpose. Chitosan is used to improve mechanical, anti-fungal and waterproof properties. Experiments are designed and analyzed using response surface methodology. Nano-Cellulose is synthesized via acid hydrolysis and incorporated in base matrices through wet processing. Also, tensile strength test, food preservation, transparency in visible and UV and water contact angle are performed on the nano-composite films. DSC/TGA and air permeability tests are also performed on the optimal films. The results show that increasing nano-cellulose composition to 10% leads to increase the tensile strength at break to 8121 MN/m 2 and decrease the elongation at break. Also, increasing chitosan composition from 5% to 30% can enhance food preservation up to 15 days. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Electrochemical performance of a thermally rearranged polybenzoxazole nanocomposite membrane as a separator for lithium-ion batteries at elevated temperature

    NASA Astrophysics Data System (ADS)

    Lee, Moon Joo; Hwang, Jun-Ki; Kim, Ji Hoon; Lim, Hyung-Seok; Sun, Yang-Kook; Suh, Kyung-Do; Lee, Young Moo

    2016-02-01

    Shape-tunable hydroxyl copolyimide (HPI) nanoparticles are fabricated by a re-precipitation method and are coated onto electrospun HPI membranes, followed by heat treatment to prepare thermally rearranged polybenzoxazole (TR-PBO) composite membranes. The morphology of HPI nanoparticles consisted of sphere and sea-squirt structures, which is controlled by changing the concentration of the stabilizer. The morphological characteristics of TR-PBO nanoparticles convert from HPI nanoparticles by heat treatment and their composite membranes is confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (ATR-IR), thermogravimetric analysis (TGA) analysis, and contact angle measurements. TGA and DSC measurements confirm the excellent thermal stability compared to Celgard, a commercial PP separator for lithium-ion batteries (LIBs). Further, TR-PBO nano-composite membranes used in coin-cell type LIBs as a separator show excellent high power density performance as compared to Celgard. This is due to the fact that sea-squirt structured nanoparticles have better electrochemical properties than sphere structured nanoparticles at high temperature.

  16. Synthesis and characterization of biodegradable polyurethane for hypopharyngeal tissue engineering.

    PubMed

    Shen, Zhisen; Lu, Dakai; Li, Qun; Zhang, Zongyong; Zhu, Yabin

    2015-01-01

    Biodegradable crosslinked polyurethane (cPU) was synthesized using polyethylene glycol (PEG), L-lactide (L-LA), and hexamethylene diisocyanate (HDI), with iron acetylacetonate (Fe(acac)3) as the catalyst and PEG as the extender. Chemical components of the obtained polymers were characterized by FTIR spectroscopy, (1)H NMR spectra, and Gel Permeation Chromatography (GPC). The thermodynamic properties, mechanical behaviors, surface hydrophilicity, degradability, and cytotoxicity were tested via differential scanning calorimetry (DSC), tensile tests, contact angle measurements, and cell culture. The results show that the synthesized cPU possessed good flexibility with quite low glass transition temperature (T g , -22°C) and good wettability. Water uptake measured as high as 229.7 ± 18.7%. These properties make cPU a good candidate material for engineering soft tissues such as the hypopharynx. In vitro and in vivo tests showed that cPU has the ability to support the growth of human hypopharyngeal fibroblasts and angiogenesis was observed around cPU after it was implanted subcutaneously in SD rats.

  17. [Ambient pressure synthesis and characterization of silica aerogel as adsorbent for dieldrin].

    PubMed

    Sha, Wei; Liu, Rui-ping; Liu, Hui-juan; Qu, Jiu-hui

    2008-12-01

    Hydrophobic silica aerogels were prepared from cheap waterglass precursors via surface modification of wet gels and ambient pressure drying route. Its adsorption capacity of Dieldrin, a typical of persistent organic pollutants (POPs), was examined. It is characterized via BET, FTIR, and DSC-TGA. The silica aerogels were highly hydrophobic with contact angles of 135 degrees-142 degrees, and the hydrophobicity of the aerogels could be maintained up to the temperature of 380 degrees C. The silica aerogels were porous with, pore size distribution of 17.5-23.4 nm, porosity of 94.8%-95.6%, and surface area of 444-560 m2 x g(-1). The results of adsorption experiments indicated that the hydrophobic aerogels could remove 84% of dieldrin from aqueous solution within 4 h; the adsorption process followed the pseudo-second-order kinetics process. Based on the adsorption equilibrium results, the adsorption capacity of silica aerogel was 11 times bigger than by active carbon.

  18. Solid-state evaluation and polymorphic quantification of venlafaxine hydrochloride raw materials using the Rietveld method.

    PubMed

    Bernardi, Larissa S; Ferreira, Fábio F; Cuffini, Silvia L; Campos, Carlos E M; Monti, Gustavo A; Kuminek, Gislaine; Oliveira, Paulo R; Cardoso, Simone G

    2013-12-15

    Venlafaxine hydrochloride (VEN) is an antidepressant drug widely used for the treatment of depression. The purpose of this study was to carry out the preparation and solid state characterization of the pure polymorphs (Forms 1 and 2) and the polymorphic identification and quantification of four commercially-available VEN raw materials. These two polymorphic forms were obtained from different crystallization methods and characterized by X-ray Powder Diffraction (XRPD), Diffuse Reflectance Infrared Fourier Transform (DRIFT), Raman Spectroscopy (RS), liquid and solid state Nuclear Magnetic Resonance (NMR and ssNMR) spectroscopies, Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) techniques. The main differences were observed by DSC and XRPD and the latter was chosen as the standard technique for the identification and quantification studies in combination with the Rietveld method for the commercial raw materials (VEN1-VEN4) acquired from different manufacturers. Additionally Form 1 and Form 2 can be clearly distinguished from their (13)C ssNMR spectra. Through the analysis, it was possible to conclude that VEN1 and VEN2 were composed only of Form 1, while VEN3 and VEN4 were a mixture of Forms 1 and 2. Additionally, the Rietveld refinement was successfully applied to quantify the polymorphic ratio for VEN3 and VEN4. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Electrical conductivity studies on Ammonium bromide incorporated with Zwitterionic polymer blend electrolyte for battery application

    NASA Astrophysics Data System (ADS)

    Parameswaran, V.; Nallamuthu, N.; Devendran, P.; Nagarajan, E. R.; Manikandan, A.

    2017-06-01

    Solid polymer blend electrolytes are widely studied due to their extensive applications particularly in electrochemical devices. Blending polymer makes the thermal stability, higher mechanical strength and inorganic salt provide ionic charge carrier to enhance the conductivity. In these studies, 50% polyvinyl alcohol (PVA), 50% poly (N-vinyl pyrrolidone) (PVP) and 2.5% L-Asparagine mixed with different ratio of the Ammonium bromide (NH4Br), have been synthesized using solution casting technique. The prepared PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films have been characterized by various analytical methods such as FT-IR, XRD, impedance spectroscopy, TG-DSC and scanning electron microscopy. FT-IR, XRD and TG/DSC analysis revealed the structural and thermal behavior of the complex formation between PVA/PVP/L-Asparagine/doped-NH4Br. The ionic conductivity and the dielectric properties of PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films were examined using impedance analysis. The highest ionic conductivity was found to be 2.34×10-4 S cm-1 for the m.wt. composition of 50%PVA:50%PVP:2.5%L-Asparagine:doped 0.15 g NH4Br at ambient temperature. Solid state proton battery is fabricated and the observed open circuit voltage is 1.1 V and its performance has been studied.

  20. Omni-Directional Viewing-Angle Switching through Control of the Beam Divergence Angle in a Liquid Crystal Panel

    NASA Astrophysics Data System (ADS)

    Baek, Jong-In; Kim, Ki-Han; Kim, Jae Chang; Yoon, Tae-Hoon

    2010-01-01

    This paper proposes a method of omni-directional viewing-angle switching by controlling the beam diverging angle (BDA) in a liquid crystal (LC) panel. The LCs aligned randomly by in-cell polymer structures diffuse the collimated backlight for the bright state of the wide viewing-angle mode. We align the LCs homogeneously by applying an in-plane field for the narrow viewing-angle mode. By doing this the scattering is significantly reduced so that the small BDA is maintained as it passes through the LC layer. The dark state can be obtained by aligning the LCs homeotropically with a vertical electric field. We demonstrated experimentally the omni-directional switching of the viewing-angle, without an additional panel or backlighting system.

  1. Contact angle determination procedure and detection of an invisible surface film

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Grat, R.

    1990-01-01

    The contact angle value, i.e., the tangent angle of liquid resting on a planar solid surface, is a basic parameter which can be applied to a wide range of applications. The goal is to provide a basic understanding of the contact angle measurement technique and to present a simple illustration that can be applied as a quality control method; namely, detection of a surface contaminant which exists on a surface that appears clean to the unaided eye. The equipment and experimental procedures are detailed.

  2. Drill Sergeant Candidate Transformation

    DTIC Science & Technology

    2009-02-01

    leadership styles of NCOs entering Drill Sergeant School (DSS). ARI also developed and administered a prototype DS Assessment Battery to assess...preferred leadership styles . DSS training increases both the degree to which the DSC feels obligated to and identifies with the Army. DSS training...4 TABLE 3. PREFERRED LEADERSHIP STYLES DEFINITIONS .............................................6 TABLE 4. DSC CHANGE IN

  3. Dual-mode switching of a liquid crystal panel for viewing angle control

    NASA Astrophysics Data System (ADS)

    Baek, Jong-In; Kwon, Yong-Hoan; Kim, Jae Chang; Yoon, Tae-Hoon

    2007-03-01

    The authors propose a method to control the viewing angle of a liquid crystal (LC) panel using dual-mode switching. To realize both wide viewing angle (WVA) characteristics and narrow viewing angle (NVA) characteristics with a single LC panel, the authors use two different dark states. The LC layer can be aligned homogeneously parallel to the transmission axis of the bottom polarizer for WVA dark state operation, while it can be aligned vertically for NVA dark state operation. The authors demonstrated that viewing angle control can be achieved with a single panel without any loss of contrast at the front.

  4. Structural basis of host recognition and biofilm formation by Salmonella Saf pili

    PubMed Central

    2017-01-01

    Pili are critical in host recognition, colonization and biofilm formation during bacterial infection. Here, we report the crystal structures of SafD-dsc and SafD-SafA-SafA (SafDAA-dsc) in Saf pili. Cell adherence assays show that SafD and SafA are both required for host recognition, suggesting a poly-adhesive mechanism for Saf pili. Moreover, the SafDAA-dsc structure, as well as SAXS characterization, reveals an unexpected inter-molecular oligomerization, prompting the investigation of Saf-driven self-association in biofilm formation. The bead/cell aggregation and biofilm formation assays are used to demonstrate the novel function of Saf pili. Structure-based mutants targeting the inter-molecular hydrogen bonds and complementary architecture/surfaces in SafDAA-dsc dimers significantly impaired the Saf self-association activity and biofilm formation. In summary, our results identify two novel functions of Saf pili: the poly-adhesive and self-associating activities. More importantly, Saf-Saf structures and functional characterizations help to define a pili-mediated inter-cellular oligomerizaiton mechanism for bacterial aggregation, colonization and ultimate biofilm formation. PMID:29125121

  5. Study on Synthesis of Thoreau-modified 3, 5-Dimethyl-Thioltoluenediamine Used as Epoxy Resin Curing Agent and Its Performance

    NASA Astrophysics Data System (ADS)

    Peng, Yongli; Xiao, Wenzheng

    2017-06-01

    A novel curing agent Thoreau modified 3, 5-Dimethyl-thioltoluenediamine was synthesized and its molecular structure was characterized by FTIR and DSC. The curing kinetics of a high toughness and low volume shrinkage ratio epoxy system (modified DMTDA/DGEBA) was studied by differential scanning calorimetry (DSC) under noni so thermal conditions. The data were fitted to an order model and autocatalytic model respectively. The results indicate that in order model deviates significantly from experimental data. Malik’s method was used to prove that the curing kinetics of the system concerned follow single-step autocatalytic model, and a “single-point model-free” approach was employed to calculate meaningful kinetic parameters. The DSC curves derived from autocatalytic model gave satisfactory agreement with that of experiment in the range 5K/min∼25K/min. As the heating rate increased, the predicted DSC curves deviated from experimental curves, and the total exothermic enthalpy declined owing to the transition of competition relationship between kinetics control and diffusion control.

  6. Thermal analysis of hydroxypropylmethylcellulose and methylcellulose: powders, gels and matrix tablets.

    PubMed

    Ford, J L

    1999-03-15

    This review focuses on the thermal analysis of hydroxypropylmethylcellulose (HPMC) and methylcellulose. Differential scanning calorimetry (DSC) of their powders is used to determine temperatures of moisture loss (in conjunction with thermogravimetric analysis) and glass transition temperatures. However, sample preparation and encapsulation affect the values obtained. The interaction of these cellulose ethers with water is evaluated by DSC. Water is added to the powder directly in DSC pans or preformed gels can be evaluated. Data quality depends on previous thermal history but estimates of the quantity of water bound to the polymers may be made. Water uptake by cellulose ethers may be evaluated by the use of polymeric wafers and by following loss of free water, over a series of timed curves, into wafers in contact with water. Cloud points, which assess the reduction of polymer solubility with increase of temperature, may be assessed spectrophotometrically. DSC and rheometric studies are used to follow thermogelation, a process involving hydrophobic interaction between partly hydrated polymeric chains. The advantages and disadvantages of the various methodologies are highlighted. Copyright.

  7. Wind-tunnel investigation of several high aspect-ratio supercritical wing configurations on a wide-body-type fuselage

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.

    1977-01-01

    An investigation was conducted in the Langley 8-foot transonic pressure tunnel on two aspect-ratio 11.95 supercritical wings that were tested in combination with a representative wide-body-type fuselage. The two supercritical wings have identical planforms for equal sweep angles and differ only in thickness. Each wing was tested at quarter-chord sweep angles of 27 deg and 30 deg. At the higher sweep angle, the aspect ratio is reduced to 11.36. At 27 deg of quarter-chord sweep, the thicker supercritical wing (SCW-1) has maximum streamwise thickness-to-chord ratios of 0.16 at the wing-fuselage juncture, 0.14 at the planform break station, and 0.12 at the tip. The thinner wing (SCW-2) has maximum streamwise thickness-to-chord ratios of 0.144, 0.12, and 0.10 at the same stations respectively. Tests were also conducted on the thinner supercritical wing at the 27 deg sweep angle with a 15.24 cm (6.0 in.) shorter span which results in an aspect ratio of 10.25. For comparison, data were obtained on a current wide-body transport wing (AR=7) that was tested on the same fuselage used with the supercritical wings.

  8. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia Xin; Department of Chemistry, Hexi University, Zhangye 734000; Li Yanfeng

    2008-03-04

    Poly(vinyl alcohol)/kaolinite intercalated nanocomposites (Kao-PVA) were prepared via in situ intercalation radical polymerization. Vinyl acetate (VAc) was intercalated into kaolinite by a displacement method using dimethyl sulfoxide/kaolinite (Kao-DMSO) as the intermediate. Then, PVAc/kaolinite (Kao-PVAc) was obtained via radical polymerization with benzoyl peroxide (BPO) as initiator. Last, PVAc/kaolinite was saponified via direct-hydrolysis with NaOH solution in order to obtain PVA/kaolinite nanocomposites, which was characterized by Fourier-Transformation spectroscopy (FTIR), wide X-ray diffraction (WXRD) and transmission electron microscopy (TEM). Their differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results of the obtained PVA/kaolinite suggested that the thermal properties had an obvious improvement.

  9. Spray forming of NiTi and NiTiPd shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Smith, Ronald; Mabe, James; Ruggeri, Robert; Noebe, Ronald

    2008-03-01

    In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.

  10. Spray Forming of NiTi and NiTiPd Shape-Memory Alloys

    NASA Technical Reports Server (NTRS)

    Mabe, James; Ruggeri, Robert; Noebe, Ronald

    2008-01-01

    In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.

  11. Symmetric rearrangement of groundwater-fed streams.

    PubMed

    Yi, Robert; Cohen, Yossi; Devauchelle, Olivier; Gibbins, Goodwin; Seybold, Hansjörg; Rothman, Daniel H

    2017-11-01

    Streams shape landscapes through headward growth and lateral migration. When these streams are primarily fed by groundwater, recent work suggests that their tips advance to maximize the symmetry of the local Laplacian field associated with groundwater flow. We explore the extent to which such forcing is responsible for the lateral migration of streams by studying two features of groundwater-fed streams in Bristol, Florida: their confluence angle near junctions and their curvature. First, we find that, while streams asymptotically form a 72° angle near their tips, they simultaneously exhibit a wide 120° confluence angle within approximately 10 m of their junctions. We show that this wide angle maximizes the symmetry of the groundwater field near the junction. Second, we argue that streams migrate laterally within valleys and present a new spectral analysis method to relate planform curvature to the surrounding groundwater field. Our results suggest that streams migrate laterally in response to fluxes from the surrounding groundwater table, providing evidence of a new mechanism that complements Laplacian growth at their tips.

  12. A Wide Field of View Plasma Spectrometer

    DOE PAGES

    Skoug, Ruth M.; Funsten, Herbert O.; Moebius, Eberhard; ...

    2016-07-01

    Here we present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is >1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and aremore » measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. Lastly, we present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.« less

  13. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI.

    PubMed

    Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F

    2013-07-01

    Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The Diabetes Initiative of South Carolina Celebrates Over 20 Years of Professional Diabetes Education.

    PubMed

    Hermayer, Kathie L

    2016-04-01

    Diabetes is a major public health problem in South Carolina; however, the Diabetes Initiative of South Carolina (DSC) provides a realistic mechanism to address issues on a statewide basis. The Diabetes Center of Excellence in the DSC provides oversight for developing and supervising professional education programs for health care workers of all types in South Carolina to increase their knowledge and ability to care for people with diabetes. The DSC has developed many programs for the education of a variety of health professionals about diabetes and its complications. The DSC has sponsored 21 Annual Diabetes Fall Symposia for primary health care professionals featuring education regarding many aspects of diabetes mellitus. The intent of the program is to enhance the lifelong learning process of physicians, advanced practice providers, nurses, pharmacists, dietitians, laboratorians and other health care professionals, by providing educational opportunities and to advance the quality and safety of patient care. The symposium is an annual 2-day statewide program that supplies both a comprehensive diabetes management update to all primary care professionals and an opportunity for attendees to obtain continuing education credits at a low cost. The overarching goal of the DSC is that the programs it sponsors and the development of new targeted initiatives will lead to continuous improvements in the care of people at risk and with diabetes along with a decrease in morbidity, mortality and costs of diabetes and its complications in South Carolina and elsewhere. Published by Elsevier Inc.

  15. Measuring the glass transition temperature of EPDM roofing materials: Comparison of DMA, TMA, and DSC techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paroli, R.M.; Penn, J.

    1994-09-01

    Two ethylene-propylene-diene monomer (EPDM) roofing membranes were aged at 100 C for 7 and 28 days. The T{sub g} of these membranes was then determined by dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), and differential scanning calorimetry (DSC) and the results compared. It was found that: (1) T{sub g} data can be obtained easily using the DMA and TMA techniques. The DSC method requires greater care due to the broad step change in the baseline which is associated with heavily plasticized materials. (2) The closest correspondence between techniques was for TMA and DSC (half-height). The latter, within experimental error, yieldedmore » the same glass transition temperature before and after heat-aging. (3) The peak maxima associated with tan{delta} and E{double_prime} measurements should be cited with T{sub g} values as significant differences can exist. (4) The T{sub g}(E{double_prime}) values were closer to the T{sub g}(TMA) and T{sub g}(DSC) data than were the T{sub g}(tan{delta}) values. Data obtained at 1 Hz (or possibly less) should be used when making comparisons based on various techniques. An assessment of T{sub g} values indicated that EPDM 112 roofing membrane is more stable than the EPDM 111 membrane. The T{sub g} for EPDM 112 did not change significantly with heat-aging for 28 days at 130 C.« less

  16. Wide angle view of Mission Control Center during Apollo 14 transmission

    NASA Image and Video Library

    1971-01-31

    S71-17122 (31 Jan. 1971) --- A wide angle overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center at the Manned spacecraft Center. This view was photographed during the first color television transmission from the Apollo 14 Command Module. Projected on the large screen at the right front of the MOCR is a view of the Apollo 14 Lunar Module, still attached to the Saturn IVB stage. The Command and Service Modules were approaching the LM/S-IVB during transposition and docking maneuvers.

  17. ELECTROMAGNETIC SCATTERING AND ANTENNA TECHNOLOGY (EMSAT) Task Order 0003: Design of a Circularly Polarized, 20 60 GHZ Active Phased Array for Wide Angle Scanning

    DTIC Science & Technology

    2017-08-08

    Another area of the design that needs to be experimentally tested is the SMPS connectors used to attach the two beamforming stages together. In...AFRL-RY-WP-TR-2017-0104 ELECTROMAGNETIC SCATTERING AND ANTENNA TECHNOLOGY (EMSAT) Task Order 0003: Design of a Circularly Polarized, 20-60...Order 0003: Design of a Circularly Polarized, 20-60 GHZ Active Phased Array for Wide Angle Scanning 5a. CONTRACT NUMBER FA8650-14-D-1714-0003 5b

  18. Wide-angle X-ray scattering study of heat-treated PEEK and PEEK composite

    NASA Technical Reports Server (NTRS)

    Cebe, Peggy; Lowry, Lynn; Chung, Shirley Y.; Yavrouian, Andre; Gupta, Amitava

    1987-01-01

    Samples of poly(etheretherketone) (PEEK) neat resin and APC-2 carbon fiber composite were subjected to various heat treatments, and the effect of quenching and annealing treatments was studied by wide-angle X-ray scattering. It is found that high-temperature treatments may introduce disorder into neat resin and composite PEEK when followed by rapid cooling. The disorder is metastable and can revert to ordered state when the material is heated above its glass transition temperature and then cooled slowly. The disorder may result from residual thermal stresses.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sucheng; Duan, Qian; Li, Shuo

    We experimentally demonstrate that perfect electromagnetic absorption can be realized in the one-atom thick graphene. Employing coherent illumination in the waveguide system, the absorbance of the unpatterned graphene monolayer is observed to be greater than 94% over the microwave X-band, 7–13 GHz, and to achieve a full absorption, >99% in experiment, at ∼8.3 GHz. In addition, the absorption characteristic manifests equivalently a wide range of incident angle. The experimental results agree very well with the theoretical calculations. Our work accomplishes the broadband, wide-angle, high-performance absorption in the thinnest material with simple configuration.

  20. System description and analysis. Part 1: Feasibility study for helicopter/VTOL wide-angle simulation image generation display system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A preliminary design for a helicopter/VSTOL wide angle simulator image generation display system is studied. The visual system is to become part of a simulator capability to support Army aviation systems research and development within the near term. As required for the Army to simulate a wide range of aircraft characteristics, versatility and ease of changing cockpit configurations were primary considerations of the study. Due to the Army's interest in low altitude flight and descents into and landing in constrained areas, particular emphasis is given to wide field of view, resolution, brightness, contrast, and color. The visual display study includes a preliminary design, demonstrated feasibility of advanced concepts, and a plan for subsequent detail design and development. Analysis and tradeoff considerations for various visual system elements are outlined and discussed.

  1. Designated Stroke Center Status and Hospital Characteristics as Predictors of In-Hospital Mortality among Hemorrhagic Stroke Patients in New York, 2008-2012.

    PubMed

    Gatollari, Hajere J; Colello, Anna; Eisenberg, Bonnie; Brissette, Ian; Luna, Jorge; Elkind, Mitchell S V; Willey, Joshua Z

    2017-01-01

    Although designated stroke centers (DSCs) improve the quality of care and clinical outcomes for ischemic stroke patients, less is known about the benefits of DSCs for patients with intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). Compared to non-DSCs, hospitals with the DSC status have lower in-hospital mortality rates for hemorrhagic stroke patients. We believed these effects would sustain over a period of time after adjusting for hospital-level characteristics, including hospital size, urban location, and teaching status. We evaluated ICH (International Classification of Diseases, Ninth Revision; ICD-9: 431) and SAH (ICD-9: 430) hospitalizations documented in the 2008-2012 New York State Department of Health Statewide Planning and Research Cooperative System inpatient sample database. Generalized estimating equation logistic regression was used to evaluate the association between DSC status and in-hospital mortality. We calculated ORs and 95% CIs adjusted for clustering of patients within facilities, other hospital characteristics, and individual level characteristics. Planned secondary analyses explored other hospital characteristics associated with in-hospital mortality. In 6,352 ICH and 3,369 SAH patients in the study sample, in-hospital mortality was higher among those with ICH compared to SAH (23.7 vs. 18.5%). Unadjusted analyses revealed that DSC status was related with reduced mortality for both ICH (OR 0.7, 95% CI 0.5-0.8) and SAH patients (OR 0.4, 95% CI 0.3-0.7). DSC remained a significant predictor of lower in-hospital mortality for SAH patients (OR 0.6, 95% CI 0.3-0.9) but not for ICH patients (OR 0.8, 95% CI 0.6-1.0) after adjusting for patient demographic characteristics, comorbidities, hospital size, teaching status and location. Admission to a DSC was independently associated with reduced in-hospital mortality for SAH patients but not for those with ICH. Other patient and hospital characteristics may explain the benefits of DSC status on outcomes after ICH. For conditions with clear treatments such as ischemic stroke and SAH, being treated in a DSC improves outcomes, but this trend was not observed in those with strokes, in those who did not have clear treatment guidelines. Identifying hospital-level factors associated with ICH and SAH represents a means to identify and improve gaps in stroke systems of care. © 2016 S. Karger AG, Basel.

  2. Social Media Impact of the Food and Drug Administration's Drug Safety Communication Messaging About Zolpidem: Mixed-Methods Analysis.

    PubMed

    Sinha, Michael S; Freifeld, Clark C; Brownstein, John S; Donneyong, Macarius M; Rausch, Paula; Lappin, Brian M; Zhou, Esther H; Dal Pan, Gerald J; Pawar, Ajinkya M; Hwang, Thomas J; Avorn, Jerry; Kesselheim, Aaron S

    2018-01-05

    The Food and Drug Administration (FDA) issues drug safety communications (DSCs) to health care professionals, patients, and the public when safety issues emerge related to FDA-approved drug products. These safety messages are disseminated through social media to ensure broad uptake. The objective of this study was to assess the social media dissemination of 2 DSCs released in 2013 for the sleep aid zolpidem. We used the MedWatcher Social program and the DataSift historic query tool to aggregate Twitter and Facebook posts from October 1, 2012 through August 31, 2013, a period beginning approximately 3 months before the first DSC and ending 3 months after the second. Posts were categorized as (1) junk, (2) mention, and (3) adverse event (AE) based on a score between -0.2 (completely unrelated) to 1 (perfectly related). We also looked at Google Trends data and Wikipedia edits for the same time period. Google Trends search volume is scaled on a range of 0 to 100 and includes "Related queries" during the relevant time periods. An interrupted time series (ITS) analysis assessed the impact of DSCs on the counts of posts with specific mention of zolpidem-containing products. Chow tests for known structural breaks were conducted on data from Twitter, Facebook, and Google Trends. Finally, Wikipedia edits were pulled from the website's editorial history, which lists all revisions to a given page and the editor's identity. In total, 174,286 Twitter posts and 59,641 Facebook posts met entry criteria. Of those, 16.63% (28,989/174,286) of Twitter posts and 25.91% (15,453/59,641) of Facebook posts were labeled as junk and excluded. AEs and mentions represented 9.21% (16,051/174,286) and 74.16% (129,246/174,286) of Twitter posts and 5.11% (3,050/59,641) and 68.98% (41,138/59,641) of Facebook posts, respectively. Total daily counts of posts about zolpidem-containing products increased on Twitter and Facebook on the day of the first DSC; Google searches increased on the week of the first DSC. ITS analyses demonstrated variability but pointed to an increase in interest around the first DSC. Chow tests were significant (P<.0001) for both DSCs on Facebook and Twitter, but only the first DSC on Google Trends. Wikipedia edits occurred soon after each DSC release, citing news articles rather than the DSC itself and presenting content that needed subsequent revisions for accuracy. Social media offers challenges and opportunities for dissemination of the DSC messages. The FDA could consider strategies for more actively disseminating DSC safety information through social media platforms, particularly when announcements require updating. The FDA may also benefit from directly contributing content to websites like Wikipedia that are frequently accessed for drug-related information. ©Michael S Sinha, Clark C Freifeld, John S Brownstein, Macarius M Donneyong, Paula Rausch, Brian M Lappin, Esther H Zhou, Gerald J Dal Pan, Ajinkya M Pawar, Thomas J Hwang, Jerry Avorn, Aaron S Kesselheim. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 05.01.2018.

  3. Solar System Portrait - 60 Frame Mosaic

    NASA Image and Video Library

    1996-09-13

    The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever portrait of our solar system as seen from the outside. In the course of taking this mosaic consisting of a total of 60 frames, Voyager 1 made several images of the inner solar system from a distance of approximately 4 billion miles and about 32 degrees above the ecliptic plane. Thirty-nine wide angle frames link together six of the planets of our solar system in this mosaic. Outermost Neptune is 30 times further from the sun than Earth. Our sun is seen as the bright object in the center of the circle of frames. The wide-angle image of the sun was taken with the camera's darkest filter (a methane absorption band) and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large as seen from Voyager, only about one-fortieth of the diameter as seen from Earth, but is still almost 8 million times brighter than the brightest star in Earth's sky, Sirius. The result of this great brightness is an image with multiple reflections from the optics in the camera. Wide-angle images surrounding the sun also show many artifacts attributable to scattered light in the optics. These were taken through the clear filter with one second exposures. The insets show the planets magnified many times. Narrow-angle images of Earth, Venus, Jupiter, Saturn, Uranus and Neptune were acquired as the spacecraft built the wide-angle mosaic. Jupiter is larger than a narrow-angle pixel and is clearly resolved, as is Saturn with its rings. Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposures. From Voyager's great distance Earth and Venus are mere points of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun. http://photojournal.jpl.nasa.gov/catalog/PIA00451

  4. Solar System Portrait - 60 Frame Mosaic

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever 'portrait' of our solar system as seen from the outside. In the course of taking this mosaic consisting of a total of 60 frames, Voyager 1 made several images of the inner solar system from a distance of approximately 4 billion miles and about 32 degrees above the ecliptic plane. Thirty-nine wide angle frames link together six of the planets of our solar system in this mosaic. Outermost Neptune is 30 times further from the sun than Earth. Our sun is seen as the bright object in the center of the circle of frames. The wide-angle image of the sun was taken with the camera's darkest filter (a methane absorption band) and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large as seen from Voyager, only about one-fortieth of the diameter as seen from Earth, but is still almost 8 million times brighter than the brightest star in Earth's sky, Sirius. The result of this great brightness is an image with multiple reflections from the optics in the camera. Wide-angle images surrounding the sun also show many artifacts attributable to scattered light in the optics. These were taken through the clear filter with one second exposures. The insets show the planets magnified many times. Narrow-angle images of Earth, Venus, Jupiter, Saturn, Uranus and Neptune were acquired as the spacecraft built the wide-angle mosaic. Jupiter is larger than a narrow-angle pixel and is clearly resolved, as is Saturn with its rings. Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposures. From Voyager's great distance Earth and Venus are mere points of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun.

  5. A comparative study on omnidirectional anti-reflection SiO2 nanostructure films coating by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.

    2018-02-01

    Fabricated omnidirectional anti-reflection nanostructure films as a one of the promising alternative solar cell applications have attracted enormous scientific and industrial research benefits to their broadband, effective over a wide range of incident angles, lithography-free and high-throughput process. Recently, the nanostructure SiO2 film was the most inclusive study on anti-reflection with omnidirectional and broadband characteristics. In this work, the three-dimensional silicon dioxide (SiO2) nanostructured thin film with different morphologies including vertical align, slant, spiral and thin films were fabricated by electron beam evaporation with glancing angle deposition (GLAD) on the glass slide and silicon wafer substrate. The morphological of the prepared samples were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The transmission, omnidirectional and birefringence property of the nanostructure SiO2 films were investigated by UV-Vis-NIR spectrophotometer and variable angle spectroscopic ellipsometer (VASE). The spectrophotometer measurement was performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measurements were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. This study demonstrates that the obtained SiO2 nanostructure film coated on glass slide substrate exhibits a higher transmission was 93% at normal incident angle. In addition, transmission measurement in visible wavelength and wide incident angles -80 to 80 were increased in comparison with the SiO2 thin film and glass slide substrate due to the transition in the refractive index profile from air to the nanostructure layer that improve the antireflection characteristics. The results clearly showed the enhanced omnidirectional and broadband characteristic of the three dimensional SiO2 nanostructure film coating.

  6. Thermal and dynamic mechanical properties of hydroxypropyl cellulose films

    Treesearch

    Timothy G. Rials; Wolfgang G. Glasser

    1988-01-01

    Differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) were used to characterize the morphology of slovent cast hydroxypropyl cellulose (HPC) films. DSC results were indicative of a semicrystalline material with a melt of 220°C and a glass transition at 19°C (T1), although an additional event was suggested by a...

  7. The Structure of Mother-Child Play: Young Children with Down Syndrome and Typically Developing Children.

    ERIC Educational Resources Information Center

    Roach, Mary A.; Barratt, Marguerite Stevenson; Miller, Jon F.; Leavitt, Lewis A.

    1998-01-01

    Compared mothers' play with infants with Down syndrome (DSC) and typically developing children (TDC) matched for mental or chronological age. Found that TDC mothers exhibited more object demonstrations with their developmentally younger children, who showed less object play. DSC mothers were more directive and supportive than mothers of younger…

  8. Among the Few at Deep Springs College: Assessing a Seven-Decade Experiment in Liberal Education.

    ERIC Educational Resources Information Center

    Newell, L. Jackson

    1982-01-01

    Describes the origins and characteristics of Deep Springs College (DSC), which since 1917 has teamed liberal arts instruction with the physical labor of running a cattle ranch. Uses alumni survey responses to assess the long-term effects of attending DSC. Examines paradoxes inherent in the school and its future prospects. (DMM)

  9. 47 CFR 80.1087 - Ship radio equipment-Sea area A1.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... which the ship is normally navigated, operating either: (1) On VHF using DSC; or (2) Through the polar...; or (4) On HF using DSC; or (5) Through the INMARSAT geostationary satellite service if within... communication. (b) The VHF radio installation, required by § 80.1085(a)(1), must also be capable of transmitting...

  10. 47 CFR 80.1087 - Ship radio equipment-Sea area A1.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... which the ship is normally navigated, operating either: (1) On VHF using DSC; or (2) Through the polar...; or (4) On HF using DSC; or (5) Through the INMARSAT geostationary satellite service if within... communication. (b) The VHF radio installation, required by § 80.1085(a)(1), must also be capable of transmitting...

  11. 47 CFR 80.103 - Digital selective calling (DSC) operating procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DSC “Acknowledgment of distress calls” and “Distress relays.” (See subpart W of this part.) (d) Group calls to vessels under the common control of a single entity are authorized. A group call identity may... (ITU), Place des Nations, CH-1211 Geneva 20, Switzerland. [68 FR 46961, Aug. 7, 2003, as amended at 73...

  12. 47 CFR 80.103 - Digital selective calling (DSC) operating procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DSC “Acknowledgment of distress calls” and “Distress relays.” (See subpart W of this part.) (d) Group calls to vessels under the common control of a single entity are authorized. A group call identity may... (ITU), Place des Nations, CH-1211 Geneva 20, Switzerland. [68 FR 46961, Aug. 7, 2003, as amended at 73...

  13. Synthesis of plutonium trifluoride by hydro-fluorination and novel thermodynamic data for the PuF3-LiF system

    NASA Astrophysics Data System (ADS)

    Tosolin, A.; Souček, P.; Beneš, O.; Vigier, J.-F.; Luzzi, L.; Konings, R. J. M.

    2018-05-01

    PuF3 was synthetized by hydro-fluorination of PuO2 and subsequent reduction of the product by hydrogenation. The obtained PuF3 was analysed by X-Ray Diffraction (XRD) and found phase-pure. High purity was also confirmed by the melting point analysis using Differential Scanning Calorimetry (DSC). PuF3 was then used for thermodynamic assessment of the PuF3-LiF system. Phase equilibrium points and enthalpy of fusion of the eutectic composition were measured by DSC. XRD analyses of selected samples after DSC measurement confirm that after solidification from the liquid, the system returns to a mixture of LiF and PuF3.

  14. Dynamic Synchronous Capture Algorithm for an Electromagnetic Flowmeter.

    PubMed

    Fanjiang, Yong-Yi; Lu, Shih-Wei

    2017-04-10

    This paper proposes a dynamic synchronous capture (DSC) algorithm to calculate the flow rate for an electromagnetic flowmeter. The characteristics of the DSC algorithm can accurately calculate the flow rate signal and efficiently convert an analog signal to upgrade the execution performance of a microcontroller unit (MCU). Furthermore, it can reduce interference from abnormal noise. It is extremely steady and independent of fluctuations in the flow measurement. Moreover, it can calculate the current flow rate signal immediately (m/s). The DSC algorithm can be applied to the current general MCU firmware platform without using DSP (Digital Signal Processing) or a high-speed and high-end MCU platform, and signal amplification by hardware reduces the demand for ADC accuracy, which reduces the cost.

  15. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    PubMed

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  16. Dynamic Synchronous Capture Algorithm for an Electromagnetic Flowmeter

    PubMed Central

    Fanjiang, Yong-Yi; Lu, Shih-Wei

    2017-01-01

    This paper proposes a dynamic synchronous capture (DSC) algorithm to calculate the flow rate for an electromagnetic flowmeter. The characteristics of the DSC algorithm can accurately calculate the flow rate signal and efficiently convert an analog signal to upgrade the execution performance of a microcontroller unit (MCU). Furthermore, it can reduce interference from abnormal noise. It is extremely steady and independent of fluctuations in the flow measurement. Moreover, it can calculate the current flow rate signal immediately (m/s). The DSC algorithm can be applied to the current general MCU firmware platform without using DSP (Digital Signal Processing) or a high-speed and high-end MCU platform, and signal amplification by hardware reduces the demand for ADC accuracy, which reduces the cost. PMID:28394306

  17. Factors influencing the effective spray cone angle of pressure-swirl atomizers

    NASA Astrophysics Data System (ADS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1992-01-01

    The spray cone angles produced by several simplex pressure-swirl nozzles are examined using three liquids whose viscosities range from 0.001 to 0.012 kg/ms (1 to 12 cp). Measurements of both the visible spray cone angle and the effective spray cone angle are carried out over wide ranges of injection pressure and for five different values of the discharge orifice length/diameter ratio. The influence of the number of swirl chamber feed slots on spray cone angle is also examined. The results show that the spray cone angle widens with increase in injection pressure but is reduced by increases in liquid viscosity and/or discharge orifice length/diameter ratio. Variation in the number of swirl chamber feed slots between one and three has little effect on the effective spray cone angle.

  18. Dehydration improves cryopreservation of coconut (Cocos nucifera L.).

    PubMed

    Sisunandar; Sopade, Peter A; Samosir, Yohannes M S; Rival, Alain; Adkins, Steve W

    2010-12-01

    Cryopreservation of coconut can be used as a strategy to back up the establishment of living collections which are expensive to maintain and are under constant threat from biotic and abiotic factors. Unfortunately, cryopreservation protocols still need to be developed that are capable of producing a sizeable number of field-grown plants. Therefore, we report on the development of an improved cryopreservation protocol which can be used on a wide range of coconut cultivars. The cryopreservation of zygotic embryos and their recovery to soil-growing plants was achieved through the application of four optimised steps viz.: (i) rapid dehydration; (ii) rapid cooling; (iii) rapid warming and recovery in vitro and (iv) acclimatization and soil-supported growth. The thermal properties of water within the embryos were monitored using differential scanning calorimetry (DSC) in order to ensure that the freezable component was kept to a minimum. The feasibility of the protocol was assessed using the Malayan Yellow Dwarf (MYD) cultivar in Australia and then tested on a range of cultivars which were freshly harvested and studied in Indonesia. The most efficient protocol was one based on an 8-h rapid dehydration step followed by rapid cooling step. Best recovery percentages were obtained when a rapid warming step and an optimised in vitro culture step were used. Following this protocol, 20% (when cryopreserved 12 days after harvesting) and 40% (when cryopreserved at the time of harvest) of all MYD embryos cryopreserved could be returned to normal seedlings growing in soil. DSC showed that this protocol induced a drop in embryo fresh weight to 19% and significantly reduced the amount of water remaining that could produce ice crystals (0.1%). Of the 20 cultivars tested, 16 were found to produce between 10% and 40% normal seedlings while four cultivars generated between 0% and 10% normal seedlings after cryopreservation. This new protocol is applicable to a wide range of coconut cultivars and is useful for the routine cryopreservation of coconut genetic resources. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Wideband metamaterial array with polarization-independent and wide incident angle for harvesting ambient electromagnetic energy and wireless power transfer

    NASA Astrophysics Data System (ADS)

    Zhong, Hui-Teng; Yang, Xue-Xia; Song, Xing-Tang; Guo, Zhen-Yue; Yu, Fan

    2017-11-01

    In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz-21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.

  20. Scalable, "Dip-and-Dry" Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-Efficiency Solar-Thermal Energy Conversion.

    PubMed

    Mandal, Jyotirmoy; Wang, Derek; Overvig, Adam C; Shi, Norman N; Paley, Daniel; Zangiabadi, Amirali; Cheng, Qian; Barmak, Katayun; Yu, Nanfang; Yang, Yuan

    2017-11-01

    A galvanic-displacement-reaction-based, room-temperature "dip-and-dry" technique is demonstrated for fabricating selectively solar-absorbing plasmonic-nanoparticle-coated foils (PNFs). The technique, which allows for facile tuning of the PNFs' spectral reflectance to suit different radiative and thermal environments, yields PNFs which exhibit excellent, wide-angle solar absorptance (0.96 at 15°, to 0.97 at 35°, to 0.79 at 80°), and low hemispherical thermal emittance (0.10) without the aid of antireflection coatings. The thermal emittance is on par with those of notable selective solar absorbers (SSAs) in the literature, while the wide-angle solar absorptance surpasses those of previously reported SSAs with comparable optical selectivities. In addition, the PNFs show promising mechanical and thermal stabilities at temperatures of up to 200 °C. Along with the performance of the PNFs, the simplicity, inexpensiveness, and environmental friendliness of the "dip-and-dry" technique makes it an appealing alternative to current methods for fabricating selective solar absorbers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Wide angle reflection effects on the uncertainty in layered models travel times tomography

    NASA Astrophysics Data System (ADS)

    Majdanski, Mariusz; Bialas, Sebastian; Trzeciak, Maciej; Gaczyński, Edward; Maksym, Andrzej

    2015-04-01

    Multi-phase layered model traveltimes tomography inversions can be realised in several ways depending on the inversion path. Inverting the shape of the boundaries based on reflection data and the velocity field based on refractions could be done jointly or sequentially. We analyse an optimal inversion path based on the uncertainty analysis of the final models. Additionally, we propose to use post critical wide-angle reflections in tomographic inversions for more reliable results especially in the deeper parts of each layer. We focus on the effects of using hard to pick post critical reflections on the final model uncertainty. Our study is performed using data collected during standard vibroseis and explosive sources seismic reflection experiment focused on shale gas reservoir characterisation realised by Polish Oil and Gas Company. Our data were gathered by a standalone single component stations deployed along the whole length of the 20 km long profile, resulting in significantly longer offsets. Our piggy back recordings resulted in good quality wide angle refraction and reflection recordings clearly observable up to the offsets of 12 km.

  2. The Activity of Comet 67P/Churyumov-Gerasimenko as Seen by Rosetta/OSIRIS

    NASA Astrophysics Data System (ADS)

    Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Rickman, H.; Koschny, D.

    2015-12-01

    The Rosetta mission of the European Space Agency arrived on August 6, 2014, at the target comet 67P/Churyumov-Gerasimenko. OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) is the scientific imaging system onboard Rosetta. OSIRIS consists of a Narrow Angle Camera (NAC) for the nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field gas and dust coma investigations. OSIRIS observed the coma and the nucleus of comet 67P/C-G during approach, arrival, and landing of PHILAE. OSIRIS continued comet monitoring and mapping of surface and activity in 2015 with close fly-bys with high resolution and remote, wide angle observations. The scientific results reveal a nucleus with two lobes and varied morphology. Active regions are located at steep cliffs and collapsed pits which form collimated gas jets. Dust is accelerated by the gas, forming bright jet filaments and the large scale, diffuse coma of the comet. We will present activity and surface changes observed in the Northern and Southern hemisphere and around perihelion passage.

  3. Optical and thermal simulation for wide acceptance angle CPV module

    NASA Astrophysics Data System (ADS)

    Ahmad, Nawwar; Ota, Yasuyuki; Araki, Kenji; Lee, Kan-Hua; Yamaguchi, Masafumi; Nishioka, Kensuke

    2017-09-01

    Concentrator photovoltaic (CPV) technology has the potential to decrease the cost of systems in the near future by using less expensive optical elements in the system which replace the receiving surface aperture and concentrate the sunlight onto small solar cells. One of the main concerns of CPV is the need for high precision tracking system and the relation to the acceptance angle. In this paper, we proposed a CPV module with concentration ratio larger than 100 times and wide acceptance angle. An optical simulation for the module with S-TIM2 glass as a lens material was conducted to estimate the optical performance of the module. Thermal and electrical simulation was also conducted using COMSOL Multiphysics and SPICE respectively to evaluate the working temperature and electrical characteristics of the multijunction solar cell under concentration conditions.

  4. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    PubMed

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  5. Wide-line NMR and DSC studies on intrinsically disordered p53 transactivation domain and its helically pre-structured segment

    PubMed Central

    Tompa, Peter; Han, Kyou-Hoon; Bokor, Mónika; Kamasa, Pawel; Tantos, Ágnes; Fritz, Beáta; Kim, Do-Hyoung; Lee, Chewook; Verebélyi, Tamás; Tompa, Kálmán

    2016-01-01

    Wide-line 1H NMR intensity and differential scanning calorimetry measurements were carried out on the intrinsically disordered 73-residue full transactivation domain (TAD) of the p53 tumor suppressor protein and two peptides: one a wild type p53 TAD peptide with a helix pre-structuring property, and a mutant peptide with a disabled helix-forming propensity. Measurements were carried out in order to characterize their water and ion binding characteristics. By quantifying the number of hydrate water molecules, we provide a microscopic description for the interactions of water with a wild-type p53 TAD and two p53 TAD peptides. The results provide direct evidence that intrinsically disordered proteins (IDPs) and a less structured peptide not only have a higher hydration capacity than globular proteins, but are also able to bind a larger amount of charged solute ions. [BMB Reports 2016; 49(9): 497-501] PMID:27418282

  6. Cardiorespiratory fitness does not alter plasma pentraxin 3 and cortisol reactivity to acute psychological stress and exercise.

    PubMed

    Huang, Chun-Jung; Webb, Heather E; Beasley, Kathleen N; McAlpine, David A; Tangsilsat, Supatchara E; Acevedo, Edmund O

    2014-03-01

    Pentraxin 3 (PTX3) has been recently identified as a biomarker of vascular inflammation in predicting cardiovascular events. The purpose of this study was to examine the effect of cardiorespiratory fitness on plasma PTX3 and cortisol responses to stress, utilizing a dual-stress model. Fourteen male subjects were classified into high-fit (HF) and low-fit (LF) groups and completed 2 counterbalanced experimental conditions. The exercise-alone condition (EAC) consisted of cycling at 60% maximal oxygen uptake for 37 min, while the dual-stress condition (DSC) included 20 min of a mental stress while cycling for 37 min. Plasma PTX3 revealed significant increases over time with a significant elevation at 37 min in both HF and LF groups in response to EAC and DSC. No difference in plasma PTX3 levels was observed between EAC and DSC. In addition, plasma cortisol revealed a significant condition by time interaction with greater levels during DSC at 37 min, whereas cardiorespiratory fitness level did not reveal different plasma cortisol responses in either the EAC or DSC. Aerobic exercise induces plasma PTX3 release, while additional acute mental stress, in a dual-stress condition, does not exacerbate or further modulate the PTX3 response. Furthermore, cardiorespiratory fitness may not affect the stress reactivity of plasma PTX3 to physical and combined physical and psychological stressors. Finally, the exacerbated cortisol responses to combined stress may provide the potential link to biological pathways that explain changes in physiological homeostasis that may be associated with an increase in the risk of cardiovascular disease.

  7. Use of differential scanning calorimetry to detect canola oil (Brassica napus L.) adulterated with lard stearin.

    PubMed

    Marikkar, Jalaldeen Mohammed Nazrim; Rana, Sohel

    2014-01-01

    A study was conducted to detect and quantify lard stearin (LS) content in canola oil (CaO) using differential scanning calorimetry (DSC). Authentic samples of CaO were obtained from a reliable supplier and the adulterant LS were obtained through a fractional crystallization procedure as reported previously. Pure CaO samples spiked with LS in levels ranging from 5 to 15% (w/w) were analyzed using DSC to obtain their cooling and heating profiles. The results showed that samples contaminated with LS at 5% (w/w) level can be detected using characteristic contaminant peaks appearing in the higher temperature regions (0 to 70°C) of the cooling and heating curves. Pearson correlation analysis of LS content against individual DSC parameters of the adulterant peak namely peak temperature, peak area, peak onset temperature indicated that there were strong correlations between these with the LS content of the CaO admixtures. When these three parameters were engaged as variables in the execution of the stepwise regression procedure, predictive models for determination of LS content in CaO were obtained. The predictive models obtained with single DSC parameter had relatively lower coefficient of determination (R(2) value) and higher standard error than the models obtained using two DSC parameters in combination. This study concluded that the predictive models obtained with peak area and peak onset temperature of the adulteration peak would be more accurate for prediction of LS content in CaO based on the highest coefficient of determination (R(2) value) and smallest standard error.

  8. Quantitative blood flow measurements in gliomas using arterial spin-labeling at 3T: intermodality agreement and inter- and intraobserver reproducibility study.

    PubMed

    Hirai, T; Kitajima, M; Nakamura, H; Okuda, T; Sasao, A; Shigematsu, Y; Utsunomiya, D; Oda, S; Uetani, H; Morioka, M; Yamashita, Y

    2011-12-01

    QUASAR is a particular application of the ASL method and facilitates the user-independent quantification of brain perfusion. The purpose of this study was to assess the intermodality agreement of TBF measurements obtained with ASL and DSC MR imaging and the inter- and intraobserver reproducibility of glioma TBF measurements acquired by ASL at 3T. Two observers independently measured TBF in 24 patients with histologically proved glioma. ASL MR imaging with QUASAR and DSC MR imaging were performed on 3T scanners. The observers placed 5 regions of interest in the solid tumor on rCBF maps derived from ASL and DSC MR images and 1 region of interest in the contralateral brain and recorded the measured values. Maximum and average sTBF values were calculated. Intermodality and intra- and interobsever agreement were determined by using 95% Bland-Altman limits of agreement and ICCs. The intermodality agreement for maximum sTBF was good to excellent on DSC and ASL images; ICCs ranged from 0.718 to 0.884. The 95% limits of agreement ranged from 59.2% to 65.4% of the mean. ICCs for intra- and interobserver agreement for maximum sTBF ranged from 0.843 to 0.850 and from 0.626 to 0.665, respectively. The reproducibility of maximum sTBF measurements obtained by methods was similar. In the evaluation of sTBF in gliomas, ASL with QUASAR at 3T yielded measurements and reproducibility similar to those of DSC perfusion MR imaging.

  9. Effects of particle reinforcement and ECAP on the precipitation kinetics of an Al-Cu alloy

    NASA Astrophysics Data System (ADS)

    Härtel, M.; Wagner, S.; Frint, P.; F-X Wagner, M.

    2014-08-01

    The precipitation kinetics of Al-Cu alloys have recently been revisited in various studies, considering either the effect of severe plastic deformation (e.g., by equal-channel angular pressing - ECAP), or the effect of particle reinforcements. However, it is not clear how these effects interact when ECAP is performed on particle-reinforced alloys. In this study, we analyze how a combination of particle reinforcement and ECAP affects precipitation kinetics. After solution annealing, an AA2017 alloy (initial state: base material without particle reinforcement); AA2017 + 10 vol.-% Al2O3; and AA2017 + 10 vol.-% SiC were deformed in one pass in a 120° ECAP tool at a temperature of 140°C. Systematic differential scanning calorimetry (DSC) measurements of each condition were carried out. TEM specimens were prepared out of samples from additional DSC measurements, where the samples were immediately quenched in liquid nitrogen after reaching carefully selected temperatures. TEM analysis was performed to characterize the morphology of the different types of precipitates, and to directly relate microstructural information to the endo- and exothermic peaks in our DSC data. Our results show that both ECAP and particle reinforcement are associated with a shift of exothermic precipitation peaks towards lower temperatures. This effect is even more pronounced when ECAP and particle reinforcement are combined. The DSC data agrees well with our TEM observations of nucleation and morphology of different precipitates, indicating that DSC measurements are an appropriate tool for the analysis of how severe plastic deformation and particle reinforcement affect precipitation kinetics in Al-Cu alloys.

  10. Investigating the Synthesis and Characterization of a Novel "Green" H₂O₂-Assisted, Water-Soluble Chitosan/Polyvinyl Alcohol Nanofiber for Environmental End Uses.

    PubMed

    Pervez, Md Nahid; Stylios, George K

    2018-06-01

    The present work highlights the formation of a novel green nanofiber based on H₂O₂-assisted water-soluble chitosan/polyvinyl alcohol (W S CHT/PVA) by using water as an ecofriendly solvent and genipin used as a nontoxic cross-linker. The 20/80 blend ratio was found to have the most optimum uniform fiber morphology. W S CHT retained the same structure as W IS CHT. The prepared nanofibers were characterized by Scanning electron microscopy (SEM), Fourier transform spectroscopy (FTIR), Thermo gravimetric analysis (TGA), Differential scanning calorimeter (DSC), X-ray diffraction (XRD), Water Contact Angle (WCA) and Ultraviolet-visible spectroscopy (UV-vis). During electrospinning, the crystalline microstructure of the W S CHT/PVA underwent better solidification and after cross-linking there was an increase in the melting temperature of the fiber. Swelling ratio studies revealed noticeable increase in hydrophilicity with increase of W S CHT, which was further demonstrated by the decrease of contact angle from 64.74° to 14.68°. W S CHT/PVA nanofiber mats exhibit excellent UV blocking protection with less than 5% transmittance value and also showed improved in vitro drug release properties with stable release for longer duration (cross-linked fibers) and burst release for shorter duration (uncross linked) fibers. Finally our experimental data demonstrates excellent adsorption ability of Colour Index (C.I.) reactive black 5 (RB5) due to protonated amino groups.

  11. 7 CFR 1744.30 - Automatic lien accommodations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... supplemental mortgage is a valid and binding instrument enforceable in accordance with its terms, and recorded...: (1) The borrower has achieved a TIER of not less than 1.5 and a DSC of not less than 1.25 for each of... not less than 2.5 and a DSC of not less than 1.5 for each of the borrower's two fiscal years...

  12. 7 CFR 1744.30 - Automatic lien accommodations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... supplemental mortgage is a valid and binding instrument enforceable in accordance with its terms, and recorded...: (1) The borrower has achieved a TIER of not less than 1.5 and a DSC of not less than 1.25 for each of... not less than 2.5 and a DSC of not less than 1.5 for each of the borrower's two fiscal years...

  13. The Optimal Employment of a Deep Seaweb Acoustic Network for Submarine Communications at Speed and Depth Using a Defender-Attacker-Defender Model

    DTIC Science & Technology

    2013-09-01

    Figure 17. Reliable acoustic paths from a deep source to shallow receivers (From Urick 1983... Urick 1983). ..................................................................28 Figure 19. Computer generated ray diagram of the DSC for a source...near the axis. Reflected rays are omitted (From Urick 1983). .........................................29 Figure 20. Worldwide DSC axis depths in

  14. 47 CFR 80.1077 - Frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... System: Alerting: 406.0-406.1 EPIRBs 406.0-406.1 MHz (Earth-to-space).1544-1545 MHz (space-to-Earth). INMARSAT-E EPIRBs 12 1626.5-1645.5 MHz (Earth-to-space). INMARSAT Ship Earth Stations capable of voice and/or direct printing 1626.5-1645.5 MHz (Earth-to-space). VHF DSC Ch. 70 156.525 MHz. 1 MF/HF DSC 2 2187...

  15. Estimation of Temperature Range for Cryo Cutting of Frozen Mackerel using DSC

    NASA Astrophysics Data System (ADS)

    Okamoto, Kiyoshi; Hagura, Yoshio; Suzuki, Kanichi

    Frozen mackerel flesh was subjected to measurement of its fracture stress (bending energy) in a low temperature range. The optimum conditions for low temperature cutting, "cryo cutting," were estimated from the results of enthalpy changes measured by a differential scanning calorimeter (DSC). There were two enthalpy changes for gross transition on the DSC chart for mackerel, one was at -63°C to -77°C and the other at -96°C to -112°C. Thus we estimated that mackerel was able to cut by bending below -63°C and that there would be a great decrease in bending energy occurring at around -77°C and -112°C. In testing, there were indeed two great decreases of bending energy for the test pieces of mackerel that had been frozen at -40°C, one was at -70°C to -90°C and the other was at -100°C to -120°C. Therefore, the test pieces of mackerel could be cut by bending at -70°C. The results showed that the DSC measurement of mackerel flesh gave a good estimation of the appropriate cutting temperature of mackerel.

  16. Detection of cocrystal formation based on binary phase diagrams using thermal analysis.

    PubMed

    Yamashita, Hiroyuki; Hirakura, Yutaka; Yuda, Masamichi; Teramura, Toshio; Terada, Katsuhide

    2013-01-01

    Although a number of studies have reported that cocrystals can form by heating a physical mixture of two components, details surrounding heat-induced cocrystal formation remain unclear. Here, we attempted to clarify the thermal behavior of a physical mixture and cocrystal formation in reference to a binary phase diagram. Physical mixtures prepared using an agate mortar were heated at rates of 2, 5, 10, and 30 °C/min using differential scanning calorimetry (DSC). Some mixtures were further analyzed using X-ray DSC and polarization microscopy. When a physical mixture consisting of two components which was capable of cocrystal formation was heated using DSC, an exothermic peak associated with cocrystal formation was detected immediately after an endothermic peak. In some combinations, several endothermic peaks were detected and associated with metastable eutectic melting, eutectic melting, and cocrystal melting. In contrast, when a physical mixture of two components which is incapable of cocrystal formation was heated using DSC, only a single endothermic peak associated with eutectic melting was detected. These experimental observations demonstrated how the thermal events were attributed to phase transitions occurring in a binary mixture and clarified the relationship between exothermic peaks and cocrystal formation.

  17. Time-series modeling and prediction of global monthly absolute temperature for environmental decision making

    NASA Astrophysics Data System (ADS)

    Ye, Liming; Yang, Guixia; Van Ranst, Eric; Tang, Huajun

    2013-03-01

    A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and the Fourier method, respectively, while stochastic processes were employed to account for any remaining patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA) models. A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors, suggesting that DSC models, when coupled with other ecoenvironmental models, can be used as a supplemental tool for short-term (˜10-year) environmental planning and decision making.

  18. DSC studies to evaluate the impact of bio-oil on cold flow properties and oxidation stability of bio-diesel.

    PubMed

    Garcia-Perez, Manuel; Adams, Thomas T; Goodrum, John W; Das, K C; Geller, Daniel P

    2010-08-01

    This paper describes the use of Differential Scanning Calorimetry (DSC) to evaluate the impact of varying mix ratios of bio-oil (pyrolysis oil) and bio-diesel on the oxidation stability and on some cold flow properties of resulting blends. The bio-oils employed were produced from the semi-continuous Auger pyrolysis of pine pellets and the batch pyrolysis of pine chips. The bio-diesel studied was obtained from poultry fat. The conditions used to prepare the bio-oil/bio-diesel blends as well as some of the fuel properties of these blends are reported. The experimental results suggest that the addition of bio-oil improves the oxidation stability of the resulting blends and modifies the crystallization behavior of unsaturated compounds. Upon the addition of bio-oil an increase in the oxidation onset temperature, as determined by DSC, was observed. The increase in bio-diesel oxidation stability is likely to be due to the presence of hindered phenols abundant in bio-oils. A relatively small reduction in DSC characteristic temperatures which are associated with cold flow properties was also observed but can likely be explained by a dilution effect. (c) 2010 Elsevier Ltd. All rights reserved.

  19. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries

    NASA Astrophysics Data System (ADS)

    Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming

    2018-02-01

    Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.

  20. The effect of finite geometry on the three-dimensional transfer of solar irradiance in clouds

    NASA Technical Reports Server (NTRS)

    Davies, R.

    1978-01-01

    Results are presented for a Monte Carlo model applied to a wide range of cloud widths and heights, and for an analytical model restricted in its application to cuboidally shaped clouds whose length, breadth, and depth may be varied independently; the clouds must be internally homogeneous with respect to their intrinsic radiative properties. Comparative results from the Monte Carlo method and the derived analytical model are presented for a wide range of cloud sizes, with special emphasis on the effects of varying the single scatter albedo, the solar zenith angle, and the scattering phase angle.

  1. Optimization of Perfect Absorbers with Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Li Voti, Roberto

    2018-02-01

    We study wide-angle and broadband perfect absorbers with compact multilayer structures made of a sequence of ITO and TiN layers deposited onto a silver thick layer. An optimization procedure is introduced for searching the optimal thicknesses of the layers so as to design a perfect broadband absorber from 400 nm to 750 nm, for a wide range of angles of incidence from 0{°} to 50{°}, for both polarizations and with a low emissivity in the mid-infrared. We eventually compare the performances of several optimal structures that can be very promising for solar thermal energy harvesting and collectors.

  2. Experimental Investigation on the Specific Heat of Carbonized Phenolic Resin-Based Ablative Materials

    NASA Astrophysics Data System (ADS)

    Zhao, Te; Ye, Hong; Zhang, Lisong; Cai, Qilin

    2017-10-01

    As typical phenolic resin-based ablative materials, the high silica/phenolic and carbon/phenolic composites are widely used in aerospace field. The specific heat of the carbonized ablators after ablation is an important thermophysical parameter in the process of heat transfer, but it is rarely reported. In this investigation, the carbonized samples of the high silica/phenolic and carbon/phenolic were obtained through carbonization experiments, and the specific heat of the carbonized samples was determined by a 3D DSC from 150 °C to 970 °C. Structural and compositional characterizations were performed to determine the mass fractions of the fiber and the carbonized product of phenolic which are the two constituents of the carbonized samples, while the specific heat of each constituent was also measured by 3D DSC. The masses of the carbonized samples were reduced when heated to a high temperature in the specific heat measurements, due to the thermal degradation of the carbonized product of phenolic resin in the carbonized samples. The raw experimental specific heat of the two carbonized samples and the carbonized product of phenolic resin was modified according to the quality changes of the carbonized samples presented by TGA results. Based on the mass fraction and the specific heat of each constituent, a weighted average method was adopted to obtain the calculated results of the carbonized samples. Due to the unconsolidated property of the fiber samples which impacts the reliability of the DSC measurement, there is a certain deviation between the experimental and calculated results of the carbonized samples. Considering the similarity of composition and structure, the data of quartz glass and graphite were used to substitute the specific heat of the high silica fiber and carbon fiber, respectively, resulting in better agreements with the experimental ones. Furthermore, the accurate specific heat of the high silica fiber and carbon fiber bundles was obtained by inversion, enabling the prediction of the specific heat of the carbonized ablators with different constituent mass fractions by means of the weighted average method in engineering.

  3. Novel organic NLO material bis(N-phenylbiguanidium(1+)) oxalate - A combined X-ray diffraction, DSC and vibrational spectroscopic study of its unique polymorphism

    NASA Astrophysics Data System (ADS)

    Matulková, Irena; Císařová, Ivana; Vaněk, Přemysl; Němec, Petr; Němec, Ivan

    2017-01-01

    Three polymorphic modifications of bis(N-phenylbiguanidium(1+)) oxalate are reported, and their characterization is discussed in this paper. The non-centrosymmetric bis(N-phenylbiguanidium(1+)) oxalate (I), which was obtained from an aqueous solution at 313 K, belongs to the monoclinic space group Cc (a = 6.2560(2) Å, b = 18.6920(3) Å, c = 18.2980(5) Å, β = 96.249(1)°, V = 2127.0(1) Å3, Z = 4, R = 0.0314 for 4738 observed reflections). The centrosymmetric bis(N-phenylbiguanidium(1+)) oxalate (II) was obtained from an aqueous solution at 298 K and belongs to the monoclinic space group P21/n (a = 6.1335(3) Å, b = 11.7862(6) Å, c = 14.5962(8) Å, β = 95.728(2)°, V = 1049.90(9) Å3, Z = 4, R = 0.0420 for 2396 observed reflections). The cooling of the centrosymmetric phase (II) leads to the formation of bis(N-phenylbiguanidium(1+)) oxalate (III) (a = 6.1083(2) Å, b = 11.3178(5) Å, c = 14.9947(5) Å, β = 93.151(2)°, V = 1035.05(8) Å3, Z = 4, R = 0.0345 for 2367 observed reflections and a temperature of 110 K), which also belongs to the monoclinic space group P21/n. The crystal structures of the three characterized phases are generally based on layers of isolated N-phenylbiguanidium(1 +) cations separated by oxalate anions and interconnected with them by several types of N-H...O hydrogen bonds. The observed phases generally differ not only in their crystal packing but also in the lengths and characteristics of their hydrogen bonds. The thermal behaviour of the prepared compounds was studied using the DSC method in the temperature range from 90 K up to a temperature near the melting point of each crystal. The bis(N-phenylbiguanidium(1+)) oxalate (II) crystals exhibit weak reversible thermal effects on the DSC curve at 147 K (heating run). Further investigation of this effect, which was assigned to the isostructural phase transformation, was performed using FTIR, Raman spectroscopy and X-ray diffraction analysis in a wide temperature range.

  4. A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Wang, Dehui; Zhou, Lin; Wu, Shuang; Xiang, Rong; Zhang, Wenhua; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqing; Lu, Liang; Yu, Benli

    2017-06-01

    The self-mixing technique based on the traditional reflecting mirror has been demonstrated with great merit for angle sensing applications. Here we demonstrate a modified self-reflection-mixing angle measurement system by combine a right-angle prism to self-mixing angle measurement. In our system, the wavelength is crucial to the angle measurement resolution. For a microchip solid-state laser, the measurement resolution can reach 0.49 mrad, while the resolution for the He-Ne laser is 0.53 mrad. In addition, the ranges in the system with the microchip solid-state laser and He-Ne laser are up to 22 mrad and 24.9 mrad respectively. This modified angle measurement system effectively combines the advantage of self-mixing measurement system with a compact structure, providing interesting features such as of high requisition of resolution and precision.

  5. Voyager spacecraft images of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Birnbaum, M. M.

    1982-01-01

    The Voyager imaging system is described, noting that it is made up of a narrow-angle and a wide-angle TV camera, each in turn consisting of optics, a filter wheel and shutter assembly, a vidicon tube, and an electronics subsystem. The narrow-angle camera has a focal length of 1500 mm; its field of view is 0.42 deg and its focal ratio is f/8.5. For the wide-angle camera, the focal length is 200 mm, the field of view 3.2 deg, and the focal ratio of f/3.5. Images are exposed by each camera through one of eight filters in the filter wheel on the photoconductive surface of a magnetically focused and deflected vidicon having a diameter of 25 mm. The vidicon storage surface (target) is a selenium-sulfur film having an active area of 11.14 x 11.14 mm; it holds a frame consisting of 800 lines with 800 picture elements per line. Pictures of Jupiter, Saturn, and their moons are presented, with short descriptions given of the area being viewed.

  6. Heat transfer performance comparison of steam and air in gas turbine cooling channels with different rib angles

    NASA Astrophysics Data System (ADS)

    Shi, Xiaojun; Gao, Jianmin; Xu, Liang; Li, Fajin

    2013-11-01

    Using steam as working fluid to replace compressed air is a promising cooling technology for internal cooling passages of blades and vanes. The local heat transfer characteristics and the thermal performance of steam flow in wide aspect ratio channels ( W/ H = 2) with different angled ribs on two opposite walls have been experimentally investigated in this paper. The averaged Nusselt number ratios and the friction factor ratios of steam and air in four ribbed channels were also measured under the same test conditions for comparison. The Reynolds number range is 6,000-70,000. The rib angles are 90°, 60°, 45°, and 30°, respectively. The rib height to hydraulic diameter ratio is 0.047. The pitch-to-rib height ratio is 10. The results show that the Nusselt number ratios of steam are 1.19-1.32 times greater than those of air over the range of Reynolds numbers studied. For wide aspect ratio channels using steam as the coolant, the 60° angled ribs has the best heat transfer performance and is recommended for cooling design.

  7. Solid state characterization of dehydroepiandrosterone.

    PubMed

    Chang, L C; Caira, M R; Guillory, J K

    1995-10-01

    Three polymorphs (forms I-III), a monohydrate (form S2), and three new solvates [4:1 hydrate (form S1), monohydrate (form S3), and methanol half-solvate (form S4)] were isolated and characterized by X-ray powder diffractometry (XRPD), IR spectroscopy, differential scanning calorimetry (DSC), hot stage microscopy, solution calorimetry, and their dissolution rates. A new polymorph, designated as form V, melting at 146.5-148 degrees C, was observed by hot stage microscopy. Our results indicate that only forms I and S4 exhibit reproducible DSC thermograms. Five of the isolated modifications undergo phase transformation on heating, and their DSC thermograms are not reproducible. Interpretation of DSC thermograms was facilitated by use of hot stage microscopy. The identification of each modification is based on XRPD patterns (except forms S3 and S4, for which the XRPD patterns are indistinguishable) and IR spectra. In the IR spectra, a significant difference was observed in the OH stretching region of all seven modifications. In a purity determination study, 5% of a contaminant modification in binary mixtures of several modifications could be detected by use of XRPD. To obtain a better understanding of the thermodynamic properties of these modifications, a series of increasing heating rates and different pan types were used in DSC. According to Burger's rule, forms I-III are monotropic polymorphs with decreasing stability in the order form I > form II > form III. The melting onsets and heats of fusion for forms I-III are 149.1 degrees C, 25.5 kJ/mol; 140.8 degrees C, 24.6 kJ/mol; and 137.8 degrees C, 24.0 kJ/mol, respectively. For form III the heat of fusion was calculated from heat of solution and DSC data. In the case of form S1 the melting point, 127.2 degrees C, was obtained by DSC using a hermetically sealed pan. The relative stabilities of the six modifications stored under high humidity conditions were predicted to be, on the basis of the heat of solution and thermal analysis data, from S2 > form S3 > form S1 > form I > form II > form III. However, the results of the dissolution rate determination were inconsistent with the heat of solution data. The stable form I shows a higher initial dissolution rate than the metastable form II and unstable form III. All modifications were converted into the stable monohydrate, form S2, during the dissolution study, suggesting that the moisture level in solid formulations should be carefully controlled.

  8. Novel polyimide compositions based on 4,4': Isophthaloyldiphthalic anaydride (IDPA)

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); Saintclair, Terry L. (Inventor)

    1989-01-01

    A series of twelve high temperature, high performance polyimide compositions based on 4,4'-isophthaloyl diphthalic anhydride (IDPA) was prepared and characterized. Tough, film-forming, organic solvent-insoluble polyimides were obtained. Three materials were semicrystalline. Several gave excellent long-term thermooxidative stability by isothermal thermogravimetric analysis (ITGA) at 300 C and 350 C in air when compared to Kapton H film (duPont). One extensively studied material displayed different levels of semicrystallinity over a wide range of final cure time/temperatures. The polyimide from IDPA and 1,3-bis (4-aminophenoxy 4'-benzoyl) benzene exhibited multiple crystallization and melting behavior, implying the existence of two kinetic and two thermodynamic crystallization and melting transitions by differential scanning calorimetry (DSC).

  9. A single-layer wide-angle negative-index metamaterial at visible frequencies.

    PubMed

    Burgos, Stanley P; de Waele, Rene; Polman, Albert; Atwater, Harry A

    2010-05-01

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50 degree angular range, yielding a wide-angle NIM at visible frequencies.

  10. Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading

    NASA Astrophysics Data System (ADS)

    Stepanova, Larisa; Bronnikov, Sergej

    2018-03-01

    The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.

  11. 7 CFR Appendix A to Subpart C of... - Model Form of Loan Contract for Electric Distribution Borrowers

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... financial ratios: (i) TIER of 1.25; (ii) Operating TIER of 1.1; (iii) DSC of 1.25; and Operating DSC of 1.1... Coverage Ratios Requirements. Section 5.5. Depreciation Rates. Section 5.6. Property Maintenance. Section 5.7. Financial Books. Section 5.8. Rights of Inspection. Section 5.9. Area Coverage. Section 5.10...

  12. 7 CFR Appendix A to Subpart C of... - Model Form of Loan Contract for Electric Distribution Borrowers

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... financial ratios: (i) TIER of 1.25; (ii) Operating TIER of 1.1; (iii) DSC of 1.25; and Operating DSC of 1.1... Coverage Ratios Requirements. Section 5.5. Depreciation Rates. Section 5.6. Property Maintenance. Section 5.7. Financial Books. Section 5.8. Rights of Inspection. Section 5.9. Area Coverage. Section 5.10...

  13. 7 CFR Appendix A to Subpart C of... - Model Form of Loan Contract for Electric Distribution Borrowers

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... financial ratios: (i) TIER of 1.25; (ii) Operating TIER of 1.1; (iii) DSC of 1.25; and Operating DSC of 1.1... Coverage Ratios Requirements. Section 5.5. Depreciation Rates. Section 5.6. Property Maintenance. Section 5.7. Financial Books. Section 5.8. Rights of Inspection. Section 5.9. Area Coverage. Section 5.10...

  14. 7 CFR Appendix A to Subpart C of... - Model Form of Loan Contract for Electric Distribution Borrowers

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... financial ratios: (i) TIER of 1.25; (ii) Operating TIER of 1.1; (iii) DSC of 1.25; and Operating DSC of 1.1... Coverage Ratios Requirements. Section 5.5. Depreciation Rates. Section 5.6. Property Maintenance. Section 5.7. Financial Books. Section 5.8. Rights of Inspection. Section 5.9. Area Coverage. Section 5.10...

  15. Characterization of cure kinetics and physical properties of a high performance, glass fiber-reinforced epoxy prepreg and a novel fluorine-modified, amine-cured commercial epoxy

    NASA Astrophysics Data System (ADS)

    Bilyeu, Bryan

    Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network was tested for wear resistance using tribological techniques. Of the six anilines, 3-fluoroaniline and 4-fluoroaniline were determined to have lower wear than the unmodified epoxy, while the others showed much higher wear rates.

  16. First results on the crustal structure of the Natal Valley from combined wide-angle and reflection seismic data (MOZ3/5 cruise), South Mozambique Margin.

    NASA Astrophysics Data System (ADS)

    Leprêtre, Angélique; Verrier, Fanny; Evain, Mikael; Schnurle, Philippe; Watremez, Louise; Aslanian, Daniel; de Clarens, Philippe; Dias, Nuno; Afilhado, Alexandra; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi; Moulin, Maryline

    2017-04-01

    The Natal valley (South Mozambique margin) is a key area for the understanding of the SW Indian Ocean history since the Gondwana break-up, and widely, the structure of a margin system at the transition between divergent and strike-slip segments. As one part of the PAMELA project (PAssive Margins Exploration Laboratories), conducted by TOTAL, IFREMER, in collaboration with Université de Bretagne Occidentale, Université Rennes 1, Université Pierre and Marie Curie, CNRS et IFPEN, the Natal Valley and the East Limpopo margin have been explored during the MOZ3/5 cruise (2016), conducted onboard the R/V Pourquoi Pas?, through the acquisition of 7 wide-angle profiles and coincident marine multichannel (720 traces) seismic as well as potential field data. Simultaneously, land seismometers were deployed in the Mozambique coastal plains, extending six of those profiles on land for about 100 km in order to provide information on the onshore-offshore transition. Wide-angle seismic data are of major importance as they can provide constrains on the crustal structure of the margin and the position of the continent-ocean boundary in an area where the crustal nature is poorly known and largely controversial. The aim of this work is to present the first results on the crustal structure from P-waves velocity modeling along two perpendicular MZ1 & MZ7 wide-angle profiles crossing the Natal Valley in an E-W and NNW-SSE direction respectively, which reveal a crust up to 30 km thick below the Natal Valley and thus raises questions of a purely oceanic origin of the Valley. The post-doc of Angélique Leprêtre is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project.

  17. Development of new family of wide-angle anamorphic lens with controlled distortion profile

    NASA Astrophysics Data System (ADS)

    Gauvin, Jonny; Doucet, Michel; Wang, Min; Thibault, Simon; Blanc, Benjamin

    2005-08-01

    It is well known that a fish-eye lens produces a circular image of the scene with a particular distortion profile. When using a fish-eye lens with a standard sensor (e.g. 1/3", 1/4",.), only a part of the rectangular detector area is used, leaving many pixels unused. We proposed a new approach to get enhanced resolution for panoramic imaging. In this paper, various arrangements of innovative 180-degree anamorphic wide-angle lens design are considered. Their performances as well as lens manufacturability are also discussed. The concept of the design is to use anamorphic optics to produce elliptical image that maximize pixel resolution in both axis. Furthermore, a non-linear distortion profile is also introduced to enhance spatial resolution for specific field angle. Typical applications such as panoramic photography, video conferencing, and homeland/transportation security are also presented.

  18. A wide-angle camera module for disposable endoscopy

    NASA Astrophysics Data System (ADS)

    Shim, Dongha; Yeon, Jesun; Yi, Jason; Park, Jongwon; Park, Soo Nam; Lee, Nanhee

    2016-08-01

    A wide-angle miniaturized camera module for disposable endoscope is demonstrated in this paper. A lens module with 150° angle of view (AOV) is designed and manufactured. All plastic injection-molded lenses and a commercial CMOS image sensor are employed to reduce the manufacturing cost. The image sensor and LED illumination unit are assembled with a lens module. The camera module does not include a camera processor to further reduce its size and cost. The size of the camera module is 5.5 × 5.5 × 22.3 mm3. The diagonal field of view (FOV) of the camera module is measured to be 110°. A prototype of a disposable endoscope is implemented to perform a pre-clinical animal testing. The esophagus of an adult beagle dog is observed. These results demonstrate the feasibility of a cost-effective and high-performance camera module for disposable endoscopy.

  19. PASTIS2 and CROCODILE: XYZ-wide angle polarisation analysis for thermal neutrons

    NASA Astrophysics Data System (ADS)

    Enderle, Mechthild; Jullien, David; Petoukhov, Alexander; Mouveau, Pascal; Andersen, Ken; Courtois, Pierre

    2017-06-01

    We present a wide-angle device for inelastic neutron scattering with XYZ-polarisation analysis (PASTIS2). PASTIS2 employs a banana-shaped Si-walled 3He-filter for the polarisation analysis and allows pillar-free neutron scattering for horizontal scattering angles 0-100◦. The guide field direction at the sample can be chosen vertical or with 45◦ incremental steps in the horizontal scattering plane. When PASTIS2 is implemented on a polarised neutron beam, the incident neutron spin can be flipped with an easy-to-optimise broad-band adiabatic resonant flipper (CROCODILE) independent of the guide field direction at the sample position. We have tested the performance of this new device on the polarised thermal triple-axis spectrometer IN20 at the Institut Laue-Langevin, equipped with Heusler monochromator and the FlatCone multi-analyser, and discuss its potential for future instruments.

  20. Bioinspired periodic pinecone-shaped Si subwavelength nanostructures for broadband and omnidirectional antireflective surface.

    PubMed

    Leem, Jung Woo; Yu, Jae Su

    2012-10-01

    We reported the bioinspired periodic pinecone-shaped silicon (Si) subwavelength nanostructures, which were fabricated by laser interference lithography and inductively coupled plasma etching using thermally dewetted gold (Au) nanoparticles in SiCl4 plasma, on Si substrates for broadband and wide-angle antireflective surface. For the fabricated pinecone-like Si subwavelength nanostructures, antireflection characteristics and wetting behaviors were investigated. The pinecone-shaped Si subwavelength nanostructure with a period of 320 nm for 7 nm of Au film exhibited a relatively low solar weighted reflectance value of 3.5% over a wide wavelength range of 300-1030 nm, maintaining the reflectance values of < 9.9% at a wavelength of 550 nm up to a high incident angle of theta(i) = 70 degrees for non-polarized light. This structure also showed a hydrophobic surface with a water contact angle of theta(c) approximately 102 degrees.

  1. Ultra-Thin Dual-Band Polarization-Insensitive and Wide-Angle Perfect Metamaterial Absorber Based on a Single Circular Sector Resonator Structure

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Cheng, Yong Zhi

    2018-01-01

    We present a simple design for an ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber (PMMA) based on a single circular sector resonator structure (CSRS). Both simulation and experimental results reveal that two resonance peaks with average absorption above 99% can be achieved. The dual-band PMMA is ultra-thin with total thickness of 0.5 mm, which is

  2. A wide-angle high Mach number modal expansion for infrasound propagation.

    PubMed

    Assink, Jelle; Waxler, Roger; Velea, Doru

    2017-03-01

    The use of modal expansions to solve the problem of atmospheric infrasound propagation is revisited. A different form of the associated modal equation is introduced, valid for wide-angle propagation in atmospheres with high Mach number flow. The modal equation can be formulated as a quadratic eigenvalue problem for which there are simple and efficient numerical implementations. A perturbation expansion for the treatment of attenuation, valid for stratified media with background flow, is derived as well. Comparisons are carried out between the proposed algorithm and a modal algorithm assuming an effective sound speed, including a real data case study. The comparisons show that the effective sound speed approximation overestimates the effect of horizontal wind on sound propagation, leading to errors in traveltime, propagation path, trace velocity, and absorption. The error is found to be dependent on propagation angle and Mach number.

  3. Spectral, thermal, and molecular modeling studies on the encapsulation of selected sulfonamide drugs in β-cyclodextrin nano-cavity

    NASA Astrophysics Data System (ADS)

    Bani-Yaseen, Abdulilah Dawoud; Mo'ala, Abeer

    2014-10-01

    In the present work the inclusion complexation of three sulfonamide (SA) drugs, namely sulfisoxazole (SSX), sulfamethizole (SMZ), and Sulfamethazine (STM) with β-cyclodextrin (β-CD) has been investigated using UV-Vis spectroscopy, DSC, 1H NMR spectroscopy, and molecular modeling methods. The binding constant (Kb) of SA:β-CD inclusion complexation was determined via applying the modified form of Benesi-Hildebrand equation employing the changes in absorbance at λmax. Obtained results revealed that SA drugs form 1:1 inclusion complex with β-CD with Kb of 650, 1532, 714 M-1 at 25 °C for SSX, SMZ, and STM, respectively. The UV-Vis absorption spectra displayed solvatochromic behavior of bathochromic shift with decreasing solvent polarity that in turn is good agreement with their behavior in the presence of β-CD in terms of environment polarity dependency. The inclusion complex formation between β-CD and tested SA drugs in liquid and solid states was confirmed by 1H NMR and DSC, respectively. Using semi-empirical quantum chemistry methods at PM3 theoretical level, inclusion complexes' structures as well as energetic and thermodynamic parameters of encapsulation were elucidated. Obtained results revealed that the encapsulation is favorably energetic and enthalpic in nature with the inclusion of the aniline moiety through the wide rim side of β-CD nano-cavity. Further, molecular modeling revealed that β-CD encapsulation of SA drugs reduced their (EHOMO - ELUMO) gap.

  4. Fabrication, characterization and in vitro evaluation of silibinin nanoparticles: an attempt to enhance its oral bioavailability

    PubMed Central

    Sahibzada, Muhammad Umar Khayam; Sadiq, Abdul; Khan, Shahzeb; Faidah, Hani S; Naseemullah; Khurram, Muhammad; Amin, Muhammad Usman; Haseeb, Abdul

    2017-01-01

    Background Silibinin has gained in importance in the past few decades as a hepatoprotector and is used widely as oral therapy for toxic liver damage, liver cirrhosis, and chronic inflammatory liver diseases, as well as for the treatment of different types of cancers. Unfortunately, it has low aqueous solubility and inadequate dissolution, which results in low oral bioavailability. Materials and methods In this study, nanoparticles (NPs) of silibinin, which is a hydrophobic drug, were manufactured using two cost-effective methods. Antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN) were used. The prepared NPs were characterized using different analytical techniques such as scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray powder diffractometry (XRD) and were sifted for their bioavailability through in vitro dissolution and solubility studies. Moreover, the prepared NPs were evaluated for antimicrobial activity against a battery of bacteria and yeast. Results DSC and XRD studies indicated that the prepared NPs were amorphous in nature, with more solubility and dissolution compared to the crystalline form of this drug. NPs prepared through the EPN method had better results than those prepared using the APSP method. Antimicrobial activities of the NPs were improved compared to the unprocessed drugs, while having comparable activities to standard antimicrobial drugs. Conclusion Results indicate that the NPs have significantly increased solubility, dissolution rate, and antimicrobial activities due to the conversion of crystalline structure into amorphous form. PMID:28553075

  5. Development and validation of an open source quantification tool for DSC-MRI studies.

    PubMed

    Gordaliza, P M; Mateos-Pérez, J M; Montesinos, P; Guzmán-de-Villoria, J A; Desco, M; Vaquero, J J

    2015-03-01

    This work presents the development of an open source tool for the quantification of dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion studies. The development of this tool is motivated by the lack of open source tools implemented on open platforms to allow external developers to implement their own quantification methods easily and without the need of paying for a development license. This quantification tool was developed as a plugin for the ImageJ image analysis platform using the Java programming language. A modular approach was used in the implementation of the components, in such a way that the addition of new methods can be done without breaking any of the existing functionalities. For the validation process, images from seven patients with brain tumors were acquired and quantified with the presented tool and with a widely used clinical software package. The resulting perfusion parameters were then compared. Perfusion parameters and the corresponding parametric images were obtained. When no gamma-fitting is used, an excellent agreement with the tool used as a gold-standard was obtained (R(2)>0.8 and values are within 95% CI limits in Bland-Altman plots). An open source tool that performs quantification of perfusion studies using magnetic resonance imaging has been developed and validated using a clinical software package. It works as an ImageJ plugin and the source code has been published with an open source license. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Scleral Buckling Using a Non-contact Wide-Angle Viewing System with a 25-Gauge Chandelier Endoilluminator.

    PubMed

    Jo, Jaehyuck; Moon, Byung Gil; Lee, Joo Yong

    2017-12-01

    To report the outcome of scleral buckling using a non-contact wide-angle viewing system with a 25-gauge chandelier endoilluminator. Retrospective analyses of medical records were performed for 17 eyes of 16 patients with primary rhegmatogenous retinal detachment (RRD) without proliferative vitreoretinopathy who had undergone conventional scleral buckling with cryoretinopexy using the combination of a non-contact wide-angle viewing system and chandelier endoillumination. The patients were eight males and five females with a mean age of 26.8 ± 10.2 (range, 11 to 47) years. The mean follow-up period was 7.3 ± 3.1 months. Baseline best-corrected visual acuity was 0.23 ± 0.28 logarithm of the minimum angle of resolution units. Best-corrected visual acuity at the final visit showed improvement (0.20 ± 0.25 logarithm of the minimum angle of resolution units), but the improvement was not statistically significant (p = 0.722). As a surgery-related complication, there was vitreous loss at the end of surgery in one eye. As a postoperative complication, increased intraocular pressure (four cases) and herpes simplex epithelial keratitis (one case) were controlled postoperatively with eye drops. One case of persistent RRD after primary surgery needed additional vitrectomy, and the retina was postoperatively attached. Scleral buckling with chandelier illumination as a surgical technique for RRD has the advantages of relieving the surgeon's neck pain from prolonged use of the indirect ophthalmoscope and sharing the surgical procedure with another surgical team member. In addition, fine retinal breaks that are hard to identify using an indirect ophthalmoscope can be easily found under the microscope by direct endoillumination. © 2017 The Korean Ophthalmological Society

  7. Soil organic matter composition from correlated thermal analysis and nuclear magnetic resonance data in Australian national inventory of agricultural soils

    NASA Astrophysics Data System (ADS)

    Moore, T. S.; Sanderman, J.; Baldock, J.; Plante, A. F.

    2016-12-01

    National-scale inventories typically include soil organic carbon (SOC) content, but not chemical composition or biogeochemical stability. Australia's Soil Carbon Research Programme (SCaRP) represents a national inventory of SOC content and composition in agricultural systems. The program used physical fractionation followed by 13C nuclear magnetic resonance (NMR) spectroscopy. While these techniques are highly effective, they are typically too expensive and time consuming for use in large-scale SOC monitoring. We seek to understand if analytical thermal analysis is a viable alternative. Coupled differential scanning calorimetry (DSC) and evolved gas analysis (CO2- and H2O-EGA) yields valuable data on SOC composition and stability via ramped combustion. The technique requires little training to use, and does not require fractionation or other sample pre-treatment. We analyzed 300 agricultural samples collected by SCaRP, divided into four fractions: whole soil, coarse particulates (POM), untreated mineral associated (HUM), and hydrofluoric acid (HF)-treated HUM. All samples were analyzed by DSC-EGA, but only the POM and HF-HUM fractions were analyzed by NMR. Multivariate statistical analyses were used to explore natural clustering in SOC composition and stability based on DSC-EGA data. A partial least-squares regression (PLSR) model was used to explore correlations among the NMR and DSC-EGA data. Correlations demonstrated regions of combustion attributable to specific functional groups, which may relate to SOC stability. We are increasingly challenged with developing an efficient technique to assess SOC composition and stability at large spatial and temporal scales. Correlations between NMR and DSC-EGA may demonstrate the viability of using thermal analysis in lieu of more demanding methods in future large-scale surveys, and may provide data that goes beyond chemical composition to better approach quantification of biogeochemical stability.

  8. Research on choleretic effect of menthol, menthone, pluegone, isomenthone, and limonene in DanShu capsule.

    PubMed

    Hu, Guanying; Yuan, Xing; Zhang, Sanyin; Wang, Ruru; Yang, Miao; Wu, Chunjie; Wu, Zhigang; Ke, Xiao

    2015-02-01

    Danshu capsule (DSC) is a medicinal compound in traditional Chinese medicine (TCM). It is commonly used for the treatment of acute & chronic cholecystitis as well as choleithiasis. To study its choleretic effect, healthy rats were randomly divided into DSC high (DSCH, 900mg/kg), medium (DSCM, 450mg/kg), and low (DSCL, 225mg/kg) group, Xiaoyan Lidan tablet (XYLDT, 750mg/kg), and saline group. The bile was collected for 1h after 20-minute stabilization as the base level, and at 1h, 2h, 3h, and 4h after drug administration, respectively. Bile volume, total cholesterol, and total bile acid were measured at each time point. The results revealed that DSC significantly stimulated bile secretion, decreased total cholesterol level and increased total bile acid level. Therefore, it had choleretic effects. To identify the active components contributing to its choleretic effects, five major constituents which are menthol (39.33mg/kg), menthone (18.02mg/kg), isomenthone (8.18mg/kg), pluegone (3.31mg/kg), and limonene (4.39mg/kg) were tested on our rat model. The results showed that menthol and limonene could promote bile secretion when compared to DSC treatment (p > 0.05); Menthol, menthol and limonene could significantly decrease total cholesterol level (p<0.05 or p<0.01) as well as increase total bile acid level (p<0.05 or p<0.01); Isomenthone, as a isomer of menthone, existed slightly choleretic effects; Pluegone had no obvious role in bile acid efflux. These findings indicated that the choleretic effects of DSC may be attributed mainly to its three major constituents: menthol, menthone and limonene. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  9. Towards quantitative imaging: stability of fully automated nodule segmentation across varied dose levels and reconstruction parameters in a low-dose CT screening patient cohort

    NASA Astrophysics Data System (ADS)

    Wahi-Anwar, M. Wasil; Emaminejad, Nastaran; Hoffman, John; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael F.

    2018-02-01

    Quantitative imaging in lung cancer CT seeks to characterize nodules through quantitative features, usually from a region of interest delineating the nodule. The segmentation, however, can vary depending on segmentation approach and image quality, which can affect the extracted feature values. In this study, we utilize a fully-automated nodule segmentation method - to avoid reader-influenced inconsistencies - to explore the effects of varied dose levels and reconstruction parameters on segmentation. Raw projection CT images from a low-dose screening patient cohort (N=59) were reconstructed at multiple dose levels (100%, 50%, 25%, 10%), two slice thicknesses (1.0mm, 0.6mm), and a medium kernel. Fully-automated nodule detection and segmentation was then applied, from which 12 nodules were selected. Dice similarity coefficient (DSC) was used to assess the similarity of the segmentation ROIs of the same nodule across different reconstruction and dose conditions. Nodules at 1.0mm slice thickness and dose levels of 25% and 50% resulted in DSC values greater than 0.85 when compared to 100% dose, with lower dose leading to a lower average and wider spread of DSC values. At 0.6mm, the increased bias and wider spread of DSC values from lowering dose were more pronounced. The effects of dose reduction on DSC for CAD-segmented nodules were similar in magnitude to reducing the slice thickness from 1.0mm to 0.6mm. In conclusion, variation of dose and slice thickness can result in very different segmentations because of noise and image quality. However, there exists some stability in segmentation overlap, as even at 1mm, an image with 25% of the lowdose scan still results in segmentations similar to that seen in a full-dose scan.

  10. Impact on carbon footprint: a life cycle assessment of disposable versus reusable sharps containers in a large US hospital.

    PubMed

    Grimmond, Terry; Reiner, Sandra

    2012-06-01

    Hospitals are striving to reduce their greenhouse gas (GHG) emissions. Targeting supply chain points and replacing disposable with reusable items are among recommendations to achieve this. Annually, US hospitals use 35 million disposable (DSC) or reusable sharps containers (RSC) generating GHG in their manufacture, use, and disposal. Using a life cycle assessment we assessed the global warming potential (GWP) of both systems at a large US hospital which replaced DSC with RSC. GHG emissions (CO(2), CH(4), N(2)O) were calculated in metric tons of CO(2) equivalents (MTCO(2)eq). Primary energy input data was used wherever possible and region-specific conversions used to calculate the GWP of each activity. Unit process GHGs were collated into manufacture, transport, washing, and treatment and disposal. The DSC were not recycled nor had recycled content. Chemotherapy DSC were used in both systems. Emission totals were workload-normalized per 100 occupied beds-yr and rate ratio analyzed using Fisher's test with P ≤0.05 and 95% confidence level. With RSC, the hospital reduced its annual GWP by 127 MTCO(2)eq (-83.5%) and diverted 30.9 tons of plastic and 5.0 tons of cardboard from landfill. Using RSC reduced the number of containers manufactured from 34,396 DSC annually to 1844 RSC in year one only. The study indicates sharps containment GWP in US hospitals totals 100,000 MTCO(2)eq and if RSC were used nationally the figure could fall by 64,000 MTCO(2)eq which, whilst only a fraction of total hospital GWP, is a positive, sustainable step.

  11. Delayed Sternal Closure in Infant Heart Surgery-The Importance of Where and When: An Analysis of the STS Congenital Heart Surgery Database.

    PubMed

    Nelson-McMillan, Kristen; Hornik, Christoph P; He, Xia; Vricella, Luca A; Jacobs, Jeffrey P; Hill, Kevin D; Pasquali, Sara K; Alejo, Diane E; Cameron, Duke E; Jacobs, Marshall L

    2016-11-01

    Delayed sternal closure (DSC) is commonly used to optimize hemodynamic stability after neonatal and infant heart surgery. We hypothesized that duration of sternum left open (SLO) was associated with rate of infection complications, and that location of sternal closure may mitigate infection risk. Infants (age ≤365 days) undergoing index operations with cardiopulmonary bypass and DSC at STS Congenital Heart Surgery Database centers (from 2007 to 2013) with adequate data quality were included. Primary outcome was occurrence of infection complication, defined as one or more of the following: endocarditis, pneumonia, wound infection, wound dehiscence, sepsis, or mediastinitis. Multivariable regression models were fit to assess association of infection complication with: duration of SLO (days), location of DSC procedure (operating room versus elsewhere), and patient and procedural factors. Of 6,127 index operations with SLO at 100 centers, median age and weight were 8 days (IQR, 5-24) and 3.3 kg (IQR, 2.9-3.8); 66% of operations were STAT morbidity category 4 or 5. At least one infection complication occurred in 18.7%, compared with 6.6% among potentially eligible neonates and infants without SLO. Duration of SLO (median, 3 days; IQR, 2-5) was associated with an increased rate of infection complications (p < 0.001). Location of DSC procedure was operating room (16%), intensive care unit (67%), or other (17%). Location of DSC was not associated with rate of infection complications (p = 0.45). Rate of occurrence of infectious complications is high among infants with sternum left open following cardiac surgery. Longer duration of SLO is associated with increased infection complications. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Longitudinal DSC-MRI for Distinguishing Tumor Recurrence From Pseudoprogression in Patients With a High-grade Glioma.

    PubMed

    Boxerman, Jerrold L; Ellingson, Benjamin M; Jeyapalan, Suriya; Elinzano, Heinrich; Harris, Robert J; Rogg, Jeffrey M; Pope, Whitney B; Safran, Howard

    2017-06-01

    For patients with high-grade glioma on clinical trials it is important to accurately assess time of disease progression. However, differentiation between pseudoprogression (PsP) and progressive disease (PD) is unreliable with standard magnetic resonance imaging (MRI) techniques. Dynamic susceptibility contrast perfusion MRI (DSC-MRI) can measure relative cerebral blood volume (rCBV) and may help distinguish PsP from PD. A subset of patients with high-grade glioma on a phase II clinical trial with temozolomide, paclitaxel poliglumex, and concurrent radiation were assessed. Nine patients (3 grade III, 6 grade IV), with a total of 19 enhancing lesions demonstrating progressive enhancement (≥25% increase from nadir) on postchemoradiation conventional contrast-enhanced MRI, had serial DSC-MRI. Mean leakage-corrected rCBV within enhancing lesions was computed for all postchemoradiation time points. Of the 19 progressively enhancing lesions, 10 were classified as PsP and 9 as PD by biopsy/surgery or serial enhancement patterns during interval follow-up MRI. Mean rCBV at initial progressive enhancement did not differ significantly between PsP and PD (2.35 vs. 2.17; P=0.67). However, change in rCBV at first subsequent follow-up (-0.84 vs. 0.84; P=0.001) and the overall linear trend in rCBV after initial progressive enhancement (negative vs. positive slope; P=0.04) differed significantly between PsP and PD. Longitudinal trends in rCBV may be more useful than absolute rCBV in distinguishing PsP from PD in chemoradiation-treated high-grade gliomas with DSC-MRI. Further studies of DSC-MRI in high-grade glioma as a potential technique for distinguishing PsP from PD are indicated.

  13. Morphology of blends of linear and long-chain-branched polyethylenes in the solid state: A study by SANS, SAXS, and DSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wignall, G.D.; Londono, J.D.; Lin, J.S.

    1995-04-24

    Differential scanning calorimetry (DSC), small-angle neutron scattering (SANS), and X-ray scattering (SAXS) have been used to investigate the solid-state morphology of blends of linear (high density) and long-chain-branched (low-density) polyethylenes (HDPE/LDPE). The blends are homogeneous in the melt, as previously demonstrated by SANS using the contrast obtained by deuterating the linear polymer. However, due to the structural and melting point differences ({approximately} 20 C) between HDPE and LDPE, the components may phase segregate on slow cooling (0.75 C/min). For high concentrations ({phi} {ge} 0.5) of HDPE, relatively high rates of crystallization of the linear component lead to the formation ofmore » separate stacks of HDPE and LDPE lamellae, as indicated by two-peak SAXS curves. For predominantly branched blends, the difference in crystallization rate of the components becomes smaller and only one SAXS peak is observed, indicating that the two species are in the same lamellar stack. Moreover, the phases no longer consist of the pure component and the HDPE lamellae contain up to 15--20% LDPE (and vice versa). Rapid quenching into dry ice/2-propanol ({minus}78 C) produces only one SAXS peak (and hence one lamellar stack) over the whole concentration range. The blends show extensive cocrystallization, along with a tendency for the branched material to be preferentially located in the amorphous interlamellar regions. For high concentrations ({phi} > 0.5) of HDPE-D, the overall scattering length density (SLD) is high and the excess concentration of LDPE between the lamellae enhances the SLD contrast between the crystalline and amorphous phases. Thus, the interlamellar spacing (long period) is clearly visible in the SANS pattern. The blend morphology is a strong function of the quenching rate, and samples quenched less rapidly (e.g., into water at 23 C) are similar to slowly cooled blends.« less

  14. Interaction of cholesterol-conjugated ionizable amino lipids with biomembranes: lipid polymorphism, structure-activity relationship, and implications for siRNA delivery.

    PubMed

    Zhang, Jingtao; Fan, Haihong; Levorse, Dorothy A; Crocker, Louis S

    2011-08-02

    Delivery of siRNA is a major obstacle to the advancement of RNAi as a novel therapeutic modality. Lipid nanoparticles (LNP) consisting of ionizable amino lipids are being developed as an important delivery platform for siRNAs, and significant efforts are being made to understand the structure-activity relationship (SAR) of the lipids. This article uses a combination of small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) to evaluate the interaction between cholesterol-conjugated ionizable amino lipids and biomembranes, focusing on an important area of lipid SAR--the ability of lipids to destabilize membrane bilayer structures and facilitate endosomal escape. In this study, cholesterol-conjugated amino lipids were found to be effective in increasing the order of biomembranes and also highly effective in inducing phase changes in biological membranes in vitro (i.e., the lamellar to inverted hexagonal phase transition). The phase transition temperatures, determined using SAXS and DSC, serve as an indicator for ranking the potency of lipids to destabilize endosomal membranes. It was found that the bilayer disruption ability of amino lipids depends strongly on the amino lipid concentration in membranes. Amino lipids with systematic variations in headgroups, the extent of ionization, tail length, the degree of unsaturation, and tail asymmetry were evaluated for their bilayer disruption ability to establish SAR. Overall, it was found that the impact of these lipid structure changes on their bilayer disruption ability agrees well with the results from a conceptual molecular "shape" analysis. Implications of the findings from this study for siRNA delivery are discussed. The methods reported here can be used to support the SAR screening of cationic lipids for siRNA delivery, and the information revealed through the study of the interaction between cationic lipids and biomembranes will contribute significantly to the design of more efficient siRNA delivery vehicles.

  15. Dye-sensitized solar cells and complexes between pyridines and iodines. A NMR, IR and DFT study.

    PubMed

    Hansen, Poul Erik; Nguyen, Phuong Tuyet; Krake, Jacob; Spanget-Larsen, Jens; Lund, Torben

    2012-12-01

    Interactions between triiodide (I(3)(-)) and 4-tert-butylpyridine (4TBP) as postulated in dye-sensitized solar cells (DSC) are investigated by means of (13)C NMR and IR spectroscopy supported by DFT calculations. The charge transfer (CT) complex 4TBP·I(2) and potential salts such as (4TBP)(2)I(+), I(3)(-) were synthesized and characterized by IR and (13)C NMR spectroscopy. However, mixing (butyl)(4)N(+), I(3)(-) and 4TBP at concentrations comparable to those of the DSC solar cell did not lead to any reaction. Neither CT complexes nor cationic species like (4TBP)(2)I(+) were observed, judging from the (13)C NMR spectroscopic evidence. This questions the previously proposed formation of (4TBP)(2)I(+) in DSC cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Thermal behaviour and microanalysis of coal subbituminus

    NASA Astrophysics Data System (ADS)

    Heriyanti; Prendika, W.; Ashyar, R.; Sutrisno

    2018-04-01

    Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) is used to study the thermal behaviour of sub-bituminous coal. The DSC experiment was performed in air atmosphere up to 125 °C at a heating rate of 25 °C min1. The DSC curve showed that the distinct transitional stages in the coal samples studied. Thermal heating temperature intervals, peak and dissociation energy of the coal samples were also determined. The XRD analysis was used to evaluate the diffraction pattern and crystal structure of the compounds in the coal sample at various temperatures (25-350 °C). The XRD analysis of various temperatures obtained compounds from the coal sample, dominated by quartz (SiO2) and corundum (Al2O3). The increase in temperature of the thermal treatment showed a better crystal formation.

  17. Characterization of the Polycaprolactone Melt Crystallization: Complementary Optical Microscopy, DSC, and AFM Studies

    PubMed Central

    Speranza, V.; Sorrentino, A.; De Santis, F.; Pantani, R.

    2014-01-01

    The first stages of the crystallization of polycaprolactone (PCL) were studied using several techniques. The crystallization exotherms measured by differential scanning calorimetry (DSC) were analyzed and compared with results obtained by polarized optical microscopy (POM), rheology, and atomic force microscope (AFM). The experimental results suggest a strong influence of the observation scale. In particular, the AFM, even if limited on time scale, appears to be the most sensitive technique to detect the first stages of crystallization. On the contrary, at least in the case analysed in this work, rheology appears to be the least sensitive technique. DSC and POM provide closer results. This suggests that the definition of induction time in the polymer crystallization is a vague concept that, in any case, requires the definition of the technique used for its characterization. PMID:24523644

  18. Characterization of the polycaprolactone melt crystallization: complementary optical microscopy, DSC, and AFM studies.

    PubMed

    Speranza, V; Sorrentino, A; De Santis, F; Pantani, R

    2014-01-01

    The first stages of the crystallization of polycaprolactone (PCL) were studied using several techniques. The crystallization exotherms measured by differential scanning calorimetry (DSC) were analyzed and compared with results obtained by polarized optical microscopy (POM), rheology, and atomic force microscope (AFM). The experimental results suggest a strong influence of the observation scale. In particular, the AFM, even if limited on time scale, appears to be the most sensitive technique to detect the first stages of crystallization. On the contrary, at least in the case analysed in this work, rheology appears to be the least sensitive technique. DSC and POM provide closer results. This suggests that the definition of induction time in the polymer crystallization is a vague concept that, in any case, requires the definition of the technique used for its characterization.

  19. Wide-Field Retroreflectors

    NASA Technical Reports Server (NTRS)

    Page, Norman A.; Tubbs, Eldred F.

    1994-01-01

    Retroreflectors made of concentric spherical optical elements developed for use in interferometric metrological systems. Used to provide reference point on structure to be aligned precisely in two or three dimensions by use of intersecting laser beams. Acceptance angle much larger than that of cat's-eye or corner-cube retroreflector: Simultaneously reflects laser beams separated by angles as large as 180 degrees.

  20. Synthesis of Hydrophobic, Crosslinkable Resins.

    DTIC Science & Technology

    1985-12-01

    product by methanol precipitation the majority of the first oligomer was L-"- lost. 4.14 DIFFERENTIAL SCANNING CALORIMETRY. The DSC trace of a typical...polymer from the DSC traces obtained to dcte. Preliminary studies using an automated torsional pendulum indicate that the Tg of the crosslinked polymer is...enabling water to be used in the purification steps. The diethyl phosphonates are readily prepared by heating triethyl phosphite with the chloromethyl

  1. Raman scattering boson peak and differential scanning calorimetry studies of the glass transition in tellurium-zinc oxide glasses.

    PubMed

    Stavrou, E; Tsiantos, C; Tsopouridou, R D; Kripotou, S; Kontos, A G; Raptis, C; Capoen, B; Bouazaoui, M; Turrell, S; Khatir, S

    2010-05-19

    Raman scattering and differential scanning calorimetry (DSC) measurements have been carried out on four mixed tellurium-zinc oxide (TeO(2))(1 - x)(ZnO)(x) (x = 0.1, 0.2, 0.3, 0.4) glasses under variable temperature, with particular attention being given to the respective glass transition region. From the DSC measurements, the glass transition temperature T(g) has been determined for each glass, showing a monotonous decrease of T(g) with increasing ZnO content. The Raman study is focused on the low-frequency band of the glasses, the so-called boson peak (BP), whose frequency undergoes an abrupt decrease at a temperature T(d) very close to the respective T(g) values obtained by DSC. These results show that the BP is highly sensitive to dynamical effects over the glass transition and provides a means for an equally reliable (to DSC) determination of T(g) in tellurite glasses and other network glasses. The discontinuous temperature dependence of the BP frequency at the glass transition, along with the absence of such a behaviour by the high-frequency Raman bands (due to local atomic vibrations), indicates that marked changes of the medium range order (MRO) occur at T(g) and confirms the correlation between the BP and the MRO of glasses.

  2. Progress on the DPASS project

    NASA Astrophysics Data System (ADS)

    Galkin, Sergei A.; Bogatu, I. N.; Svidzinski, V. A.

    2015-11-01

    A novel project to develop Disruption Prediction And Simulation Suite (DPASS) of comprehensive computational tools to predict, model, and analyze disruption events in tokamaks has been recently started at FAR-TECH Inc. DPASS will eventually address the following aspects of the disruption problem: MHD, plasma edge dynamics, plasma-wall interaction, generation and losses of runaway electrons. DPASS uses the 3-D Disruption Simulation Code (DSC-3D) as a core tool and will have a modular structure. DSC is a one fluid non-linear, time-dependent 3D MHD code to simulate dynamics of tokamak plasma surrounded by pure vacuum B-field in the real geometry of a conducting tokamak vessel. DSC utilizes the adaptive meshless technique with adaptation to the moving plasma boundary, with accurate magnetic flux conservation and resolution of the plasma surface current. DSC has also an option to neglect the plasma inertia to eliminate fast magnetosonic scale. This option can be turned on/off as needed. During Phase I of the project, two modules will be developed: the computational module for modeling the massive gas injection and main plasma respond; and the module for nanoparticle plasma jet injection as an innovative disruption mitigation scheme. We will report on this development progress. Work is supported by the US DOE SBIR grant # DE-SC0013727.

  3. Deconvolution of complex differential scanning calorimetry profiles for protein transitions under kinetic control.

    PubMed

    Toledo-Núñez, Citlali; Vera-Robles, L Iraís; Arroyo-Maya, Izlia J; Hernández-Arana, Andrés

    2016-09-15

    A frequent outcome in differential scanning calorimetry (DSC) experiments carried out with large proteins is the irreversibility of the observed endothermic effects. In these cases, DSC profiles are analyzed according to methods developed for temperature-induced denaturation transitions occurring under kinetic control. In the one-step irreversible model (native → denatured) the characteristics of the observed single-peaked endotherm depend on the denaturation enthalpy and the temperature dependence of the reaction rate constant, k. Several procedures have been devised to obtain the parameters that determine the variation of k with temperature. Here, we have elaborated on one of these procedures in order to analyze more complex DSC profiles. Synthetic data for a heat capacity curve were generated according to a model with two sequential reactions; the temperature dependence of each of the two rate constants involved was determined, according to the Eyring's equation, by two fixed parameters. It was then shown that our deconvolution procedure, by making use of heat capacity data alone, permits to extract the parameter values that were initially used. Finally, experimental DSC traces showing two and three maxima were analyzed and reproduced with relative success according to two- and four-step sequential models. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Toward a Psychology of Social Change: A Typology of Social Change

    PubMed Central

    de la Sablonnière, Roxane

    2017-01-01

    Millions of people worldwide are affected by dramatic social change (DSC). While sociological theory aims to understand its precipitants, the psychological consequences remain poorly understood. A large-scale literature review pointed to the desperate need for a typology of social change that might guide theory and research toward a better understanding of the psychology of social change. Over 5,000 abstracts from peer-reviewed articles were assessed from sociological and psychological publications. Based on stringent inclusion criteria, a final 325 articles were used to construct a novel, multi-level typology designed to conceptualize and categorize social change in terms of its psychological threat to psychological well-being. The typology of social change includes four social contexts: Stability, Inertia, Incremental Social Change and, finally, DSC. Four characteristics of DSC were further identified: the pace of social change, rupture to the social structure, rupture to the normative structure, and the level of threat to one's cultural identity. A theoretical model that links the characteristics of social change together and with the social contexts is also suggested. The typology of social change as well as our theoretical proposition may serve as a foundation for future investigations and increase our understanding of the psychologically adaptive mechanisms used in the wake of DSC. PMID:28400739

  5. Heat resistance of viable but non-culturable Escherichia coli cells determined by differential scanning calorimetry.

    PubMed

    Castro-Rosas, Javier; Gómez-Aldapa, Carlos Alberto; Villagómez Ibarra, José Roberto; Santos-López, Eva María; Rangel-Vargas, Esmeralda

    2017-10-16

    Several reports have suggested that the viable but non-culturable (VBNC) state is a resistant form of bacterial cells that allows them to remain in a dormant form in the environment. Nevertheless, studies on the resistance of VBNC bacterial cells to ecological factors are limited, mainly because techniques that allow this type of evaluation are lacking. Differential scanning calorimetry (DSC) has been used to study the thermal resistance of culturable bacteria but has never been used to study VBNC cells. In this work, the heat resistance of Escherichia coli cells in the VBNC state was studied using the DSC technique. The VBNC state was induced in E. coli ATCC 25922 by suspending bacterial cells in artificial sea water, followed by storage at 3 ± 2°C for 110 days. Periodically, the behaviour of E. coli cells was monitored by plate counts, direct viable counts and DSC. The entire bacterial population entered the VBNC state after 110 days of storage. The results obtained with DSC suggest that the VBNC state does not confer thermal resistance to E. coli cells in the temperature range analysed here. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Toward a Psychology of Social Change: A Typology of Social Change.

    PubMed

    de la Sablonnière, Roxane

    2017-01-01

    Millions of people worldwide are affected by dramatic social change (DSC). While sociological theory aims to understand its precipitants, the psychological consequences remain poorly understood. A large-scale literature review pointed to the desperate need for a typology of social change that might guide theory and research toward a better understanding of the psychology of social change. Over 5,000 abstracts from peer-reviewed articles were assessed from sociological and psychological publications. Based on stringent inclusion criteria, a final 325 articles were used to construct a novel, multi-level typology designed to conceptualize and categorize social change in terms of its psychological threat to psychological well-being. The typology of social change includes four social contexts: Stability, Inertia, Incremental Social Change and, finally, DSC. Four characteristics of DSC were further identified: the pace of social change, rupture to the social structure, rupture to the normative structure, and the level of threat to one's cultural identity. A theoretical model that links the characteristics of social change together and with the social contexts is also suggested. The typology of social change as well as our theoretical proposition may serve as a foundation for future investigations and increase our understanding of the psychologically adaptive mechanisms used in the wake of DSC.

  7. Neptune Rings and 1989N2

    NASA Image and Video Library

    1996-01-29

    In this image from NASA's Voyager wide-angle taken on Aug. 23 1989, the two main rings of Neptune can be clearly seen. In the lower part of the frame the originally announced ring arc, consisting of three distinct features, is visible. This feature covers about 35 degrees of longitude and has yet to be radially resolved in Voyager images. From higher resolution images it is known that this region contains much more material than the diffuse belts seen elsewhere in its orbit, which seem to encircle the planet. This is consistent with the fact that ground-based observations of stellar occultations by the rings show them to be very broken and clumpy. The more sensitive wide-angle camera is revealing more widely distributed but fainter material. Each of these rings of material lies just outside of the orbit of a newly discovered moon. One of these moons, 1989N2, may be seen in the upper right corner. The moon is streaked by its orbital motion, whereas the stars in the frame are less smeared. The dark area around the bright moon and star are artifacts of the processing required to bring out the faint rings. This wide-angle image was taken from a range of 2 million kilometers (1.2 million miles), through the clear filter. http://photojournal.jpl.nasa.gov/catalog/PIA00053

  8. Concept development for the ITER equatorial port visible∕infrared wide angle viewing system.

    PubMed

    Reichle, R; Beaumont, B; Boilson, D; Bouhamou, R; Direz, M-F; Encheva, A; Henderson, M; Huxford, R; Kazarian, F; Lamalle, Ph; Lisgo, S; Mitteau, R; Patel, K M; Pitcher, C S; Pitts, R A; Prakash, A; Raffray, R; Schunke, B; Snipes, J; Diaz, A Suarez; Udintsev, V S; Walker, C; Walsh, M

    2012-10-01

    The ITER equatorial port visible∕infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R&D topics are outlined.

  9. Integrated phased array for wide-angle beam steering.

    PubMed

    Yaacobi, Ami; Sun, Jie; Moresco, Michele; Leake, Gerald; Coolbaugh, Douglas; Watts, Michael R

    2014-08-01

    We demonstrate an on-chip optical phased array fabricated in a CMOS compatible process with continuous, fast (100 kHz), wide-angle (51°) beam-steering suitable for applications such as low-cost LIDAR systems. The device demonstrates the largest (51°) beam-steering and beam-spacing to date while providing the ability to steer continuously over the entire range. Continuous steering is enabled by a cascaded phase shifting architecture utilizing, low power and small footprint, thermo-optic phase shifters. We demonstrate these results in the telecom C-band, but the same design can easily be adjusted for any wavelength between 1.2 and 3.5 μm.

  10. Drag Characteristics of Several Towed Decelerator Models at Mach 3

    NASA Technical Reports Server (NTRS)

    Miserentino, Robert; Bohon, Herman L.

    1970-01-01

    An investigation has been made to determine the possibility of using toroid-membrane and wide-angle conical shapes as towed decelerators. Parameter variations were investigated which might render toroid-membrane models and wide-angle- cone models stable without loss of the high drag coefficients obtainable with sting-mounted models. The parameters varied included location of center of gravity, location of the pivot between the towline and the model, and configuration modifications of the aft end as the addition of a corner radius and the addition of a skirt. The toroid membrane can be made into a stable towed decelerator with a suitable configuration modification of the aft end.

  11. Wide-angle Optical Telescope for the EUSO Experiments

    NASA Technical Reports Server (NTRS)

    Hillman, L. W.; Takahaski, Y.; Zuccaro, A.; Lamb, D.; Pitalo, K.; Lopado, A.; Keys, A.

    2003-01-01

    Future spacebased air shower experiments, including the planned Extreme Universe Space Observatory (EUSO) mission, require a wide-angle telescope in the near-UV wavelengths 330 - 400 nm. Widest possible target aperture of earth's atmosphere, such as greater than 10(exp 5) square kilometers sr, can be viewed within the field-of-view of 30 degrees from space. EUSO's optical design is required to be compact, being constrained by the allocated mass and diameter for use in space. Two doublesided Fresnel lenses with 2.5-m diameter are chosen for the baseline design. It satisfies the imaging resolution of 0.1 degree over the 30-degree field of view.

  12. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  13. Large-Scale Noniridescent Structural Color Printing Enabled by Infiltration-Driven Nonequilibrium Colloidal Assembly.

    PubMed

    Bai, Ling; Mai, Van Cuong; Lim, Yun; Hou, Shuai; Möhwald, Helmuth; Duan, Hongwei

    2018-03-01

    Structural colors originating from interaction of light with intricately arranged micro-/nanostructures have stimulated considerable interest because of their inherent photostability and energy efficiency. In particular, noniridescent structural color with wide viewing angle has been receiving increasing attention recently. However, no method is yet available for rapid and large-scale fabrication of full-spectrum structural color patterns with wide viewing angles. Here, infiltration-driven nonequilibrium assembly of colloidal particles on liquid-permeable and particle-excluding substrates is demonstrated to direct the particles to form amorphous colloidal arrays (ACAs) within milliseconds. The infiltration-assisted (IFAST) colloidal assembly opens new possibilities for rapid manufacture of noniridescent structural colors of ACAs and straightforward structural color mixing. Full-spectrum noniridescent structural colors are successfully produced by mixing primary structural colors of red, blue, and yellow using a commercial office inkjet printer. Rapid fabrication of large-scale structural color patterns with sophisticated color combination/layout by IFAST printing is realized. The IFAST technology is versatile for developing structural color patterns with wide viewing angles, as colloidal particles, inks, and substrates are flexibly designable for diverse applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Optics of wide-angle panoramic viewing system-assisted vitreous surgery.

    PubMed

    Chalam, Kakarla V; Shah, Vinay A

    2004-01-01

    The purpose of the article is to describe the optics of the contact wide-angle lens system with stereo-reinverter for vitreous surgery. A panoramic viewing system is made up of two components; an indirect ophthalmoscopy lens system for fundus image viewing, which is placed on the patient's cornea as a contact lens, and a separate removable prism system for reinversion of the image mounted on the microscope above the zooming system. The system provides a 104 degrees field of view in a phakic emmetropic eye with minification, which can be magnified by the operating microscope. It permits a binocular stereoptic view even through a small pupil (3 mm) or larger. In an air-filled phakic eye, field of view increases to approximately 130 degrees. The obtained image of the patient's fundus is reinverted to form true, erect, stereoscopic image by the reinversion system. In conclusion, this system permits wide-angle panoramic view of the surgical field. The contact lens neutralizes the optical irregularities of the corneal surface and allows improved visualization in eyes with irregular astigmatism induced by corneal scars. Excellent visualization is achieved in complex clinical situations such as miotic pupils, lenticular opacities, and in air-filled phakic eyes.

  15. Seismic structure from multi-channel seismic reflection and wide-angle data of Transect 0E in the Southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Paramo, P.; Holbrook, W.; Brown, H.; Lizarralde, D.; Fletcher, J.; Umhoefer, P.; Kent, G.; Harding, A.; Gonzalez, A.; Axen, G.

    2005-12-01

    We present a velocity model from wide-angle data along with coincident prestack depth migration sections from seismic reflection data collected in the southern Gulf of California. Transect 0E runs NE to SW from the hills of Sierra Madre in mainland Mexico near Mazatlan to approximately 115 km into Gulf of California waters. Wide-angle data were recorded by 9 ocean bottom seismometers, deployed by the R/V New Horizon and 10 Reftek seismometers located along onshore extension of the transect. The average spacing for the OBS and Refteks is ~12 km and shots were fired from the R/V Maurice Ewing at 150 m intervals. Transect 0E crosses what it is believed to be extended continental crust and lies in the initial direction of extension characteristic of the proto-gulf. Preliminary results from the velocity model show upper crustal velocities of 6.1-6.3 km/s and lower crustal velocities of 6.7-7.0 km/s along the entire transect. Seismic velocities and crustal thicknesses observed along transect 0E are characteristic of non-volcanic margins.

  16. Agile wide-angle beam steering with electrowetting microprisms

    NASA Astrophysics Data System (ADS)

    Smith, Neil R.; Abeysinghe, Don C.; Haus, Joseph W.; Heikenfeld, Jason

    2006-07-01

    A novel basis for beam steering with electrowetting microprisms (EMPs) is reported. EMPs utilize electrowetting modulation of liquid contact angle in order to mimic the refractive behavior for various classical prism geometries. Continuous beam steering through an angle of 14° (±7°) has been demonstrated with a liquid index of n=1.359. Experimental results are well-matched to theoretical behavior up to the point of electrowetting contact-angle saturation. Projections show that use of higher index liquids (n~1.6) will result in steering through ~30° (±15°). Fundamental factors defining achievable deflection range, and issues for Ladar use, are reviewed. This approach is capable of good switching speed (~ms), polarization independent operation, modulation of beam field-of-view (lensing), and high steering efficiency that is independent of deflection angle.

  17. Wettability Control of Gold Surfaces Modified with Benzenethiol Derivatives: Water Contact Angle and Thermal Stability.

    PubMed

    Tatara, Shingo; Kuzumoto, Yasutaka; Kitamura, Masatoshi

    2016-04-01

    The water wettability of Au surfaces has been controlled using various benzenethiol derivatives including 4-methylbenzenethiol, pentafluorobenzenethiol, 4-flubrobenzenethiol, 4-methoxy-benzenethiol, 4-nitrobenzenethiol, and 4-hydroxybenzenethiol. The water contact angle of the Au surface modified with the benzenethiol derivative was found to vary in the wide range of 30.9° to 88.3°. The contact angle of the modified Au films annealed was also measured in order to investigate their thermal stability. The change in the contact angle indicated that the modified surface is stable at temperatures below about 400 K. Meanwhile, the activation energy of desorption from the modified surface was estimated from the change in the contact angle. The modified Au surface was also examined using X-ray photoelectron spectroscopy.

  18. Real-Space Imaging of the Tailored Plasmons in Twisted Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Hu, F.; Das, Suprem R.; Luan, Y.; Chung, T.-F.; Chen, Y. P.; Fei, Z.

    2017-12-01

    We report a systematic plasmonic study of twisted bilayer graphene (TBLG)—two graphene layers stacked with a twist angle. Through real-space nanoimaging of TBLG single crystals with a wide distribution of twist angles, we find that TBLG supports confined infrared plasmons that are sensitively dependent on the twist angle. At small twist angles, TBLG has a plasmon wavelength comparable to that of single-layer graphene. At larger twist angles, the plasmon wavelength of TBLG increases significantly with apparently lower damping. Further analysis and modeling indicate that the observed twist-angle dependence of TBLG plasmons in the Dirac linear regime is mainly due to the Fermi-velocity renormalization, a direct consequence of interlayer electronic coupling. Our work unveils the tailored plasmonic characteristics of TBLG and deepens our understanding of the intriguing nano-optical physics in novel van der Waals coupled two-dimensional materials.

  19. Real-Space Imaging of the Tailored Plasmons in Twisted Bilayer Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, F.; Das, Suprem R.; Luan, Y.

    Here, we report a systematic plasmonic study of twisted bilayer graphene (TBLG)—two graphene layers stacked with a twist angle. Through real-space nanoimaging of TBLG single crystals with a wide distribution of twist angles, we find that TBLG supports confined infrared plasmons that are sensitively dependent on the twist angle. At small twist angles, TBLG has a plasmon wavelength comparable to that of single-layer graphene. At larger twist angles, the plasmon wavelength of TBLG increases significantly with apparently lower damping. Further analysis and modeling indicate that the observed twist-angle dependence of TBLG plasmons in the Dirac linear regime is mainly duemore » to the Fermi-velocity renormalization, a direct consequence of interlayer electronic coupling. Our work unveils the tailored plasmonic characteristics of TBLG and deepens our understanding of the intriguing nano-optical physics in novel van der Waals coupled two-dimensional materials.« less

  20. Real-Space Imaging of the Tailored Plasmons in Twisted Bilayer Graphene

    DOE PAGES

    Hu, F.; Das, Suprem R.; Luan, Y.; ...

    2017-12-13

    Here, we report a systematic plasmonic study of twisted bilayer graphene (TBLG)—two graphene layers stacked with a twist angle. Through real-space nanoimaging of TBLG single crystals with a wide distribution of twist angles, we find that TBLG supports confined infrared plasmons that are sensitively dependent on the twist angle. At small twist angles, TBLG has a plasmon wavelength comparable to that of single-layer graphene. At larger twist angles, the plasmon wavelength of TBLG increases significantly with apparently lower damping. Further analysis and modeling indicate that the observed twist-angle dependence of TBLG plasmons in the Dirac linear regime is mainly duemore » to the Fermi-velocity renormalization, a direct consequence of interlayer electronic coupling. Our work unveils the tailored plasmonic characteristics of TBLG and deepens our understanding of the intriguing nano-optical physics in novel van der Waals coupled two-dimensional materials.« less

Top